

LIBRARY dUN 181954

CAUSES OF STUNTING OF CRAPPIE (Pomoxis nigromaculatus and Pomoxis gnnularis) TN OKLAHOMA LAKES

Thesis Approved:

221649

CAUSES OF STUNYING OF CMAPPIE (POmOXD nicmo-maculatus and Pomoxig mavulax ig IN OKTAHOMA THKHS

By

HTMRI D。 NRAMLRE

Bachelor of Sciance

Tems Agricul tural and Mechanical Coviege

College Situton. Trxas

1940

Mester of Sc3. exce

Uriversity of Mienigan
Ann Arbow Michigat
194

```
Stibmithed to the Faculty of the Groduat Scuool of the OkIghona Agrocul furel and Mechanical Conlege
In pextiol fulfillment of the xaquitements for the degre of DOCYOR OF PHILOSOPHY M24, 1954
```

CABIE OF COMTEMES
Chapter P Page
TMERODUCTION 1.
METHODS 4
Sampling Fish Populations 4
Collacting and Recording Data 5
Preservation of Stomachs 5
Stomach Analysia 6
Calculation of Age and Growth 8
Computation of Data 10
DESCRIPTION OF THE THREE LAKES STUDIED 12
Sanborn Lake 22
Boomer Lake 13
Country Club Lake 14
IIST AND NUMBER OF EACE SPRGIES GAPFURET 25
AGFi GROWTH AND FOOD HABITS OF CBAPPIE FOR ALL THE LARES STUDIED 18
Mean Length and Weight of Groppie 17
Age Group of Crappie 17
Mean Leagth of Crappie for Specific Age Groups. 18
Monthly Mean Weights, Length and Volumes of Stomach Contents 21
Mean Weight by Months. 22
Mean Length by Months 22
Crappie Captured by Montbs 22
Mean Volume of Stomach Contonts by Months 23
Food Habita 23
Food Volume 23
Somach Contents 24
Monthly Variation of Volume and of Per Cent of Stomachs Containing Food. 29
Stomachs Containing Food by Konthe 29
Empty Stomachs 30
Empy Stomachs by Months 30
Sex Hatio 32
AGE. GROWFH AND HOOD EABITS OF CRAPPIE BY INDTVIDUAL TAKMS 35
Age Groups and hean Ienethe of Crappie 35
Black Crappie from Sarborn Lake. 35
White Crappie from Bonex Lake 35
Black Grapp? from Comnty Mub Lake 38
Chapter Page
Mean Length and Length Range at Capture of Crappie 38
Black Crappie from Sanborn Lake 38
White Crappie from Boomer Lake 40
Black Crappie from Country Club Lake 41
Mean. Weight and Weight Range of Crappie 43
Black Crappie from Sanborn Lake 43
White Crappie from Boomer Lake 44
Black Crappie from Country Club Lake 47
Calculated Mean Increase in Length, Weight and Total Length at Capture by Age Groups for Crappie from theLakes48
Food Habits 52
Volume of Food of Crappie 52
Sanborn Lake 52
Boomer Lake 53
Country Club Lake 56
Stomach Contents of Crappie 57
Insects Eaten by Crappie 57
Sanborn Lake 57
Boomer Lake 59
Country Club Lake 61
Stomach Contents (Exclusive of Insects) of Crappie 62
Sanborn Lake 62
Boomer Lake 63
Country Club Lake 66
Monthly Mean, Volume of Stomach Content for Crappie by Individual Lakes 69
Sanborn Lake. 69
Boomer Lake 69
Country Club Lake 70
Food Contained Per Pound of Body Weight in Crappie from the Individual Lakes. 71
Sex Ratio of Crappie by Individual Lakes 73
Sanborn Lake 73
Boomer Lake 73
Country Club Lake 74
ETALUATION OF DATA PRESENTED 76
Trapping Methods 77
Age, Growth, and Stomach Contents 79
Food and Body Weight 84
SUMMARY 89
LITERATURE CITED 91

IIST OF TABLBS

Table
Page

1. Number af Individuals of Each Species Captured from Fack Lake 15
2. Mean Loxgthemd Heightaxu Total Numer and Weight of Crappie Copured From the Lakes 18
3. Age Groups of Crappie, the Number and Percentage of the Crappie Population for Fach Lake 19
4. Mear Legeth of"Crappie for Specific Age "Groups"from the Lakes. 20
5. Number of Orappie Collected, Crappie Weights, Lengths. Mumber of Stomachs Contalning Food and Volumes of Stomach Contents Recorded for the Month of Captare from the Lakes 21
6. Gubic Centimeterc of Food and the Mean Volume Contained in Crappie for the Turee Lakes. 24
7. Insects faten by Gxppie and Percentage of Total from"the thre Lakes strudied. 26
8. Material (Tinisive of Insects) in Crapice stomachs and the Percentage for Each Lake 28
9. Monthylyamiainonfrom the Frerious Monsh in the Mean Volume of Stomach Content and in Per Cent of Stomachs Containing Food 31
10. The Number of Empty Stomachs and Stomachs with Food, Theix Totals, Their Percentages for Bach Lake, and the Percentage for Bach Group of All Specimens Collected 32
11. Montbiy Percentage of Stomachs Rmpy and Those Containing Food from the Three Lakes Studied 33
12. Sex Mumbers and Sex Per Cent of Total Crappie Captured from the Tharee Lakes 34
13. Mean Lexgth and Composition Per Cent by Age Groups of Blacic Crappie Collected from Sanborn Lake 36
14. Mean Length and Composition Per Cent by Age Groups of White Crappie Collected from Boomex Lake. 37
15. Mean Leagti and Composition Per Cent by Age Groups of Black Crappie Collected from Country Club Lake 39
16. Mean Zength at Capture, Length Range and Major Leagth Range Distribution by Per Cent of Black Cxappie from Sanborn Lake 40
17. Nean Lengin ab Capture, Length Range and Major Length Range Distributhon by Per Cent of White Crappie from Boomer Lake 42
18. Mean Leugth at Qapture, Length Range and Major Length Range Distribution by Per Cent of Black Crappie from Country Club Lake 44
19. Mean Weight, Weight Rage and Major Weight Range Distribution by Per Qeat of Black Crappie from Sanborn Lake. 45
20. Meau Weight. Weight Range and Major Weight Range Distribution by Per Cent of White Crappie Irom Boomer Lake 46
21. Mean weight, Weight Range and Major Weight Range Distribution by Per Cent of Black Crappie from Country Ciub Lake 48
22. The Mean Length, Weight and Total Leagth at Capture, with the Qalculated Iracrease by Age Groups in Black Crappie from Sanborn Lake 50
Chapter Page
Mean Length and Length Range at Capture of Crappie 38
Black Crappie from Sanborn Lake 38
White Crappie from Boomer Lake 40
Black Crappie from Country Club Lake 41
Mean. Weight and Weight Range of Crappie 43
Black Crappie from Sanborn Lake 43
White Crappie from Boomer Lake 44
Black Crappie from Country Club Lake 47
Calculated Mean Increase in Length, Weight and TotalLength at Capture by Age Groups for Crappie from theLakes48
Food Habits 52
Volume of Food of Crappie 52
Sanborn Lake 52
Boomer Lake 53
Country Club Lake 56
Stomach Contents of Crappie 57
Insects Eaten by Crappie 57
Sanborn Lake 57
Boomer Lake 59
Country Club Lake 61
Stomach Contents (Exclusive of Insects) of Crappie 62
Sanborn Lake 62
Boomer Lake 63
Country Club Lake 66
Monthly Mean, Volume of Stomach Content for Crappie by Individual Lakes 69
Sanborn Lake. 69
Boomer Lake 69
Country Club Lake 70
Food Contained Per Pound of Body Weight in Crappie from the Individual Lakes. 71
Sex Ratio of Crappie by Individual Lakes 73
Sanborn Lake 73
Boomer Lake 73
Country Club Lake 74
EVALUATION OF DATA PRESENTTED 76
Trapping Methods 77
Age, Growth, and Stomach Contents 79
Food and Body Weight 84
SUMMARY 89
IITERATURE CITED 91
Table
Page
23. Number of Individuals of Each Species Captured from Each Lake 15
24. Mean Length and Weight and Total Number and Weight of Crappie Captured From the Lakes 18
25. Age Groups of Crappie, the Number and Percentage of the Crappie Population for Each Lake 19
26. Mean Length of Crappie for Specific Age Groups from the Lakes. 20
27. Number of Crappie Collected, Crappie Weights, Lengths, Number of Stomachs Containing Food and Volumes of Stomach Contents Recorded for the Month of Capture from the Lakes 21
28. Cubic Centimeters of Food and the Mean Volume Contained in Crappie for the Tharee Lakes. 24
29. Insects Batan by Crappie and Percentage of Total from'the three Lakes Studied. 26
30. Material (Exclusive of.Insects) in Crappie Stomachs and the Percentage for Each Lake 28
31. Monthly Tariation from the Preyious Month in the Mean Volume of Stomach Content and in Per Cent of Stomachs Containing Food 31
32. The Number of Empty Stomachs and Stomachs with Food, Their Totals. Their Percentages for Each Lake, and the Percentage for Bach Group of All Specimens Collected 32
33. Montbly Percentage of Stomachs Empty and Those Containing Food from the Three Lakes Studied 33
34. Sex Fumbers and Sex Per Cent of Total Crappie Captured from the Tharee Lakes. 34
35. Mean Lexgth and Composition Per Cent by Age Groups of Black Crappie Collected from Sanborn Lake 36
36. Mean Length and Composition Per Cent by Age Groups of White Crappie Collected from Boomer Lake. 37
37. Mean Length and Composition Per Cent by Age Groups of Black Crappie Collected from Country Club Lake 39
38. Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of Black Crappie from Sanborn Lake 40
39. Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of White Crappie from Boomer Lake 42
40. Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of Black Crappie from Country Club Lake 44
41. Mean Weight, Weight Range and Major Weight Range Distribution by Per Cent of Black Crappie from Sanborn Lake. 45
42. Mean Weight, Weight Range and Major Weight Range Distribution by Per Cent of White Crappie from Boomer Lake 46
43. Mean Weight, Weight Range and Major Weight Range Distribution by Per Cent of Black Crappie from Country Club Lake 48
44. The Mean Length, Weight and Total Length at Capture, with the Calculated Increase by Age Groups in Black Crappie from Sanborn Lake 50
Table Page
45. The Mean Length, Weight and Total Length at Capture, with the Calculated Increase by Age Groups in White Crappie from Boomer Lake 50
46. The Mean Length, Weight and Total Length at Capture, with the Calculated Increase by Age Groups in Black Crappie from Country Club Lake 51
47. Mean Volume of Stomach Contents, Number of Stomachs Empty, and Percentage of Stomachs with Food and Empty, for Black Crappie from Sanborn Lake. 54
48. Mean Volume of Stomach Contents, Number of Stomachs Empty, and Percentage of Stomachs with Food and Mmpty, for White Crappie from Boomer Lake 55
49. Mean Volume of Stomach Contents , Number of Stomachs Fmpty, and Percentage of Stomachs with Food and Empty, for Black Crappie from Country Club Lake 56
50. Mean Number of Insects Present in Black Crappie by Age Groups, from Sanborn Lake. 58
51. Mean Number of Insects Present in White Crappie by Age Groups. from Boomer Lake. 60
52. Mean Number of Insects Present in Black Crappie by Age Groups, from Country Club Lake 61
53. The Mean of Stomach Contents (Exclusive of Insects) in Black Crappie by Age Groups, from Sanborn Lake 63
54. The Mean of Stomach Contents (Exclusive of Insects) in White Crappie by Age Groups, from Boomer Lake 67
55. The Mean of Stomach Contents (Exclusive of Insects) in Black Crappie by Age Groups, from Country Club Lake 68
56. The Monthly Mean Volume, in Cubic Centimeters, of Stomach Contents for Crappie from the Individual Lakes 70
57. Comparison of the Volume in Cubic Centimeters of Food Eaten with Body Weight in Pounds, for Crappie by Age Groups, from the Individual Lakes 72
58. The Number of Male and Female Crappie and the Percentage by Age Groups, from the Individual Lakes Studied. 74
59. Comparison of Lengths of Black Crappie, at Completion of Each Annulus, from Sanborn Lake and Country Club Lake, with those Shown for Black Crappie from Some Other Lakes. 82
60. Comparison of Lengths of White Crappie, at completion of Each Annulus, from Boomer Lake, with those Lengths Shown for White Orappie froil Some Other Lakes. 84

INFRODUCPION

This thosis contains the sesults of gitudy undertaken with the Yiew of analyzing the growth rates of the black and the white axappie. Pomoxis nigromaculatue (De Sueus) and Pomoxis anulayis Rafinesque. 1n asmociation with theix recpective feeding babibs, in representative Oklahoma lakew. to learn if food acquired is the dominant factor inc fluening growth rates. There has been mach controvergy regarding the Case or causes of poor growth exhibited by fish in many impowndment. Little foctual information is awailable to substantiste such discussiono

Mast inpounded waters oxperince a rapid growing population of fish immedialy following smoundment. The popuiation builds to peako then gradually decliaes with yesultant small returni to the fisherman and poor growth exhibited by fish in ehe lake. This condition bas been noted by Bennet (1947), Ixwin (1945), Whis (1937) and otbers.

The tise and decline in fishing success has beet atbributed to many factory. Some fishery personnel contend that it is due to apace factor. that there is insufficient roow for the fish to attain a large and more desirable size. Some say that it is due to "oferpogulation". Overpopulation $\mathfrak{i s}$ such an indefinite term that its supporters may swich back and forth between any one of several caplanations. Bennett (1947) has placed the basic zesponsitility for such conditions on the relatire mondance of
 in suitable fishing succes to a decine or loss of necemasy materiala of organic origin but have not atwepted to delineato what these materials might be. Rounsefell (Twdect) suggests food as the limiting factor, as

Practices to rejuvenate impoundments are by draining the lake or by otherwise destroying the fish population present and restocking. Higher productivity of suitable fish has been obtained by both practices. The former method has been advocated by Swingle and Smith (1942), Langlois (1946), Aldrich (1946b) and others. Aldrich (1946a) and Thompson (1937) attribute the beneficial effects of drainage to soil aeration. Irwin (1945) and Irwin and Stephenson (1951) have added vegetation to small impoundments with subsequent improvement in productivity. Irwin (rerbal (statement) has drained lakes, planted crops on the exposed bottom and reflooded with resultant satisfactory fishing increases. Swingle and Smith (1942), by the use of commercial fertilizers have obtained similar results. Under some conditions partial poisoning of lakes, whereby only the arms are treated, has given beneficial results. Poisoning the fish and later restocking has become common practice with the Oklahoma Game and Fish Department.

The present study was undertaken to determine if fish grew slowly because they were receiving insufficient food due to a larger population present than the available food could successfully support. Three lakes were chosen which, after examination of samples of fish, showed that the respective populations comprised three categories from the fisherman ${ }^{\text {s }}$ Fiewpoint: (1), those making satisfactory growth, (2), those making poor growth, and (3), those intermediate in which only an occasional large crappie was taken. Fish sampling was conducted for one year (April 1952 to April 1953). Collections from each lake were made every day except Saturdays and Sundays from April to October and thereafter on alternate days. The fish were taken to the laboratory, measured, aged, theis stomach contents analyzed and the resulting data examined for correla-
tions between food acquired and rate of growth.
The author wishes to express appreciation to the following persons who were instrumental in a successful completion of the work: Dr. W. H. Irwin, Department of Zoology, Oklahoma Agricultural and Mechanical College, without whose helpful advise and leadership the problem could not have been completed; Dr. D. E. Howell, Department of Entomology, for assistance in indentification of insects; Dr. Roy W. Jones, Dr. Fugene I. Wellen, Department of Zoology; Dr. Adolph M. Stebler, leader, Oklahoma Cooperative Wildlife Research Unit Oklahoma Agricultural and Mechanical College, with whom the writer discussed different phases of the problem and who influenced his thinking on particular points; Mr. R , O. Fox of Fox Iumber Company, Stillwater, Oklahoma, for permission to use the Country Club Lake for study; Mr. Harry Ransom, Superintendent of Parks for City of Stillwater for permission to use Boomer Lake for study; Mr. Fred Mott, Superintendent at Boomer Lake, for assistance with boats and nets; members of the Sanborn Chapter of the Izaak Walton League of America, Inc., who gave permission to use their lake for study; Mr. Ernest E. Vincent, who loaned his boat during the initial phase of the study; Mr. Clarence McCurry, undergraduate student, Oklahoma Agricultural and Mechanical College, who gratuitously assisted in compiling parts of the data; Mr. W. M. McMurtry of the Payne County Soil Conservation District, for the use of aerial photographs; and appreciation to the writer's wife for continual encouragement during all graduate studies. The equipment used was furnished jointly by the Wildife Unit, Department of Zoology and the Research Foundation, Oklahoma Agricultural and Mechanical College. Financial assistance was furnished by the Oklahoma Cooperative Wildife Research Unit.

METHODS

Sampling Fish Populations

Fish collections were made by the use of wire traps, hoop nets, gill nets, hook and line, and seines.

Wire traps, as described by Buck and Cross (1951), were used most extensively. The traps were generally set on the lake bottom adjacent to the shore. However, one trap was tied to an empty oil drum and allowed to float free or anchored in a location, thus the trap could be held at the desired depth. It is believed this method might prove of advantage for capturing fish not closely associated with the bottom. The method was developed too late to receive a thorough test but future experiments might prove it profitable.

Hoop nets were of the 0 type, $3 \frac{1}{2}$ feet in diameter with one inch square mesh. These nets were used both with 10 foot wings and without wings. Occasionally a 50-foot lead of two inch mesh was employed. One end of the lead was tied to the center of the first hoop and the other stretched at 45 degrees to the wings which were placed in the form of a ∇ in relation to the trap. The hoop nets were of ten set by using poles on each end of a wing and one tied to the pot. The net was set in the form of a ∇. Anchors were sometimes employed instead of poles in deeper water. To run the net the wings were lifted into the boat and the fish worked into the pot. The pot could be opened and the fish easily removed.

Gill nets were used on two occasions only.
Hook and line fishing was done using wet flies and casting plugs. No attempt was made using live bait.

Seining was done in Country Club Lake using a $50-\mathrm{foot}$ bag seine of $1 \frac{1}{2}$-inch mesh.

Gear sets were made throughout most of the lakes except for Boomer Lake where fishing was confined to the shallower areas adjacent to the shore. Fishing was consistently better in the waters close to the shore except in the hottest summer weather in Country Club Lake where crappie could be taken only toward the middle of the lake.

Fishing gear was run every day except Saturday and Sunday from April until October. Afterward, sets were run every other day. Due to the use of the lakes by the general public, sets were not run on the weekend, as it was thought advisable that trap locations not be made known.

Collecting and Recording Data

All crappie captured were used in the study. There was no selection other than the normal selection due to trapping methods or to the traps used. The specimens were weighted, measured and the stomachs removed while the fish were in a fresh condition. The longest period that any fish was held after removal from the traps was approximately $1 \frac{1}{2}$ hours and then they were placed in a pail of water. The lake visited first was alternated each week to prevent any undue favoritism toward the fish from a particular lake. As the traps were run, all fish were placed in the boat until each trap in that lake had been lifted and reset. The fish were then recorded as to species and numbers present and all but the crappie were returned to the lake, usually sufficiently active to swim away. The crappie were placed in a wet sack until the laboratory was reached, where they were immediately place in water and measurements begun.

Total lengths in inches and tenths and weights in pounds and
hundreths were recorded on scale envelopes. A sample of crappie scales from below the lateral line under the antenior end of the dorsal fin were taken and placed in the scale envelope. The number, date, species, sex and lake were recorded. The stomach was removed and placed with a number similar to that on the envelope, on a piece of cloth about 4 inches square.

The cloth was then rolled diagonally and the ends tied. The tools were inspected after each fish had been examined to prevent mixing of scales from one fish with those of another.

Preservation of Stomachs

After all fish stomachs for one days catch had been removed and tied in cloth they were placed in a half gallon fruit jar in 10 per cent formalin solution. The stomachs were fixed in this solution until the jar was full, then the formalin was emptied and replaced with fresh water. The water was replaced three or four times over a period of two days and finally replaced with a 50 per cent solution of isopropyl alcohol. The stomachs were in this solution until analyzed.

Stomach Analysis
The cloth containing a stomach was removed from a jar and the enclosed stomach and number removed and the number recorded. This number was the only identifying mark and prevented unconscious bias in analyzing the stomach contents. The stomachs were numbered consecutively, regardless of lake, hence, it was impossible to identify which lake a particular stomach was from without referring to the scale envelope. The stomach and lake from which it came were not matched until all stomachs had been analyzed.

The contents were removed from the stomach and placed in a graduated centrifuge tube which had been calibrated by the use of a graduated burette, in tenths of cubic centimeters. The tenths on the centrifuge tube were estimated to the nearest half。 Water was titrated from the burette into the centrifuge tube until the stomach contents were covered and the number of cubic centimeters used recorded. The volume of the stomach content was computed from the total reading on the centrifuge tube and the known volume of water.

The stomach contents were then thoroughly mixed with the water in the centrifuge tube and 1 cubic centimeter withdrawn by use of a graduated pipette with a suction bulb attached. The sample was then placed in a Sedgewich-Rafter Counting Chamber and the chamber placed on a piece of plexiglass which had been grided with lines having $1 / 16$ inch intervals. The cell of the counting chamber covered 394 squares of the grid. Three rows of 12 squares each (oneeeleventh of the grid) were marked and except those mentioned below, each organism with at least half of the body inside a square was counted as one and recorded. Multiplying the number of organisms counted by 11 gave the number of organisms per cubic centimeter which when multiplied by the number of cubic centimeters to which the stomach contents had been diluted gave the number of organisms for that fish stomach. All large Insecta, Pisces, Decapoda and Isopoda were counted without the use of the counting cell. All small insects, algae and nematodes were enumerated by counting all contained in the counting chamber and the number for that stomach calculated. The calculated number of organisms and the proper identification number for that particular stomach were recorded on a sheet under appropriate headings.

The fish number on the sheet was matched with that on the scale
envelope to determine the lake from which the fish had come, after all stomachs had been analyzed. The data for each crappie was then placed on a 3×5 inch index card to facilitate filing and arranging the data for further analysis.

Calculation of Age and Growth

The age and yearly growth of crappie can be determined by the fish ${ }^{8}$ s scale (Van Oosten, 1929). Layers of hyalodentine are laid down on the evter margin of the scale foxming tidges dr circuliz nis the figh grovi. When growth is retarded, as is the case during winter, these circuli are not always completed on the lateral margins of the scale. When the rate of growth is accelerated, as is the case in spring, the circuli parallel the entire margin of the scale, hence enclosing the uncompleted circuli. forming a condition known as "cutting over".

Crappie scales in this study were aged by counting as year marks or annuli the number of those "cut over" areas in which the cut over portion of the scale was identifiable on the lateral sides and the succeeding circuli could be followed all the way around the scale. The age of a particular crappie then was equivalent to the number of annuli appearing on the scale. All scales aged were examined on a scale projection apparatus.

The method used to calculate the length of a fish at a particular age was by direct proportion in which it is assumed that the length of the scale and of the fish grow in direct proportion. That iss the total length of the fish at capture is to the total length of the scale (focus to anterior margin of the median radius) as the length of the fish at a particular age is to the length of the scale at that annulus.

A nomograph was constructed as described by Lowery (1951) and used to solve the above proportion for the fish length at each annulus. A piece of plexiglass $1 / 16$ inch thick was ruled in tenth inch intervals with each tenth graduation inked and numbered consecutively. A second piece of $1 / 16$ inch plexiglass one half inch wide was used as a swinging arm or marker. The arm was attached by one end to the ruled nomograph in such a manner that one edge coincided with zero on the nomograph. Zero of the nomograph was placed over the focus of a scale and the nomograph rotated until the number corresponding to the length of the fish at capture intercepted the most posterior margin of the scale image at its central radius. The arm was then rotated to this point and the length of the fish was read directly from the nomograph at each annulus intercepted.

All fish captured were not aged. A sample of the recorded crappie was taken by the following method. The recorded lengths of crappie were organized into groups limited to $1 / 10$ inch intervals. All the fish in those groups containing five or less fish were aged. In groups containing 6-20 fish, one half of the fish were aged. In groups containing over 20 fish, one fourth of the fish were aged. The sample taken from a group included representatives from each season in nearly equal numbers. If all the fish in a sample were of the same age no additional fish in that group were aged. If however, a fish was found to vary in age from the remainder of the sample, an additional 25 per cent of the group were aged. If no variation in age occurred in the second sample all fish in that group, exclusive of the aberrant fish, were then assumed to be of the same age. All fish at both extremes of a normal length-frequency graph were aged, therefore, a population with more than one predominant
age group had a greater percentage of the fish aged. It seemed that a good representation of the fish was procured by this procedure.

Computation of Data
All data was computed and checked by means of a Monroe Calculator. The method of computing data for analyzing individual phases of the problem is explained at the beginning of each particular section.

The lakes studied are in Fair Plains Township, Payne County, Oklahoma and subject to similax climatic influences. They are in the same general soil region so that a description of climate and soils will apply to each lake.

Soils: The soil is of the Reddish Prairie group which lie south of the true Prairie soils region. These soils occupy a broken belt of rolling praixie country extending from central Kansas through Oklahoma into northcentral Texas. The soil has developed from the Permian "Red Beds" formation in which the parent material is of red calcareous clay or sandy clay. Surface noils, on the smoother areas, are rather deep and have a red or brown color laxgely composed of silt loam or very fine sandy loam texture, over sabsoils of red and brown crumbly clay or sandy clay loam. The soils are thin and red on some of the sloping areas ("womyane)" 1938)

The soils on the watershed of the lakes studied bolong in the Soil Conservation Service classification to Units 5 and 6. These soils are characterized by medium texture and vary from slow to very slow permeam bilaty.

Climate: The climate in Payne County is in general relatively mild. The mean temperature (Fahrenheit) over a 40 year period was 36.6 degrees for January and 80.7 degrees for July. The maximum temperature for the 40 year period was 115 degrees and the minimum was minus 18 degrees.

There is a long growing season of 213 days, with the latest killing frost in spring occurring about Merch 31 , and the earliest killing frost in the fall occurring about october 30 .

The section of the state in which the lakes are located is fairly well watered with an annual average precipitation of 33.31 inches. Rainfall is spread rather evenly throughout the year with May usually getting . the greatest amount, and January the least. However, the rainfalls are frequently torrential in form, consequently much runoff occurs (Wahlgren, 1941).

Sanborn Lake

 Oklahoma. It has a surface area of 9 acres and watershed of 150 acres. The average depth is about 7 feet. The lake was constructed prior to 1930 and used originally as a source of water for cattle.

The dam was cut allowing almost complete drainage of the lake in 1944. The fish population was drugged with rotenone in the spring of 1947, the dam repaired and in the fall Fathead Minnows, Pimephales promelas Rafinesque; Redfin Shiners, Notropis lutrensis (Baird and Girard); and Golden Shiners, Notemigonus crysoleucas (Mitchill), were stocked in the lake. An additional stocking, in 1948, took place by introducing Black Crappies Pomoxis nigro-maculatus (Le Sueur)! Large* mouth Black Bass, Micropterus salmoides (Lacepede); Redear Sunfish, Lepomis microlophus (Gunther): Bluegill, Lepomis macrochirus Rafinesque: and Channel Catfish, Ictalurus lacustris (Walbaum). Fishing was allowed from the beginning and unauthorized stockings have undoubtedly occurred, but no particular management has been done on the lake since that time.

There are willow trees, Salix spp , of considerable size, as well as cottonwood trees, Populus spp, growing on the dam. A few elm trees, Ulmus americanus, are on the west bank of the lake. The northern portion
of the lake inundated much brush and small trees and has a few trees adjacent the waters edge. Humerous beds of pond weed, Potomogeton spD. are present in shallower areas along the shore and practically occupy about $1 / 2$ acre of the northern portion of the lake. Coontail. Ceratophyllum demersum, is represented in the water. Cattail, Typha spp, gad Juesiaea diffusa are common in portions of the shallow water.

The lake tends to become maddy in the springg but clears after a Week or more. The water is clear most of the year.

The large watershed and small lake combination causes periodic overflowing which replaces the more fertile water with less productive and frequently muddy water.

Boomer Lake

Boomer Lake is located two miles north of the courthouse, Stillwater, Okiahoma. It was built in $1923-24$ as a source of water for the City of Stillwater. It began to fill in 1925 and served as a water supply for the city until 2951.

Including a small portion of the original creek. Boomer Lake has 215 surfec acres, at spillwy level. and an average depth of about nine feet. The watershed covers approximately 8,960 acres.

The shores tend to be wave swept and barren. Only a few scattered trees have grown above the shore line except at the upper or northern portion which includes the creek. Aquatic vegetation is sparse, with oniy a few scattered axeas of cattail. Typha spp.

Boomer Lake has a much larger watorshed for the size of the basin and Iike Sanborn Lake is subjected to periodic overflowing which prepents increase in fertility。

Copper sulfate has been repeatedly applied in an attempt to clear the water, with little success. It has been continually muddy for many years.

Country Club Lake

Country Club Lake is a pond of two surface acres, located in Section 19, T. $19 \mathrm{~N}_{\mathrm{o}}, \mathrm{R}_{\circ} 2 \mathrm{E}_{\mathrm{o}}$, Payne County, Oklahoma. The watershed covers 69 acres and similar to the other lakes it is subject to periodic overflow.

The lake was built prior to 1927 and used for recreation by the members of a group who leased the land but for several years it has served principally as a source of stock water.

Records are not available of the management practices employed but indescriminate stocking has undoubtedly occurred throughout its existence.

Post oak, Quercus stellata, and Blackjack oak, Quercus marilandica, trees border about 50 per cent of the shore while willow, Salix spp, are present on the dam and at intervals along the shore. American Lotus, Nelumbo lutea, covers an area of approximately $1 / 4$ acre in the west part of the lake. Coontail, Ceratophyllum demersum, is present in the water.

The water in Country Club Lake is clear except following a hard rain and reclears within a few days after muddying. Periodic overflowing causes a loss of fertility.

LIST AND NOMBER OF EACH SPECIES CAPTURED
The species and the number of each that were collected from the respective lakes are listed in Table 1.

TABLE 1
NUMBER OF INDIVIDUALS OF EACH SPECIES CAPTURED FROM FACE LAKE

	Sanborn Lake	Boomer Lake	Country Club Lake
Pomoxis			
1. annularis Rafinesque		530	
2. nigro-maculatus (Le Sueur)	909.	-	656
Lepomis			
1. macrochirus Rafinesque	956	32	32
2. microlophus (Gunter)	474	-	-
3. megalotis (Rafinesque)	61	-	∞
4. cyanellus Rafinesque	47	1	69
Micropterus			
1. salmoides (Iacepede)	16	5	-
Ictalurus			
1. lacustris (Walbaum)	51	18	1
Pilodictus			
$1 . \quad$ olivaris (Rafinesque)	--	3	-
Notemigonus			
1. crysoleucas (Mitchell)	131	-	6
Carpiodes			
I. carpio (Rafinesque)	\cdots	41	-
Cyprinus			
I. carpio Linnaeus	-	2	--
Ameiurus			
1. melas (Rafinesque)	--	--	196

One can not imply that the species and their numbers (Table 1) represent population-compositions for all but the crappie were returned to the lake water and, hence, may have reappeared in the gear.

It soon become evident that traps set in certain areas captured fewer crappie than an equal number of traps in other areas. Conversely some areas were located which yielded good crappie numbers but few of other species. Croppie appeared to be more commonly found near submerged brush than elsewhere in the lakes and were soarce nearo aubrarged aquatic plants even though submerged brush was present.

AGE, GROWTH AND FOOD HABITS OF CRAPPIT

 FOR ALI THREE LAKES STUDIEDA total of 2103 crappie were taken during the study. Sanborn Lake contributed the major portion of the fish with 909 black cxappie and 8 white crappie, weight, length and stomach contents of the latter were similar to the black crappie and are inciuded in the data from that lake. The two other lakes yielded only the crappie species listed. Country Club Lake provided 656 black crappie and Boomer Lake 530 white crappie (Table 3).

Mean Length and Weight of Crappie

A total of 206.18 pounds of crappie was taken from the three lakes. The mean weight of the cxappie taken (Table 2) was 0.10 pound and mean length was 5.8 inches.

Sanborn Lake yielded the major part of the fish both in numbers and weight. The total weight of exappie from Sanborn Lake was 117.85 pounds, with an arerage of 0.11 pounds and a mean length of 6.1 inches.

The black crappie from Country Club Lake weighed 45.83 pounds, had an average weight of 0.07 pound and a mean length of 5.4 inches.

White crappie from Boomer Lake weighed 56.74 pounds, averaged 0.11 pounds and 5.7 inches in length. The relatively high mean weight of the crappie from Boomer Lake was increased greatly by 39 large crappie which comprised the fifth, sixth and seventh age groups (Table 26).

Age Groups of Crappie
Sanborn Lake had two major age groups (Table 3). The fish in age group II comprised 53.6 per cent of all crappie frorl that lake。 Age
group III comprised 32.0 per cent of all fish taken from Sanborn Lake. Age group I contained 12.3 per cent of the total crappie followed in order by age group IV with 1.9 per cent and V with 0.2 per cent.

The major portion of crappie from Boomer Lake, 68.9 per cent, were in age group II while age group III comprised 17.9 per cent (Table 3). The remainder of the fish in order of percentage by age groups were; IV, 4.0 per cent; $\nabla, 4.0$ per cent; VI, 3.2 per cent; I, 1.8 per cent and VII, 0.2 per cent.

Country Club Lake had 88.4 per cent of the black crappie in age group IV (Table 3). Age group II was second numerically with 6.1 per followed by groups III with 2.6 per cent; I, with 1.8 per cent; V_{0} with 0.9 per cent and VI, with 0.2 per cent.

Table 2

Mean Length and Weight and Total Number and Weight of Crappie Captured From the Lakes

Lake	Number of Crappie	Mean Length (Inches)	Mean Weight (Pounds)	Total Weight (Pounds)
Sanborn	917	6.1	0.11	117.85
Boomer	530	5.7	0.11	56.74
Country Club	656	5.4	0.07	45.83
Total and Mean	2103	5.8	0.10	206.18

Mean Length of Crappie for Specific Age Groups in the Lakes
The mean length of crappie (Table 4) was compiled by totaling all measurements within each age group and dividing the sum by the number of
fish actually aged in that age group. The total for each lake was made in a similar manner rather than calculating the average of the sum of the means. The latter method would introduce errors because the sample sizes were different for each age group.

Table 3
Age Groups of Crappie, the Number and Percentage of the Crappie Population for Each Lake

Age Group	Sanborn		Boomer		Country Club	
	No.	Per cent of Population	N0.	Per Cent of Population		Per Cent of Population
I	66	12.3	10	1.8	12	1.8
II	492	53.6	365	68.9	40	6.1
III	294	32.0	95	17.9	17	2.6
IV	18	1.9	21	4.0	580	88.4
V	1	0.2	21	4.0	6	0.9
VI			17	3.2	1	0.2
			1	0.2		
Total	917		530		656	

White crappie during their first year in Boomer Lake made slightly greater growth, 0.1 inch, than black crappie in Country Club and 0.6 inches more growth than the black crappie in Sanborn Lake.

The second year, crappie in Sanborn Lake made 0.8 inches more growth than those in Boomer Lake and 0.9 inches more than the crappie in Country Club Lake.

The third year. crappie from Sanborn Lake again grew more by 1.2
inches than the crappie from Boomer Lake and by 2.1 inches than the crappie from Country Club Lake.

When the fourth annulus was completed, which was at the beginning of the fifth year of life, black crappie from Sanborn Lake were 0.4 inches and 3.2 inches longer than those from Boomer and Country Club Lakes respectively.

One crappie only of age group five was taken from Sanborn Lake. The fish was 0.01 inches shorter than the average for Boomer Lake but was 3.7 inches longer than the average for Country Club Lake at the same age.

Only one crappie was taken from Country Club Lake in the sixth age group. The fish was 4.4 inches shorter than the fish of the same age from Boomer Lake.

The oldest crappie taken, age group seven, of which there was but one, was a 15.4 inch white crappie from Boomer Lake.

Table 4
Mean Length of Crappie for Specific Age Groups from the Lakes Studied

Lake	Age Groups						
	I	II	III	IV	V	VI	VII
Sanborn	1.8	4.9	6.8	8.0	10.0		
Boomer	2.4	4.1	5.6	7.6	10.1	10.8	15.4
Country Club	2.3	4.0	4.7.	4.8	6.3	6.4	
Total Mean	2.0	4.5	5.7	5.8	9.7	10.1	15.4

Monthly Mean Weights, Lengths and Volumes of Stomach Contents

The recorded mean weight and length of crappie given in Table 5 was computed by adding all weights and lengths of individual fish collected during the month and dividing the sum by the total number of crappie taken for that month. The mean volume of stomach contents for each month was determined by adding the cubic centimeters of food from all fish which were collected that month and contained food and the sum divided by the number of fish involved.

Table 5
Number of Crappie Collected, Crappie Weights, Leneths, Number of Stomachs
Containing Food and rolumes of Stomach Contents Recorded for the Month of Capture From the Lakes Studied

Captured	Number of Crappie Collected	Mean Weight (Pounds)	Mean Length (Inches)	Number of Stomachs Containing Food	Mean Volume of Stomach Content (Cubic Centimeters)
January	16	0.09	5.9	6	0.10
February	19	0.10	6.0	18	0.13
March	32	0.17	10.1	26	0.32
April	158	0.11	6.0	77	0.22
May	223	0.07	5.5	144	0.23
June	446	0.08	5.7	222	0.16
July	381	0.07	5.4	197	0.09
August	337	0.08	5.6	251	0.11
September	164	0.09	4.7	126	0.12
October	85	0.09	5.9	54	0.10
November	115	0.08	5.7	80	0.08
December	27	0.08	5.6	18	0.05

It was impossible to determine the monthly mean weight, length and volume of stomach content for all individual age groups because some age groups were absent from certain monthly collections.

Mean Weight by Months

The highest mean weight, 0.17 pound, was recorded in March (Table 5). There was a rapid decline in weight from March until May when the lowest average weight of 0.07 pound was recorded. Slight fluctuations occurred. never more than 0.01 pound between successive months, during the re mainder of the year.

Mean Length by Months
The highest mean length recorded was 10.1 inches in March (Table 5). There was close correlation between mean length and mean weight for individuai months except in September when the mean length decreased nearly one inch and the mean weight increased by 0.01 pound. Crappie Capture by Months

Fishing gear was run five days per week from April until October and three days per week thereafiter The total number of crappie collected during the months that the traps were run on alternate days was small, except for November and April, but if the total capture had been doubled by running the traps each day the number collected would still be small (Iable 5).

January provided the lowest number of fish taken in a month with only 16 crappie caught from all lakes. February and December were next lowest with 19 and 27 crappie captured for the respective months.

The best months for numbers of crappie captured were May Junes July and August. April. September and November were intermediate and
provided nearily equal numbers of crappie.
Mean Volume of Stomach Contents by Mcnths
There was, on a monthly basis, a remarikable similarity in the volume of food taken (Table 5). The maximum wolume recorded was for March when the average volume per stomach reached 0.32 cubic centimeters o The maxio mum volume seemed to be due to the fact that the March sample contained large fish. There were three months when the average monthly volume of stomach contents were below 0.10 cubic centimeters, Novembers December and July. March. April and May had mean rolumes above 0. 21 cubic centio meters while the volumes for the remainder of the montha were intero mediate. The data indicate that crappie fed more during the months of March, April and May than during any other three months, otherwise seasonal changes and food consumed show little correlation.

Food Habits
Food habits of the black and the white crappie were studied by obtaining stomachs from fresh fish preserving and later analyziag them as described under Methods. Crappie stomachs were collected throughout one yeare to determine the volume of food contained, the changes in volune for different seasons, the numbers and kinds of food items preso ent, and the changes in food taken with age or size of fish. Compario sons 2re made between Sanborn Lake where black crappie were making satisfactory growth, Boomer Lake where white crappie were of an undesiro able size, and Country club qake in which the black crappie were severely stonted.

Food Volume

From the total of 2103 crappie captured, 61.7 per cent or 1299 had
food in their stomachs (Table 10). Sanborn lake provided 610 cxappie stomachs containing food which comprised 47.0 per cent of all stomachs with food. Boomer Lake yielded 259 crappie stomachs with food which comprised 20.0 per cent of all crappie having food. Country Club Lake specimens had 428 food containing stomachs which was 33.0 per cent of all stomachs with food.

A total of 275.65 cubic centimeters of food was measured from the crappie stomachs collected (Table 6). The average amount of food contained per crappie from all lakes was 0.13 cubic centimeters. The average volume was greatly increased by the stomachs of 39 large crappie from Boomer Lake。

Table 6
Cubic Centimeters of Food and the Mean Volume Contained in Crappie for the Three Lakes

Lake	Cubic Centimeters of Food Present	Average Cabic Centimeters Present
Sanborn	117.85	0.19
Boomer	119.85	0.46
Country Club	37.95	0.09
Total	275.65	0.13

Stomach Contents

No attempt was made to record the stage of naturioy of the insects present in the crappie stomachs (Table 7). Larval, or immature, forms comprised practically all insects present. Due to the relatively rapid
rate of digestion in fish stomachs, particulaxiy in the summer mouths, there were frequently only the chitinous portion of the insects remeining. Hach insect head was recorded as an insecto and aftef analyzing sereral stomachs, the insects could usually be classified to oxder on this basis. Chitinous partions of insects which obviously did not beo Long with the insect heads present were recorded as unidentified Irsecta. The insects were identified to order.

Ephernerida-A total of 3362 Fphemerida were recorded from all crappieg resulting in an average content of 2.6 per stomach. Black crappie in Sanborn Lake had 80.7 par cent of all Ephemerida recorded. White ceappie in Boomer Lake contained 11.6 per cent and black ceappie in Counbry Club lake 7.7 per cent of all these insects recorded.

DiptezamA tatal of 38697 Dipterous insects were present in the stomachs analyzed. The average number recorded per stomach was three insects. Crappie from Sanborn Lake had 80.2 per cent. Boomer Lake 2.3 per cent, and Country Club Lake 17.5 per cent of the total Diptera recorded. ColeopteramThere were 138 Coleoptera mecorded resulting in an average of. 0.1 contained by all crappie. Cxappie from Country Club Lake had 49.0 per cent of the total Coleoptera. Saxboru Lake mes secondiwith 47.0 per ceat frollowed by Boomex Lake with 4.0 per cent of the tobal Coleoptera found in crappie stomachs.

Insectan-As prefiously mentioned, the insects which were too broken or digested to be identified to order were placed under the heading of Insecta A total of 1745 insects were thus recorded giving an average of 1.3 for each stonach containing food. Crappie from Sanborn Lake con-
tained 43.7 pex cent of the unidentified insects recorded: Country Club Lake, 31.3 per cent: and Boomex Lake, 25.0 per cent.

Table 7
Insects Eaten by Crappie and Percentage of Total from the Three Lakes Studied

Lake Ep	Dphmerida	Per cent	Diptera	Pex cent	Coleoptera	Pez cent	Unid.	Per cent
Sanborn	2713	80.7	31054	80.2	65	47.0	763	43.7
Boomer	390	11.6	881	2.3	6	4.0	437	25.0
Cowntry Club	259	7.7	6762	17.5	67	49.0	545	31.3
Total number	3362		38697		138		1745	
Average per fish	2.6		3.0		0.1		1.3	

Invertebrate Eggsuminvertebrate eggs were by far the most numerous food items in erappie shomachs (Table 8)。 Most of the eggs were from Cladocera but insect eggs were common during the summer and some eggs were not identified even to phylum. A total of $1,071,401$ invertebrate eggs were recorded.

Crappie stomachs for the lakes studied contained an average of 824.8 invertebrate eggs each. The crappie from Sanborn Lake contained 59.8 per cent of the total: arappie from Country Club Lake, 27.2 per cent: and Boomer Lake, 13.0 per cent. Gladocera Humerically Cladocexans wexe second in rank of food present. The total number for 41 lakes was 202,846 Cladocerans resudting in an average number per stomach of 156.2. Crappie from Sanborn Lake accountea
for 54.0 per cent of the total eaten; Country Cub Lake, 24.3 per cent: and Boomer Lake, 21.7 per cent.

Ostracods -Ostracods were numerically fourth in rank for the food recorde ed. Practically all of the Ostracods recorded were from crappie taken in Sanborn Lake. These comprised 96.4 per cent of the total Ostracods counted. Crappie from Country Club Lake contained 2.7 per cent and those from Boomer Lake 0.9 per cent of all Ostracods found. Spermocarpmothe oogonium of Wlotrichales, a filamentous algae, with its enclosing sheath of cells is termed a spermocarp. The present identification is not positive due to the lack of fresh specimens but it is bem lieved for the puxposes of this study it is more satisfactory than placo ing these items under the general heading of algae.

There were 19,904 spermocarps recorded resulting in an average consumption of 15.3 for each stomach containing food. Crappie from Sarborn Lake had 76.7 per cent: Country Club Lake, 23.1 per cent; and Boomer Lake, 0.2 per cent of all spermocarps recorded.

Algase- No attempt was made to classify the Algae into lower groups. Algal plants were counted as one whether a plant consisted of a single cell or a filament. There were 650 algal plants recorded from all crappie stomachs resulting in an average of 0.5 for each stomach that contained food. Crappie from Sanborn Lake had 43.1 per cent of all algae: Boomer Lake, 31.1 per cent: and Country Club Lake; 25.8 per cent...... Pisces Only 48 of the crappie taken had fed on fish. Two of the prey were identified as crappie but the remainder were unidentifiable of these 48 crappie containing fish in their stomachs 72.9 per cent were from Boomer Lake, 22.9 per cent were from Sanborn Lake and 4.2 per cent from Country Club Lake。

Table 8

Material (Exclugive of Insects) in Cxappie Stomachs and the Percentage for each Lake

Lake	Invertebrate Eggs	Copepoda	Cladocera	Ostracoda	Nematoda	Algas	Spermocarp	Pisces
Sauboru	641.015	91.506	138.733	21.575	2,228	280	15,257	11
Boomer	138,106	36,758	53.804	180	352	202	4	35
Country Club	292.280	41.155	10,309	608	803	168	4.643	2
Total	1.071 .401	169,419	202,846	22,363	3.383	650	19,904	48
	Per Cent of Total							
Sauborn	59.8	54.0	68.4	96.4	65.9	43.1	76.7	22.9
Boomer	13.0	21.7	26.5	0.9	10.4	31.1	0.2	72.9
Country Club	27.2	24.3	5.1	2.7	23.7	25.8	23.1	4.2

Miscellaneous-m. The, items present in the crappie stomachs which were in very smail numbers of of infrequent occurrance were recorded as Miscellaneous. Acarina, Odonata, Homoptera, Orthoptera, Hymenoptera, Isopoda, Amphipoda, Decapoda, unidentified crustaceans and plant debris were present. A more complete record is given under Food Present in Cxappie in Individual Lakes.

Monthly Variations of Volume and of Per Cent of Stomachs Containing Food

Specimens collected paried from month to month in mean volume of stomach contents and in the number of stomachs that contained food. The amount of increase or decrease from the preceeding months mean average and the variation in the per cent of specimens which had food in their stomachs are listed in Table 9. The purpose of the calculations was to learn iff a correlation existed between the mean volume of stomach contents and the percentage of stomachs containing food.

There was small, if any, correlation between the monthly fluctuas tions in volume of stomach contents and the per cent of the stomachs containing food. The maximum increase in volune of food present occurred in March but during the same month there was a decrease of 22.0 per cent in number of stomachs containing food. The sharpest decrease in volume occurred in April with 0.10 cubic centimeters which was accompanied by a drop of 24.0 per cent in number of stomachs containing food. In May there was an increase of 0.01 cubic centimeters in stomach contents and an increase of 16.0 per cent in stomachs having food.

Stomachs Containing Food by Months

The lowest monthly percentage, 37.5 . of stomachs containing food occurred in January and the highest was in February, 95.0 per cent. (Table
11). Two months only, January and April, were below 50 per cent in numbers of stomachs containing food. The yearly average for all stomachs containing food was 61.7 per cent. The data shows that for a given pexiod during the year slightly over one half of the crappie had recently fed.

Empty Stomachs

The stomachs were empty in 804 cxappie which comprised 38.3 per cent of all fish taken (Table 10). Samborn Lake had 307 or 38.2 per cent of the crappie with empty stomachs. White crappie from Boomer Lake had 271 or 33.5 per cent of the crappie with empty stomachs. The black crappie from Cowntry Club Lake had 228 or 28.3 per cent of all crappie which had not recently fed.

Mmoty Stomachs by Months

The percentage of empty stomachs varied considerably from month to month (Table 11). Variation in sample sizes could account for some of the fluctuations but not for all those found.

January provided the highest percentage with 62.5 per cent of the stomachs empty and February the lowest with 50. Daring the spring and summer months of April, June and July approximately one half of the specimens did not have food in their stomachs. February, March, August and September were the better months with a range of 5 to 27 per cent of the stomachs empty. Hmpty stomachs comprised 38.3 per cent of all stomachs examined.

Table 9
Monthly Variations From the Previous Month in the Mean Volume of Stomach Content and in Per Cent of Stomachs Containing Food

Month	Mean Volume Variation in Cubic Centimeters	Variation in Per Cent of Stomachs Containing Food
May*	0.23	64.6
June	-0.07	-15.0
July	-0.07	$+2.0$
August	10.02	f22.0.
September	f0.01	\& 3.0
October	-0.02	-13.0
November	-0.02	$t 6.0$
December	-0.03	-3.0
January	60.05	-29.5
February	10.03	<58.5
March	40.29	-22.0
April	-0.10	-24.0

Table 10
The Number of Empty Stomachs and Stomachs with Food, Their Totals, Their Percentages for Each Lake, and the Percentage for Each Group Of All Specimens Collected

Lake	All Specimens Collected	Empty Stomachs		Stomachs With Food	
		Number	Per Cent of Total	Number	Per Cent of Total
Sanborn	917	307	38.2	610	47.0
Boomer	530	271	33.5	259	20.0
Country Club	656	228	28.3	428	33.0
Total	2103	804	38.3	1299	61.7

Sex Ratio
There were 1054 females, 50.2 per cent, and 882 males, 41.9 per cent, in the total of 2103 crappie captured. Sex could not be determined for 167 specimens which represented 7.9 per cent of all crappie caught (Table 12).

Sanborn lake provided. (1). 490 females or 46.5 per cent of all females taken, (2), 360 males or 40.8 per cent of all males collected, and (3). 67 specimens of undeterminable sex or 40.1 per cent of the total unsexable specimens.

Boomer lake yielded, (1), 184 females or 17.5 per cent of all females takex, (2), 262 males or 29.7 pex cent of all males collected. and (3). 84 specimens of undeterminable sex or 50.3 per cent of the total unsexable specimens.

Country Club Lake provided, (1), 380 females or 36.1 per cent of
all females taken, (2), 260 males or 29.5 per cent of all males collected and (3), 16 specimens of undeterminable sex or 9.6 per cent of the total unsexable specimens.

Table 11

Monthly Percentage of Stomachs Empty and Those Containing Food From the Three Lakes Studied

	Per cent of Empty Stomachs	Per cent of Stomach Containing Food
January	62.5	37.5
February	5.0	95.0
March	27.0	73.0
April	51.0	49.0
May	35.0	65.0
June	50.0	50.0
July	48.0	52.0
August	26.0	74.0
September	23.0	77.0
October	36.0	64.0
November	30.0	70.0
December	33.0	67.0

Table 12
Sex Numbers and Sex Per Cent of Total Crappie Captured From the Three Lakes

| Lake | Mumber
 of
 Females | Per Cent
 of Total
 Females | Mamber
 of
 Males | Per Cent
 of Total
 Males | Number
 Uniden
 tifiable | Per Gent |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

AGE, GROWEH AND FOOD HABITS OF CRAPPIE BY INDIVIDUAL LAKES
The method used to determine the calculated length of fish at a particular age is explained under Methods. The mean calculated leagth reported for crappie at different ages was determined by adding all lengths recorded for fish in a particular age group and dividing the sum by the total number of fish aged in that group. The number aged as given in Tables 13, 14, and 15 designates the number of fish aged at completion of each particulax annuli.

Age Groups and Mean Lengths of Black Crappie from Sanborn Lake
Age group I comprised 12.3 per cent of all fish taken from Sanborn Lake. The fish had an average length of 1.8 inches at completion of the first annulus (Table 13)。

The crappie in age group II were the most numerous yielding 53.6 per cent of all crappie taken from the lake and the calculated mean length was 4.9. inches.

The second largest group of crappie were in age group III which comprised 32.0 per cent of the total. All crappie in the age group areraged 6.8 inches in length at completion of the third annulus.

Age group IV comprised 1.9 per cent of all cxappie from Sanborn Lake and the fish had a calculated mean length of 8.0 inches.

One crappie taken from Sanborn Lake was in age group $V_{\text {. }}$ The fish comprised 0.2 per cent of all crappie from the lake and measured 10.0 inches at completion of the fifth annulus.

Age Groups and Mean Lengths for White Crappie from Boomer Lake
White crappie in age group I from Boomer Lake comprised 1.8 per cent
of all crappie taken from the lake (Table 14) and averaged 2.4 inches in length at annulus completion.

Table 13
Mean Length and Composition Per Cent by Age Groups of Black Crappie Collected from Sanborn Lake

Age Group	Average	Calculated Length in Inches at Annulus Completion				Per Cent of Composition
	1	2	3	4	5	
I	2.1					12.3
II	1.6	4.7				53.6
III	1.9	5.2	6.8			32.0
IV	1.8	3.7	6.6	7.9		1.9
V	2.8	4.4	5.4	9.2	10.0	0.2
Mean Length	1.8	4.9	6.8	8.0	10.0	
Number Aged	650	529	139	15	1	

Most white crappie from Boomer Lake had completed the second annulus and were in their third growing season. Age group II comprised 68.9 per cent of all white crappie taken and the calculated mean length was 4.1 inches.

The crappie in age group III comprised 17.9 per cent of the total white crappie taken and had a calculated mean length of 5.6 inches.

There was a rapid decline in number of crappie after age group III. Age group IV comprised only 4.0 per cent of the white crappie taken and had a calculated mean length of 7.6 inches.

Mean Length and Composition Per Cent by Age Groups of White Crappie Collected from Boomer Lake

Age Group	Average Calculated Length in Inches at Annulus Completion							$\begin{gathered} \text { Per Cent } \\ \text { of } \\ \text { Composition } \end{gathered}$
	1	2	3	4	5	6	7	
I	2.3							1.8
II	2.4	4.1						68.9
III	2.5	4.2	. 5.4					17.9
IV	2.3	4.0	. 5.6	7.2				4.0
V	2.5	4.5	$\therefore 6.0$	7.8	10.6			4.0
VI	2.5	4.3	. $5.9{ }^{\circ}$	7.4	9.6.	10.1		3.2
VII	2.2	4.4	6.0	8.0	10.8	13.8	15.4	0.2
Mean	2.4	4.1	5.6	7.6	10.1	10.8	15.4	
Number Aged	330	315	123	51	32	5	1	

There were the same number of white crappie in the fifth age group as in the fourth. The five year old fish comprised 4.0 per cent of the crappie catch from Boomer Lake and had a calculated mean length of 10.1 inches.

There were slightly fewer fish in the sixth age group than in the fifth. The six year old fish comprised 3.2 per cent of the total catch and the calculated mean length was 10.8 inches.

The oldest crappie taken was one seven year old specimen which comprised 0.2 per cent of all fish taken from Boomer Lake and it meas-
ured 15.4 inches when the seventh annulus was complete.

Age Groups and Mean Iength of Black Crappie from Country Club Lake
Age group I comprised 1.8 per cent of the cxappie from Country Club Lake (Table 15) and the calculated mean length was 2.3 inches.

Age group II comprised 6.1 per cent of the crappie from Country Club Lake and the mean length was calculated to be 4.0 inches.

There was 2.6 per cent of the crappie from Country Club Lake that had completed the third annuius and their average calculated length was 4.7 inches.

There was only one major age group of black crappie from Country Club Lake, The fish in age group IV comprised 88.4 per cent of all crappie taken and had a mean length at that annulus of 4.8 inches.

Four fish were taken which had completed their fifth annulus. These comprised 0.9 per cent of the total crappie taken from Country Club Lake and had a mean length calculated to be 6.3 inches.

Oniy one crappie taken from Country Club Lake had completed the sixth annulus and it measured 6.4 inches at completion of the last annulus. The fish comprised 0.2 per cent of the total crapie captured from the lake.

Mean Length and Length Range at Capture of Black Crappie from Sanborn Lake

The mean length et capture of all black crappie from Sanborn Lake was 6.1 inches with a range from 3.7 to 11.2 inches (Table 16).

The mean length of crappie in age group I was 4.6 inches with a range of 3.7 to 5.7 inches. In this age group 77.7 per cent of the crappie were 4.0 to 5.0 inches long.

The crappie in age group II had an average length at capture of
5.8 inches with a range of 4.5 to 7.3 inches. There were 78.3 per cent of the crappie 5.3 to 6.3 inches long.

Age group III had an average length at capture of 7.1 inches and a range of 5.8 to 10.2 inches. There were 75.9 per cent of the crappie 6.7 to 7.7 inches long.

Table 15
Mean Length and Composition Per Cent by Age Groups of Black Crappie Collected from Country Club Lake

Age Group	Average Calculated Length in Inches at Annulus Completion						$\begin{aligned} & \text { Per Cent } \\ & \text { of } \\ & \text { Composition } \end{aligned}$
	1	2	3	4	5	6	
I	3.0						1.8
II	2.2	5.2					6.1
III	1.9	3.4	4.5				2.6
IV	2.2	3.7	4.7	4.8			88.4
V	2.4	3.6	4.4	5.4	6.6		0.9
VI	2.3	3.6	4.4	5.5	5.7	6.4	0.2
Mean	2.3	4.0	4.7	4.8.	6.3	6.4	
Number Aged	211	197	152	123	4	1	

Age group IV averaged 8.4 inches long with a range of 6.6 to 11.2 inches. There was 83.3 per cent of the crappie in the age group 7.5 to 9.3 inches long.

The wariation in range of crappie lengths at capture from Sanborn Lake formed a uniform progression for all ages. The variation in length
within each age group was as follows: I, 2.0 inches: II, 2.8 inches: III, 4.4 inches; and $I V, 4.6$ inches. The greatest variation increase occurred during the third growing season which was between the comple tion of the second and third annulus.

Table 16
Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of Black Crappie from Sanborn Lake

Age Group	Mean Length (inches)	Length Range (inches)	$\frac{\text { Mejor Length Range Distribution }}{\text { Per Cent }}$	Range (inches)
I	4.6	$3.7-5.7$	77.7	$4.0-5.0$
II	5.8	$4.5-7.3$	78.3	$5.3-6.3$
III	7.1	$5.8-10.2$	75.9	$6.7-7.7$
IV	8.4	$6.6-11.2$	83.3	$7.5-9.3$
V	10.7		One Specimen	

Mean of
Total 6.1
Number of Specimens 917

Mean Length and Length Range at Capture of White Crappie from Boomer Lake

The mean length at capture of white crappie from Boomer Lake was
5.7 inches and varied from 4.1 to 15.5 inches (Table 17).

Age group I averaged 4.6 inches long with a range of 4.1 to 4.9
inches and 70.0 per cent of the crappie were 4.2 to 4.7 inches.

The crappie in age group II averaged 5.1 inches in length with a range of 4.3 to 6.4 inches and 98.9 per cent of the group were 4.4 to 5.9 inches long.

The crappie in age group III arexaged 5.8 inches long with a range of 4.9 to 7.1 inches while 74.7 per cent were 5.2 to 6.2 inches.

Age group IV had a mean length of 7.3 inches. The range for the group was 5.1 to 10.9 inches and 81.0 per cent of the crappie were 5.7 to 8.1 inches long.

Age group V crappie averaged 10.3 inches long with a range of 7.0 to 14.9 inches while 76.2 per cent fell within 8.2 to 11.6 inches.

The crappie in age group VI averaged 11.5 inches in length at capture with a range of 7.1 to 14.0 inches and 70.6 per cent were 7.1 to 12.8 inches.

The variation in range of crappie lengths at capture from Boomer Lake increased similar to that of weight through the fourth growing season or until the time when the average length reached approximately six inches. The variation in length within each age group was as follows: I, 0.8 inches; II, 2.1 inches; III, 2.2 inches; IV, 5.8 inches; $\mathrm{V}, 7.9$ inches: and $\mathrm{VI}, 6.9$ inches.

Mean Length and Length Range at Capture of Black Crappie from Country Club Lake

The mean length at capture of 656 black crappie from Country Club Lake was 5.4 inches. The size range paried from 4.0 to 13.9 inches (Table 18).

Crappie in age group I had an average length of 4.4 inches and a range of 4.0 to 4.9 inches while 58.3 per cent of the crappie were 4.2
to 4.7 inches.
Age group II crappie averaged 5.7 inches long with a range of 4.3 to 6.9 inches and 67.5 per cent were 5.7 to 6.4 inches long.

The crappie in age group III averaged 5.2 inches long which is less than the previous age group. The range for age group III was 4.2 to 8.5 inches with 70.6 per cent within 4.3 to 5.0 inches long.

Table 17
Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of White Crappie from Boomer Lake

Age Group	Mean Length (inches)	Length Range (inches)	Major Length Range Distribution Per Cent	Range (inches)
I	4.6	$4.1-4.9$	70.0	4.264 .7
II	5.1	$4.3-6.4$	98.9	$4.4=5.9$
IV	5.8	$4.9-7.1$	74.7	$5.2-6.2$
VII	7.3	$5.1-10.9$	81.0	$5.7-8.1$
VI	10.3	$7.0-14.9$	76.2	$8.2-11.6$
VII	11.5	$7.1-14.0$	70.6	$7.1-12.8$

Mean of Total

Wumber of Specimens 530

Age group IV crappie averaged 5.4 inches long, The range was 5.0 to 13.9 inches with 95.5 per cent of the fish 5.1 to 5.7 inches long.

Orappie in age group V averaged 7.1 inches long. they had a maximum range of 5.6 to 7.7 inches and 66.7 per cent were 7.1 to 7.4 inches long.

The variation in range of crappie lengths at capture from Country Club Lake was greatest in the fourth age group. This coincides with the age in which the weight showed the maximum variation. The maximum pariation in length in the crappie occurred one year before they began an accelerated growth. The variation in length within each age group was as follows: I, 0.09 inches; II, 2.6 inches; III, 4.3 inches; IV, 8.9 inches; and $V 2.1$ inches.

Mean Weight and Weight Range of Black Crappie from Sanborn Lake
The mean weight of 917 black crappie from Sanborn Lake was 0.11 pounds. The minimum weight was 0.03 and the maximum weight was 0.66 pounds (Table 19).

Crappie in age group I had 69.9 per cent that weighed from 0.04 to 0.05 pounds while the mean weight for the group was 0.05 pounds.

Age group II had a relatively narrow range with 93.5 per cent of the crappie weighing 0.06 to 0.13 pounds. The maximum range was 0.04 to 0.17 pounds with an average weight of 0.09 pounds.

Age group III covered its range rather uniformly with less than one half of the crappie weighing 0.13 to 0.21 pounds. The maximun range was 0.08 to 0.56 pounds and the mean was 0.17 pounds.

The range within age group IV was 0.13 to 0.66 pounds while 77.8 per cent of the crappie were 0.20 to 0.40 pounds. The mean weight of the group was 0.27 pounds.

There was oniy one crappie taken in Sanborn Lake in age group y and its weight was 0.65 pound.s.

Table 18
Mean Length at Capture, Length Range and Major Length Range Distribution by Per Cent of Black Crappie From Country Olub Lake

Age Group	Mean Length (inches)	Length Range (inches)	$\frac{\text { Major Length Rans }}{\text { Per Cent }}$	De Distribution Range (Inches)
I	4.4	4.0.4.9	58.3	4.204 .7
II	5.7	$4.3-6.9$	67.5	$5.7-6.4$
III	5.2	$4.2-8.5$	70.6	$4.3-5.0$
IV	5.4	5.0-13.9	95.5	5.1-5.7
V	7.1	5.607 .7	66.7	$7.1-7.4$
VI	6.5		One Specimen	
Mean ofTotal				
Number of Specimens 656				

The variation in range of crappie weights in the various age groups was: I, 0.03 pounds; II, 0.13 pounds; III, 0.48 pounds and IV, 0.53 pounds. The maximum variation in range of weights occurred in the third growing season during the time that accelerated growth occurred for crappie in Sanborn Lake。

Mean Weight and Weight Range of White Crappie from Boomer Lake
The average weight of 528 white crappie from Boomer Lake was identical with that of black crappie in Sanborn Lake, 0.11 pounds. The minimu weight was 0.03 pounds and the maximum weight was 2.64 pounds (Table 20).

Table 19
Mean Weight, Weight Range and Major Weight Range Distribution by Per Cents of Black Crappie From Sanborn Lake

Age Group	Mean Weight (pounds)	Weight Range (pounds)	Ma, ior Weight Range Distribution Per Cent	Weight (pounds)
I	0.05	$0.03-0.06$	69.9	were

The naxrow range of 0.03 to 0.04 pounds included 90.0 per cent of the fish in age group I. The mean for the group was 0.04 pounds.

Age group II which averaged 0.05 pounds had a range of 0.03 to 0.11 pounds and the crappie had 92.9 per cent from 0.04 to 0.07 pounds.

Age group III averaged 0.08 pounds per fish. The range was 0.04 to 0.13 pounds while 94.7 per cent weighed 0.05 to 0.10 pounds.

Specimens in age group IV averaged 0.16 pounds each and the range was 0.05 to 0.56 pounds with 81.0 per cent of the crappie weighing 0.06 to 0.18 pounds.

Table 20
Mean Weight, Weight Range and Major Weight Range Distribution by Pex Cent of White Crappie From Boomer Lake

The crappie in age group V had an average weight of 0.61 pounds, ranged from 0.11 to 2.64 and 81.0 per cent were within 0.20 to 0.68 pounds.

Age group VI had the highest average weight with 0.80 pounds, and a range of 0.13 to 1.30 pounds. Of all crappie in the group 73.3 per cent ranged from 0.13 to 0.93 pounds. It seems possible that the group contained crappie from an age group previously dominant in numbers which. after stunting, neter made a compensatory growth. This could account for the low minimum xange.

The variation in range of crappie weights in the various age groups from Boomer Lake was: I, 0.02 pounds; II, 0.08 pounds; III, 0.09 pounds; IV, 0.51 pounds; $V_{9} 2.53$ pounds; and $V I_{,} 1.17$ pounds. The maximum variation in range of weights occurred during the fourth growing season during the time that accelerated growth took place by white crappie from Boomer Lake.

Mean Weight and Weight Range of Black Crappie From Country Club Lake

The average weight of 656 black crappie from Country Club Lake was 0.07 pounds (Table 21). The range in weight varied from 0.03 to 1.07 pounds.

Age group I had an average weight per fish of 0.04 pounds and a range of 0.03 to 0.05 pounds while 50.0 per cent of the age group weighed 0.04 pounds each.

Age group II had an arerage weight per fish of 0.08 pounds. They ranged from 0.04 to 0.12 pounds and 67.5 per cent were 0.08 to 0.11 pounds each.

Age group III had an average weight per crappie of 0.07 pounds and a range of 0.03 to 0.28 pounds. Within the group 70.6 per cent were 0.04 to 0.07 pounds each.

Age group IV had an identical mean weight per fish as the previous group, 0.07 pounds. The range was large varying from 0.04 to 1.07 pounds each. Orappie from this lake did not increase in mean weight during their fourth growing season. The range was large but 97.6 per cent of the crappie averaged 0.05 to 0.07 pounds.

Age group V had an average weight per fish of 0.16 pounds. The
range was from 0.07 to 0.20 pounds with 66.7 per cent 0.14 to 0.19 pounds each.

Table 21
Mean Weight, Weight Range and Major Weight Range Distribution by Per Cent of Black Crappie from Country Club Lake
$\left.\begin{array}{lcccc}\begin{array}{c}\text { Age } \\ \text { Group }\end{array} & \begin{array}{c}\text { Mean } \\ \text { Weight } \\ \text { (pounds) }\end{array} & \begin{array}{c}\text { Weight } \\ \text { Range } \\ \text { (pounds) }\end{array} & \begin{array}{c}\text { Major Weight Range Distribution } \\ \text { Per Cent }\end{array} & \begin{array}{l}\text { Weight (pounds) }\end{array} \\ \text { I II } & 0.04 & 0.03=0.05 & 50.0 & \text { were }\end{array}\right] 0.04$

The variation in range of crappie weights in the various age groups from Country Club Lake was: I, 0.02 pounds; II, 0.08 pounds; III, 0.25 pounds: IV. 1.03 pounds: and $\nabla_{9} 0.13$ pounds. The maximum variation in range of weights occurred in the fourth age group which was the beginning of the year accelerated growth took place.

Calculated Mean Increase in Length, Weight and Total Length at Capture by Age Groups for Gxappie from the Lakes

The data presented in Tables 22,23 , and 24 shows comparisons beo
tween lengths and weights of crappie from the three lakes sampled.
The number of fish used in computing the lengths in the tables is only the number actually aged and is not the total number of fish taken from that lake. The number of crappie aged (Tables 13, 14 and 15) were 650 from Sanborn Lake, 211 from Country Club Lake and 330 from Booner Lake, The mean total lengths at capture and the weight measurements were computed from all crappie captured in the respective lakes. The samples vary both between lakes and in the number of crappie aged for a particular age group but all samples exclusive of the last age groups in each lake are believed to be of sufficient size to justify direct comparisons.

No appreciable differences in weight at completion of the first year of life were found. Sanborn Lake, considered the most productive, yielded crappie 0.5 inch shorter than those from Country Club Lake and 0.6 inch shorter than those from Boomer Lake. The fish from Sanborn Lake were 0.01 pounds heavier than those from either of the other lakes.

Black cxappie from Sanborn Lake averaged 0.8 inches longer and 0.04 pounds heavier than the white crappie from Boomer Lake at the completion of the second year, which is the beginning of the third growing season. Crappie of age group II were 0.9 inches longer and 0.01 pounds heavier from Sanborn Lake than from Country Club Lake.

Crappie in Sanborn Lake nearly doubled in average weight during the third growing season. The calculated length at completion of the third annulus was 6.8 inches from Sanborn Lake which was 1.2 inches Ionger than from Boomer Lake and 2.1 inches longer than from Country Club Lake。

Table 22

The Mean Length, Weight and Total Length at Capture with the Calculated Increase by Age Groups in Black Crappie from Sanborn Lake

Age Group	Mean Length (inches)	Calculated Increase (inches)	Mean Weight (pownds)	Calculated Mean Total Calculated Increase (pounds) Length at (apture (inches)	Increase (inches)	
I	1.8	1.8	0.05	0.05	4.6	
II	4.9	3.1	0.09	0.05	5.8	1.2
III	6.8	1.9	0.17	0.08	7.1	1.3
IV	8.0	1.2	0.27	0.10	8.4	1.3
V	10.0	2.0	0.65	0.38	10.7	2.3

Table 23
The Mean Length, Weight and Total Iength at Capture with the Calculated Increase by Age Groups in White Crappie from Boomer Lake

Age Group	Mean (inghth inches)	Calculated Increase inches)	Mean Weight (pounds)	Calculated Mean Total Calculated Increase (pounds) Iength at Capture (inches)	Increase (inches)	
I	2.4	2.4	0.04	0.04	4.6	
II	4.1	1.7	0.05	0.01	5.1	0.5
III	5.6	1.5	0.08	0.03	5.8	0.7
IV	7.6	2.0	0.16	0.08	7.3	1.5
V	10.1	2.5	0.61	0.45	10.3	3.0
VI	10.8	0.7	0.80	0.19	11.5	1.2
VII	15.4	4.6	2.38	1.58	15.5	4.0

Table 24
The Mean Length, Weight and Total Iength at Capture with the Calculated Increase by Age Gxoups in Black Crappie from Country Club Lake

Age Group	Mean Length (inches)	Calculated Increase (inches)	$\begin{aligned} & \text { Mean } \\ & \text { Weight } \\ & \text { (pounds) } \end{aligned}$	Calculated Increase (pounds)	Meay Total Length at Capture (inches)	Calculated Increase (inches)
I	2.3	2.3	0.04	0.04	4.4	
II	4.0	1.7	0.08	0.04	5.7	1.3
III	4.7	0.7	0.07	-0.01*	5.2	-0.5
IV	4.8	0.1	0.07	0.00	5.4	0.2
\%	6.3	1.5	0.16	0.09	7.1	1.7
VI	6.4	0.1	0.13	-0.03	6.5	-0.6
* - decrease						

Crappie from Sanborn Lake contimued accelerated growth both in weight and length in the fourth growing season. Daring this period crappie from Boomer Lake increased by doubling in arerage weight after reaching a length of gix inches. The average caiculated length for crappie from Boomer Lake increased from 5.6 to 7.6 inches by the end of that year. A sligh increase in length of 0.1 inch with no increase In weight was made by crappie from Country Club Lake.

The crappie increased 0.38 pounds and 2.1 inches in Saxborn Lake during the fiffth growing geason, which was the oldest recorded fish for that iake. Increases of 0.45 pounds and 2.5 inches were made by Gxappie during the fifth growing geason from Bowner Lake. Crappie frow

Country Club Lake made an accelerated growth by more than doubling in weight and adding 1.5 inches afier reaching an average of six inches in total length which was attained during the fifth growing season.

An increase in rate of growth by crappie occurred during the fourth growing season in Boomer Lake and the fifth growing season in Country Club Lake as show by the increase in arerage weight, length and total length at capture. Crappie in Sanborn Lake failed to show this accelerated increase but maintained a more uniform rate of growth throughout their life。

Food Habits

The mean rolume of stomach contents (Table 25, 26 and 27 was determined by adding the individual volumes for all crappie in an age group and dividing the sum by the number of stomachs in that group which contained food. The percentage of stomachs with food in each age group was determined by dividing the total number of stomachs collected into the number of stomachs containing food. The percentage of stomachs empty was determined by dividing the number of stomachs empty by the total number of stomachs in each age group. The total mean was computed by adding the rolume of all stomachs and dividing the sum obtained by the total number of stomachs with food. The total percentages of stomachs with food was determined by dividing all stomachs with food by the total number of stomachs collected. The total percentage of empty stomachs was computed by dividing the number of stomachs empty by the total number of stonachs collected.

Volume of Food of Grappie from Sazborn Lake
The mean polume of food in crappie stomachs progressively inoxeased
from age groups I through V for those fish from Samborn Iake (Table 25). The maximum variation was 0.07 to 2.00 cubic centimeters with a mean number of 0.19 cubic centimeters for each fish from Sanborn Lake. Likem wise there was a progressive increase in the percentage of stonachs containing food. The minimum percentage of stomachs containing food was 56.2 in age group I and the maximum was 100 in group V. The total average per cent of crappie stomachs with food present was 66.5. Age group I had an average of 0.07 cubic centimeters of food in the stomachs and 56.2 per cent of the group had recently fed. Nege group II had an average of 0.12 cubic centimeters of food and 61.8 per cent of all fish in the age group had food in the stomach. The crappie in age group III averaged 0.23 cubic centimeters of food with 77. 2 per cent having food items present. Age group IV crappie stomachs averaged 1.45 cubic centimeters of food and 83.3 per cent had food present. The one crappie in age group V had 2.00 cubic centimeters of food in its stomach.

The percentage of stomachs empty varied inversely with the age. The total average of stomachs empty was 33.5 per cent. The percentage of empty stomachs varied with age groups as follows: I, 43.8; II, 38.2; III, 22.8; IV, 16.7 and V_{0} represented by one fish, had no empty stomachs. Volume of Food of Crappie from Boomer Lake

The average volume of stomach contents for white crappie from Boomer Lake varied from 0.05 to 7.00 cubic centimeters (Table 26). The average was 0.46 cubic centimeters for all fish containing food in the stomach from this lake. The per cent of stomachs with food by age group vaxied from 44.7 to 100 per cent with an aterage of 49.2 per cent for all stomachs from white crappie. There was a gradual increase in volume of
food from age group I through IV. The age groups after IV were composed of larger crappie and the volumes recorded were comprised almost entirely of fish taken as food.

Table 25
Mean Volume of Stomach Contents, Number of Stomachs Enpty, and Percentage of Stomachs with Food and Empty for Black Crappie from Sanborn Lake

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	Stomachs with Food		Stomachs Empty	
	$\begin{gathered} \text { Mean Volume } \\ \text { (cubic centimeters) } \end{gathered}$	Per Cent of Totel	Total Number	Per Cent of Total
I	0.07	56.2	49	43.8
II	0.12	61.8	188	38.2
III	0.23	77.2	67	22.8
IV	1.45	83.3	3	16.9
V	2.00	100.0	0	0
Total Mean	0.19	66.5	307	33.5

Age group I averaged 0.05 cubic centimeters of food and 70.0 per cent of the stomachs contained food. Age group II had an average of 0.08 cubic centimeters of food and 44.7 per cent of the stomachs contained food. Age group III averaged 0.31 cubic centimeters of food per fish and 52.6 per cent of the stomachs had food. The fish stomachs in age group IV averaged 0.40 cubic centimeters of food and 66.7 pers cent of them contrined food. In age group 771.4 per went of the stomach.s had
food which aferaged 3.56 cubic ceatimeters sach Age group V was the age at which the crappie of Boomer Lake began an accelerated growth and is also the age at which the crappie began most actively to feed on fish. Age group VI averaged 2.09 cubic centimeters of food per stomach with 64.7 per cent of the stomachs containing food. The one fish in age group VII had 7.00 cubic centimeters of food in its stomach.

Table 26
Mean Volume of Stomach Contents, Number of Stomachs Empty, and Percentage of Stomachs with Food and Empty for White Crappie from Boomer Lake

Age Group	Stomachs with Food		Stomachs Empty	
	$\begin{gathered} \text { Mean Volume } \\ \text { (cubic centimeters) } \end{gathered}$	Per Cent of Total	Total Number	Per Cent of Total
I	0.05	70.0	3	30.0
II	0.08	44.7	203	55.3
III	0.31	52.6	46	47.4
IV	0.40	66.7	7	33.3
\checkmark	3.56	71.4	6	28.6
VI	2.09	64.7	6	35.3
VII	7.00	100.0	0	0.0
Mean Total	0.46	49.2	271	50.8

The number of stomachs empty formed no apparent patterti. The pero centage of empty stomachs by age groups was: I, 30.0 : II. 55.3 ; III,
47.4: IV. 33.3: V. 28.6; VI. 35.3. An average of 50.8 per cemt of the stomachs for all age groups from Boomer Lake were empty.

Tolume of Food of Crappie from Country Club Lake

There were no apparent patterns formed in the feeding habits of the black crappie from Country Club Lake, other than average relatively small amount of food taken by all age groups (Table 27). The overall range for the fish was 0.05 to 0.27 cubic centimeters of food contained in the stomach which had a total mean of 0.09 cubic centimeters. The crapple from this lake had 65.2 per cent of the stomachs which contained food.

Table 2 "
Mean Volume of Stomach Conteats. Kumber of Storachs Hmptyo aad Percentage of Stomachs with Food and Ftrpty for Black Cwappie from Country Club Lake

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	Stomachs with Food		Stomachs Empty	
	Mean Volume (cubic centimeters)	Por Cent of total	Total Number	Per Cent of total
I	0.05	16.7	10	83.3
II	0.11.	40.0	24	60.0
IET	0.07	52.9	8	477.1
IV	0.07	68.6	182	31.4
\square	0.27	50.0	3	50.0
VI			1	100.0
Mean Tobal	0.09	65.2	228	34.8

Grappie in age group I had an average of 0.05 cubic centimeters of food and only 16.7 per cent of the stomachs contained food. Age group II had 0.11 cubic centimeters of food in the stomach and oniy 40.0 per cent of the stomachs showed recent fieeding. Age groups III and IV wers identical with 0.07 cubic centimeters of food. These age groups had 52.9 and 68.6 per cent, respectively, of the stomachs containing food. Age group V had the highest mean volume recorded from the lake with 0.27 cubic centimeters and 50.0 per cent of the stomachs contained food.

The per cent of the stomachs empty, as with volume, formed no apparent pattern. The per cent of crappie with empty stomachs by age groups were: I. $83.3 ; I_{5} 60.0 ;$ III $47.1 ; ~ I V, 31.4 ; \quad V_{9} 50.0$ and VI, represented by only one fish. 100 per cent. The total mean of the exphy stomachs was 34.8 per cent.

Stomach Contents of Cpappie

Tables 28,29 and 30 concern insects eaten by cxappie from the ixdividual lakes and all comprtations concern only those which contained food. The mean numbers were computed by adding the number of insecss recorded by ordex for farious age groups and dividing the sum by the total number of stomachs in that age group that contained food. The botal mean was determined by adhing for each order all the insects recorded and dividing the sum by the total number of stomachs containing food.

Insects Eaten by Crappie from Saborn Lake

Dipleta-conpterous insects comprised the greatest number of insects qem corded. Crappie trom Sanborn Lake contained an average of 50.9 of these insects. Individuals of age group IT contained an arevage of 85.7 dipe terous insects which was the highest number for any age group and waw
followed by age groups III with 71.8; II with 40.6 : and I with 27.6. Ephemerida-mphemerida Iarvae foxmed the second highest average number of insects found in the black crappie stomachs from Sanborn Lake. Crappie from the lake contained an average of 4.4 Fphemerida. Age group II contained the highest number with an average of 5.0 per stomach and was followed by age group III with an average of 4.8 , age group I with 1.3 and age group IV with an average of 1.1 Ephemerida for each stomach.

Table 28
Mean Number of Insects Present in Black Crappie by Age Groups, from Sanborn Lake

Age Group Ephmerida Diptera Coleoptera Odonata Oythroptera Hymenoptera Unid:

I	1.3	17.6	0.03	0.2	0.09	
II	5.0	40.6	0.08	0.12	0.008	0.04
III	4.8	71.8	0.16		1.0	
IV	1.1	85.7			1.2	
V						
Mean Totai	4.4	50.9	0.11	0.15	0.01	0.01

*Unidentified

Odonata-Odonata were third largest in numbers of insects present.
These insects were eaten in the amount of 0.15 per stomach and were present in only those stomachs from age groups I with 0.2 and II with 0.12.

Coigoptera-coleopera ranked fourth numerically in rnserts phesent. with an arexage of 0.11 for each stomach. Age group III contained the greatest number of Coleoptera with an awergge of 0.16 and was followed by age group II with 0.08 and I with 0.03 for each stomach. Orthroptera and Eymenopterp-orthroptera and Hymenoptera were each represenfed by a few insects. The average found for both orders was 0.01 per stomach.

Unidentified Insecta Inseets which were too digested or too broken to be classified to order were listed as unidentified insects. They averaged 1. 3 insects per stomach and crappie in age group IV contributed the greatest number with an aterage of 2.6. The numbers in age groups II and II were equal with an awerage of 1.2 and in age group I there was an ayerage of 1.0 per stomach.

Insects Haten by Crappie irom Boomer Lake

Djptergenipterous insects were the highest in numbers of all insects recorded. White crappie had an awerage of 3.4 dipterous insects per stomach. Individual fish in age group III contained the greatest mober of Diptere ateraging 4.9. followed by crappie in age group II with 3.7. age group IV with 1.2 and age group V with 0.8 pex stomach.

 stomach followed by age group IV with 3.2, age group VI with 0.8 , age Eroup II with 0.7 and age group V with 0.30

Fymenopteram Fymenoptorous msects ayeraged 0.7 fop ead stomach mhat had food. Grappie in age group II had an average of 1.3 Hymenoptera and were followed by age group I with 0.9 and age group II with 0.6.

Homoptera and Oxthroptergminoptera and Orthroptera were represented by an arerage of 0.003 insects for each order. Stomachs from age group II aniy contained these insects and their arerage number present was 0.006.

Table 29
Mean Nramber of Insects Preseat in White Crappie by Age Groups from
Boomer Lake 1, Age
Group Ephnerida Diptera Coleoptera Homoptera Hymenoptera Orthroptera Unad.*

I				0.9		0.9	
II	0.7	3.7	0.01	0.006	0.6	0.006	1.8
III	4.2	4.9			1.3		2.5
IV	3.2	1.2					
V	0.3	0.8					
VI	0.8		0.4			0.09	

VII

Mean

Total	1.5	3.4	0.02	0.003	0.7	0.003	1.7

Wridentified

Unidentified Insectom Undentified insects averaged 1.7 per stomenh. The
bulk of these insects were present in the stomachs or crappie in age
group III and averaged 2.5 insects per stomach. Crappie in age group II
conbained 1.8 unidentiticd insects rollowed by age group I with 0.9 and
age grouy IV with 0.09 insects per stomadm.

Insects Eaten by Cravoie from Cowntry Ginb Lake

Dipteramenumrically Diptara were the major insects taken by black cxappie from Country Club Lake. The arerage of all stomachs that contained food was 15.8 per stomach. Age group II ceappie contained the greatest number of Diptera with an average of 28.3 followed by age group IV with 16.1 per stomach. Age group V contained 7.7 insects and age group III contained 5.3 Dipterous insects per stomach while none were found in the stomachs of age group I. Fohemeridg An average per stomach of 0.60 Bphemerida was found anong 211 stomachs containing food. Age group IV with an ayexage of 0.70 Fohemerida per stomach was the only group in which the insect was found.

Table 30

Mean Namber of Insects Present in Black Orappie by Age Groups from Country Club Lake

| Age
 Group | Bohmerida Diptera Coleptera Odonata Homoptera Unidentificed |
| :--- | :---: | :---: | :---: | :---: | :---: | Mean

Total	0.60	15.8	0.16	0.02	0.003	1.3

Colepptera- Huerically Coloptera were third with an awerage of 0.16 per stomach. Age groups III and IV with an average of 1.2 and 0.14 pero stomach, respectively, comprised the only groups in which Coleoptera were found.

Odonata sud Homopteramodonata and Honoptera were reprosexted. respecter 1y with an arperage of 0.01 and 0.001 for each stomach. Age group IV averaged 0.01 Odonata and 0.003 Homoptera per stomach and was the ony group which had eaten the insects.

Unidentified Insectam Unidentified insects averaged 1.3 per stomach. Age group II had eaten the greatest numbex of insects per stomach with an average of 2.7 and was followed by age group III with 1.3 and age group IV with 2.2 。

: Stomach Contents (Exclusitye of Insects) of Black Cxappie from Sanborn Lake

The seperate items in the stomach contents other than insects are ranked in order of muerical value. Due to the highly unequal proportion of the total anount of the stomach contents comprised by the insect and non-insect food items. it was thought preferable to group the data in separate tables. Stomach contents exclusive of insects, (Table 31,32 and 33), were computed as described for "Insects Eaten by Crappie. Invertebrate Egge whe food items that appeared in greatest numbers in stomachs of black crappie from Sanborn Lake were invertebrate eggs. The average found in each gtomach was 1051.8. Age group i contained the highest average mmber of invertebrate eggs per stomach with 1352.4 while age group IV contained the lowest with 497.5 . There was a gradual decline in numbers eaten by crappie from age group I through IV.

Table 31
The Mean of Stomach Contexba (Exclusite of Ingects), In Black Crappae By Age Groups, Fron Sauborn Lake

$\begin{aligned} & \text { Agee } \\ & \text { Group } \end{aligned}$	Invertebrata Egge	Copepoda	Cladocera	Ostracoda	Nemato	oda	Algae	Spermocarp	Piscesa	*
I	1352.4	167.9	292.5	82.3	2.2		0.06	15.3		
11	12.42 .6	179.9	184.7	34.0	3.2		0.09	25.1		
ITI	718.2	122.3	281.1	26.6	3.2		1.00	28.7	0.02	
IV	497.5	53.5	20.6		9.9		0.80	7.3	0.22	
y									1.00	
Mean 0 Total	1050.8	150.0	227.4	. 35.4	3.7		0.46	25.0	0.02	
*Mํ Bcellaneous Items		Present:	Isopoda	Mean of Total		0.001				
		Amphipoda	Mean of	Total	0.00					
		Crustacea	Mean of	Tozal	0.0			*		
		Decapôda	Meres of	Total	0.001					
		Acarina	Mean of	Total	0.4					

Cladoceram the cladocerans were numorically neat to invertebrate egga with an aresage of 227.4 contained in each stomach. They raxied in number from 292.5 for erappie in age group I to 20.6 in age group IV. Copepoder Copepods ranked hird numexically in the food items 1isted. Crappie from Sanborn Lake contained an average of 150.0 for each fish that had food presext in the shomach. Crappie in age group II contained the greatest mumber with 179.9 and age group iv contained the least number with 53.5 copepods per stomach. Ostracode Practically all ostracods recorded were found in the crappie stomach from Sanborn Lake and they ranked fourth in food items exclusive of insects. The average number present was 35.4 fox all crappie from this lake. Age group I contained the most individuals with an average of 82.3 ostracods and age group III had the least with an average of 26.6 . These crustaceans were present only in the first three age groups. Spermocarp--Spexnocarp was the fifth category numexically with an average of 25.0 for all crappie stomachs from Sanborn Lake. Age group III contained the greatest number with 28.7 and age group IV the lowest with 7.3 per stomach。

Nematodeman ayerage of 3.7 mematodes were found in each crappie stomach from Semborn Lake. Age group IV had the highest average number of nematodes with 9.9 and the $20 w e s t$ number was 2.2 in age group io Adgerminal forms averaged 0.46 per crappie stomach. The erratic occurrence of algae in the stomachs aralyzed might suggest they were faikn accidently while fecding tor only a few individual fish contained. them. Age group III areraged the highest with 1.00 per stomach and age

Piscenmaish were neter common in the crappie stomachs analyzed. Phe average for all crappie stomachs from Sanborn Lake was 0.02 fish and age group V was highest in number with 1.00 per stomach and age group III the lowest with 0.02 fish.

Miscellaneous - The food items listed under Miscellaneous were of such infrequent occurrance that mention need be made only to note theix presence. Acarina were represented by an average number of $0.46:$ Amphipoda 0.006; unidentified Crustacea 0.004: Isopoda 0.001: and Decapoda 0.001 in each crappie which had food present.

Stomach Contents (Fxclusive of Insects) of White Grappie from Boomer Lake

Invertebrate Tges Eggs of invertebrates formed the greatest numexical proportion of the food of white crappie Irom Boomer Lake. The age groups averaged 529.1 invertebrate eggs for each stomach containing food. Age group III had the highest number with an average of 897.8 and age group T the lowest with an average of 0.5 invertebrate eggs per stomach. Cladocerame cladocerans were second numerically in white crappie stomachs from Boomer Lake. Cladocerans were present in the first four age groups of crappie and averaged 206. 1 per stomach. Age group I had the largest number with 796.7 cladocerans per stomach and age group IV the smallest with 0.7 per fish stomach.

Algae-Algae ranked third in grerage mumber of items contained in crappia stomachs. Only crappie of age group il with an avexage of 0.4 and age group III with an average of 2.6 had algae in the stomach coateats. The mean number present was 0.80 aigae per stomach.

Outracodamostraceds were numericely fourth in rank in whte cmeppe
stomachs. The mean aumber of ostracods eaten was 0.69. Ostracods were represented only in crappie age group II with an average of 1.1 for each stomach.

Nematode Nematodes were present in all age groups found except age group VII. They average 0.13 per stomach and varied from 1.90 nematodes in age group III to 0.13 in age group V.

Pisces-most of the crappie and a wider range of age groups, that had fed on fish were from Boomer Lake. The average fish eaten per specimen was 0.15 and varied from 0.02 in age group II to 2.0 in age group VII. Miscellaneousm-Miscellaneous items occurred rarely. The following were found in white crappie stomachs in the average numbers shown: Decapoda 0.03; Rotifera 0.02 and Acarina 0.003.

Stomach Contents (Exclusive of Insects) of Black Crappie from Country Club Lake

Invertebrate Egss Invertebrate eggs ranked highest in numbers of food items present in black crappie from Country Club Lake. The average for all stomachs was 682.8 eggs and ranged from 947.8 in age group II to 142.0 in age group 1 . Invertebrate eggs were present in all crappie age groups except age group VI.

Copepodamopepods were second in number of food items eaten by black crappie from this lake and were present in stomachs only from the fixst four age groups. The average momber for each crappie was 96.2 and the variation was from 99.8 in age group IV to 33.0 copepods in age groups I and III.

Cladocera- Wmerically cladocerans renked thixd for crapie stomachs sxom Country Club Lake. Grappie averaged 24.1 cladocerans per stomech with a renge of 280.9 in age group II to 7.3 in ase group V_{0}

Table 32
The Mean of Stomech Contents (Exclusite of Ingecte). in White Greppie By Age Groups. From Boomer Lake

Table 33
Whe Mean of Stomach Contents (Fixciusive of Insects) In Black Crappie by Age Groups. From Country Club Lake

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	Invertebrate Eggs	Copepoda	Cladocrea	Ostracoda	Nematoda	Algae	Spermocarp	Pisces	*
I	142.0	33.0	114.5		2.0	5.0			
II	947.8	64.6	280.9	2.8	3.1	1.0	4.2		
III	317.1	33.0	67.6		2.4		22.0		
IV	686.5	99.8	12.4	1.4	1.8	0.38	11.0		
V	240.0		7.3		2.0			0.33	
Mean Total	682.8	96.2	24.1	1.4	1.9	0.4	10.8	0.002	
* MJace	112ncous If cmix	Mean of	Total Aca Gru	$\begin{aligned} & \text { xina } \\ & \text { sionea } \\ & \hline \end{aligned}$					

Spermocarp-Spermocarps ranked fourth in numbers of food items present in crappie from Country Club Lake. The mean number was 10.8 spermocarps per stomach and the range was 22.0 in age group III to 4.1 in age group II。 Nematoda-Nematodes ranked fifth in order of numbers present. There were an average of 1.9 nematodes in each crappie stomach and the range was from 3.1 in age group II to 1.8 in age group IV.

Algae-Algae ranked sixth in number of items present in the crappie stomachs from the lake. There was an average of 0.4 algae present for each stomach with a range of 5.0 to 0.38 in age group I and IV, respectively.

Pisces-Fish were found in the stomachs of crappie in the fifth age group only. The average number of fish eaten by crappie was 0.002 and the mean for age group V was 0.33 fish.

Miscellaneous-There were very few miscellaneous items in the crappie stomachs from Country Club Lake. There were on an average 0.10 Acarina and 0.23 unidentified crustaceans.

Monthly Mean Volume of Stomach Contents for Crappie by Individual Lakes Sanborn Lake-The mean volume of the stomach contents of crappie from Sanborn Lake varied from a maximum of 0.63 cubic centimeters in May to a minimum of 0.05 cubic centimeters in December (Table 34). The monthly volumes during February, March, April, May and June were high while that for the remainder of the months varied around 0.10 cubic centimeters of food in the stomach contents.

Boomer Iake--The mean volume of stomach contents of the crappie from Boomer Lake varied from a maximum of 0.31 cubic centimeters in September to a minimum of 0.05 cubic centimeters in December (Table 34).

The stomachs taken during the months of March, April, May and Septomber had the highest food content, averaging above 0.15 cubic centimeters while these for the remainder of the months varied around 0.09 cubic centineters. Country diub Lake As previously mentioned, crappie were obtainable from Country Club Lake during six months only. The food content of all stomachs was low in comparison to that of the other lakes (Table 34). The maximum of 0.14 cubic centimeters of food per stomach occurred in April and the minimum was during September with 0.06 cubic centimeters while that for the remainder of the months varied around 0.08 cubic centimeters.

Table 34
Monthly Mean Volume in Cubic Centimeters of Stomach Contents for Croppie from the Individual Lakes

Month	Sanborn Lake Mean Volume	Boomer Lake Mean Volume	Country Club Lake Mean Volume
January	0.11	-0.08	
February	$0: 15$	0.18	
March	0.34	0.15	
April	$0: 28$	$0: 29^{\circ}$	0.14
May	0.63	$0: 18$	0:09
Jue	$0: 20$	$0: 09$	$0: 11$
Juiy	6.11	0.12	0.67
August	0.13	0.10	0.07
September	0.13	0.31	0.06
October	0.10	0.21	
November	0.08	0.08	
Deoditer	0.05	0.05	

Food Contained Per Pound of Body Wetght in Crappie from the Individual Lakes

The volume of food eaten per pound of body weight for eack age group was computed by dividing the mean weight into the mean numbers of cubic centimeters of food eaten (Table 25). The total average through age group IV was computed from the sum of all measurements shown for those age groups.

The crappie in age group I fron Sanborn Lake ate 1.40 cubic centio menters of food per pound of body weight while those from Boomer and Country Club Iakes each ate 1.25 cubic centimeters of food.

Crappie in age group II from Boomer Lake contained the greatost volume of food per pound of body weight with 1.60 while those from Country Club Lake contained 1.38 and Sanborn Lake 1.33 cubic centim meters of food.

Crappie from Boomer Lake in age group III ate 3.88 cubic centimeters of food per pound of body weight while erappie of the same age from Sanborn Lake contained 1.35 and those from Country Club Lake ate 1.00 .

Crappie in age group IV from Sanborn Lake contained the greaiest volume of food per pound of body weight with 5.37 cubic centimeters and those from Boomer Lake had 2.50, while arappie from Country Club Lake had 1.00.

Crappie in age groups I through IV from Boomer Lake ate the greatest volume of food per pound of body weight with 2.50, Sanborn wake 1.73. and Comixy Club Lake 1.29 cubic centinebers.

Coxparison of the Voiume in Cubic Centimeters of Food Eaten with Body Weight in Pounds For Crappie, By Age Groups, From the Individual Lakes

$\begin{aligned} & \text { Gge } \\ & \text { Group } \end{aligned}$	Sanborn Imke			Boomer Lake			Country Club Lake		
	Body Weight in Pounds	Tolume of Food in CC	CC of Food per Pourd Body Weiget	Body Wexght in Pounds	Tolume of Food in CO	C6 Of Food per Pound Bods Weigat	$\begin{gathered} \text { Body } \\ \text { Weight } \\ \text { in } \\ \text { Pounde } \end{gathered}$	Tolume of Food ia $6 C$	CO of Food per Pownd Body Wesigh
\pm	0.05	0.07	2.40	0.04	0.05	1.25	0.04	0.05	1.25
11	0.09	0.12	1.33	0.05	0.08	2.60	0.08	0.11	1.38
III	0.17	0.23	1.35	0.08	0.31	3.88	0.07	0.07	1.00
37	0.27	1.45	5.38	0.16	0.40	2.50	0.07	0.07	1.00
T	0.65	2.00	3.08	0.61	3.56	5.84	0.16	0.27	1.69
VI				0.80	2.09	2.62	0.13	面p榿	
FT\%				2.38	7.00	2.94			
tor Ag frovp $\mathrm{I}-\infty \mathrm{IV}$	0.11	0.19	1.73	0.06	0.15	2.50	0.08	0.09	1.29

Sex Ratio of Crappie by Individual Lakes
The sex of the crappie was recorded (Table 36) at the time the stomach was removed from the fish. The sex was usuaily determined easily by examination of the gonads. Some with sex questionable were found but with the possible exception of the crappie from Boomer Lake it is believed the number of questionable sexes are negligible.

The females comprised a higher percentage of all crappie taken from Sanborn Lake and Country Club Lake while males were more numerous from in Boomer Lake. However, it is believed that there were a sufficient number of males to insure fertilization of the eggs spawned by either black or white crappie.

Sex of Crappie from Sanborn Lake
There were 490 females from Sanborn Lake which comprised 53.4 per cent of the total number of crappie taken from the lake. The males numbered 360 crappie and comprised 39.3 per cent of the total. Those crappie in which it was impossible to determine the sex, numbered 67 or 7.3 per cent of all crappie collected from the lake. Most of the questionable sex were in age groups I and II. Little difficulty vas experienced in sexing fish older than those in age gromp II. Sex of Crappie From Boomer Lake

Boomer Lake was the only lake in which the males outnumbered the females. From a total of 530 white crappie collected there were 184 females, 262 males and 84 with the sex questionabie. Percentage wise 34.7 were females, 49.5 were males and 15.8 were of questionable sex. The crappie of questionable sex were more comon from Boomer Leke then olsembere. The mafority of these crappie were in age group II.

Difficulty was experienced in sexing some fish in age group II and III but the remainder were usually readily sexed throughout the yeax.

Table 36
The Numbers of Male and Female Crappie by Age Groups and the Percentage from the Indiridual Lakes Studied

Age Group	Samborn Lake			Boomer Lake			Country Club Lake		
	Female	Unio dentio fiable	Male	Female	Unic dentie fiable	Male	Female	Unim dentio fiable	Male
I	55	32	25	4	3	3	4	3	5
II	250	30	212	130	64	171	16		24
III	178	5	211.	26	14	55	8	3	6
IV	7		11.	8	2	11	350	10	220
V			1	9	1	11	2		4
VI				6		11			1
TIT				1					
Total	490	67	360	184	84	262	380	16	260
Per cent by Lake	$\text { nt } 53.4$	7.3	39.3	34.7	15.8	49.5	57.9	2.4	39.7

Sex of Crappie from Courtry Glub Lake
The mombex of females from Country Club Lake was slightiy highex then males with 380 compared to 260 male crappie which was 57.9 per cent females and $39 . ?$ per cent males. Those of questionable sex comprised 2.4 per cent of the crappie collected from the lake.

The highest numbers of fish of questionable sex from all lakes oce curred in age group II followed in order by I and IIT. Since age groups II and IV were dominant in numbers for the samples collected the higher numbers of questionable sexes in these age groups could be due to the greater proportion of crappie taken.

EVALUATION OF THE DATA PRESENTTED

The arithmetic mean was used to condense the data collected in order that the value of long lists of figures could be compared and evaluated. Since information from a single specimen from a population contributes little, it was felt that the arithmetical mean of numerous specimens would be more usuable in this paper and to other workers. The major range of measurements are also presented for broader comparisons.

Sanborn Lake yielded the most normal population of the three lakes studied for it was not dominated in numbers by a single age group as were the other two lakes (Tables 13, 14 and 15). Age group II comprised the greatest per cent composition of the crappie from both Boomer and Sanborn Lakes while age group IV strongly dominated the population from Country Club Lake.

There was overlapping in both total lengths and weights among some of the age groups from each of the three lakes studied (Tables 16-21). therefore, in aging the populations studied by the use of a sample of the specimens collected it was necessary to include the extreme lengths and weights of each size group rather than to select a sample based only upon a length or weight frequency graph.

May, June, July and August were the most successful months for the capture of crappie (Table 5). Good samples of stomach content volumes would undoubtedly have been obtained by collecting through March to September (Table 34) for during these months over one half of the stomachs collected contained food (Table 11). A satisfactory representa
tion of food items eaten by crappie, with the exception of insects which were more abundant during the summer, couid probably have been obtained at any time throughout the year.

The sex ratio from ach lake, varied (Table 36) with black crappie having a higher percentage of females and white crappie a higher percentage of males. The sex ratio was not sufficiently askew to prevent a successful spawn in any of the lakes.

Trapping Methods

Wire traps were used most extensively to sample crappie for this study because they produced more consistant resuits than other devices. Traps were the only gear which was employed in all three lakes sampled, the other methods were used in only one or two lakes. The writer concurs with Buck and Cross (1952) on the advantages of wire traps ovex other gear. "(1), Traps could be used in a greater variety of habitats than hoop or gill nets. (2), They could be run and reset in a minimum of time. (3), fince traps are entire fixed units, sets by different persons should be comparable. (4), The traps were especially convenient for winter use because running them required minimal exposure. (5), They could be left several days if necessary without excessive damage to the equipment or infury to the sample. (6), Traps could be kept in continual operation, since they did not require periodic remorral fox drying. (7), They were more durable outlasting linen gill nets. (8), Most important, traps were highly effective...."

Traps had to be rewrapped with wire approximately every four months: It is believed that the use of some metal preservative, such as zine chromate, on the wire after the traps were constructed might have re-
sulted in longer life of the wire.
The use of pig rings for securing the loose ends of the wire to the metal frame was satisfoctory. Rings were superior to wire for this purpose for three reasons: (1) They were much faster to apply. (2), They do not rust as quickly as iron wire. (3). They are easy to rem move from frames for rewrapping.

Hoop nets
Hoop nets were unsatisfactory for sampling crappie in the lakes under consideration. Hoop nets were used only in Boomer Lake and the fish catch was sonetimes comparable to wixe traps but the following factors became apparent which resulted in the discontinuance of their use. (1) It is difficult for one man to set or run hoop nets especielly with a moderately strong wind. (2), Periodic drying was necessary which resulted in loss of sampling time while the nets were being dried and reset. (3), Use of the nets around submerged brush was impossible. (4), A longer period of time was necessary to run hoop nets.

Gil1 nets
Gill nets were used on two occassions in Country Club and Sanborn Lakes with little success. No crappie were taken in the sets at Country Club Lake and only three were taken at Sanborn Lake。 Hook and line

Hook and line fishing gave erratic results and the fish most consistently taken by this method was the green sunfish.

Seining

Seining was done in Country Club Lake using a 50 foot bag seine. Buile heads were the only fish taken. Boomer Lake was too large and bad too
much shallow water near shore while Sanborn Lake was too completely filled with brush to seine.

Age, Growth. and Stomach Contents

One must consider the possibility of available food, crowding, heredity, or a combination of the factors as the reason for poor fish growth. There is no evidence that the total crappie populations of the lakes during the faster growing periods was less than the crappie popuo lations during the years the crappie grew most slowly. From the generai rate of growth and the abundance of each age group, one might assume that the total population was fairly constant duxing the lifetime of the specimens taken. Further, in the small Country Club Lake comparatively large numbers of crappie were removed during early sampling activities. The reduction of the number in the lake was not reflected in a more rapid growth directly afterwards howerers the population was not sampled during the following growing season.

Crappie in age groups II and III $_{9}$ which comprised 85.6 per cent of the collection from इanborn Lake made their greatest growth during their second year: moreover, the second year growth of these groups was more than that found for other age groups (Table 13) o Similarly, crappie in age groups II and IV (Table 15), which comprised 94.5 per cent of the total crappie collection from Country Club liake, made more growth their second year than did crappie in the other age groups from the same lake.

Johnson (1945) cites Allee in a brief resume of the harnful effects of crowding and also reports an instance in Greenwood Lake, Indiana.g where "either accumulation of metabolic wastes or psychological effects would be possible causes of slow growth which he substantiated by rem
ferring to a lake that had been drained to the creek channel thus concentrating an estimated crappie population at more than nine per square yard of water surface.

It is shown (Table 22, 23 and 24) that severe retardation of growth was not noticeable until after the first year of life and that renewed growth of importance was not resumed until the fish reached a total length of six inches and began to feed upon other fish. It seems likely that the greatest number of fish of similar size would exist during the first year of life for each age group. One might assume that the greatest competition for space should occur during the first year, but it was during this time that the fish made their best growth. Therefore, it seems necessary to explain the poor growth from some cause other than space.

It seems likely that the crappie population from each lake was derived from common ancestry used in stocking that body of water and that variations within the population would be normal variations likely to appear in any similar population where artificial selection had not been practiced. Therefore, it seems improbable that poor growth was the result of inheritance.

All crappie under six inches total length ate the same type of food which was composed of items of small size. Smaller fish require less volume of the same kind of food to satisfy their needs than larger fish do. If each fish ate the organisms one at a time, the smaller fish could obtain their fill with less effort and in less time than the larger fish could and when food organisms are scarce the small fish still might obtain a diet sufficiently satisfactory to permit growth while larger fish would obtain only a sustaining died. Since the fish of age group I were
mailer han imdriduals of ble other age groups and their growb wate was greater, it would seea thot they possemsed the ability to acquire a nourishigg meal of the same bype of food more readily than aid the memo Beros of the other age grouns. The differeace lu rete of growth for the age groups would the ppoar to be the result of the armilability of
 frig or zeredity
 was wot exceprional. Fowever, the growh does compare farorably with that made in mayy otber Iates. Table 37 and 38 contain the wotal lexgh of crapp for faxiors strtes, Carlmader (1950), ix which the disect propertion method was employed for determining the lengh of fish for mach yeat of ixfe.
 were smaller than those recorded from most of the other Iakes, except for the "poorest lako in Doio. Dariag the second growixg season, how CTero crapie from sabore Lake made greater grout and mexe sifghtiy langer than the crappie ryom theverago lake in ohio and abowt one

 from the naverage Inte tu Ohio and one to four incke shorter than Whose from the wert lake in Ohie. Nowrin Reservor and Omized Lake。 Illuols.

Table 3 ?

Comparison of Lengths of Black Crappie At Completion of Each Annulus, From Sanborn Lake and Country Cluio Lake, With Those Lengths Shown For Black Crappie From Some Other Lakes

| Lake | Average Calculated Motal Length in Inches at Each Annulus |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

*From Carlander, 1950

Black crappie from Country Club Lake, at completion of the first annulus, were 0.1 inches longer than cxappie from the "average lake" in Ohio and 0.4 inches shorter than crappie from the "best lake" in that state. Crappie from Country Club Lake, at completion of the second annulus were 0.5 inches longer than the "poorest lake" in Ohio and 0.7 inches shorter than the crappie in the "average lake" in that state. Poor growth was shown by the crappie from Country Club Lake although
during the fifth growing season they increased 1.5 inches over the previous year.

Records from Canton and Grand Lakes in Oklahoma give a greater first year growth but the white crappie from Boomer Lake surpassed those reported from other lakes. Howewer, during the period from the first growing season until the completion of the fourth annulus the white crappae of all other lakes except the "poorest lake ${ }^{88}$ in Ohio were consistently longer.

The data (Tables 22,23 and 24) concerning the length weight rela tionship of crappie in the three lakes studied, show that both the black and the white crappie make essentially equal growths during their first year of life, white crappie being slightly longer. Retarded growth or stunting occurred following the first year of life. Growth continued to be retareded until the fish reached approximately six inches in botal length when accelerated growth began.

Black crappie from Sanborn Lake reached approximately six inches in \$otal length during their third year of life when a mose rapid increase in weight occurred. Average increase in length was greatest during the second growing season and was rather uniform throughout their life.

White crappie from Boomer Lake reached approximately six inches in total length during their fourth year of life and the four year old fish showed a more rapid increase in both woight and total-length-at-capture.

A few crappie from Country Club Lake reached the advantageous length of six inches during the fixfin growing season when a more rapid increase in weight and total-lengthoat-capture ocurred.

Six inches in total length was the approximate leagth or critucal
length when crappie began to feed on fish. Two specimens. 5.5 and 5.3 inches, were the only crappie less than six inches long which had fish in their stomach when captured.

Table 38

Comparison of Lengths of White Crappie, At Completion of Each Annulus. From Boomer Lake with Those Lengths Shown for White Crappie From Some Other Lakes

Lake	Average Calculated Total Length in Inches At Each Annulus						
	1	2	3	4	5	6	7
Boomer Lake	2.4	4.1	5.6	7.6	10.1	10.8	15.4
onio, ${ }^{n}$ poorest lake ${ }^{n *}$		3.4	4.8	5.8	8.8		
Missouri̊, Lake of Oqarks*		4.8	6.4				
Lowa, East Lake*	2.1	5.3	6.7	7.7	8.4	9.1	10.7
Okia. Canton 1. (Buck \& Cross, 1951)	3.5	6.5	8.9	7.8	11.1	12.2	
Okla. Grand L . (Game * Fish Dept. Fish Mgt. Rept No. 18)	3.1	5.3	7.2	10.5	13.3	14.4	
Tenn. Cherokee Resv. (Stroud 1949)	1.5	8.7	11.6				

Food and Body Weight

Food of crappie can only be considered herein as the food that was found in the stomach at the time of capture and camot be considered as
the total food eaten. Also it mast be remembered that the food sampling method offers no information concerning the rate of food digestion or the frequency of feeding. The data offers information on the food contained in a sample of the population and should be indicative of food values for the whole population.

The comparison of food eaten and body weight was made through age group IV becarse: (1). they included the major part of each sample for all lakes; (2), xepresentation was suall in the sample of the older age groups, and (3), the munber of spocimens from the older age groups was too small to justify comparisons of food eaten per pound of body weight.

Grappie from Boomer Lake contained 2.50 cubic centimeters of food. from Saxborn Lake 1.73 cubic centimeters of food and from Country Club Lake 1.29 cubic centimeters of food per pound of body weight (Table 35).

Cxappie in Sanborn Lake made better growth than did those from 4 Boomer or Country Club Lakes. It is interesting to note that the crappie fixom Sanborn Lake contained less food per pound of body weight than those from Boomer Lakes "tyturame from both Boomer and Country Club Lakes were stunted. The crappie in Country Club Lake were so severely stunted that their general appearance showed malnutrition. They were extremely thin of body and the eyes were enlarged in proportion to the remainder of the body, as though the eyes had continued to grow while the body res mained essentially the same size.

There sems to be no reason for stunting in crappie in the Iakes atudied on the basis of rolume of food eaten. However, the data in Tables 7 and 8 shows there was considexable diffexences in the kinds of food eaten and bence probably differences in nutritive valuo. A cow fed
prairie hay can gain more welght by the use of cottonseed cake supplement than by foeding extra prairie bay and no supplemento

Crappie from Samborn Iake contained greater numbers of most food items but as the average weight of the fish was greater the relation of food volume to body weight was smaller. The cxappie from Sanborn Lake contained 80.7 per ceat of all Bphemexida found in fish stomachs, 80.2 per cent of the Diptera, 47.0 per cent of the Coleoptera, and 43.7 per ceat of the unidentified Insecta. The diet seems to show a higher prom tein ration。

The orappie in Boomer Lake possibly were wable to obtain the quality of food necessary for better growth but were able to partially offset the leck by greatex volume intake. The food taken was principally smailer invertebrates.

Crappie in Cowntry Club Lake lacked both food volume and quality of food necessary for satisfactory growth which resulted in severe undero nouxishment.

It is believed that crappie in Boomer and Country Club Lakes were eating a bare maintenance diet, mutritionally, and the crappie in the latter lake were unable to countexact the harmitul effects by a greater ingake of food. The fiact that cxapie in Country Club Lake averaged 0.01 pounds heavier than those from Boomer Lake is not suxprising as they were predominately four year old fish and those in Boomer were preo dominatiy two years old.

The data presentod herein seem to show that the quality of the food eaten more important than quantity in producing rapid growth in fish. It is beliered that food studies based on rolume of stomach contents.
number of organisms present or the frequency of their occurrences are inadequate for testing the nutritional effects of a diet.

The data also show that undernourished crappie, regardless of species or lake, grew faster when they reached the size at which they preyed on fish. It is believed that the more satisfactory growth was due to the relatively high nutritional value of fish as a food.

Investigations which determine the nutritional value as well as the items and volume of foods eaten should add valuable knowledge that could be used in fish management.

Since stunting of crappie is rather common and it seems probable that the stunted condition is due to undernourishment, two methods for controlling the situation in a lake present themselves. Additional food could be provided to properly feed the fish, or the crappie populations must be controlled at a number, sufficiently low, that the food produced will feed the remaining fish.

Fertilization to supply additional food would serve as a temporary measure without proper population control. Fertilization is too expensive to be practical in most lakes and information is too limited concerning the benefits to crappie.

The stocking of lakes with suitable forage fish, such as the gizzard shad, might provide supplemental food and thus permit a greater yield of crappie of more desirable size. Studies concerning both the values of forage fish and the effects of their added competition with crappie for similar food would be valuable.

Fish in impoundments react similarly to terrestrial animal crops. If a farm with 100 acres of land that is capable of supporting 25 cattle
finds 1000 head grazing the pasture, the farmer must remove a large portion of the herd and continue to harvest the increase in order to maino tain a maximum sustained yield. Fecundity in fish is much greater than in cattle: therefore, an impoundment, in a short times can gain a popula tion too large for the available food and will require a heavy harvest.

Increased haryest can be attained in several ways. The encourageo ment of fishing, particulaxily selective fishing, would tend to control the population. The renoval of restrictive laws which permit or limit the harvest of small crappie should increase the harvest and be conducive to the production of more rapidly growing fish. The establishment of markers or buoys at locations to which crappie concentrate or the instal Lation of a limited number of brush shelters to concentrate the fish usualiy permits a greater harvest. Fishing did not provide sufficient harvest from the three lakes studied, therefore additional harvesting methods are needed. The addition of predaceous species to the lakes such as channel catfish, flathead catfish, and white bass, where they do not already occur", should assist in a continued baryest.

When the fish population cannot be properly harvested through fishing and the action of predators, poisoning the fish in selected areas of the lake will decrease the population.

SUMMARY

1. The rate of food eaten in relation to rate of growth of both the black and the white crappie was studied in specimens collected from three Oklaboma Lakes, to learn if food acquired was the dominate factor influencing growth.
2. Wire traps gave better results than other devices for the collection of crappie in the lakes studied.
3. A total of 2103 crappie with a combined weight of 206.18 pounds were collected and the measurements analyzed.
4. Each lake was found to contain a numerically dominant age group but each varied in the deguee to which the population was dominated. Crappie in age group II were more rumerous in two lakes while those in age group IV comprised the majority of ail the specimens collected from the thisa Iako.
5. The mean length of crappie from Sanborn Lake was 6.1 inches. Boomer Lake 5.7 inches and Country Club Lake 5.4 inches.
6. The mean weight of crappie from Sanborn and Boomer Lakes was 0.11 pounds and 0.07 powads from Country Club Lake.
7. The average cubic centimeters of food contained in erappie stomachs from the lakes was: Sanborn, 0.19; Boomer, 0.46; and Country Club, 0.09.
8. There was littie correlation shown between volure of stomach content and the seasons of the gear.
9. Grappie from Sanborn Lake contained the major percentage of all in sects recorded.
10. Invertebrate eggs wexe numerically the mosit important item found in crappie stomachs. A total of $1,071.401$ invertebrate eggs were recorded.
11. A greater pexcentage of fomales than males in the black crappie was collected. Males were more mumerous than females in the sample taken of white cxapple.
12. Stunting of cxappie, in the lakes studied, was not noticeable until after the first year of Infe。After stunting occurred. retarded growth continued witil the cxappie reached a length of approximately six inches. When the crappie reached a length of six inches a more rapid growth was shown.
13. Crappie, from the lakes studied did not prey on fish until a length of six inches was attained.
14. Shated exappie, from one of the lakes studied, contained a greater rolume of food per pound of body weight than did crappie from other lakes in which growth was better.
15. A difference in diet was shown between stunted crappie and those in which growth was more satisfactory. Evidence seems to show that the quality of the diet rather then the quantity was responsible for growth mad.
16. Some suggestions are given for the prewention and correction of stuated populations.

LITERATURE CITED

Aldrich，A．D．1946a．Discussion of Impoundments．Proc．lst Okla。 Wildlife Conf．，pp．97－98．
－1946b．Fish Management Guide for Oklahoma．Game and Fish Commission．State of Okla． 40 pp ．

Anonymous．1950．Investigations of the Fisheries Resources of Grand Lake．Okla．Fish．Res．Lab．Mgmt．Rept．18，Feb．1950． 46 pp．
－1938．Soils and Men。 U．S．D．A．Yearbook of Agri．U．S．Gov． Print。Off．Washington，D。C．

Bennett，George W．1947．Fish Management－ma Substitute for Natural Predation．Trans．12th NoA．Wildlife Conf．1947：276－285．

Buck，Homer and Frank Cross．1951．Early Limnological and Fish Popu－ lation Conditions of Canton Reservoir，Oklahoma，and Fishery Management Recommendations．The Research Foundation，Okla．A。\＆ M．College． 174 pp ．

Carlander，K．D．1950．Handbook of Freshwater Fishery Biology．W．C． Brown Co．，Dubuque，Iowa． 281 pp．

Ellis，M．M．1937．Some Fishery Problems in Impounded Waters．Trans． Am．Fish．Soc．66（1936）：63－75．

Irwin，William H．1945．Methods of Precipitation Colloidal Soil Particles from Impounded Waters of Central Oklahoma．Bull． Okla．A．\＆M．Col． $42(11): 16 \mathrm{pp}$ 。
and J．H．Stevenson．1951．Physico－chemical Nature of Clay Turbidity with Special Reference to Clarification and Productivity of Impounded Waters．Bull．Okla．A．\＆M．Col．Bio．Ser．No．4， $48(4): 54 \mathrm{pp}$ 。

Johnson，Wendell L．1945．Age and Growth of the Black and White Crappies of Greenwood Lake，Indiana．Inv．Ind．Lakes and Streams． 2（15）：297－324．

Langlois，T．H．1946．Management Practices and Studies Needed to Provide Good Fishing and Recreation on Impoundments．Proc．lst． Okla．Wildrife Confo，pp． $44-45$ ．

Lowery，E．M．1951．A Nomograph for Rapid Back－Calculation of Fish Lengths．Prog．Fish Cult．13（4）：199－204．

Ricker，William E．and Karl F．Lagler．1942．The Growth of Spiny－rayed Fishes in Foots Pond．Inv．Ind．Lakes and Streams． $2885-97$.

Rounsefell, George A. Undated. Fish Production in Lakes and a Guide for Estimating Production in Proposed Reservoixs, D. S.D.I. Tish and Wildirie Sexyo pp. 14.

Stroud, Richard H. 1949. Rate of Growth and Condition of Game and Pan Fish in Cherokee and Douglas Reservoirs, Tennessee, and Hiwassee Resexvoir, North Carolina. Jour. Tenn. Acad.Sc. 24(1): Jan. 1949. pp. 60-74.

Swingle. H. S. and E. V. Smith. 1942, Management of Farm Fish Ponds. Buil. Ala: Agr:. Exp. Sta. 254: 23 pp.

Thompson, Dartd H_{0} 1937. Discussion of Fishery Problems in Impounded Waters. Trans. Am. Fish. Soc. 66(1936): 74.pp.

Tan Oosten. John. 1929. Life History of the Lake Herring (Leucichthys grtids. ZeSuerry) of Lake Huron as Ferealed by its Scales, with a Critique of the Scales Method. Bull. U.S. Bari. Fish. $44(1928):$ 265428 .

Wahlgren. Earry F. 19hl. Olimate and Man. U.S.D.A. Tearbook of Agri. U. S. Gov. Print. Offe Washington, D. O.

TITA

Henri Douglas Crawley candidate for the degre of Doctor of Philosophy

Thesis: CAOSES OF STUNTING OF CRAPPIE (Pomoxis Nigromaculatus and Pomoxis envalary IT OKLAHOMA LAKES
Majow: ZoOlogy
Biogmapheal and other items.
Born: Maxch 4, 1918 at Van Busen Arkansas
Tadergxsduabe Study: Arkavisas Polytechaic College Fusselville. Arkensas $1936=37$: Texas Agrocultuxal and Mechanienl Colleges Gonlege Station Texas. 1937×40 :
Graduate study: Uniwersity of Mschjgan 1946×47;
Untrersiby of Southerr I118nois, 1950-51:
Okichorat A. and. M. College, 1951-53.
Hxperitace: Farming intexmittentyy and odd jobs until 1941:Cimilian Flying 1941 : Civilian Flight Instructor forArmy Primary, 1942: Naval Aviatox, 1942-46; IllinoisDepartmenc of Conseryabion, 1947-50; Illanois NaturalHix tory Sexyey, 1950-51; Fish and Wildiafe Service, 1951。
Honorary Socieky: Amsociate Member of the Sociezy of Sigma Xi.
Date of Fixam Eramixation:

THESIS TITLT: CAUSES OF STUNTING OF CRAPPIE (Pomoxis nigromaculatus and Pomoxis amularis) IN OKLAHOMA LAKBS

AUTHOR: Henri Douglas Crawley
THESIS ADVISER: DTo W. H. ITwin

The content and form have been checked and approved by the author and thesis adviser. The Graduate School Office assumes no fesponsibility for arrors either in form or content. The codies are sent to the bindexy, jugt as they are approved by the athor and faculty adyiser.

وYPIST: Jo Fowler

