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Abstract 

Spectral decomposition of seismic data has been used to identify thin beds and other 

possible changes subsurface sand layers. Spectral decomposition can be used as a tool 

for estimating bed thickness. This thesis uses a 3-D Seismic data set in the Shelf Gulf 

of Mexico. Two Sands were identified and designated , sands A and C in a traditional 

3-D seismic survey with the use of nine well logs. For each sand the frequency 

spectrum is extracted and the peak frequency found. Peak frequency is the frequency 

that has the highest amplitude value in the spectrum. The peak frequency at each 

location is then plotted against the thickness of the sand. The peak frequency response 

of the data is compared with a modeled case. Sand A shows some correlation to the 

modeled case; however , bimodal spectra confuse the relationship. Sand C shows no 

clear relationship and thickness appears to have no relation to peak frequency. Sands 

below the tuning frequency for the bed have clearer relationship to the modeled and 

theoretic curves. The method of peak frequency as a tool for bed thickness estimation 

shows no simple relationship. For unequal odd impulse pairs there are two 

thicknesses for one peak frequency value. 

Xlll 



Chapter 1: Introduction 

Purpose of Study 

Sedimentary bed thickness is a very important measure for geophysicists, geologists, 

and engineers. It affects the way a bed may appear on seismic data, feasibi lity of a 

reservoir , and the net volume of a reservoir. Being able to identify changes in 

thickness of a potential reservoir can identify new possible drilling sites as well as 

lower the risk involved in finding a producible reservoirs. The question asked in this 

thesis is: Can the frequency content , or more specifically the peak frequency in a 

layer or horizon , be used to estimate the thickness of the sand layer? 

The intent of this thesis is to attempt to find a corre lation between peak frequency and 

bed thickness. Ideally , such a correlation could lead to a simple way of estimating the 

thickness in a unit of sand , assuming that each sand may be different in content and 

thickness variation. In order to better understand the problem , a case study of 

frequency variations is performed on a real seismic dataset using spectral 

decomposition . Two sand units are analyzed for empirical relationships between 

thickness and peak frequency. These observations are then compared to theoretica l 

predictions. 
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Organization of thesis 

Chapter 2 will address the particulars of the seismic survey. A general background for 

the location of the survey in near offshore Louisiana and geologic history is 

presented. This chapter will also describe the considerations and reasoning for 

choosing the sands in the study. Finally, Chapter 2 will describe the spectral 

decomposition method and use of frequency data. 

Chapter 3 begins the analysis of the data. Particularly, this chapter will focus on how 

peak frequency was gathered and analyzed . The gathered data is compared to the 

theoretical Green ' s Function. 

Next Chapter 4 will demonstrate the importance of unequal impulse pairs and show 

the outcome of modeling even and odd impulse pairs for the study sand . This was 

done to give an explanation for the drop in peak frequency for very thin sands. 

Finally , Chapter 5 will conclude the thesis with a discussion of peak frequency as a 

tool for determining sand thickness. Further questions are presented here along with 

possible future research. 
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Appendix A contains the seismic survey parameters and processing steps. Appendix 

B has the tuning charts for each well in the survey. Appendix C contains the time­

frequency charts for Sand A at each well location. Appendix D has the time­

frequency charts for Sand C at each well location . 
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Chapter 2: Background 

Introduction 

As with any study it is important to begin with an understanding of the location of the 

seismic data as well as how the seismic were acqu ired. This chapter will give a brief 

background of the geologic setting of the seismic survey. It will begin with a 

summary of the geologic history of north centra l Gulf of Mexico and summarize the 

stratigraphy to be expected in the area. The survey parameters are discussed later in 

the chapter. The study area is located offshore Louisiana , south of Marsh Island 

(Figure 2.1 ). 
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Figure 2.1 Location of Seismic Survey (Barncord, 1999) 

Geologic Background 

Stratigraphy 

The survey area is in the gulf coastal plain of the North American continent. 

Underlying the gulf coastal plain is a series of sedimentary formations mostly 

composed of sand , clay , marl , limestone , and chalk (Eardley , 1951 ). 
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During the Triassic sediment first started to pour into the Gulf of Mexico (Bran cord, 

1999). Deltas began to form by the end of the Jurassic northeast of Louisiana and 

Mississippi (Bamcord , 1999). After the late Jurassic , the layers are largely 

unconsolidated (Eardley, 1951 ). The early Cretaceous had a broad shallow sea 

covering most of North America, with an interior causeway receding by the early 

Tertiary (Bamcord, 1999). Most of the sediment deposited in the Cretaceous was 

carbonate, with small amounts of elastics and evaporates (Murray, 1961 ). In the 

Tertiary the sediments deposited were mostly elastic due in large part to the Laramide 

Orogeny and other orogenies (Bamcord, 1999). The types of deposits were mostly 

controlled by location of deltas and paleogeography (Bamcord, 1999) Due to the 

multiple transgressions and regressions of the Tertiary there are sandstones and shales 

laid alternately (Murray, 1961 ). The beds are interfingered with each other and very 

commonly difficult to correlate because columnar sections can be dissimilar unless 

closely spaced. Sands, silts , and clay were transported and deposited in the Gulf by 

the rivers draining the central part of the continent. (Eardley , 1951) 
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Figure 2.2 Generalized geologic column for Gulf of Mexico (Murray, 
1961) 

Tectonics 

The northern Gulf of Mexico was part of the landmass Pangea at the start of the 

Permian (Barncord , 1999) . In late Triassic , the rifting began with the margin between 

Laurasia and Gondwana relaxing (Barncord , 1999). A system of grabens and half 

grabens were created from late Triassic to Cretaceous as the rifting led to subsidence 

and downwarping (Barncord , 1999). 
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Salt movement began in the Jurassic and caused many salt-re lated structures in the 

Gulf of Mexico (Barncord , 1999). Salt movement causes structures such as domes 

and welds. This salt was formed in the Gulf of Mexico when the North American 

plate first began to separate from northern Africa (Bamcord , 1999) . Fault systems 

were also formed in the Te1iiary as a result of crust relaxation (Bamcord , 1999) . The 

rapid deposition of sediments from the Mississippi River caused growth faults 

paralleling the coastline (Barncord , 1999). 
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Figure 2.3 Fault trends during the Tertiary (Barncord, 1999) 

Survey Parameters 

The seismic survey used was part of the OCS3 l O JD Survey acquired by Halliburton 

Geophysical Services in June 1990 for Texaco (Todd 1993). The grid for the survey 

was located at northing of284392 ft and easting of 1695522 ft with an azimuth of 125 

degrees (Todd 1993). After processing the bin size was 110 ft X 110 (Barncord, 

1999). 
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In lines <oroduction) 
Receivers 22 parallel lines 2640 ft apart 

3 lines of358 groups 220 ft apart 

16 lines of 579 groups 220 ft apart 
3 lines of 194 groups 220 ft apart 

Shots 127 parallel lines 440 ft apart with a 220 ft offset 
between the receiver line and the nearest shot line 

18 lines of 358 shots 220 ft apart 
90 lines of 579 shots 220 ft apart 

19 lines of 194 shots 220 ft apart 

NOTES Shot records were 120 trace split-spread 

Shot stations had an in line offset of 110 ft from the 
receiver stations 

Crosslines (guality 
control) 

Receivers 16 parallel lines 1.5 miles apart 
- 5 I ines of 241 groups 220 ft apart 

7 lines of277 groups 220 ft apart 
4 lines of 313 groups 220 ft apart 

Shots 32 parallel lines with pairs 220 ft from each receiver 
line 
10 lines of241 groups 220 ft apart 
14 lines of277 groups 220 ft apart 

8 lines of 313 groups 220 ft apart 

NOTES Shot records were 120 trace split-spread 

Shot stations had an in line offset of 110 ft from 
receiver stations 

Table 2.1 Acquisition Parameters (Todd 1993). 



A) Without DMO 
1) Demultiplex 
2) Navigation Processing 
3) Prestack Enhancement 

4) Geometry 
5) Refraction Statics 
6) Coarse Velocity Grid 
7) First Pass Residual Statics 

8) Final Velocity Grid 
9) Second Pass Residual Statics 

I 0) Final Pre-DMO Stack 

11) Interpolation to Final Grid 

12) Migration 
13) Scale 
14) Filter 
15) Phase Rotation (-30 degrees) 

16) Final Pre-OMO Product 

B)With OMO 
17) Trim Statics 
18) DMO 
19) Trace Interpo lation I 
20) Trace Interpolation 2 
21) Migration 
22) FX Deconvolution 
23) Phase Rotation 
24) Filter 
25) Final OMO Product 

Table 2.2 Processing sequence on the OCS310 3D survey (Todd 1993). 

The survey was loaded into SMT's Kingdom © for interpretation. Figure 2.6 shows 

the basemap for the seismic. For this study , one arbitrary line through nine wells was 

considered(figure 2.7). Figure 2.8 shows the arbitrary line seismic. (Red represents 

negative reflection coefficients.) 
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Figure 2. 7 Arbitrary line used for thesis 
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Figure 2.8 Arbitrary line seismic 
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Study Sands 

The sands that will be used in the study are required to have severa l characteristics 

associated with them in order to be useful for this thesis. The first characteristic is that 

the sand be continuous. This is a requirement of simp licity . It makes the san ds easier 

to cotTelate from well to wel l and across the seismic. This shou ld not be a 

requirement of the thickness versus frequency relationship , but is merely a 

consideration for a first look at identifying the relationship. The main characteristic I 

am looking for in the sands is variable thickness . This requirement is self explanatory 

in the sense that in order to do a study on sand thicknesses, one must first have 

thicknesses that change. Other considerations in identifying sands for study were , 

again for simpli city , easi ly correlated sands on well logs and blocky sand unit s, so as 

not to affect the frequency with gradations in the sand units. 

Some possible problems with this thesis can be anticipated. The first and most 

influentia l problem is the limited number of data points. Only a limited number of 

wells have well logs to identify the sands and thicknesses from. The result of the 

limited data points is a less precise relationship and ultimately a less accurate method 

of estimation. This problem can be corrected by increasing the area covered in the 

study to encompass more well s and consequently more data points 

15 



Paleo markers were used to restrict the search for sands to the shallower sands. The 

paleo data helped me to determine that the shallower sands were much more 

continuous than the deeper sands. As you go deeper in the seismic record the horizons 

are less continuous and are more complicated by faulting. Although, it can probably 

be assumed that useful information can be gained by looking at deeper sands with 

regard to their frequency content. 

Once the search was restricted to shallow sands, well logs were used to correlate 

sands. The logs used were the gamma ray log and the spontaneous potential log , 

primarily. When these were not available induction logs were used. The paleo 

markers identified by a previous interpreter were not identified in every well in the 

survey area so other sands were correlated in the wells with the paleo markers so 

other sand s could be correlated in the remaining well logs. Several sands were 

identified in the wells. These were arbitrarily named A-G. They are in no specific 

order other than the order in which they were identifi ed . Although only sands A and 

C were used in this study. 

Tying Wells to Seismic 

There were severa l check sho t surveys associated with wells in the survey area. The 

first step in tying the wells to the seismic was to app ly these surveys to the wells that 
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were associated with them . Unfortunately, there was not a check shot urvey for each 

well in the stud y area. Fortunately, there was a previous interpreter that applied time­

depth charts to the majority of the wells. Several of the check shot surveys had been 

altered and applied to wells considerably distant from the origina l well. 

The time-depth charts needed to be verified. To do this I displayed the interpreted 

sands as markers on the seismic data . After noticing inconsistencies I iterated changes 

in the time-depth charts for the well. As a control I applied the origina l check hot 

surveys at the wel Is they originated from. I changed the check shot surveys app lied at 

distant wells to surveys that were from wells closer to the we ll without a specific 

survey. I tried not to alter the time-depth charts too much so as not to over correct the 

model s. Also as a control for the ve locity model I di splayed the Gamma Ray and SP 

curves next to the wells on the se ismic. This gave me some idea as to the location of 

different litholo gies and I was able then to compare the well logs to the se ismic. 

I was not interested in getting a perfect ve locity model for the entire lengt h of the 

seismic record . Since I was primarily interested in two or three sa nds, r focused on 

tying the wells to the sei rnic in the spec ific range of 1.0-2.5 econds. Figure2.7 

show s the tied wells and se ism ic. Well number 55 presented a problem in tying to 

seismic. Well numb er 55 did not have a check hot ur ey as oc iated wit h it, and the 

we lls in the proximity could not provide a c lo e rep resentat ion of the time-depth chart 

needed for we ll number 55. 1 was not ab le to accura te ly tie we ll numb er 55 to the 
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seismic section. The we ll log corr lat ion, however. was done wit h confidence. Afte r 

interpreting the seismic horizons assoc iated wit h the markers for the other wells , the 

conclusion was drawn that since the horizons were consistent between the we lls next 

to we ll number 55 and we ll number 55 itself , there was no doubt of the hori zons 

associated with the markers in the we ll. 

Seismic horizons were interpreted for three sands: Sand A , Sand C, and Sand E. Sand 

A and C were continuous for all wells invo lved. Sand E was only determined for 

we lls on one side of the interpr eted fault. Wells numbered 14, 40400, 40477 , and 

40133, did not have Sand E identified in the log data. Sand E was not included in this 

study. 

Sand A Discussion 

Sand A was identified at 7100 Ft MD on Well # 40400. This sand was correlated onto 

the eight other wells #55. #63. #83, #311, #312, #20066 , #40477, and #40 133. The 

average thickness for Sand Ai 44 ft. There are two we ll with Sand A thickness 

above the tuning frequency, and the remaining with Sand A thickne s below the 

tuning frequency. Sand A appears to have thin intermixed hale bed throughout. 

Different wells have sl ightly different sand character on the logs. Well s #40477, #83, 

and #20066 show Sand A as a block y sand with not much influence of hale · on the 
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SP log in the sand interva l. We lls #63 and #3 11 show Sand A as a mos tly block sa nd 

and one notch in the curve. This is ass um ed to be a thin ha le bed . T he rema in ing 

we lls #40 133, 40400 , #55 . and #3 12 show Sa nd A with mos tly sa nd stone but severa l 

thin shale beds int erm ixed. Fo r the purp ose of thi s the is the sand thi ck ness was the 

net thi ckness and any sha le co ntent was not co nsidered or subt rac ted. (T he log 

interpr etations are includ ed in the app endi x .) 

Sand C Discussion 

Sa nd C was co rrelated on we ll log fo r nin e we lls : #55 , #63, #83, #3 11, #3 12, 

#20066 , #40477 , and #40 133. On we ll #40400 it was at 5600 ft MD . The average 

thick ness for thi s and is 120 ft. Only one of the we lls showe d Sa nd C below tunin g 

thick ness. Sa nd C is a fairly c lea n sand. It shows increas ing sha le co ntent up wa rds fo r 

we ll #63 , #3 12, #20066 . and #40477. T he remainin g we ll show a bloc ky sa nd. The 

net thi ck ness was used in this the is fo r co mpari on and the thinnin g upwa rd s 

equ ence was included as pa rt of the whole sand. Beca use many of the we lls showe d 

sand s above tunin g th ick ness for the sa nd ex tensive analys is wa res tri cte d to Sa nd A. 

(T he log interpre tat ions a re inc luded in the appe nd ix.) 
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Chapter 3: Spectral Decomposition of Seismic Data 

Introduction 

The se ismic data was deco mp o ed int o the frequency content acco rd ing to the 

para meters outlin ed in Chapter 2 . The sec tion will desc rib e the methodology and 

ra tionale in using spec tra l deco mp os ition in thi s thes is. Frequency co ntent and 

fre qu enc y character of reflec tions has been stud ied to some ex tent in past yea rs 

(Partyka et al., 199 8 and 1999 , Chakra borty and Ok aya, 1995, Cas tag na, 2003 , 

Ma rfurt and Kirlin , 200 1 ) . Spec tra l analy is ha been used to identi fy thin beds and as 

a hydroca rbon indicator. (Party ka et al. ,1999 , Cas tag na, 20 03) T his thes is w ill use the 

spectra l deco mpos ition to find the pea k freq uency of the e ismic data at Sa nd A fo r 

di ffere nt sa nd thick nesses. 

Fourier Transform 

Fouri er analys is in f (.'1 is used to deco mpose arb itrary functions into usually 

co ntinu ous sum s of characte rs (Hor mande r, 1990) . A characte r i defi ned as a 

funct ion f such that fo r eve ry yr f(.° 

/(x y) = f(x) c(y). x r. R.'1, 

20 
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for some c(y) . The characters needed to expand a given function u depends on the 

properties of u (Hormander, 1990) . For a function f E ft the Four ier transform Fis 

defined as 

Or for our purposes , 

F(co) = Je-i(J)t /(t)dt, COE R11
• 

If F is also integrable then, 

/(t) =(2ny11 
Jei(J)t F(co)dco, COE 8 11

, 

by the Fourier inversion formula . (Hormander , 1990) 

(3.2) 

(3.3) 

(3.4) 

The function /(t) can also be written in terms of the Fourier transform as the sum of 

sines and cosines. This is expressed as 

ao CX) 

f(t) = 2+ ~ = I (an cos cot+ bn sin cot). (3.5) 

Equation 3.5 can be rewritten in terms of only cosines: 

CX) 

j (t) = Co+ ~ = I Cn COS (cot+ 8n), (3.6) 

where cn = --r-c an 2+ b11 
2

) and 811 = arctan(an / bn) = cot0 ., called the phase.(Sinha, 

2002) 
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Spectral Decomposition Methods 

Frequency information can be obtained either as the frequency content of the entire 

signal or as time localized frequencies. It is more useful in seismic geophysics to have 

time localized frequency information. One method of having time localized frequency 

information is using the short-time Fourier transform (STFT). The STFT is performed 

by windowing the time domain and performing the Fourier transform over that 

window (Sinha , 2002). The window is defined such that the signal remains periodic 

(Sinha , 2002). This gives a time-frequency map known as a spectrogram (Sinha, 

2002) . Figure 3.1 shows a synthetic example of a chirp signal with two hyperbolic 

sweep frequencies from Sinha (2002) transformed using the STFT. 
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Figure 3. 1 Chirp signal with two hyperbolic sweep frequencies using 

STFT (Sinha, 2002) 

Many times the STFT cannot accurately represent the frequency with time because 

the structure of the signal can be non-stationary (Sinha , 2002). The continuous 

wavelet transform chooses atoms such that the time window changes for different 

frequencies (Sinha, 2002). Figure 3.2 shows the same chirp signal from the previous 

transformed using the CWT. 
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Figure 3.2 Chirp signal with two hyperbolicsweep frequencies using 

CWT (Sinha, 2002) 

The program InSpect TM used to transform the seismic in this thesis uses a variation 

of the continuous wavelet transform method called matching pursuit decomposition. 

Once the event was identified on the seismic section , the frequency content could be 

determined by looking at the time-frequency map and locating the same time for the 

event. 
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Inspect™ Program 

The InSpect TM program was used to perform the decomposition . This program uses 

the continuous wavelet transform method of decomposition . The inputs of the 

program were as follows: SEGY seismic data, frequency range , and frequency 

increment. Each of these inputs will be addressed. 

The InSpect™ program has the capability of decomposing both 2-D and 3-D seism ic 

data. The program creates several frequency traces for each trace of SEGY seismic 

data. This means that there is a volume of traces equal to the original seismic for each 

frequency value . This presented the problem of loading spectral decomposition output 

into Kingdom in a useful manner. 

For a 3-D volume the InSpect™ data would need to be loaded either by line with all 

the corresponding frequencies to that line or by frequency with the whole volume of 

lines associated. Either way there would need to be multiple (nearly 100) volumes 

loaded into the project. It was decide that an arbitrary line connecting the wells in the 

study would be used for interpretation . (refer to figure 2.6) 

The arbitrary line spectral decomposition results were was loaded as lines of constant 

frequency. The consequence of this loading method is that the arbitrary line cannot be 

associated with the accurate world coordinates , meaning that the wells cannot be 
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simply viewed with the data. The benefit of this loading method is that by taking 

crosslines through the volume you can see all the frequencies associated with one 

trace. Also , by viewing an inline you can see the section with only one freque ncy. 

Frequency Range and Increment 

Frequency range for the spectral decomposition was determined by extracting the 

frequency content of the Texaco seismic data set. Kingdom has a tool that extracts the 

frequency content. This plot is shown in figure 3 .4. The main band of data falls 

between 0 and 60 Hz. The range was selected between 0 and 80 Hz. The frequency 

increment was set to 1 Hz. 
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Figure 3.4 Frequency Spectrum for seismic survey centered over study 

sands 

The spectral decomposition results were loaded into the same Kingdom project with 

the original seismic as an additional survey. The world coordinates of the InSpect 

survey were determined by the number of traces in the 2-D SEGY seismic and the 

number of frequency vo lumes produced. There were 815 traces and 80 frequencies . 

The lines were ordered according to the frequencies. 
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Interpreting Frequency Content for Sand A 

Sand A was identified on the arbitrary line by using the well logs and markers. The 

time was noted for each well. The conseq uence of loading an arbitrary line of 

frequency data caused the wells to not be associated with the X and Y locations as 

they were on the origina l basemap. The locatio ns of the wells were determined by 

associating the inline and crossline locations of the wells on the original survey with 

the trace number on the arbitrary line. Once this was done, it was possible to compare 

the seismic trace at the well with the time-frequency map by making the scales of 

each equal. This was done for each well location used in this thesis and can be found 

in the appendix. 
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Chapter 4: Peak Frequency versus Bed Thickness 

Introduction 

This chapter will compare the sand thickness for the nine wells in the study to the 

peak frequency observed in the frequency spectra for two sands: Sand A and Sand C. 

Peak frequency is defined and used in this thesis as the frequency with the maximum 

amplitude in the frequency domain (Chung and Lawton , 1995). The thicknesses of the 

beds were estimated from the well logs for nine wells in the survey area. The plotted 

points are compared to expected outcomes from modeling sands with similar 

reflection coefficients. 

Sand A 

Sand A has an average thickness of 40 ft. The values range above and below the 

tuning thickness of 66 ft. The average velocity over the interval is 8800 ft/sec. The 

well logs over the interval can be found in the appendix. Table 4.1 lists the thickness 

of Sand A at each well location. This is the net thickness of sand and does not factor 

in any shale content. 
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Well Number Sand A Thickness (ft ) 

55 40 

312 40 

83 25 

311 50 

20066 35 

63 64 

40400 45 

40477 20 

40133 75 

Table 4.1 Thickness (ft) of Sand A at Well Locations 

The peak frequency was taken as the highest amplitude value on the frequency 

spectrum. The frequency spectrum was extracted from the frequency dataset at the 

time of the sand reflection . Tab le 4.2 shows the peak frequency for Sand A at each 

well location. 
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Well Number Peak Frequency (Hz) 

55 32 

312 22 

83 30 

311 15 

20066 29 

63 21 

40400 18 

40477 18 

40133 26 

Table 4.2 Peak Frequency values for Sand A at well locations 

The peak frequency was then plotted against the thickness of Sand A to determine a 

relationship. Frequency spectra for Sand A can be fou nd in the appendix. Figure 4.1 

shows the cross plot. The red line is the tuning thickness. 
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Bed Thickness Vs Peak Frequency for Sand A 
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Figure 4. 1 Cross plot of Peak Frequency (Hz) and Bed Thickness (ft) for 
Sand A 

There was little observed relationship between the peak frequency and the bed 

thickness for Sand A. It was decided that the best approach wou ld be to model the 

expected behavior for a sand with similar reflection coefficients. By modeling the 

sand as a wedge model and determining the frequency content of the assumed sand, 

more information could be learned about the study sand and peak frequency. 
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Modeling Sand A 

GX2 modeling program was used for modeling Sand A. This model required a wedge 

model of sand with specific reflection coefficients and thickness ranging as the study 

sand ranged. As the reflection coefficient needed to be as close to the study sand as 

possible , sonic logs were analyzed for the velocity of Sand A. Unfortunately , there 

were not many sonic logs over the depth needed. There were two sonic curves in the 

area of the survey. Only one was from one of the nine wells being considered in this 

thesis . Well #40400 provided velocity information for the model. The layer above the 

sand was averaged to 10,000 ft/s, with the sand at 8,800 ft/s, and the layer below 

9,600 ft/s. The density used was the default value given by the program , as no density 

curves were found in the nine wells over the depth range of the study sand. The 

reflection coefficients were mostly odd but not equal. (figure 4.2) 
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Figure 4.2 Wedge Model used for Sand A, annotated with velocities (ftls) 

Vertical ray paths were used to simulate the seismic response. An extracted wave let 

from the 3-D seismic was used as a filter for the synthetics. A trace was genera ted at 

1 ft intervals such that the wedge could represent the peak frequency at every integer 

va lue of thickness as needed. This was done in order to compare the frequency 

content of the synthetics with the frequency content of the 3-D seismic and have the 

same original wavelet. The resulting synthetic traces were exported to Kingdom for 

further analysis . (figure4.3) 
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Figure 4.3 Traces created In GX2 for Sand A, Wavelet extracted from 
original seismic data 

InSpect™ was utilized to create the frequency spectra for the modeled case. The same 

parameters to spectrally decompose the 3-D seismic were used for the synthetics. 

Spectra were extracted at 5 ft thickness intervals for comparison of peak frequency. 

Figure 4.4 shows the results of the modeling. 
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Bed Thickness Vs Peak Frequency for Sand A 
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Figure 4.4 Peak Frequency versus Bed Thickness for Modeled Sand A 

The peak frequency observed in the seismic data was then plotted with the modeled 

data in order to clarify the peak frequency relationship of the real data. This is shown 

in Figure 4.5 . The pink line is the modeled results. The red line is the tuning 

thickness. 
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Bed Thickness Vs Peak Frequency for Sand A 
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Figure 4.5 Graph showing Peak Frequency and Bed Thickness 
relationship modeled and observed for Sand A 

120 

Wells #40400 , #311 , #312 , and #40477 have peak frequencies that fall well below the 

expected frequency as given in the model. Also noted in the frequency spectrum of 

the sand at these wells is presence of a second frequency with high amplitude 

associated with it. This second highest peak frequ ency was plotted with the peak 

frequency in the other wells in Figure 4.6. The values of this second peak plot higher 

than the model ed values . 

37 



Bed Thickness Vs Peak frequency for Sand A 
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Figure 4. 6 Graph showing Peak Frequency and Bed Thickness using 
second highest peak frequency for Sand A for wells #40400, #311, #312, 
#40477 

Next , the average of the two frequencies in the bimodal spectrum wells was 

performed (Figure 4.7). These values were not surprisingly closer to the mode led 

value. Although , there is no reason to believe this average is the correct operation to 

use for this estimate other than the fact that it wou ld be close to the average 

frequency. A trough in the pectrum for wells #40400 , #311, and #40477 has a 

frequency value that is ver y close to the average of the two peak frequencies in each. 

This is shown in Figure 4.8. It is evident that the simple wedge model is probab ly not 

adequate to describe the true reflecti vity. 
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Bed Thickness Vs Peak frequency for Sand A 
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Figure 4. 7 Graph showing Peak Frequency and Bed Thickness using 
average of peak frequency and second highest peak frequency for Sand 
A for wells #40400 , #311, #312, #40477 
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Bed Thickness Vs Peak frequency for Sand A 
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Figure 4.8 Graph showing Peak Frequency and Bed Thickness using 
trough frequency between peak frequency and second highest peak 
frequency for Sand A for wells #40400, #311, and #40477. 

SandC 

Sand C was app roac hed in the same manner as Sand A. The diffe rence mainly being 

that Sand C was mostly thi cker than its tunin g thi cknes of 63 ft. The ave rage 

thickness was 120 ft . Tab le 4.3 shows the th ickn ess of Sand C at eac h we ll. 
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Well# Sand C Thickness (ft) 

55 95 

312 35 

83 120 

311 145 

20066 85 

63 105 

40400 225 

40477 145 

40133 105 

Table 4.3 Thickness (ft) of Sand Cat Well Locations 

Well# Peak Frequency (Hz) 

55 23 

312 26 

83 23 

311 35 

20066 34 

63 25 

40400 18 

40477 26 

40133 19 

Table 4.4 Peak Frequency values for Sand Cat well locations 
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The peak frequencies for each location were plotted against the bed thickness. Figure 

4.9 show the cross plot. The values show no trend and for some wells with the same 

thickness the peak frequency is different. 
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Figure 4.9 Peak Frequency plotted with Bed Thickness for Sand C 

Modeling Sand C 

GX2 modeling program was again used for modeling Sand C. A sonic log from well 

# 40400 provided the velocity information for the model. The layer above the sand 

was averaged to 7,700 ft/s, with the sand at 8,550 ft/s, and the layer below 6,600 ft/s. 

The density used was the default value given by the program , as no density curves 

were found in the nine wells over the depth range of the study sand. The reflection 

coefficients were mostly odd but not equal (figure 4.10). The wedge model was 
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increased to range from 0 to 300 ft in thickness , due to the var iation observed in the 

logs. 
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Figure 4.10 Wedge Model used for Sand C, annotated with reflection 
coefficients and velocities 

Traces were generating using the extracted wavelet from the original seism ic as the 

filter. The resulting traces were decomposed accord ing to the same parameters as the 

original seismic. The frequ ency data was loaded into Kingdom for interpretation. 
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Figure 4. 11 Generated traces for Modeled Sand C 

The modeled peak frequency data was compared to the observed results for Sand C. 

These results showed a huge deviation from the expected mode led resu lts. The only 

well to show an expected outcome was well #3 12. This was the only well with Sand 

C thicknes s below the tuning thickness . 
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Bed thickness Vs Peak frequency for Sand C 
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Figure 4. 12Graph showing Peak Frequency and Bed Thickness 
relationship modeled and observed for Sand C 

As with Sand A, several locations exhibited bimodal spectra. These we lls however, 

were not located on the cross plot in any localized area. The second peak frequency 

was plotted against the thickness for Sand C to see whether the graph was improved 

by using the second highest peak frequency. Figure 4. l 3shows the results. The graph 

was not improved by using this second frequency. The points were scattered farther 

apart and any relationship was further distorted. 
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Bed Thickness Vs Peak frequ ency for Sand C 
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Figure 4. 13 Graph showing Peak Frequency and Bed Thickness using 
trough frequency between peak frequency and second highest peak 
frequency for Sand C for wells #40400, #311, #20066, #55, #83, and 
#40133. 

Sand C did not show any relationship to peak frequency. This is thought to be 

because the thickness of Sand C is predominantly above tuning thickness. At the 

thicknesses observed for Sand C no interference from the upper and lower boundaries 

of the sand is expected. The frequency content of Sand C could be impacted more by 

stratigraphic changes and less by thickness variation . 
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Chapter 5: Modeling Sand A 

Introduction 

This chapter will focus on modeling of the Sand A. Sand A had peak frequencies that 

were similar to the ones observed by modeling in GX2. This chapter wi ll further 

model Sand A and compare the results to the theoretical expected results. 

Green's Function 

The impulse response of the reflection off a thin bed can be expressed by the Green ' s 

function , g(t) where 

(5.1) 

Equation 3.1 is the time-domain impulse response. The frequency-doma in impulse 

response is given by G(f) , 

(5.2) 

Where t 1 is the two-way time to the top of the thin bed , t2 is the two-way time to the 
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bottom of the thin bed , r 1 is the reflection coefficient of the top of the thin bed , r2 is 

the reflection coefficient of the bottom of the thin bed , 0 is the angle determining 

reflection coefficients , T is the two-way time thickness of the thin bed , T= t2-t 1, 8( t) 

is the Dirac delta function, and f is the temporal freq uency. 

--.---------- --· Xm(lon) 

reflectivity - r 1 

T~{ reflectivity r2 
tz ·1-----------

t(s) 

Figure 5.1 Model defining impulse response ( Marfurt and Kirlin, 2001) 

Figures 5.2 and 5.3 show the theoretic curves given by equation 5.2. Figure 5.2 

shows the case of r 1/ r2 < 0 which is the case seen for Sand A. 
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Figure 5.3 Amplitude as a Function of Frequency for even impulse pairs 
( Marfurt and Kirlin, 2001) 
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These theoretic curves were compared to the ex tracted spectra for the stud y sand 

(figure 5.5). It was necessa ry to multipl e the green ' s functi on by the spectrum of the 

wave let in order to compare the two curves. The wave let is imprint ed on the 

frequency data when it is convolved with the reflectivity series. Figure 5.4 shows how 

the frequency spectra are chan ged as the tim e dom ain respon se also changes with the 

wave let. 
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Figure 5.5 Frequency Amplitude of Modeled Sand A (Navy) compared 
with Green's Function (Magenta) 

The derived Green's function shows good correlation to the extracted spectra for thin 

sands. As the sands increase in thickness the correlat ion is less evident. This is 

expected because after a certain thickness there is no longer any noticeable interaction 

of the two wavelets for the real sand. 
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Frequency Characteristics for Sand A Model 

The frequency domain impulse response can be written as 

The amplitude spectrum can then be solved as 

(5.4) 

where r 1, r2, t 1• t2, and Tare as defined as before. (Chung ann Lawton, 1995) 

A Ricker wavelet has the amplitude spectrum in terms of peak frequency (f O ) as: 

(5.5) 

So that the amplitude spectrum for a wavelet created by convolving the amplitude 

spectrum for the reflectivity series and the amplitude spectrum for the Ricker wavelet 

(Chung and Lawton , 1995). In the frequency domain this is done by multiplying 
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equation 5.4 and 5.5, so that: 

(5.6) 

The peak frequency can be found by taking the derivative of equation 5.6 . The peak 

frequency would then be the value off for which the derivative is equal to 0. Hence, 

C' (f) ~ {(f l / o)2 exp[-(! / / 0)2] * -r [ r/ + r/ + 2 r1 r1cos(2n /T)]} = 0 
df 

Calculating this out gives peak frequency f , replaced with /p, in terms of the peak 

frequency for a Ricker wavelet , / 0 : 

/ P = [ r/ + r/ + 2 r1 r1cos(2n f PT)] / [rlr2nTsin(2n /p T)] * [ 1- (/p/ / 0)2], 

(5.7) 

Equation 5.7 is called the exact equation for peak frequency as defined by Chung and 

Lawton (1995) . This equation was solved iteratively using Matlab. 

The reflection coefficients for Sand A were r1 = -0.09 and r2 = 0.06. Sand A was very 

nearly perfectly odd. Using equation 5.7 peak frequency was solved for Sand A with 

a Ricker peak frequency at 15 Hz , 20 Hz , 25 Hz, 30 Hz, and 35 Hz (Figure 5.6). At 
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this point it should be noted that the original seismic data does not have a theoretic 

Ricker wavelet and the generated traces from the model were not filtered with a 

Ricker wavelet but with the extracted wavelet. So, variation from the model and 

seismic data is expected. 
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Figure 5. 6 Peak Frequency Response for Sand A Reflection Coefficients 
at Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 
Hz. 

The shape of the curve in Figure 5.6 is consistent with the shape observed in the 

seismic survey and modeling data. A significant observation made by Chung and 

Lawton (1995) and also seen with this data is that with higher initial peak frequencies 

the distinction between frequencies for each thickness becomes greater. So that it can 
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be assumed that with higher input frequency the tool of peak frequency content may 

become more useful for distinguishing bed thickness . 

Interestingly , the peak frequency drops to lower frequencies as bed thickness 

decreases. Widess , in How Thin is a Thin Bed , states that the character of a reflection 

does not change for beds of thickness less than A/8. The peak frequency observed in 

this thesis changes dramatically after A/8. Widess studied a perfectly odd reflection 

coefficient pair , so Sand A reflection coefficients were decomposed into the even and 

odd parts of the impulse response. 

Every Impulse Pair can be broken into its even and odd components where the sum 

of the even component and odd component gives the original impulse pair. The odd 

component ao is given by 

and the even component is given by 

For Sand A a0 = -0.075 and ae = -0.015 . This is illustrated in the figure below (figure 

5.7) 
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Figure 5. 7 Even and Odd Pairs for Sand A 

Models 

--

r 1 = -0.09 

r2 = 0.06 

The even and odd impulse pairs were used to create models for modeling the 

frequency and amplitude of wavelets for each case. These models were created in the 

same fash ion as previous Sand A models. For the Odd Impulse Model the top 

reflection coefficient was set to r, = -0.075 , and the bottom reflection coeffic ient was 

set to r2 = +0.075. Because Reflection Coefficients are calculated as 
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where I is the acoustic impedence defined as I = pV; and pis density , and Vi s 

interval velocity . As such , you cannot change reflection coefficients without changing 

either density or velocity in the adjoining layers. This obviously would cause a 

problem for comparison , so the wedge retained the original velocity and density of 

Sand A, but the top and bottom layers were adjusted to fit the reflection coefficients. 

The travel time through the wedge would remain the same. Figures 5.8 and 5.9 show 

the traces generated for each model. 
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Figure 5.8 Sand A Model Odd Component of Impulse Pair generated 
traces 
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Figure 5.9 Sand A Model Even Component of Impulse Pair generated 
traces 

Figure 5.10 shows the peak frequency response for the odd part. As expected from 

Widess , the peak frequency starts at a maximum and decreases . Figure 5.11 shows the 

response from the even part of the impulse pair. This graph shows the peak frequency 

at very thin bed at lower frequencies than for the odd pair and decreasing from there. 

This is expected from what was observed in the modeled Sand A. At around tuning 

thickness the character of the graph di verges strong! y and peak frequency begins to 

. . 
mcrease agam . 
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Figure 5. 10 Peak Frequency Response for modeled Sand A Odd Part 
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Figure 5.11 Peak Frequency Response for modeled Sand A Even Part 

The exact equation (equation 5.7) for peak frequency response was applied using the 

reflection coefficients for the odd and even model s. Again this was done for a range 

of Ricker wavelet peak frequencies. The odd model is fairly close in shape to the 

theoretic values. The even model shows resemblance of the theoretic values until 
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tunin g thickn ess , at which point there is no co rrelat ion. (refe r to figures 5. 12 and 

5.13) 
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Figure 5. 12 Peak Frequency Response for Odd Reflection Coefficients at 
Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 Hz. 

60 



/ 

40 r--------------------------~ 

10 t- -------------------------------1 

5 +- -------------------------------l 

0 t-------,-----,--------------- - --~ 
0 20 40 60 80 100 120 

- Sand Aeven 15 hz 

- Sand Aeven 20 hz 

- Sand Aeven 25 hz 

Sand Aeven 30 hz 

- Sand Aeven 35 hz 

Figure 5.13 Peak Frequency Response for Even Reflection Coefficients 
at Ricker Wavelet peak frequencies 15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 
Hz. 

The eve n part appea rs to domin ate the peak frequ ency for very thin beds w ith only a 

ve ry small part of the total impul se pair. To inves tigate thi s furth er, the amplitud e of 

the wave lets genera ted in the eve n and odd models we re plotted fo r each thickn ess . 

Fo r the odd impul se pair the amplitud e goes to zero as the wedge dec reases in 

thi ckness (figure 5. 14) . This is expec ted beca use of the destructive inte rfe rence 

betwee n opp os ite po larity wave lets. 
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Amplitude Spectrum for Odd Part o f Sand A Impuls e Pair 
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Sand Thickness ( M) 

Figure 5.14 Amplitude for Sand A Model Odd Component of Impulse 
Pair 

The even pair model shows amplitude first decreasing with thickness and then 

increasing with thickness after 60 ft of sand. Again , due to constructive interference 

the amp litude is expected to increase as the time between the reflections decreases. 

(Figure 5.15) 
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Ampli tud e Spectrum fo r Eve n Part of Sand A Impul se Pair 
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Figure 5.15 Amplitude for Sand A Model Even Component of Impulse 
Pair 

Since the amplitud e contributi on of the odd part at very thin bed is ve ry smal I, the 

eve n part pl ays a bigge r ro le in the character of the peak frequ ency response (figure 

4 .4) , whil e not impac tin g the amplitud e spec trum as dras tically. Figure 5.16 shows 

the Sa nd A model' s amplitud es as the wedge increases. 
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Figure 5. 16 Amplitude for Modeled Sand A 
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Chapter 6: Conclusions and Discussion 

Conclusions 

Spectral Decomposition ha s proven usef ul in identif y ing thin bed s and hydrocarbon 

reser vo irs. This thesis inve stigated spectral decomposition as a tool for quantifying 

sand thicknes s. Specifically, peak frequenc y was analyzed as a method for 

determining bed thickness. 

Sand C is an example of a thick sand . Modeling and data showed that the peak 

frequency does not wo rk for thick sands (above tunin g thicknes s). The va lue s of peak 

frequency were random as far as thickn ess was concerned. There was no correlation 

of bimodal character in the spectrum to thickn ess. More than likely any va riation of 

peak frequency obse rved in the data was due to strati graphic changes in the sand. 

The more int eres ting case of Sand A showed that the peak frequency ma y indicate 

sand thickn ess var iation . T he data shows trends that correspond to the model ed and 

theo retic relationship s. Bimodal spectra ca use co nfu sio n in the data, however. 

C lea rly, the peak frequencies in the e ca es are not the frequ enci es that correspond to 

the thickn ess. T he nex t highest amp litud e frequenc y does not represent the thi ck ness 

e ither. In the absence of bim oda l cases. the data po int are fairly tru e to the 

relationship mod eled and theoretic. However, as to the usefu lness of peak frequency 
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as a quantitative tool , it does not appear to be very good. 

The last chapter reviews theor etic relation ships along with the mod eled sands. Eve n 

in an ideal model there is not large variation in peak frequency. Higher frequenci es 

give better distinction but the curves are still fairly flat. The most important hurdle for 

peak frequency as a quantitative tool is seen in the theo retic curves . For equa l impulse 

pairs the curve associated with the peak frequency decreases with increasing 

thickness in both the even and odd cases. However , for the uneven odd case , such as 

sand A, there are two values of thickness for the same peak frequency . Without any 

stratigraphic changes and only comparing acoustic impedances , there is no decisive 

way to use peak frequency alone for bed thicknes s estimation. 

Discussion 

Frequ ency is imp acted by the thickn ess of thin beds and as such there is mor e work to 

be done. This thesis only ex plored the peak frequency as a too l and not other aspects 

of the spectra . The prese nce of bimodal spec trum characte ristics poses an interesting 

question. With mor e well control it may be possible to correlate more a pects of the 

frequency data with thickness. Also, as this thesis showed sands are different and if 

peak frequency doesn ' t wo rk for thin sands the peak frequency could give insight to 

the strati grap hic changes. 
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Appendix 

Appendix A: Tuning Charts 
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Figure A. 1 Tuning analysis for extracted wavelet at well # 55 
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Figure A. 2 Tuning ana lysis for extracted wave let at well # 63 
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Tuning Analysis l3 
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Figure A. 3 Tuning analysis for extracted wave let at well# 83 
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uning Analysis · £1 
Wavelet: j 

1 

0.5 

0 

-0 .5 

-1 
-0 .2 

Tuning Thicknes s Chart: 

'u' o.os0 

Q) 

.!!!,, 
(J) 0 .05 
(J) 
Q) 

C 0 .04 .x 
(.) 

J::. 0.D3 f-
Q) 

E 0.D2 
f-
C1l 0.D1 ::l 

~ 
00 

-0 .1 

0.5 

-

I 1 

I \ 
-........,....; ._,__....-

0 

Time (sec) 

-

0 .1 

Normalized Peak-Trough Jl,mplilude 

Jl,pparent Time Thickness (sec) 

-

0.2 

Figure A. 4 Tuning analysis for extracted wavelet at well # 31 1 
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Tuning Analysis £1 
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Figure A. 5 Tuning analysis for extracted wavelet at well# 312 
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Figure A. 6 Tuning analysis for extracted wavelet at we ll # 20066 
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Figure A. 7 Tun ing analys is for extract ed wavelet at well # 40400 
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Tuning Analysis £1 
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Figure A. 8 Tunin g analys is for extract ed wave let at we ll # 401 33 
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Figure A. 9 Tuning analysis for extracted wavelet at well # 404 77 
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Appendix B: Spectrums 
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Figure B.1 Spectrum for we ll # 55 in study interval 
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Figure B.2 Spec trum fo r we ll # 63 in stud y interva l 
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Figure B.3 Spectrum for we ll # 83 in stud y interva l 
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Figure B.4 Spectrum for well # 311 in study interval 
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Figure B.8 Spectrum for well # 40400 in stud y inter va l 
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Appendix C: Frequency Spectra for Sands A and C at each 
well 
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Figure C.1 Frequency Spectrum for Sand A at well # 55 
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Figure C.2 Frequency Spectrum for Sand Cat well # 55 
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Figure C.3 Frequency Spectrum for Sand A at well # 63 
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Figure C.5 Frequency Spectrum for Sand A at well # 83 
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Figure C.6 Frequency Spectrum for Sand C at well # 83 
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Figure C.7 Frequency Spectrum for Sand A at well# 311 
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Figure C.9 Frequency Spectrum for Sand A at well # 312 
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Figure C.11 Frequency Spectrum for Sand A at well# 20066 
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Figure C.12 Frequency Spectrum for Sand C at well # 20066 
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Figure C.13 Frequency Spectrum for Sand A at well# 40133 
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Figure C.15 Frequency Spectrum for Sand A at well # 40400 
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Figure C.16 Frequency Spectrum for Sand C at well # 40400 

95 



well #40477 

. 
♦ ♦ 

♦ ♦ 

0.9 
♦ 

♦ 

0.8 .......... 
♦ . .... .. 

♦ •• 

0.7 
♦ ♦ 

♦ ♦ 
♦ 

♦ ♦ 
♦ 

♦ ♦ 

0.6 
♦ .. ♦ 

♦ ♦ ., 
"O 

:e 0.5 a. 
E .. 

0.4 

0 .3 

♦ 
♦ 

♦ ♦ ♦ . 
♦ 

♦ ♦ ♦ ♦ 

•• 
♦♦ •• •• •• ♦ •• •• •• •• 

♦ •• 
0.2 

♦ 

0.1 --♦ 

♦ 

0 .• 
0 10 20 30 40 50 60 70 80 90 

frequency 

Figure C.17 Frequency Spectrum for Sand A at well # 40477 
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Appendix D: Well Logs in study interval 

(Sand C outlined in Red , Sand A outlined in Green) 
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Figure D.4 SP log for well # 311 
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Figure D.5 SP log for well # 312 
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Figure D.7 GR log for well # 40133 
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