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THE EFFECT OF BULK VISCOSITY ON 
COMPRESSIBLE COUETTE FLOW WITH BLOWING 

ABSTRACT 

The effect of bulk viscosity on a compressible couette 

flow is considered between two porous parallel walls in which 

the lower wall is at rest and the upper wall is moving at a 

constant velocity. The flow between the walls is steady, two-

dimensional, and the gas is perfect. At the lower wall, there 

is vertically oriented blowing; suction occurs at the upper 

wall. 

The bulk viscosity µb is introduced through the second 

viscosity coefficient, A = µb - 2/3µ, where µ is the shear 

viscosity and µb provides the viscous stresses due to 

dilatational motion of the gas. Typically µb is set equal to 

zero (Stokes' hypothesis). This case is generally true for 

monatomic gases and air, but for certain polyatomic gases, 

such as C02 , the ratio µb/µ can exceed 103
• Such a large value 

can significantly effect the flow field. 

Compressible couette flow with blowing is governed by 

four first-order ODE's which are formulated from the 

conservation equations. These equations are numerically 

xiii 



solved using a fourth-order Runge-Kutta method with variable 

step size and the shooting method, which transforms a two­

point boundary value problem into an equivalent initial value 

problem. The shooting method is applied to the temperature 

boundary conditions to assist in determining the initial 

temperature gradient. This same method also assists in 

defining an initial x-velocity gradient that governs the 

determination of the distance between the walls. The physical 

significance of computed results for both subsonic and 

supersonic blowing are discussed. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Since the 19th century, couette flow has universally been 

encountered in fluid dynamic courses at the undergraduate 

level. It was first studied by M. Couette, a French scientist 

who helped establish the analysis of viscous shear flows 

between parallel plates and rotating cylinders. This simple 

flow model provides researchers with a method for analyzing 

the behavior of fluids, i.e., velocity and temperature 

profiles. Although couette flow has been in existence for 

over a century, it is still an active research topic in the 

scientific community. 

references [l] and [2]. 

For example, two current papers are 

A major reason for this long-standing 

interest is because couette flow allows for an analytical 

solution of the Navier-Stokes equations. 

1 



1.2 Purpose of study 

In studying compressible couette flow with blowing, the 

effect of bulk viscosity µb on the flow field is of primary 

interest. There are few studies that investigate the effect 

of bulk viscosity on a flow [3,4]. The reason for this 

limited interest is because bulk viscosity is a third-order 

boundary-layer effect [3]. When the ratio of bulk viscosity, 

µb, relative to the shear viscosity, µ, is of order unity, 

bulk viscosity does not enter either the first- or second-

order boundary-layer equations. Secondly, common gases, such 

as air, are well served by Stokes' hypothesis, which states 

that µb = o. If the flow is incompressible, the terms 

containing the bulk viscosity in the Navier-Stokes equations 

are zero because the dilatation, V·W , equals zero, where W 
is the velocity vector. Therefore, in order for bulk 

viscosity to have an effect, the flow must be compressible. 

However, compressible couette flow is uneffected by bulk 

viscosity unless there is blowing at one porous wall and 

suction at the other. 

Although many gases are adequately served by Stokes' 

hypothesis, certain polyatomic gases such as C02 and N20 have 

extremely large µb values relative to µ. In fact, these two 

2 



gases can have an a = µb/µ = 2000 or greater, according to 

estimates produced using acoustic attenuation experiments. 

For gases possessing such a large bulk viscosity value, one 

can anticipate a non-negligible effect in a compressible, 

viscous flow. 

In analyzing couette flow with blowing, a two-dimensional 

flow of a perfect gas is considered between two parallel 

porous walls in which the lower wall is stationary, and the 

upper wall is moving at a constant velocity. The flow is 

compressible with blowing at the lower wall and suction 

occurring at the upper wall. The effect of two separate cases 

are contrasted: Stokes' hypothesis with a = o, and an a = 
2000. 

Discussion regarding the formulation and examination of 

the governing equations are furnished in the following 

chapters. Chapter II concentrates on the conservation 

equations and leads to the derivation of the governing 

equations using dimensionless parameters and variables. 

Chapter III reviews the numerical methods used to solve the 

governing equations. Chapter IV analyzes and compares 

numerical results involving C02 with blowing at either 

subsonic or supersonic conditions. The last chapter provides 

a summary and discussion of the physical significance of 

couette flow with blowing. 

3 



CHAPTER II 

FORMULATION OF COMPRESSIBLE COUETTE FLOW WITH BLOWING 

2.1 Introduction 

The behavior of fluids are analyzed by utilizing the 

conservation equations regardless of the nature of the flow. 

These equations are the continuity equation, the momentum 

equation and the energy equation. They are essential in order 

to completely examine the nature of the flow in question. 

The formulation of the governing equations used to study 

the effect of bulk viscosity on a compressible couette flow 

with blowing, stems from applying the conservation equations 

involving mass, momentum and energy. To keep the study 

simple, the flow is assumed to be steady, two-dimensional and 

compressible with blowing occurring at a lower porous wall. 

The lower wall is kept fixed while the upper porous wall is 

moving at a constant velocity. The gas is assumed thermally 

and calorically perfect. At the lower porous wall, the gas is 

injected at either a subsonic or supersonic condition, while 

suction is occurring at the upper porous wall. 

4 



2.2 Compressible couette Flow with Blowinq 

Couette flow is assumed to be steady, two-dimensional, 

compressible, and laminar as illustrated in Fiqure 2.2.1. Gas 

is uniformly injected into the lower porous wall which is kept 

stationary, while uniform suction is occurring at the upper 

porous wall which is moving at a constant velocity, u 0 • 

Outer 
porous wall 

t t t 

r 
Q y,v 

Inner 
porous wall 

L 

v suction 
0 

t t 
~ 

" W = u e~+ 

X, U 

V blowing 
I 

t t t / 

A 

v ey 

T 
0 

~ u 
0 

(moving) 

(fixed) 

u -o 
I 

Fiqure 2 • 2-1: Two-d i mensiona l , compress i ble eouette flow with blowing 
at the lower porous wall and suction at the upper wall. 
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The fluid's velocity vector is indicated as: 

and is a function only of the y-coordinate system. The two 

parallel walls are separated by a vertical distance, l, which 

contains a perfect gas with the following properties: 

(2.2-2) 

The ratios of the shear viscosity, thermal conductivity and 

second viscosity coefficient are proportional to the ratio of 

temperature with an exponent, w. A no slip condition is 

employed on the velocity component parallel to the walls. The 

temperature of the gas T
1

u being injected and suctioned 

through the porous wall is assumed to equilibrate with the 

uniform temperature of the lower and upper walls before 

entering or upon exiting, i.e., 

injection surface 

TIU = TWO suction surf ace 

6 



The gas injected at the lower porous wall is introduced 

at either a subsonic or supersonic condition. Theoretical and 

experimental studies confirm that subsonic and supersonic 

blowing conditions through a porous plate are possible [14, 

15]. Therefore, the assumption of either subsonic or 

supersonic blowing is valid. 

Blowing allows for a velocity component, u, which is in 

the x-direction parallel to the walls and v, which is in the 

y-direction perpendicular to the walls. Since the flow only 

depends on y, we have 

a 
at 0, 0, a 

ay = d 
dy' 

a 
az 0 (2.2-3) 

The relations are applied to the conservation equations 

written in Cartesian coordinates to provided the governing 

equations. 

7 



2.3 Dimensionless Parameters and Variables 

Dimensionless parameters are valuable and essential for 

analyzing and correlating results. Some of the most common 

parameters are the Reynolds number, Re; Prandtl number, Pr; 

Mach number, M; and Stanton number, St. In addition, newly 

developed dimensionless variables, discussed later in the 

section, are introduced to reduce the complexity of the 

governing equations. 

The Reynolds number is based on the wall separation t and 

the transverse blowing velocity component as follows: 

(2.3-1) 

where the subscript i denotes the lower wall and p is the 

density. The Prandtl number can be written in the form: 

Pr = CPµ 
1C 

(2.3-2) 

where CP is the specific heat at constant pressure, K is the 

8 



thermal conductivity, l is the specific heat ratio, and R is 

the gas constant. The Stanton number is provided as follows: 

St (2.3-3) 

where q is the heat flux, u
0 

is the upper wall speed, and Tt is 

the stagnation temperature. 

A dimensionless blowing parameter is given by: 

(2.3-1) 

To relate the effect of the fluid's bulk viscosity, µb, to the 

shear viscosity, µ, the following ratio is used: 

(2.3--5) 

which is evaluated at the lower wall. The speed of the 

injected gas is obtained from a blowing Mach number: 

(2.H) 

The dimensionless velocity component in the x-direction is 

9 



U= (2.3-7) 

The dimensionless velocity component in the y-direction is 

(2.3-6) 

The temperature distribution of the fluid is given by: 

e (2.3-9) 

The fluid's transport properties are transformed into 

dimensionless form as 

c2.3-1oa) 

(2.3-lOb) 

(2.3-lOc) 

10 



The dimensionless vertical distance, measured from the lower 

wall, is given as a Reynolds number 

(2.3-11) 

The y derivative is obtained from rearranging (2.3-11) and 

taking the derivative as a function of y 

_!]__ = (~) d = (~) ( ) I 
dy µ i dY µ i 

(2.3-12) 

where a prime denotes d /dY. 

These dimensionless parameters and variables are 

incorporated into the derivation of the governing equations. 

11 



2.4 The continuity Equation 

The continuity equation is obtained by taking a mass 

transfer balance on the fluid entering and exiting the 

boundaries of a volume element selected within the flow field. 

In vectorial form, the continuity equation is written as: 

E£ + pV·w = o 
Dt (2.4-1) 

where D /Dt is the substantial derivative. Equations written 

in vectorial form are independent of any particular coordinate 

system. In a Cartesian coordinate system, the continuity 

equation is given by 

0 (2.4-2) 

The equation simplifies to 

vE.f!.. + p dv 0 
dy dy (2.4-3) 

12 



or 

~Y (vp) O 

The final form produces a constant mass flux between the walls 

(2.4-1) 

The density in dimensionless form is determined by equation 

(2. 4-4) by substituting the dimensionless y-veloci ty component 

(2.3-8) 

p ViPi 

v 

p P1 
(2.4-5) v 
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2.s The Momentum Equation 

The momentum equation is derived from Newton's second law 

of motion, which states that the sum of external forces acting 

on a fluid element is equal to the mass times the acceleration 

of that element. The external forces are comprised of both 

surface and body forces such as: viscous and pressure forces, 

gravitational and surface tension effects and, electrical and 

magnetic fields. The linear momentum equation expressed in 

vectorial form is given by 

where 

p DW -Vp + F s + v o. V· w ) 
Dt 

). = second viscosity coefficient = µ b - ~ µ 
3 

F 5 = viscous stress term 

(2.S-1) 

strain rate tensor = "" "" 1 [ T7 - T7 - T] e.Jd ek ei = 2 v w + ( v W) 

p = pressure 
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In a Cartesian coordinate system, the linear momentum equation 

transforms to: 

aw. pw. __ J 

.l axi 

For this flow study, we have: 

- Longitudinal momentum equation: 

pv du 
dy 

d [ du] 
dy µ dy 

- Transverse momentum equation: 

pv dv 
dy 

_ dp + ~ [ ( 2 µ + }. ) dv ] 
dy dy dy 

(2.S-2) 

(2.S-3a) 

(2.S-3b) 

The derivation of the dimensionless longitudinal and 

transverse momentum equations are separately discussed in the 

next sections. 
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2.6 The Longitudinal Momentum Equation 

The longitudinal momentum equation (2.S-3a) is integrate 

with respect toy, and the continuity equation (2.4-4) is used 

(2.6-1) 

The dimensionless y derivative (2.3-12), the dimensionless x-

velocity, U (2. 3-7) and the dimensionless shear viscosity 

term, (2.3-lOa) are substituted to obtain 

( p v) . u u = µ . e(a) ( ~) u du - µ . ( ~) u ( du) 
.i o .i µ i o dY .i µ i o dY i 

After simplification of equation (2.6-2), we have 

u = e<-> u' - u.t 
.l 

(2.6-2) 

(2.6-3) 

Equation (2.6-3) is solved for U' to obtain a first-order 

ordinary differential equation 

u1 = ~ ( u + u.') ec.> .l (2.H) 
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2.7 The Transverse Momentum Equation 

The transverse momentum equation (2.5-3b) is integrate 

with respect toy, and the continuity equation (2.4-4) is used 

- p + pi + 2 [ µ ~; - ( µ ~; ) J 
+ l dv 

dy 

(2.7-lJ 

The dimensionless y derivative (2.3-12), the dimensionless y-

velocity, V (2.3-8), the dimensionless shear viscosity and 

second viscosity coefficient (2.3-lOa,c) are substituted to 

provide 

( p v) i (vi V - v) - p + p . + 2 [ µ . 6"' (..E) v. d v 
i i µ i i dY 

- µ . (.£X) v . ( d vi ) l + l . 0<-> (..E) v. d v 
i µ i i dY i i µ i i dY 

_ A . ( .£X) v. ( d vi ) 
.i µ i .i dY i 

(2. 7-2) 

17 



After dividing by (pv/µ.)ivit simplification, and rearrangement, 

the following is obtained 

µ. i (Pi - P) I 
+ e,., ( 2 ""i + 1 i ) v 

pv} (2.7-3) 

- ( 2 µ. i + l i ) vi 

Equation (2. 7-3) is solved for V' to obtain the following 

first-order ordinary differential equation 

µ.i [ ( V _ 1 ) _ (Pi - P) 
0,., ( 2 µ. i + I. i ) pi v} 

(2. 7-4) 

The pressure difference using the perfect gas assumption 

in dimensionless form is determined and later employed in 

equation, (2.7-4), i.e., 

Perfect Gas: p p RT 

Pi - p = R ( pi Ti - p T) 
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Applying the continuity equation and dimensionless temperature 

6 = T/Tu the pressure difference becomes 

Pi - P = pi R Ti ( 1 - ~) (2.7-5) 

For equation (2.7-4), the bulk viscosity is introduced through 

second viscosity coefficient using the relation in (2.5-1) 

2 
2 µ i + ( µbi - 3 µ i ) 

2µ.+}. . = _.z+_ µ . 
( 

µb. 4 ) 
.l .l µi 3 .l 

(2.7-6) 

After substituting the dimensionless pressure difference (2. 7-

5), the bulk-shear viscosity ratio in (2.7-6) into equation 

(2.7-4), and simplifying, the following is produced 

v.t v' = i + ew _1_43 )[v- 1 -ew ( (X + 

19 
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The blowing Mach number (2.3-6) is substituted to obtain the 

final dimensionless first-order ordinary differential equation 

for V' 

v' = 
6
1
w j v/ + ( « 1 

4 
[ v - 1 + ( -% -

2 

1 
) ] l 

+ 3) yMy1 f 
(2.7-e) 
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2.8 The Energy Equation 

The energy equation is derived from taking an energy 

balance on a volume element within the flow field. It is 

derived from the first law of thermodynamics, which states 

that the heat added to a system minus the work done by the 

system is equal to the difference of the internal energy of 

the initial and final states. In vectorial form, the energy 

equation is given by 

where 

p Dh 
Dt 

Dp + fl> - V. q 
Dt 

h enthalpy = CPT = _y_RT 
y-1 

q = heat flux = -KVT 

fl> = viscous dissipation 

For the heat flux, Fourier's equation is used. 
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In a Cartesian coordinate system, the energy equation is 

expressed as: 

For this study, the equations simplify to 

(2.8-3) 

pv dh 
dy 

V dp + fl> + .E._ (K dT) 
dy dy dy 

(2.8-2) 

aw. )2 + _3 

ax2 

(2.8-2a) 

(2.8-3a) 

The viscous dissipation term (2. 8-3a) is transformed into 

dimensionless form by substituting the dimensionless y-

derivative (2.3-12), the dimensionless x-velocity, U (2.3-7), 

the dimensionless y-velocity, V (2.3-8), the dimensionless 

shear viscosity (2.3-lOa) and the second viscosity coefficient 

(2.3-lOc) 
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The bulk-shear viscosity relationship (2.7-6), obtained in 

section 2.7, is substituted into equation (2.8-4) and after 

simplifying and rearranging, the following is produced 

(2.8-5) 

Now for equation (2.8-3), the dimensionless y-derivative 

(2.3-12), the continuity equation (2.4-4), the dimensionless 

y-velocity, V (2.3-8), the dimensionless shear viscosity and 

thermal conductivity (2.3-lOa and 2.3-lOb, respectively) and 

the dimensionless viscous dissipation term (2.8-5) are 

substituted to provide 

(pv) . (~) dh 
i µ i dY 

(2.8-6) 

+ ( ~) 
2 

1C . T . _E__ ( 5w ~ ) 
µ i i i dY dY 
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After dividing by (pv/µ)il simplification, and rearrangement, 

the following is obtained 

+ K· T . .!!__ (e(a) d8) 
i i dY dY 

(2.9-7) 

The enthalpy for equation (2.8-7) is written as 

h CP T = _y_ RT= Pr Ki T· 6 
y - 1 µi .l 

The derivative of enthalpy is taken with respect to the 

dimensionless Y variable as 

(2.8-8) 

where 

dh 
dY 

0 = de 
dY 

PIK · T. -
.l .l a 

µi 
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The perfect gas assumption is converted to dimensionless 

variables as provided 

pi ( y - l ) PilCi e 
p = pR T = T . v y µi .l 

The derivative of pressure is taken with respect to the 

dimensionless Y variable as 

(2.&-9) 

The derivative with respect to the dimensionless Y variable is 

applied to the following term taken from equation (2.8-7) as 

_!!___ ( 6(,j de ) = w 6 c.>-1 ( de) 2 
dY dY dY 

(2.8-10) 

After substituting the dimensionless enthalpy (2.8-8), the 
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After substituting the dimensionless enthalpy (2.8-8), the 

dimensionless pressure (2.8-9), the term (2.8-10) into 

equation (2.8-7) and simplifying, the following is obtained 

PrK1 T1 6 = ( Y -
1 ~ PrK1 Ti (6 - ~ v') + µie"'[ u~(U1 ) 2 

(2.8-11) 

Equation (2.8-11) is solved for S1 and rearrange to obtain 

the following first-order ordinary differential equation 

SI = PI S + PI ( y - 1 ) ( _!! V' - S ) 
e<.> ye<.> v 

- ~ [ u~ ( u') 2 
+ ( a + 

4

3 
) v} ( v') 2 J 

Ki Ti 

26 
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The blowing Mach number (2. 3-6) is transformed into 

dimensionless variables as provided by 

V·2 
.1 

V·2 
.1 

y [ ( y - 1 ) Pr xi l T. 
y µi .1 

(2.8-13) 

This equation is rearranged to obtain the following form 

( y - 1) PrM;i 

vl (2.8-14) 

After substituting (2.8-14) into (2.8-12) and rearranging, the 

first-order ODE becomes 

(2.8-15) 
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The following terms are taken from (2.8-15) and combined as 

(2.8-16) 

The blowing parameter (2.3-4) and combined terms (2.8-16) are 

substituted into equation (2.8-15) to obtain the final 

dimensionless first-order ordinary differential equation for 

e' 

e' = Pr { e + .r.___:_l_ [~ v' - y M2· 0"" 
6"' y y v y.i 

(2.8-16) 
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2.9 stokes' Hvpotbesis and Bulk Viscosity 

For a century and a half, numerous discussions have 

focused on the limitations of Stokes' hypothesis introduced by 

G.G. Stokes in 1845 [S]. The relation between, µb, A and the 

shear viscosity coefficient, µ, is 

A. + ±.µ 
3 

Stokes' hypothesis sets the bulk viscosity equal to zero 

A. + 2 
0 (2.9-2a) -µ µb 

3 

or 

A. 2 
(2. 9-2b) - -µ 

3 

This hypothesis is exact for monatomic gases in accordance 

with the kinetic theory [7], and works quite well for air, 

where (µb/µ = 0.6) can be considered negligible. 

In situations where Stokes' hypothesis is not valid, the 

effect of bulk viscosity may be important and should be 
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considered. It is associated with the viscous stresses 

produced by the dilatational motion of the fluid, as opposed 

to shear viscosity which is associated with the shear 

deformation of the fluid. The dilatational stresses are 

associated with the collisional relaxation of the vibrational 

and rotational energy modes of the molecules. 

If the flow is incompressible, the continuity equation 

(2.4-1) becomes: 

v . w = 0 (2.9-3) 

which states that the dilatation equals zero. The influence 

of dilatation appears in the momentum equation (2.S-1) and in 

the energy equation (2.8-1) through the viscous dissipation 

term. Therefore, in order for bulk viscosity, µb, to have an 

effect, the flow must be compressible. However, there must 

also be transverse blowing in the y-direction to assure that 

the effect of bulk viscosity is present. This is noticed when 

the flow is two-dimensional, since in the momentum equation 
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and in the energy equation 

The µb terms disappear unless dv/dy is not zero. 

Although Stokes' relation (2.9-1) has been in existence 

for some time, there are few studies that extensively 

investigate the effect of bulk viscosity on a flow [3]. One 

reason for this limited area of research is because the bulk 

viscosity is a third-order effect within boundary-layer theory 

[3,4]. Another reason is that for over a century, Stokes' 

hypothesis, µb = o, has become a common assumption in fluid 

dynamics and has proven to be adequate for numerous flow 

problems, even at extreme conditions. For certain polyatomic 

gases (such as C02 and N20), µb relative µ is extremely large. 

In fact, these two gases have a viscosity ratio of µb/µ = 2 x 

103 at room temperature, according to Tisza [6] and Truesdell 

[10] using acoustic attenuation measurements. Monchik and 

Mason [7] applied kinetic theory to a polyatomic gas with the 

result 

ex = (2.H) 

where Cmt is the specific heat for the vibrational or 
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rotational energy mode of interest, c, is the specific heat at 

constant volume, R is the universal gas constant, and T is 
the relaxation time for the mode of interest. Due to gas 

laser research, a considerable amount of vibrational 

relaxation data is available for C02 [6,10]. This data shows 

that a= 2 x 103 for C02 is realistic [9]. 

One reason for analyzing flows with a large bulk 

viscosity is that several planetary atmospheres are mainly 

composed of a gas having a large a value [8]. Two planets 

with such an atmosphere are Venus and Mars, which have about 

96% C02 with a small trace of water vapor [9]. Recently, 

there is interest in using these planetary atmospheres for 

hypersonic space vehicle maneuvers to change the vehicle's 

trajectory. This area of study is known as Aero-Gravity-

Assist [11, 12, 13]. When this type of situation is 

experienced, Stokes' hypothesis may not be valid, since the 

heat transfer or other fluid characteristics may be governed 

by the influence of bulk viscosity. 

32 



2.10 Governing Equations for Compressible Couette Flow 
with Blowing 

The conservation equations, discussed earlier in sections 

2.4 through 2.8, are the basis used to derive the governing 

equations associated with this study. These equations are 

generated for a two-dimensional, compressible flow with 

transverse blowing in the y-direction. The effect of bulk 

viscosity µb is introduced through the second viscosity 

coefficient term, A. The transverse momentum equation (2.S-1) 

and the energy equation (2.8-1) both involve bulk viscosity. 

After algebraic manipulation, simplification and 

substitution of all the dimensionless parameters and variables 

discussed in section 2.3 through 2.8, the final derived form 

of the governing equations and their boundary conditions are 

provided as follows: 

1. Continuity Equation 

p (2.10-1) 
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2. Linear Momentum Equations 

a. Lonqitudinal momentum equation 
(provides the x-velocity profile) 

u' = 
1 

( u + ui ) aw 

b. Transverse momentum equation 
(provides the y-velocity profile) 

v' = 
1 {vi + aw 

1 

ex+.! 
3 

(2.10-2a) 

(2 .10-2b) 

3. Enerqy Equation (provides the temperature profile) 

e = a' (2.10-3a) 

• ( ~, u" + ( u + ~ ) v" ) ]} -

(2.10-3b) 
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4. Boundary conditions 

a. inner wall at Y = o: 

ui = o c2 .10-4a) 

vi = 1 (2 .10-4b) 

Bi = 1 (2.10-4c) 

b. outer wall at Y = Y0 = Re: 

00 = 1 (2 .10-5) 

The momentum equation is derived as first-order ODE's 

(2.10-2a and 2.10-2b). These equations introduce integration 

constants as follows: U.' 
I 

for the longitudinal momentum 

equation (2.10-2a) and~, for the transverse momentum equation 

(2.10-2b). The energy equation is derived as a second-order 

ODE which is reduced to two first-order ODE's (2.10-3a and 

2.10-3b). Both the transverse momentum equation and energy 

equations involve the effect of bulk viscosity, µb, through a 

and the blowing Mach number ~· The energy equation is the 

only governing equation that involves the dimensionless 

blowing parameter, b (2.3-4). 

The system for compressible couette flow with blowing and 

bulk viscosity is now composed of four first-order ODE's with 
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boundary conditions applied at both the lower and upper walls 

(2 .10-4 and 2 .10-s). To solve the governing equations, a 

numerical scheme can be applied to determine the flow' s 

distribution profiles 

o, V and 8 

which are dimensionless functions of Y taken from the lower 

wall to the upper wall. The governing equations are 

integrated until the upper wall boundary condition, 0 0 = 1, is 

satisfied. When this criteria is meet, the Reynolds number is 

determined since Y
0 = Re at the upper wall. Therefore, the 

vertical wall separation distance, t I is subsequently 

determined by the Reynolds number, Re. The Reynolds number is 

numerically dependent upon the input parameters, especially 

the initial x-velocity integration constant, U/, which 

influences convergence of the boundary condition, 0
0 

= 1. 

This makes for a solution that is dependent upon the selection 

of the initial gradients V.' 
I and the 

dimensionless input parameters. To help minimize the number 

of free parameters, the upper wall temperature can be 

prescribed and a shooting method applied to determine the 

initial temperature gradient, 8i', required to satisfy 8
0

• The 

shooting method is also used to determine, Oi', in order to 

compare a = O and 2000 cases that pertain to the same Reynolds 
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number. The shooting method is effective only if a solution 

exists based upon the selection of the numerical parameters 

for both a cases. 

The numerical solution, the upper wall heat transfer and 

the skin friction coefficient depends on the following input 

parameters and variables y, c.>, Pr, a, b, My1, Re, 6 0 , and V1' or 

For variable property 

couette flow without blowing, the fluid's properties are 

constant within each streamline which are parallel to the 

walls, but vary from streamline to streamline. Now for 

compressible couette flow with blowing, the stream line are 

not parallel to the walls and the fluid's properties vary 

within each streamline, but are constant for each streamline 

when taking a reference line parallel to the walls. To 

illustrate, Fiqure 2.10-1 is given below: 

A B 

Figure 2.10-1: Streamlines A.) Simple couette flow without blowing 
B.) Compressible couette flow with blowing 
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2.11 Auxiliary Equations 

Once the governing equations are solved for the flow's u, 

v and 6 profiles, auxiliary equations as functions of o ~ Y ~ 

Re are utilized to analyze the flow field in greater detail. 

These auxiliary relations include density ratio, pressure 

ratio, Mach number, normalized vorticity, normalized viscous 

dissipation, rate of entropy production, Stanton number, and 

skin friction coefficient. The Stanton number and the skin 

friction coefficient are analyzed only at the lower and upper 

walls. The auxiliary equations are formulated by implementing 

the dimensionless parameters defined in section 2.3. They are 

provided in their dimensionless form as follows: 

Density ratio: 

1 
v 

Pressure ratio: 

e 
v 
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Mach number: 

1 
b' u2 + v2 

e 

Normalized Vorticity: 

u' 

Normalized Viscous Dissipation: 

Rate of Entropy Production: 

/\ 
SiII 

p /\ vew -l a1 2 
___.! ~ + ~~~~~~ 
P (y - 1) PrM:i 

Stanton Number: 

St q 
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2 b 
y - 1 Pr 

ve<.>-1 e1 

M2 

(2.6-3) 

(2.H) 

(2.6-5) 

(2.6.6) 

(2.6. 7) 



Skin Friction Coefficient: 

2 't 

pu~ 
2 b0"' vu' 

A detailed derivation is provided in Appendix A. The 

density and pressure ratios examine the compressibility 

characteristics of the fluid. The normalized viscous 

dissipation analyzes the heat dissipated from viscous stresses 

produced by the deformation and the dilatational motion of the 

fluid. The rate of entropy production is used to examine the 

overall dissipation due to heat transfer and viscous effects. 

The Stanton number and the skin friction coefficient, which 

are examined only at the lower and upper walls, are used to 

analyze the heat transfer and frictional forces encountered on 

the two walls. 
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CHAPTER III 

NUMERICAL METHOD 

3.1 Introduction 

The revolution of computer technology and numerical 

techniques has become an essential tool 

complicated and tedious mathematical problems. 

for solving 

Depending upon 

the selection of the computer and the numerical method chosen, 

numerical solutions of ordinary and partial differential 

equations can be determined in a small fraction of the time, 

as compared to elaborate hand calculations. The computer is 

only considered a tool which requires the assistance of 

someone to provided computer language programs. These 

computer programs are crucial instructions that allows the 

computer to generate solutions to an infinite number of 

complex scientific problems. 

Numerical methods contribute enormous power to the 

mathematical analysis of modeled problems. They provide the 

ability for accurately simulating many real physical 

situations by handling nonlinearities, large systems of 

coupled equations, complicated geometries and many other 
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applications. Numerical methods assist in solving problems 

which do not have analytical solutions and provide accurate 

estimates for those problems which do have analytical 

solutions. 

The numerical methods selected to solve the governing 

equations for compressible couette flow with blowing will be 

discussed in the following sections. Section 3.2 discusses 

the fourth-order Runge-Kutta method used to solve the 

governing equations. Section 3.3 reviews the input parameter 

required to solve the equations numerically. Section 3. 4 

discuses an application of a variable step size method to 

handle situations where the governing equations are stiff 

based upon certain numerical input parameters. Section 3.5 

introduces the shooting method used to determine the initial 

temperature gradient, 8i', and the initial x-veloci ty gradient, 

Ui', by converting a two-point boundary value problem into an 

equivalent initial value problem. 
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3.2 Fourth-Order Runqe-Kutta Method 

This study is governed by four first-order ODE's (2.10-

2a, 2.10-2b, and 2.10-3). A fourth-order Runge-Kutta method 

is selected to solve these ODE's. It is one of the easiest 

numerical methods to program for initial value problems. 

Advantages include simplicity, self-starting, and the ability 

to vary it's step size without any difficulty. This approach 

has good stability characteristics and behaves quite well with 

nonlinear equations. The general fourth-order Runge-Kutta 

formulas obtained from Hornbeck [16] are provided below for 

the generic equation, dy/dt = /(y,t): 

(3.2-1) 

where 

(3.2-1.a) 

•• A.tf( • 
Yi+1 / 2 =Yi + 2 Y i +1/21 t i+1/2) (3.2-lb) 

(3.2-lc) 
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Since the equations in section 2.10 already exist as four 

coupled set of first-order ODE's: 

u' f 1 (3.2-2) 

v' = f 2 (3.2-3) 

a1 = e= / 3 (3.H) 

e' = /4 (3.2-5) 

the fourth-order Runge-Kutta formulas can be applied directly 

to them. The intermediate quantities y•i+ltl, Y .. i+rn, and y•i+t 

(3.2-la, 3.2-lb, and 3.2-lc; respectively) are determined in 

sequential order, since they are interdependent of each other. 
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3.3 Numerical Input Parameters 

To solve the ODE's that govern compressible couette flow 

with blowing, certain initial input parameters and variables 

are required. For the fluid properties, they are 

11 specific beat ratio 

w, power law temperature exponent 

Pr, Prandtl number 

a, bulk-shear viscosity ratio 

For the fluid dynamic properties, they are 

b, blowing parameter 

Myi ' blowing Mach number 

The integration constants (initial gradient values) introduced 

from integrating the momentum equation (2.10-2) are 

u,', from x-momentum equation (2.10-2a) 

Vi'' from y-momentum equation (2.10-2b) 
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The energy equation (2 .10-3) requires an initial gradient 

value for the temperature which is: 

initial temperature gradient 

The initial gradient values (Ui', Vi' and (Ji') are unknown 

but are required in order to solve the derived governing 

equations. The shooting method assists in eliminating two of 

these unknowns, which are Ui' and (Ji' • This leaves Vi' to be 

considered as a hypothetical value based upon the required 

input parameters mentioned at the beginning of this section. 

Certain limits are placed on the input parameters to 

assure that there are no unwarranted physical characteristics 

of the fluid or flow. The limitations are provided as shown 

below in Table 3.3-1: 

Table 3 . 3-1: Limitation conditions placed on input parameters 

y :!:: 1 w :!:: 0 Pr > 0 

a ~ 0 b > 0 Myi > 0 

u > 0 v > 0 6 > 0 

U1' > 0 61' > 0 
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3.4 Variable step Size 

Depending on the numerical input values for b, MYi' and 

a, the y-momentum equation (2.10-2b) can become stiff. This 

situation is encountered if either the blowing parameter or 

the blowing Mach number is relatively small, i.e., 

b < 0.1, Myi < o. 2 

In addition to these conditions, stiff behavior of the 

equations can be caused by a large bulk-shear viscosity ratio 

a >> 10 

To adjust for stiffness, the step size aY required by the 

Runge-Kutta method is varied, using small increments on the 

order of 10~. To determine the variable step size, a method 

discussed in reference [17] is utilized. This method controls 

the step size by approximately evaluating the relaxation time 

for the stiffest equation. They-momentum equation (2.10-2b), 

which controls whether the equation is stiff or not, is 
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approximated by: 

dV 
dY v' = e - v 

An approximate relaxation time is 

and a stable step size then is 

AY = Z 

(3.+-1) 

(3.4-2) 

(3.+-3) 

The variation of the step size is also controlled by applying 

minimum and maximum limits 

(3.H) 
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3.5 Shooting Method 

Application of the shooting method is used to transform 

a two-point boundary value problem into an equivalent initial 

value problem. This is accomplished by using a root solving 

procedure such as the bisection or secant methods. The 

shooting method is similar to a ballistic problem of shooting 

a cannon at a target. With known calculated misses, one can 

eventually predict the required initial condition to hit the 

target. 

With the same logic, a boundary value problem is 

converted into an initial value problem by providing two 

estimated values of the unknown initial values. By utilizing 

these estimates, solutions for the initial value problem are 

determined utilizing any numerical method. At the distant 

point, the computed and known boundary values are compared, 

and new estimated initial values are found using the secant 

method. 

reached 

This process is 

for the boundary 

continued until convergence is 

values at the distant point. 

Depending on the complexity of the equations, this procedure 

may require only a few iterations until convergence is 

reached. 
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To illustrate the method consider a simple two-point 

boundary value problem given as: 

Y' I + Ay = B 

with boundary conditions 

y(O) = q(O) 

y(N) = q(N) 

(3.S-1) 

(3.5-la) 

(3.5-lb) 

By applying the shooting method, this boundary value problem 

is converted into the following initial value problem: 

Y' I + Ay = B 

with initial conditions 

y(O) = q(O) 

Y'(O) = &(O) 

(3.5-2) 

(3.5-2a) 

(3. 5-2b) 

where the &(O) value is to be determined based on the boundary 

condition provided by y (N) = q (N) . The general shooting 

method formulas using the secant method are given by: 

j = 3, ... ,n (3. 5-3) 

j 1, ... ,n (3.5-la) 
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Two estimated initial values 61 and 62 are required in order to 

determine y 1 (N) and y 2 (N) by a numerical method, followed by 

the calculation of R1 and R2 .• The iteration of the secant 

based formula converges when: 

where 

E = specified minimum value 

The shooting method is applied to the governing equations 

(2.10-2 and 2.10-3) along with the fourth-order Runge-Kutta 

method to convert 

80 = q(N) = prescribed value 

into an equivalent initial conditions 

0(0) = 8'(0) = 8.t 
I 

Values for U/ and 8-' I are determined when the U
0 

and 

conditions are simultaneously satisfied at Y
0 
= Re. Thus, ~' 

can be varied until a prescribed value for Re is attained. 

Consequently, the wall separation, (, is a computed quantity 

rather than a prescribed one. This approach leaves only ~' 
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as a free parameter. Depending on the choice of parameters, 

such as b, ~' ~', .... ,convergence may not occur, in which 

case a solution does not exist. 

Since 6
0 

is not an essential boundary condition, the 

shooting method can be used with just U0 = 1 replaced with 

U'(O) = ~'· It is found to be more convenient, however, to 

prescribe 60 rather than guess 6 'it since we had a general idea 

of what 60 should be. The process was not extended to 

replacing Vi' with V0 • One reason is that computation time 

increases rapidly as the number of boundary conditions 

requiring simultaneous satisfaction increases. A second 

reason was the uncertainty of appropriate values for V
0

• 
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CHAPTER IV 

DISCUSSION OF NUMERICAL RESULTS 

4.1 Introduction 

Cases are run with a = o (Stokes' hypothesis) and with 

a = 2000, which is appropriate for C02 at room temperature. 

At a temperature of ~ = 300 K, C02 has the properties 

'Y = 1.285, w = 0.867, Pr = 0.770 

and these are used throughout this study. Thus, the effect of 

a large bulk viscosity is evaluated by comparing solution 

profiles with a comparable a = o case. 

supersonic injection is considered. 
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4.2 Numerical Computer Code 

The numerical computer program created to analyze the 

influence of bulk viscosity on a compressible couette flow is 

written in Fortran 77 computer language. The program can be 

compiled on a main frame computer or a stand alone personal 

computer system (PC). Due to today's ever increasing 

technology advances in personal computers, the PC is the most 

suitable option for computer usage as opposed to main frames. 

Today's PC are portable and are continually increasing in 

speed, power and capability. 

The numerical code is written in Ascii text and is 

provided in Appendix B. The Ascii code is complied using a 

DOS operating software known as "Microsoft Fortran 5.0". The 

numerical compiling of the Ascii code with this software 

produces a DOS executable file which can be used on any 

compatible "IBM" PC system. The advantage of compiling the 

numerical code on a personal computer is that the executable 

numerical code file can be transferred onto a storage media 

such as a floppy diskette. The floppy diskette allows the 

executable program to be used on any compatible "IBM" DOS 

operating personal computer. 
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Whenever the executable code is run, it asks the user to 

supply the following required numerical input data, discussed 

in section 3.3, provided below in Table 4.2-1: 

Table 4.2-1: Que•tion• ••ked for numerical code inputs 

Do you want detailed print out of Runge-Kutta's intermediate 
formulas ? Type (0) for YES or (1) for NO. 

Do you want detailed print out of U, U', V, V', 6, 6', 6" at 
each step size interval ? Type (0) for YES or (1) for NO. 

Input number of printed steps wanted for solution ? 

Input specific heat ratio y ~ 1 for the gas ? 

Input power law temperature exponent w ~ 0 for the gas ? 

Input Prandtl number Pr > 0 for the gas ? 

Input bulk-shear viscosity ratio a ~ 0 for the gas ? 

Input blowing parameter b > 0 ? 

Input blowing Mach number Myi > O ? 

Input prescribed outer wall temperature 1 s 6
0 

s 5 ? 

Input Reynold• number 10 S Re S 20 for U
0 

= 1 condition ? 

Input initial y-velocity gradient -0.001 S V1' s 0.001 ? 
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The time required to run the numerical code depends on 

the microprocessor and clock speed of the PC used. Table 4.2-2 

provides the approximate time required to converge the 

numerical code using the following inputs: 

= 1.285 w = 0.867 Pr = 0.770 

a = 2000 b = 0.25 ~ = 1.0 

= 2.5 Re = 12.0 

Ui' = 0.000146 <= Determined by the Shooting Method 

Bi' = 0.008344 <= Determined by the Shooting Method 

Table 4.2-2: Run time for different personal computers 

386/33 Mhz 386/25 Mhz 
PC system 486/33 Mhz With Math With No Math 

Coprocessor Coprocessor 

Approximate 90 sec 300 sec 3 hrs-11 min 
Time 

For this particular case, five iterations are required 

for the shooting method to converge to the prescribed upper 

wall temperature, 80 = 2.5, and nine iteration to converge to 

a Reynolds number criteria of Re = 12.0 when The 

number of iterations for convergence to a prescribed criteria 

will vary depending upon the closeness to the final result of 

the two initial guesses for the temperature and x-velocity 

gradients. 
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4.3 Temperature and Initial Gradient Limits 

Limits are placed on the numerically determined 

temperature profiles to assure some degree of physical 

reality. The temperature limits are as follows: 

0.6 ~ 8 ~ 10 (4.3-1) 

0.6 ~ T/Ti ~ 10 

O. 6Ti ~ T ~ lOTi 

if Ti = 300 K 180 K ~ T ~ 3000 K 

When the temperature encountered in the flow field is 

extremely high, i.e. 8 > 10, the assumption of a perfect gas 

is no longer valid. Therefore, numerical solutions are not 

analyzed whenever the temperature value is greater than the 

maximum limit, i.e. 8 > 10. On the other hand, 8 can not be 

negative either. 

In order to numerically solve the governing equations, 

initial gradient values are required 

v.' I 
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The initial temperature and x-velocity gradient, 81' and~', 

respectively, are obtained using the shooting method. Hence, 

the initial y-velocity gradient, V1', is the only unknown value 

required. 

In order for a numerical solution to converge, the 

temperature's initial gradient, 81', has to be either equal to 

zero or a small positive value, i.e., 

(4.3-2) 

If the initial temperature gradient is selected in the 

negative spectrum, on the order of -10~ or less, the second 

law of thermodynamics is violated, since a negative 

temperature is encountered within the flow. 

The initial x-velocity gradient, U1', has to be positive 

and greater than zero to satisfy the upper wall boundary 

condition 0 0 = 1, i.e., 

o < oi' :::s o .1 (4.3-3) 

If the initial x-velocity gradient value is chosen as 0 1' = o, 

then the iteration for O remains zero and the numerical 

solution diverges. For Oi' < o, the iteration of o remains 

negative preventing the upper wall boundary condition, 0
0 

= 1, 

to be reached. 
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The Reynolds number, determined when the upper wall 

boundary condition, U
0 

= 1, is satisfied, is indirectly 

influenced by the initial x-velocity gradient, Ui'. As 

discussed before, the Reynolds number provides the vertical 

separation distance between the lower and upper walls. As the 

selected value for Ui' approaches zero, the Reynolds number 

steadily increases. 

An illustration of the influence of Ui' on the Reynolds 

number is shown below in Table 4.3.l using the following 

inputs for C02 without using the shooting method: 

'Y = 1.285 w = 0.867 Pr = 0.770 

Q = 2000 b = 0.1 ~ = 0.2 

U-' = Varied v.' = 0 8.t = 0.001 l l l 

Table 4.3-1: The influence of U1' on the Reynolds number, Re. 

U.' 
l Re uo Vo 80 

0.0000001 47.2 1 1.4 27.7 

0.000001 22.4 1. 0 1.1 7.4 

0.00001 13.7 1. 0 1. 0 2.4 

0.0001 9.7 1. 0 1. 0 1.1 

0.001 6.9 1. 0 1. 0 0.8 

0.01 4.5 1. 0 1. 0 0.7 

0.1 2.3 1. 0 1. 0 0.7 

as Ui' approaches zero, Re increases but 8 exceeds 10, which 
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causes the perfect gas assumption to become invalid. 

Therefore, 0-' should be on the order of 10-5 to insure a 
I 

realistic solution. When relatively low blowing Mach numbers 

are selected, such as 11,.i ~ 0.2, the results obtained for Re 

tend to be higher as opposed to choosing larger values for 11,.i· 

The initial gradient, Vi', can either be a small positive, 

zero, or a small negative value, i.e., 

- 0 • 1 ~ Vi I ~ 0 • 1 (4.3--4) 

The initial gradient value of Vi' = o provides the widest 

convergence range for solutions when using o ~ 8i' ~ 0.03 and 

Ui' = O. 00005 as shown in the next section with graphical 

results. If the initial gradient value is not selected as ~, 

= o, the possibility of a solution starts to decrease as the 

injected blowing condition increases into the supersonic 

regime. 
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4.4 Correlations for Bulk-Shear Viscosity Ratio 
a = LLb I LL = 2 0 0 0 

Without the use of the shooting method and a prescribed 

outer wall temperature, the numerical code is executed to 

produce several different numerical results by varying certain 

required input parameters. The numerical code is modified to 

allow only for iteration of the Runge-Kutta method until the 

outer boundary wall condition 0
0 

= 1 is satisfied. Each 

individual input case consists of results for the outer wall 

values, which are the Re, V0 , and 80 • In addition to the outer 

wall values, the minimum and maximum dimensionless temperature 

(8min and 8m0 ) encountered in the flow are extracted from each 

run. 

The polyatomic gas, C02 , is selected as the fluid with Ti 

= 300 K. The initial gradient values Ui' and Vi' selected for 

the input are 0.00005 and o, respectively. The initial 

temperature gradient is allowed to vary as o ~ 8/ ~ o.03 in 

increments of 0.001. For each Bi', the blowing parameter bis 

varied from o.os to 2 in increments of o.os for each blowing 

Mach number of ~ = 0.1, o.s, 1, s, 10, 15. 

By plotting results as Re verses ~2 /b2 , a graphical 

correlation for a = µ.b/µ. = 2000 is established (see Figure 
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4.4-1). Similar plots appear in Fiqures 4.4-2 through 4.4-4 

for 801 8mu' and 8min, respectively. These correlations are 

found only for the particular case of a = 2000 and Vi' = O. 

Linear correlations are produced by plotting the raw data for 

~2 /b 2 relative to both Re and 80 • The graphs are re-generated 

by applying a linear best fit method on the raw data to create 

Fiqure 4.4-1 and Fiqure 4.4-2. Additional correlations are 

produced from the raw data of ~2 /b 2 relative to 8m1n and emu• 

The raw data is best fitted to create Fiqure 4.4-3 and Figure 

4.4-4. These correlations help provide a guideline for 

predicting if solutions exist when a = 2 ooo. Information 

regarding a solution, such as it's Re, 001 8m1n, and 8mu can be 

graphically estimated using the correlations. The figures for 

8m1n and 8mu can be used to determine if temperature overshoot 

occurs within the flow. The ratio of Myi 2 /b 2 used for the 

graphical correlations can be translated as 

M~i ~ 2 
Uo 

(4.4-1) b2 

( ::: ) 
yRTi 

When a >> 10 and ~' = o, the y-velocity distribution remains 

virtually constant, i.e., V = 1.0 and in turn V' = o; thereby, 

causing the energy equation (2.5-10) to be governed by~ and 

62 



O'I 
w 

ex 
Re Vs. Myi2 /b2 

2 0 0 0, Ui'=5 e-5, Vi = 0, Si'= Varied 
28~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

26-+-~~--+~~~--+-~~~+----=-~--+=---==-~-+--===---=----+---=~-=--l-~~~1--~~~ 

2 4 I I I---=: ==---- I ---=- ==t- ---== ==--t---- == =--t=-- ==- T==-- ==- F==-- e. e 2 v I 

2 2 I -=:::I ~ ------± ===---- ----L ===--- k: ===---- I ==- ===------i ==- ~ I I I 

2 0 t=- = T=== ----= r==-=-- = I =--== -=:::J =----=- --=L ===---- I u . u ~u I I I I 

~ 18 

16 --

14-+-oe:::::--~-=f""-=-~--t==---:--~+-~~-t-~~~-t-~~--t~~~-+-~~~t---~~--t-i 

12 --

lQ -t--~~--+~~~-+-~~~+--~~-t-~~~-t-~~--+~~~-+-~~~i--~~-t-1 

25 50 75 100 125 150 175 200 225 
Myie/be 

Figure 4.4-1: Graphical correlation established for Reynolds Number using a 2000. 



O'I 
~ 

0 
© 

()( 

80 Vs. 
2000 , Ui'=5 e-5, 

M ·2 /b2 
viY! o, ei'= varied 

10 -.--~~~,.----,,~~~--....-~____,,--,-,.--~--....-~~~~.--~~--.-~~~-,.---~~~-,--~~-----.----, 

g--.----.~-----------..~..__----------~...+------~t--~~-+-~~~-+--~~~---~~--+--< 

8 -+--___________ ___,,,____,,,----"..-t--''<-->.c---~--------->.,--i-->,--'.,.--,._. ___ ~~-t-~~--+~~~-t-~~--+-i 

7 -+-->,,-----'..---".-l----->.-~r--'..-------------------'~----'+-------~+--~~-1-~~~-t--~~--+~ 

6 ----->.--'l.-----'"-------'<+----->.------->,-+--'..-------'<--+------------>,-+->"<---------~~~-1-~~~-t--~~--+~ 

5 -----------.-.-..-----.----.-+--------_,_.._----....-_____.,__,,..--_..._ ___________ __..~--------------t-~~~--+--~~--+--< 

4 ------------.---~-----------------------~---'rl--_.._ __ ___,,.._._.._ __ _____...--+--" _____ ___. __ ~~-+-~~---.--< 

3 -+---------->rr----__.,,___,,rl-'----~----~-i-->,,--'.,.--,._.----------t'<-~--->,~.,.--'<-----+-~~-----t-; 

2~----->.~~-----------~----->..---'>..----l.--->.---------',.--"T--'+-->.-->.-->.-+--->,~>..---~------>.---+--->,~~--+-i 

25 50 75 100 125 150 175 200 225 

Myie/be 

Figure 4.4-2: Graphical correlation established for 80 using a 2000. 

~ 



CTI 
U1 

8max Vs. Myie /be 
ex = 2000, Ui'=5e-5, Vi'= 0, 6i'= Varied 

10-..--....-------..-------....-..-..---...------..c---.-~--~--~~~~~~~~~~~~~ 

9 :J ' ' '- ~< "'1c: "'1c: f'c: >< ..,,,.J: ..,.. < ><Ir.:: ,,,,..... 1""-= =-- ooc:::I =--- coc::::: I I I I 

8 3\ ' ' "'=! ' '= -..... "' '""I ""'= """"""'= ~"""""= r=----= ~.........: =--"""""'= ~ ~1 I 

7 3' '- "'-I'< "'°' "I '< "-cl ._...... ~........ ~ ==-----== I ..........._ _____ I :::::00,,,,,,,, I I I 

>< 6 ::k '" ' 1'" '< '< I >. ,.. aj .... ......1 ......... ...........: 1=--s 5 =i ... ..,. "" ... - ~-.;;;;;;:~4"""~zoc:::::-.;:::-~=---~1--=:-~ 
CD < ~ I ......___ ~ =----~ .... -aaa I I I I I 

4 ~ "'1c: "- I'" ......_""" I ~----- F""'""" w ~ I I I I I I 

33----'~-..~t---"'""'-::~~..._,:--~~+-~~~-+-~~~-t-~~~-t-~~~-t-~~~-+-~~~-+-i 

2 3..._. ......_---=I -

25 50 75 100 125 150 175 200 225 
Myi 2 /b 2 

Figure 4.4-3: Graphical correlation established for Omu using a = 2000. 

- ---- ---------- -~- -



2 
()( 

8rnin Vs. 
2000, Ui'=5e-5, 

Myie/be 
W= 0, 6i'= Varied 

-
1.8 

-
1.6 

-

1.4 
-

l.2 
~ -

°' I ·a 
°' CD 

0.8 

0.6 

-\ l 1 
-l l _\ 
- er"' o 

0.4 
-

0.2 
-

0 I I I I I I T I I IT T T I I I T I I I I I I T I I I I TI I T T T T I 

0 25 50 75 100 125 150 175 200 225 

Myi 2 /b 2 

Figure 4.4-4: Graphical correlation established for Om~ using a 2000. 



bin the form of ~2/b 2 . This is illustrated in Figure 4.4.S 

using the following inputs for C02 : 

Table 4.4-1: Numerical inputs to illustrate a constant blowing 
velocity, V c 1.0, for a >> 10 

y 1.285 foil = 0.867 Pr= 0.770 

a = Varied b = 0.4 1.5 

Re = 12.0 v,' = o 

U1' Determined by the Shooting Method for each a 

a, 
I Determined by the Shooting Method for each a 

There are several ways to use the correlations for a = 
2 o o o , ui' = o • o o o o s and vi' = o . One way is to select the 

numerical input such as the following: 

Input: 

blowinq parameter: b = 0.4 

blowinq Mach number: ~ = 2 

Prescribed outer wall temperature: 

Usinq Correlation Figure 4.4.2: 

min Bi' = o. oos 

- Minimum initial temperature qradient for solutions 

67 

0 
LJ 

r. 



bin the form of ~2 /b 2 • This is illustrated in Figure 4.4.5 

using the following inputs for C02 : 

Table 4.4-1: Numerical inputs to illustrate a constant blowing 
velocity, V = 1.0, for a >> 10 

y 1.285 w = 0.867 Pr = 0.770 

a = Varied b = 0.4 M,.i = 1. 5 

Re = 12.0 

U1' = Determined by the Shooting Method for each a 

6 1' Determined by the Shooting Method for each a 

There are several ways to use the correlations for a = 
2000, Ui' = o. 00005 and Vi' = o. One way is to select the 

numerical input such as the following: 

Input: 

blowing parameter: b = 0.4 

blowing Mach number: ~ = 2 => ~2 /b 2 = 25 

Prescribed outer wall temperature: 

Using Correlation Figure 4.4.2: 

min 8/ = o. oos 

- Minimum initial temperature gradient for solutions 
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The second method is 

Input: 

blowing parameter: b = 0.20 

ratio value: ~2/b2 = 25 => ~ = 1 

(Ji' = 0.008 

Using correlation Figure 4.4.2: 

· min (J 0 = 4. o 

- Minimum outer wall temperature 
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4.5 Heat transfer and Temperature overshoot 

Couette flow involves conductive heat transfer when the 

two walls have different temperatures. The shearing and 

dilatational motion also contribute to the heat transfer. 

Finally, there is heat transfer associated with the mass 

transfer of the blowing process. As a consequence, it is 

possible to have a sizeable temperature overshoot as shown in 

Fiqure 4.5.1 using the following inputs for C02 provided in 

Table 4.5-1: 

Table 4.5-1: Numerical inputs to illustrate temperature overshoot 
occurring within the flow field 

y 1 . 285 w = 0.867 Pr 0.770 

a = 2000 b 0.5 Myi 3.0 

60 2.0 Re 14 . 0 V' I = 0 

U' I 0.000045 <= Determined by the Shooting Method 

e I 
I 0.005703 <= Determined by the Shooting Method 
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Figure 4.5-1: Illustrates temperature overshoot encountered between the two porous wall of compressible 
couette flow with blowing. 



In Fiqure 4.5-1, the gas is being injected at a 

supersonic blowing speed of ~ = 3.0 and the effect of bulk 

viscosity is considered at a = 2000. The prescribed upper 

wall temperature is 80 = 2. o. The blowing parameter is set at 

b = o.s, which means the upper wall is moving twice as fast 

as the gas being injected at the lower wall. The vertical 

separation of the walls is indirectly defined by the Reynolds 

number of Re = 14 . o. With these conditions, temperature 

overshoot occurs at Y = 13.0. 

Temperature overshoot can also occur in compressible 

couette flow without blowing. In this case, the moving wall 

must have sufficient speed such that viscous dissipation is 

pronounced. For compressible couette flow with blowing, 

temperature overshoot is encountered at sonic or supersonic 

blowing injection speeds: 

(4.S-1) 

for both a = o and a = 2000. When assuming Stokes' 

hypothesis, temperature overshoot is always encountered for 

~ ~ 2 and is independent of the blowing parameter, b. In 

examining the a = 2000 case, temperature overshoot may not 

occur. It is dependent on the blowing parameter, b, which 

generally has to be less than one. In certain situations, a 

noticeable temperature overshoot occurs for subsonic blowing 

and when b ~ 0.1. 
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4.6 Subsonic and Supersonic Blowing 

To analyze the influence of bulk viscosity, two separate 

blowing scenarios are investigated. The gas injected in the 

lower porous wall is introduced at either subsonic or 

supersonic blowing conditions, ~· These separate cases are 

analyzed by assuming either a = o or a = 2000. Depending on 

the injected speed of the gas, ~, at the lower wall; the 

speed of the upper moving porous wall, u
0 ; and the prescribed 

outer temperature, T0 , which are embedded within the numerical 

input terms Myi, b, and 80 , temperature overshoot can occur 

within the flow. 

The initial y-velocity gradient values is arbitrarily 

selected as ~' I = 0 and kept constant. The initial 

temperature and x-velocity gradient, Bi' and Ui'; respectively, 

are solved using the shooting method by converging to the 

prescribed upper wall temperature, 80 , and the selected 

Reynolds number, Re. The Reynolds number, defined when U
0 
= 

1, is prescribed in order to keep the wall separation, t, the 

same when comparing a = O and 2000 cases. The vertical wall 

distance, t, can be determined by combining the definition of 

the Reynolds number (2.3-1) and the blowing Mach number 
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(2.3-6) as follow: 

£ Reµ 1 (4.6-2) 

If the fluid properties are constant and the Reynolds number 

is fixed, the wall separation (4.6-1) is dependent only on~' 

and subsonic flow will produce a larger wall separation than 

a supersonic flow. A fixed wall separation is useful for 

comparisons of different cases. For certain cases where the 

Reynolds number is prescribed, a solution may not exist for 

both a = O and 2000. When this situation occurs, a lower Re 

usually has to be used. 

The first case (Case I) has the following inputs provided 

in Table 4.6-1 below: 

Table 4.6-1: Numerical inputs for Case I for constant 
wall temperatures 

y = 1.285 w = 0.867 Pr = 0.770 

a = O, 2000 b = 0.6 Myi = 0.1, 0.5, 1, 2 

Re = 11.0 V1' 0 

U.' = Determined by the Shooting Method for each case 

61' = Determined by the Shooting Method for each case 
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The second case (Case II) has the following inputs provided 
in 

Table 4.6-2 below: 

Table 4.6-2: Numerical inputs for Case II for variation 
of wall temperatures 

y = 1.285 {,.a = 0.867 Pr = 0.770 

a = 0, 2000 b = 1.0 ~ = 0.5, 1, 1.5 

Re = 12.0 v1• = o 

U1' = Determined by the Shooting Method for each case 

61' = Determined by the Shooting Method for each case 

For Case I, the Reynolds number is set at Re= 11.0. The 

upper wall temperature is kept at the same temperature as the 

lower wall. The upper wall is moving at a speed which is 

approximately one and a half times faster than the speed of 

the gas being injected. Subsonic, sonic and supersonic 

blowing speeds are examined with and without a bulk viscosity 

effect for the same Reynolds number. For Case II, the 

Reynol~s number is set at Re = 12. o and the upper wall 

temperature is twice as hot as the lower wall, i.e., 8
0 
= 2.0. 

The speed for the moving upper wall and the gas being injected 

at the lower wall are kept the same. Three blowing speed are 

selected to compare the influence of bulk viscosity. 
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For cases I and II, Table 4.6-I, 4.6-II and graphical 

profiles are provided in Appendix c. These results are 

generated when the upper wall conditions are satisfied for U0 

= 1 based on the Reynolds number selected. The maximum 

temperature, Bmu, encountered between the two porous wall and 

the initial temperature and x-veloci ty gradients, Bi' and Ui' , 

determined by the shooting method are provided in the tables. 

The x-veloci ty distributions for the flow parallel to the 

walls are shown in Fiqures 4.6I-1a through 4.6I-1d for Case 

I and Fiqures 4. 6II-1a through 4. 6II-1c for Case II. The 

blowing velocity distribution associated with the gas being 

injected at either supersonic or subsonic conditions are 

presented in Fiqures 4.6I-2a through 4.6I-2d for Case I and 

Fiqures 4.6II-2a through 4.6II-2c for Case II. 

In Case I for a = o and 2000, the U profile in Figures 

4.6I-1a - 4.6I-1d for blowing Mach numbers Myi = 0.1, o.s, 1 

and 2 produce approximately the same numerical result. For 

Case II, provided by Fiqures 4. 6II-la -4. 6II-1c with Myi = o. s, 

1 and 1.S, the distribution profiles are approximately equal; 

except for Fiqure 4.6II-1c. 

In Cases I and II shown in Fiqures 4.6I-2a through 4.6II-

2c, the V profiles involving a = 2000 at both subsonic and 

supersonic blowing remain virtually constant, as would be the 

case for incompressible flow. While for a = o the blowing 

profile do show compressible flow characteristics, except at 
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an extremely low blowing speed of ~ ~ O .1. The vertical 

speed V0 for a = O increases as the injected blowing velocity 

increases and is visible noticeable for supersonic blowing 

conditions. When a >> 10, the a effect induced on the flow 

field is governed by the energy equation (2.5-10), since the 

y-momentum equations (2. S-9b) is virtually negligible, as 

discussed in section 4.4. 

The temperature distributions for Cases I and II are 

shown in Fiqures 4.6I-3a through 4.6I-3d and Figures 4.6II-3a 

through 4.6II-3c, respectively. For Case I, the influence of 

the bulk viscosity, a = 2000, at subsonic or sonic blowing 

produces sightly higher temperatures in the flow field as 

compared to a = o. For a low blowing speed of Myi = 0.1 the 

temperature distribution remains virtually constant, i.e, 8 

= 1. 0. At a supersonic blowing speed of Myi = 2. o (Figure 

4.6I-3d), a noticeable temperature overshoot occurs. Case II 

produces practically the same effects as in Case I, except 

when ~ = 1.5 the a = O case which has temperature overshoot. 

From the auxiliary equations discussed in section 2.6, 

the density and pressure ratio distribution profile for Cases 

I and II are shown in Fiqures 4. 6I-4a through 4. 6I-Sd and 

Fiqures 4.6II-4a through 4.6II-Sc, respectively. These 

distributions investigate compressibility effects. The 

density ratio distribution for both Cases I and II, displays 

incompressible flow behavior for a = 2000 at subsonic and 
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supersonic blowing speeds, while demonstrating compressible 

flow behavior for a = o. The compressibility characteristics 

for a = o is visible as the blowing speed increases from 

subsonic to supersonic conditions. 

For the pressure ratio distribution represented for cases 

I and II, the flow field shows compressible flow behavior for 

a = 2000 at subsonic and supersonic blowing speeds, while 

illustrating incompressible flow behavior for a = o at small 

11,i. This is noticeable as the blowing speed increases to 

supersonic conditions. In Case I where ~ = o .1 (Figure 

4.6I-Sa), the pressure ratio for both a= o and 2000 remains 

constant throughout the flow field. A similar situation is 

seen for Case I at a = o where Myi = o.s as shown in Figure 

4.6II-Sa. 

The Mach number distribution profile encountered between 

the walls for Cases I and II are shown in Figures 4.6I-6a 

through 4.6I-6d and Figures 4.6II-6a through 4.6II-6c, 

respectively. For Case I, the Mach number distribution for 

a = O and 2000 increases relative to increasing ~ conditions 

as shown in Figures 4.6I-6a through 4.6I-6d. For Myi of 0.1, 

o.s and 1 at a = o and 2000, the Mach number distribution is 

virtually the same, but for ~ = 2 the Mach numbers produced 

within the flow field are larger for a = O as compared to a 

= 2000. For Case II, the Mach number distribution for a = o 

increases as Myi increases, while for a = 2000 the flow 
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experiences a minimum Mach number, as shown in Figure 4.6II-6a 

through 4.6II-6c. 

The normalized viscous dissipation and the rate of 

entropy production distribution profile examined for Cases I 

and II are shown in Figures 4. 6I-7a through 4. 6I-8d and 

Figures 4.6II-7a through 4.6II-8c, respectively. These 

quantities depend on the heat transfer and the viscous 

stresses associated with the shearing and dilatational motion 

of the fluid. Case I with ~ = 0.1, o.s, 1 experiences 

virtually the same viscous dissipation distribution for both 

a = o and 2000 as shown in Figures 4.6I-7a through 4,6I-7c, 

but for~= 2.0 the normalized viscous profile for a = o is 

greater than for a = 2000. For Case II, a different scenario 

is noted for 
/\ . 
t which generates twice as much viscous 

dissipation for a = O as compared to a = 2000 for subsonic and 

sonic blowing speeds, as shown in Figures 4.6II-7a and 4.6II-

7b. The ~ = 1. s case produces almost six times as much 

viscous dissipation for a = o as compared to a = 2000, as 

shown in Figure 4.6II-7c. 

For Case I, the rate of entropy production is essentially 

the same for a = o and a = 2000, as illustrated in Figures 

4.6I-8d and 4.6II-8c. For Case II there is a significant 

difference between a = o and a = 2000, as shown in Figures 

4.6II-8a and 4.6II-8b. 
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The Stanton number st and the skin friction coefficient 

Cr for the lower and upper walls are provide in Tables 4.6-I 

and 4.6-II for Case I and II, respectively. For Case I, St0 

is negative due to temperature overshoot, which changes it's 

temperature gradient in order to conform to the outer wall 

temperature. For Case II, St0 is negative only for a = O at 

supersonic blowing~ = 1.5. For Case I and II, Cfi is nearly 

zero, as expected. On the other hand, Cf0 is quite large 

because U has an appreciable gradient at the upper wall. 
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CHAPTER V 

CONCLUSIONS AND SUMMARY 

The effect of bulk viscosity associated with a gas such 

as co2 can significantly influence a flow field. This is 

shown theoretically by studying compressible couette flow with 

blowing. The large differences seen between the same a = O 

and a = 2000 cases suggest that a rotating cylinder experiment 

might be a viable way of measuring a and thus µb. 

The influence of a large a value tends to reduce the 

significance of the transverse momentum equation causing the 

vertically oriented blowing distribution to remain virtually 

constant. This is seen no matter what the injected gas speed 

is. For large a values, the energy equation is numerically 

determined without the influence of the transverse momentum 

equation. For Stokes' hypothesis (a= O), the transverse 

momentum equation does influence the transverse blowing 

distribution and as the injected speed increased this is more 

noticeable by producing a faster exiting blowing speed. 

By allowing the transverse momentum equation to influence 

the flow, the temperature distribution for a= o at supersonic 

blowing conditions produces slightly higher temperatures than 
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for large a values. 

blowing speed are 

The opposite scenario is seen when the 

at subsonic or sonic conditions, the 

temperature distributions are slightly higher for a = 2000 

than for a = o. The temperature distribution for a = o at 

supersonic blowing conditions of ~ ~ 2 virtually always 

encounters temperature overshoot, while for a = 2000 this may 

not be the case. 

Due to the derivation of the four first-order ODE's and 

the numerical scheme, larger values for the Reynolds number, 

Re, can not be specified to produce existing numerical 

solutions. There are several reasons for this constraint. 

One is that for large Re values the temperature encountered 

in the flow exceeds the temperature limits of 8 ~ 10, which 

causes the perfect gas assumption to become invalid. Another 

reason is that the numerical scheme would require an extremely 

small step size, which would cause the computation time to be 

extremely large, but even this may not be suitable to obtain 

larger Re values. A physical explanation, why lager Re in the 

order of 102 or greater are not possible to produce 

numerically, is that there are viscous and thermal boundary 

layers on the upper wall. This posses extreme difficulty for 

a numerical scheme to solve the equations for large Re values. 

Nevertheless, it would be useful to have large Re number 

solutions, since Re determines the walls separation distance, 

t, as shown in equation (4.5-2). 
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NOMENCLATURE 

b = blowing parameter 

Cr skin friction coefficient 

c~ specific heat of interest for the vibrational 
energy mode 

CP specific heat for constant pressure 

Cv specific heat for constant volume 

e internal energy 

f Runge-Kutta formulas for ODE's 

F8 viscous stress 

h enthalpy 

t vertical wall separation distance 

M Mach number 

~i blowing Mach number 

p pressure 

Pr = Prandtl number 

q = heat transfer, Fourier's Equation 

R specific gas constant 

R = universal gas constant 

Re Reynolds number 
/\ 

~i~ rate of entropy production 
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St Stanton number 

t = Runge-Kutta step size 

T temperature 

u = x-velocity component 

U dimensionless x-velocity distribution 

~' initial x-velocity gradient 

v = transverse y-velocity component 

V dimensionless transverse y-velocity distribution 

~' initial y-velocity gradient 

W = velocity vector 

x coordinate normal to the yz-plane 

y coordinate normal to the xz-plane 

y Runge-Kutta intermediate formulas 

Y dimensionless vertical wall separation distance 

Greek Letters 

a = bulk-shear viscosity ratio 

1 specific heat ratio 

f specific minimum value 

€ strain rate tensor 

8 dimensionless temperature distribution 

8/ initial temperature gradient 

t = viscous dissipation 

~ normalized viscous dissipation 

K = thermal conductivity 

A second viscosity coefficient 
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shear viscosity 

bulk viscosity 

density 

= surf ace stress dyadic 

shear stress 

power law temperature exponent 

c, 

z 
normalized vorticity 

vibrational relaxation time 

Special Symbols 

d /dy = derivative with respect to y 

d /dY derivative with respect to dimensionless Y 

D /Dt substantial derivative 

ex, ey = Cartesian basis 

a ;ay partial derivative with respect to y 

V = gradient 

Subscripts 

i inner wall 

o outer wall 

w wall condition 

x x-coordinate system 

y y-coordinate system 
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APPENDIX A 

DETAIL DERIVATION OF AUXILIARY EQUATIONS 
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Auxiliary Equations as functions of o ~ Y ~ Re: 

1. Pressure ratio (Perfect qas) 

p pRT 

P =.f±.Rr.a v .l 

v p = p . ­. .le 
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2. Mach number: 

M2=M2+M2 x y 

u 2 + v2 
yRT 

M2 
( uo U) 2 + (vi V) 2 

yR Ti 6 

M2 = M 2. y.i 

1 
b" u2 + v2 

e 

3. Normalized Vorticity: 

w =I-~~ I 

w = (~) u _E_Q = (~) u u' µ i o dY µ i o 
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& u' 

4. Normalized Viscous Dissipation: 

~ = aw ( P 
2 

µv l [ b1, u12 + ( ex + ~ ) v' 2 ] 

~=aw [;2u12 +(ex+ ~) v'2] 
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s. Rate of Entropy Production: 

s . = ..l:_ [Cl> - _.!_ q- ·VT] 
irr pT T 

q = - KVT 

s. = _l_ [Cl> - l ( - KV T) ·VT] 
irr p T T 

s . = _l_[Cl) + K (VT) 2] 
irr pT T 

VT = (~) .!!.I_ 
µ i dY 

VT=(~) T . ~ µ i i dY 

sirr = _1 -[Cl) + Ki 9w ( ~) 2 T} ( d6) 2 l 
~ T . e Ti e µ i d Y 
v .l 
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v { ( ~) e(o) [ _..±_ u' 2 + ( a + _! ) v' 2 ] + K. e(o) - 1 ( ~) 2 
T. pi Ti 6 µ i b 2 3 .i µ i J 

sirr = 

sirr = 

lei 
(y - 1) Pr 

v 
Pi Ti 6 

v 
Pi Ti 6 

{( ~L ~ + 

{( ~L ~ + 

y.2 
.l 

Ry µi e~ - 1 
( ~ ) : Ti 6

12 
} (y - 1) Pr 

y R Ti 6(o) 1 ( ~ L 0"} (y - 1) Pr 

(y - 1) PrM}i 

sirr = _y(~) [$+ 
6 µ T i 

e (o) -1 e' 2 ] 

(y - 1) PrM}i 

'§. =(~) s . .lII 4 .lII 
pv i 

/.\ Pi~ 
8 irr = - 'II + 

p (y - 1) PrM~i 
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6. Stanton Number 

Tt = Stagnation Temperature = T ( 1 + y M2
) 

q=-KVT 

q = - K d T = - K 6(1) T. ( ~) d0 
dy .i µ i dY 

cp µi 
Pr 

q = - cp µ i e(o) T. ( ~) e' 2 
Pr .i µ i 

St = vi V6(,) 01 

St= 

St 

uo Pre (YM2) 

2 b ve(,) - 1 e' 
Pr(y - l)M 2 

2 b 
y - 1 Pr 

ve(,)-1 e1 

M2 
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7. Skin Friction Coefficient 

t = µ du 
dy 

p . 2 _.iu 
v 0 
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APPENDIX B 

NUMERICAL CODE 
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Program Boundary Value Couette Flow Problem 

******* Programmed by: Hugo Gonzalez ******* 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

********************************************************************* 
* This program solves a steady, two dimensional couette flow of a * 
* 
* 
* 
* 
* 

perfect gas. The gas is assWDed compressible and the bulk 
viscosity term is introduces. There is blowing and suction 
occurring through the porous walls. This problem is solved by * 
using the 4th-Order Runge-Kutta method with a variable step size * 

* 
* 

and the Shooting Method. * 
c ********************************************************************* 
c 

integer i, i2, j, k, m, z 
real alpha, b, converg, ganuna, i4, i3, Myi, N, nl, Ns, Nstep, 

+ Nstepl, Nstep2, Oi, Clip, Ofmin, Opmin, Ore, 02ip, Pr, 
+ Pstep, psubl, psub2, psub3, Rl(l51), R3(151), Rec, Re, 
+ sl(l51), s3(151), s3max, s3min, Ui, Ulip, U2ip, Vi, Vip, 
+ w, yes, yes2 
double precision Cf, dispc, deltaY, dYf, dYavg, dYmin, dYmax, 

+ f(l:4,1:4), Ml, M2, Ofpp(O:lOOO), Opp, 
+ Rp, Rrho, sc, St, Up, Ufp(O:lOOO), Vfp(O:lOOO), 
+ Vp, we, y(l:4,1:4), Yd, yf(l:4,1:4,0:1000), 
+ Ydt(O:lOOO), tal 

c 
c ********** Questions asked for input values ************* 
c 

write(*,100) 
100 format(/,lx, 'Do you want detailed print out of Runge-Kutta's ' 

+ 'intermediate',/,2x,' formulas? Type (0) for YES or ' 
+ ' ( 1) for NO. ') 
read *, yes 
write(*,110) 

110 format(lx,'Do you want detailed print out of U, Up, V, Vp, ', 
+ I e, e•, e" at',/,2x, 'each step size interval ? I 

+ 'Type (0) for YES or (1) for NO.') 
read *, yes2 
write(*,140) 

140 format(lx, 'Input number of printed steps wanted for solution?') 
read *, Nstep 
write(*,190) 

190 format(lx, 'Input specific heat ratio T ~ 1 for the gas?') 
read *, gamma 
write(*,200) 

200 format(lx,'Input power law temperature exponent w ~ 0 for the ' 
+ 'gas ? ') 
read *, w 
write(*,210) 

210 format(lx, 'Input Prandtl number Pr> 0 for the gas?') 
read *, Pr 
write(*,220) 

220 format(lx, 'Input bulk-shear viscosity ratio a~ 0 for the gas?') 
read *, alpha 
write(*,230) 

230 format(lx,'Input blowing parameter b > 0 ?') 
read *, b 
write(*,240) 

240 format(lx, 'Input blowing Mach number Myi > 0 ?') 
read *, Myi 
write(*,250) 

250 format(lx, 'Input prescribed outer wall temperature 1 s 80 s 5 ?') 
read *, nl 
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write(*,255) 
255 format(lx, 'Input Reynolds number 10 ~ Re s 20 for Uo 1 ' 

+ 'condition?') 
read *, Rec 

c 
c *** The initial guess gradient values for Ui', Vi', 6i' **** 
c 

c 

Ulip = 0.00004 
U2ip 0.00005 

275 format(lx, 'Input initial y-velocity gradient -0.001 s Vi' s ' 

c 

c 

+ , 0.0001 ?') 
read *, Vip 
write(*,280) 

Clip 0 
C2ip 0.1 

c **** The Four First-Order ODE Governing Equations *************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

y(m,l,i) = U 

y(m,2,i) 

y(m,3,i) 

y(m,4,i) 

v 

'ff 

e 

f(m,l,i) = U' 

f (m,2, i) V' 

f(m,3,i) 

f(m,4,i) e, 

I.C. => U' (0) 

I.C. => U(O) 
B.C. => U(N) 

I.C. => V' (0) 
I.C. => V(O) 

r.c. => B°(O) 

I.C. => 6(0) 

= Ui' Shooting 
Method 

Ui = 0 
U/Uo 1 

= Vi' Input 
1 

6i, Shooting 
Method 

1 

c ******************************************************************** 
c 
c ******* The Shooting Method ******* 
c 
c ******* The first two guess values Ui' to determine Re ***** 
c 

c 

c 

c 

sl(l) 
sl(2) 

Ulip 
U2ip 

do 299 z = 1,150 

if (z.gt.2) then 
sl(z) = sl(z-l)-(Rl(z-l)*(sl(z-l)-sl(z-2)))/(Rl(z-l)-Rl(z-2)) 

end if 

c ******* The first two guess values for 6i' to determine 60 ***** 
c 

c 

s3(1) 
s3(2) 
s3min 
s3max 

Clip 
C2ip 
Clip 
02ip 

do 300 j = 1,150 
305 call shoot (j, R3, s3, s3max, s3min) 
c 

if (s3max.lt.0.00001.or.s3max.lt.s3min.or.s3min.gt.s3max.or. 
+ j.eq.150) then 

goto 600 
end if 

c 
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N = 1000000 
c 
c **** The initial condition values **** 
c 

c 

Ui 0 
Vi 1 
Oi 1 
y(l,l) = Ui 
yf(l,1,0) = Ui 
y(l,2) = Vi 
yf(l,2,0) = Vi 
y(l,3) = s3(j) 
yf(l,3,0) = s3(j) 
y(l,4) Oi 
yf (l,4,0) = Oi 
Yd = 0 
Ydt(O) 0 
Nstepl 0.0 
Nstep2 0.0 
i2 = 1 
f(l,3) 0.0 

c ************ Starts Fourth-Order Runge-Kutta Method *********** 
c 

c 

c 

c 

+ 
+ 

+ 
+ 
+ 

c 

do 330 i O,N-1 

do 340 m = 1,4 

if (i.eq.O) then 
Up= sl(z) 
Vp = Vip 
Ufp(O) = sl(z) 
Vfp(O) = Vip 
if (rn.eq.l) then 

Ofpp(O) = f (1,3) 
end if 

end if 

f(rn,l) 
f (rn,2) 

f (rn, 3) 

f (rn, 4) 

(y(rn,l)+sl(z))/y(rn,4)**w 
(l.O/y(rn,4)**w)*(Vip + (l.O/(alpha+4.0/3.0)) 
*(y(rn,2)-l.O+(l.O/(gamma*Myi**2))*(y(rn,4)/y(rn,2) 
-1.0))) 
(Pr/y(m,4)**w)*(y(rn,3)/gamma+((gamma-l.O)/gamma) 
*(y(rn,4)*f(rn,2)/y(rn,2)-(garnrna*Myi**2)*y(rn,4)**w 

*((alpha+4.0/3.0)*f(rn,2)**2+(1.0/b**2)*f(rn,1)**2))) 
- w*y(rn,3)**2/y(rn,4) 

= y(rn,3) 

c ********* Adjust step size if equations are stiff ************** 
c 

if (rn.eq.l) then 
tal = y(rn,2)*y(rn,4)**w*(alpha+4.0/3.0)*(Myi**2) 
Dymin = 0.00001 
Dymax = 0.1 
if (tal.lt.Dymin) then 

deltaY = Dymin 
elseif (tal.gt.Dymax) then 

deltaY Dymax 
else 

deltaY = tal 
end if 
Yd = deltaY + Yd 
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c 
c 
c 
c 
c 
c 

c 

end if 

***************************************************************** 

*********** Calla Subroutine for detail print out 

psubl = 1 
call psteps (i, Nstep, Nstepl, Yd, Ydt, i3, yes, 

+ m, y, f, i2, Nstep2, Na, k, yf, Ufp, 
+ 
+ 
psubl = 0 

Vp, Ofpp, Opp, Dyf, i4, yes2, psubl, 
psub3, converg) 

************** 

Up, Vfp, 
psub2, 

c ***************************************************************** 
c 

c 

+ 

c 

do 350 k = 1,4 

if (m.eq. l) 
y(m+l,k) 

end if 
if (m.eq.2) 

y(m+l,k) 
end if 
if (m.eq.3) 

y(m+l,k) 
end if 
if (m.eq.4) 

y(l,k) 

end if 

then 
= y(l,k)+(deltaY/2.0)*f (m,k) 

then 
= y(l,k)+(deltaY/2.0)*f (m,k) 

then 
= y(l,k)+deltaY*f (m,k) 

then 
y(l,k)+deltaY*(l.0/6.0)*(f(l,k) 
+2.0*(f(2,k)+f(3,k))+f(4,k)) 

c ********* Checks temperature limits of 0.6 S 6 S 10 ********** 
c 

+ 

c 

+ 

if (m.lt.4.and.y(m+l,4).lt.O.or.y(l,4).lt.0.6) then 
if (m.lt.4) then 

y ( m+ 1, 4 ) = 1. 0 
else 

y(l,4) = 1.0 
end if 
print *, '0 < 0 : Invalid Value determined ' 

'based on Your Initial Inputs.' 
if (s3(1).eq.s3min.and.s3(2).eq.02ip) then 

if (j.eq.l) then 
s3(1) s3min + 0.0001 
s3min s3(1) 

else 
s3(2) 0.09999 

end if 
end if 
goto 305 

end if 

if (y(l,4).gt.10) then 
pr int *' '0 = ' 'y ( 1' 4) 
print *, '0 > 10 : Invalid Value determined ' 

'based on Your Initial Inputs.' 
if (s3(1).eq.s3min.and.s3(2).eq.02ip) then 

if (j.eq.1) then 
s3(1) s3min + 0.0001 
s3min = s3(1) 

else 
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c 

s3(2) 
end if 

end if 
goto 305 

end if 

0.09999 

c ******************************************************************* 

c 

c 

c 
350 
c 
340 
c 

c 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

if (m.eq.4) then 
Up (y(l,l)+sl(z))/y(l,4)**w 
Vp = (l.O/y(l,4)**w)*(Vip + (1.0/(alpha+4.0/3.0)) 

*(y(l,2)-1.0+(l.O/(garnma*Myi**2))*(y(l,4) 
/y(l,2)-1.0))) 

Opp= (Pr/y(l,4)**w)*(y(l,3)/gamma+((garnma-l.O) 
/garnma)*(y(l,4)*Vp/y(l,2)-(garnma*Myi**2) 
*y(l,4)**w*((alpha+4.0/3.0)*Vp**2+(1.0/b**2) 
*Up**2))) - w*y(l,3)**2/y(l,4) 

psub2 = 1 
call psteps (i, Nstep, Nstepl, Yd, Ydt, i3, yes, 

m, y, f, i2, Nstep2, Ns, k, yf, Ufp, Up, Vfp, 
Vp, Ofpp, Opp, Dyf, i4, yes2, psubl, psub2, 

psub3, converg) 
psub2 = 0 
if (converg.eq.1) then 

converg = 0 
goto 400 

end if 

end if 

continue 

continue 

psub3 = 1 
call psteps (i, Nstep, Nstepl, Yd, Ydt, i3, yes, 

+ m, y, f, i2, Nstep2, Ns, k, yf, Ufp, Up, Vfp, 
+ Vp, Ofpp, Opp, Dyf, i4, yes2, psubl, psub2, 
+ psub3, converg) 

psub3 0 

330 continue 
c 
400 Re = Ydt(I3) 

Pstep I3 
Dyavg Yd/(i+l) 

c 

c 

c 

R3(j) yf (1,4,Pstep) - nl 

if (j.eq.l) then 
Ore = Re 
Ofmin = yf (1,4,Pstep) 
Opmin = s3(j) 

elseif (yf(l,4,Pstep).lt.Ofmin) then 
Ore = Re 

end if 

Ofmin yf (1,4,Pstep) 
Opmin = s3(j) 

if (abs(R3(j)).lt.0.000001) then 
goto 405 
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end if 
c 
300 continue 
c 
405 Rl(z) = Re - Rec 
c 

c 

if (abs(Rl(z)).lt.0.000001) then 
goto 410 

end if 

299 continue 
c 
c 
c **** Print out of numerical solution for each method ************* 
c 
410 write(*,420) 
420 format(/,/,' This Couette flow problem is solved for a steady, ', + 'two dimensional flow ',/,'of a compressible perfect gas.', + 'The effect of bulk viscosity is considered.',/,' There', + 'is blowing and suction occurring in this Couette flow ' 

+ 'problem through porous walls.',/,/) 
c 

write(*,440) Nstep, i+l, Pstep, Re, deltaY, Dyavg, gamma, w, Pr, + alpha, b, Myi, Ui, Vi, Oi 
440 format(' These are the Input Parameters used for this Couette ', + 'Flow Problem: ',/,/,4x, 'Nstep = ',fl0.5,2x, 'i Convg = ', + il0,2x, 'Pstep = ',fl0.5,/,7x, 

+ 'Re= ',fl0.5,2x, 'delta Y = ',fl0.5,2x, 'dYavg = ',fl0.5, 
+ /,4x,'garnma = ',f10.5,8x,'w = ',fl0.5,5x,'Pr = ',fl0.5, + /,Sx, 'a= ',fl0.5,8x, 'b = ',fl0.5,4x, 'Myi = ',fl0.5, + /,7x,'Ui = ',fl0.5,7x,'Vi = ',fl0.5,5x,'0i = ',fl0.5,/) 

c 
write(*,450) Dyavg 

450 format(' The following output is the Numerical solution of this', + ' Couette flow determined',/,' from using the 4th Order', + ' Runge-Kutta Method for 0 ~ Y ~ Re, where: delta Yavg = ' 
+ fl0.5,/) 

c 
write(*,460) sl(z), Vip, s3(j) 

460 format(' The derivative inputs for the Runge-Kutta Method are:',/, 

c 

c 

c 
c 
c 

+ /,5x,'Ui' = ',fll.8,5x,'Vi' = ',fll.8,5x,'0i' = ',fll.8,/, 
+ 79x,' ',llx,' ',/,7x,'Y',llx,'U',llx,'U'',l0x,'V',llx,'V'', + lOx, •if• ,llx, 'if' ,llx, '0' ',6x, 'Rho/Rhoi' ,7x, 'p/pi' ,9x, 'M' ,llx, + 'w' ,12x, ·~· ,12x, 's' ,12x, 'St' ,llx, 'Cf',/) 

do 490 i = O,Pstep 

Yd = Ydt(i) 

*********** Auxiliary Equations with respect to Y ************ 

Rrho 1.0/yf(l,2,i) 
Rp yf(l,4,i)/yf(l,2,i) 
M2 (Myi**2)*((yf(l,l,i)/b)**2+yf(l,2,i)**2)/yf(l,4,i) 
Ml SQRT(M2) 
WC Ufp(i) 
diepc = (yf(l,4,i)**w)*((Ufp(i)/b)**2+(alpha+4.0/3.0) 

+ *Vfp(i)**2) 
sc = dispc/Rp + yf(l,2,i)*yf(l,4,i)**(w-2) 

+ *yf(l,3,i)**2/((gamrna-l.O)*(Myi**2)*Pr) 

103 



c 

495 
490 
c 

600 

605 

c 

+ 

+ 
+ 

St 

Cf 

2*b*yf(l,2,i)*yf(l,4,i)**(w-l)*yf(l,3,i)/((ganuna-l.O) 
*Pr*M2) 
2*b*yf(l,4,i)**w*yf(l,2,i)*Ufp(i) 

write(*,495) Yd, yf(l,l,i), Ufp(i), yf(l,2,i), Vfp(i), 
yf(l,4,i), yf(l,3,i), Ofpp(i), Rrho, Rp, Ml, 
we, diepc, ec, St, Cf 

format(lx,f10.5,11(2x,f10.5),4(2x,fll.5)) 
continue 

print *, 
print *, 
print *, 
goto 605 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 
print *, 

stop 
end 

'Ui' = ', sl ( z),' 
'0li' = ',Olip,' 

'Bounded Limits:' 

No Convergence 

Vi' = ', Vip 
02i \ = I ,02ip 

s3min ',s3(1),' s3max It s3 (2) 

'Min: 0i' = ',Opmin,' Re ',Ore,' 00 ',Ofmin 

c ======================================================================= 
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subroutine shoot (j, R3, s3, s3max, s3min) 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

********************************************************************* * This subroutine uses the Shooting Method with a 4th-Order 
* Runge-Kutta method. This method is used to solve the initial * temperature gradient to solve the upper wall temperature 
* condition. Restriction are placed on the boundary limits when * using the shooting method to assure that no negative values 
* associated with the temperature are allowed. This method is 
* also used to solve the initial x-velocity gradient based on 
* selected Reynolds number, Re. * 

* 
* 
* 
* 
* 
* 
* 

********************************************************************* 

integer j 
real R3(101), s3(101), s3max, s3min 

c 
c ****** 6i' Bounded Limits ****** 
c 

c 

c 

if(j.lt.3) then 
s3min s3(1) 
s3max s3(2) 

end if 

if (j.lt.3.and.s3max.ne.0.1.and.s3max.gt.s3min) then 
s3(j) s3max*0.9 
s3max = s3(j) 

end if 

c ********************************** 
c 

c 

c 

if (j.gt.2) then 
if (j.eq.3) then 

s3min s3(1) 
s3max = s3(2) 

end if 
s3(j) = s3(j-1)-(R3(j-l)*(s3(j-1)-s3(j-2)))/(R3(j-l)-R3(j-2)) 

if (s3(j).gt.e3max.or.s3(j).lt.s3min) then 
s3(j) s3max*0.9 
s3max = s3(j) 

end if 
end if 

110 return 
end 

c======================================================================= 
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c 
c 
c 
c 
c 
c 

c 

347 

345 

c 

c 

subroutine psteps (i, Nstep, Nstepl, Yd, Ydt, i3, yes, 
+ rn, y, f, i2, Nstep2, Ns, k, yf, Ufp, Up, Vfp, 
+ Vp, Ofpp, Opp, Dyf, i4, yes2, psubl, psub2, 
+ psub3, converg) 

********************************************************************* 
* This subroutine is used to print out the detailed information * 
* for each variable step size increment. * 
********************************************************************* 

integer i, i2, k, k2, rn 
real i3, Nstep, Nstepl, Nstep2, yes, yee2, i4, Ne 
double precision f(1:4,1:4), Ofpp(O:lOOO), Opp, Up, Ufp(O:lOOO), 

+ Vfp(O:lOOO), Vp, y(l:4,1:4), yf(1:4,1:4,0:1000), 
+ Ydt(O:lOOO), Yd, Dyf 

+ 

if (i.eq.Netepl.and.psubl.eq.1) then 
if (Nstep.eq.1) then 

Ydt(i+l) = Yd 
else 

if (i.ne.O) then 
i3 = (Nstepl+l)/Nstep 
Ydt(i3) = Yd 

end if 
end if 
if {yes.eq.O) then 

do 345 k = 1,4 
write(*,347) rn, k, i, y(rn,k), rn, k, i, f (rn,k) 
format(Sx, 'y( ',!2, ', ',!2, ',',IS,') = ',flO.S, 

3x,'f(',I2,',',I2,',',I8,') = ',f20.5) 
continue 

end if 
if (rn. eq. 4) then 

if (Nstep.eq.l) then 
Netepl Nstep*i2 

else 
Nstepl Nstep*i2 - 1 

end if 
end if 

end if 

if (rn.eq.4.and.psub2.eq.l) then 
if (i.eq.Nstep2) then 

Ns = 1 
if (i.eq.O) then 

yf(l,k,i+l) 
Ufp(i+l) 
Vfp(i+l) 
Ofpp(i+l) 

y(l,k) 
Up 
Vp 
Opp 

else 
i3 = (Nstep2+1)/Nstep 
yf(l,k,i3) = y(l,k) 
Ufp(i3) Up 
Vfp( i3) Vp 
Ofpp(i3) Opp 

end if 
end if 

if (y(l,1).gt.1.and.k.eq.4) then 
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355 

c 

380 

c 

c 

c 

c 

c 

+ 

+ 
+ 
+ 

+ 
+ 
+ 

Dyf = (1-yf(l,1,i3-l))/(y(l,l)-yf(l,l,i3-l)) 
if (Ns.eq.l) then 

i4 i3 
else 

i4 i3 + 1 
end if 
Ydt(i4) = Ydt(i3-l)+Dyf*(Yd-Ydt(i3-l)) 
do 355 k2 = 1,4 

yf(l,k2,i4) = yf(l,k2,i3-1) + 
Dyf*(y(l,k2)-yf(l,k2,i3-l)) 

continue 
Ufp(i4) = Ufp(i3-l)+Dyf*(Up-Ufp(i3-l)) 
Vfp(i4) = Vfp(i3-l)+Dyf*(Vp-Vfp(i3-l)) 
Ofpp(i4) = Ofpp(i3-l)+Dyf*(Opp-Ofpp(i3-l)) 
converg = 1.0 

end if 
end if 

if (i.eq.Nstep2.and.psub3.eq.1) then 
if (yes2.eq.O) then 

write(*,380) i+l, y(l,1), i+l, Up, 
i+l, y(l,2), i+l, Vp, 
i+l, y(l,4), i+l, y(l,3)' 
i+l, Opp 

format(Sx, 'U( ',I6, ') = ',f20.5,3x, 'U' (' ,I6, ') 
5x,'V(',I6,') = ',f20.S,3x, 'V'(',I6, ') 
Sx,'0(',I6,') = ',f20.S,3x, '0'(',I6,') 
39x,'0"(',I6,') = ',f20.S) 

print *, ' ' 
end if 

if (Nstep.eq.1) then 
Nstep2 Nstep*i2 

else 
Nstep2 Nstep*i2 - 1 

end if 

i2 = i2+1 

end if 

return 
end 

',f20.S,/, 
',f20.S,/, 
',f20.S,/, 

c======================================================================= 
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APPENDIX C 

TABLES 4. 6-I / ·4. 6-II AND GRAPHICAL PROFILES FOR 
CASES I AND II DISCUSSED IN SECTION 4.6 
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Table 4.6-I: Outer wall numerical results determined for Case I when the outer wall boundary condition is satisfied: U0 = 1.0 

C02 y = 1.285 ti) = 0.867 Pr= 0.770 

a = 0, 2000 b = 0.6 ~ = 0.1, 0.5, 1, 2 

e o = 1. 0 Re = 11.0 V;' = 0 

U1' = Determined by the Shooting Method for each case 

6 ; ' = Determined by the Shooting Method for each case 

a ~ U;' a,· b.Y,v, Re uo Vo eo ellWJ{ (P/Pdo 
~ 

0 0.1 0.673E-05 4 . 000E-07 0.01334 11.00000 1.00000 1.00005 1.00000 1.00084 0.99995 
0 
\D 2000 0.1 1.674E-05 1.660E-06 0.10000 11.00000 1.00000 1.00009 1.00000 1.00090 0.99991 0 0.5 1.740E-05 1.070E-05 0.10000 11.00000 1.00000 1. 02043 1.00000 1. 02001 0.97998 2000 0.5 1.763E-05 4.612E-05 0.10000 11.00000 1.00000 1. 00010 1.00000 1. 02270 0.99990 0 1.0 1.959E-05 5.616E-05 0.10000 11.00000 1.00000 1.15509 1.00000 1. 07780 0.86573 2000 1. 0 2.074E-05 2.038E-04 0.10000 11.00000 1.00000 1. 00010 1.00000 1.09086 0.99990 0 2.0 4.257E-05 9.303E-04 0.10000 11.00000 1.00000 1.94764 1.00000 1.43032 0.51344 2000 2.0 3.916E-05 1.195E-03 0.10000 11.00000 1.00000 1. 00010 1.00000 1. 36292 0.99990 

a ~ (P/Pd o (p/pi)max Mo ~o 80 St; Cr. St0 Cro 
0 0.1 0.99995 1.00000 0.19437 2. 77788 2.78223 0.00022 0.00002 -0.43994 1. 20008 2000 0.1 0 . 99991 1.00083 0.19437 2.77787 2.78230 0.00091 0.00002 -0.43879 1. 20013 0 0.5 0.97998 1.00002 0. 97712 2.77919 2.93431 0.00023 0.00002 -0.42495 1. 22454 2000 0.5 0.99990 1.02262 0. 97185 2. 77787 2.88381 0.00101 0.00002 -0.44085 1.20014 0 1. 0 0.86573 1. 00066 2.02781 2.77980 3.62625 0.00031 0.00002 -0.43148 1. 38613 2000 1.0 0.99990 1. 09077 1. 94370 2.77789 3.20095 0. 00111 0.00002 -0.44090 1. 20014 0 2.0 0.51344 1. 04955 5.12682 3.32369 11.14349 0.00127 0.00005 -0.58785 2.33726 2000 2.0 0.99990 1. 36282 3.88739 2. 77798 4.46886 0.00163 0.00005 -0.44083 1. 20016 
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Figure 4.6I-6c: Case I: Mach number distribution for sonic blowing, Myi = 1 
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Figure 4.6I-7c: Case I: Normalized viscous dissipation distribution for sonic blowing, Myt = 1 
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Table 4.6-II: Outer wall numerical results determined for Case II when the outer wall boundary condition is satisfied: U0 = 1.0 

C02 y = 1. 285 <..I = 0.867 Pr = 0 .770 

a = O, 2000 b = 1.0 My;= 0 . 5 , 1 , 1. 5 

00 = 2. 0 Re = 12 . 0 V;' = 0 

U;' = Determined by the Shooting Me thod fo r each cas e 

0;' = Determined by the Shooting Met hod f o r each case 

a Myi U;' 0 ;' AY.v, Re uo Vo 00 0ma.x ( p IP ;) 0 
~ 0 0.5 l .899E-0 5 0.00020 0.10000 12.00000 1.00000 2.00937 2.00000 2.00000 0.49767 ~ 
I\) 2000 0 . 5 2.5 1 5E-05 0 . 0010 7 0.10000 12 . 00000 1.00000 1. 00259 2.00000 2.00000 0.99741 0 1.0 2 .14 1E-05 0.00033 0.10000 12.00000 1.00000 2 .13111 2.00000 2.00000 0.46924 2000 1.0 2.661E-05 0.00117 0.10000 12.00000 1.00000 1. 00068 2.00000 2.00000 0.99932 0 1. 5 3.lOOE- 04 0 . 0 1503 0.10000 12.01250 1.00000 5. 07188 2.00000 2. 84112 0.19717 2000 1. 5 2.919E-05 0 . 00135 0.10000 12 . 00000 1.00000 1.00032 2.00000 2.00000 0.99968 

a ~ (p/p;)o (p/pi)mu Mo ~o 80 St; Cr. St0 Cro 

0 0.5 0.99534 1. 00141 0.79353 0.95530 3.53653 0.00746 0.00004 10.41751 4.01882 2000 0.5 1.99483 1. 99483 0.50065 0.55094 1.09949 0.03900 0.00005 10.44976 2.00523 0 1.0 0 . 93848 1. 00453 1.66458 1. 03083 1. 49031 0.00298 0.00004 1. 90172 4.26232 2000 1.0 1.99865 1 . 99865 1. 00034 0.54848 0.42497 0.01069 0.00005 2.23641 2.00141 0 1. 5 0.39433 1.14687 5. 48311 6.69857 29.98234 0.06089 0.00062 -2.33546 10.16006 2000 1.5 1.99936 1.99936 1.50024 0.54835 0.30901 0.00548 0.00006 o. 71641 2.00070 
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Figure 4.6II-7b: Case II: Normalized viscous dissipation distribution for sonic blowing, Myi = 1 
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