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Abstract

Spectral decomposition of seismic data has been used to identify thin beds and other
possible changes subsurface sand layers. Spectral decomposition can be used as a tool
for estimating bed thickness. This thesis uses a 3-D Seismic data set in the Shelf Gulf
of Mexico. Two Sands were identified and designated, sands A and C in a traditional
3-D seismic survey with the use of nine well logs. For each sand the frequency
spectrum is extracted and the peak frequency found. Peak frequency is the frequency
that has the highest amplitude value in the spectrum. The peak frequency at each
location is then plotted against the thickness of the sand. The peak frequency response
of the data is compared with a modeled case. Sand A shows some correlation to the
modeled case; however, bimodal spectra confuse the relationship. Sand C shows no
clear relationship and thickness appears to have no relation to peak frequency. Sands
below the tuning frequency for the bed have clearer relationship to the modeled and
theoretic curves. The method of peak frequency as a tool for bed thickness estimation
shows no simple relationship. For unequal odd impulse pairs there are two

thicknesses for one peak frequency value.
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Chapter 1: Introduction

Purpose of Study

Sedimentary bed thickness is a very important measure for geophysicists, geologists,
and engineers. It affects the way a bed may appear on seismic data, feasibility of a
reservoir, and the net volume of a reservoir. Being able to identify changes in
thickness of a potential reservoir can identify new possible drilling sites as well as
lower the risk involved in finding a producible reservoirs. The question asked in this
thesis is: Can the frequency content, or more specifically the peak frequency in a

layer or horizon, be used to estimate the thickness of the sand layer?

The intent of this thesis is to attempt to find a correlation between peak frequency and
bed thickness. Ideally, such a correlation could lead to a simple way of estimating the
thickness in a unit of sand, assuming that each sand may be different in content and
thickness variation. In order to better understand the problem, a case study of
frequency variations is performed on a real seismic dataset using spectral
decomposition. Two sand units are analyzed for empirical relationships between
thickness and peak frequency. These observations are then compared to theoretical

predictions.



Organization of thesis

Chapter 2 will address the particulars of the seismic survey. A general background for
the location of the survey in near offshore Louisiana and geologic history is
presented. This chapter will also describe the considerations and reasoning for
choosing the sands in the study. Finally, Chapter 2 will describe the spectral

decomposition method and use of frequency data.

Chapter 3 begins the analysis of the data. Particularly, this chapter will focus on how
peak frequency was gathered and analyzed. The gathered data is compared to the

theoretical Green’s Function.

Next Chapter 4 will demonstrate the importance of unequal impulse pairs and show
the outcome of modeling even and odd impulse pairs for the study sand. This was

done to give an explanation for the drop in peak frequency for very thin sands.

Finally, Chapter 5 will conclude the thesis with a discussion of peak frequency as a
tool for determining sand thickness. Further questions are presented here along with

possible future research.



Appendix A contains the seismic survey parameters and processing steps. Appendix
B has the tuning charts for each well in the survey. Appendix C contains the time-
frequency charts for Sand A at each well location. Appendix D has the time-

frequency charts for Sand C at each well location.



Chapter 2: Background

Introduction

As with any study it is important to begin with an understanding of the location of the
seismic data as well as how the seismic were acquired. This chapter will give a brief
background of the geologic setting of the seismic survey. It will begin with a
summary of the geologic history of north central Gulf of Mexico and summarize the
stratigraphy to be expected in the area. The survey parameters are discussed later in
the chapter. The study area is located offshore Louisiana, south of Marsh Island

(Figure 2.1).
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Figure 2.1 Location of Seismic Survey (Barncord, 1999)

Geologic Background

Stratigraphy

The survey area is in the gulf coastal plain of the North American continent.

Underlying the gulf coastal plain is a series of sedimentary formations mostly

composed of sand, clay, marl, limestone, and chalk (Eardley, 1951).



During the Triassic sediment first started to pour into the Gulf of Mexico (Brancord,
1999). Deltas began to form by the end of the Jurassic northeast of Louisiana and
Mississippi (Barncord, 1999). After the late Jurassic, the layers are largely
unconsolidated (Eardley, 1951). The early Cretaceous had a broad shallow sea
covering most of North America, with an interior causeway receding by the early
Tertiary (Barncord, 1999). Most of the sediment deposited in the Cretaceous was
carbonate, with small amounts of clastics and evaporates (Murray, 1961). In the
Tertiary the sediments deposited were mostly clastic due in large part to the Laramide
Orogeny and other orogenies (Barncord, 1999). The types of deposits were mostly
controlled by location of deltas and paleogeography (Barncord, 1999) Due to the
multiple transgressions and regressions of the Tertiary there are sandstones and shales
laid alternately (Murray, 1961). The beds are interfingered with each other and very
commonly difficult to correlate because columnar sections can be dissimilar unless
closely spaced. Sands, silts, and clay were transported and deposited in the Gulf by

the rivers draining the central part of the continent. (Eardley, 1951)
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Figure 2.2 Generalized geologic column for Gulf of Mexico (Murray,
1961)

Tectonics

The northern Gulf of Mexico was part of the landmass Pangea at the start of the
Permian (Barncord, 1999). In late Triassic, the rifting began with the margin between
Laurasia and Gondwana relaxing (Barncord, 1999). A system of grabens and half

grabens were created from late Triassic to Cretaceous as the rifting led to subsidence

and downwarping (Barncord, 1999).



Salt movement began in the Jurassic and caused many salt-related structures in the
Gulf of Mexico (Barncord, 1999). Salt movement causes structures such as domes
and welds. This salt was formed in the Gulf of Mexico when the North American
plate first began to separate from northern Africa (Barncord, 1999). Fault systems
were also formed in the Tertiary as a result of crust relaxation (Barncord, 1999). The
rapid deposition of sediments from the Mississippi River caused growth faults

paralleling the coastline (Barncord, 1999).
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Figure 2.3 Fault trends during the Tertiary (Barncord, 1999)

Survey Parameters

The seismic survey used was part of the OCS310 3D Survey acquired by Halliburton
Geophysical Services in June 1990 for Texaco (Todd 1993). The grid for the survey
was located at northing of 284392 ft and easting of 1695522 ft with an azimuth of 125
degrees (Todd 1993). After processing the bin size was 110 ft X 110 (Barncord,

1999).



Inlines ‘Eroduction)

Receivers

22 parallel lines 2640 ft apart

3 lines of 358 groups 220 ft apart

16 lines of 579 groups 220 ft apart

3 lines of 194 groups 220 ft apart

Shots

127 parallel lines 440 ft apart with a 220 ft offset
between the receiver line and the nearest shot line

18 lines of 358 shots 220 ft apart

90 lines of 579 shots 220 ft apart

19 lines of 194 shots 220 ft apart

NOTES

Shot records were 120 trace split-spread

Shot stations had an inline offset of 110 ft from the
receiver stations

Crosslines (qualit
control)

Receivers

16 parallel lines 1.5 miles apart

5 lines of 241 groups 220 ft apart

7 lines of 277 groups 220 ft apart

4 lines of 313 groups 220 ft apart

Shots

32 parallel lines with pairs 220 ft from each receiver
line

10 lines of 241 groups 220 ft apart

14 lines of 277 groups 220 ft apart

8 lines of 313 groups 220 ft apart

NOTES

Shot records were 120 trace split-spread

Shot stations had an inline offset of 110 ft from
receiver stations

Table 2.1 Acquisition Parameters (Todd 1993).
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A) Without DMO

1) Demultiplex

2) Navigation Processing

3) Prestack Enhancement

4) Geometry

5) Refraction Statics

6) Coarse Velocity Grid

7) First Pass Residual Statics

8) Final Velocity Grid

9) Second Pass Residual Statics
10) Final Pre-DMO Stack

11) Interpolation to Final Grid
12) Migration

13) Scale

14) Filter

15) Phase Rotation (-30 degrees)
16) Final Pre-DMO Product

B) With DMO

17) Trim Statics

18) DMO

19) Trace Interpolation 1
20) Trace Interpolation 2
21) Migration

22) FX Deconvolution
23) Phase Rotation

24) Filter

25) Final DMO Product

Table 2.2 Processing sequence on the OCS310 3D survey (Todd 1993).

The survey was loaded into SMT’s Kingdom © for interpretation. Figure 2.6 shows
the basemap for the seismic. For this study. one arbitrary line through nine wells was
considered(figure 2.7). Figure 2.8 shows the arbitrary line seismic. (Red represents

negative reflection coefficients.)

11
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Study Sands

The sands that will be used in the study are required to have several characteristics
associated with them in order to be useful for this thesis. The first characteristic is that
the sand be continuous. This is a requirement of simplicity. It makes the sands easier
to correlate from well to well and across the seismic. This should not be a
requirement of the thickness versus frequency relationship, but is merely a
consideration for a first look at identifying the relationship. The main characteristic I
am looking for in the sands is variable thickness. This requirement is self explanatory
in the sense that in order to do a study on sand thicknesses, one must first have
thicknesses that change. Other considerations in identifying sands for study were,
again for simplicity, easily correlated sands on well logs and blocky sand units, so as

not to affect the frequency with gradations in the sand units.

Some possible problems with this thesis can be anticipated. The first and most
influential problem is the limited number of data points. Only a limited number of
wells have well logs to identify the sands and thicknesses from. The result of the
limited data points is a less precise relationship and ultimately a less accurate method
of estimation. This problem can be corrected by increasing the area covered in the

study to encompass more wells and consequently more data points

15



Paleo markers were used to restrict the search for sands to the shallower sands. The
paleo data helped me to determine that the shallower sands were much more
continuous than the deeper sands. As you go deeper in the seismic record the horizons
are less continuous and are more complicated by faulting. Although, it can probably
be assumed that useful information can be gained by looking at deeper sands with

regard to their frequency content.

Once the search was restricted to shallow sands, well logs were used to correlate
sands. The logs used were the gamma ray log and the spontaneous potential log,
primarily. When these were not available induction logs were used . The paleo
markers identified by a previous interpreter were not identified in every well in the
survey area so other sands were correlated in the wells with the paleo markers so
other sands could be correlated in the remaining well logs. Several sands were
identified in the wells. These were arbitrarily named A-G. They are in no specific
order other than the order in which they were identified. Although only sands A and

C were used in this study.

Tying Wells to Seismic

There were several check shot surveys associated with wells in the survey area. The

first step in tying the wells to the seismic was to apply these surveys to the wells that

16



were associated with them. Unfortunately, there was not a check shot survey for each
well in the study area. Fortunately, there was a previous interpreter that applied time-
depth charts to the majority of the wells. Several of the check shot surveys had been

altered and applied to wells considerably distant from the original well.

The time-depth charts needed to be verified. To do this I displayed the interpreted
sands as markers on the seismic data. After noticing inconsistencies I iterated changes
in the time-depth charts for the well. As a control I applied the original check shot
surveys at the wells they originated from. I changed the check shot surveys applied at
distant wells to surveys that were from wells closer to the well without a specific
survey. I tried not to alter the time-depth charts too much so as not to over correct the
models. Also as a control for the velocity model I displayed the Gamma Ray and SP
curves next to the wells on the seismic. This gave me some idea as to the location of

different lithologies and I was able then to compare the well logs to the seismic.

[ was not interested in getting a perfect velocity model for the entire length of the
seismic record. Since I was primarily interested in two or three sands. I focused on
tying the wells to the seismic in the specific range of 1.0-2.5 seconds. Figure2.7
shows the tied wells and seismic. Well number 55 presented a problem in tying to
seismic. Well number 55 did not have a check shot survey associated with it, and the
wells in the proximity could not provide a close representation of the time-depth chart

needed for well number 55. I was not able to accurately tie well number 55 to the

17



seismic section. The well log correlation, however, was done with confidence. After
interpreting the seismic horizons associated with the markers for the other wells, the
conclusion was drawn that since the horizons were consistent between the wells next
to well number 55 and well number 55 itself, there was no doubt of the horizons

assoclated with the markers in the well.

Seismic horizons were interpreted for three sands: Sand A, Sand C, and Sand E. Sand
A and C were continuous for all wells involved. Sand E was only determined for
wells on one side of the interpreted fault. Wells numbered 14, 40400, 40477, and
40133, did not have Sand E identified in the log data. Sand E was not included in this

study.

Sand A Discussion

Sand A was identified at 7100 Ft MD on Well # 40400. This sand was correlated onto
the eight other wells #55, #63, #83, #311, #312, #200606, #40477, and #40133. The
average thickness for Sand A is 44 ft. There are two wells with Sand A thickness
above the tuning frequency, and the remaining with Sand A thickness below the
tuning frequency. Sand A appears to have thin intermixed shale bed throughout.
Different wells have slightly different sand character on the logs. Wells #40477, #83.

and #20066 show Sand A as a blocky sand with not much influence of shales on the

18



SP log in the sand interval. Wells #63 and #311 show Sand A as a mostly block sand
and one notch in the curve. This is assumed to be a thin shale bed. The remaining
wells #40133, $40400, #55, and #312 show Sand A with mostly sandstone but several
thin shale beds intermixed. For the purpose of this thesis the sand thickness was the
net thickness and any shale content was not considered or subtracted. (The log

interpretations are included in the appendix.)

Sand C Discussion

Sand C was correlated on well logs for nine wells: #55, #63, #83, #311, #312,
#20066. #40477. and #40133. On well #40400 it was at 5600 ft MD. The average
thickness for this sand is 120 ft. Only one of the wells showed Sand C below tuning
thickness. Sand C is a fairly clean sand. It shows increasing shale content upwards for
wells #63. #312. #20066. and #40477. The remaining wells show a blocky sand. The
net thickness was used in this thesis for comparison and the thinning upwards
sequence was included as part of the whole sand. Because many of the wells showed
sands above tuning thickness for the sand extensive analysis was restricted to Sand A.

(The log interpretations are included in the appendix.)
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Chapter 3: Spectral Decomposition of Seismic Data

Introduction

The seismic data was decomposed into the frequency content according to the
parameters outlined in Chapter 2. The section will describe the methodology and
rationale in using spectral decomposition in this thesis. Frequency content and
frequency character of reflections has been studied to some extent in past years
(Partyka et al., 1998 and 1999, Chakraborty and Okaya, 1995, Castagna, 2003,
Marfurt and Kirlin, 2001). Spectral analysis has been used to identify thin beds and as
a hydrocarbon indicator. (Partyka et al..1999. Castagna, 2003) This thesis will use the
spectral decomposition to find the peak frequency of the seismic data at Sand A for

different sand thicknesses.

Fourier Transform

Fourier analysis in " is used to decompose arbitrary functions into usually
continuous sums of characters (Hormander, 1990). A character is defined as a
Lﬁ:l]

function f such that for every y:

flx+y) = f(x) e(y), x & &', (3.1)



for some ¢(y). The characters needed to expand a given function u depends on the
properties of u (Hormander, 1990). For a function f & &" the Fourier transform F is
defined as

F(&) =Je™% f(x)dx, & &". (3.2)
Or for our purposes,

F(o) =Je™ f(t)dt, o /" (3.3)
If F is also integrable then,

() =Cn)" [ F(o)do, os&", (3.4)
by the Fourier inversion formula. (Hormander, 1990)
The function f(t) can also be written in terms of the Fourier transform as the sum of
sines and cosines. This is expressed as

a 0
fa):‘f;-§=1(&1cosun-+bnsn1mo. (3.5)

Equation 3.5 can be rewritten in terms of only cosines:

o]

fit) =co+ an:l Cn COS (Ot + On), (3.6)

where c, =~ (a, by 2) and 0, = arctan(a,/ b,) = ot,., called the phase.(Sinha,

2002)
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Spectral Decomposition Methods

Frequency information can be obtained either as the frequency content of the entire
signal or as time localized frequencies. It is more useful in seismic geophysics to have
time localized frequency information. One method of having time localized frequency
information is using the short-time Fourier transform (STFT). The STFT is performed
by windowing the time domain and performing the Fourier transform over that
window (Sinha, 2002). The window is defined such that the signal remains periodic
(Sinha, 2002). This gives a time-frequency map known as a spectrogram (Sinha,
2002). Figure 3.1 shows a synthetic example of a chirp signal with two hyperbolic

sweep frequencies from Sinha (2002) transformed using the STFT.
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Figure 3.1 Chirp signal with two hyperbolic sweep frequencies using

STFT (Sinha, 2002)

Many times the STFT cannot accurately represent the frequency with time because

the structure of the signal can be non-stationary (Sinha, 2002). The continuous

wavelet transform chooses atoms such that the time window changes for different

frequencies (Sinha, 2002). Figure 3.2 shows the same chirp signal from the previous

transformed using the CWT.
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Figure 3.2 Chirp signal with two hyperbolicsweep frequencies using
CWT (Sinha, 2002)

The program InSpect ™ used to transform the seismic in this thesis uses a variation
of the continuous wavelet transform method called matching pursuit decomposition.
Once the event was identified on the seismic section, the frequency content could be

determined by looking at the time-frequency map and locating the same time for the

event.
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InSpect™ Program

The InSpect ™ program was used to perform the decomposition. This program uses
the continuous wavelet transform method of decomposition. The inputs of the
program were as follows: SEGY seismic data, frequency range, and frequency

increment. Each of these inputs will be addressed.

The InSpect™ program has the capability of decomposing both 2-D and 3-D seismic
data. The program creates several frequency traces for each trace of SEGY seismic
data. This means that there is a volume of traces equal to the original seismic for each
frequency value. This presented the problem of loading spectral decomposition output

into Kingdom in a useful manner.

For a 3-D volume the InSpect™ data would need to be loaded either by line with all
the corresponding frequencies to that line or by frequency with the whole volume of
lines associated. Either way there would need to be multiple (nearly 100) volumes
loaded into the project. It was decide that an arbitrary line connecting the wells in the

study would be used for interpretation. (refer to figure 2.6)
The arbitrary line spectral decomposition results were was loaded as lines of constant

frequency. The consequence of this loading method is that the arbitrary line cannot be

associated with the accurate world coordinates, meaning that the wells cannot be
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simply viewed with the data. The benefit of this loading method is that by taking
crosslines through the volume you can see all the frequencies associated with one

trace. Also, by viewing an inline you can see the section with only one frequency.

Frequency Range and Increment

Frequency range for the spectral decomposition was determined by extracting the
frequency content of the Texaco seismic data set. Kingdom has a tool that extracts the
frequency content. This plot is shown in figure 3.4. The main band of data falls
between 0 and 60 Hz. The range was selected between 0 and 80 Hz. The frequency

increment was set to 1 Hz.
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Figure 3.4 Frequency Spectrum for seismic survey centered over study

sands

The spectral decomposition results were loaded into the same Kingdom project with
the original seismic as an additional survey. The world coordinates of the InSpect
survey were determined by the number of traces in the 2-D SEGY seismic and the

number of frequency volumes produced. There were 815 traces and 80 frequencies

The lines were ordered according to the frequencies.
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Interpreting Frequency Content for Sand A

Sand A was identified on the arbitrary line by using the well logs and markers. The
time was noted for each well. The consequence of loading an arbitrary line of
frequency data caused the wells to not be associated with the X and Y locations as
they were on the original basemap. The locations of the wells were determined by
associating the inline and crossline locations of the wells on the original survey with
the trace number on the arbitrary line. Once this was done, it was possible to compare
the seismic trace at the well with the time-frequency map by making the scales of
each equal. This was done for each well location used in this thesis and can be found

in the appendix.

28



Chapter 4: Peak Frequency versus Bed Thickness

Introduction

This chapter will compare the sand thickness for the nine wells in the study to the
peak frequency observed in the frequency spectra for two sands: Sand A and Sand C.
Peak frequency is defined and used in this thesis as the frequency with the maximum
amplitude in the frequency domain (Chung and Lawton, 1995). The thicknesses of the
beds were estimated from the well logs for nine wells in the survey area. The plotted
points are compared to expected outcomes from modeling sands with similar

reflection coefficients.

Sand A

Sand A has an average thickness of 40 ft. The values range above and below the
tuning thickness of 66 ft. The average velocity over the interval is 8800 ft/sec. The
well logs over the interval can be found in the appendix. Table 4.1 lists the thickness

of Sand A at each well location. This is the net thickness of sand and does not factor

in any shale content.
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Well Number Sand A Thickness (ft)
55 40
312 40
83 25
311 50
20066 36
63 64
40400 45
40477 20
40133 75

Table 4.1 Thickness (ft) of Sand A at Well Locations

The peak frequency was taken as the highest amplitude value on the frequency
spectrum. The frequency spectrum was extracted from the frequency dataset at the
time of the sand reflection. Table 4.2 shows the peak frequency for Sand A at each

well location.



Well Number | Peak Frequency (Hz)
55 32
312 22
83 30
311 15
20066 29
63 21
40400 18
40477 18
40133 26

Table 4.2 Peak Frequency values for Sand A at well locations

The peak frequency was then plotted against the thickness of Sand A to determine a
relationship. Frequency spectra for Sand A can be found in the appendix. Figure 4.1

shows the cross plot. The red line is the tuning thickness.



Bed Thickness Vs Peak Frequency for Sand A
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Figure 4.1 Cross plot of Peak Frequency (Hz) and Bed Thickness (ft) for
Sand A

There was little observed relationship between the peak frequency and the bed
thickness for Sand A. It was decided that the best approach would be to model the
expected behavior for a sand with similar reflection coefficients. By modeling the
sand as a wedge model and determining the frequency content of the assumed sand,

more information could be learned about the study sand and peak frequency.
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Modeling Sand A

GX2 modeling program was used for modeling Sand A. This model required a wedge
model of sand with specific reflection coefficients and thickness ranging as the study
sand ranged. As the reflection coefficient needed to be as close to the study sand as
possible, sonic logs were analyzed for the velocity of Sand A. Unfortunately, there
were not many sonic logs over the depth needed. There were two sonic curves in the
area of the survey. Only one was from one of the nine wells being considered in this
thesis. Well #40400 provided velocity information for the model. The layer above the
sand was averaged to 10,000 ft/s, with the sand at 8,800 ft/s, and the layer below
9,600 ft/s. The density used was the default value given by the program, as no density
curves were found in the nine wells over the depth range of the study sand. The

reflection coefficients were mostly odd but not equal. (figure 4.2)
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Figure 4.2 Wedge Model used for Sand A, annotated with velocities (ft/s)

Vertical ray paths were used to simulate the seismic response. An extracted wavelet
from the 3-D seismic was used as a filter for the synthetics. A trace was generated at
1 ft intervals such that the wedge could represent the peak frequency at every integer
value of thickness as needed. This was done in order to compare the frequency
content of the synthetics with the frequency content of the 3-D seismic and have the
same original wavelet. The resulting synthetic traces were exported to Kingdom for

further analysis. (figure4.3)
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Figure 4.3 Traces created In GX2 for Sand A, Wavelet extracted from
original seismic data

InSpect™ was utilized to create the frequency spectra for the modeled case. The same
parameters to spectrally decompose the 3-D seismic were used for the synthetics.
Spectra were extracted at 5 ft thickness intervals for comparison of peak frequency.

Figure 4.4 shows the results of the modeling.
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Bed Thickness Vs Peak Frequency for Sand A
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Figure 4.4 Peak Frequency versus Bed Thickness for Modeled Sand A

The peak frequency observed in the seismic data was then plotted with the modeled
data in order to clarify the peak frequency relationship of the real data. This is shown
in Figure 4.5. The pink line is the modeled results. The red line is the tuning

thickness.
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Bed Thickness Vs Peak Frequency for Sand A
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Wells #40400, #311, #312, and #40477 have peak frequencies that fall well below the

expected frequency as given in the model. Also noted in the frequency spectrum of

the sand at these wells is presence of a second frequency with high amplitude

associated with it. This second highest peak frequency was plotted with the peak

frequency in the other wells in Figure 4.6. The values of this second peak plot higher

than the modeled values.



Bed Thickness Vs Peak frequency for Sand A
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Figure 4.6 Graph showing Peak Frequency and Bed Thickness using
second highest peak frequency for Sand A for wells #40400, #311, #312,
#40477

Next, the average of the two frequencies in the bimodal spectrum wells was
performed (Figure 4.7). These values were not surprisingly closer to the modeled
value. Although, there is no reason to believe this average is the correct operation to
use for this estimate other than the fact that it would be close to the average
frequency. A trough in the spectrum for wells #40400, #311, and #40477 has a
frequency value that is very close to the average of the two peak frequencies in each.
This is shown in Figure 4.8. It is evident that the simple wedge model is probably not

adequate to describe the true reflectivity.
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Bed Thickness Vs Peak frequency for Sand A
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Figure 4.8 Graph showing Peak Frequency and Bed Thickness using
trough frequency between peak frequency and second highest peak
frequency for Sand A for wells #40400, #311, and #40477.

Sand C

Sand C was approached in the same manner as Sand A. The difference mainly being
that Sand C was mostly thicker than its tuning thickness of 63 ft. The average

thickness was 120 ft. Table 4.3 shows the thickness of Sand C at each well.
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Well# | Sand C Thickness (ft)
55 95
312 35
83 120
311 145
20066 85
63 105
40400 225
40477 145
40133 105

Table 4.3 Thickness (ft) of Sand C at Well Locations

Well # | Peak Frequency (Hz)
55 23
312 26
83 23
<y 55
20066 34
63 25
40400 18
40477 26
40133 19

Table 4.4 Peak Frequency values for Sand C at well locations
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The peak frequencies for each location were plotted against the bed thickness. Figure
4.9 show the cross plot. The values show no trend and for some wells with the same

thickness the peak frequency is different.

Bed thickness Vs Peak frequency for Sand C
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Figure 4.9 Peak Frequency plotted with Bed Thickness for Sand C

Modeling Sand C

GX2 modeling program was again used for modeling Sand C. A sonic log from well
# 40400 provided the velocity information for the model. The layer above the sand
was averaged to 7,700 ft/s, with the sand at 8,550 ft/s, and the layer below 6,600 ft/s.
The density used was the default value given by the program, as no density curves
were found in the nine wells over the depth range of the study sand. The reflection

coefficients were mostly odd but not equal (figure 4.10). The wedge model was

42



increased to range from 0 to 300 ft in thickness, due to the variation observed in the

logs.
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Figure 4.10 Wedge Model used for Sand C, annotated with reflection
coefficients and velocities

Traces were generating using the extracted wavelet from the original seismic as the
filter. The resulting traces were decomposed according to the same parameters as the

original seismic. The frequency data was loaded into Kingdom for interpretation.
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The modeled peak frequency data was compared to the observed results for Sand C.

These results showed a huge deviation from the expected modeled results. The only

well to show an expected outcome was well #312. This was the only well with Sand

C thickness below the tuning thickness.

44



Bed thickness Vs Peak frequency for Sand C
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Figure 4.12Graph showing Peak Frequency and Bed Thickness
relationship modeled and observed for Sand C

As with Sand A, several locations exhibited bimodal spectra. These wells however,
were not located on the cross plot in any localized area. The second peak frequency
was plotted against the thickness for Sand C to see whether the graph was improved
by using the second highest peak frequency. Figure 4.13shows the results. The graph
was not improved by using this second frequency. The points were scattered farther

apart and any relationship was further distorted.
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Bed Thickness Vs Peak frequency for Sand C
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Figure 4.13 Graph showing Peak Frequency and Bed Thickness using
trough frequency between peak frequency and second highest peak
frequency for Sand C for wells #40400, #311, #20066, #55, #83, and
#40133.

Sand C did not show any relationship to peak frequency. This is thought to be
because the thickness of Sand C is predominantly above tuning thickness. At the
thicknesses observed for Sand C no interference from the upper and lower boundaries

of the sand is expected. The frequency content of Sand C could be impacted more by

stratigraphic changes and less by thickness variation.
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Chapter 5: Modeling Sand A

Introduction

This chapter will focus on modeling of the Sand A. Sand A had peak frequencies that
were similar to the ones observed by modeling in GX2. This chapter will further

model Sand A and compare the results to the theoretical expected results.

Green’s Function

The impulse response of the reflection off a thin bed can be expressed by the Green’s

function, g(t) where

g(t,0)=rd(t-t;)+ro(t-t,—-T) (5.1)

Equation 3.1 is the time-domain impulse response. The frequency-domain impulse

response is given by G(f),

—_

G(hH)= r(0) exp(-2xft;) + r2(0) exp[-2xf(t;+T)] 5.2)

Where t, is the two-way time to the top of the thin bed, t, is the two-way time to the
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bottom of the thin bed, r; is the reflection coefficient of the top of the thin bed, r; is
the reflection coefficient of the bottom of the thin bed. 0 is the angle determining
reflection coefficients, T is the two-way time thickness of the thin bed, T= to-t;. 8( t)

is the Dirac delta function, and f'is the temporal frequency.

»Xm(km)

reflectivity = r
t, = P

T{ —reflectivity = r;

t; X

t(s)

Figure 5.1 Model defining impulse response ( Marfurt and Kirlin, 2001)

Figures 5.2 and 5.3 show the theoretic curves given by equation 5.2. Figure 5.2

shows the case of rj/ r; < 0 which is the case seen for Sand A.
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amplitude

f*T (dimensioniess)-->

Figure 5.2 Amplitude as a Function of Frequency for odd impulse pairs (
Marfurt and Kirlin, 2001)

amplitude

0 1 2 3 4 5
1*T (dimensionless)-->

Figure 5.3 Amplitude as a Function of Frequency for even impulse pairs
( Marfurt and Kirlin, 2001)
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These theoretic curves were compared to the extracted spectra for the study sand
(figure 5.5). It was necessary to multiple the green’s function by the spectrum of the
wavelet in order to compare the two curves. The wavelet is imprinted on the
frequency data when it is convolved with the reflectivity series. Figure 5.4 shows how
the frequency spectra are changed as the time domain response also changes with the

wavelet.

Reflectivity Wavelet Noise Seismic Trace

1) * wit) i s(t)

Traveltime

Time
Domabn * % + :>
Fouricr Transform
Amplilude Amplitude Amplitude Amplitnde
R 3
TR "
Frequency = )
Domain
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Frequency
b
Frequency

Fregquenc

Figure 3. Short-window spectral decomposition and its relationship to the
convolutional model. A short temporal window samples ordered (nonran-
dom) geology that tunes the amplitude spectrum.

Figure 5.4 Wavelet Overprint on Frequency spectra (Partyka, 1999)
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The derived Green’s function shows good correlation to the extracted spectra for thin

sands. As the sands increase in thickness the correlation is less evident. This is

expected because after a certain thickness there is no longer any noticeable interaction

of the two wavelets for the real sand.
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Frequency Characteristics for Sand A Model

The frequency domain impulse response can be written as

G(f) = [ricos(2m ft1) + racos(2m ft)] + i [risin(27 ft) + rosin(2w fty)].

The amplitude spectrum can then be solved as

A(f)=~ {[ricos(2m ft|) + rpcos(2n ftz)]2 + [r1sin(2@ ft;) + r28in(2n ftz)]z}

=~ {r?+r°+2r ricos(2n fT)}, (5.4)

where 1, 17, t; tr, and T are as defined as before. (Chung ann Lawton, 1995)

A Ricker wavelet has the amplitude spectrum in terms of peak frequency (f, ) as:

AR(f) = (f/ fo)” expl-(f/ fo)']. (5.5)
So that the amplitude spectrum for a wavelet created by convolving the amplitude

spectrum for the reflectivity series and the amplitude spectrum for the Ricker wavelet

(Chung and Lawton, 1995). In the frequency domain this is done by multiplying
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equation 5.4 and 5.5, so that:

C(f) = A() Ar(), (5.6)

The peak frequency can be found by taking the derivative of equation 5.6. The peak

frequency would then be the value of f for which the derivative is equal to 0. Hence,

C(f) =de (1 foP expl-U! f)* T + 122 + 21y rycos(2m fT)]} =0

Calculating this out gives peak frequency f, replaced with f,, in terms of the peak

frequency for a Ricker wavelet, f,:

fo=1 r® + 12" + 2 1y ricos(n £, T)] / [r1r2aTsin(2x f, T)] * [ 1- (fy/ el

(5.7)

Equation 5.7 is called the exact equation for peak frequency as defined by Chung and

Lawton (1995). This equation was solved iteratively using Matlab.

The reflection coefficients for Sand A were r; =-0.09 and r, = 0.06. Sand A was very
nearly perfectly odd. Using equation 5.7 peak frequency was solved for Sand A with

a Ricker peak frequency at 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 Hz (Figure 5.6). At



this point it should be noted that the original seismic data does not have a theoretic
Ricker wavelet and the generated traces from the model were not filtered with a
Ricker wavelet but with the extracted wavelet. So, variation from the model and

seismic data is expected.
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40
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Figure 5.6 Peak Frequency Response for Sand A Reflection Coefficients
at Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35
Hz.

The shape of the curve in Figure 5.6 is consistent with the shape observed in the
seismic survey and modeling data. A significant observation made by Chung and

Lawton (1995) and also seen with this data is that with higher initial peak frequencies

the distinction between frequencies for each thickness becomes greater. So that it can
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be assumed that with higher input frequency the tool of peak frequency content may

become more useful for distinguishing bed thickness.

Interestingly, the peak frequency drops to lower frequencies as bed thickness
decreases. Widess, in How Thin is a Thin Bed, states that the character of a reflection
does not change for beds of thickness less than A/8. The peak frequency observed in
this thesis changes dramatically after A/8. Widess studied a perfectly odd reflection
coefficient pair, so Sand A reflection coefficients were decomposed into the even and

odd parts of the impulse response.

Every Impulse Pair can be broken into its even and odd components where the sum

of the even component and odd component gives the original impulse pair. The odd

component a, is given by

a=|11—-1/2;

and the even component is given by

ac:|r1+r2|/2.

For Sand A a, = -0.075 and a. = -0.015. This is illustrated in the figure below (figure

5.7)
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Figure 5.7 Even and Odd Pairs for Sand A

Models

The even and odd impulse pairs were used to create models for modeling the
frequency and amplitude of wavelets for each case. These models were created in the
same fashion as previous Sand A models. For the Odd Impulse Model the top
reflection coefficient was set to r; = -0.075, and the bottom reflection coefficient was

set to r» = +0.075. Because Reflection Coefficients are calculated as

R.C. :AI/I:(I)_—I])/ (Iz+ I|)g
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where [ is the acoustic impedence defined as I = pV; and p is density, and V is
interval velocity. As such, you cannot change reflection coefficients without changing
either density or velocity in the adjoining layers. This obviously would cause a
problem for comparison, so the wedge retained the original velocity and density of
Sand A, but the top and bottom layers were adjusted to fit the reflection coefficients.
The travel time through the wedge would remain the same. Figures 5.8 and 5.9 show

the traces generated for each model.

Figure 5.8 Sand A Model Odd Component of Impulse Pair generated
traces

3



Figure 5.9 Sand A Model Even Component of Impulse Pair generated
traces

Figure 5.10 shows the peak frequency response for the odd part. As expected from
Widess, the peak frequency starts at a maximum and decreases. Figure 5.11 shows the
response from the even part of the impulse pair. This graph shows the peak frequency
at very thin bed at lower frequencies than for the odd pair and decreasing from there.
This is expected from what was observed in the modeled Sand A. At around tuning
thickness the character of the graph diverges strongly and peak frequency begins to

increase again.
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Thickness vs peak frequency for Odd Impulse Pair
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Figure 5.10 Peak Frequency Response for modeled Sand A Odd Part
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Figure 5.11 Peak Frequency Response for modeled Sand A Even Part

The exact equation (equation 5.7) for peak frequency response was applied using the
reflection coefficients for the odd and even models. Again this was done for a range
of Ricker wavelet peak frequencies. The odd model is fairly close in shape to the

theoretic values. The even model shows resemblance of the theoretic values until
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tuning thickness, at which point there is no correlation. (refer to figures 5.12 and

25

20

15

— B O, SO =—SandAodd 15 hz |

‘*--'SandAodd 20 hz
|wwss=SandAodd 25 hz
‘ “*SandAodd 30 hz
[—SandAodd 35 hz

20 40 60

Figure 5.12 Peak Frequency Response for Odd Reflection Coefficients at
Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 Hz.
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Figure 5.13 Peak Frequency Response for Even Reflection Coefficients
at Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35

Hz.

The even part appears to dominate the peak frequency for very thin beds with only a

very small part of the total impulse pair. To investigate this further, the amplitude of

the wavelets generated in the even and odd models were plotted for each thickness.

For the odd impulse pair the amplitude goes to zero as the wedge decreases in

thickness (figure 5.14). This is expected because of the destructive interference

between opposite polarity wavelets.
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Amplitude Spectrum for Odd Part of Sand A Impulse Pair
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Figure 5.14 Amplitude for Sand A Model Odd Component of Impulse
Pair

The even pair model shows amplitude first decreasing with thickness and then
increasing with thickness after 60 ft of sand. Again, due to constructive interference

the amplitude is expected to increase as the time between the reflections decreases.

(Figure 5.195)



Amplitude Spectrum for Even Part of Sand A Impulse Pair
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Figure 5.15 Amplitude for Sand A Model Even Component of Impulse
Pair

Since the amplitude contribution of the odd part at very thin bed is very small, the
even part plays a bigger role in the character of the peak frequency response (figure
4.4), while not impacting the amplitude spectrum as drastically. Figure 5.16 shows

the Sand A model’s amplitudes as the wedge increases.
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Chapter 6: Conclusions and Discussion

Conclusions

Spectral Decomposition has proven useful in identifying thin beds and hydrocarbon
reservoirs. This thesis investigated spectral decomposition as a tool for quantifying
sand thickness. Specifically, peak frequency was analyzed as a method for

determining bed thickness.

Sand C is an example of a thick sand. Modeling and data showed that the peak
frequency does not work for thick sands (above tuning thickness). The values of peak
frequency were random as far as thickness was concerned. There was no correlation
of bimodal character in the spectrum to thickness. More than likely any variation of

peak frequency observed in the data was due to stratigraphic changes in the sand.

The more interesting case of Sand A showed that the peak frequency may indicate
sand thickness variation. The data shows trends that correspond to the modeled and
theoretic relationships. Bimodal spectra cause confusion in the data, however.
Clearly, the peak frequencies in these cases are not the frequencies that correspond to
the thickness. The next highest amplitude frequency does not represent the thickness
either. In the absence of bimodal cases. the data points are fairly true to the

relationship modeled and theoretic. However, as to the usefulness of peak frequency
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as a quantitative tool, it does not appear to be very good.

The last chapter reviews theoretic relationships along with the modeled sands. Even
in an ideal model there is not large variation in peak frequency. Higher frequencies
give better distinction but the curves are still fairly flat. The most important hurdle for
peak frequency as a quantitative tool is seen in the theoretic curves. For equal impulse
pairs the curve associated with the peak frequency decreases with increasing
thickness in both the even and odd cases. However, for the uneven odd case, such as
sand A, there are two values of thickness for the same peak frequency. Without any
stratigraphic changes and only comparing acoustic impedances, there is no decisive

way to use peak frequency alone for bed thickness estimation.

Discussion

Frequency is impacted by the thickness of thin beds and as such there is more work to
be done. This thesis only explored the peak frequency as a tool and not other aspects
of the spectra. The presence of bimodal spectrum characteristics poses an interesting
question. With more well control it may be possible to correlate more aspects of the
frequency data with thickness. Also, as this thesis showed, sands are different and if
peak frequency doesn’t work for thin sands the peak frequency could give insight to

the stratigraphic changes.
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Appendix

Appendix A: Tuning Charts
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Figure A. 1 Tuning analysis for extracted wavelet at well # 55
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Figure A. 2 Tuning analysis for extracted wavelet at well # 63

70




Tuning Analysis m

LRV I E xtractedW aveletB3 n I

05 \
w Lp-h—/

05

-1

-0.2 -01 0 01 02
Time (sec)
Tuning Thickness Chart:
Mormalized Peak-Trough Amplitude
0 1S 1 1.5

‘o 0.06

2 | |
w005 ‘\

o

Q

£ 004 X

9

= 003

: (

£ o002

= )

E 0 ="

0 0.0 0.02 003 0.04 0.05 0.06
Apparent Time Thickness (sec)

Figure A. 3 Tuning analysis for extracted wavelet at well # 83
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Figure A. 4 Tuning analysis for extracted wavelet at well # 311
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Figure A. 5 Tuning analysis for extracted wavelet at well # 312
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Figure A. 6 Tuning analysis for extracted wavelet at well # 20066
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Figure A. 7 Tuning analysis for extracted wavelet at well # 40400
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Figure A. 8 Tuning analysis for extracted wavelet at well # 40133
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Figure A. 9 Tuning analysis for extracted wavelet at well # 40477

77




Appendix B: Spectrums
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Appendix C: Frequency Spectra for Sands A and C at each

well
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Figure C.1 Frequency Spectrum for Sand A at well # 55
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Figure C.9 Frequency Spectrum for Sand A at well # 312
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Appendix D: Well Logs in study interval

(Sand C outlined in Red, Sand A outlined in Green)
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Figure D.4 SP log for well # 311
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Figure D.5 SP log for well # 312
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Figure D.6 SP log for well # 20066
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Figure D.7 GR log for well # 40133
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Figure D.8 SP log for well # 40400
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Figure D.9 SP log for well # 40477
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