THE RELATIONSHIP BEI'WEEEN CERTAIN FACTORS AND

ACADEMIC SUCCESS IN COLLEGS MATHEMATICS

By
 LOUIS HAROLD MORRIS
 4
 Bachelor of Arts Southwestern State College Weatherford, Oklahoma 1935
 Master of Education Oklahoma University
 Norman, Oklahoma 1940

Submitted to the Faculty of the Graduate School of The Oklahoma Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF EDUCATION August, 1954

THE RELATIONSHIP BETWEEN CERTAIN FACTORS AND ACADEMIC SUCCESS IN COLLEGE MATHEMATICS

Thesis Approved:

ACKNOWLEDGEMENTS

The writer acknowledges his indebtedness to the persons ahose assistance made this study possible.

Sincere appreciation is extended to the members of the advisory committee, Professors Harry K. Brobst, Raymond J. Young, M. R. Chauncey, and J. Andrew Holley, for their encouragement and stirulating guidance. Association with these professors and others in the School of Education has been a privilege and a most valuable experience.

The writer is grateful to Dr. L. Wayne Johnson and members of his staff in the Mathematics Department, without whose assistance this study could not have been made. Particular credit is due Dr. James H. Zant for his kindness and helpfulness in arranging testing schedules and in providing other necessary data.

Appreciation is extended to the staff of the Bureau of Tests and Measurements and of the Registrar's office of The Oklahoma Agricultural and Mechanical College for their cooperation in making student personnel records available.

Indebtedness is acknowledged to Professor Carl E. Marshall and members of the staff of the Statistics Department for invaluable service rendered in statistical computations. Credit is also due Professor Marshall for his sound counsel on statistical procedure.

To the staff of The Oklahoma Agricultural and Mechanical College Library appreciation is extended for making similar studies available through inter-library loans.

To the many persons who offered encouragement and helpful suggestions the writer also extends appreciation.

TABLE OF CONTINTS
CHAPTER PAGE
I INTRODUCTION 1
Problem To Be Investigated 2
Hypotheses To Be Tested 3
Procedure 4
The Purpose of The Study 4
The Need For This Study 5
Overview of Remainder of Thesis 13
II SOURCES OF DATA, SCOPE, AND LIMITATIONS 15
Selection of Factors For Study 15
Selection of Subjects For Study 15
Sources of Data 16
Description of Test Instruments 17
Mathematics Background 19
Scope and Limitations of the Study 22
III RELATED STUDIES 25
Types and Extent of Related Studies 25
Studies Involving College Entrance Requirements 27
Studies Predicting Grades in College Mathematics 30
Studies in General Prediction, Including Mathematics 39
Summary 44
IV PRESENTATION OF DATA AND ANALYSIS OF RESULTS 46
The Present Sample and Others Compared 46
The Intercorrelation Matrix 48
Analysis of Correlation Data 50
Prediction of Grades in Calculus 54
Relationships Revealed by Scattergrams 61
Summary 80
V SUMMARY AND CONCLUSIONS 81
Review of Objectives 81
Conclusions 81
Recommendations 83
BIBLIOGRAPHY 85

LIST OF TABLES

Table Page
I Means, Sigmas, and Intercorrelations Between Average in University Mathematics and the Five Predictive Criteria 32
II Summary of Zero Order Correlation Coefficients Between University Mathematics Average and Standardized Tests 38
III Correlation Between the A. C. E. Scores and Grade Point Averages 40
IV Comparative Significance of Certain Selected Factors as Predictors of Success in College 42
V Comparison of Performance on A. C. E. Psychological Examination of 1951 and 1953 Calculus Groups 47
VI Comparison of Performance on A. C. E. Psychological Examination of 1949 and 1953 Calculus Groups 47
VII Basic Intercorrelation Table Derived From Data on the 1953 Calculus Group 49
VIII Correlation Between Each Factor and Grades in Calculus and College Algebra. 51
IX Predicted Grade Point in Calculus Based on Q-Score and Grade in College Algebra 58
X Comparison of Predicted and Actual Grade Categories in Calculus 60
XI Relationship Between Semesters of High School
Mathematics and Grade Point in Calculus 62
XII Relationship Between Grade Point Average in High School Mathematics and Grade Point in Calculus 63
XIII Relationship Between A. C. E. Q-Score and Grade
Point in Calculus 65
XIV Relationship Between A. C. E. L-Score and Grade Point in Calculus 66
XV Relationship Between Cooperative Algebra Test Score and Grade Point in Caiculus 68

LIST OF TABLES (Continued)
Table Page
XVI Relationship Between Reading Test Score and Grade Point in Calculus 69
XVII Relationship Between Reasoning Test Score and Grade Point in Calculus 70
XVIII Relationship Between Grade Point in College Algebra and Grade Point in Calculus 71
XIX Relationship Between Semesters in High School Mathematics and Grade Point in College Algebra 72
XX Relationship Between Grade Point in High SchoolMathematics and Grade Point in College Algebra73
XXI Relationship Between the A. C. E. Q-Score and Grade Point in College Algebra 75
XXII Relationship Between the A. C. E. L-Score and Grade Point in College Algebra. 76
XXIII Relationship Between Cooperative Algebra Test Score and Grade Point in College Algebra 77
XXIV Relationship Between Reading Test Score and Grade Point in College Algebra 78
XXV Relationship Between Reasoning Test Score and Grade Point in College Algebra 79
FIGURES
Figure 1. Prediction Chart for Grade in Calculus Based on Q-Score and College Algebra Grade 59

CHAPTER I

INTRODUCTION

The problem of who should go to college and in what special fields of endeavor the students who go should concentrate is not one of recent origin. For many years now most colleges have been concerned about the high mortality rate of their students, due often to the lack of capacity of some individuals for certain types of endeavor. Moreover, psychologists have long known (1) that different mental processes are required for different subject-matter fields and (2) that individuals differ within themselves as well as among others in utilizing the mental processes they possess. Educational growth, then, would seem to depend to a large extent on intelligent and adequate educational guidance.

The growing enthusiasm for higher education makes the problem of effective differential guidance, and consequent reduction of student mortality, ever more pressing.

According to the annual report of the Federal Security Agency, about 31 per cent of the 1950 high school graduates enrolled in college as compared to 25 per cent of the 1930 graduates. This comparison has more meaning when it is known that in 1930 about 51 per cent of the youth of high school age were enrolled in high school whereas 77 per cent were enrolled in 1950. ${ }^{1}$

Satz, who studied the relationship between certain variables and
$1_{\text {Federal }}$ Security Agency, Annual Report, 1952 (Washington, D. C., 1953), p. 14.
academic performance, makes this interesting statement conceming interest in higher education:

One of the significant phenomena of our time is the popular interest in higher education. This interest is revealed by the ever-increasing number of applications for admission to various colleges and universities; by expressions of parents respecting the desirability of higher education for their children; by the increasing search by employers for technically trained persons to filll strategic positions in office, laboratory, and plant; and, at the same time, by the growing demand for a greater variety of curricular offerings to meet the vastly expanding needs of individuals in a culture such as ours. ${ }^{2}$

The full impact of this enthusiasm for higher education probably will not be felt until the great flood of children now enrolled in the elementary schools reaches college age.

It is now and will be the duty of persons responsible for higher education, in institutions such as The Oklahoma Agricultural and Mechanical College, to help these students discover the fields of endeavor for which they are best fitted and from which they will derive the most benefit.

Problem To Be Investigated

The problem of this study was concerned with but one small area of the total problem, that of the field of college mathematics. The specific statement of the problem and the hypotheses to be tested follow:

What is the relationship between certain factors (the background in high school mathematics, the level of mental ability, reading comprehension, general reasoning ability,
${ }^{2}$ Martin A. Satz, "The Relationship Between Eleven Independent Variables and Academic Performance in Nine Social Science Areas at the University of Washington," Unpublished Doctoral Dissertation (Seattle, 1953), p. 1.
achievement in algebra) and academic success in college mathematics as the degree of abstract thinking demanded in mathematics increase s?

Hypotheses To Be Tested

1. The background in high school mathematics, as represented by semesters of high school mathematics completed, and by the grade point average in these courses, is significantly related to academic success in college mathematics as the degree of abstract thinking demanded in mathematics increases.
2. The level of mental ability, as determined by a standardized intelligence test, is significantly related to academic success in college mathematics as the degree of abstract thinking demanded in mathematics increases.
3. Reading comprehension, as determined by a standardized reading instrument, is significantly related to academic success in college mathematics as the degree of abstract thinking demanded in mathematics increases.
4. General reasoning ability, as determined by a standardized test of quantitative reasoning, is significantly related to academic success in college mathematics as the degree of abstract thinking demanded in mathematics increases.
5. Achievement in algebra, as determined by a standardized test in algebra at the time of entrance into college is significantly related to academic success in college mathematics as the degree of abstract thinking demanded in mathematics increases.

Procedure

Information relative to the high school background in mathematics, grade point average in college algebra and in calculus, was available in the Registrar's office. Scores on the American Council on Education Psychological Examination, used as a measure of mental ability, were available from the Bureau of Tests and Measurements. Scores on the Cooperative algebra Test, the Nelson-Denny Reading Test, and the GuilfordZimnerman Reasoning Test were made available by the Mathematics Department.

In order to test the hypotheses, intercorrelation between all of the factors involved in the study and necessary partial correlations were computed.

The predictive power of this combination of factors was determined by the construction of multiple regression equations and calculation of the multiple coefficient of correlation.

Tables were prepared to show the relationship between each factor and grades in calculus and in college algebra.

A prediction table and a chart for determining the most probable grade category in which a student's grade in calculus would fall were prepared from data obtained by utilizing the most promising multiple regression equation.

The Purpose of The Study

The purpose of the study was to provide evidence showing the relationship of the factors mentioned in the hypotheses to academic success in college mathematics, and to report this evidence in such a manner that it might prove helpful to counselors and teachers of students who are contemplating enrollment in a college program involving considerable
mathematics.
Three questions were inherent in the problem statement and the purpose: (1) What was the relationship between each of the factors and success in college algebra? (2) What was the relationship between each of the factors and success in calculus? (3) What was the comparison of these relationships?

A final purpose was made mandatory by the nature of the problem if the study vas to be useful to counselors and teachers of mathenatics. This involved combining the most promising factors into a prediction team for marks in calculus.

The Need For This Study

There is a real need to determine, as early as possible, the student's potentialities and the probability of his success in a mathematics program. It is almost an unpardonable waste of human effort and financial resources to allow a student to continue in a program in which he has little or no chance of success without making him aware of those chances, so that he may if he wishes transfer into a field where there is a greater probability of satisfactory experience.

The report of the President's Commission on Higher Education contains a particularly pertinent statement in this regard:
. . . to assume that only those looking to professional careers can profit from college experience is to misread and under-estimate the broad personal and social benefits to be gained.

The danger is not that individuals may have too much education. It is rather that it may be either the wrong kinds for the particular individual, or education dominated by inadequate purposes. ${ }^{3}$
3^{3} President's Conmission on Higher Education, Higher Education For American Democracy (New York, 1948), p. 7.

The report further states that, even with the inflexibility of the college curriculum of today, a minimum of 49 per cent of the people of college age have the ability to profit from at least two years of college work and that at least 32 per cent could go beyond two years successfuliy.

The trend toward increased enrollment in college makes ever more pressing the responsibility of college persomnel to study the significance of all possible factors which may influence academic performance and to make the student aware of as many of his deficiencies as can be determined in order that he may properly appraise himself. No one study will be able to involve all of these factors, but a good beginning may be made by investigating those factors which have comonly been considered of more than passing importance.

Frederiksen makes a plea from the counselor's point of view for this sort of study:

The longer I have tried to counsel students, the more I have been impressed with the lack of adequate information on which to base interpretations of test scores. Even when dealing with prediction of academic success, which has been studied more thoroughly than any other prediction problem, I often feel the handicap of a lack of useful information to give to the student sitting across from ny desk who wants to know his chances of being successful in some acadennic undertaking. To such problems as the choice of a college, the choice of a curriculum, the choice of a graduate school program, a client might legitimately expect me to make useful statements about probabilities of success in those acadenic prograns which he is considering.

What I am trying to say is that I, for one, feel frustrated by the lack of adequate information for the interpretation of a test score.

What can I do about it? I believe that there are several things that can be done, and the first is to put ny own house in order. I should at least be able to make reasonably accurate differential predictions of success
in the various divisions of my own institution. My first recommendation, therefore, is that local validity studies should be made. Separate studies should be made of the major academic programs at one's own institution. 4

The importance of helping students find the right place in the college program has been recognized by many advisers for a long time.

These advisers recognize that this is not a problem which is likely to be resolved on enrollment day, when the student is helped to make his choice of curriculum. The problem goes farther back than that and continues through the entire college program.

MacRae, writing on the responsibility of the college for the welfare of the student, makes this statement:

The college's concern for the welfare of the student should begin with the institution's recruitment program. Increasingly, tests, scales, formal and informal inventories, and other devices are being used to give prognoses of probable success in various kinds of colleges and different types of programs. A better use of these instruments and of other techniques which the college may devise should lessen the number of students who drop out of America's institutions of higher education. In some schools the mortality rate reaches the alarming proportion of 60%. In other institutions this proportion is below 5\%. Although there are factors that impel some institutions to admit students whose needs they cannot meet, the lower mortality percentage above should be accepted as a challenge by the guidance forces of the high school and college. ${ }^{5}$

The problem of failure in mathematics at The Oklahoma Agricultural and Mechanical College is not at all new. It is quite interesting to find this statement by Harrington made in 1928:

[^0]The mathematics department of the Oklahoma Agricultural and Mechanical College has been troubled for many years by the extremely large percentage of failures in its courses. Figures from the President's office for the year 1926-27 place this percentage at $46 .{ }^{6}$

There has been a constant effort through the years to find ways to lower this percentage of failure. Further evidence of the truth of
this statement is found in a study by Clark in 1930:
In the light of modern investigations, we have come to question the validity of the popular beliof that our state furnishes to all individuals equal opportunity as an equal legal claim upon the institutions of learning supported by the state without considering the fitness of these institutions to meet equally well the needs of all individuals. That all individuals are not equally able to profit by the training of the traditional type of school has long been accepted as a fact Much waste of funds and effort, for the college and for the student concerned, could be avoided if some criteria could be developed for predicting, more accurately, success in college. 7

The Report of the President's Conmission on Higher Education con-
siders the problem of equal opportunity in the opening statement:
Equal educational opportunity for all persons, to the maximum of their individual abilities and without regard to economic status, race, creed, color, sex, national origin, or ancestry is a major goal of American Democracy. Only an informed, thoughtful, tolerant people can maintain and develop a free society.

Equal opportunity for education does not mean equal or identical education for all individuals. It means, rather, that education at all levels shall be available equally to every qualified person (italics not in the original). ${ }^{8}$
${ }^{6}$ Harold E. Harrington, uThe Prediction of Success in Algebra by the Use of the Iowa Placement Examination and the Otis Kental Test," Unpublished Master's Thesis, (Stillwater, Oklahoma, 1928), p. 10.
$7_{\text {Alice Beuls Clark, "An Analytical Study of Good and Poor Students }}$ Among College Freshmen," Unpublished Master's Thesis, (Stillwater, Oklahoma, 1930), p. 7.
${ }^{8}$ President's Commission, Higher Education for American Democracy, p. 1.

How, then, are college personnel to determine who the qualified persons are and in which areas they are best qualified to study?

With the outlook for increased college enrollment and the emphasis on equal educational opportunity, colleges will need to be on guard against a dilution of standards. The Commission Report makes clear in this further statement that no such intention is implied, " . . . nor does it believe that a broadening of opportunity means a dilution of standards either of admission or of scholarly attainment in college work." 9

College entrance requirements have not always been based on the philosophy of education which emphasizes the importance of the individual student above the importance of the subject matter. Barly colleges were quite linited in space, equipment, and instructional staff. Their objective was also very different. They were concerned almost entirely with the production of a small number of scholars who could master the great body of knowledge of the past, our cultural heritage. This meant an almost equal ability to master work involved in many subject areas. It was, therefore, only natural and common practice to demand of those who entered college that they be equipped with high intelligence, adequate knowledge, and superior ability.

It is easy to see why the traditional entrance requirements came into being, and probably adherence to that tradition explains why colleges have not adjusted these requirements to meet the changing times and conditions.

Perhaps the two most popular present-day methods of determining whether or not a person is qualified to enter college are the satisfactory
completion of a prescribed number of units of high school work resulting in a high school diploma, and entrance examinations.

Considerable thought has been given in recent years to the inadequacy of these admission requirements. Douglass, in a study of the relation of high school preparation and certain other factors to academic performance in college, is emphatic on this point:

Not only do the results of this study indicate that such entrance requirements contribute practically nothing to the differentiation of good from poor student college risks, but all other studies of similar nature agree in this respect. In fact, no record can be found by any thorough-going objective investigation ever conducted which affords any rational support for the practice of conditioning general admission to the University upon the completion of prescribed units of certain favored fields. ${ }^{10}$

One of the objectives of a study by Black ${ }^{71}$ was to determine the relationship between the number of units of high-school work and university grades. He found that the relationship between the number of units completed in a particular high school subject area and successful performance in any given subject ratter area was very slight. Correlations ranged from -.247 to +.291 . His conclusion was that the relationships were not high enough to justify placing much emphasis on subjects completed in high school as guides for admission to and enrollment in corresponding subject-matter areas in college.

The entrance examinations comonly used for the purpose of determining the ability to do college work have not proved very satisfactory

[^1]as indicators of success in college. They have proved to be of even
less value in helping to determine what the probability is that a
student may be successful in a particular curriculum area such as mathematics.

Wallace, University of Michigan, in a study of the value of the American Council on Education Psychological Examination in this respect, makes the following comment:

The freshman testing program has become an established practice among most colleges and universities in this country. Its content and extent varies as to the examinations administered, but, typically includes one or more instruments designed to estimate the incoming student's aptitude for college-level study with the possible addition of an appraisal of his competence in particular areas.

The proposed and actual uses of the results of these tests include placement of students in appropriate sections or courses; educational, vocational, and personal guidance; selection of students for particular areas of concentration or pre-professional training; and research of various sorts. All too often no application is made of the results at all.

Although it was believed that scores on these tests would be an aid in determining the suitability of individual students for electing particular courses or fields of concentration, insufficient evidence was available on which to base such determinations. The only clues counselors could use in the application of test results were knowledge of the content of the tests, subjective judgement, and to some extent, information from investigations made at other institutions on the predictive value of a few of the tests used. 12

The use of entrance examination covers a relatively long period in the history of higher education in the United States. Douglass, writing more than twenty years ago, points out the historical significance

12N. L. Wallace, "pifferential Predictive Value of the A. C. E. Psychological Examination," School and Society, LXX (July 9, 1949), 23-25.
of the entrance examination:
Until the early seventies the method uniformy employed was that of the entrance examination. First employed at the University of Hichigan in 1871, the accrediting systen has spread until at the present tine it is now the prevailing means. The accrediting method is the principal avonue of ontrance to practically every state supported institution and to the very larce majority of privately supportod colleges and unversicies. It is still possible to enter practically all institutions of higher learming bry the college catrance examintion route and several. institutions, principelly colleges for women in wew heland and the Riddle Atlantic states, recelve students ony on that basid. Because of the confusion occasioned from varying standards resulting naturally fron the setting at each Individual institution a differgt exanination, there was formed in 1900 the College Entrance Lxamination Board for the purpose of standardizing the exannation given for the prapose of selecting college entrants.

Whith the developnent of group montal, or, as they are often callod, psychological or intalligenee, tests or exaninations, this type of criterion has been waged as a means of deterining the capacity to do college work. For reasons whinch we cannot pause to discuss here, mental tests are omployed ln but a sitell minority of institutions for the purpose of selecting college entrents and then only to cuxnish supplementary data. Perhaps in no institution are they employed as the sole criterion for detemaining, the acceptance on rejection oi epplicants for entrance. ${ }^{13}$

It is quite interesting to note that Douglass, witing at a much
Later date, was still interested in ways and means of discovering just
what it is which dotemines how successful a student may expect to be
in an ared of college mork. neviewing the results of seholastic success
studies at the University of Minnesota, Douglass concluded:
It would therefore seea that there is no simple, unjiform threshold of ability to succeed in a maversity having several schools and colleges. The divilities required for success in the various schools and colleges vary both in neture and in degree. ${ }^{14}$
${ }^{13}$ Douglass, op. cit., p. 5.
IHAarl R. Douglass, iDifferent Levels and Pattems of Ability Necessary for Success in College," occupations, XKII (December, 1943), 182-186.

Early educational Iiterature, as well as that of more recent date, abounds with reports of studies made in an attempt to shed some light on the factors influancing success in algebra. Yet the problemremains. as one of the most important in our time. One might be inclined to agree with Sumers, ${ }^{15}$ who feels that a point of no progress in the use of examinations for prognosis has been reached. But an attitude of defeatisn will not solve the problem. If the problean is to be solved, continuous study must be made of all factors, intellectual and others, which are suspected of bearing a relationship to acadendic success in any curricuIum area. Whether or not the factors used in a particular study are found to bear a significant relationship to acaderaic success seems to the writer to be not quite so irportant as is the constant effort to find such factors. If enough studies are done and enough factors are considered, the long-term result will be the discovery of the factors most valuable in helping to detemine whether a student has the qualities, both academic and otherwise, which are necessary for success in his chosen college progran. It would seem to be just as significant, in the longterm picture, to discover that a certain factor bears no significant relationship to acadenic success in a progran such as mathenatics, as it is to discover that a factor bears a significant relationship.

Overview of Renainder of Thesis
An account of the procedure, the sources of data, the scope, and the limitations of this study are Pound in Chapter II. A description of the test instruments and what they purport to measure will be

[^2]included. The nature of the critomion grades ad the vealnesses of such criterie will be discussed.

Chapter III will be a report of selected related studies. Although no studtes were foud which attompted to do quite the same thing as atterapted in this study, certain studies were related in one or more ways to the precent sudy. only those sundios were selected which involved the rolationship between the sane vamiables used in this study, or sinular ones, and acadenic success in sore portion of the college rathematics prograns. Some attention will be given to the technigues used and the results obtained. No effort was made to confine the account of related studies to those with results in agement with the presemt study. Consegreaty, some verg interesting contrasts in results win be observed.

Chapter IV unll describe in dotall the procedure used in this study, present the data, ad analyze the results obtained. The relationship of each factor to grades in calculus and to grades in alsebra aill be compred. Finally, through partial and multiple comelation and the fommation of a regression equation involving the factors most closely related to acaderic success in calculue, the evidence from the study will be put into useable form. As a part of this finel stop, an andysis of the two factors most closely related to success in calculus will be made, and the results will be mesombed in chart form for the convenience of those tho want a quici estinate of the nost probable category In whick 3. stodents grade in calculus may be axpected to fall.

Chapter vill sumarize the objectives, the findings, and conclusions of this strucy.

QHAPTER II

SOUROES OR DATA, GGOPE, AND LITITAATIONS

The purpose of this chapter is to describe briefly the procedure used in selection of factors and subjeats for the study, give the sources of data, describe the test instruments used, and call attention to some of the important limitations of the study.

Selection of Pactors For Study
After the decision was made to study the relationship of certain factors to academic performance in college algebra and in calculus, the next step was to choose factors for study which would most likely be related to such performace. A survey of the literature fumished many clues as to what factors would most likely bear a significant relationship to acadenic periomance in college algebra, but not nany clues could be found with regard to calculus. Of the factors examined and considared, the following seemed to hold the most promise: mental ability, reading comprehension, reasoning ability, achievement in algebra at the time of entrance into college, the numer of semesters of high school mathenatios completed, and the grade point average in high school mathenatics.

Selection of Subjects For Study
The subjects chosen were the stodents enrolled in calculus at the Oklahoma Agricultural and Mechanical college during the fall semester of the school year 1953-54. About two hundred students constituted the
original group. It was found that complate data were not avallable for students who transferred from foreign comtries and other institutions. After discarding these aubjects, 160 eases remained on which complete data were avallable.

Sources of Data

As meanuros of mental abiluty the scopes on the merican Conenl on Brucation Psychologicel Brannotion were used. All entering neshnen students at The Oklahon Agricultural and Hechanical Gollege aro required to taho thas emanawion. The scores were made avanable through the Bureau of Tests and Heasuenents. The matheiatics departneat adainisters the Aericon Cometl on Doncation Cooperative Algebra Test ${ }^{2}$ to all ireshton students enrolling in wathenaties. These roults were made avallable by the mathenhtics departhent and used as a measure of achieveagh in algebre at the time of entering college. With the ecoperation of the personnel of the mathematics deparment, the ielsonDenty Reading Test ${ }^{3}$ and the Guitrom-zumeman Test in heasoning were administered to the subjects of this stady at the begiming of the senester. Recorda of high school nathematics courses and grados, and records of grades made in college algebra and calculus, vere obtained frof the registrarts office.

These date were recorded on espectally preparod five by eight individual data cards. The data were later transferxed bo latemetional Busines hachine punch cards to facilitate calculations necessaxy for

[^3]the study.

Desoription of Rest Instruments

At thas point a description of the test instrument involved in this stuxy socns to be in order.

The Anexican Comeil on Education Esychologioal Eramincuion. 5 The psychological examation consists of aix bests. Factorial analyses have justified grouping the sin tasta into two geateral classes as folIowsy (2) Quantitative tests yielding the Q-scone anclude arithmetical roasoning, number series, and tigure anelogies, and (2) Lancuage aptitwde tests yiclding the L-score include sane-opposibe, completion, and verbal analogios. The test has a reliability coefficient of .44 with a standard exror af . OI.

The parpose of the A. C. E. examation ta to appaise wht hes been called soholastile aptitude of general indelligence, with special reference to the requirements of robt college cumicula. It has been found that, in general, Language aptitude tosts give higher comelatione with scholarship in the liberal arts colleges then do quantitetive tests. This higher correlation is probably, in port, due to the fact that rost of the Rreshan courses in the liberal arts prograns depend more upon language abilities than upor the ablities involved in guantitative thinking. For the scientific and technical cumicula the quantitetive tostr nay be mord bignificant. Those who have become convinced of the norits of paychological tests sonetines over-estimate the signticance of the test scores. While the scores tho show poughy the mental alertness of

[^4]the student, they should not be thought of as measuring capacity for Leaming with high accuracy. The scores are indicative of the mental alertness of the student and reflect his previous edueation, but bhey ghonld not be taken so scriously as to exclude other evidences of intelligenee and beloat in individual cases. Gencrally, the best wefulness of the tegt is in coraination with other evidences of ability.

Me Guilford-Zinmeman gost of Generol goasoning* According to ths antbors, the Guilford-Zimmerman Test of General Peasoning is desLgned to measure the abuthy to diagnose problens. They point out that this is only ohe of several types of reasoning. The reasoning test is one of sever parts hat is known as the Guilford-Zinnemmantate survey. The survey ves developed uth the onntiction that the aptitudes required for dotine swebesstully the rany kinds of tesks in eomplex society are much more numerous and varied than has generally been supposed. The anthor also balleve that aptatudes or individuals can be eveluated most adequabely, economically, and mentingtuly by using a series of tests, each of whinh neasures a mique ability. The internal-consistency rem Iisbinty of the Generol Reasoning Teat is .39 with a standard exror of .01.

Ghe Helson-Deany Readns Lest. ${ }^{7}$ The Welson-Denny Readine Test is designed to serve the following pumposes: (1) To predict probable suecess in college; (2) to soction incontig college or high school classes; and (3) to aft in the diagoogis of students difficulties. The test consists of two parts: (1) A test of wocablarys, and (2) a test of ability te road and understand paragraphs. Studies indicate that for

Gpublished by Sheridan Supply, Beverley Hills, Califonite.
7 Published by Houghton-Mifnin Company, Dollas, Texus.
college students the test predicts gencral scholastic success about as well or better than the better antelligence tests. The reliability com efficient for the test is .91 with a standard error of .01.

The Nelson-Denny Reading rest was ased in this study for the primary purpose of obtaining a measure of reading comprehension.

The Mrexican Council on Mducation Cooperative Algebra Test. 8 : The Anerican Council on Education Cooperative Algebre Test is designed to measure achievenent in elementary algebra through quadraties. The test is composed of 63 problens covering the very elementary items as well as items of relatively more difficult nature that are usually ineluded in a high sehool algebra course of one jear's duration. The mathematics department ak The Oklahom Agricultural and Mechanical College has, for many years, used this test to detemine as well as possible the proper placement of students enrolling in their first college mathenatics course. The reliability coefficient for the test is .90 with a standard error of . 02.

The purpose of this test, so far as this study was concerned, was to measure the achievenent in algebra at the time of entrance into college.

Mathematics Background

Semesters of Hathonatics Completed in High School. The inclusion of the nunber of semesters of mathematics completed in high school was. deened valuable by the writer for two reasons: (1) Interest in the subject of mathematics may be revealed, at least to some extent, by the quantity of mathematics taken, particularly in this quantity exceeds the mininum requirenent; and (2) Ability in mathematics mey be sonewhat

[^5]closely related to the election by students to take a considerable quantity of mathenatics, for individuals do not ordinarity continue long in areas where they camot do fairly well.

Gracies Made in High Gchool and Gollege Mathenatics. The decision to use grade made in high school mathematics as an independen variable and grades in college algebra and calculus as criterion data was made after consideration had been given to the problem of the rellability of these grades. Most educators would probably agree that school narks are notoriously wareliable, whether they are awarded in high schools or in colleges. A large number of studies have been made regarding the bases on which school grades are awarded, and recomendations have been made for proper practices. If educators would follow the recomtendations of Ross in one such study, school grades night be more peliable:

In detemining any marit, only those factors should be considered which afford evidence of the degree to which the pupil has attained the objectives set up for that particular course. 9

It is true, of course, that not all educators agree that achievement of the objectives of the course is the oniy factor upon which grades should depend. Some believe that effort, amout of inprovement in abilities and skills, developant of certain understandines apart from achievenent, and many other factors should influence the grade awarded. Roas has this further conment:

It seegs too bad that the marks received by certain individuals are conditioned more by the contours of the face than by the contents of the head. . . . studies have show that the pupil's handwriting, conduct, language ability, seating position in class, and ratings on such

[^6]personality traits as respect for authority and cooperativeness are significant factors in determining his mark, as well as the condition of fatigue or boredon the teacher happens to be in when it is awarded. 10

Gredes are not completely satisfactory measures of success in college in general nor in any pecific subject, for success seems to connote fuch more than achievement in a given subject. For studies like the present one, meesure of a paxticular type of suceess is desired. In spite of the many criticisms of grades, thoy are still used in nost high schools and colleges for the purpose of recording the moasure of acaderuie suceess in his curricular progran on a student's transcript. Wallace make a conment in this conaetion hats study of the differential prednctive value of the A. G. T. Psychological Examinotion:

In reporting previous studies on the predictive value of teat results some authors have angued that grades were an vasatistactory oriterion of achievement and have sought to use a diriferent one, such as achievenent test scores. However, scholastic success continues to be judged entirely on the basis of grades, and it is the accuracy of the prediction of this type of suceess that the stacy is designed to investigate. ${ }^{11}$

The Qklahoma Mricultural and Mechanical College Mathenatics grades. The following statement conceming grades given to students in mathematics courseg at The Oklahom Agricultural and Mechanical Nollege was made by Dr. Zant. The statement should prove helphil in interpreting the results of this study:

This stetement is based on opinion and convictions acquired over a long period of years in the teaching and administration of mathenatics at this college. Analyses of grades assigned by individual teachers and of the total grades assigned to mathenation studente during panm bicular semestars or periods heve been made froa time to

10 Tbid., p. 404 .

11Wanlace, og. cit. p. 24 .
tine, Although these analyses have not been made consistently or for the sean purposes, their results have had their offect on the opintons here expressed.

1. Whenerer we have tabulated all of the mathematios grades given by the eatire department in any one semester the distribution has been reasonably close to a normal one. This would probably be true for aty semester since the enrolunent is large, from 2000 to 2750 individual scuadens taking courses in mathenatics.
2. When we look at indivimat teachers ad clesses the chier charactoristic is theire variability. This is also to te expected since there ane recuirod courses minh every student in a particular curriculum must bake, there are teminal courses and graduate coures in wion the enrollments are small and in which the students are highly selected. There is also sone evidence that predoninanthy Low grades ape given to strudents in some seetions because they are filled with studente who are taking a curriculum for wilch they are not prepared and for which they have no ebllity, or both. Fox example, m ontire class in Mathentice 103, Plane Geometry, may nake extrenely Lov grades, probably because they are emrolled in the Division of Engincering, for which the cource is required as a non-credit course. Their ability or interest in any ante of hathenatics is usually very low.
3. An examination of the distribution of grades given in individual classes indicates that few, if any, of the methometics stanf assign gredes on the basis of the nomal curve or nomel distribution. However, there is evideace that the very existence of the nomal curve or distribution does have a derinite effect on the teachers* grades. Thia evidence is highly aubjective and the opinion expressed is subject to the same lifritation and nay not be justificd. 12

Scope and Inntations of the study
The use of grades either as criteria of performance or as independ-
ent variables is a linitation in any study wich attempts to seek out relationships such as those sought in this study. The linited reliability of the grades will necessarily limit the reliability of any relationships obtained. However, many studies point out the value of grades in both

[^7]high school and college subjects in determining such relationships. The tendency of students to compensate for differences in native ability by expending more effort in order to perform satisfactorily will tend to reduce the difference that might otherwise ocur in grades.

There is also an important Imatation inherent in any study which attempts to study relationships or forecast the probable suceess of an individual in a particular course. Probabilities are based on the group in the same way that actuarial predictions are made in the field of insurance. Some investigators argue that the individual case is lost in the group for which forecasts are made. This is not true in educational studies any more than it is in insurance problems, The probability that a student's grade will fall within a certain range is just as valid a prediction as to state that there is a certain probability that a person will live to a specified age,

What must be kept in mind, however, is thet there is no way to tell whether a particular student will fell in the successful or the unsuccessiul portion of the group. The proportion of the students who will fall in each group can be predicted with a high degree of accuracy. The individual student can then detexaine his chances of sucees or failure and hence the risk of enrolling in a specified subject.

Subjects included in this study form another important limitation. The cases included only students enrolled in calculus at The Oklahoma Agricultural and wechenical College during the fall senester of the school year 1953-54. In order to minimize this limitation two other groups of calculus students, those enrolled in the fall of 1949 and those errolled in the fall of 1951, were compared with the preseat group on their mental ability as measured by the A. C. E. Psychological Ekamination and on their performance in calculus. This was an attempt to
establish the fact that the present group is typieal of those students who enroll in a mathonatics progran and persist through caleulus. The study is further limited in the choice ar the mathematies courses to represent the differgt degrees of abstract thinking demaded. The courses chosen wepe college blgetra and calculus. College algenna wes chosen because it is the first course in which students contemplating a program of methenatics are required to enroll. Students may enroll in elementary algebra at their own nequest or as a result of a low score on the Gooperetive Algebra Test, but for the most part, those who continue wery far in college mathematics enyolt in college algebra as their first course. Calculus is the last of whe are nomally considered elementary mathomatics courses. Calculus is usualy considered by mathematics teachers to require a considerably greatsr degree of abstract thinking for satisfactory periomance than college algebra does.

The number of cases may constitute a slight limitation. A total of 160 cases was included in the study. This many cases is usually considered sufficient to give fairly relieble resulis, particularly if compared to other sinilar groups to detemine if the groups differ significontly or if they apear to be samples dram from the sand population.

In Chapter I an attempt was mado to meke clear that this study is prinarily concerned with relationships between cettan factors and grades received in the specific subjects, college alsebra and ealculus, with one of the possible outcones being the formulation of a regression equetion for the purpose of predicting geades in calculus. However, the study is not primarily one of prediction of academic success.

Types and Exteat of Related studies
In surveying the literature for studies with sinilar objectives it was discovered that ebout the only place relationships of this nature Were found was in studies the chise purpose of which was prediction of acadentic sucees. The great majority of these studies had as their aim either the prediction of over-all colloge success for the full four-year progran or for sone part of the progran. Others were concemed with the prediction of oremall zuccess in some subjectmatter field or for some smaller part of the total progran such as sucess in freshan rathenatics.

The writer has been unable to find many stadies which were concerned with the rolationship betweal factorg such as those studied here, and acaderic success in a specilic subject coning late in the progran, such as caloulus. However, many of the studies present interesting and valuable inforation concerning some of the factors involved in this study and their correlation or relationship to academic success in
certain phases of the mathematics program. Bruce, ${ }^{I}$ in a strudy conducted at the University of Washington, reports on the number of studies that have been concucted with prediction of academic success as the objective.

Bruce quotes Angell, et 21 , on this point:
Since the early twenties well over moonstudies have been made in ari attempt better to understand and cope with the problems of university admissions and failures. About ninety per cent of these stadies used one variable and calculated zero order coefficients of correlation to determine evidence of predictive value of these variables. Approximately five per cent of the studies combined two variables and computed multiple coefficients of correlation. Some increase in the multiple coefficient of correlation was achieved by investigators using three-
variable combinations but only some twenty of such studies have been completed. 'About eight studies attenpted four or more variables with limited success but rarely does anyone attempt as many as eight independent variables as did the Angell study. Currently a study is contemplated in which twenty-six independent variables will be conbined. The present study successfully handles the relatively large number of eleven independent variables. ${ }^{2}$

Recently: particularly since the developnent of applicable International Business Machine techniques, a few investigations have been conducted which utilized a large number of factors. A good example of one such study is that which was done at the Inited States Coast Guard Acadery and reported by Prench. ${ }^{3}$ The objective of the study was to identify factors which were, in a lerge part, responsible for the variations in psychological test scores and grades in subject maiter.

[^8]Twenty-three tests were adninistered to 100 freshman cadets, The test data, along with the 14 grades nade by each cadet, were complled. A factor analysis isolated nine factors responsible for the variation. The hour most important factors discovered, in order of their importance, were mathematical ability, verial ability, reading ability, and spatial ability.

The following comment was made about a most fascinating factor which the amthor called "Grade Aptitudet:

There is aiso some factor which greatly affects course grades, terned "Grade Aptitade," but which is not reeasurod by the actual or exporimental entrance tests used in this study. This factor results from the sinnlarity of grades received by cadets in every subject. this could be sone factor like interest or efiort, or could arise from the present grading systera. The development of tests to measure this factor would be desirable. 4

Studies Involvine College intrance Requipenents

At the wesent tine, as in the pest, a number of colleges require only the presentation of evidence of aroduation from high seliool as an entrance requirement. The assumption sems to be that the course of study in high school leading to graduation automaticelly prepares the student to enter college.

In speaking of "college-preparatory coursen protrans, Seyfert remanks, "The courses thenselves may be very much worthwhile, but as true and valid preparation for college they are notorious for shooting rather wide of the rack. ${ }^{5}$ Although this stabement is recognized as being true, Seyfert, like so meny others, does not make recomendations for

4Ibia., p. 7.
Th. C. Seyiert, "Do You Becomend This Student For College?" School Review, LX (March, 1952), 129-133.
a curriculum revision to alleviate the situation which he recognizes. Wolfenden, ${ }^{6}$ Vice-Chancellor of the University of Reading, in writing along the sane line, says in regard to college entrance requirements that the first criterion must be acadenic performance and pronise. He says further that the evidence on which this selection has to be mede is not very satisfactory and that there is still considerable iniomation that the selectors inevitably lack.

That this lack of information is felt and recoghized by the colleges is brough out in this conment by Carter:

The colleges themselves by adophing such entrance recuirements as the Scholastic Aptitude Test have indicated that meeting the conventional unit requirenent for college fails to disclose satisfactorily the fithess of many students for college. 7
Dr. P. H. Bowles, ${ }^{\circ}$ Director of the College Intrance Eoard, in a speech having to do with college admesions, delivered to the Fifteenth Educational Conference of the Educstional Records Burear, inplied that within the next ifve years college entrance requirements will change greaty, and that many more applicants will be adxitted without specipie subject requirements, ad emphasis in tests will be placed increasingly, not on what an applicant has had but on how he uses information and materials.

This forecast is of particular interest at the present time, since this statment was made four years ago and no marked change has been

[^9]evident in entrance requirements. The problem of selection and guidence into a field of endeavor where at least sone degree of academic success may be reasonably expected seexis to be no rearer to a solution than it was when this forecest was made.

The Stecring Commttee of the Illinois Secondary School Curriculum Progran, a comittoe of secondary school and college representetives under the chaimanship of Dr, "alph T. Tyler or the University of Chicago, made a thorough study of college adnissions policies and cane forth with a number of recomendations. Anong these recomendations are found the following statenents:

- . ., it is recommended that the college adopt admissions policies which do not specify the courses the students are to take in high school, but specify the kinds of competence to be required of entering studans. There has been extensive research on the kinds of competence which are good predictors of college success. The following five criteria can be used by a college or miversity to provide the best prediction of the probeble success of the student in college: 1. Score on a scholastic aptitude test; 2. Score on a test of critical reading; 3. Score on a test of witing skill; 4. Score on a simple mathematics test; 5. Ividence that the student has an intellectual interest and some effective study habits as shown by his having taken at least two years of work in one rield in high school in wich his erades were better than avarage. It is recomended that the foregoing criteric be used for admission to generel college work in place of any other set of entrance requiremeatrs?

For evidence that the concem about the high mortality yate of students in institutions of higher leaming is well founded we have only to look around us. The record at the University of Washington as reported by Black is typical:

9Steering Comititee, 111 inois Secondary School Curriculum Program, Mew College Admission Requirements Recomended, Bulletin No. 9, Circular Series A, No. 51, (Springfield, Illinois, February, 1950), p. I4.
It seens highly questionable, wastecul of human resources,
ineficient, and costly for a university to determine the
eligibility of students by adaission requirements wich
admit 2868 students of whom 455° withdraw fron the Univer-
sity before the end of their second year with records
primarily of low grades, fow credits completed, and many
credits "failed," "withdrawn" and "incomplete." (The
percentage of stadents witherawing with such records were:
aftex one quarter-7.04今; two quarters-7.85\%; the ee cuar-
ters-16.28; four quartere-6.17\%; inve quarters-7.819.
A total or 1295 of the 2865 heshmen withdrew benors com-
pleting six quarters at the University of Washington. 10
this concern is not of local oxigin, nor is it conrined to our country. The Bxitish are disturbed by this reletively good record reported by Baker:

In the Faculty of science at Bristol so per cent of those entering the honons school were alloned to continue artex their first jear, 2 to 3 per cent were reguired to leave, and the rest were directed to ordinary degree courses or made to repeat the yeart s work. 17

Baker emphasized that lack of advice ar wrong advice is a crucial factor in student sailure by commenting that, "It did not matter so moh wich university eandidates went to; what they required was advice on what courses of study to follow. 12

Studies Predicting Grodes in College Mathematies
Bameth in a stuay of entering freshan at Huner college, reports on the relationships of scores on the A. C. E. to gredes in trigononetry, college algebre, and analyic geometry:

[^10]The quantitative scores obtained on the 1947 and 1948 editions of the ACE did not correlate significantly better than the linguistic scores with grades in analytic geometry, college algebra, and trigonometry. In fact in the case of trigonometry, the quantitative scores correlated less well with grades then did linguistic scores. 13

She concluded that these data are interpreted to mean that ouantitative scores should not be used as a difierential pradictor of achievement in college nathematics courses.

In a study conducted at the University of hashington by Newan and Snoddy, the relationship of five independent vaxiables, high school average, reading comprehension, A. C. T. Q-score, A. C. E. L-seore, and reading aptitude, to acadenic succees in the various subject-matter areas was studied. Decause of the similarity of that study to the present study, it was considered of value to cuote extensively fron the section dealine with prediction of success in the over-all area of mathematics:

The seveaty-nine students in this study who had taken mathematics courses earned an average grade point of 22.9 (2.29) in that subject. The zero order correlation coeffieients between University natheratics and each of the predictive criteria is shom in Table XV (reproduced in this study as table I). The highest correlation was betreea unityersity mathematics and the A. C. D. (Q) score. This finding is not surprising as this is the quantitative section of the A. C. F., the mathematical part of the test. The obtaned coefricient $15=.3982$ yields a coofficient of forecasting efficiency $E=.0835$ or 8.35 percent better thon chence. As this wes the highest zero order corvelation of all the independent variables with the criterion, it may be said that none were high anough to be significantly predictive of suecess in university mathematics.

- . . When partial coefficients of correlation hed been corputed, the highest coefficient was still that

13Dorothy h. Barrett, MDifferential Value of Q and L Scores on the A. C. R. Psychological Lranination for Prediction Achievement in College Hathematics, " Jourat of Psychology, XXXII (April, 1952), 205-207.
between A. C. D. (Q) average and university mathematics, though it had decreased from . 3982 to . 2403. The coeffim cient for raading aptitude changed from $r_{13}=.1801$ to a negative $\$_{13.2456}=-.0512$, indicating that reading speed and good general vocabulayy are by no means essential to success in university mathenatics.

The multiple coefficiont of correlation $\mathrm{R}_{2} .23456=.4519$ yields a coeficient of forecastiag efficionty it $=.1070$, an increase over any single variable of . 0235 or 2.35 per cent better than chance

The rogression equation gives the prodicted grade point in mivorsity inathematics multiplied by ten. The aigua error of the predicted grade is 8.83 (.883). This indicatos that if the univeraity grade point be predicted from the five tariables used in this study, sixty-eight percent of the achieved grades would be within .863 grade points of the predicted grade points. 34

TABTE $\mathbb{I}^{\text {² }}$

 AVERACE IT UNIVERSTTY MATHMLATICS AND THE FIVE PaBdICRIVE GRTTERTA

Variables	H. S . Average	Reading Adt.	heading Comp.	$\begin{array}{r} A \cdot C . \\ \\ \hline \end{array}$	A. C. E.
Univ. Math.	.32	. 18	.27	. 40	. 28
H. S. Av.		. 16	.33	. 39	. 25
Readins Apt.			.78	. 28	. 62
Reading Comp.				.33	. 52
A. C. T. (a)					. 57
A. C. D. (L)					
neans	2.60	42.60	51.13	52.71	56.57
Sigmas	. 53	7.00	6.51	27.68	27.46

工符. S. Newhall and C. D. Snoddy, "The Relation of Reading and Other Criteria to University Success," Unpublished Master's Thesis, (Seattle, 1950). pp. 80-103.

Shirley conducted a study at The Oklahoma Agricultural and Mechanical College in which an attempt was made to detemine the value of certain placement tests given to students eatering the mathematies progran at the freshan level. An attenpt was also made to determine the best time to give the tests:

All students who enrolled at the oklahoma Agricultural and 解chonical Gollege for the tall term of 1948 and who were entering a school where methematics is required, were required to take two mathematics placement tests. previous to enrolling. They were the Cooperative Algobre Test, Revised Series Form S, and the Cooperative General Mathematic test, Revised Series. Fom 0, distributed by, the American Council on Education. The tests will hereafter be kown as T_{1} and T 2 respectively.
. . .. During the third week of school the Cooperative Algebra Test, Revised Series, Fomat hereafter know as T3, was given . .. 15

Shirley sumarized his findings as follows:

1. In predicting mathenatics grades for students who enrolled in Mlementary and Business Arithmetic, none or the placement tests given are of any value.
2. In prodicting graces for students who enpolled in Intermediate Algebra, College Algebra, Trigonometry, and Gollege Algebra-Trigononetry, each of the three tests is of velue, although the grades for students anrolled in Intemnediate Algebra are not prediceded as well by any test as the grades of students carolled in nore advanced courses.
3. In viev of the fact that II and I3 have higher correlation coefficients and lower standard exrors of estimate and that T_{2} does not assist by predieting grades above that wich can be done by T_{2} and T_{3}, it seens that T2 can be omitted with no loss of information.
4. By observing the test means, it may be noticed that the students who made higher scores on T1 showed a greater gain in kowledge during the review than those who made the lower scores.

15Walter Warren Shirley, Whe Use of Placement Tests in Treshman Hatheratics;" Unpublished Master's Report, The Oklahoma Agricultural and Mechanical College, 1949, pp. 5-6.
5. Students who have had four semesters of high school algebra can be expected to handle College Algebra and need not be required to take the placenent tests.
6. Students who are qualified to take College Algebra are equally qualjfied to take Irigonometry. 16

Hamah ${ }^{17}$ compared the value of hish school gredes in subject-matter areas with cooperative test scores in the same areas. The Cooperative General Mathematics Test scores were more closely related to success in college mathematics than were high school grades in mathematics. This was also found to be true in other subject areas. Hannoh concluded that his study offered evidence to refute the commony held assumption that high school grades are better predictors of college success than are achievement tests.

Symonds, in a study of the achieveneat of high school students in algebra in relation to their intelligence, concludes that, in general, a high rating in intelligence neans hifh achicvement in algebre and a low rating in intelligence means lou performence in algebra.

Although this study concerned high school students, there is no reason to believe that these findings would not be equally true for college algebra students. There is no evidence in the study, however, to support such an inference. Symonds makes this interesting comment:

Mathenaticians plead for a compulsory first year high
school course; mathematicions also plead for a mainte-
nance of past standards. The two are incompatible. If
the values of algebra are achieved only by those wo acquire a certain ability, as the writer believes, then en elective course comparcble in its standards of diffim culty with the course of the past is the solution. If it is believed that certain values are important for all,
$16_{\text {Ibid. }}$, p. 45.
I/Joseph V. Hannah, "A Comparison of Cooperative Test Scores and High School Grodes as Leasures for Predicting Achievement in College," The Journal of Apolied Psychology, XXIII (April, 1939), 289-297.
then different courses must be planned to accomodate individual differgres and to allow all who can to profit by a more rigorous course.

We favor raising the current passing standard. It is absurd to allow pupils to take algebra for a year when the final result is so meagre and the final ability so low as at the present. If this passing standard is roised, a more thorough and substantial course could be given with greater value to those taking it and less waste for those now taking algebra but not neeting this standard A standard corresponding to an alpha score of 100 (I. Q. of 110) would mean that approximately one half of the secondary school population of the country could not come up to this standard in a year's time By and large, high intelligence means high ability in algebra, and low intelligence means poor ability in algebra. Of the twentytwo brightest pupils out of the 100 , seventeen will be above the average in algebra and of the twenty-two stupidest pupils, seventeen will be bolow the average in algebra. ${ }^{18}$

Newhall and Snoday report a study by Stright dealing with the
relation of Reading Comprehension to the sclution of algebraic problems:
A high school freshnari class, seventy in number, took ninth grade algebra from 3tright. He divided the class into two groups to which he refers as groups A and B. The two groups were evenly divided as to size. No particular factor influenced the grouping of the class. Growp A was used as the experimental group and Group B becane the control group. At the beginning of the school year the lowe Silent Reading rest, Form As was administered to both groups. The results of this test showed a difference of 92 between the mean scores of the two groups in favor of Group 3. This difference fell within the probable error of the test and had, therefore, little significance.

Stright had Group A for an activity hour once a week. During the first week this hour was gpent studying The Student's Guide to Efficient Study. 19 The students were also given material on efficient stuay habits taken from courses in educational psychology. This inaterial was

18percival M. Symonds, "Special Disability in Algebra," Columbia University Contributions to Education, No. 132, (New York, 1923), p. 70.

IVLuella Cole and Jessie Mary Ferguson, The Student's Guide to Efficient Study, (New York, 1935), p. 38.
taught as a subject in itself with class recitation; drill, and tests. The pupils were taught how to read and how to study. 20

In Jamary the Henmon-Nelson Test of Ifental Ability was adninistered to both groups. The results favored Group A with a difierence of .42 between the nean scores. Little significance could be attached to this difference as it was within the probable error of the test. The remedial class was contined for Group A throughout the second sanester. At the end of the school year a bettery of the tests was given to both groups. The results of the experiment were as follows:

1. The experimental group, which received the specific training in reading, advanced from an average score in reading comprehension of 77.06 to 107.66 , an increase of 30.78, whereas the control group progressed from 78 to 89.3, an increase of only 11.3. In other words the experimental group increased from a reading grade level of 9.5 to 11.8 whereas the control group increased from a reading grade of 9.6 to only 10.6 . The latter of course, should be the normal development as revealed by the Iowa Silent Reading Test.
2. The average score on the cooperative Algebra Test, made by the experinental gromp was 26.63 whereas the mean score of the control group was only 13.76.
3. The differance between the mean scores on the total reading comprehension and the algebra tests were proved statistically to favor the experinental group 98 times in 100 grong groups similanly selected. 21

Stright stated the conclusions of his study as follows:
First, it is obvious thot a definite relation coes exist between a student's ability to read with comprehension and his skill in solving algebraic problens. The Cooperative Algebra Test, Elementary Algebra Through Quadratics, Form 1936, is conposed lergely of statenent problems. The experinental group in this investigation tho received the spacial training in reading made a noteworthy gatin over the control group in this test.

Second, a better knowledge of reading mechaniea does increase a student's reading comprehension.

[^11]Third, this increase in reading comprehension does carry over into the student's ability to solve algebraic problens.

Fourth, word meaning should be stressed in the teaching of algebra.

In the miter's opinion a number of inferences can also be made as a result of this investigation. First, if this increase in reading comprehension carries over to an increase in the student's ability to solve algebraic problemss it would seem likely that it would also carry over toward an increase in the ability to master othex academic subjects. Of course, the experiment does not prove this inference. Fuxther investigation is necessary. 22

Bruce, 23 after a rather comprehensive review of correlation studies, sumarized his findings regarding the correlation coefficients between university nathematics average and various standard tests. The sumary is presented in Table II.

22Tbid. p. 372.
23Bruce, op. cit., p. 47 .

TABER II*
SUMMARY OF ZEPO ORDE CORRGLAPTOM COEFTTCTERES BETWEEM university hathematics average and. STARDARDIZED TESTS

[^12]Kinzer and Kinzer ${ }^{24}$ studied 1244 studenta at Ohio State University who took college algebra and subsequent mathenatics courses, students were compared on performance on the Ohio State Psychological Examination and on grades made in mathematics courses.

For the 326 persons who finished the calculus course at Ohio State University which corresponds in content to the calculus course involved in the present study, a correlation coefricient of . 13 was found between 0. 3. P. E. scores and grades in calculus, and a correlation of . 18 was found bewen O.S. P. 2. scores and grades in college algebra. The grades in college algebra and the grades in calculus were related by a correlation coefficient of 34 ; trigonometry and calculus grades, 47; and elermentary calculus and calculus grades, . 45.

The mean grade point for the 326 cases was 2.9 in college algebra. and 2.4 th calculus. The standard deviation was .9 in college algebra and 1.1 in calculus.

When all grades in courses prerequisite to oflculus and O. S. P. E. scores were combined into a prediction tean, a multiple correlation coefficient of .61 was ontained with a standand error of .03 .

Studies in General Prediction, Including Mathematics
In a number of studies an attempt was made to predict academic success in the bobal college program or in several areas, including mathematics. Some of these studies used prediction factors common to the present study and hence were of considerable interest.

[^13]Brom studied ontering freshmen at Long Beach City College, Califormia. The study compared scores on the A. C. E. Psychological Examination and grades rade in what he celled quantitative subjects and Inguistic subjects.

Sone partinent infomation from Brown's study follows:
Since counselors and adnission officers in colleges make extensive use of tests to decide the academic future of many atudents, it is important that thore should be regular evaluations of the measuring instruments in use. Vexy ijttle published evjdence is available to indicate that the Q and L scores given by the A. C. E. have sufficient validity to use as the basis fors djfferential predictions in the college field. A summary of the relationships befiween A. C. E. scores and grade point averages found by Brown is presented in Table III.

TABLE III
CORRDLATON HETHEATHEA.C.E. SCOMS AND GRADE POIRT AVERAGES

A second phase of the problen was concemed with the mswer to the individual student's request for information on the meaning of his scome in terms of the possibility of securing a satisfactory grade point average in a specifie course of study.

Here the counselor deals with the individual who is no Ionger a menber of the entire group for wich the correlations have boen completed. It becones necessary to have some knowledge of a critical score below whioh it is unwise to suggest the possibility of successfal work in the desired curriculun. Good counseling would sem to moke this approach desirable.

- . the inadequacy of the 0-score for predicting the probebility of an individual achieving a C average in quantitative subjects is illustrated by the fact that, while 82% of those raking a Q-score at the 80 th p . c. or
higher, achieve at least a C average, so do 74\% of those rating below the 20th p. c.

In general there appears to be some basis for the conclusion that as a group the higher the scores the lower the possibility of failing to maintain a C average but to set critical scores on which to advise an individual to enter or not to enter specific curricula does not appear possible in this student body. 25
Carter and McGennis ${ }^{26}$ selected, at Western Michigan College of Education in 1949, the one hundred freshmen having the highest grade point average and the one hundred having the lowest average. The mean differences between these two groups were then compared on 46 factors in an effort to determine the effectiveness of each f actor in differentiating between the two groups. A summary of the results of this study is presented in Table IV. It is interesting to note that the first fourteen factors differentiate at the . Ol level of confidence.

[^14]
TABLT IV 7
 COMPARAPIVE SIGNIFIGANCK OR CBRTAZM SEIDOTED FACTORS AS PREDICTORS OF SUCGTSS IN COLIEGE

Satz, 27 in a study of the relationship of eleven variables to academic performance at the University of Washington, reports a study of the relationship between intelligence and academie suceess which uses quite a different and interesting technique:

Sappenfeld ${ }^{28}$ used a rather mique approach to determine the relationship between intelligence and scholastic performance. He first derived what he temed the "effort index" (S. I.) by dividing the high-school marks of each student by his intelligence score. He did this by first. enanging the E. I.'s and intelligence scores into stondard scores. Next, by correlating the intelligence scores of students within certain E. I. ronges with college grades. he was able to arrive at higher zero-order coefficients of correlation (\mathbf{x}). For students in the upper I. I. levels, he obtained an x of .816 between intelligence and college performance. In other words, students with high E. I. Is were found to achieve more closely bo their measured aptitude for scholastic work.

Humber 29 conducted a study of the relationship of reading efficiency and achieveneat at the University of dimesota in 1942. Subjects of the study were seniors in college and several major subject-matter fields were studied. The Humber study was of particular interest here because reading was one of the factors of the present study and students well glong in their major field of mathemeties were studied. The following subject-inatter areas were considered: Five Year Mursing, Three Year Wursing, Science Specialization in Agriculture, Bnglish Education, Music Education, Social Work, Social Science Education, and Science Education. Humber lists the following five conclusions:

[^15]1. This study presents evidence which shows that the zero order correlations between honompoint ratio and neasured scholastic aptitude are not as high among Seniors as aight be expected from knowledge of prediction studies in the Freshman year.
2. In all of the curriculum groups, with the exception of Dietebics, at least one factor other then scholastic aptitude, such as certain reading test scores, are correlated as high or higher with H. P. R. than is A. C. \mathbb{E}.
3. Scores on the reading tests used in this investigation are shown to be Irequently related to achievenent in the humaities groups (English tducation and Music Education), but infrecuently related to aehaevement in those curricula Grphasiting setence metertat.
4. It is shown to be impossible, for the five-Year farsing and English Groups, to develop a sighificant regression, based upon scholastic aptitude and the scores on reading testis used in this investigetion, to prediet honor-point retio in the fields.
5. This study has certain practical implications for reading clinicians operatiag in situations comparable to the University of Minesota. In this study it becomes clear that when a student at the University of ifinnesota reaches the Senior year of a certain curriculun he finds thet the difference between an A and a 0 grade is less dependent upon scholastic aptitude than upon other factors such as reading efficiency. This should not be taken to signify that intelligence is less important than reading skills. If the senior year is attained the students within a curriculum are so homogeneous with reference to scholastie aptitude that other factors such as reading efficiency may make the difference between high and low scholarship. In those cases where reading efficiency is apparently essential for scholastic success, as this study shows it to be in Englich Education and husic education, it seas desirable that students be encouraged to develop the reading skills which have been demonstrated to be signilicantly related to academic success in their major field.

Sunmary

An attempt was made in the chapter (I) to call attention to the various types of studies and the extensiveness of the work done in the area of prediction of academic suceess in college, (2) to select and describe studies of college entrance requirenents as related to high school background, entrance examinations, achievement and placement
tests, (3) to sunmarize selected studies in prediction of college mathematics grades, and (4) to summarize selected studies in prediction of general academic success in college, including the area of college mathematics.

CHAPGTE IV

PRESTMTATION OF DATA AN ANALYETS OF REGULTS

The purposes of this chapter are to (1) present evidence to show that the present sample was representative, (2) present the data and analyze the results from the present study, (3) prescht procedure for prediction of grodes in calculus at this institution, and (4) present scatter dfagrans an aid in analyzing correlation data.

The Present Sanple and Others Compared
A consideration fundanentil to any interpretation or conclusions drawn from this study was whether or not the subjects chosen were representabive of the population who enroll in a progran of mathematios and persist through calculus at this institution.

Consequently, the students enrolled in calculus in the fall of 1949 and in the fall of 1951 were chosen for comparison with the subjects of the present study. It was thought best to choose groups which represented a period of time at a considerable distence from the present but not so far back as to include classes wich were largely made up of veterans of vorld Wax II.

Data obtained for these two groups of calculus students included the grades made in calculus, the Q-score, the I-score, and the total score on the A. C. E. Psychological Examination.

Data in Table V were presented to show the comparison between the 1951 and 1953 calculus groups on mean performance in the A. C. B. Psychological Examination, variability, correlation between Q-score and grade
made in calculus, and correlation between L-score and grade made in calculus.

TABLE V
COPPARISON OR PEPCORLAKE OR A. C, E. PGYCHOLOCTOAL badiluarton of 1951 and 1953 Gatculus grouns

Statistics	Year		t value
	1951	1953	
Number .	132	160	
Mean Total Score.	111.78	111.00	. 33^{*}
Standard Deviation .	20.93	18.66	1.43*
mor Q-scone and calculus grade	. 20	.16	
Comesponding Fisherts e-function	. 20	.16	$.34{ }^{24}$
for L-score and calculus grade.	.13	. 10	
Corresponding Fisher's z-function	. 13	. 10	$.25^{*}$

Toifferences not signilicant at the 01 level of conidence.
In Table VI the sane conpartsons were made between 1949 amd 1953 calcelus groups.

TABLE VI

COMARESOR OR PMDOROMCE ON A. C. D. PSYCHOLOGTCAL EXAMTMATOA O 1949 and 1953 calculus groups

Statistics	Iear		t value
Pruber -		160	
Mean Total Score.	109.41	111.00	. $85^{5 \prime}$
Standerd Deviation	19.83	18.66	. $92{ }^{\text {k }}$
r for e-score and Calculus Grade	. 17	. 16	
Comesponding Fisher's z-fwnetion	.17	. 16	$.10^{* *}$
x for l-score and Galculus Grode	. 09	. 10	
Corresponding Fisher's z-fimnction	. 09	.10	. 10^{*}

[^16]Appropriate fommas were used to compute the reliability of the difference in mean perfomance, variability, and comelations.

No differences in either of the groups were found to be significent at either the .01 or the .05 2ovel of confidence.

These results fumish strong evidence that the samples were dram from the sane population and that the 1953 grovp is representative of that population which enrolls in a matheatics progrem at this institution and persists through calculus.

The Intercorrelation Matrox

Aftor the data on the subjects of thas study were obtained as discussed in Chapter II, the next step in the procedure was to have these data punched on Intemational Business 符ochine cards, as it wes eontenplated that all calculations which would lend themsclyes readis to International Business hachine procedures would be hondled in this manner. The decision to use Intemational Bustness Pachine procedures mas based on the prenise that the calculations could be made much mare repidy and that there would be no doubt about their accuracy. The amount of computational work, if menually computed, would moke a study of this nature prohibitive.

Baste to all future calculations end comparisons in the study was the interconvelation matris. The first otep in obtaining this intercorroletion matrix was to conpute (by I. B. M.) the sumations, the sumatione of the squares, and the sumations of the cross producta for each of the fectore involved in the study. thilizing this intomation, tero order comrelations were coraputed between all factors involved in the stuay. All machine and monul calculations were made swice. The intercomplation data are presented in Table VII.

[^17]BASIC INTERCORRELATION TABIE DERIVED FROM DATA ON THE 1953 CALCULUS GROUP

Factors	1	2	3	4	5	6	7	8	9
$\underset{\substack{\text { Means } \\ \text { Sigmas }}}{\text {. }}$	$\begin{aligned} & 6.02 \\ & 1.66 \end{aligned}$	3.08 .61	47.26 7.92	63.74 12.72	35.24 10.37	82.84 24.06	$\begin{gathered} 14.64 \\ 5.02 \end{gathered}$	$\begin{aligned} & 2.62 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 1.16 \end{aligned}$
1. Sem, of H. S. M.		. 24 **	. 18^{*}	.11	. 32 **	. 05	. 05	-. 06	. 03
2. G. P. A. H. S. M. . .			.31**	. 19 *	.21**	.23**	.21**	.28**	. 11
3. A. C. E. Q-score				.61***	. 40 **	. 43 **	.38**	. 38 \%	.16*
4. A. C. E. Imscore26\%*	. 74 **	.25**	.29**	. 10
5. Cooperative Algebra Score						. 16^{*}	. 27 **	.16*	. 02
6. Reading score 19 *	.23**	. 10
7. Reasoning Test23**	. 02
8. Grade in College Algebra									. 34 **
9. G. P. in Cal.culus									

[^18]
Analysis of Correlation Data

A correlation of .203 wes significent at the , 01 level of coafidence, and a correlation of .157 was significent at the . 05 level for the nuaber of cases oonsidered in this sudy. In the intercorrelation table, incolving 30 conrelations, 20 were signiacmat at the . 01 level, and 6 werc significant at the .05 Ievel of contidence. Ten cormelations were not suticiciently large to be significent at the . O5 level of confidence. The majority of the intercorreletions between the independent factors wre about that would be expected. It was of particular value to note thet the correletion between the A. C. I. L-scores and the reading test scores was .74. The relatively high correlation indicated that thepe two tosts measured essentially the same thing. Hence, in one of - these tests was used as a predictor, the other would add very little to the accuracy of the predietion. The comrelation between the A. C. E. L-scores and the A. G. E. g-scores was .61. There was some question as to the value of using both of these lactors as predictors.

The numbex of senesters of hich school mathematics completed and the scores on the reasoning test had a correlation coerifcient of .05 which represented very Little relationship. On the basis of this study it appeared that the ability to reason mathenatically was not one of the outcones of taling a large quantity of mathemetics in high school.

Three hajor questions were posed in Chapter I: (1) What was the relationship between each of the factors and success in college aleebra? (2) What was the relationship between each of the factors and success In calculus? (3) What was the comparison of these relationships? In order to show these rolationships rore clearly the informetion was presented separately in Table VIIT. Deta in Table VII indicates that all
of the factors, except the numbw of senesters of high school nathematies completed, wore significantly related to the grades made in college algebra.

TABTE VITI

COLLBR DCDBDA MWD CALGUUS

Factorg	Correlation Betwen Grade In Collego Mgebra Calcuns And Each Factor And Fach rector
Sen. H. M. H.	-.06 .03
G*P.A. in H. S. ${ }_{\text {N. }}$	$.28^{\text {kr }}$
A. $0.4 . \mathrm{e}$ - Score	$.38^{* * *} .16^{*}$
A. C. B. I-Score	.29** . 10
Cooperative Algebra Test score	$.16^{*} .02$
Reading Test Score	$.23{ }^{\text {\% }}$. 10
Reasoning Test23*** 02
Grade in College Algebra	. $34^{\text {星 }}$

[^19]pactors significat at the . 01 lavel of confidence and theix correlation coefincients were: A. C. R. Q-score, .38; A. 6. I. I-scoxey .29; grade point average in high school mathematice, .2t; scores on the reasoning test, .23; and scores on the racoing test, .23. The comelation coefficient between the Cooperative Algobra Test scores and grodes in college algebra was . 26 which was significant at the .05 Level of confidence. The results of the Cooperative Algebra nest are used for the purpose of placing mathematics students in their first alsebra courses at this institution.

The coefficient of comrelation between the number of senesters of high school mathonthics completed and grades in college algebra was -.06.

Although this was a very smail coefficient of correlation, it was of considerable interest that it was negabive. For the students of this study, it was evident that the quantity of mathenatics completed in high school had very little to do with the quality of work done in college algebra. This was in direct contrast to one of the conclusions reached by Shimpey in which he stated that, "Students who have had four semesters of high school algebra can be expected to handle college algebra and need not be required to take the placement tests."

There are, however, several studies which lend support to the results of the present study in this respect. Sejfert, ${ }^{4}$ in speaking of college-preparatory courses, said, "The courses thenselves may be very much worthwile, but as true and valid preparation for collage they are notorious for shooting rather wide of their mark." Carter ${ }^{5}$ remarked that, Weeting the conventional unit requirement for college fails to disclose satisfactarily the fitness of many students for college. ${ }^{\text {a }}$

In regard to the second question conceraing relationship between the factors and grades in calculus, it was found that the coefficient of correlation between A. C. E. Q-scores and grades in calculus was .16. This correlation was significant at the . 05 level of confidence. Grades in college algebra and grades in calculus were related by a coefficient of correlation of .34 which was significant at the .01 level of confidence. This was an especially interesting result as .34 was also the coefficient of correlation between college algebra grades and calculus grades obtained by Kinzer and Kinzer ${ }^{6}$ at Ohio State University. They
${ }^{3}$ Shirley, op. cit., p. 45.
4seyfert, op. cit., p. 129.
5arter, pp. cit., p. 349.
GKinzer and rinzer, op. cit., p. 183.
found a coexficient of correlation of .13 between the Ohio State Psychological Rxamination scores and grades in aulculus compared to the .16 correlation between Q-scores and grades in colculus in the preseat study.

There is sone suppowt from other investigators for the belief that such comelations might be anpected to be low. One of the concluding statenents made by lumber'7 was:

This study presents evidence mich shows that the zero order correlations between honor-point ratio and measured
scholastic aptitude are not as high anong Sentors as might be expected from knowledge of the prodiction studtes in the Freshman year.

This rowark mas made conemming over-anl atrerge in subject-matter fields, not in speciric subjects.

In onsuer to the third question conceming the compaxison of the relationships between each factor and grades in college algebra and grades in calculus; it mey be said that all factors except one, semesters of high school mathenatics completed, were moxe closely related to mades in college algebra than to grades in calculus. In regard to senambers of high gchool mathonatics completed, the correlation so nearly approached sero that a comparison was not feasible.

A possible explanation for these low correlations is that the subjects of the study form a nore homgeneous group than, for example, a group of college freshmen. Considerable natuxal selection took place between the tive of enrolluent in college algebra and encollment in calculus. Wo one who was not capable of passing the sequence of courses leading to the study of calculua was represented in the sample used for this gtudy. It is a well lmom fact thet the more honogeneous the

7humber, op. cit., p. 25.
the group, the smaller the coefficients of correlations tend to be. The relationship between the factors of this study and sticcess in calculus, although indirect, may be much greater than the coefficients of correlation indicate. It may well be that success in caleulus depends to a very great extent on successful performance in the sequence of courses prereguisite to calculus and thet acadente periomance in these prerequisite courses is closely related to the factors considered in this study. A very interesting and profitable study would be to compare the relationship between acaderic success in each of the courses in the sequence and the prerequisite course.

Prediction of Grades in Calculus

The fourth major task was to combine the most promising factors into a prediction team for grades in calculus.

The best single factor for prediction of grades in calculus was the grade in college algebra. The next best factor was the Q-score. These were the only two factors having a correlation with the criterion grade significant at either the .05 level or .01 level of confidence. Regression equations were fomulated and stadard errors of estinate were calculated by the use of appropriate formalas: (1) for predicting the calculus grade fron grades made in college algebra and (2) for predicting the grade in calculus from a conbination of the two factors, grade in college algebra and a -score.

In order to denonstrace that factors not having a correlation with the criterion significant at the .05 level of confidence would edd little
${ }^{6}$ Garrett, op. cit., pp. 373-396.
or nothing to the accuracy of the prediction, the grade point average in high school mathematics, which had the next highest correlation with criterion grades, was used in eonbination with Q-score and grade in college algebra to form a third regression equation and standard error of estimate. Appropriate formulas were chosen from Garrett. 9

Brief sumaries of these three prediction problems follow:

$$
\begin{array}{ll}
\left(X_{1}\right) \text { Calculus Grade } & \left(x_{2}\right) \text { College Algebra Grade } \\
\mu_{1}=2.09 & M_{2}=2.62 \\
\sigma_{1}=1.16 & \sigma_{2}=.89
\end{array}
$$

$$
r_{X_{1}} X_{2}=.34
$$

The regression equation in score form was $\bar{X}_{1}=.45 \mathrm{X}_{2}+.92$, from which the nost probable grade in calculus could be precicted if the grade in college algebra was known. The standard error of estimate was 1.16 grade points, which meant that in two-thixds of the cases the actual grade received in calculus at this institution would fall within 1.16 points of the predicted grade.

Using the Q-score in combination with grade in college algebra as predictors of grade in calculus, the following calculations were necessary:

$$
\begin{aligned}
& \left(X_{1}\right) \text { Calculus Grade }\left(X_{2}\right) \text { Q-Score } \quad\left(X_{3}\right) \text { College Algebra Score } \\
& M_{1}=2.09 \quad M_{2}=47.26 \quad M_{3}=2.62 \\
& \sigma_{1}=1.16 \quad \sigma_{2}=7.92 \quad \sigma_{3}=.89 \\
& r_{12}=.16 \quad r_{13}=.34 \quad r_{23}=.38 \\
& r_{12.3}=.04 \quad S=1.23=1.08 \\
& \text { T13.2 }=.31 \quad \sec (\mathrm{~B}) 2.13=7.21 \\
& \mathbf{r}_{23.1}=.35 \quad \operatorname{SEGB} .12=77 \\
& E_{I(23)}=.37 \\
& b_{12.3}=.006 \quad \beta_{1.23}=.04 \\
& b_{13.2}=.44 \quad \beta 13.2=.34
\end{aligned}
$$

9Ibid. pp. 388-395.

The multiple regression equation in score form was $\bar{X}_{1}=.006 \mathrm{X}_{2}+.44 \mathrm{~K}_{3}+.66$, and the standard error of estimate was 1.08 , meaning that if the Q-score and the college algebra grade were known the calculus grade could be predicted in at least two-thirds of the eases Within $1.0 s$ grade points of the actual grade received at the institution.

Phe standard error of estimate for the second equation was . 08 less than for the first. This was enough improvenent to make it desirable to use the second equation.

The beta weights provided a measure of the comparative importance of the independent factors in predicting the critierion grade. Thas, a beta weight of 34 for college algebragrade was almost nine tines as important as the beta weight of . 04 Ror Q-score.

The addition of the factor, grade point average in high school mathematics, made very little difference in the accuracy of the prediction as illustrated in the following sumary:

$$
\begin{aligned}
& \left(x_{1}\right) \text { Calculus }\left(X_{2}\right) \text { Q-score (} x_{3} \text {) col. Alg. }\left(X_{4}\right) \text { G.P.A. in H.S.H. } \\
& \mathrm{M}_{2}=2.09 \quad \mathrm{M}_{2}=47.26 \quad \mathrm{M}_{3}=2.62 \quad \quad \mathrm{M}_{4}=3.08 \\
& \sigma_{1}=1.16 \quad \sigma_{2}=7.92 \quad \sigma_{3}=.89 \quad \sigma_{4}=.61 \\
& r_{12}=.16 \quad r_{23}=.38 \quad r_{34}=.28 \\
& r_{13}=.34 \quad r_{24}=.31 \quad r_{14}=.11 \\
& r_{12.3}=.04 \quad r_{13.2}=.31 \\
& r_{14.3}=.02 \quad r_{14.2}=.06 \\
& r_{24.3}=.23 \quad r_{34.2}=.19 \\
& x_{12.34}=.04 \quad r_{13.24}=.31 \quad r_{14} .23=.01 \\
& R_{1(234)}=.37 \\
& \sigma_{1.234}=1.08 \\
& \sigma_{2.134}=7.05 \\
& \sigma_{3.124}=.76 \quad \sigma_{4.123}=.57 \\
& b_{12.34}=.01 \quad b_{13.24}=.44 \quad b_{14.23}=.02 \\
& \beta 12.34=.04 \quad \beta 13.24=.34 \quad \beta 14.23=.01
\end{aligned}
$$

The multiple regression equation involving these three independent variables was $\bar{x}_{1}=.006 X_{2}+.44 x_{3}+.02 X_{4}+.60$. The standard error of estimate was 1.08 , representing no improverent over the prediction obtained by the use of the two independent factors, Q-score and grade in college algebra. Therewas no inprovement in the mutiple R. The beta weights for Q-score and college algebre remained the same; 04 and .34 respectively. The beta weight for grade point average in higin school mathematics was .01, indicating that this factor accounted for only a Very small portion of the varience in calculus grades.

In view of the above analysis it would appear that the regression equation involving the g -score and college algebra grade is most desirable for predicting the most probable grade that a student will moke in calculus.

Prediction of Grades in Galculus

Table TX, which can be used for predicting calculus grodes, was constructed, using this equation, $\bar{x}_{1}=.006 X_{2}+.44 x_{3}+.66$, in which X_{1} represents grade predictad for calculus, X_{2} represents Q-score, and X_{3} represents grade in college algebra.

To use this table for predicting the most probable grade in calcuIus, locate the grade point directly below the students grode point in college algebra and directly to the right of his g-score, and round the obtained grade point to the nearest whole number. Trananute the ob-圂 tained letter grade to the corresponding letter grade. For example, if a student's Q-score was 53 and his college algebra grade point was 2, locate 1.87 in the $50-59$ row directly under the heading 2 . Round 1.87 to 2, and transmute to the letter grade "C". In approximately two-thirds of the cases a students actual grade received will probably fall within one grade point of the predicted grade (standard error of estimate was I.08).

TABLE IX
PREDCTED GRADE POINT IM CALCULUS BASBD ON O-SCORE AND GRadE ID COLTHGE ALGRBRA

Q-Score	Grade Point in College Algebra				
	0	1	2	3	4
80-89	3.17	1.61	2.05	2.49	2.93
70-79	2.13	1.55	1.99	2.43	2.87
60-69	1.05	1.49	1.93	2.37	2.81
50-59	. 99	2.43	1.87	2.31	2.75
40-49	.93	1.37	1.81	2.25	2.69
30-39	. 87	1.31	1.75	2.19	2.63
20-29	. 81	1.25	1.69	2.13	2.57
10-19	.75	1.19	1.63	2.07	2.51
0-9	. 69	1.13	1.57	2.01	2.45

In many instances the counselor or teacher may wish to kow only whether a student is most likely to do average, high quality, or unsatisiactory work in calculus.

For a very quick and convenient prediction of the grade category in wich a student's work will most likely fall, reference may be made to the prediction chart in Figure 1. The "Cl category represents average performonce, the "DF" category represents unsatisfactory performance, and the "AB" category represents high quality perfomance.

To use this chart for predicting the most probable grade category In calculus, locate the point directly above the student's grade point in college algebra and directiy to the right of his Q-score. For example, if a student's Q-score was 30 and his grade point in college algebra was 3, the point directly above 3 and directly opposite 30 falls in the "C"
cetergary.

 volzega alybro.

was found to be 81 , and substituting 1.5 for X_{1} and 0 for X_{2} in the equation, X_{3} became 1.91. A line was draw between the point . 81 to the right of a q-score of 50 and the point 2.91 to the right of a a -score of 0 .

The line separating the "AB" category from the "C" category was located in a similar nemer. A grade point of 2.5 separates the ubr and no grades.

To test the effectiveness and accuracy of this chart the grade category of each student in this study was predicted and compared with the actual grade made in calculus. Table x is a contingency tabla reprem senting the relationship between predicted and actual grade categories.

TABLE X
COMPARISON OR PRHDICTED AHD ACTUAL GRADE CATECORTES IN CATCULUS

Predicted Grade Category	DF	Actual Grade Category		
DF	$\begin{gathered} (3.9) \\ 9 \end{gathered}$	$\underset{4}{(4.9)}$	(5.2)	亚
0	$\begin{gathered} (32.9) \\ 32 \end{gathered}$	$\begin{gathered} (40.3) \\ 43 \end{gathered}$	$\begin{gathered} (43.1) \\ 42 \end{gathered}$	117
$A B$	$(8,2)$	$\begin{gathered} (10.1) \\ 9 \end{gathered}$	$\begin{gathered} (10.7) \\ 16 \end{gathered}$	29
Total	45	56	59	160

Independence values are represented by figures in parentheses; they give the number of people whom we should expect to find in the various categories in the absence of any real relationship. For example, if there were no association between predicted and actual grade categories, we should expect to find, by chance, 3.9 persons in the "DF" predicted,
"DF" actual category. There were 9 persons in the category. Other entries in the table have a similar meaning.

To detemine the significance of the relationship between predicted and actual grade catagories, the coefficient of contingency was computed and the chi-square test of significance was applied. Appropriate formuas were chosen for these computations. 10

The contingency coefficient wes .31, and the chi-square value was 17. A chi-square value of 13.28 is significant at the .01 Ievel of confidence. It may be concluded that not once in one hondred tines would a chi-square value or a contingency coefficignt as large as those obtained occur if there were no association between predicted and actual grade categories.

Relationships Revealed by Scattergrams

The final purpose of this chaptex was to present scattergrams or two-way distribution tables bewteen grades received in calculus and in algebra, and each of the factors in an effort to make the data more useful and meaningful. Data presented in the seattergram reveal graphically and numerically at a glance some very pertinent information which probably would be overiooked if correlation data alone were studied. Percentages of students falling in certain catogories regarding perfomance on the independent factors in reletion to grade received in calculus and in algebra were figured and should prove helpiul in interpreting the data.

Grade in Calculus and Bemesters of Hich school hathematics. iable XI was prepared to display the relationship between semesters of high

$$
\text { 10Garrett, op. cit. , pp. } 368,254 .
$$

school mathamatics completed and grade in calculus.

TABLIS XI
 MOD GRADE POLIT In CALCULUS

Scmosters ofH. S. M.	Grade Potnt in Calculus				
	0	1.	2	3	4
8	3	8	15	10	6
7	4	3	3	9	1
6	5	0	20	13	4
5	1	2	4	1	3
4	6	3	\%	6	3
3	0	2	2	0	1
2	0	0	4	2	0
1	0	0	0	0	0

An ewaination of the data presented shows that of the students in this study who hed four or more sencsters of high school mathematies, 87 per cont passed calculus and 13 per cent failed. On a probability basis, computed on the performance of this sample, these figures indicated that the chances were about 9 in 10 that a student at this institution tho had as many as foum semesters of mothonatics in high school would pass calculus and the chances of fatlure were about 1 in 10 , The chances were 7 in 10 of making a "C" or better in calculus and the chances of making less than a "Cll were 3 in 10 if four or move semesters of high school mathematice were completed. The chances of making a "B" or better in calculus were 4 in 10 and the chances of naking an "A" were 1 in 10. It was also of interest to note that only one person with less than four
semesters of high school mathenatios eamed a grade of "fil and only two eamed a grade of abr. None with less than four semesters of high school ambhaties failed calculus, and two received a grade of apr. Due to the shall number of students trith less than fow semesters of high school mathematics enrolled in calculus, these figures probably ware not very sigaincank.

Although a large numer of semesters of high school mathematies was In no sense a guexantee of satistactory performance in calculus, there was some evidence here to support the inference that a student was more Likely to make a high grade in calculus, an "hn or ug", is he had completed fow on nore semesters of high school mathematics.

Grade in Calculus and Grade Point Average in High School Mathematios. Date were presented in Table XII to show the relationship between grade point average in high school mathematice and grade in calculus.

TABLE XII
 Maphampics hidd grade potni m callulus

$\begin{gathered} \text { G. P. A. in } \\ \text { H. S. N. } \end{gathered}$	Grode Point in Galculus				
	0	1	2	3	4
3.5-4.0	6	4	12	13	6
3.0-3.49	9	5	29	20	9
$2.5-2.99$	2	8	9	4	2
2.0-2.49	2	4	2	2	1.
2.5-2.99	0	1	2	2	0
1.0-1.49	0	1	2	0	0

It was observed that of those students in this study who had a grade point ararage of "C" or betber in high school matheratics, 80 par
cent passed calculus and 12 per cent failed, which incicated that if a student entered this inctitution with an average grade of "O" or better in high school mathematics, his chances were about 9 in 10 of passing calculus and 1 in 10 of failing. The chences that a student would nake a son or betton in calculus were about 7 in 10 , and the chaces of recoiving less than a mil were aout 3 in 10 . The chances of making a "ft or better in calculue were about 4 in 10, and the chences of moking an "A ${ }^{3}$ were a jattle better then 1 in 10. It was also interesting to note that of those students having a grade point average of less than "g" in high school mathenatics, none earmed an Hill in calculus and ony two emmed Mg.

This evidence suggested that there was only a very slight chance thet a student at this institution would do work of "At or "B" quality in calculus without having achieved at least a "C" average in high school mathearies courses.

Grade in calculus and A. C. E. Q-Score. Table XIII was prepared to show the relationohip between A. C. B. Q-score and grade in calculus. Of the students in this study wo made the mean score or better on the quantikative portion of the A. C. F. Prychologieal mamination, it was found that 91 per cent received a passing grade in calculus and 9 per cent received a fanling grade. Speaking in terms of probability, this meant thet students who eamed a mean Q-score or better on the A. C. R. (Q) had more than 9 chances in 10 of pascing the course in calculus as compared to less than I chance in 10 of failure. The chences were about 8 in 10 of making a "C" grade or better in calculus and 2 in 10 of making less than a "C". The chances were about 9 in 20 of receiving "B" or better and about 3 in 20 of receiving an "An.

TABLE XIII
RELATIONSHIP BETWELN A. C. E. Q-SCORE and grade point tiy calculus

Q-Score	Grade Point in Cajeulus				
	0	1	2	3	4
75-79	0	0	0	1	0
70-74	0	0	0	0	0
65-69	0	0	1	0	0
60-64	0	3	2	7	0
55-59	1	2	4	3	3
50-54	2	2	10	7	4
45-49	11	10	21	13	10
40-44	2	2	10	3	0
35-39	2	5	5	3	I
30-34	1	2	3	3	0
25-29	0	0	0	1	0

It was also interesting to observe that only one person having a Q-score less than the mean of the group received an "A" in celculus, and that no person with a Q-score of 60 or above received an $0 F H$ in calculus.

There was good evidence that students at this institution tho had a low Q-score were not at all likely to exhibit a high level of performance in calculus, whereas students with a relatively high Q-score were not likely to do poorly in calculus. If the cutting score had been set at 45, just slightly below the mean for the group, more than one-fourth of the failures and only one "A" would heve been eliminated. The reader should be reminded, however, that merely having a high score on one or a combination of the factors of this study was not necessarily a guarantee
of success in the study of calculus.
Grade in Calculus and A. C. E. I-Score. In Table XIV the distribution of the L-scores in relation to grades made in calculus was displayed. Of the students who scored at or above the nean score on the linguistic portion of the $\mathrm{A}_{\mathrm{C}} \mathrm{C}$. Z., 92 per cent received a passing grade in calcuIus and of per cent failed.

TABLE MIV
RELATIONSHIP BETVETM A. C. E. L-SCORE AND GRADE POMTI IN CALCULUS

L-Score	Grade Point in Caleulus				
	0	1	2	3	4
95-99	0	1	1	2	1
90-94	0	1	1	1	0
85-39	0	0	3	1	1
80-84	0	0	1	0	1
75-79	0	2	1	4	1
70-74	0	1	10	3	0
65-69	3	7	8	3	3
60-64	9	6	14	13	6
55-59	2	1	8	4	2
50-54	1	4	4	3	1
45-49	2	3	3	4	0
40-44	1	1	2	1	2
35-39	0	0	0	0	0
30-34	1	0	0	0	0

Expressed in probability terms, about 9 out of 10 students at this institution whose L-score was at the mean or above had a chance to pass
calculus, and there was about I chance in 10 of failure. The chances were 3 in 4 of receiving a "C" or better in calculus and 1 in 4 of receiving less than "C". The chances were 4 in 10 or receiving "B" or betver and more than 1 in 10 of receiving an "A in calculus.

These percentages were not particularly striking when compared to those below the nean, for 11 per cent or the students having an L-score below the nean received an " A " and 38 per cent received a "Bn or better in calculus, which yielded the sane probabilities as for those who scored at or above the mean. If the comparison had stopped here, it would probably have been concluded that the L-score was of very little value in detemining what the chances were for successful performance in calculus, but a valuable inference was drawn from examining "F" grades in calculus and corresponding L-scores. No student who received an L-score of 70 or above received an uFl in calculus. If the cutting score had been placed at 60, which was about four scone points below mean performance, nearly one-half of the failures in calculus would have been eliminated for this group. Only about 30 per cent of the students making "A" and "B" in calculus made I-scores of less than 60.

Grade in Galculus and the Cooperative Algebra Test Score. Data were preschted in Table XV to show the distribution of scores made on the Cooperative Algebra Test by students of this study in relation to the grades made in calculus. It was found that 87 per cent of the subjects who scored at or above the mean received a passing grade in calculus and 13 per cent failed, Seventy-two per cent made a "CH or better and 28 per cent received less than "O" in calculus. Forty per cent received "B" or better and 17 per cent made "A" in calculus. However, 13 por cent of those who scored below the inean on the Cooperative Algebra Test received
an "A" in calculus and 28 per cent recoived a grade of "g" or better.

TABLE IV

SCORE AND GRADE POTMI IN CALCULUS

Cooperative Algebra Test	Grade Point in Calculus				
	0	1	2	3	4
55-59	1	0	0	2	0
50-54	0	1	5	3	1
45-49	2	1	5	1	3
4,0-44	1	2	3	4	1
35-39	17	13	23	24	7
30-34	1	4	6	2	3
25-29	3	2	3	1	2
20-2t	1	2	5	0	0
15-19	1	1	4	0	0
10-14	0	0	1	2	1
5-9	0	0	1	2	0

A comparison of these percentages gave very little evidence to support a belief that a score above the mean on the Cooperative Algebra Test vas indicative of high level performance in caloulus. It was also observed that there was no place near the mean where scores could be cut in order to eliminate a large portion of the failures.

Grade in Calculus and the Melson-Deny Reading Yest Score. Data were presented in Table XVI to show the distribution of scores on the reading test in relation to the grades made in calculus. of the students scoring at or above the mean, 91 per cent received a passing grade and 9 per cent failed. Seventy-five per cent received grades of the or
better in calculus and 25 per cent nade less than a nc". Forty-one per cent made "Bn or better and 14 por cent recoived "A" in calculus.

TABLin ANE
WLATTOMSHIP BETUEEN READIMG TBST SCORE AND GRADE potil th caloulus

$\begin{aligned} & \text { Reading Test } \\ & \text { Score } \end{aligned}$	Grade Point in Calculus				
	0	1	2	3	4
140-149	0	0	1	0	0
130-139	0	0	4	2	2
120-129	0	0	3	0	2
110-119	1	3	2	2	1
100-109	3	3	5	7	1
90-99	I	2	4	0	2
80-89	4	7	11	13	4
70-79	2	0	12	3	1
60-69	4	7	8	5	2
50-59	2	2	4	5	0
40-49	2	0	0	4	2
30-39	0	2	2	0	1

These percentages were very close to those obtained on conparing the L score and the colculus grades. This was to be expected since the correlation between the L-score and the reading score was .74. Of the students who had scores below the mean on the reading test, 8 per cent received grades of "A" and 33 per cent received "B" or better in calculus.

It was of some significance to note that none of the students scoring 120 or above on the reading test received either a "D" or an "F" in calculus. If the cutting score hed been set at 80 on the reading test,
about one-helf of the "D's" and "F'g" would have been avoided for this group, but alrost one-half of the "A's" and "B's" would also heve been eliminated. It was also of sone interest to observe that one student in the lowest class interval, $30-39$, on the reading test, recoived an afi in colculus and that two in this interval received ma.

Grade in Calculus and the Guilford-zinmernan Reasoning Tost Seore. Data were presented in Table WVII to show the relationship between scores on the reasoning test and calculus grades.

TABLE XVII
QELAPTONGHP BETVMY REASONTME THST SCORE and grade ponit in calculus

Scare on Heasoning Lest	Grade roint in Calculus				
	0	1	2	3	4
$24-26$	2	1	0	2	0
21-23	0	2	2	4	2
18-20	1	2	11	6	3
15-17	4	8	16	9	3
12-14	7	7	12	9	5
9-11	3	3	10	7	3
6-8	1	2	5	3	2
3-5	1	1	0	1	0

An examination of the data disclosed that of the students who scored at or above the mean on the reasoning test, 91 per cent passed calculus and 9 per cent failed. Seventy-four per cent made a " C " or better, and 26 per cent made less than mg" in calculus. Thirty-seven por cent received "B" or better, and 10 per cent received "A" in calculus. An examination of the numbr of students who received a score less than the
nean on the reasoning test revealed that 37 per cent earned "B" or better, and 12 per cent made an "A" in calculus. About the same percentage of 1ow perfomers on the reasoning test made outstanding grades in colculus ad did the high performers on the reasoning test.

The reasoning test geemed to hold very few possibilities for helping to determine the level of performance that sudents in calculus might be expected to reach.

Grade in Calculus and Grade in College Algebra. Data in Table XVIII were presented to show the relationship of grades made in college algebra to grades nade in calculus.

TABLE XVIII
RELATLOMSHLP BETHETH GRADE POLNT IN COLLEGE
ALGBBRA AND GRADE POIMI IN CALCULUS

Grade Point in 173 Algebra	Grade Point in Calculus				
	0	1	2	3	4
4	0	4	6	9	7
3	6	6	21.	15	9
2	10	11	23	16	2
1	3	5	3	2	0
0	0	0	1	0	0

Elehtymine per cent of the students studied who made a "C" or better in college algebra passed calculus, and il per cent railed. Seventy-five per cent of those wo received "C" or better in college algebra also received "C" or better in calculus. A grade of "B" or better was made by 39 per cent of the students receiving th or better in college algebra, and 12 per cent received "A".

The roost helpful infomation from Table XVIII was that no student
with less than a "C" in college algebra received an "A" in calculus and only 1 student with less than "6" in college algebra made "p" in calculus. No student who received an $A^{\prime \prime}$ in college algebra failed calculus. According to the records obtained there was one student who had an aft in college algebra who went on to complete calculus. This student received a grade of "C" in calculus.

Grade in College Algebra and Semesters of Hich School Mathematics. The relationship between the nuber of semesters of high school methematics completed and the grade nade in college algebra was show in Table XIX.

TABEL XIX
RELATIONSHIP BWTWETV SMESTETS HN HIGH SCHOOL MATHMATICS AND GRADE POINT IN COLLEGE ALGEBRA

$\begin{aligned} & \text { Semesters in } \\ & \text { H. S. M. } \end{aligned}$	0	Grade Foint in College Algebra1			4
g	0	7	10	14	11
7	0	2	7	8	3
6	1	0	28	16	5
5	0	2	3	5	1
4	0	1	11	9	5
3	0	0	2	2	1
2	0	0	1	2	3
1	0	0	0	0	0

An examination of Table XIX showed that 92 per cent of the students who completed four or more semesters of high school algebra received "C" or better in college algebre, 52 per cent made a grade of "B" or better in college algebra, and 18 per cent earmed an "A".

This evidence was not particularly striking when the performenee of students who completed less than four semesters of high school matheratics was observed, of this group, 100 per cent received "G" or better in college algebra, 73 per cent received $1 B^{n}$ or better, and 36 per cent received A".

On the bagis of these figures it appeared that for the students studied here, the less mathematies completed in high school the better the chance of making a high grade in college algebre.

The reader will recall that the coefficient of correlation between grades in college algebra and senesters of high school mathenatics conpleted was -.06.

Grade in College Algebra and Grade Point Average in High School Mathematics. In Table XX data were presented conceming the relationship between grades received in high school mathematies and grades made in college algebra.

TABL
RELATIONSHIP BETWHOT GRADE POLTV AVERAGE DM HOR SCHOOL MATHEAATES AND GRADE POINT DI COLLEGS ALGBBRA

$\begin{aligned} & \text { G. P. A. in } \\ & \text { H. S. } \mathrm{N}_{\text {. }} \end{aligned}$	0	Grade Foint in College AIgebra1			
3.5-4.0	0	0	16	15	10
3.0-3.49	1	2	27	29	16
2.5-2.99	0	3	13	E	1
2.0-2.49	0	5	3	2	1
1.5-1.99	0	1	2	2	0
1.0-1.49	0	1	1	0	1
.5-.99	0	0	0	0	0
0-. 49	0	0	0	0	0

In examining Table XX it was found that 93 per cent of the students having a "C" average in high school mathematics received a "C" or better in college algebra and 7 per cent received Less than 4 GH . Finty-four per cent received "b" or better in college algebra, and 18 per cent received "A".

Of these stucients who had less than a "M" average in high school mathonatics, 12 per cent earned "A", 37 per cent received "B" or better, and 75 per cent received "C" or better in college algebre.

A comparison of these pereentages indicated that; for the students of this study, a high level of performance in college algebra was much wre likely to follow high level performance in high school mathematics than low level performance. This was expected. However, there was some doubt, in view of the low relationship between cuantity of high school mathematics and college algebra grade, as to whether this relationship was due to background in high school mathenatics or to other factors such as imate ability or industriousness.

Grade in College Algebra and A. C. W. Q-Score. In Table XXI the relationship between the A. C. B. Q-score and the grade made in college algebra was displayed. Of the students who scored at or above the mean on the quantitative portion of the A. C. D. Psychological Examination, 95 per cent received a grade of "g" or better in college algebra, and only 5 per cent received less then "C". Sixty-six per ceat made "B" or better and 25 per cent made "A" in college algebra.

Of those students scoring below the mean Q-score, only 11 per cent received an "A" and only 39 per cent received "B" or better in college algebra. It was interesting to note that only one person with a Q-score above 50 made less than a "C" in college algebra.

TABLT XCI
 MMD GRADE POITH TR COLIEGE AJGEBRA

$\begin{aligned} & \text { A. C. } \mathrm{B} \\ & \text { Q-Score } \end{aligned}$	 0 Grade Point in college Agebra 0 2 3				
75-79	0	0	0	1	0
70-74	0	0	0	0	0
65-69	0	0	0	0	1
60-64	0	0	1	5	6
55-59	0	0	5	6	2
50-54.	0	1.	6	12	6
45-49	0	6	27	21	11
4.0-44	0	0	10	6	1
35-39	0	2	9	3	2
30-34	1	3	4	1	0
25-29	0	0	0	1	0

Grede in College Algebra and A. C. F. I-Score. Table XXIT was prepared to show the relationship betweon the A. G. E. I-score and grade point in college algebra.

An examination of the data revealed that 95 per cent of the students of this study who sconed at the mean or above on the linguistic portion of the A. C. E. Psychologicol Rumination received a grade of uch or better in college algebra and 5 per cent received less than wo". Sixtyfour per cent made "B" or better and 25 por cent made "A" in college algebra.

If a student scored below the mean I-score, his chances of passing the course in college algebra renained about 9 in 10, but his chances of
making an "A" dropped to about 2 in 10 , and the chances of naking "bu or better were only 4 in 10 .

EABUE XXI
 Alid Grade pont in college alabbla

$\begin{aligned} & \text { A. C. I. } \\ & \text { I-score } \end{aligned}$	0	$\begin{array}{r} \text { Grede } \\ \hline \end{array}$	$\begin{array}{r}\text { inf } \\ 2 \\ \hline\end{array}$	A1g 3	4
95-99	0	0	0	3	2
90-94	0	0	0	3	0
85-99	0	0	0	2	3
50-34	0	0	0	1	1
$75-79$	0	0	3	0	4
$70-74$	1	0	5	5	3
65-69	0	3	ε	10	3
60-64	0	4	19	16	9
55-59	0	1	9	7	0
50-54	0	1	7	3	2
45-49	0	2	6	2	2
40-44	0	1	4	2	0
35-39	0	0	0	0	0
30-34	0	0	1	2	0

Grade in College ilgebra and Cooperative Algebra Test Score. In Table WXII data were prepared to show the relationship between Cooperative Algebra Test scores and grades in college algebra, Fron the data presented, it was observed that of the students in this study who acored at or above the mean on the Cooperative Algebra Test, 94 per cent received a grade of "C" or better in college algebra, 59 per cent
received "B" or better, and 20 per eent received an "A".
Of those scoring below the mean on the Cooperative Algebra pest, 87 por cent received a grade of 4 on better, 41 per cent received "g" on better, and 13 per cent made an "hn on college algebra.

TABLE XXIT
 AND GRADE POLIT DM GOLIBCH ALGTBRA

Cooperative Algebra Test	0	Grade Point in College Algebre1			
55-59	0	0	1.	1	1
50-54	0	1	2	5	2
45-59	0	0	2	7	3
40-44	0	0	6	3	2
35-39	I	5	29	28	15
30-34	0	3	5	6	2
25-29	0	1	5	1	2
20-24	0	2	3	2	1
15-19	0	0	4	2	0
10-14	0	0	2	1	1
5-9	0	0	3	0	0

A comparison of these percentages revealed that students scoming beIow the nean wore only a Little less likely to fall in the high grade categories in college algebra than were the students scoring at or above the mean on the Cooperative Alsebra Test.

Grade in College Algebra and Helson-Denny Reading pest Score. The distribution of the reading test scores in relation to grados made in
callege algebra vas displayed in table XXIV.

TABLE XXIV

Reading Test score	0	Grade Point in College Agebre $\begin{array}{r}1 \\ \hline\end{array}$			4
240-149	0	0	0.	1	0
130-139	0	0	0	4	4
120-129	0	0	1	2	2
110-119	0	1	3	3	2
100-109	0	3	7	4	5
90-99	0	0	4	3	2
80-89	1	1	19	10	8
70-79	0	1	11	4	2
60-69	0	2	7	14	3
50-59	0	3	3	6	1
40-49	0	0	4	4	0
30-39	0	1	3	1	0

Ninety-four per cent of the students scoring at or above the nean on the reading test received a grade of "Cl or better in college algebra. Gixty per cent of these students eamed $4 B /$ or better, and 30 per cent received "A" in college algebre. It was of some value to observe that only four persons who had a reading score equal to or greater then the mean received less than a "G" grade in college algebra, whereas there were nine persons with reading scores below the mean who received less than a NUM grade in college algebra.

Only 10 per cent of the students with less than a mean reading score
received an "A" college algebra and 48 per cent received "B" or better. The chances of a student making an "A" in college algebra in his reading score was less than the mean were only 1 in 10 compared to three chances in 10 if he scored at or above the mean.

Grade in College Algebre and the Guiloord-Zimeman Reasoning Test Score. Data were presented in rable wh conceming the relationship between the scose on the reasoning test and the grade made in college algebra by the subjects of this sarmple.

TABLE AKV

AMD GRADE POTNY IN COLIMRE ALGEBRA

$\begin{gathered} \text { Reasoning Test } \\ \text { Score } \\ \hline \end{gathered}$	Grade Point in College Aleabry				
	0	1	2	3	4
$24-26$	0	1	1	2	1
21-23	0	0	4	3	3
18-20	0	2	5	9	7
15-17	0	0	17	13	10
$12-14$	1	3	14	17	5
9-11	0	3	15	7	1
6-8	0	2	5	4	2
3-5	0	1	1	1	0

All except three, or 96 per cent, of the students scoring at or above the mean on the reasoning test received a "C" or better in college algebra. Sixty-two per cent received a "B" or better, and 27 per cent received an "A".

Of those students scoring below the mean on the reasoning test only

10 per cent received an "A" in college algebra, and 45 per cent received nib or better.

On the basis of this evidence it appeared that good reasoning ability was rathex closely related to high quality performance in college algebra.

Suamary
Evidence was presented to show that the present sample was representative of students who enroll in a program of mathematics and persist through caleulus.

Data on correlations between all of the factors involved in this study were presented and analysed.

Multiple regression equations were computed and a table and chart for rapid and convenient prediction of grades in calculus were prepared.

Scatter diagrans were presented to display the relationship between each factor and grades in calculus and in algebra.

CRAPTER V

STANRY ANO COMCLUSTONS

The purpose of this chapter was to review the objectives of the study, briefly state the major findings, and make recommations for future practice and further study.

Reviev of Objectives

The major objective of this study was to detemine the relationship between certain factors and academic success in college algebra and in calculus. The independent factors tere the number of bemsters of high school mathematies completed, grade-point average in high school mathematics, A, C. R. Q-score, A. C. T. L-seore, reading comprehension, ressoning cobility, and achievement in algebra at the tine of entrance into eollege.

The answer to three questions was sought: (1) What was the relationship between each of the factors and suceess in college algebra? (2) What vas the relationship between each of the factors and success in calculus? (3) What was the comparison of these relationships?

A fourth major task involved the corbination of the most promising factors into a prediction toan for the most probable grade in calculus.

Conclusions

In answer to the first question, it was found that all of the factors, excopt the number of semesters of high school matheatics conpleted, were significantly related to graces nade in college algebra.

Factors significant at the .01 level of confidence and their coefficients of correlation were A. C. B. Q-scores, .33; A. C. D. L-score, .29; grade point average in high sohool mathenatics, . 2 多; scores on the reesoning test, $\cdot 23$; scores on the reading test, . 23 . The coefficient of correlation between the Cooperative Alebra Test scores and grades in college afgebra was .16, which was significant at the .05 level of confidence. The coefficient of correlstion between the number of senesters of high school mathenatics completod and grades in college algebra was $-.06$.

In regard to the second question, it was found that the coefricient of correlation between A. C. 2. Q-scores and grades in calculus was . 16 . This correlation was significant at the .05 level of confidence. Grades in college algebra and grades in calculus were related by a correlation coeficient of .34 , which was significant at the . O1 level of conidence. Jone of the other coefficients of correlation were large enough to be considered signifieant at the . 05 level of confidence.

In answer to the third question, it may be said that all factors, except one, semesters of high school nathenatics completed, were more closely related to grades in college algebra than to grades in calculus. In the case of high school mathenatics completed, the coefliciants of correlation so nearly approached zero that a comparison was not feasible.

Variables most closely related to academic success in college algebra were A. C. D. Q- and L-scores and grade-point averages in high school nathmatics; those least related were Gooperative Algebra Test scones and smesters of hish school mathenaties completed.

Variables most closely related to acadeaic success in calculus were grade in college algebra end A. C. E. Q-score; those least related
were reasoning test scores, Cooperative Algebra Test scores, and semesters of high school mathematics completed.

The regression equation involving grade made in college algebra and 0 -score seemed to show considerable promise for predicting grades in calculus.
 grode categories yielded predictions significant at the . Ol level of confidence for the students involved in this study.

Although some correlations were low, data presented in scattergram tables gave evideace of the Reasibility of setting cutting scores on sone tests for the purpose of comseling students about the risk involved in attempting to continue in a progran of mathematics through calculus. Tests offering the most promise in this direction were the Q -scores and L-scores on the A. C. E. Fsyehological Buanination and the grade in college alsebra.

Recommendations

The results of this study indicate that valuable relationships between certain factors and acadenic success in a specilic mathematics course coning late in the program, such as calculus, can be discovered relatively early. It is recomended that further research be conducted involving such variables as grades made in the sequence of courses preceding calculus, study habits, motivation, and industriousness, in addition to the variables revealed as most promising by this study,

The developrent and use of a regression equation for predicting grades in calculus, before students have progressed far in a mathematics prograni, seems feasible. It is recommended that the regression equation developed in this study be used to predict grades in calculus ror other
groups of students at this institution in order to test its efficiency. In view of the very slight relationship between the quantity of high school mathematics completed and academic success in college aigebra and in calculus; as revealed by the present study, it would appear unwarmated to place much emphasis on the completion of any given number of units of high school mathematics as a prerequisite to college mathematics.

The reliability of relationships such as those determined by the peesent study is seriously limited by present gradfig practices in high schools and colleges. It is recommaded that research continue on methods of improving the narking system.

BIBLIOGIRAPHY

Aikin, Wilford M. Adventure in American Education, Vol. 1. New York: Harper and Brothers, 1942.

American Council on Education. Cooperative Algebra Test. Princeton, New Jersey: Pducational Testing Service.

American Council on Education. Psychological Bxamination. Princeton, New Jersey: Educational Testing Service.

Angell, Melvin A., Richard C. Langton, George A. Meyer, and Maurice L. Pettit. "An Evaluation of General and Specific Admission Requirements at the University of Washington, "Unpublished Doctoral Dissertation. Seattle, Washington: University of Washington, 1950.

Baker, Wilson. WWho Should Go To The University? Machinery of Selection Discussed." Times Education Supplement, MCMXII (December, 1951), 984

Barrett, Dorothy M. "Differential Value of Q and L Scores on the A. C. E. Psychological Examination For Predicting Achievement in College Mathematics." Journal of Psychology, XXXIII (April, 1952), 205207.

Berdie, Ralph F., Paul Dressel, and Paul Kelso. "Relative Validity of Q and L Scores of the A. C. E. Psychological Examination." Educational and Psychological Measurement, XI (No. 4, Winter, 1951), 803-812.

Black, Donald B. "Prediction of Academic Success in the University of Washington, " Unpublished Doctoral Dissertation. Seattle, Washington: University of Washington, 1951.

Borow, H. "Current Problems in the Prediction of College Periormance." American Association of College Registrous Journal, XXII (October, 1946), 14-26.

Bowles, F. H. "Crystal Ball and College Admission." Measurement and Evaluation in the Improvement of Education, 15th Educational Conference. Washington, D. C.: American Council on Bducation, 1951.

Brown, H. S. "Differential Prediction by the A. C. E." Journal of Educational Research, XLIV (0ctober, 1950), 116-121.

Bruce, Willian John. "The Contribution of Eleven Variables to the Prognosis of Academic Success in Eight Areas at the University of Washington," Unpublished Doctoral Dissertation. Seattle, Washington: University of Washington, 1952.

Butsch, R. L. C. "Improving the Prediction of Academic Success Through Differential Weighting," Journal of Educational Psychology, XXX (September, 1939), 401-420.

Carter, M. H. MModern Secondary School Looks at College Admission." College and University, XXVI (April, 1951), 349-361.

Carter, Homer L. J., and Dorthy J. McGemnis. "Şome Factors Which Differentiate College Freshmen Having Lowest and Highest Point-HourRatio." Journal of Educational Research, XIVI (November, 1952), 219-226.

Cochran, S. W., and F. B. Davis. "Predicting Freshman Grades at George Peabody College for Teachers." Peabody Journal of Education, XXVII
5 (May, 1950), 352-356.
Cole, Luella, and Jessie Mary Ferguson. The Student's Guide to Bfficient Study. New York: Farrar and Rinehart, 1935.

Crawford, Albert B., and Paul S. Burnharn. Forecasting College Achievement. New Haven, Connecticut: Yale University Press, 1946.

Douglass, Harl R. "Different Levels and Patterns of Ability Necessary For Success in College." Occupations, XXII (December, 1943), 182186.

Douglass, Harl R. The Relation of High School. Preparation and Certain Other Factors to Academic Success at the University of Oregon, University of Oregon Publications, Vol. 3, No. 1. Eugene, Oregon: Oregon State System of Higher Education, 1931.

Federal Security Agency. Annual Report, 1952. Washington, D. C.: United States Printing office, 1953.

Frederiksen, N. O. Making Test Scores More Useful for Prediction." Educational and Psychological Measurement, XI (Winter, 1951), 783787.

French, John W., Ladyard R. Tucker, Sidney H. Newman, and Joseph M. Robbitt. "Factor Analysis of Aptitude and Achievement Intrance
X Tests and Course Grades at the U. S. Coast Guard Acadeny." Journal of Educational Psychology, XIIII (February, 1952), 65-80.

Garrett, Henry E. Statistics in Psychology and Education. New York: Longmans, Green, and Company.

Goodenough, Florence L. Metal Testing. New York: Rinehart and Company, 1949.

Greene, Harry A., Albert N. Jorgensen, and J. Raymond Gerberich. Measurement and Evaluation in the Secondary School. New York: Longmans, Green, and Company, 1951.

Guilford-Zimermen. Rest of General Reasoning. Beverley Hills, Calim fomia: Sheriden Supply Compary.

Hannah, Joseph T. "fccomplishment or Cooperative Test Seores and High $<$ School Grades as Measures Por Predicting Achlevenent in College, ${ }^{*}$ P The Joumal of 4pplied psychology, MXII (ApriL, 1939), 289-297.

Hamington, Harold E. HThe Prediction of Success in Algebra by the Use of the Iova Placenent Examination ad The OLis Mental Test,
f Unpublished Hasters Thesis. Stiliwater, Oklahoma: The Oklahona Agriculbural and Mechanical College, 1928.

Hepnex, Watter R Whactors Tncerlying Unpredicted Scholabtic Achieve-
(4) Hent of College mreshan." Joumal of Emperinental gacation, VII (March, 1999), 159-198.

Humber; W. J. Whe Relationship Between Reading Efficiency and Academic Success in Selected University Curiicula." Journal of Rducational
(P Pychology, XXXV (Jaruary, 1944), 17-26.
Jex, pront B. NThe Differential Preciction of Soholastic Success Within the University of Utah," Unpublished paper read before the fmmal Comention of the National Vocational Guidance Association, Los Angeles, Califormia, April 2, 1952.

Jones, Flossie. Won-Academic Pactors in College Entrance Require4. ments. " Peabody Journal of Lducation, KWII (May, 1950), 357-362.

Jordon, A. M. Measurenent in Zucation, New Vork: MeGraw-Hill Book Company, 1953.

Kinzer, John R., and Iydia, Green Kineer. "Predicting Gredes in Advanced Gollege liathematics. " The Joumal of Applied Psychology, XXKVII (Jure, 1953), 182-184.

Kille, F. W. wValue of College-Entrance Examinations to the Student. School and Society, LKXIV (October 29, 1951), 247-250.

Lanigan, Mary A. HThe Exfectiveness of the Otis, the A. C. Fi, and the Minnesota Speed of Reading Tests for Predicting Success in College." Joumal of Educational Research, XIVII (Decenber, 1947), 2s9-291.

Lins, L. J. "Probability Approach to Forecasting Miversity Suecess Whth Measured Grades as the Criterion. "Educational and Psychological Measurement, X (Autum, 1950), 386, 391.

HacRae, James B . "Responsibility of the College for the veliare of the Student." Current Issues in Higher Education, 1950. Washington, D. U.: Nationcl Hucation Association, 1951.

McClanahan, Walter R.s and David H. Morgan. muso of Standardized rests in Counseling Tmgineering Students in College." Jourmal of Boucational Psychology, XXIX (Deceriber, 1943), 491-501.

Moneely, John H. College Studont Mortality, Office of Higher Mucation Bulletin No. 11. Washington, D. C.: United States Govemment Printing Office, 1937.
miller, Garrol L. "Development in Counseling by Faculty Advisens." Educational and Psychological Measurement, X (Autum, 1950), 451452.

Newhal, N. S., and C. D. Snoddy, Whe Kolation or Reading Ability and - Other Criteria to University Success, Unpulished hasters Thests.

F Seattle, Washington: University of Washington, 1950.
Oelly, Chanles W. "Attempt at Predicting Success in the preshan Year \leftrightarrow at College. ${ }_{3}^{\infty}$ Schoot and Society, XXV (June, 1927), 703-796.

Osborne, R.T., W. B. Sanders, and J. E. Greene. npifferential Prediction of College Marks by A. C. R. Scores." Jownal of Educational Research, XLIV (October, 1950), 107-115.

Ross, C. C. Measurmont in Hocay's Schools. Hew York: Prentice Hall, Inc., 1947.

Sappenfield, Bert R. "Prediction of College Scholarship for Groups S Having Refort Indices of Restricted Range. Journal of Apelied \leq Psychology, XKVII (october, 1943), 448-450.

Satz, Wartin A. HThe Relationship Between Eleven Independent Variables and Acadeaic Perfomance in Nine Social Science Areas at the Uni5 versity of Washington, "Unpublished Doctoral Dissertation. Seattle: Washington: University of Washington, 1953.

Sefert, W. C. HDo You Recomend This Student For College? School Revien, IX (March, 1952), 129-133.

Segal, David. Prediction of Success in College, Office of Edueation Bulletin No. 15. Washington, D. C.: United States Goyemnent Printing Office, 1934.

Seyler, Th. C. Whe Value of Rank in High School Graduating Class For G Predicting Freshmen Scholarship. 1 Joumal of the Anerican Association of Collegiate Registrars, XV (0ctober, 1939), 5-22.

Shirley, Walter Warrea. "The Use of Placenent Tests in Freshman Mathematics, "Unpublished Lasters Report. Stillwater, Oklahoma: The Oklanoma Agricultural and Mechanical College, 1949.

Steering Committee, Illinois Secondary School Gurriculum Program. New College Admission Requirements Recomnended, Illinois Secondary School Curriculum Bulletin No. 9. Springfield, Illinois: Office of the State Superintendent of Public Instruction, February, 1950.

Stoddard, George P. The Use or quantitative Measurement in Inducting the Stucant Into the Institution of Highor Learnine and in Predio-
x Eing His Acadenie Success, Bighteenth Yearbook of the National Socioty of College Teachers of Bducation. Chicago: University of Chicago Eress, 1930.

Stuit, Dewey B. "FIuctuations in Correlations Between Psychological \times Test scores and University Grodes." Jourval of Experimentel Education, VI (harch, 1930), 343-345.

Sumers, h. F. MSome Thoughts on Prediction of Acadenic Achievenent." C College and University, XXVI (Jamuary, 1951), 22s-235.
Symonds, Percival M. Special Disabinity La Alcebra. Mew York: Bureau of Publications, Teachers College, Columbia University, 1923.

Travers, R. H. W., and W. L. Wallace. "Inconsistency in the Fredictive Value of a Battery of Tests." Joumal of Applied Psychology
\times KXXIV (August, 1950), 237-239.
Votaw, D.F. "Comparison of Test Scores of Intering Ereshmen as Instrunents for Predicting Subsequent Scholarship." Journal of Educational Research, XI (November, 194,6), 215-218.

Wallace, W. L. UDifferential Predictive Value of the A. C. B. PsychoIogical Examination." School and Society, LXX (July, 1949), 23> 25.

Wolfenden, J. F. "Selection por Universitios." Universities Quarterly, CVI (November, 1951), 16-39.

VITA

Louis Harold Moris
candidate for the degree of Doctor of Eductition
 ACAODIC SUCCESS In COLUGE MATHMATES
najoz: mducational Adninistration
Biographical and Other Itens:
Bom: January 19, 1914, near Thonas, Oklahona,
Undergraduate Study: Southwestem State College, Weatherford, Oklahoma, 1931-1935; Completed the Bachelor of Arts Degree in 1935.
Graduate Study: Coloredo State College of Education, Greeley, Colorado, Sumer, 1937; University of OElahoma, Norman, Oklahoma, 1938-1940; Conpleted the Master of Education Degree in 1940; Lniversity of Mnnesota, Mimeapolis, Rimesota, Sunner, 1955; The Oklahona Agricultural and Mechanical College, Stillwater, Oklahoma; 1949-1950 and 1953-1954.
Experience: Taught in the public schools of oklehona from 1935 through 1933; Taught in Southwestem State College, Weatherford, Oklanoma, 1938 through 1954.

Member of Oklahoma Education Association, National Education Association, Phi Delta Kappa, Pi Mu Epsilon, and Alpha Phi Sigma.

Date of Final Examination: July, 1954.

THESIS TITLE: The Relationship Between Certain Factors and Academic Success in College Mathematics

AUTHOR: Louis Harold Morris

THESIS ADVISER: Dr. Harry K. Brobst

The content and form have been checked and approved by the author and thesis adviser. Changes or corrections in the thesis are not made by the Graduate School office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

TYPIST: Raymond Denny

[^0]: INorman U. Frederiksen, Making Test Scores More Useful For Prediction," Educational and Psychological Measurement, XI (Winter, 1951), 783-787.

 5James Bonner MacRae, "Responsibility of the College for the Welfare of the Student," Current Issues in Higher Education, (1950), 51.

[^1]: ${ }^{10} \mathrm{Harl}$ R. Douglass, "The Relation of High School Preparation and Certain Other Factors to Academic Success at the University of Oregon," University of Oregon Publications, XXX (September, 1931), 56.

 IlDonald B. Black, "Prediction of Academic Success in the University of Washington," Unpublished Doctoral Dissertation, (Seatile, 1951).

[^2]: 15R. T. Sunmers, "Some Thoughts on Prediction of Academic. Achievenent," Colloge and University, XNV (January, 1951), 229-235.

[^3]: $]_{\text {Hereafter called the "A.C.E." }}$
 2 Ifereafter called the "coopertatve algebre test."
 Hergafter called the "reading test."
 4ifereefter called the "reasoning test, "

[^4]: $5_{\text {Publishod by Coporative Test Division, Feducational Testing }}$ Service, princeton, Hew Jersey.

[^5]: ${ }^{8}$ Published by Cooparative Test Division, 范ducational Testing Service, Princeton, New Jersey.

[^6]: 9. C. Ross, Heasurenent in Today's Schools, (New York, 1947), p. 405.
[^7]: 12 James H. Zant, "inief statement Conceming Grades Given to Students in Mathematies Courses at The Oklahoma A. A H. College, 1 Umpablished Document by Professor of Mathemetics, the College, May, 1954.

[^8]: $I_{\text {John Willian Bruce, "The Contribution of Eleven Variables to the }}$ Prognosis of Academic Success in Eight Areas at the University of Washington," Unpublished Doctoral Dissertation (Seattle, 1952), p. 10.

 2Melvin A. Angell, Richard C. Langton, George A. Meyer, and Maurice L. Pettit, "An Evaluation of General and Specific Admission Recquirements at the University of Washington, "Unpublished Doctoral Dissertation (Seattle, 1950), p. 10.
 $3_{J . ~ W . ~ F r e n c h, ~ e t ~ a l ., ~ " F a c t o r ~ A n a l y s i s ~ a n d ~ A c h i e v e m e n t ~ E n t r a n c e ~}^{\text {a }}$ Tests and Course Grades at the U. S. Coast Guard Academy," Educational Psychology, XIIII (February, 1952), 65-80.

[^9]: ${ }^{6}$ J. F. Wolfenden, "Selection for Universities," Universities Quarterly, VI (November, 1951), 16-39.

 Th. H. Carter, MModem Secondary School Looks ab College Admission," College and University, XXVI (April, 1951), 349-361.

 Sp. H. Bowles, "Crystal Ball and College Adnission," Measurement and Evaluation in the Improvenent of Education, 15th Bducational Conference, Hew York, $7950, \mathrm{pp} \cdot \mathrm{8}-16$.

[^10]: 10 Donald D. Black, "Prediction of Academic Suceess in the University of Washington," Unpublished Doctoral Dissertation, (Seatile, 1951), p. Bl.

 1hwiliam Baker, Who Should Go to the University? Machinery of Selection Discussed," inimes Hducation supplenent, Monaur (Decenber 2l, 1951), 934.

 12 Ibid., 984 .

[^11]: $20_{\text {Mewhall }}$ and Snoddy, op. eit., p. 21.
 21Isaac L. Stright, whe Relation of Reading Comprehension and Efficient Study Methods of Study to Skill in Solving Algebraic Problens," hathematics Peacher, XXXI (December, 1938), 368-372.

[^12]: ${ }^{3}$ From a Doctoral Dissertation by John William Bruces University of Washington, 1952, p. 47.

[^13]: 24John R. Kinzer and Lydia Green Kinzer, "Predicting Grades in Advanced College Mathematics, The Journal of Apolied Psychology, XKXVII (June, 1953), 182-184.

[^14]: 25 Hugh S. Brown, "Differential Prediction by the A. C. E.," Journal of Educational Research, XLIV (October, 1950), 116-121.

 20 Homer L. J.Carter and Dorothy J. MeGennis, "Some Factors Which Differentiate Gollege Freshmen Having Lowest and Highest Point - Hour Ratios," Journal of Educational Research, XLVI (November, 1952), 219226.

[^15]: 27Satz, op. cit, , 31-32.
 28Bert in. Sappenfeld, "prediction of College Scholarship for Groups Having Rffort Indices of Restricted Range, "Journal of Applied Psychology, XXVII (october, 1943), 445-450.

 20\%. J. Humber, "The Relationship Between Reading Efficiency and Academic Success in Selected University Curricula," Journal of Educationai Psychology, XXXIV (January, 1944), 17-26.

[^16]: Wifferences not signticant at 01 level of confidence.

[^17]: Henry t. Garrett, Statistice in Psycholosy and Education, (hew York, 1953), Pp. 212-240.

 Garrett, on. cit., p. 142 .

[^18]: *Significant at 5% level of confidence.
 **Significant at 1% level of confidence.

[^19]: Fignificant at the .05 level.
 *Significant at the .01 Leve].

