SOME OKLAHOMA IAKES

By
WILLTAM EDMOM BURRIS
Eamelor of solerae
Oklahoma Agroultural and Machanical College
Stid Iwater, Oklahoua 1948
Master of Science
Oklahoma Agoiculturag and Mechanicg College
Stillwater; 0klahcma 1949

Submitect to the faculty of the Gruduate school wi the Oxlahoma Agricultural and Mechansoal Gollego

2n parivel fultidinent of the sequisement
for the degree or
DOCTOR OF PHILOSOPHY Auguste. 1956

64LARENA
A Actor
LIBRARY
< JAN 21957

STUDIES OF THE AGE, GROWTH, AND FOOD OF KNOWN -AGE YOUNG-OF-YEAR BLACK CRAPPIE AND OF STUNTED AND

FAST -GROWING BLACK AND WHITE CRAPPIES OF
SOME OKLAHOMA LAKES

Thesis Approved

369900

ACKNOWLEDGEMENTS

The writer is indebted to Mr. V. C. Graham, Holdenville State Fish Hatchery Superintendent, for the collection of fish from a population of known-age black crappie and to Dr. Frank Bernard Cross, Dr. D. Homer Buck, Mr. T. K. Chamberlain and the employees of the Corps of Engineers at the Canton Reservoir Project for their assistance in the collection of fishes from Canton and Fort Supply reservoirs. The Oklahoma Game and Fish Department permitted the writer to collect specimens and data for the study while employed by the Fisheries Division to investigate fish populations in 1950. Appreciation is expressed to the following personnel who were engaged in fisheries work for the Oklahoma Game and Fish Department: Mr. H. C. Ward, Mr. William H. Thompson, Dr. Howard Clemens, Mr. James McArthur, Mr. Gordon Hall, Mr. Mayo Martin, and Mr Kermit Sneed. The writer is indebted also to Drs. Charles H. Brett and J. R. Dogger, formerly with the Entomology Department, Oklahoma A. and M. College for their help in the identification of food items. The Zoology Department of Oklahoma A. and M. College and the Oklahoma Cooperative Wildlife Research Unit provided financial support and equipment. Grateful appreciation is expressed to Dr. W. H. Irwin, the writer's advisor, for guidance and assistance.
Chapter Page
I. INTRODUCTION 1
II. METHODS 3
Length and Weight 3
Age and Growth 5
Food 6
III. KNOWN-AGE, YOUNG-OF - YEAR BLACK CRAPPIE 8
Age and Growth 8
Food 12
IV. POPULATIONS COMPRISED MAINLY OF FAST-GROWING CRAPPIES. 16
Age and Growth of White Crappie from Fort Supply Reservoir 17
Age and Growth of Black Crappie from Fort Supply Reservoir 18
Age and Growth of White Crappie from Canton Reservoir 21
Age and Growth of Black Crappie from Canton Reservoir 23
Food of White Crappie from Fort Supply Reservoir. 25
Food of Black Crappie from Fort Supply Reservoir. 27
Food of White Crappie from Canton Reservoir 27
Food of Black Crappie from Canton Reservoir 30
V. POPULATIONS COMPRISED MAINLY OF STUNTED CRAPPIES 31
Lakes 31
Age and Growth of White Crappie from Lake Carl Blackwell and Boomer Lake 32
Food of White Crappie from Boomer Lake 39
Food of White Grappie from Lake Carl
Blackwe 11 44
Ponds 48
Age and Growth of Crappies from Fisheris
Pond and Lexington Gunnery Range Pond 49
Food of White Crappie from Fisher ${ }^{9}$ s Pond 53
Food of Black Crappie from Lexington Gunnery Range Pond 55

Chapter

VI. DISCUSSION 56
Condition Factor 56
Relation of Seale Length to Fish Length 56
Age and Growth 60
Food 61
VII. RECOMMENDATIONS FOR FURTHER RESEARGH 66
VIII. SUMMARY 68
LITERA TURE CITED 71
APPENDIX 73A. Factors for Converting Total Lengths and Weights ofPreserved White Crappie from Boomer Lake to LiveLengths and Weights74
B. Weights of Stomach Contents, in Milligrams, of Young- of-Year Black Crappie According to Age. 75
C. Number and Rate of Occurrence of Food Items fromStomachs of Young oof-Year Black Crappie Accordingto Age and Dates of Collections.76
Do Number, Rate of Occurrence, and Volume of Food Items of White Crappie, Fort Supply Reservoir. 77
E. Number, Rate of Occurrence, and Volume of Food Items of Black Crappie, Fort Supply Reservoir. 78
F. Number, Rate of Occurrence, and Volume of Food Itemsof White Crappie, Canton Reservoir.79
G. Coefficients of Condition of White Crappie by Length Groups and Dates of Collections, Lake Carl Blackwell 80
H. Coefficients of Condition of White Crappie by Length Groups and Dates of Collections, Boomer Lake 。 80
I. Number, Rate of Occurrence, and Volume of Food Items of White Crappie, Boomer Lake。 81
Jo Number, Rate of Occurrence, and Volume of Food Items of White Crappie, Lake Carl Blackwell 83
K. Number, Rate of Occurrence, and Volume of Food Items of White Crappie, Fisher's Pond 84
L. Number, Rate of Occurrence, and Volume of Food Items of Black Crappie, Lexington Gunnery Range Pond 85

LIST OF TABLES

Table Page1. Total Lengths and Weights of Young-ofoYear Black Crappieby Age Groups, Holdenville State Fish Hatchery.10
2. Mean Lengths, Mean Weights, and Coefficients of Conditionof Young-of-Year Black Crappie by Length Groups, Holden-ville State Fish Hatchery.11
3. Mean Lengths, Mean Weights, and Coefficients of Conditionof Young-of-Year Black Crappie by Age Groups, HoldenvilleState Fish Hatchery.11
4. Mean Lengths, Mean Weights, and Coefficients of Conditionof White Crappie According to Size Groups, Fort SupplyReservoir.20
5. Mean Lengths, Mean Weights, and Coefficients of Conditionof Black Crappie According to Size Groups, Fort SupplyReservoir.20
6. Mean Lengths, Mean Weights, and Coefficients of Conditionof White Crappie According to Size Groups, CantonReservoir. 21
7. Mean Lengths, Mean Weights, and Coefficients of Condition of Black Crappie According to Size Groups, Canton Reservoir.23
8. Summary of Stomach Contents of White Crappie According to Length Groups, Canton Reservoir. 28
9. Volume of Stomach Contents, Numbers of Fish Items per Stomach, and Lengths of Gizzard Shad Eaten by White Grappie, Canton Reservoir. 29
10. Cosfficients of Condition of White Crappie According to Length Groups, Boomer Lake and Lake Carl Blackwell. 32
11. Test of Significance of Departure from Linear Regression of the BodyoScale Relationship of White Crappie, Lake Carl Blackwell. 35
12. Test of Significance of Departure from Linear Regression of the Body-Scale Relationship of White Crappio. Boomer Lake. 35
13. Number of White Crappie by Length and Age Groups, Lake Carl Blackwell.
14. Lengths, Weights, and Average Calculated Lengths of White Crappie, Boomer Lake. 40
15. Lengths, Weights, and Average Calculated Lengths of White Crappie, Lake Carl Blackwell. 40
16. Summary of Stomach Contents of White Crappie According to Size Groups, Boomer Lake. 41
17. Summary of Stomach Contents of White Crappie Aocording to Size Groups, Lake Carl Blackwell. 45
18. Mean Lengths, Mean Weights, and Coefficients of Condition of White Grappie According to Size Groups, Fisher's Pond.

49
19. Mean Lengths, Mean Weights, and Coefficients of Condition of Black Crappie Aocording to Size Groups, Lexington Gunnery Range Pond.49
20. Test of Significance of Departure from Linear Regression of the Body-Scale Relationship of White Crappie, Fisheris Pond。 - 53
21. Mean Lengths, Weights, and Calculated Lengths of White Crappie According to Age Groups, Fisher's Pond. . . . 54
22. Mean Lengths, Weights, and Calculated Lengths of Black Crappie According to Age Groups, Lexington Gunnery Range Pond.

LIST OF ILLUSTRATIONS

Figure Page

1. Length-Weight Relationship of Young-of-Year BlackCrappie, Holdenville State Fish Hatchery.9
2. Scale Development in the Key-Scale Area of a Three-Week- 01d Black Grappie. 13
3. BodyoScale Relationship of Known-Age Black Crappie,
Holdenville State Fish Hatehery. 144. Body-Scale Relationship of White Crappie, Fort SupplyReservoir.19
4. Body-Scale Relationship of Black Crappie, Fort Supply Reservoir. 22
5. Length Weight Relationship of White Crappie, Canton Reservoir. 24
6. Length-Weight Relationship of White Crappie, Lake Carl Blackwell and Boomer Lake. 34
7. Body-Scale Relationship of White Crappie, Lake CarlBlackwell。 37
8. Body-Scale Relationship of White Crappie, Boomer Lake. 38
9. Body-Scale Relationship of Black Crappie, Lexington Gunnery Range Pond. 51
10. Body-Scale Relationship of White Crappie, Fisher ${ }^{9}$ s Pond. 52
11. Coefficients of Condition of White Crappie from Boomer Lake, Lake Carl Blackwell, and Canton Reservoir. 57
12. Summary of the Stomach Contents of White Crappie from Canton and Fort Supply Reservoirs, Lake Carl Blackwell, Boomer Lake, and Fisher's Pond。62

INTRODUCTION

This is a report of studies intended to reveal the seale and body growth relationships and the food of young-of-year black orappie, and to resolve the differences between the populations of fast-growing crappies of new lakes and the populations of stunted orappies of older lakes。

The trend of fishing success in man-made impoundments of the South west reaches a olimax in the early years of the life of the lake (Irwing 1948). This highly productive climax is usually followed by a decline in fishing successo Most lakes tend to be free of soil turbidity during the first few years and then gradually develop into muddy-water impouado ments. These trends in turbidity and fishing success seem to be assooiated, yet fishing success also declines for some bodies of clear water. Leonard (1951) and Martin (1952) both reported upon olear lakes which were unproductive and contained slow-growing game fisheso

Most of the older lakes are commonly said to be "over-populated" with stunted fishes, one of which usually is the white crappie, Pomoxis annularis Rafinesque, or the black orappie, Pomoxis nigromaculatus (LeSusur)。 Many factors may contribute directly or indirectly to stunting; however, the scope of this study is confined to the theory that both the amount and kind of food may be causal factorso

The age, growth, and food of black and of white crappies of two relatively new lakes were studied. The orappies of the new lakes had made relatively rapid growth and their large populations consisted of only a few age groupso Similar studies were made of the orappie
populations of older lakes and ponds, 13 to 25 years old, all of which contained stunted crappies. The crappie populations of the older lakes and ponds contained many small fishes and few "keeper size" fishese

Results of the studies showeds that bodyoscale relationships for the white crappie may be curvilinear if stunting is prevalent; that proportionally faster growth of scales than of fish length, low coefo ficients of condition, and a resistance to shrinkage from fixation were characteristics of stunted white crappie: and that the fasterogrowing crappies contained larger volumes of fish items as food, mostly Dorosoma cepedianum (LeSueur) and minnows, whereas the slower-growing crappies contained mostly centrachid fish-items.

Studies of young-of-year black crappie were made from a series of fry which were $2 \frac{1}{2}$ to $13 \frac{1}{2}$ weeks of age. Results of the studies showeds that scales developed as tiny platelets in the "key-scale area" when the fish were about 24 mm . in length; that the body-scale relationship was approximately linear (intercept 19.9 mm) : and that the fry were sarnivorous and fed almost entirely upon zooplankton and insect larvae.

METHODS

Wire traps, hoop and gill nets, and rotenone were used to collect the fishes from the six impoundments sampled. A dip net was used to collect the known-age black crappie. The wire traps (Buck and Cross, 1951) with one-inch mesh chicken wire netting, were used extensively in Lake Carl Blackwell and Boomer Lake. The traps although bulky to transport relieved the need for extra help, reduced the possibility of wet clothing, and lessened the time required to check the catchese Wire traps and hoop and gill nets were used to collect specimens from Fort Supply and Canton reservoirse Rotenone was used in the Lexington Gunnery Range Pond and Fisher's Pond.

The fishes collected by means of hoop nets, wire traps, and gill nets may have been held captive for as long as 24 hours before examio nation. Fishes collected by the use of rotenone were taken while they were dying or shortly after death. Cognizance was given to the fact that fish collected by the use of rotenone may have contained food which they were induced to eat because of the effect of the rotenone (Krumholz, 1950)。

Length and Weight

The total lengths of the fish were measured to the nearest millimeter. The total length used was that length from the most anterior point of the fish, mouth closed, to the most posterior tip, tail lobes compressed. All fishes were weighed to the nearest one hundredth of a pound except the known-age black exappie and the crappies
collected from the two ponds. The known-age black orappie were weighed on a chainomatic balance to the nearest milligram after they had been fixed in 10 percent formalin, washed in water, and stored in 65 percent alcohol. No attempt was made to correct for length or weight changes due to the preservatives. Secondly, the fishes takes from the two ponds were weighed to the nearest gram and the weights converted to the nearest hundredth of a pound.

When the first collections were made from Boomer Lake it was belleved that because of the time limitations it might be necessary to preserve the fish before they could be weighed or measured. It was suggested that changes in the lengths and weights would be caused by fixation. To offset these errors, correction factors for length and weight changes were derived for a series of white crappie from Boomer Lake which were fixed in 10 percent formalin. Each fish was weighed to the nearest tenth of a gram, measured to the nearest millimeter, tagged, and preserved in 10 percent formalin. The fish were remeasured and reweighed after 10 days and were found to be shorter and heavier after fixation than before. Significant changes in the measurements or weights of the fish did not occur after the initial 10-day period of preservation. The changes were not consistently proportional to the live measurements and varied with length groups. Individual conversion figures were derived by dividing the weight and length of each preserved fish into the respective weight and length determined before preservation. The individual conversion figures were grouped and averaged to obtain the factors presented in Appendix A. The storage of fish in formalin was not found to be necessary. The data proved to be valuable because a comparison of the conversion factors with the age, growth, and coefficients of condition showed that the more severely the fish were stunted, the less they
shrank in length.
The plumpness or coefficient of condition of the fishes was determined by the use of a modification of the formula for a cubical parabola, $W=C L 3$. The modified formula which was used is the one which is in customary use, $c=\frac{W 10^{5}}{L^{3}}$. The coefficient of condition, c, is found by solving the equation when W is weight in pounds and L is length in inches.

The length-weight relationships were determined by use of the equation for the general parabola, $W=C L^{n}$, expressed in logarithmic form, $\log W=\log C+n \log L$. Values of $\log C$ and n were computed from the following formulas which are simply solutions of normal equations:

$$
\begin{aligned}
& \log C=\frac{\Sigma \log W \cdot \Sigma \log I^{2}-\Sigma \log L(\Sigma \log L \log W)}{N \cdot \Sigma \log L^{2}-(\Sigma \log L)^{2}} \\
& n=\frac{\Sigma \log W-N \cdot \log C}{\varepsilon \log L}
\end{aligned}
$$

(Beckman, 1948).

Age and Growth

Scales were taken from an area on the left side of the fish below the lateral line under the origin of the dorsal fin. Scales from each fish were placed in a scale envelope, bearing all pertinent data.

Age and growth determinations were made by use of a scale reader similar to that described by Van Oosten, Deason, and Jobes (1934). The scales were measured in millimeters along the anterior radii from the foci to each annulus and to the edge of the scale. The measurements were made for three scales of each fish and were averaged. The point of measure at each annulus was the first complete circulus anterior to the incomplete circuli. Regenerated scales were not measured.

The seales of the knowneage black crappie were measured in a similar manner. Key scales or scales located in the immediate vicinity of the key scales were used. "Key scales" refer to the three scales in the second row below the 15 th, 16 th, and 17 th lateral-line scalese The scales or sections of skin from the fish were mounted in water for study and measurements.

Individual measurements of the anterior radii (scale length) were plotted against the total fish length (body length) for the fish of each lake. Except as indicated differently, the calculations of the growth rates were made by means of directoproportion nomographs using the appropriate intercept values of the relationships of body length to seale length as points of origins. Individual fish lengths and scale lengths were used in the calculations of regressions in preference to the mean values of grouped fish.

Food

The stomachs were removed from the fish as soon as the collections were made, wrapped separately in cheese cloth, numbered individually for identification, and placed in 10 percent formalin.

The fixed viscera were washed in water to rid them of excess quantities of formalin before beginning the analyses of the stomach contents. The contents were removed from the stomach and drained of excess liquid. The volumes of food were determined by a method similar to that used by Ball (1948). The food from each stomach was placed in a graduated centrifuge tube from which readings in hundredths of a cubic centimeter could be made. A known amount of water was added to the tube submerging the food. The volume of the food was determined by subtract.
ing the volume of the water from the volume which represented both the water and the food.

The items of food from each stomach were sorted into different taxonomic groups, were counted, and when practicable, the volumes were determined. The total lengths of fishes found as food items were measured for whole fishes and estimated for partly-digested remainso

The stomach contents of each knownage black orappie were removed and weighed immediately on a chainomatic balance to the nearest tenth of a milligram. The organisms from each stomach were counted; however; when large numbers were present the numbers were estimated.

```
KNOWN-AGE, YOUNG=OF-YEAR BLACK CRAPPIE
```

The youngoofoyear black crappie studied were reared at the Holdenville State Fish Hatchery from a spawn which hatched the last week in April 1949. When the spawn hatched, it was removed to a pond which contained no other fish. Approximately 10 specimens were collected by means of dip nets and preserved on the same day of each week from May 14 through August 30, 1949. The fish were fixed in 10 percent formalin, washed in water, and preserved in 70 percent isopropnol.

A total of 120 fish varying in age from $2 \frac{1}{2}$ to $13 \frac{1}{2}$ weeks was studied. In order to simplify presentation of the data onochalf week was dropped from the age of all specimense

Age and Growth

Measurements of the specimens showed that with an increase in age the variations in lengths and weights inereased considerably (Table 1)。

The lengthoweight relationship was determined for 117 of the specio mens. The relationship was found to be expressed by the formula, $\log W=-3.6068+3.3514 \log L$, in which W (weight) is in hundred thousandths of a pound and L (total length) is in thousandths of an inoh (Figure 1). Measurements were made in metrio units and converted to thousandths of inches and hundred thousandths of pounds for caleulation purposeso

The coefficient of condition, C, was determined for the different age and length groups using the formula $C=\frac{W 10^{5}}{L^{3}}$ where was weight in ten thousandths of a pound and L was length in thousandths of an inch.

FIGURE I. LengthaWeight Relationship of Young-of-Year Black Crappie, Holdenville State Fish Hatchery, Hughes County, Oklahome. May 14 to August 20, 1949. Individual Computation.

TABLE 1. Total Lengths and Weights of 120 Youngof oYear Black Crappie by Age Groups, Holdenville State Fich Hatchery, Hughes County, Oklahoma. May 14 to August 20,1949 .

$\overline{\text { Age in }}$	Number	Length	in Millimeters	Weight	Milligrams
Weeks	of Fish	Mean	Range	Mean	Range
2	12	18.4	$16=20$	35.8	$25-46$
3	10	22.6	$20-24$	73.1*	56-92*
4	10	27.0	$24-30$	13507	100-200
5	10	32.2	29-38	284.2	190-450
6	9	33.2	30-38	324.2	227-465
7	10	36.9	$34-40$	406.3	316-546
8	10	4.7	$39-45$	611.3	$510=741$
9	10	42.3	39-46	610.5	481-752
10	10	43.8	$42-47$	719.6	$592=986$
11	10	4.409	40-50	769.7	506-1210
12	10	46.2	$41-50$	829.3	$577-1052$
13	10	49.9	$45-57$	1024.2	658-1480

Ba sed on nine spocimens.

The results show that the ooffieient of condition increased until the fish were about six weoks old or 104 inches in length. Fish olegr whan six weeks or longer than i, 4 inches did not differ distinctly in plumpness (Tables 2 and 3).

Neither scales nor indications of their development were found on the two-wreek-old fish, whieh ranged in length from 16 to 20 nm .

Seales were present on the posterior body region of five of the 10 thresureekocid fish. Three specimens, 24,24 , and 2405 mm in length, hod scales in the keyoscale area. The scales had only one or two rexculio The seven fish which did not have soales in the keyoseale area ranged from 21 to 23 mm o in lengtho

The three-meekoold fish with the fewest scales had two adjoining rows of six scales each and a single scale immediately above the upper rows The pateh of 13 seales was immediately anterior to the eaudal peduncle with the dorsal row of six scales on the lateral line. Another specimen, in which the pattern of scales appeared indicative of scale

TABLE 2. Mean Lengths, Mean Weights, and Coofficients of Condition of Young-of-Yeax Black Grappie by Length Groups, Holdenville State Fish Hatchery, Hughes County, Oklahoma. May 14 to August 20, 19490

Length Group in Inches	Number of Fish	Mean Length in Inches	$\begin{aligned} & \text { Mean Weight } \\ & \text { in Millionths } \end{aligned}$ of a Pound	Coorficient or Conditiom C
0.6-0.79	11	0.727	79	20.6
$0.8-0.99$	11	0.898	172	23.8
$1.0-1.19$	12	1.119	371	26.5
$1.2-1.39$	12	1.266	632	31.1
1.4. -1.59	20	1.500	1.007	29.8
$1.6-1.79$	30	1.702	1.467	29.8
$1.8-1.99$	19	1.885	2,022	30.2
2.2	2	2.225	3.200	29.1

TABLE 3. Mean Lengths, Mean Weights, and Coefficients of Condition of Young-of-Year Black Grappie by Age Groups, Holdenville State Fish Hatchery, Hughes County, Oklahoma. May 14 to August 20, 1949.

Age in Weeks	Number Of Eisin	Mean Length in Inches:	Nean Woight in Milizonths of a Pound	Coerficient 6 Condition C
2	12	0.727	79	20.6
3	9	0.888	169	23.0
4	10	1.063	299	24.9
5	10	1.268	626	30.7
6	9	1.308	714	31.9
7	10	1.453	895	29.2
8	9	1.649	1.346	30.0
9	10	1.665	1,345	29.1
10	10	1.724	1.585	30.9
11	10	1.768	1.695	30.7
12	10	1.819	1,827	30.4
13	9	1.960	2,244	29.8

development, had scales in the following places.

1. The lateraloline row of scales was complete.
2. Scales in the first row above the lateral line extended from the caudal pedunele to a point about midway betweon the anterior and posterior ends of the dorsal fing
3. Seales in the first row below the lateral line extended from the caudal pedunele to a point immediately posterior to the origin of the dorsal fin.
4. Scales in the second row below the lateral line were in two places, in the tail region anterior to the caudal peduncle and in the body region posterior to the origin of the dorsal fin.

Examination of the skins showed small, opaque spots or dises in unscaled areas where seales would be expected to develop. Figure 2 illustrates the opaque dises along the lateral line and the nore developed scales below. Scale development was not apparent on the anterior half of the body above the lateral line of the fish illuse treted in Figure 2. Development of the lateral-line scales of this specimen differed from that of the otner specimenso The inner eircuit of the scales shown in Figure 2 were sharp and distinct under magnific cation, whereas the outermost edges of the scales were broad and refracted light similar to an opaque object.

The bodyoseale relationship was determined because growth agloulations are based upon this relationship. A linear relationship was assumed and the resulting linear regression was $Y=19.9+0.803 X_{2}$ in which Y is fish length and X is the anterior sgale radiuse In the determinations, the anterios radiz of three seales were messured and the mean was plotied against the total fish length. Figure 3 shours the plotted points and the ealculated line of linear regression.

Food

A consistent difference in the amount of stomach contente was foumd betwen the fish of 2 and 5 weeks of age and the fish of 6 to 13 weeks

DORSAL

FIGURE 2. Scale Development in the KeyoScale Area of a Three-Week-old Black Crappie, 24.5 Millimeters in Total Length and 98 Milligrams in Weight. Holdenville State Fish Hatchery, Hughe County, Oklahoma, May 21, 1949. LL, Latexal Lines MSD, New Scale Derelopment: G, Circuluse Magnification 75 X .

FIGURE 3. Body-Scale Relationship of Known-Age Black Crappie, Holdene Tille State Fish Hatchery, Hughes County, Okiahoma. May 14 to August 20, 1949. Individual Computationo
of age (Appendix B). The fish of six weeks of age fed on large numbers of larval insects which may suggest an increased supply. The high volumes for the older fish were caused by large numbers of crustaceans and large larval insects. The coefficients of condition stopped inereasing when the fish reached an age of six weeks although their stomachs contained large volumes of food (Table 3 and Appendix B).

Only one stomach of the 118 fish was empty. This suggested that the fish were frequent feeders, at least in daylight hours. The varying amounts of food found in the stomachs may suggest that the individual fish fed sporadically or that some individuals were more successful than others. Variations in both body functions and feeding success may explain the variable sizes of fish of the same age.

Although the availability of food was not determined, the wide variety of organisms found in the stomachs suggests that good populations of zooplankton and bottom fauna were present and that the fish were opportunistic feeders (Appendix 0). One larval fish was found in the stomach of a twoweek-old fish and no other indication of cannibalism was found.

The samples of fast-growing crappies were taken from Fort Supply and Canton reservoirs. Both reservoirs were constructed by the Corps of Engineers, U. S.Army, for flood-control and water oonservation purposes.

The first water was impounded in Fort Supply Reservoir, Wolf Creek, Woodward County, in 1940. The 1800 surface-acre lake was partially drained during the summer of 1947. A luxuriant growth of vegetation was established on the exposed basin before the second inundation in 1948. Fishes taken from the Fort Supply Reservoir were caught during August 26, 1949 to July 27, 1950 after the second inundation.

Storage of water in Canton Reservoir on the North Canadian River, Blaine and Dewey counties, began in April 1948. By July 1948, the surface area of water was about 3350 surface acres. The water area remained relatively constant until February 1949. Considerable fluctuation of the water level occurred between February and July 1949 and the maximum surface acreage during that time was about 8000 acres on May 30, 1949. The reservoir had a water area of about 5000 surface acres from August 1949 to July 1950. A rise in July and August, 1950, increased the area to about 11,000 acres. Two and one-half months were required after this rise to reduce the lake to an area of about 5000 surface acres. Fishes taken from Canton Reservoir were caught mostly in the fall and winter between August 23, 1949 and Dctober 8, 1950.

The fishes were taken by means of hoop nets, wire traps, and gill nets. Both lakes were found to contain large numbers of crappies in excellent condition. The crappie fishing in Fort Supply Reservoir was
good although not as fully exploited as at Canton Reservois where minter fishing was phenomenal because of orappie concentrations in one cove (Buck and Cross, 1951).

Age and Growth of White Crappie from Fort Supply Reservois

Large numbers of 8.0 - to 909 anch white crappie were taken from Fort Supply Reservoir in 1949; however, only 39 were retained for study. The 39 white crappie were in their second year of life (ageo group one) and were calculated to have averaged 3.5 finches long at the and of thoir first yeaso Only one specimen of another size group was taken. It was a 1207 oinch white crappie which was in its third year of life (age-group two) and was calculated to have been 509 inckes long at the end of its first year and 908 inches long at the end of its second year.

Five white crappie, ageagroup one, were caught by hook and line froon the stilling basin in 1949. They averaged 602 inches in length and 0.11 pound in weight and had an average coefficient of condition ofi 46.1 . These average measurements were substantially lower than average measurements for fish of the same age from the reservoirs, alo though their average ealculated total-lengths for the first year of Lise were the same.

The white crappie collected during 1950 were mostly 6.4 to 8.7 inches in lengtho of these, 10 males and 18 females which averaged 7.7 inches in length and 0.25 pound in weight were of age group oxe and were ealculated to have had a mean length of 3.9 inches at the end of their first year of life. Seven males and 10 females which areraged 7.5 inches in length and 0.25 pound in weight were of agen
group two and were calculated to have had mean lengths of 3.9 inches at the end of their first year and 5.1 inches at the end of their second year. One fish of 6.8 inches in length had only one annulus on most of its scaless however, a second annulus was found near the edge of some of its seales.

Five large females of 10.1 to 11.2 inches in length were collected in 1950 which also represented ageogroups one and two. Of these, one 11.loinch speoimen had only one annulus on its scales and was aloulated to have had a length of 4.0 inches at the end of its first year. The other four, mean length of 10.6 inches, were of ageogroup two and were oalculated to have had mean lengths of 3.8 inches at the end of their first year and 9.8 inches at the end of their second year. The age and growth determinations may suggest that some of the fish had not formed annuli during 1950 or that considerable variation existed in the rates of growth. It is also possible that storage of flood waters in the reservoir prior to the collection, or some other factor, may have caused some of the fish to form a second annulus during 1950.

The body-scale relationship for the white crappie taken during 1949 was quite similar to the relationship for erappie collected during 1950 (Figure 4). The coefficients of condition for the fish collected in 1949 and in 1950 were not significantly different and the data were combined for presentation (Table 4)。

Age and Growth of Black Grappie from Fort Supply Reserroiz

Black erappie were not collected in 1949 although theis presence in the lake was unquestioned. Thirty and age groups were collected duxing 1950 (Table 5).

ANTERIOR SCALE RADIUS IN MILLIMETERS (MAGNIFICATION 50.5 X)

FIMURE 4e Body-Seale Relationships of White Crappie, Fort Supply Reservoix, Woodward County, Oklahoma• July 25 to 27,1950 and August 26 to September 24 , 1949. Individual Computation.

MABLE 4o Mean Lengths, Mean Weights, and Coefficients of Condition of White Crappie According to Size Groups, Fort Suppiy Reservoir. Woodward County, Oklahoma. August and September 1949 and July 1950.

$\begin{aligned} & \text { Length } \\ & \text { Group in } \\ & \text { Inthes } \end{aligned}$	Number of Fish	Mean Length in Inches	Mean Weight in Pounds	Coefficient of Condition. C
$6.4-6.9$	6	6.6	0.16	55.7
$7.0-7.9$	23	7.5	0.23	54.5
$8.0=8.9$	37	8.4	0.32	5400
$9.0-9.9$	19	9.4	0.45	54.2
$10.1-10.6$	3	10.4	0.60	53.3
$11.1-11.2$	2	11.2	0.74	52.7
22.7	1	12.7	1.14	55.7

TABLE 5. Mean Lengths, Mean Weights, and Coefficients of Condition ofi Black Grappie According to Size Groups, Fort Supply Reserroire, Woodward County, Oklahoma. July 25 to 27. 2950.

Length				Coefricient $0 \mathrm{I}^{\circ}$ Conditios c
Group in Inches	Number of Fi ish	Msan Length in Inches	Mean Weaght in Pounds	
$5.7-5.9$	3	5.8	0.11	56.4
$6.0=6.9$	10	6.4	0.15	57.2
$9.5-9.9$	4	9.8	0.54	57.4
$10.0-10.8$	13	10.4	0.69	61.3
11.2	2	11.2	0.84	59.8

Firstoyear growths were relatively slow and socond-year growthes were quite sapid. The 13 fish of 5.7 to 6.9 inches in length wate or ageogroup one They averaged 6.3 inches in length and 0.14 pound in weight and were calculated to have had an average length of 2.7 inches at the end of their first year of life. The larger black erappie which averaged 10.3 inches in length and 0.68 pound in weight were of ageo group three. They were caloulated to have averaged 300 inchas in leagth at the end of their first years 6.9 inches in lengthe the end of theiro second year, and 904 inches at the end of their third year.

The absence of ageogroup two may be a result of the gmall sample
or indicative of relatively small numbers in the group. Also, the two age-groups could have been successive year classes with age-group three having formed an annulus in 1950 and age-group one yet to form an annulus in 1950. Figure 5 shows the body-scale relationship of 31 black crappie taken from Fort Supply Reservoir in 1950.

Age and Growth of White Crappie from Canton Reservoir

A total of 148 white crappie was taken from Canton Reservoir for study. White crappie of 6 to 9 inches long from Canton Reservoir were in slightly poorer condition than fish of sjmilar size from Fort Supply Reservoir (Tables 4 and 6). White crappie more than 10 inches long from Canton Reservoir were in slightly better condition than comparable fish from Fort Supply Reservoir.

TABLE 6. Mean Lengths, Mean Weights, and Coefficients of Condition of White Crappie According to Size Groups, Canton Reservoir, Blaine and Dewey Counties, Oklahoma. August 23, 1949 to October 8, 1950.

Length Group in	Number	Mean Iength		
Inches	of Fish	in Inches	Mean Weight	
in Pounds	Coefficient of Condition			
$2.4-2.8$	5	2.7	0.007	0
$3.2-13.9$	6	3.6	0.017	35.6
4.9	2	4.9	0.04	36.4
$5.7-5.9$	4	5.8	0.07	34.0
$6.0-6.9$	20	6.5	0.12	35.9
$7.0-7.9$	22	7.5	0.19	43.7
$8.1-8.9$	33	8.5	0.31	45.0
$9.0-9.9$	35	9.4	0.45	50.5
$10.0-10.6$	20	10.3	0.62	54.2
11.8	11.8	1.00	56.7	

The length-weight relationship was determined by grouping the white crappie into classes of one-inch length intervals and using average lengths and weights for computations. The relationship was expressed

FIGURE 50 Body Scals Relationship of Black Crappie, Fort Supply Reservoir, Woodward County, Oklahoma. July 25 to 27. 1950. Individual Computationo
by the formula $\log W=-3.7056+3.4312 \log L$, in which W (weight) is in pounds and L (total length) is in inehes (Figure 6).

The 1948 yearalass was the dominant group (numerioally) of the crappie caught by nets, traps, or hook and line methods (Buck and Cross, 1951). White crappie of all ages and lengths made "good" growths dure ing the first year of water impoundment. White crappie of the 1947 yearo class had calculated average lengths of 3.9 inches at the end of the ix first year of life, 9.2 inches at the end of their second year, and 11.9 inches at the end of their third year. White erappie of the 1948 yeas class had calculated average lengths of 401 inches at the ond of their first year of life, 7.8 inches at the end of their second years and 10.4 inches at the end of their third yearo

Age and Growth of Black Grappie from Canton Reservoir

Only a very amall number of black crappie were taken from Cantox Reservoir (Tabie 7). Buek and Cross (1951) yoported a watah satio of

TABIE 7. Mean Lengths, Mean Weights, and Coeffieqents of Condition of Black Crappie According to Size Groups, Ganton Reservoirs. Blaine and Dewey Counties, Oklahoma. August 23. 1949 to Oetober 8. 1950.

$\begin{aligned} & \text { Length } \\ & \text { Croup in } \end{aligned}$ Trohes	Number of Fish	Mean Length in Inchos	Mean Weight in Pounds	$\begin{gathered} \text { Couricient or } \\ \text { conditior } \\ 6 \end{gathered}$
$6.0-6.9$	6	6.4	0.14	53.4
$7.1-7.4$	3	$7 \cdot 3$	0.20	51.4
$8.2-8.7$	2	8.4	0.33	55.7
9.0-9.8	7	9.3	0.50	62.2

oxe black orappis to 33 white crappie. They reported grovith rates of black erappie for the first year of impoundment to be geod, although somawhat slowar than the growth of white erappis. The average caleu-

WEIGHT IN POUNDS

FIGURE 6. Length Weight Relationship of White Crappie, Canton Resergoir, Blaine and Dewey Gounties, Oklahoma. August 23 to October 80 1950. Fish Grouped in Classes of One oInch Iength Intervalk for Computation.

Latod lengths of the 1947 year class were 2.3 inches at the end of the first year of life, 7.1 inches at the end of the second year, and 8.9 Inches at the end of the third year. The aresage calculated lengths of the 1948 year class were 3.6 inches at the end of the first year of life, 7.1 inches at the end of the second year. and 904 inches at the ond of the third year.

Food of White Crappie from Fort Suppiy Reservoizo

A though a large number of white erappie were taken from Fort Supply Reservoir during 1949. practically all of the fish were of the same aise group, 8 to 10 inches in total length The white crappie were coileoted. on August 26 and September 24. 19490 The 39 figh 8 to 10 inohes in length had fod aimost entirely on giszard shad, Dorosoras gepodianums (LeSueur). Only one of the fish hed eaten items other than gifezard ahad, one mayfly larva (Ephemerida) and one adult bestio (Coleoptera).

Comparison of data of the two collections of 1949 revealed the following findingso
2. The average lengths of gizzard shad eaten by Ea to gatmohs white erappie were 2ol inohes in August and 2.4 inshes ixn Septemberio wherens, the average lengths of giazare shad eaton by 90 to 10 anch white crappis were 204 inches in tugust and 2.6 inches in september.
2. The avergge number of gizzard shad per stomach and the guesage volume of stomach contents for the 80 to 10 -inuch fish were considerably larger in August (3.7 ghat. 507 mlo) than in September (1.8 shad. 2.6 ml) 0
3. The average number of gizzard shad per stomach and the
average volume of stomach contents were smallew for the 80 to 9 ainch white orappis (2.2 shad. 3.6 mlo) than for the ga to 10 inch white orappie (3.4 shad, 504 ml).

The gtomach of the 12.7 oinch white erappie contained 1400 ml of food. The items consisted of one gizzard shad, 405 inches long, and two Cyprinus earpio Linnaeus. 2.3 and 3.5 inches long.

The six white crappie, 304 to 704 inches in length, taken from the stixling basin in September 2949, had eaten four minnows of which thireo were seadily identifiable by hook marks as those used for baito One cicadelide, on aduit and one larwall beetle, two adult dipterans, 29 Chironomus larvae and pupae, two Chaoboress larvae, and small munbers of copapods and cladocerans constituted the remainder of the food itemso

All of the 28 white orappie collected in July 1950 contained food items, principally gizzard shad (Appendix D) Specimens of Apguius, aza ectoparasitic crustacean of fish, were foun in two stomachs which cono tained minnows. Copepods and cladocerans were found only in the stom achs of the 6o to 8anch white orappie. Both adult and larval ingects were found in stomachs of figh of 604 to 807 inches in length howeter. only a few were found in firsh longer than 8.1 incheso

The gizsard shad eaten by the white exappie collected in 1950 wete graller than the gizward shad eaten wy white exappie coldected in 2949 : however, the larger white crappie had eaten the larger gizzard shado
 shad (average, 2.8 inches): the 7010 to 709 -inch white orappie had Qaten 2000 to 2. 30 inch gizzard shad (awerage, 2od inches): the 800 tes Bo7 oinch white crappie had eaten 1.50 to $2.5-2 n o h$ gissard shad (averages,
 gizeard shad.

Food of Black Crappie from Fost Supply Reservoir

The 27 black erappie which were collected 2 an 1950 from Fort Supply Reservoir were caught in the same net and trap sets with the 28 whise crappie. The black cxappie had fed principally on minnows instead of gizzard shad (Appendix E). Specimens of Argulus were found only from stomacks which contained minnows, as was observed in the examination of white crappie. This would seem to indicate that the parasitice cruse taceans had bsen attached to minnows which wese eaten by the arappieso The principal minnow in the stomach contente was Hybognathes placita Girard, gpecimens of which were 0.8 to 0.9 inch longo one 10.8 oinoh black erappie contained 55 partiy-digested specimens of Hybognathus placita. Identification was possible because of the manner in which the long intestines of the minnows were coiled and the knowledge of what minnows existed in the area.

Copepods and cladocerans were found only in stomachs of black Grappie of 507 to 6.9 inches in length; whereas, all sizeagroups had fed upon adult and larval insects to about the same extent. The occurrenos of a thysanopteran in the stomach contents was most unex peoted and was best explained by the prosence of a broken plent gail in the mame stomach.

Food of White Crappie from Ganton Reservoit

Collections of white crappie were made from Canton Resorvoir on August 23. 24, and September 23, 1949 and on January 20 and 0 obober 8, 1950. Specimens were collected by gill and hoop nets in August 2949 and by wire traps in September 1949 and January and October, 2950 .

Twentyothree white orappie 8.3 to 10.6 inches in length, were taken in Ootober 1950 from wire traps that had not been examined for about 10 weeks. Only one of the 23 stomachs was empty. Each of the other stomachs contained 1 to 7 gizzard shad. One stomach contained a 400 oinch white crappie and another contained a 20 -inch bluegill. Lepomis macrochirus Rafinesque. It seems unlikely that the crappie could have captured such a large number of fish whils they were in the wrire traps.

A sunmary of the stomach contexts of white erappie from Cantons Reserrois in presented in Table 8. White cxappie as small as 3.8 znohes

TABLE 8. Summaxy of Stomach Contents of White Crappie According to Length Groups, Canton Reservoir, Blaine and Dewey Counties, Oklahona. August 23. 1949 to 0gtober $8,1950$.

Length Group in Inches	Number of Stomachs Examined	Number of Empty Stomache	Number of Stomachs Conteining Items			
			Fish	Crustacaans	Adults	Laryas
2.4-2.8	5	0	0	5	0	1
$3.1-3.9$	6	0	2	5	2	3
4.9	1	0	0	1	0	0
$5.7-5.9$	4	0	0	4	0	2
$6.0-6.9$	20	4	4	12	0	10
$7.0=7.9$	22	7	10	5	0	6
$8.1-8.9$	33	9	23	1	0	2
$9.0-9.8$	26	4	22	0	0	0
$10.0-10.6$	12	1	12	0	0	1
21.8	1	0	1	0	0	1

in length had swallowed minnows: howersr, gizzard shad were not found in stomachs of wite arappie less than 6.7 imohes in lengtho The ageru age lexgths of shad items and the average volumes of stomach contents increased with the increased lengths of white orappie (Table 9). Grustaceans were found in the stomach of 70 to gainoh insh only from collections made in August 1949. Adult insects were scarce in the stomach aontents: however, practically all sizes of white crappie had eaten insect larvae.

TABLE 90 Volume of Stomach Contents, Number of Fish Items per Stomach, and Lengths of Gizzard Shad Eaten by White Crappie, Canton Reservoir, Blaine and Dewey Counties, Oklahoma. August 23, 1949 to Oetober 8. 1950.

Crappis Length-Groups in Inches	Namber of Stomachs Examinet	Volume of StomachContents (ml)		Number of Fish per Stomach		Estimated Total Lengthsof Shad in Inches	
		Maximum	Mean	Maximum	Mean	Range	Mean
2.4-2.8	5	0.1	0.03	0	0.0	-	\square
3.1-3.9	6	0.4	0.12	1	0.3	-	-
4.9	1	Trace	Trace	0	0.0	-	-
5.7-5.9	4	0.2	0.10	0	0.0	-	-
$6.0-6.9$	20	0.7	0.12	3	0.4	2.7	2.7
$7.0-7.9$	22	306	0.95	2	0.6	2.2-2.7	2.5
8.1 - 8.9	33	5.4	1.47	4	201	1.6-3.5	2.7
$9.0-9.8$	26	9.5	2.20	6	2.2	$1.3-3.5$	2.7
10.0-10.6	12	9.9	4.70	7	3.2	$1.3-3.5$	3.0
11.8	8	2.8	2.8	1	1.0	3.5	3.5

The kinds and numbers of food items of white rappie from cancon Reservoir (Appendix F) were about the same as for white orappie from Fort Supply Reservoir. Gizzard shad comprised the buik of the fish items and only a few minnows were found. Unlike the results of the Fort Supply studies, mayfly lavvae were not represented as food items and immature midges (Chironomus, Chaoborus) comprised the bulk of the insectso

Stomach analyses by Buck and Cross (1951) showed that 64 percent, of 409 stomachs were empty and that 28 percent of the stomehs contajped gizmard shade They found that the incidence of shad in the stomeche of white crappie which mere caught in gill nets during July and August 1950 was much highor than for crappie taken by other meanso Also, they found that about 75 percent of their total catch of whita crappie in gill nets contained recentlymeaten shad. The authors theorized that the erappie entered the gill nets while pursuing shad.

Food of Black Grappie from Canton Reservois

Oniy 18 black rappio, 6.0 to 9.8 znehes, were obtained for stray from canton Reservoir Giguard shad constituted the buik of the stomach contents and was the only identifiable fish itemo Gsustacean are adulit and laryal inseots were found oniy in small quantitieso

Buck and Cross (1951) found that gizward shad were the most somon food of the 500- to 11.5 anch black crappie and that shad wexe taker more extensively by larger ones. They reported that insect larvae, chiefly Ghaoborug, were found ocoasionally in the stomeohs or 500 to 6o5minch black exappie.

POPULATIONS COMPRISED MAINLY OF STUNTED CRAPPIES

Lake:

Considerable differences exist between the ages and the sizes of Lake Carl Blackwoll and Boomes Lakso The dam which impourds about 3300 कurface aores in Leke Caxi Blackwelı seven mides west and nom unde north of stillwater, Oklahom, was constructed in 1938. The dam whseik Impounds about 210 surfase acres in Boomer Lake, about two mile norbin of Stillwater, Oklahoma, was constructed in 192l4 The Garl Bla okwoll Dam was constructed for flood control purposes and Boomer Dam was conc structed to form a water supply reservoir. In accordance with early water treatment policios Boomer Lake receźved many dosages of copper sulrate or "bluestone".

The rates of fisherman suocess for both reservoirs in recent years were based on observations and reports since creel census data was not aradlable Grappie fishing in Boomer Lake was yery poore Many small crappie sould be taken, but "keeperosize" oxappie zarely were caghto Geappie fishing in Lake Garl Blackwell was con종dered to be faizo and good eatches were generally made in the early spring by experieneed oso Lueky anglerso

Collections of fishes from both lakes were made with the aid of wite trapse The trape were set in all parts of Boomer Lake and colleco tions were made from September 23, 1950 to ApriL 27. 1951. Treps were set only in one small arm of Lake Carl Blackwell, Arm No. 10 , and eollo lections were made between January 4,1950 and April 27. 1951.

Age and Growth of White Crappie from Lake Carl Blackwil and Boomer Lake.
White crappie of 5.0 to 6.5 inches were caught regularly in Boomer Lake, and more fish of this size were caught than are shown in Table 10. The

TABLE 10. Coefficients of Condition of White Crappie According to Length Groups, Boomer Lake and Lake Carl Blackwe 11, Payne County. Oklahoma.

Length Group in Inohes	$\begin{aligned} & \text { Boomer Lake } \\ & \text { Sept. } 1950 \text { - Aprin } 1951 \end{aligned}$		$\begin{aligned} & \text { Lake Carl Blackwe II } \\ & \text { January - Aprif } 1951 \end{aligned}$	
	Number Or Fish	C	Number 0 OHE	0
405-409	19	38.0	5	38.5
$5.0-5.4$	116	41.3	31	38.4
$5.5-5.9$	73	36.2	62	37.8
6.0 - 6.4	43	36.5	39	37.8
$6.5-6.9$	14	37.9	30	36.6
$7.0-7.4$	18	37.5	24.	40.2
$7.5-7.9$	8	36.4	10	40.7
8.0 - 8.4	5	38.1	11	43.5
$8.5-8.9$	4	38.6	11	47.1
$9.0-9.4$	6	39.7	4	42.4
$9.5-9.9$	1	4401	8	49.3
$10.0=10.4$	2	43.9	4	49.0
$10.5-10.8$	2	38.3	6	45.7
11.0-11.4			8	51.2
$11.5-11.9$	2	46.9	4	50.0
12.0-12.4			6	53.4
12.6			2	56.0
23.2	2	41.7		
$1400-1402$	1	5405	2	54.9

didiciemt gize groups of white crappie vere more easily obtazned from
Lake Carl Blackoll and the data in Table 10 mepreserst neapdy all of
the fish taken. The numbes of 4050 to 4090 inch white orappie taken are not indinative of the populations because the wire traps were inerfichent in ratainung fish of this size。

The plumpress of the fish, oopridient or oondition, fasied consido erably with the dates of collection and to some extent with the leagth Of the fasho Samples of the 500- to 509-inch orappie from Lake Cari Blackw 11 increased in plumpness from January through Apridg howevers,
samples of the 6.00 to 70 - inch erappie deoreased in plumpness in February and then increased through Maxch and April (Appendix G)。 The 4.50 to 6oluinch orappie from Boomer Lake had relatively high coeffio cient of condition in September and April. A sharp drop in condition of orappie from Boomer Lake occurred in October and was followed by an increase in Nozember and a gradual decline through Mareh (Appendix H).

The lengthoweight relationships of white oxappie from Lake Cari Blackwell and Boomer Lake (Figure 7) were determined by using mean lengthe in inches and weights in pounds of specimens grouped into oneo half inch length intervalso The lengthawoight relationship of white crappie from Lake Carl Blackwell was expressed by the formula $\log \mathbb{W}=$ -3.73473 .428 log Le The lengthawoight relationship of white arappie from Boomer Lake was expressad by the formula log $w=-3.6087+3.3003$ \log Lo Comparisons of the results show that the white crappie from Lake Carl Blackwell were slightly heavier than white exappia of comparable lengths from Boomer Lake。

Considerable difficulty was encountered in reading the seales of som of the white crappie from Lake Carl Blackwell. Seales from sone of the small fish had false annuli near the trus annuli. When the false anmula were paixed with true annuli, the false annuli were located nearo ar to the foci of the scales. Normally, the scales of white exappis from Lake Caxil Blackwoll and Bomer Lake oxhibited distinat annuli and were easy to read. The scales of three fish, 7.2 to 8.6 inches in length, taken from Lake Carl Blackwe 11 April 16 to 23. 1951, showed that nev anuali had been forming on the anterior tips of the zealeso No other scales from fish of Lake Cari Blackwoll or Boomer Lake gave indications that new anmin were being formed.

FIGURE 7. Lengthoweight Relationship of White Crappie, Laige Caxi Blackwell and Boomer Lake, Payne County, Oklahoma. September 23. 1950 to April 27, 1951. Fish were Grouped in Classes of One. Half Inch Length Intervals for Gomputation LeB, Lake Carl Blackwe Il: BL, Boomer Lake。

The plotting of seale lengths against fish lengths indicated ourved regressions for data for the fish from eaok lake The measurementa of the fish from each lake were tosted using the second degree polynomialo $Y=a+b X+c X^{2}$ oto determine if signifieant departures from linear regressions existed. The calculated sums of squares of the erpors of estimates and degrees of freedom for both the linear regression and the curved regression of each sample are shown in Tables 12 and 12. The PABLE 2l. Test of Significance of Departure tyox Linear Regression of the Bodyoscale Relationship of White Crappies Lake Cari Blacko we 11, Payne County, Okiahoma. Januawy 4 to April 27. 29520

Source of Varsation	Degrees of Freedors	Sum of Squares	$\begin{gathered} \text { H6an } \\ \text { Squara } \end{gathered}$

Deviations from
Linear Regression 26I 0.2220

Deviations from
$\begin{array}{llll}\text { Gurved Regression } & 260 & 0.1780 & 0.00066\end{array}$

| Curvilineariby of
 Regression | 1 | 0.0500 |
| :--- | :--- | :--- | :--- |

$$
F=\frac{0.0500}{0.00066}=75.76
$$

TABLE 12. Test of Significance of Departure from Linear Regression of the Body Scale Relationship of White Crappis, Boomer Lake. Payne County, Oklahoma. September 23. 1950 to April 27. 1951.

Sousce of variation	Degrees or Freedom	5 sm 0. Squares	Mean Squaze
Derintiona from Linear Regression	309	0.3870	
Deviations rrom Cumped Regression	308	0.3445	0.001119
Gurvilinearity of Regression	1	0.0425	

$$
F=\frac{0.0425}{0.001119}=37.98
$$

reduetion in sum or squares, tested against the mean squase remaming aftor curvilinear regression, proved signifioant in each instance The result of fitting a linear regression to the data of white crappie from Lake Carl Blackwell was $Y=27+1.2140 X$, and the result of fitting the second degree polynomial was $\log Y=2.862057+0.003327 \mathrm{X}=0.00000229867 \mathrm{x}^{2}$ (Figure 8) The result of fitting a linear regression to the data of white orappie from Booner Lake was $Y=5503+0.9399$, and the zesult of fitting the second degree polynomial was $\log Y$. 108333 H $0.0038127 x$. $0.0000046685 x^{2}(F i g u r e 9) 。$

Nomographs based on the ouryed regressions were used to galoulabe the fish lengths at the time the annuli were formed. The intercepts of the curved regressions were used as points of origins in caleulating the growthso The extremely wide ranges in lengths of the different age groups indicated that both very poor and good growths had been mado by white crappie from Lake Carl Blackwell. A frequeney distribution by age and length groups revealed a distinct "group" of large specimens of different ages from Lake Carl Blackwell (Table 13) o The orexlap of size ranges was less pronounced for the different age groups of orappie of Boomer Lake (Table It) The majority of the fish from Boomer Lake were of age group two, whereas the fish from Lake Garl Blackwoll were more evenly distributed among the age groups (Tables it and 15)

The average caloulated growths of crappie from each lake were marko Qdy similar despite the differences in size overlap of the age groupso Growth calculations revealed slow growth for fish of 4 to 7 inohes in length and faster growth for longer fisho The calculated yearly lengthe for the older figh wese smaller than for the younger figho This tendency was less consistent for orappie from Boomer Lake Growth calculations remained constant even though collection dates variedo

ANTERIOR SCALE RADIUS IN MILLIMETERS
 (MAGNIFICATION 50.5 X)

FIGURE 8. Body-Seale Relationships of Whito Crappie. Lake Cami Blackwell, Payne County, Oklahoma. January 4 to April 27. 1951. Individual Computations.

ANTERIOR SCALE RADIUS IN MILLIMETERS (MAGNIFICATION 50.5 X)

FIGURE 9. Bodyoseale Relationships of White Crappie, Boomer Lake. Payne County, Oklahoma. Septembeis 23. 1.950 to April 27. 1951. Individual Computationso

TABLE 13. Number of White Crappis by Length and Age Groups, Lake Casd Blackwell. Payne Gounty, Oklahoma. January 4 to April 27. 1951.

Length in Inches	Number of Armuli					
	I	II	III	IV	V	II
$4.5=4.9$	4					
$5.0-5.4$	14	15				
$5.5-5.9$	3	46	6			
$6.0-6.4$	5	10	19	5		
$6.5=6.9$	1	9	13	6		
$7.0-704$	4	5	11	4		
$7.5-7.9$		2	5	3		
$8.0=8.4$		5	2	2	2	
$8.5-8.9$		3		5	3	
$9.0=9.4$				4		
906-9.9		2	3		4	
$10.0-10.4$		1		1	1	2
$10.5-10.8$			1	1	4	
21.0-11.4		2	3	4		
$11.5=11.8$				3	2	
$12.0-12.4$				3	2	
12.6				2		
14.0					1	

Food of White Crappie from Boomer Lake White orappie were collected during the period September 25, 1950 to April 27, 1951, and 320 sperio mens were used for stomach analysis (Table 16). Fewer fish were caught during the latter part of the collection period, although trapping -ifort remained fairiy constanto Also, fewer small erappie were collected during the latter part of the collection period to awod excessive duplicationo

Eightyrone percent or 259 of the 320 stomachs oxamined contained food. Fish collected in September, October, and the first part of Norember contained the highest percentage of empty stomachs, and fitish collegted in March and April contained the lowest percentage of empty stomachso

The percentages of empty atomachs increased slightly (16 to 27 percent) with inereased length of fish from 406 to 7.7 fncheso only

TABLE L4e Lengths, Weights, ano Average Galculated Lengths of White Crappie, Boomer Lake, Payne County, Oklahoma. September 23. 1950 to April 27. 1951.

Age	Number of Fi ish	Totad Length in Inches		Weight in Pounds			Average Galculated Total Lengths in Tnches at Each Annulus					
		Range	Mean	Range		Mean	2	2	3	4	5	6
I	31	$4.6-5.6$	5.0	0.04	- 0.06	0.05	3.9					
II	219	$4.08-7.7$	5.6	0.04	- 0.19	0.07	3.8	408				
III	43	$5.9-18.7$	7.0	0.07	- 0.26	0.14	401	5.4	6.2			
IV	15	$7.4-10.6$	9.0	0.15	- 0.51	0.30	3.9	5.8	6.5	7.6		
V	5	$8.1-14.2$	10.8	0.21	- 1.56	0.66	3.8	5.1	6.2	704	9.5	
VI	2	11.9-1302	12.6	0.82	- 0.96	0.89	3.7	408	507	6.2	8.0	10.0

TABLF 55 Lengths, We ights, and Average Caloulated Lengths of White Crappie Lake Cari Blackwll, Payne County, Oklahomac janvary 4 to April 27. 19510

Age	Number	Total Length in Inches		Weight In Pound		Arerage Calculated Total Lengths in Trehes at Each Annulus					
	Of Esish	Raxge	Mean	Range	Mean	$\underline{1}$	2	3	4	5	6
I	31	4.5	5.7	0.04	0.07	3.9					
II	97	501	6.2	0.05	0.15	3.8	502				
III	64	5.7	701	0.07	0.17	307	5.0	602			
IV	43	6.0	8.8	0.08	0.39	307	407	6.0	764		
V	88	8.0	20.2	0.23	0.58	307	4.8	509	701	8.7	
VI	2		10.1		0.147	3.6	405	504	602	705	8.8

TABLE 160 Summary of Stomech Contents of White Grappie According to Size Groups, Boomer Lake Payne County, Oklahona. September 23, 1950 to April 27, 1951.

Length Greup	Number of Stomachs	Number of Empty	$\begin{aligned} & \text { Volume } \\ & \text { Content } \end{aligned}$	$\begin{aligned} & \text { Stomach } \\ & \text { (mlo) } \end{aligned}$		x^{0} of Stomachs	Contain: Ins	$\begin{aligned} & g \text { Items } \\ & \text { ets } \end{aligned}$
im Inches	Examined	stomachs	Maximum	Mean	Fish	Crustacaans	Adults	Largae
$406-409$	19	3	0.4	0.17	0	16	10	8
$500=509$	196	35	1.2	0.25	8	139	68	87
$6.0-6.9$	58	13	2.8	0.26	10	25	17	27
$7.0-7.7$	26	7	2.6	0.477	9	6	5	10
$8.1-8.7$	8	2	402	0.65	4	1	2	4
904-9.6	7	0	502	2.56	7	0	0	1
$10.2-10.5$	2	0	0.6	0.35	8	4	0	2
11.8-21.9	2	0	403	2.70	2	0	0	0
33.2	1	4						
14.2	1	0	1.2	2.20	2	0	0	1

three (14 percent) of the 21 fish ranging in length from 8.1 to 14.2 inches contained empty stomachs. The trend in numbers of empty stomachs may be the result of decreased feeding upon crustaceans and insects and increased feeding upon fish items (Table 16). The distribution of the crappie according to size and this correlation of food habits exemplifies the so-called pyramid of numbers (Elton, 1927).

The total volume of food of the 4.6 to 4.9 -inch crappie consisted of 70 percent, copepods and eladocerans; 20 percent, larval insects; 5 percent, terrestrial insects; 4 percent, adult aquatic insects; and 1 percent, Uroglena. Mayflies were the principal insect larvae found in the food and water boatmen (Corixidae) were the principal adult aquatic insects. The terrestrial insects eaten were leaf hoppers (Cicadellidae), aphids (Aphididae), and ants (Formicidae).

The total volume of food of the 5.0- to 5.9-inch white crappie consisted of 54 percent, copepods and cladocerans; 22 percent, larval insects; 9 percent, terrestrial insects; 7 percent, adult aquatic insects; 7 percent, fish; and 1 percent, spiders (Araneida). Mayflies were the principal insect larvae found in the food; however, midges and dragonflies (Anisoptera) were also common larval forms. The terrestrial insects were mostly leaf hoppers, aphids, and ants. The aquatic adult insects were water boatmen and water striders (Trepobates knighti Drake and Harris). All of the identifiable fish items were sunfishes, prob ably bluegill and orangespotted sunfish, Lepomis humilis (Girard). A 5.0-inch crappie was the smallest specimen taken from Boomer Lake which contained fish remains. Most of the 5- to 6-inch crappie which had eaten fish were 5.7 to 5.9 inches in length, and the fish items ranged from 1.0 to 1.5 inches in length.

The total volume of food of the 6.00 to 609 inch white crappie was comprised of 65 percent, fishs 18 percent, insect larvaes 8 percent, copepods and cladocerans; 6 percent, terrestrial insects; and 3 percent, adult aquatic insects. The identifiable fish items were 10 centrarchids (1.4 to 2.3 inches long) and one Hybognathus placita. A 6. Ooinch orappie had eaten a 108 -inch orangespotted sunfish, and a 606 oinch crappie had eaten a 203 oinch sunfisho Mayflies were the principal larval insect food; however, midges, dragonflies, and beetles were common larvai formse Water boatmen were the only adult aquatic insects found as food items. The terrestrial insects were ants, leaf hoppers, other hemipo terans, and beetlese

The total volume of food of the 700 to 709 -inch erappie consisted of 92 percent, fish; 5 percent, larval insects; 2 percent, adult insects: and I percent, erustaceanso Sunfishes (1.8 to 2.5 inches long) were the predominate food items and only one minnow, Hybognathus placita, was found. The 7.0-inch crappie swallowed lobinch bluegill and unidentia fied sunfish of 2.5 inches in length. The larval insects found as food were midges and mayflies, and the adult insects were water boatmen, other hemipterans and beetlese

The total volume of food of the 8.1 to 1402 -inch orappie consisted of 98 percent, fish; 2 percent, mafly larves and trace quantities of cladocerans, amphiopods, laryal midges and sialids, and adult corixidso White crappie comprised about half of the fish items by volume. An 8.5-inoh white crappie had eaten a 2.4 inch white erappies a 904 inch white crappie had eaten a 2.7-inch white crappie, and a 9.6 -inch white crappie had eaten a 300 inch white crappie. Other centrarchids and unidentifiable fish comprised the remaining fish itemso Scales of carp. Cyprinus earpio Linnaeus, were found in one stomach.

The foods of the 320 white crappie taken from Boomer Lake are shown in Appendix Io Only three identifiable fish other than centrarchids were found as food items. Two were Hybognathus placita and the other consisted of two carp scales which possibly could have been taken as such and not as part of a food item.

Cladocerans, copepods, mayfly and midge larvae, and adult corixids were recovered from crappie taken throughout the period September 23. 1950 to April 27, 1951. Adult dipterans were found as food items in each collection, except those taken in February. Leaf hoppers were found in stomachs of crappie collectod during September, Oetober, Norember, December, and February. Ants appeared as food items in September, Oetobero and Norember. Aphids were found in stomachs of isish collected in November and in Februaryo Larval sialids were taken only from fish collected in February. Uroglena, the only plant eaten other than miscellaneous seeds and stems, was taken from fish collected in September and the early part of October.

The occurrence of miscellaneous seeds and small portions of plant stems in the stomachs was quite regular. These items composed practio cally all of the detritus and their presence may indicate that the fish were eating anything in or on the water.

Food of White Crappie from Lake Carl Blackwello White crappie were collected duxing the period January 4 to April 27. 1951, and the stomach contents of 222 specimens were examined (Table 17). The fish were caught throughout the period in about equal numberse

Seventy-five percent or 173 of the 222 stomach examined contained food. Fish collected in March contained the lowest percentage of empty

TABLE 17. Summaxy of Stomach Contents of White Crappie According to Size Groups, Lake Carl Blackwell, Payne Gounty, Oklahoma. January 4 to April 27, 195l.

Length Group in Inches	Number of Stomachs Examined	Number of Empty Stomachs	Volume of Stomach Contents in Milliliters Maximum	Number of Stomachs Containing Items			
$4.5-4.9$	5	0	0.2	0.10	0	5	0
$5.0-5.9$	80	17	0.4	0.13	1	55	0
Insects							

stomachs, and fish collected in April contained the highest percentage of empty stomachs.

White crappie of 405 to 409 inches in length had eaten only crustaceans and larval insectso Cladocerans and copepods comprised about half of the total volume of food, and the remainder consisted of mayfly and midge larvae.

The total volume of food of the 500 to 5.9 oinch white crappie consisted of 54 percent, cladocerans and copepods: 39 percent, mayfly larvaes 5 percent, midge larvaes and 2 percent, the remains of a sune fisho Trace quantities of Psychomyiidae and Coleoptera lareae and Cicadellidae and Diptera adults were also found as foodo

The total volume of food of the $6.0 \times$ to 6.9 anch white crappis consisted of 59 percent, fish; 25 percentg larval insects; and 16 pero cent. cladocerans and copepodso Centrarchids (1.1 to 2.5 inches long) constituted about half of the fish, and gizzard shad (2.0 to 204 inches long). Hybognathus placita, and unidentifiable fish comprised the reo mainder. A 6olminch crappie contained sunfish and specimens of Hybognathus placita of 2.5 inches in length. The larval insects were mostiy mayflies: however, larval forms of Chironomus, Chaoborus, Stalidae, Psychomyiidae, Coleoptera, and Geratopogoniae oceurred in small amountso Trace quantities of adult insects, Corixidae and Dipterag. mere found aiso as food itemso

The total volume of food of the 7.00 to 7.9 oinch white crappie consisted of 64 percent。gizzard shad: 27 pereent。 larval insects: and 9 percent, eladocerans and copepodso The gizzard shad were 1.6 to 400 inches long and a 400 minch shad had been swallowed by a 704 inch erappie. The larval insects were mostly mayflies: however, small numbers of

Sialidae, Coleoptera, Chironomus, Chaoborus, and Ceratopogonjae Larvae were found. Traces of adult insects were found also as food.

The total volume of food of the 8.0 to 12.6 inch crappie consisted of 75 percent, gizzard shad; 19 percent, other fishes; and 6 percent, larval insectse The larval insects found as food were specimens of Anisoptera, Chironomus, Chaoborus, Sialidae, Coleoptera, and Psyohomyiidae. Only traces of adult insects and crustaceans were found.

The 8 to goinch white crappie had swallowed 200 to $4000 i n c h$ gizzard shad: 90 to 10 oinch crappie. 200 to 305 mineh shad: 100 to 110 inch orappie, 1.5 to 405 oinch shad. 2l- to l2ainch arappie, 200 to 4.0-inch shad; and 120 to 13 minch erappie, 2050 to 500inch shad. A 904-inch arappie had swallowed a 500inch unidentified fish: 10.2ainch crappie, 5.5 -inch crappie: 10.6 anch erappie, 4.5 ainch shad; and 12.60 inch erappie, 5.0-inch shad.

The size of gizzard shad eaten by the white crappie increased with the size of crappie and with the later collections Four gizzard shad were taken from the stomachs of the $6 a$ to 7 ainch crappie collected dupa ing Januaxy, and only one gizzard shad was taken from the 6 o to foinch crappie collected in February. Theseafter, gizzard shad was not found as food of the 6 to 7oinch crappie. Gizzard shad was found as food for the 70 to 8 oinch erappie only during January, February, and Masoh: however, it was found as food for the larger size crappie throughout the study By volume, gizzard shad comprised about 63 percent of the food of the white crappie from Lake Cax Blackwell (Appendix J).

Seventyoseven white erappie longer than 6.9 inches were taken from Lake Gari Blackwe 11 from Januaxy through April 1950 while a comparable fishing effort during the same period at Boomer Lake produced only six
crappie longer than 6.9 inchese Two of the six specimens from Boomer Lake contained fish items（ 0.3 fish per stomach），whereas， 45 of the 77 specimens from Lake Carl Blackwell contained fish items（2．7 fish per stomach）．The average volume of stomach contents for the six erappie from Boomer Lake was 0.47 ml ．as compared with the much higher values found for crappie of similar lengths from Lake Carl Blackwell（Table 17）。

Considerably more larval insects and fish and fewer adult insects were found as food of crappie from Lake Carl Blackwell than of crappie from Boomer Lake．Only seven of 140 orappie of 5 to 7 inches in length from Lake Carl Blackwell contained adult insects，whereas 29 of 83 com－ parable size crappie from Boomer Lake contained adult insects．

A fish hook，size $1 / 0$ ，was taken from the stomach of an 8 o 2 －inch crappie．The fish was in good condition and the partly oxidized hook apparently was disintegrating in the fish＇s stomach。

Ponds

Two ponds，each less than an acre in surface area，were treated with rotenone and the fish collected during August 14 to 16， 1950. Although the two ponds contained different species of orappies，the populations were quite similar．The ponds were about 20 years old and contained many small fishes of which only a few were＂keeper size＂。

The Lexington Gunnery Range Pond，located on the Lexington Publice Hunting Ground in Cleveland County，had relatively clear water and con－ tained black crappie but no white crappie．Fisher＇s Pond，located about two miles southeast of Edmond，Oklahoma，had turbid water and contained white crappie but no black crappie．All of the large crappies of both ponds were studied，whereas，the small crappies were so numerous that
only samples of the different lengthogroups were examined. Youngoof.
year crappie were not found in either pond.
The largest fishes of each pond had higher coefficients of condition than the smallest ones, however the coefficients of condition for the 3.60 to 6.3 -inch orappies decreased with inerease in size of fish (Tables 18 and 19)。

TABLE 18. Mean Lengths, Mean Weights, and Coefficients of Condition of White Crappie Aecording to Sime Groups, Fisher's Pond, Oklahoma County, Oklahoma. August 14, 1950.

$\begin{aligned} & \text { Length } \\ & \text { Group in } \\ & \text { Inohes } \end{aligned}$	Number of Fish	Mean Length in Inches	Mean Weight in Pounds	Coexpiadent or Condition C
$4.0-4.9$	14	4.3	0.04	44.0
$5.2-5.7$	14	5.3	0.05	33.6
10.0	I	10.0	0.50	50.0
12.6	1	12.6	0.99	49.5
23.10 .13 .9	4	13.6	1.61	6400
14.3	2	14.3	1.94	66.3

TABLE 19. Mean Lengths, Mean Weights, and Coefficients of Condition of Black Crappie According to Size Groups, Lexington Gunnery Range Pond, Cleveland County, Okiahoma. August 16, 1950.

$\begin{aligned} & \text { Longth } \\ & \text { Group in } \\ & \text { Inches } \end{aligned}$	Number of Fish	Mean Length in Inches	Mean Weight in Pounds	Goofficient on Condition 6
$3.6-3.8$	23	3.7	0.02	39.5
$404-409$	19	4.8	0.04	38.9
5.0 .5 .6	20	5.2	0.05	35.6
6.3	1	6.3	0.07	28.0
7.0	1	7.0	0.17	49.6
8.4	1	8.4	0.28	47.2
9.4	1	9.4	0.43	51.8
10.8	1	10.8	0.60	47.6

Age and Growth of Crappies from Fisher ${ }^{\text {'s P Pond and Lexington Gunnery Ramge }}$ Ponde Few check marks (false annuli) were observed on the seales of the
white erappie from Fisher ${ }^{\text {s }}$ s Pond. Erosion or absorption of the seales was not apparent and the annuli on the seales were distinguished readily.

Cheok marks were common on the scales of black arappie from the Lexington Gunnery Range Pond and erosion or absorption of the seales of the large black cxappie was evident. Erosion of the seales was most pronounced in the area of the annuli. Scales of the two largest black crappie had six annuli; however erosion was so severe that the yeary growth rates could not be determined. Soales from each of the two fish showed different numbers of annuli because the amount of erosion varied with individual scalese

Whe bodyoscele relationships of black crappie from the Lexington Gunery Range Pond and of white erappie from Fishers ${ }^{5}$ Pond were detera mined by linear regression (Figures 10 and 11)。

When the bodyoscale data for the white crappie from Fisheris Pond were plotted a curvilinear relationship seemed to exist. The second degree polynomial, $Y=a+b X+c X^{2}$, was used to test the signifieance of departure from linear regression. The caleulated sums of squares of erroz of estimates and degrees of freedom for both the linear regression and the eurved regression were determined. The seduction in sum of squares, tested against the mean square remaining after curvilinear gegression, did not prove to be significant (Table 20). Therefore, the assumption of curvilinear regression was disregarded.

Caleulated growths show that the black erappie of Lexington Gunnery Range Pond required one year longer than the white crappie of Fisher"s Fond to attain a length of five inchese The data presented in Tables 18. 19, 21, and 22 show that few crappies in the ponds had attained lengths longer than 507 inches or had Iived more than three yearse

ANTERIOR SCALE RADIUS IN MILLIMETERS

 (MAGNIFICATION 50.5 X)

FIGURE 10. Bodyoseale Relationship of Black Crappie, Lexington Gunnery Range Pond, Cleveland County, Oklahoma. August 16, 1950. Individual Computation.

ANTERIOR SCALE RADIUS IN MILLIMETERS
 (MAGNIFICATION 50.5 X)

FIGURE 11. Bodyoscale Relationship of White Crappie, Fisher's Pond, Oklahoma County, Oklahoma. August 14, 1950. Individual Computation.

TABLE 20. Test of Significance of Departure from Linear Regression of the Body-Scale Relationship of White Grappie, Fisher's Pond Oklahoma County, Oklahoma. August 14, 1950.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Deviations from Linear Regression	34	0.014409	
Deviations from Curved Regression	33	0.013406	0.000406
Curvilinearity of Regression	1	0.001003	
	$F=\frac{.001003}{.000406}=2.47$		

The few white crappies of Fisher's Pond, which were 10 to 14 inches long attained lengths of about six inches during their second year of Iife and about eight to nine inchos during their third year (Table 21).

Food of White Crappie from Fisher's Pond. The stomaoh contents of 36 white orappie from Fisher ${ }^{\text {s }}$ s Pond were examined. Twentyoeight of the erappie were 400 to 5.7 inches in length and eight were 10.0 to 1403 inches long.

The total volume of food of the 400 - to 507 -inch erappie consisted of 87 percent, orustaceans: 9 percent, fish; and 4 percent, insects (Appendix K). The crustaceans, in order of abundance, were ostracods, copepods, and cladocerans. The fish items, larvae of 0.2 to 0.4 inch in length, had beon eaten by crappie of 403 to 404 inches in lengtho

Only seven fish and three midge larvae were found in the stomachs of the 10.0 - to 1403 -inch crappie. The condition of the seven fish items indicated that only one might have been swallowed after the applis Gation of rotenone. Four of the fish items were identifiable only as sunfishes, one was a white crappie, and one was an orangespotted sunfish.

TABLE 2Io Mean Lengths, Weighte, and Calculated Lengths of White Grappio According to Age Groups, Fisher ${ }^{\circ}$ Pond. Oklahoma County, Oklahome. August 14, 1950.

Age	Number	Mean Length	Mean Weight	Average Calculated Lengths in Inches at Each Annulus					
Group	of Fish	in Inches	in Pounds	1	2	3	4	5	6
I	13	$4 \cdot 2$	0.03	2.8					
II	15	5.3	0.05	2.4	$4 \cdot 5$				
III	2	10.0	0.50	2.6	4.6	7.9			
IV	5	13.4	1.42	3.1	6.0	9.2	12.3		
V	1	13.6	1.75	2.5	6.2	8.8	10.8	12.5	
VI	1	14.3	1.94	3.4	6.1	$7 \cdot 9$	10.4	13.2	14.1

TABLE 22. Mean Lengths, Weights, and Calculated Lengths of Black Crappie According to Age Groups, Lexington Gunnery Range Pond, Cleveland County, Oklahoma August 16, 1950.

$\begin{gathered} \text { Age } \\ \text { Group } \end{gathered}$	Number of Fish	Mean Length in Inches	Mean Weight in Pounds	Average Galoulated Lengths in Inches at Each Annulus			
				2	2	3	4
I	13	3.7	0.02	2.1			
II	8	4.7	0.04	2.0	3.6		
III	31	501	0.05	1.9	3.5	404	
IV	8	6.7	0.13	2.0	2.8	407	5.6

Food of Black Crappie from Lexington Gunnery Range Pond. The stomachs of 56 black crappie were examined and all were found to contain food. Most of the fish items had been eaten recently, probably after the rotenone was applied to the water.

The stomachs of the large black crappie, 7.0 to 10.8 inches long. contained only fish items. One of the items was a minnow, Notropis lutrensis, one was a black crappie, and the others were sunfish of 0.7 to 2.5 inches in length. A 7.0-inch black orappie had swallowed sunfish of 2.5 inches in length. The stomach of an 8olfinoh black erappie contained 9.1 ml . of food, including a 3.7 ainch black crappie, and the stomach of a 10.8 ainch orappie contained 10.0 ml . of food.

A 6.3 ainch black crappie had eaten four sunfish fry, 0.5 inoh long, and 34 midge larvae.

The food of the black crappie of 3.6 to 506 inches in length is presented in Appendix L. Specimens as small as 3.6 inches long had eaten fry of 0.5 inch lengths and 500 inch erappie had eaten orangespotted sunfish as long as 1.5 inches.

Condition Factor

The fishes from Fort Supply and Canton reservoirs had higher condition factors than the fishes from Lake Carl Blackwell and mueh higher condition factors than the fishes from Boomer Lake and the two pondso The condition factors tended to be lower for the crappies from the older bedies of water.

The condition factors of the 5 - to 7 -inch erappies from the older lakes were low and decreased with an increased length of the fishes. This decrease, illustrated in Figure 12, contrasts with the findings for fishes of the newer lakes and that of Hall, Jenkins, and Finnell (1954). Age and growth studies of the fishes with the low condition factors showed that they were of several age groups and that they had made slow growths.

The 10 to 14 inch crappies of populations which contained stunted fishes were usually in good condition. This was especially true for Fisher ${ }^{2}$ f Pond, where a few large white crappie were the only large Qarniverous fish in the pond.

Relation of Scale Length to Fish Length

Examination of the knownage black crappie showed that the scales were first formed as tiny plates with an appreciably greater width than thickness. Also, the scales formed in the key-seale area when the fish were about 24 mm . in length and about three and one-half to four weeks of age.

 (BL), Lake Carl Blackwell (LCB), and Canton Reservoir (CR).

Ward and Leonard (1952) concluded that the age of the black erappio was a determining factor in the time of scale formation. They found that three-weekoold fish (average total length, 17.5 mmo) did not have scales, but 30 of 33 fish of four weeks of age (average total length, 18.8 mmo) and 19 of 20 fish of five weoks of age had scales. They found that some black crappie as small as 16 mm . in length had scales, and that all fish of 20 mm . in length had scales. The fish studied by Ward and Leonard were hatched on April 20, 1952.

The black erappie reported herein were hatched about April 27. 1949. None of the fish of $2 \frac{1}{2}$ weeks of age (mean total length. 1804 xmog range, 16 to 20 mmo) had scales, but five of the 10 fish of $3 \frac{1}{2}$ weeks of age (mean total length, 22.6 mmes range 20 to 24 mmo) had scalese All fish of $4 \frac{1}{2}$ and $5 \frac{1}{2}$ wekes of age had scalese The smallost
black crappie with seales was 21 mm . long, whereas some specimens as long as 23 mm . did not have scales.

Direct-proportional methods of calculating growth are commonly used without compensating for the size of the fish at the tine of scale form mation. Buck and Cross (1951) showed the need for recognizing an initial fish length (before scale growth began) by comparing results of different methods. They found a highly significant difference, using direct prom portion and a zero intercept, between growth increments computed from data taken from scales above the lateral line and similar data from scales below the lateral line. The calculated growth increments, for the same fish, from scales above the lateral line and from scales below the lateral line were not significantly different when the appropriate intercept values were used as the points of origin in the calculations. Thus identical results were obtained by compensating for the different relationships of scale length and fish length when scales were taken from different areas of the body.

Jenkins (1953) observed that growth calculations determined by direct proportions with an assumed intercept of zero did not correspond With empirical growths. Jenkins showed that by following the method used by Weese (1949) the average actual lengths and the average calculated lengths were approximately the same.

Studies reported herein and the works of Ward and Leonard (1952) show that scales first form on the black crappie when the fish are 16 to 24 mm . long and that scales form in the key-scale area when the black crappie are 21 to 24 mm . long. Thus, it appears there is little variation in the size of black crappie when seales began development in the key-scale area. Nevertheless, distinct differences were apparent
between the black orappie studied by Ward and Leonard and the black crappie reported herein. The difference may be a normal variation or may be a result of different environmental conditions such as temperature and food.

The data from crappies of Fort Supply Reservoir, and the two ponds show linear correlations of body-scale relationships. This agrees with the findings of Buck and Cross (1951); Wilson (1951); Hall (1950); Thompson, Ward, and McArthur (1949): Johnson (1945): and Ricker and Lagler (1942).

In contrast, the body-scale relationships for white crappie of Lake Carl Blackwell and Boomer Lake were curvilinear. Plotting of the measurements shows that the curvilinearities were caused by data for the 5- to 7 -inch fish. Although the bodymscale relationship for the white crappie from Fisher's Pond was lineare the data indicated that a curvilinear relationship might have existed if there had been a complete lengtheseries of fish.

The trend toward large numbers of small fish and a few large fishs as was found in Fisher's Pond, was realized long ago as being character istic of stunted populations. The crappie population of Boomer Lake and Lake Gaxl Blackwell (to a lesser extent) represent stages leading to the absence of fish of intermediate sizes.

A proportionally faster growth of scales than of fish length was found for the 5- to 7minch fish of Boomer Lake and Lake Carl Blackwell. Also, the same size fish were shown to have low coefficients of condition. In the study of the length changes caused by formalin, it was noted that the 5- to 7 -inch specimens shrank proportionally less in length than other specimens. Thus, it appears that proportionally
faster growth of scales than of fish length, low coefficients of condition, and a resistance to shrinkage are characteristics of stunted white crappie.

Age and Growth

The oldest black and white crappies, from the Lexington Gunnery Range Pond and Boomer and Carl Blackwell lakes, were in theix seventh year of life Hall. Jenkins, and Finnell (1954) in their compilation of growth data on the black and white orappies of Oklahoma waters rec. ported ages of seven years for black crappie and eight years for white orappie.

The results of the growth calculations show that the white and black crappies of the new lakes made faster growths than crappies of the older lakese This is in agreement with the findings of Hall, Jenkins, and Finnell (1954). The white crappie of Fort Supply and Canton resero voirs were 8 to 11 inches in length during their second year of infe, whereas, white crappie of Carl Blackwell and Boomer lakes were 407 to 504 inches in length at the end of their second year of life. Black crappie from Fort Supply and Canton reservoirs were about seven inehes long at the end of their second year and 9.5 inches long at the end of their third year. whereas the black orappie from the Lexington Gumery Range Pond averaged only 5.6 inches long at the end of their fourth year.

The means of the scale lengths, fish lengths, or fish weights of the different age groups of Garl Blackwell and Boomer lakes did not vary with the time of collections duxing October 1950 through March 1951. The findings show that the fish did not grow from Oetober 1950 through

March 1951. Similar data did show that fish growth occurred duxing September and April.

It appears that good growth is necessary during the first few years of life if many white crappie are to attain large size. This is evidenced by the growth rates of the large white crappie from Fisher's Pond and Lake Carl Blackwell (Tables 13 and 21)。

The age and growth of specimens from Lake Carl Blackwell show that some individuals made good growth, whereas others made poor growth. All of the fish from Lake Carl Blackwell were taken in the same vicinity. Thus, the difference could not be correlated with different regions of the lake as was found by Wilson (1951). The fasterogrowing orappie may have been migrants whieh followed their food supply or individuals with inherent characters for fast growth.

Food

The food of the young black crappie from the Holdenville Fish Hatchery consisted largely of cladocerans, copepods, and dipterous larvae. Phytoplankton was scarce as food, indicating that young black crappie are primarily carnirores. The kind of food changed little as the black crappie became larger and older, and the absence of empry stomachs revealed the young fish to be frequent feeders. Even the smallest of the fish had eaten midge fly laxvae: however, the laxger and older fish had eaten the larger insect larvae.

Cladoserans and copepods were the principal crustaceans found as food items and were common as food for crappies less than seven inehes in length and scarce as food for the larger fishes (Figure 13). Ostracods were common food items of the crappies from pond and scarce for erappies

FIGURE 13. Sumary of the Stomach Contents of White Crappie from Canton and Fort Supply Reservoirs, Lake Cas' Blackwells Boomer Lake, and Fisher's Pond. Average Volume of Contents in Milliliters is Shown in Parenthysesc
from lakes.
Insect larvae were eaten by crappies of all sizes from all waterso Mayfly larvae were the principal insect food and were numerous in the stomachs of black and white crappies from all lakes except Canton Resera voir. Mayfly larvae were common in the stomachs of the black crappie from Canton Reservoir, but were not found in the stomachs of the white crappie. Chaoborus and Chironomus larvae were common insect foodso Generally, the midge larvae were equally numerous as food for both black and white crappiese Stomach analyses of the fishes from Fort Supply Reservoir (July 1950) showed that the white crappie fed more extengively on Chironomus than did the black erappie.

Mayfly larvae appear to be an especially important food of the white orappie of Lake Carl Blackwell. A comparison of the food of fish from the different lakes shows that larval insects comprised a larger percent of the food of the fish from Lake Carl Blackwell than of fish from Boomer Lake and Canton and Fort Supply reservoixs (Figure 13)。 The average volumes of food for the $7.0=$ to 7.9 ainch fish from Lake Carol Blackwe 11 and Boomer Lake would be about the same if the insect larषae were disregarded.

Adult insects were eaten by the crappies of 2.11 watars, but genezally were only a minor poxtion of the food itemse They were found as food for all length groups of black erappie, but were not common food of white erappie more than 8.0 inches in length. The principal items were water boatmen and leaf hopperso Adult inseots comprised a signifo ieant proportion of the food of the white erappie of Boomer Lake during the fall and winter months but comprised only trace amounts in the food of white crappie from Lake Carl Blackwe 11 and Canton and Fort Supply
reservoirs. Adult insects comprised a significant proportion of the food of one collection of white crappie from Fort Supply Reserveir in July (Appendix J) © However, since the white crappie of Boomer Lake fed upon the adult insects over a long period of time it appears that other more preferable foods were less abundant.

Stomach examinations of cxappies taken during the fall and winter months showed that fish were more common in the stomachs of specimens from Fort Supply and Canton reservoirs then in the stomachs of specimens from Lake Carl Blackwell and Boomer Lake. This appears to indicate that the fastogrowing orappie had a greater supply of forage fishes than the crappies of the two older lakes. White crappie of 308 inches in length from Canton Reservoir contained fish items in Oetober. White ereppie less than 5.0 inches in length from Boomer Lake were not found to contain fish items at any time.

The kind of fish was the most distinct difference in the foods of the crappies from the "old" and "new" lakeso Centrarchids comprised 95 to 100 percent of the total volume of fish items eaten by crappies of Boomer Lake, Fisher ${ }^{1}$ S Pond, and Lexington Gunnery Range Ponda Slow gxowth was evident for erappies from the se relatively old bodies of wetex. In contrast, giazard shad and minnows comprised 97 to 100 peso cent of the total volume of fish items eaten by orappies of Fort Supply and Canton reservoirse Good growth was evident for erappies of thest new" lakes. Centrarchids comprised 15 percent and gizeard shad and minnows comprised 85 percent of the total yolume of fish items eaten by erappie of Lake Carl Blackwell. Both poor and good growth was evident for crappie of Lake Carl Blackwell, a lake neither "old" or "new". These conolusions seem to show that orappie do not thrive on a det of centrarchidse

The composition of the populations from the different lakes shows that large numbers of 5- to 7 -inch f ishes were found in populations of stunted or slow-growing crappies. It is at this size that white crappie begin to feed almost exclusively on fish items (Tables 16 and 17, Figure 13). Thus, the evidence indicates that slow growth of crappies in the older lakes is caused by a shortage of forage fish for specimens less than seven inches in length.

The goal of fisheries management is to sustain maximum harvests of desirable fijshes. Good management cannot be had without an understandm ing of the phenomena which are to be managed. New achievements in other fields are rapidly being made because of extensive knowledge of the probe lems to be solved. The use of new tools and new approaches provide further insight and knowledge of assumed theories. Too often, management practices and research approaches become static and it is assumed that the important facts are already known about particular subjects and methodso

The writer does not propose a cureall or believe that a recommeno dation, applicable to only one or two species, is appropriate without consideration of all the species and the conditions involved. The following recommended investigations appear to be anong the necessary recourses for obtaining information for better managemento

1. Study the size and kinds of forage fishes which are eaten by the different sizes of carnivorous fishes. An undero standing of these relations appear important in evaluating the amount of "forage fish" available as food and in detera mining whioh fishes actually are important forage fish.
2. Determine the amount and kind of foods necessary for good growth. Martin (1952) found increased growth rates for Crappie and other game fishes after a partial kill of the fishes of Goddard Lake. Results presented herein indiGate that a substantial reduction in the number of stunted
[^0]
SUMMARY

I. The results of growth and food studies of 120 known age black crappie, $2 \frac{1}{2}$ to $13 \frac{1}{2}$ weeks old and 0.6 to 2.2 inches long are presented.
2. The results of age, growth, and food studies of populations of fast-growing and of stunted black and white crappies are presented. The populations studied were from two ponds and four lakeso
3. The coefficients of condition of the youngoofoyear black crappre were found to increase with age and length until the fish were about six weeks old and Iol inches long. Thereafterg the coefficients of condio tion were not significantly different for the longer or older fisho
4. The first appearance of scales was near the caudal peduncle when the black crappie were 21 to 24 mm . in total length and about four weeks old.
5. Scales were found to develop in plate-form in the keyoseale area" when the black crappie were about 24 mm . in total length.
6. The body-scale relationship of the knownage black erappie was found to be approximately linear with an intercept of 19.9 mm .
7. The black orappie fry were found to feed almost continuousiy rpon zooplankton and insect larvae.
8. The amount of change in length and weight of white erappie caused by fixation in 10 percent formalin was determined. The fixh shrank in length and increased in weight after fixation. The stunted fish shrank less in length than the nonsstunted fish.
9. The coefficients of condition for fastogrowing black and white crappies were found to increase steadily with the increase in length of
the fish. The coefficients of condition for erappie populations which were comprised largely of stunted fishes were consistently low for the 5- to 7-inch fish.
10. Body-scale relationships were determined for black crappie from Lexington Gunnery Range Pond and Fort Supply Reservoir and for white crappie from Fisher's Pond, Fort Supply Reservoir, Lake Carl Blackwell, and Boomer Lake.
11. The body-scale relationships of white crappie from Lake Carl Blackwell and Boomer Lake were found to be curvilinearo The data show that curvilinearity was caused by proportionally faster growth of seales than growth of fish length for the 5 - to 7 -inch specimens.
12. Proportionally faster growth of soales than of fish length. low coefficients of condition, and a resistance to shrinkage from fixation were found to be characteristics of the stunted white crappiec
13. Both black and white crappies of the "new" lakes grew faster than the erappies of the "old" lakeso
14. The oldest of the black and the white crappies studied were determined to be seven years old.
15. Copepods and cladocerans were common as food items for both black and white crappies of less than seven inches in length.
16. Insect larvas were common as foods for all sizes of black and white crappies.
17. The kind and size of fishes eaten by the different length groups of erappies were determined.
18. The most common minnow found in the erappie stomachs was Hybognathus placita which appears to be an important forage fish in some lakes.
19. Stomach analyses of the crappies of Fort Supply Reservoir showed that the white crappie had fed principally on Dorosoma cepedianum and the black crappie had fed principally on Hybognathus placita.
20. The most severely stunted orappies of the older lakes were 5 to 7 inches in length. The only significant differences between the foods of fast- and slow-growing crappies were the amount and kinds of fishes eaten. The slowermgrowing crappies contained smaller volumes of fish items which were largely centrarchidse The fasterengrowing crappies contained more food and a greater percentage of fish items which were gizzard shad or minnows.

LITERATURE CITED

Ball, Robert C. 1948. Relationship between available fish food, feeding habits of fish and total fish production in a Michigan lake. Mich. State Coll. Agr. Exp. Sta., Tech. Bull. 206, 59 pp.

Beckman, William C. 1948. The length-weight relationship, factors,for conversions between standard and total lengths, and coefficients of condition for seven Michigan fishes. Trans. Am. Fish. Soc. 75:237-256.

Buck, Homer and Frank Cross. 1951. Early limnological and fish population conditions of Canton Reservoir, Oklahoma, and fishery management recommendations. Report to the Okla. Game \& Fish Council, reproduced by Research Foundation, Okla. A. \& M. Coll., Stillwater, Okla. 110 pp .

Elton, Gharles. 1927. Animal ecology. Sedgwick \& Jackson, Ltd., London. 207 pp.

Hall, Gordon E. 1950. A premimpoundment biological fishery survey of Wister Reservoir, Oklahoma, Report to the Okla. Game \& Fish Council. reproduced by the Tulsa District, Corps of Engineers, U. S.Army, Tulsa, Oklahoma. 120 pp .
, Robert M. Jenkins, and Joe C. Finnell. 1954. The influence of environmental conditions upon the growth of white crappie and black erappie in Oklahoma waters. Okla. ${ }^{\text {PFish. Res. Lab., Rept. No. }}$ 40, 56 pp .

Irwin, William H. 1943'。 The development and decline of southwestern lakes. Okla. Game and Fish News, July-August 1948.

Jenkins, Robert M. 1953. An eleven-year growth history of white crappie in Grand Lake, Oklahoma. Proc. Okla. Acad. Sci., 34: 40-47.

Johnson, Wendell L. 1945. Age and growth of the black and white crappies of Greenwood Lake, Indiana. Investigations of Ind. Lakes and Streams, 2:297-324.

Krumholz, Louis A. 1950. Some practical consideration in the use of rotenone in fisheries research. Jour. of Wildlife Management, 14:413-424.

Leonard, Edgar M. 1951. Ten years of management and fishing on an Oklahoma farm pond. Report reproduced by the Ohio Dept. of Conservation. 4 pp .

Martin, Mayo. 1952. The Goddard Lake story. Okla. Game and Fish News, June 1952.
Ricker, William E. and Karl F. Lagler. 1942. The growth of spiny-rayed fishes in Foots Pond. Investigations of Ind. Lakes and Strearns, 2:85-97.
Thompson, W. H., H. C. Ward, and J.F. McArthur. 1949. The age and growth of white crappie, Fomoxis annularis (Rafinesque) from four small Oklahoma lakes. Proc. Okla. Acad. Sci., 30:93-101.
Van Oosten, John, H. J. Deason, and F.W. Jobes. 1934. A microprojeco tion machine designed for the study of fish scales. Jour. du Conseil, 9:241-248.
Ward, H. C. and Edgar M 。Leonard. 1952. Order of appearance of scales in the black crappie, Pomoxis nigromaculatus. Proc. Okla. Acad. Sci., 33:138-140.
Weese, A. O. 1949. Age and growth of Lepibema chrysops in Lake Texoma. Proc. Okla. Acad. Sci., 30:45-48.
Wilson, Clay, Jr. 1951. Age and growth of the white crappie (Pomoxis annularis Rafinesque) in Lake Texoma, Oklahoma, 1949. Proc. Okla. Acad. Sci., 31:28-38.

APPENDIX

APPENDIX A. Factors for Converting Total Lengths and Weights of Preserged White Crappie from Boomer Lake to Live Lengths and Weightso Specimens Were Preserved in 10 Percent Formalin.

Number of	Live Measurements		Whts $\begin{aligned} & \text { Weight in }\end{aligned}$	ams	Mean Conversion Factors for Determining Live Measurements	
White Crappie	Range	Mean	Range	Mean	Length	Weight
17	122-129	127	18.4-22.5	21.2	1.014	0.940
25	$130-139$	134	20.0-29.7	24.8	1.015	0.943
18	$140-149$	144	27.2-33.8	29.8	1.013	0.940
8	150-159	154	30.9-38.7	3404	1.007	0.940
6	160-166	163	37.2-47.6	41.7	1.009	0.935
2	$173-174$	174	50.7-51.4	51.0	1.012	0.934
8	$180-188$	184	$54.5-69.0$	61.7	1.012	0.920
4	191-196	194	$67.1-76.3$	70.3	1.020	0.920
1	¿22		114		1.023	0.952

APPENDIX Bo Weights of Stomach Contents, in Milligrams, of Youngoofoyear Black Crappie According to Age, Holdenville State Fish Hatchery, Hughes County, Oklahoma May 14 to August $20,1949 \circ$

APPENDIX C. Number and Rate of Occurrence of Food Items from Stomachs of 107 Young-of Year Black Crappie According to Age and Dates of Collections in 1949, Holdenville State Fish Hatchery, Hughes County, Oklahoma. Figures in Parenthesis Indicate the Number of Stomachs in Which the Food Items were Found.

Date of Collection	5-14	5-21	5-28	6.4	$6-11$	6-18	6-25	7×2	$7-9$	7-16	$7-23$	$7 \cdot 30$	TOTAL
Age of Fish in Weeks	2	3	4	5	6	7	8	9	10	11	12	13	
Number of Stomachs Examined	11	10	10	9	8	10	8	7	7	10	10	7	107
Oscillatoria fragments	0	0	0	0	0	0	0	0	$\begin{aligned} & 10 \\ & (3) \end{aligned}$	$\begin{aligned} & 2 \\ & (2) \end{aligned}$	$\begin{aligned} & 70 \\ & (9) \end{aligned}$	73 (5)	155
Rotifera (Notous)	0	0	1	0	0	0	0	0	0	0	0	0	1
Cladocera	0	$\begin{aligned} & 40 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 161 \\ & (10) \end{aligned}$	$\begin{aligned} & 57 \\ & (5) \end{aligned}$	$\begin{aligned} & 54 \\ & (8) \\ & \hline \end{aligned}$	$\begin{array}{r} 430 \\ (10) \\ \hline \end{array}$	$\begin{gathered} 181 \\ (8) \end{gathered}$	$\begin{aligned} & 27 \\ & (7) \end{aligned}$	$\begin{aligned} & 66 \\ & (7) \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ (10) \\ \hline \end{gathered}$	$\begin{aligned} & 28 \\ & (7) \\ & \hline \end{aligned}$	1168
Eucopepoda	$\begin{aligned} & 128 \\ & (11) \end{aligned}$	$\begin{gathered} 210 \\ (9) \\ \hline \end{gathered}$	$\begin{aligned} & 198 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & (7) \\ & \hline \end{aligned}$	$\begin{array}{r} 13 \\ (6) \\ \hline \end{array}$	$\begin{aligned} & 352 \\ & (10) \end{aligned}$	$\begin{gathered} 318 \\ (8) \end{gathered}$	$\begin{array}{r} 228 \\ (7) \\ \hline \end{array}$	$\begin{gathered} 123 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 159 \\ (10) \\ \hline \end{gathered}$	$\begin{aligned} & 247 \\ & (10) \end{aligned}$	$\begin{array}{r} 128 \\ (7) \end{array}$	2162
0stracoda	0	0	0	0	$\begin{aligned} & 4 \\ & (2) \end{aligned}$	$\begin{aligned} & 11 \\ & (4) \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & (8) \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 38 \\ (10) \\ \hline \end{gathered}$	$\begin{aligned} & 104 \\ & (10) \end{aligned}$	77 (4)	287
Amphipoda	0	$\begin{aligned} & 2 \\ & \text { (1) } \end{aligned}$	0	0	0	0	$\begin{gathered} 2 \\ (2) \\ \hline \end{gathered}$	1	$\begin{gathered} 3 \\ \text { (1) } \\ \hline \end{gathered}$	0	0	0	8
Hydracarina	0	0	0	0	0	0	0	0	I	0	0	$\begin{aligned} & 2 \\ & (2) \end{aligned}$	3
Ceratopogoniae larvae	0	0	0	0	0	0	$\begin{array}{r} 5 \\ (2) \\ \hline \end{array}$	1	$\begin{aligned} & { }^{2} \\ & \text { (2) } \end{aligned}$	$\begin{aligned} & 5 \\ & (4) \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & (6) \\ & \hline \end{aligned}$	5 (4)	31
Chironomus larvae	$\begin{aligned} & 4 \\ & (2) \\ & \hline \end{aligned}$	(1)	$\begin{aligned} & 40 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & (7) \end{aligned}$	$\begin{array}{r} 135 \\ (8) \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & (4) \end{aligned}$	$\begin{array}{r} 4 \\ (4) \\ \hline \end{array}$	$\begin{gathered} 2 \\ (2) \\ \hline \end{gathered}$	I	$\begin{aligned} & 2 \\ & (2) \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ (2) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (2) \\ \hline \end{gathered}$	243
Chaoborus larvae	0	0	0	$\begin{aligned} & 4 \\ & (1) \end{aligned}$	$\begin{aligned} & 29 \\ & (5) \\ & \hline \end{aligned}$	0	$\begin{aligned} & 2 \\ & \text { (1) } \end{aligned}$	0	$\begin{aligned} & 19 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 21 \\ & (4) \end{aligned}$	1	1	77
Hydroporus larvae	0	0	$\begin{array}{r} 5 \\ (4) \\ \hline \end{array}$	0.	$\begin{aligned} & 2 \\ & \text { (1) } \end{aligned}$	1	0	0	0	0	0	0	8
Ephemerida larvae	0	0	0	0	$\begin{aligned} & 3 \\ & (2) \end{aligned}$	1	(2)	1	0	0	0	0	7
Unidentified Insect laryae	0	1	0	0	1	0	$\begin{aligned} & \frac{1}{4} \\ & \hline \end{aligned}$	0	$\begin{array}{r} 3 \\ (2) \\ \hline \end{array}$	1	0	1	11
Fish larra	1	0	0	0	0	0	0	0	0	0	0	0	1

APPENDIX D. Number, Rate of Oceurrence, and Volume of Food Items of 28 White Crappie, 6.4 to 11.1 Inches in Length, Fort Supply Reserroir. Woodward County, Oklahoma. July 25 to 27, 1950.

Food Items	Number of Stomachs Gontaining Items	Number of Items Found	$\begin{aligned} & \text { Volume of } \\ & \text { Items in } \\ & \text { Milliliters } \end{aligned}$	Percentage of Volume of Major Items
Fish	24	47	25.4	
Unidentified.	4	4	1.2	4.1
Dorosoma cepedianum	18	40	22.9	77.6
Cyprinidae	3	3	1.3	404
Crustacea	7		Trace	
Argulus	2	2		
Eucopepoda	2			
Cladocera	3			
Ostracoda	1			
Insecta adults	23	148	2.6	8.8
Unidentifisd	1	2		
Unidentified Hemiptera.	2	3		
Corixidae	22	142		
Notonectidae	1	1		
Insecta larvae	14	32	1.5	5.1
Unidentified	1	1		
Ephemerida	13	17		
Anisoptera	2	2		
Chironomus	7	10		
Ceratopogoniae	1	1		
Culicinae	2	1		
Plant Material	1	1	Trace	

APPENDIX Ee Number, Rate of Occurrence, and Volume of Food Items of 27 Black Crappie, 507 to 11.2 Inches in Length, Fort Supply Reservoix, Woodward County, Oklahoma. July 25 to 27, 1950.

Food Items	Number of stomachs Containing Items	Number of Items Found	Volume of Items in Milliliters	Percentage of Volume of Major Items
Fish	18	142	22.3	
Unidentified	4	4	0.5	1.9
Dorasoma cepedianum	2	3	1.8	6.8
Cyprinidae	12	135	20.0	76.1
Unidentified	5	12		
Hybognathus placita	7	122		
Fundulus kansae	1	1		
Crustacea	9		0.2	0.8
Argulus	4	4		
Eucopepoda	2			
Cladocera	4			
Insecta adults	22	127	2.5	9.5
Unidentified	1	1		
Corixidae	19	117		
Notonectidae	3	3		
Stratiomyidae	1	1		
Unidentified Coleoptera	1	1		
Dytiscidae	4	4		
Inseeta larvae	12	20	2.0	3.8
Ephemerida	8	14		
Dytiscidae	1	1		
Gyrinidae	1	1		
Chironomus	1	2		
Chaoborus	1	1		
Culicinae	1	1		
Thysanoptera	1	1	Trace	
Plant Material (gall)	3	3	0.3	1.1

Food Items	Number of Stomachs Containing Items	Number of Items Found	$\begin{aligned} & \text { Volime of } \\ & \text { Items in } \\ & \text { Milliliters } \end{aligned}$	Percentage of Volume of Major Items
Fish	73	150	191.3	99.1
Unidentified	10	16	3.8	
Dorosoma cepedianum	63	127.	180.8	
Cyprinidae			0.7	
Unidentified	3	3		
Notropis lutrensis	1	1		
Hybognathus placita	1	1		
Centrarchidae			6.0	
Pomoxis annularis	1	1.		
Lepomis magrochirus	1	1		
Crustacea	31	-	1.2	0.6
Eucopepoda	20	-		
Cladocera	27	-		
Insecta adult	1	2	Trace	Trace
Corixidae	1	1		
Insecta larrae	22	158	0.6	0.3
Sialidae	1	1		
Zygoptera	1	1		
Chironomus	10	20		
Chaoborus	15	136		

APPENDIX G。 Coefficients of Condition of White Cxappie by Length Groups and Dates of Collections in 1951. Lake Carl Elackwell. Payne County. Oklahoma.

Length Group in Inches	January 4 - 8		February $27=$ Maroh 1		March 9 -21		April 12-27	
	Number		Number		Number		Number	
	of Fish	c	of Fish	c	of Fish	c	of Fish	C
$5.0-5.4$	11	36.3	7	38.4	6	39.1	5	39.0
$5.5-5.9$	25	36.2	5	36.2	11	38.8	13	42.1
$6.0-6.4$	14	36.5	6	34.4	6	36.5	12	42.4
$6.5-6.9$	8	36.6	7	34.2	8	35.8	6	42.9
$7.0=7.4$	4	45.9	4	36.7	7	38.7	9	42.9

APFENDIX E. Cosfficients of Condition of White Crappie by Length Groups and Dates of Collections, Boomer Lake, Payne County, Oklahoma.

Leagth Group in Inohes	Sopt. $23=$ Oct. 3. 1950		$\begin{aligned} & \text { Oett. } 27=1 \\ & \text { Nov. } 49.1950 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Nove } 30 \\ & \text { Dec. } 191950 \end{aligned}$		$\begin{aligned} & \text { Jano } 1=49 \\ & 1951 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { Feb. } 19-279 \\ 1951 \\ \hline \end{array}$		$\begin{aligned} & \text { March 15 }= \\ & 22.1951 \end{aligned}$		$\begin{aligned} & \text { April } 10- \\ & 27,1951 \\ & \hline \end{aligned}$	
	Number of Fish	0	Number of Fish	6	Number Of Fish	C	Number of Fish	c	Numbes of Fish	c	Number Of Fish	C	Number of Fish	
405-409	6	43.3	5	3462	3	36.2	2	36.2	0	-	3	34.1	0	
$5.0-5.4$	22	42.7	35	35.5	23	39.1	17	37.8	6	37.0		5.5		12.2
5.5-5.9	16	37.8	23	35.1	18	37.8		37.8	8	3402		34.2		42.3
$6.0-6.4$	15	37.8	21	33.6	6	35.2	2	42.0	6	35.2	13	37.0	3	37.6

APPENDIX I. Number, Rate of Occurrence, and Volume of Food Items of 320 White Crappie, 406 to 1402 Inches in Length, Boomer Lake, Payne County, Oklahoma. September 23, 1950 to April 27. 1951.
$\left.\begin{array}{lcccc}\hline \text { Food Items } & \begin{array}{c}\text { Number of stomachs } \\ \text { Containing Items }\end{array} & \begin{array}{c}\text { Number of } \\ \text { Items Found }\end{array} & \begin{array}{c}\text { Volume of } \\ \text { Items in }\end{array} & \begin{array}{c}\text { Percentage of } \\ \text { Volume of }\end{array} \\ \text { Milliliters }\end{array}\right]$

APFENDIX Io (Continued)

Food Items	Number of Stomachs Containing Items	Number of Items Found	$\begin{aligned} & \text { Volume of } \\ & \text { Items in } \\ & \text { Mililiters } \end{aligned}$	Percentage of Volume of Major Items
Insecta larvae	140	976	10.4	12.5
Såalîdae	2	2	0.1	
Ephemerida	72	143	6.6	
Anisoptera	5	6	0.8	
Coleoptera	6	6	0.4	
Psychomyijdae	2	2	Trace	
Chironomus	58	370	1.0	
Chaoborus	66	440	1.5	
Ceratopogoniae	4	7	Trace	
Araneida	1	6	0.2	0.2
Hydrachnidae	1	1	Trace	
Uroglena	3		0.2	0.2

APPENDIX J. Number, Rate of Occurrence, and Volume of Food Items of 222 White Crappie, 405 to 12.6 Inches in Length, Lake Cari Blackwell, Payne County, Oklahoma. January 4 to April 27. 1951.

Food Items	Number of Stomachs Containing Items	Number or Items Found	Volume of Itams in Hililiters	Percentage of Volume of Major Items
Fish	55	135	132.6	
Unidentified	13	23	9.8	6.0
Centrarohidae	6	7	17.9	10.9
Unidentified	5	5	5.4	
Lepomis humilis	1	1	105	
Pomoxis annularis	1	1	11.0	
Cyprinidae	2	2	1.4	0.9
Unidentified	1	1	0.4	
Hybognathus placita	1	1	2.0	
Dorosoma cepedianum	39	103	103.5	63.2
crustacea -	110	-	9.9	6.0
Cladocera	104	$=$	6.4	
Copepoda	85	-	3.5	
Ostracoda	2	-	Trace	
Insecta adults	9	10	0.3	0.2
Unidentified	3	3	0.1	
Diptera	3	4	0.1	
Corixidae	2	2	0.1	
Cicadelilidae	3	1	Traoe	
Insecta larvae	119	835	20.9	12.8
Ephemerida	90	376	17.6	
Anisoptera	1	1	0.1	
Coleoptera	4	5	0.6	
Stalidae	4	4	0.4	
Gieadellidae	1	1	Trace	
Corixidae	2	2	0.1	
Psychomyzidae	3	4	0.2	
Cha ronomus	75	325	1.5	
Chaoborus	34	215	0.4	
Ceratopogoniae	2	2	Trace	

Food Items	Number of Stomachs Containing Items	Number of Items	Percentage Volume of Total Items
Fish larvae	4	15	9.2
crustacea	28	-	87.1
Eucopepoda	28	\cdots	
Cladocera	19	-	
Ostracoda	28	-	
Inseata	10	23	3.7
Unidentified adult	1	1	
Psychomyíidae larva	1	1	
Chaoborus larvae	2	3	
Chironomus larvae	8	16	
Ceratopogoniae larvae	2	2	

APPENDIX Lo Number. Rate of Oecursenee, and Volume of Food Items of 51 Blacir Crappie, 306 to 506 Inehes in Length, Lexington Gunnexy Range Pond, Cleveland County, Oklahoma August 16. 1950.

Food Items	Number of Stornachs Containing Itoms	Number of Items Found	Volume of Items in Milliliters	Percentage of Volume or Major Items
Fish	29	100	13.0	77.4
Unidentified fry	13	48	3.6	
Unidentiff led sunfish	8	32	2.0	
Lepomis humilis	12	15	5.2	
Lepomis macrochirus	3	3	1.2	
Lepomis cyanellus	1	1	0.5	
Notropjs lutronsis	1	1	0.5	
Crustacea	32		1.1	6.5
Eucopepoda	32	-		
Cladocera	15	-		
Ostracoda	15	$=$		
Insecta adults	4	17	0.6	3.6
Unidentified	3	3	0.2	
Homoptera				
Unidentiried	1	1	0.1	
Cieadellidae	1	1	Trace	
Corixidae	4	5	0.1	
Gergidae	1	7	0.2	
Insecta lasyae	29	900	201	12.5
Ephemeroda	1	1	Trace	
Anisoptera	1	2	Trace	
Chisonomus	22	45	0.2	
Ceratopogoniae	4	5	тrace	
Gnaoboxus	38	848	1.9	

VITA

William Edmon Burris
candidate for the degree of Doctor of Philosophy

Thesis: STUDIES OF THE AGE, GROWTH, AND FOOD OF KNOWN-AGE, YOUNG-OFYEAR BIACK GRAPPIE AND OF STUNTED AND FAST $-G R O W I N G ~ B L A C K ~ A N D ~$ WHITE CRAPPIES OF SOME OKLAHOMA LAkes

Majox: Zoology

Biographieal:

Borns The writer was born near Elk City, Oklahoma, November 24, 1924 , the son of William H. and Susie Jane Burriso
Undergraduate Studys He graduated from Meeker High School in 194 and matriculated at the Oklahoma Agricultural and Mechanical College in the fall of 194l. He received the Bachelor of Science degree, with a major in Zoology in May 1948.
Graduate Study: In June 1948, he entered the Graduate School of the Oklahoma Agricultural and Mechanical College from which he received the Master of Science degree, with a major in Zoology, in August 1949.
Experiencess The writer entered the United States Army in Juns 1943: served with the 104 Infantry Division in France, Belgium, Netherlands, and Germany; was interned in Germany as a prisoner of war: and was discharged in November 1945. He was employed by the Zoology Department, Oklahoma Agricultural and Mechanical College as a teaching fellow from September 1948 until May 1950; was employed by the Oklahoma Game and Fish Department as a. Fisho eries Biologist during the summer of 1950; was granted a reo search fellowship by the Oklahoma Cooperative Wildife Researeh Unit from September 1950 to January 1952; was employed by the Zoology Department of the Oklahoma Agricultural and Mechanieal College as an Instructor from February to May 1952. Since June 1952 the writer has been employed by the Fort Worth District. Corps of Engineers. U. SoArmy, as a Biologist.

Oxangizations: Phi Sigma; Sigma Xi; International Association of Game, Fish, and Conservation Commissioners; The American Society of Ichthyologists and Herpetologists; Ameriean Fisheries Society: The Wildlife Society: and the Oklahoma Academy of Science.

Publications:
Burris, William E. 1952. The bottom fauna development of a newly constructed pond in central Oklahoma. Proco Okla. Acad. Scio 33: 129-136.

Moore, George A. and William Eo Burrise 1956. Deseription of the lateralaline system of the pirate perch, Aphrododerus sayamuse Copeia. (1) 18-20.

THESIS TITLE\& STUDIES OF THE AGE, GROWTH, AND FOOD OF KNOWN $A G E$, YOUNGGOF-YEAR BIACK CRAPPIE AND OF STUNTED AND FAST-GROWING BLACK AND WHITE CRAPPIES OF SOME OKIAHOMA IAKES

AUTHOR\& William Edmon Bursis

THESIS ADVISERg Dro Wo Ho Irwin

The content and form have been checked and approved by the author and thesis adviser The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

[^0]: crappie (carnivorous game fishes) would be desirable in order to reduce competition for foodo
 3. Study the reproductive capacities, food, growth, and requirements of important forage fishes such as Dorosoma cepedianum, Hybognathus placita, etc. Extensive seleca tive kills of these forage fishes, at any time of the year, may prove disasterous by reducing the food supply of game fiishes.
 4. Continue investigations of the principles involved in age and growth deteminations• Establish and utilize standard methods so that the results of different studies can be compared. Eliminate assumed intercepts in growth caloulations and determine by observation if body-scale relationships are linear and if a mean intereopt can be established。

