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Abstract: 

 

Foodborne human pathogens pose a significant risk to human health as each year one in six 
Americans becomes sick from one of over 31 known human foodborne pathogens.  Due to the 
differences in their growth requirements, current detection assays can only detect one to a few of 
these pathogens per single assay. Metagenomics, an emerging field, allows for an entire community 
of organisms to be analyzed from DNA or RNA sequence data generated from a single sample, and 
therefore has the potential to detect any and all foodborne pathogens present in a single complex 
matrix. However, currently available bioinformatic pipelines for metagenomic sequence analysis 
require extensive time and high computer power inputs, often with unreliable results. The 
objectives of this study are 1) to evaluate community profiling bioinformatic pipelines, mapping 
pipelines and a novel pipeline created at Oklahoma State University, E-probe Diagnostic Nucleic-
acid Analysis (EDNA), for the detection of S. enterica (as a model foodborne pathogen) in 
metagenomic data, 2) to optimize EDNA pipeline for sensitive detection of the S. enterica in 
metagenomic data, and 3) to simultaneously detect multiple foodborne pathogens from a single 
metagenomic sample. EDNA was able to detect S. enterica in metagenomic data in approximately 
five minutes compared to the other pipelines, which took between 2-500 hours. The optimized 
parameters for the EDNA pipeline were limited to using cleaned Illumina data with a read depth of 
one. The minimum BLAST E-value was set to 10−3 for curation. For detection the minimum percent 
identity was set to 95% and the minimum query coverage to 90% with an E-probe length of 80 nt. 
These new parameters significantly improved the sensitivity of the assay 100-fold, from 103 S. 
enterica cells detected by the original EDNA pipeline to just 10 cells. In the simultaneous detection 
of multiple foodborne pathogens, EDNA detected three additional pathogens Listeria 
monocytogenes, Campylobacter jejuni and Shiga toxin producing Escherichia coli at ten 
contamination levels in less than ten minutes and provided new detection insights into read 
abundance as it corresponds to pathogen cell numbers.  

 
 



iv 
 

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 
 
 
II. REVIEW OF LITERATURE ....................................................................................8 
  
 Global Food Infrastructure .......................................................................................8 
 Foodborne Illness .....................................................................................................9 
 Microbial Contamination of Fresh Produce ...........................................................11 
 Food Terrorism ......................................................................................................12 
 Major Sources of Contamination ...........................................................................13 
            Salmonella enterica ....................................................................................13 
            Shiga Toxin Producing Escherichia coli (STEC) .......................................14 
            Listeria monocytogenes ..............................................................................14 
            Campylobacter coli .....................................................................................15 
 Available Detection Technology ...........................................................................15 
            Culture Based Methods ...............................................................................15 
            Immunoassays .............................................................................................16 
            Polymerase Chain Reaction (PCR) .............................................................16 
            Pulse Field Gel Electrophoresis (PFGE) .....................................................17 
 Government Microbial Protocols ...........................................................................17 
            BAM ...........................................................................................................17 
            MLG ............................................................................................................18 
 Sequencing  ............................................................................................................19 
            Sanger Sequencing ......................................................................................19 
            Roche 454 Pyrosequencing .........................................................................19 
            Ion Torrent ..................................................................................................19 
            Illumina .......................................................................................................21 
            Pacific Biosciences .....................................................................................21 
            Oxford Nanopore ........................................................................................21 
 Sequencing Errors ..................................................................................................22 
 Homo-oligomers ....................................................................................................22 
 Base Calling ...........................................................................................................23 
 Sequencing Bias .....................................................................................................23 
 Read Length ...........................................................................................................24 
 Assembly................................................................................................................24 
             Newbler Assembler (de novo) ...................................................................25 
             SOAP Assembler (de novo) .......................................................................25 
             Mapping Assembly ....................................................................................25 
 Metagenomics ........................................................................................................26



v 
 

 
Chapter          Page 

 
 16S, 18S and ITS ...................................................................................................27 
 Barcoding ...............................................................................................................27 
 Whole Community Sequencing .............................................................................27 
 Community Profiling Methods ..............................................................................28 
              BLAST ......................................................................................................28 
              DIAMOND ...............................................................................................28 
              Kraken2 .....................................................................................................28 
              Bowtie2 .....................................................................................................28 
Detection Methods .......................................................................................................29 
              TOFI ..........................................................................................................29 
              EDNA .......................................................................................................29 
 Metagenomic Dataset Construction .......................................................................30 
              In vivo ........................................................................................................31 
             In silico .......................................................................................................32 
 
III. DETECTION OF HUMAN PATHOGEN IN COMPLEX METAGENOMIC  
 DATA ....................................................................................................................44 
 
 Abstract ..................................................................................................................44 
 Introduction ............................................................................................................45 
 Materials and Methods ...........................................................................................54 
 Results ....................................................................................................................60 
 Discussion ..............................................................................................................64 
 Literature Cited ......................................................................................................71 
 Tables .....................................................................................................................76 
 Figures....................................................................................................................77 
 
IV. OPTIMIZATION OF E-PROBE DIAGNOSTIC NUCLEIC-ACID ANALYSIS 

(EDNA), A BIOINFORAMTICS TOOL, FOR RAPID AND SENSITIVE 
DETECTION OF FOODBORNE HUMAN PATHOGEN IN COMPLEX 
METAGENOMIC DATA  ....................................................................................79 

 
 Abstract ..................................................................................................................79 
 Introduction ............................................................................................................80 
 Materials and Methods ...........................................................................................88 
 Results and Discussion ..........................................................................................92 
 Literature Cited ....................................................................................................101 
 Tables ...................................................................................................................106 
 Figures..................................................................................................................109 
 
V. EVALUATION OF E-PROBE DIAGNOSTIC NUCLEIC-ACID ANALYSIS 

(EDNA) BACTERIAL MODEL OPTIMIZATION ON THE SIMULTANEOUS 
DETECTION OF FOUR FOODBORNE PATHOGENS IN COMPLEX 
METAGENOMIC DATA ...................................................................................110 

 



vi 
 

 Abstract ................................................................................................................110 
 Introduction ..........................................................................................................111 
 Materials and Methods .........................................................................................119 
 Results ..................................................................................................................121 
 Discussion ............................................................................................................122 
 Literature Cited ....................................................................................................125 
 Tables ...................................................................................................................130 
 Figures..................................................................................................................132 
 
APPENDICES ...........................................................................................................134 
 



vii 
 

LIST OF TABLES 

 

 

Table           Page 
 

CHAPTER III 
 

   Table 1) Summary of sequencing and clean data output, number of cleans reads per  
   sample, average read length per sample, number of contigs per sample and estimated 
   genome size per sample ............................................................................................76 
   Table 2) Summary of the BLAST pipeline. ..............................................................76 
   Table 3) Summary of the DIAMOND pipeline. .......................................................76 
   Table 4) Summary of the Kraken2 pipeline ..............................................................76 
   Table 5) Summary of the Bowtie2 pipeline. .............................................................76 
   Table 6) Summary of the EDNA pipeline detection of S. enterica ..........................76 
 

CHAPTER IV 
 

   Table 1) In silico mock Illumina metagenomic datasets created with MetaSim. ...106 
 
   Table 2) False positives rates in the in silico mock negative control at 1x10-3 1x10-6  

   and 1x10-9. ...............................................................................................................106 
 
   Table 4) The laboratory metagenomic datasets showing twenty-seven detection  
   intersections from testing E-probe length (60nt, 80nt and 100nt) against QC (90%,  
   95% and 100%) and %ID (90%, 95% and 100% ...................................................106 
 

CHAPTER V 
   Table 1) The number of Hits and Hit depth of each E-probe set in each concentration  
   of  pathogen in the in silico complex metagenomic datasets ..................................130 
   Table 2) The read number and cell number in each of the in silico complex    
   metagenomic dataset correlated to the number of hits and total percentage of the  
   datasets ....................................................................................................................131 
   Table 3) The genome sizes of each target pathogen and I/E genome and resulting E- 
   probe number ..........................................................................................................131 
 



viii 
 

LIST OF FIGURES 

 

Figure           Page 
CHAPTER III 

 
   Figure 1) Overview of pipeline workflow. Each pipeline’s speed is an estimation of 
    the workflow between the gray areas without interruption .....................................77 
   Figure 2) 60nt and 80nt E-probes mapped to an S. enterica genome arrow indicate 
    the E-probes that aligned to reads in the T1 sample using the CGView Server ......78 
   Figure 3) S. enterica genome with mapped 60nt and 80nt E-probes. Shown with  
   Prokka annotation (CDS). Created on the CGView Server ......................................78 
 

CHAPTER IV 
   Figure 1) Overview of the experimental design and pipeline construction. ...........109 
 

CHAPTER V 
   Figure 1) Overview of the creation of E-probes for S. enterica, E. coli (STEC), L. 
   monocytogenes and Campylobacter jejuni and detection in complex metagenomic  
   datasets using the EDNA pipeline ..........................................................................132 
   Figure 2) Alignment of each E-probe set to their corresponding target genome. ...133 
 

APPENDICES 
   Figure 1) Ten replications of the in silico mock metagenomic datasets show twenty- 
   seven detection intersections from testing E-probe length (60nt, 80nt and 100nt) 
    against QC (90%, 95% and 100%) and %ID (90%, 95% and 100%). ..................135 
   Figure 2) T1 Illumina taxon assignments with 10,000 alignments or greater graphed  
   as a function of percent identity ..............................................................................136 
   Figure 3) S2 Illumina taxon assignments with 10,000 alignments or greater graphed 
    as a function of percent identity .............................................................................136 
   Figure 4) S1 Illumina taxon assignments with 10,000 alignments or greater graphed  
   as a function of percent identity ..............................................................................137 
   Table 5) S1 Illumina taxon assignments with 10,000 alignments or greater graphed  
   as a function of percent identity ..............................................................................137 
   Figure 6) S2 454 taxon assignments with 10,000 alignments or greater graphed as a  
   function of percent identity .....................................................................................138 
   Figure 7) S1 454 taxon assignments with 10,000 alignments or greater graphed as a  
   function of percent identity .....................................................................................138 
 



1 
 

CHAPTER I 
 

 

INTRODUCTION 

 

The contamination of food products by pathogenic bacteria by either accidental or 

nefarious means is a significant health concern worldwide. Salmonella enterica (Se), Shiga 

toxin producing Escherichia coli (STEC), Listeria monocytogenes (Lm) and 

Campylobacter jejuni (Cj) are associated with more hospitalizations and deaths than all 

other known bacterial pathogens (Scallan et al., 2011). Contamination of food products by 

these pathogens can occur at any point throughout food production chain including 

dispersal and preparation processes, which necessitates effective and efficient detection 

methods (Aruscavage et al., 2006; Abadias et al., 2006). Consumer consumption of 

minimally processed foods, especially fresh produce, has been documented in recent years 

(Barth et al., 2010). Unfortunately, this trend coincides with an increased incidence of 

foodborne illness associated with fresh produce (Sivapalasingam et al., 2004; Painter et al., 

2013; CDC, 2013).   

For surveillance of bacterial foodborne pathogens like Salmonella, the US Food and Drug 

Administration (FDA) uses standardized detection procedures outlined in the 

Bacteriological Analytical Manual (BAM). Fresh produce is considered a Category II  
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food since the product is subjected to a process that is lethal to Salmonella between 

the time of sampling and consumption. The standard procedures begin with the isolation 

of Salmonella from the sample matrix (Bacteriological Analytical Manual, 8th Edition, 

Revision A, 1998. Chapter 4.). Because the isolation procedure involves selecting for a 

specific pathogen, only one pathogen can be detected at a time and to detect any other 

pathogens in the sample, the entire process would need to be repeated. Using the 

biochemical protocol, the quickest turnaround time for Salmonella identification is 120 hrs. 

(5 days). Using the Real Time PCR method, the fastest turnaround time is 96 hrs. (4 days). 

None of these estimated times include serotyping, which would add between 2-3 days for 

shipping and processing strain typing laboratories. These time estimates do not reflect the 

time required to process a high volume of samples which would increase the overall time 

requirement. 

The United States Department of Agriculture (USDA) is the other governmental 

regulator of food products, and their standardized procedures for Salmonella sampling and 

identification are included in the Microbiology Laboratory Guidebook (MLG). Unlike the 

FDA, the USDA only tests for Salmonella in meat products, dairy, and eggs. Despite this 

difference, the overall laboratory procedures between the two administrative bodies are 

incredibly similar, and the differences that exist are in product sampling strategies. Both 

the BAM and the MLG suggest using Real Time-PCR to decrease the time requirement.  

Metagenomics emerged as an application of genomic analyses and was first used 

in the field of ecology, where it is necessary to sequence DNA from a whole community 

of organisms to gain insight about community structure and function. Before 

metagenomics, it was not possible to observe all of the members or potential gene 

interactions in situ in an environmental community, since many of the organisms in 
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environmental samples are not culturable or known.  Metagenomic sequencing allows the 

direct genetic analysis of a complex environmental sample (Karlsson et al., 2013). Using 

this method for detection streamlines the identification process by removing the need for 

culturing (Nakamura, 2009; Nakamura, 2011).  While most metagenomic studies have 

primarily focused on profiling microbial communities in a sample, metagenomics has the 

potential to detect all microbes, including pathogens, in a given sample (Stobbe et al., 2013; 

Yang 2011). A metagenomic approach has already been used to detect previously unknown 

pathogens in a variety of hosts, including mammals, insects, and plants using community 

profiling (Adams et al., 2009, Cox-Foster et al., 2007, Palacios et al., 2008, Roossinck et 

al., 2010). However, community profiling is time and computationally intensive and can 

lack the specificity needed to differentiate between closely related pathogenic and non-

pathogenic organisms. When it is not necessary to know the composition of an entire 

community in metagenomic data and when the pathogen sequences or signatures are 

available, it is possible to target the pathogen sequences for detection, reducing the 

computational resource requirements of community profiling. This approach of utilizing 

these unique sequences is known as targeted detection from complex metagenomic 

samples. Because of the success of these methods and the ever-lowering price of next 

generation sequencing (NGS) technologies, detection of foodborne pathogens through 

metagenomic sequencing has now become a possibility (Nakamura, 2011). However, the 

pipelines necessary to analyze this type of metagenomic data have not been fully 

established.  

 The most common pipelines used to deal with sequence data are heuristic, like those 

found in the Basic Local Alignment Search Tool (NCBI, 2017). This tool from the National 

Center for Biotechnology Information (NCBI) uses short three-word k-mers of the query 
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sequences to identify similar sequences in the NCBI database. Even though this process is 

faster than searches requiring exact matches, the size of the database that must be searched 

compared to the query data can make this type of analysis cumbersome and is not ideal for 

metagenomic data. New pipelines like Kraken are being developed to assign taxa to 

metagenomic read data (Wood, 2014). However, because of the time required for creating 

a community profile, it is limited as a high throughput diagnostic technique because of its 

slow speed (Pop and Salzberg, 2008, Magi et al., 2010). Ideally, a diagnostic tool would 

be able to target unique regions of a pathogen, which would reduce the time necessary to 

reach a diagnostic decision. 

E-probe Diagnostic Nucleic-acid Analysis (EDNA) is a tool developed at 

Oklahoma State University in conjunction with the USDA to bridge the gap between 

profiling-based methods and diagnostically realistic time requirements. This method builds 

on the Tool for Oligonucleotide Fingerprint Identification (TOFI) method of probe creation 

and simplifies it while making it compatible with metagenomic data by using the probes 

as search queries in BLAST. Similar to TOFI, this pipeline is entirely in silico, which 

reduces the cost. EDNA was initially utilized to detect plant pathogens. EDNA only 

requires genomes of the targets and can be used with incomplete genomes, although this 

reduces the specificity (Stobbe et al, 2012). This pipeline is also ideal for detection of 

human foodborne pathogens like Salmonella enterica because it presents a rapid detection 

that can be done with unassembled metagenomic sequence data. 

The ability to combine metagenomic sequencing with a rapid bioinformatic 

detection tool presents an opportunity to improve the access and usability of both fields. 

This combination streamlines the detection process of complex metagenomic sequence 

data into a five-minute analysis of all possible pathogens in a single assay. Additionally, 
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the optimization of this tool for very low titer human foodborne pathogen detection 

confirms that this tool can be used in both the plant and human fields and could 

significantly improve upon the methods currently used by the FDA and USDA. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Global Food Infrastructure  

 The globalization of the food market has increased public awareness of food 

safety and food security (Yiannas et al., 2009). The constant expansion of the food supply 

chain has been enabled by improvements in technology, including food storage and 

handling on a global scale. However, because of the increase in supply chains and 

through-puts, the risk of pathogen contamination has also increased. Consumer’s 

perceptions about food are also changing. More than ever, people are questioning where 

their food is coming from and how it has been grown. People are questioning 

conventional systems that have traditionally focused on high production and yield. These 

practices were epitomized by the Green Revolution that focused on food security and 

eliminating food shortages by cultivating high yielding varieties of food staples like 

wheat, rice, and corn. The Green Revolution combined these new varieties with new 

chemical fertilizers and irrigation as a "package of practices" for food stability 

worldwide. These practices greatly improved food security worldwide and are viewed as 

one of the most significant contributions to agriculture in recent history. However, as new  

. 
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global issues take a seat in consumer consciousness, concerns about sustainability and 

environmental repercussions have prompted new smaller scale markets that are seeking to 

produce locally grown and “organic farm to table" products. These new additions mean 

that new markets and transport chains are evolving at all levels of the industry. The United 

Nations Food and Agriculture Organization (FAO) defines food security as a national 

responsibility that "exists when all people, at all times, have physical and economic access 

to sufficient, safe and nutritious food to meet their dietary needs and food preferences for 

an active and healthy life (FAO, 1996)." This definition is built on the four pillars of 

availability, access, utilization, and stability (FAO, 2006). This model promotes both 

security and safety. As far as food safety, most strategies have focused on reducing 

foodborne illness through combinations of good agricultural practices (GAPs), critical 

control point (HACCP) plans and incorporation of new technology for detection of 

pathogens. However, foodborne illness remains a critical issue worldwide (Kirk et al., 

2007).   

Foodborne Illness  

 The WHO defines a foodborne illness as a disease caused by an infectious or toxic 

agent that enters the body through food consumption (Kirk et al., 2007). Foodborne illness 

can be caused by parasites, bacteria, viruses, toxins, prions, and toxic chemicals (Solomon 

et al., 2006). Both biological and chemical agents can cause human foodborne illness; 

however, most are caused by human foodborne pathogens (CDC, 2013). Approximately 

9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths occur each year in the 

United States, attributed to 31 major foodborne pathogens (Scallan et al., 2011). It is 

estimated that one in six Americans experience foodborne illness every year, with the 

global rate greatly exceeding that estimate (Havelaar et al., 2013). Identification of sources 
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of food contamination is vital in the implementation of effective control strategies (Kirk et 

al., 2007). These control strategies are divided into two groups. The first group of strategies 

focuses on preventing contamination, while the other focuses on decontamination of 

contaminated food sources (Thorns, 2000). Good agricultural practices (GAPs) have been 

effective in reducing the amount of contamination; however, due to the high throughput 

and processing of current agricultural products decontamination is still extremely critical 

(Goodburn and Wallace, 2013). 

 Identification of contamination and decontamination is particularly important for 

foods that are consumed raw or with minimal kill steps, like cooking. These foods include 

fresh fruits and vegetables, which, thanks to the global marketplace, are available all year 

round. Not surprisingly, this has led to an increase (30%) in the consumption of these foods 

over the past three decades (Barth et al., 2010). Fresh fruits and vegetables have also been 

increasingly linked to human foodborne illness outbreaks (Sivapalasingam et al., 2004; 

Painter et al., 2013). Outbreak investigations are complicated because many pathogens are 

present in the environment, and food is only one of many routes of infection. Additionally, 

these investigations suffer from extensive under-diagnosis and reporting (Painter et al., 

2013; Scallan et al., 2011) Because of the risk to human health, outbreak investigations are 

the foundation of foodborne illness source attribution (Cole et al., 2014). A comprehensive 

review of US foodborne illness outbreaks (Painter et al., 2013) provides critical data about 

the foods and pathogens most commonly associated with foodborne illness. From 1998 to 

2008 using 4,589 foodborne disease outbreaks attributed to known sources reported to the 

Centers for Disease Control and Prevention (CDC), illnesses were attributed to seventeen 

different food categories composed of both simple and complex foods, made up of plant 

and animal products. One of the most notable findings was that produce accounted for 
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almost half (46%) of the outbreaks (Painter et al., 2013). Among the six plant food 

categories, vegetables contributed to more illnesses (34%) than fruits and nuts twelve 

(12%), with leafy vegetables accounting for the most illnesses (22%). It was found that the 

yearly percentage of outbreaks associated with leafy green vegetables has increased from 

6% to  11% (CDC, 2013). Some attribute this increase to improved pathogen detection 

methods and not new sources of contamination (Brooks et al., 2005; Johnson et al., 2006; 

Bettelheim, 2007; CDC, 2012, Brandl and Sundin, 2013). Pathogen contaminated produce 

is a top contributor to outbreak-associated illnesses, hospitalizations, and deaths in the 

United States (CDC, 2013; Cole et al., 2014). 

Microbial Contamination of Fresh Produce 

 Human foodborne pathogen contamination can occur at any point along the chain 

of production, preparation, packaging, and distribution (Aruscavage et al., 2006). 

Regardless of the route of contamination, the transmission pathway is generally through 

the oral-fecal route, meaning that produce is contaminated with pathogens in the waste 

from humans or animals and then infects humans. The ability of enteric bacterial pathogens 

to survive on or within plants differs depending on the pathogens and the produce (Barak 

and Schroeder, 2012; Aruscavage et al., 2006). It has been observed that although produce 

surfaces are not ideal for enteric bacteria, they can both survive and increase in number 

(Barak and Schroeder, 2012). The point of contamination with fecal matter can occur 

through soil, water, fertilizer, animal activity, harvesting activity, processing, and human 

sanitation failures (Matthews, 2009; Gil et al., 2013). As part of HACCP plans, 

contamination events are classified at pre-harvest or post-harvest (Gil et al., 2013). Pre-

harvest contamination is combated by GAPs to reduce the likelihood of pathogen 

introduction into the system (Gil et al., 2013). In the US, most outbreak investigations have 
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concluded that the majority of contamination occurs in post-harvest production. Attributed 

to practices like improper storage, processing, failure to decontaminate equipment, and 

cross contamination (Gil et al., 2013). The points of post-harvest sources of contamination 

are more easily controlled than pre-harvest sources due to the lack of environmental 

conditions (Gil et al., 2013).  

Food Terrorism   

In addition to accidental contamination of the food supply with human foodborne 

pathogens, intentional contamination, or the threat of intentional contamination is also a 

concern. Food terrorism is housed under the umbrella of biological terrorism, and 

biological security efforts focus on securing food cultivation, processing, and 

transportation. Biological terrorism has become a significant area of concern since the 

terrorist attacks on the American World Trade Center and the Amerithrax investigation of 

2001 (DOJ, 2013). However, the threat of food terrorism is not a new idea and has been 

used as a military and political strategy for hundreds of years (CFSAN, 2003; Lepick et al., 

1945). Unlike select agents, human foodborne pathogens are easier to obtain because they 

are often part of the natural microbial community associated with animal rearing and only 

become an issue when consumed by humans. In 1984, the pathogen Salmonella enterica 

Typhimurium was cultivated and used by the Rajneesh Cult to try to influence a local 

election in Oregon. This attack resulted in 751 illnesses and 45 hospitalizations in the area 

and remained one of the most significant known outbreaks of foodborne illness in the 

United States (CDC, 2013). In the United States, the Food and Drug Administration has 

issued an official rule for Mitigation Strategies to Protect Food Against Intentional 

Adulteration. This rule includes a Food Defense Vulnerability Assessment, where the focus 

is on potential avenues of intentional contamination in the handling, processing, and 
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transportation of food products. The need for new rapid and sensitive detection strategies 

is of great interest to these initiatives.   

Major Sources of Contamination 

The major pathogens associated with foodborne illness in the US include parasites, 

bacteria, and viruses. Bacterial pathogens contribute the most to the rate of human 

foodborne illness, which is due to a combination of their abundance, virulence, and 

environmental persistence. The major bacterial pathogens monitored by CDC surveillance 

systems include Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC), 

Listeria monocytogenes, Campylobacter jejuni, Yersinia pestis, Shigella spp., Vibrio spp., 

and Clostridium spp. While all of these pathogens can be associated with meat and animal 

products, Salmonella, E. coli (STEC), and Listeria are commonly associated with plant-

based products (Painter et al., 2013).  

Salmonella enterica  

Salmonella enterica is a Gram-negative, rod-shaped, non-spore forming, 

facultative anaerobic species of bacteria in the family Enterobacteriaceae. These 

environmentally persistent and ubiquitous bacteria have a nomenclature system composed 

of six subspecies and over 2500 different serovars (Erickson et al., 2012). The vast majority 

of human infections are caused by Salmonella enterica subspecies enterica. This group 

contains over 1500 different serovars capable of causing human illness (Pop et al., 2004). 

The serovars are categorized as typhoidal or non-typhoidal based on their different modes 

of pathogenesis in humans. Both types can occur on multiple food matrixes causing 

gastroenteritis and are the number one bacterial agent resulting in hospitalization (Scallan 

et al., 2011) (Painter et al., 2013; Cole et al., 2014). Salmonella enterica subsp. enterica 
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serovar Typhi is the typhoidal serovars that can cause the characteristic typhoid fever. The 

more common non-typhoidal infections are less severe but can result in severe 

complications (Eo’Donnell et al., 2014).  

Shiga Toxin Producing Escherichia coli (STEC) 

Escherichia coli (STEC) are also Gram-negative, rod-shaped, non-spore forming, 

facultatively anaerobic bacteria in the family Enterobacteriaceae. The well-known serotype 

E. coli O157:H7 is most commonly associated with foodborne illness, but additional 

virulent strains continue to be isolated and identified as the causal agents in multinational 

outbreaks (Luna-Gierke et al., 2014) (Betteheim, 2007; Luna-Gierke et al., 2014). It is 

unclear whether these new strains are a product of new isolation and detection capabilities 

or new emerging strains (Brooks et al., 2005; Johnson et al., 2006). STEC infections are of 

great concern due to the possible complication of hemolytic uremic syndrome (HUS), 

which affects the kidneys and is life threatening (Karmali, 1989). This pathogen is most 

often thought of as a contaminate in ground beef and meat products; however, it was also 

implicated in the human foodborne illness outbreaks in spinach (CDC 2016), fenugreek 

sprouts (CDC 2011), clover sprouts (CDC 2012) and precut salad (2013). This trend toward 

fresh produce is concerning, and research into the survival mechanisms on these products 

is ongoing (Leff and Fierer, 2013).  

Listeria monocytogenes 

Listeria monocytogenes is a species of Gram-positive, rod-shaped, non-spore 

forming, facultatively anaerobic bacteria in the family Listeriaceae.  The human mortality 

of this pathogen is between 20-30% of cases in the US, making it the deadliest human 

foodborne pathogen (CDC 2012; Ramaswamy et al., 2007). Of the six species only, L. 
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monocytogenes has been identified as a causal agent of disease in humans. Of the thirteen 

serotypes, only three are associated with foodborne illness (1/2a, 1/2b, and 4b)(Ward et al., 

2004; Giusti et al., 2010). Listeria is relatively rare, but because of its high virulence and 

severe complications like pneumonia, meningitis, septicemia and spontaneous abortion, it 

is treated as a pathogen of concern and monitored by the CDC (CDC, 2018) (Ramaswamy 

et al., 2007). This pathogen is most often associated with preserved products like cheese 

and deli meat; however, it has also been found on fresh produce (Bae et al., 2013; 

Kovacevic et al., 2013; Painter et al., 2014).   

Campylobacter jejuni  

Campylobacter jejuni is a common food contaminant estimated as the causal agent 

in 1.3 million cases of illness from food in the United States yearly (CDC, 2019).  It is 

motile, Gram-negative, non-spore forming spiral shapes that thrive in microaerophilic 

environments. There are 34 recognized species of Campylobacter with jejuni and coli most 

often implicated in human disease. The two most cited subspecies of Campylobacter jejuni 

are jejuni and doylei. These bacteria are often associated with poultry contamination 

(Hirano et al., 1983). 

Available Detection Technology   

Culture-based methods are one of the oldest methods used to identify 

microorganisms (Priyanka, 2017). The method is widely available, requires limited 

expertise, and is cost effective (Priyanka, 2017). This method is limited by the slow turn-

around rate due to the time required for the culture to grow in media, which for most 

foodborne pathogens can be from 18-24 hrs. (Priyanka, 2017). This time is not very 

conducive to the fast-paced food production and shipping industry in the USA that 
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continually seeks to reduce the time required to get food from the farm to the table. Another 

drawback is the potential lack of specificity of differential media, as well as the inability 

of some bacterial pathogens to be cultured at all (Fletcher et al., 2006).   

Immunoassays are a popular method of identification that can significantly reduce 

the turn-around time of the identification (Kalapothakis, 2001; Priyanka, 2017). The most 

common immunoassay is called Enzyme-Linked Immunosorbent Assay (ELISA) 

(Kalapothakis, 2001). This method uses antibodies that bind to conjugates and produce a 

color change, indicating a positive result in less than 12 hrs. (Kalapothakis, 2001). A 

positive result is then normally confirmed using PCR (Kalapothakis, 2001; Priyanka, 

2017). One of the drawbacks to this method is the potential of cross reactivity of the 

antibodies, which can cause difficulty differentiating between species in some assays 

(Kalapothakis, 2001; Priyanka, 2017).  

Polymerase Chain Reaction (PCR) has long been considered the gold standard 

when it comes to diagnostics (Avaniss-Aghajani, 1994; Priyanka, 2017). This process is 

rapid and sensitive with detection limits as low as femtograms (10-15g) (Priyanka, 2017). 

However, this method cannot distinguish between live and dead cells, which is very 

important in the food industry, since dead bacterial pathogens cannot cause disease 

(Avaniss-Aghajani, 1994; Priyanka, 2017). This method can also generate high false 

positive rates depending on the specificity of the primers used (Avaniss-Aghajani, 1994; 

Priyanka, 2017). In addition to specific limitations, the detection methods above are limited 

by their ability to only detect a single pathogen or group of pathogens at a time (Avaniss-

Aghajani, 1994; Priyanka, 2017).  
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Pulse Field Gel Electrophoresis (PFGE) is the current standard used by the CDC to 

produce a DNA profile of bacterial isolates. The PFGE data is stored on the FoodNet 

system, which allows a new outbreak isolated to be quickly compared to the known 

outbreaks isolated. However, recently, there have been issues with different isolates 

generating the same PFGE profile (Jones et al., 2007). These issues are because not all of 

the isolated sequence is considered using this method, and similar sequences could generate 

the same profile.   

Government Microbial Protocols  

For surveillance of bacterial foodborne pathogens like Salmonella, the US Food 

and Drug Administration uses standardized detection procedures outlined in the 

Bacteriological Analytical Manual (BAM) (FDA, 2013). These procedures outline 

sampling practices that differ depending on the type of food product. Fresh produce is 

considered a Category II food because the product is subjected to a process that is lethal to 

Salmonella (also known as a kill step) between the time of sampling and consumption. The 

standard procedures begin with the isolation of Salmonella from the sample matrix 

(Bacteriological Analytical Manual, 8th Edition, Revision A, 1998. Chapter 4.). Because 

the isolation procedure involves selecting for a specific pathogen, only one pathogen can 

be selected for at a time and to detect any other pathogens in the sample; the entire process 

would need to be repeated. To increase the Salmonella titers, the sample is selectively 

enriched. Enrichment involves the use of two enrichment broths tetrathionate broth (TTB) 

and selenite cystine broth (SCB) incubated for 24 hours at 35°C. The enrichment is then 

plated on bismuth sulfite agar (BSA), xylose lysine desoxycholate agar (XLD-A) and 

Hektoen enteric agar (HEA). The plates are incubated for 24 hours at 35°C. After 
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enrichment, colony morphology is identified by eye by comparing the sample plates to 

controls. Suspected Salmonella colonies are selected, and the plates are re-incubated up to 

48 hrs. The selected colonies are streaked onto triple sugar iron agar (TSI-A), and lysine 

iron agar (LIA) and the biochemical and serological reaction is examined by eye. To 

positively identify Salmonella, the mixed TSI cultures are streaked onto MacConkey agar, 

HE agar or XLD agar and incubated for 24 hours at 35°C. The pure cultures are then 

subjected to a urease test, which involves transferring the cultures into urea broth for 24 

hours at 35°C and identifying the color change by eye. A serological polyvalent flagellar 

(H) test uses the urease negative growth TSI plates and observes agglutination after 24 

hours of incubation at 35°C. To reduce the time required for biochemical testing, it is 

possible to use RT-PCR to identify presumptive positives. PCR would be completed after 

the isolation of pure cultures. Finally, the cultures can be submitted for serotyping, but they 

must be submitted as individual isolates from each somatic group. The samples are then 

sent to either the Arkansas Regional Laboratory or the Denver District Laboratory. These 

laboratories serotype all the samples, and this can bottleneck the serotyping turnaround 

time. Using the biochemical protocol, the quickest turnaround time for Salmonella 

identification would be 120 hrs. (5 days). Using the RT-PCR method, the fastest turnaround 

time would be 96 hrs., (4 days). Neither of these estimated times includes serotyping, which 

would add between 2-3 days for shipping and processing. These times also do not reflect 

the time required to process a high volume of samples, which is highly dependent on the 

total number of samples that would need to be processed.   

The USDA is the other governmental regulator of food products, and their 

standardized procedures for Salmonella sampling and identification are included in the 

Microbiology Laboratory Guidebook (MLG) (USDA, 2007). Unlike the FDA, the USDA 
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only tests for Salmonella in meat products, dairy, and eggs. Despite this difference, the 

overall laboratory procedures between the two administrative bodies are extremely similar, 

and the differences that exist are in product sampling strategies. Both the BAM and the 

MLG suggest using RT-PCR to decrease the time requirement (Yoshitomi et al., 2015). 

Sanger Sequencing  

The ability to obtain and study the genetic sequence of an organism has made an 

enormous impact on the way scientific research is conducted and has given many insights 

into relationships between organisms (Bartels et al., 2014). The Sanger method of 

sequencing by nucleic acid chain reaction was pioneered by Fredrick Sanger in 1977 

(Sanger et al., 1977; Metzker et al., 2010). This sequencing breakthrough provided the 

technological advancement that was needed to sequence the human genome (IHGSC, 

2004; Lyon et al., 2013). The Sanger method was improved upon by using capillary 

electrophoresis to increase the speed of the sequences processed (Trainor, 1990). The most 

notable new developments in sequencing have Next Generation Sequencing (NGS), 

Massively Parallel Sequencing (MPS), or High Throughput Sequencing (HTS) which 

greatly increased the speed and allowed hundreds of thousands of reads to be produced in 

a single procedure. These new technologies advanced the field of science by increasing 

understanding of taxonomy, gene expression, and traditional genetics while enabling new 

fields of study like metagenomics (Mardis, 2008; 2013; Yandell et al., 2001).  

Roche 454 pyrosequencing  

 In 2005, the Roche 454 pyrosequencer was developed. This technology allows for 

the creation of thousands of sequencing reads to be produced through emulsion polymerase 

chain reaction (emPCR) and pyrosequencing (Nakano et al., 2003; Elahi & Ronaghi, 2004). 
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It uses large-scale parallel pyrosequencing with a capability to sequence approximately 

400-600 megabases (MB) of DNA in a ten-turn run (Gibbons et al., 2007). The library 

preparation is done by shredding the DNA into 300-800bp and blunting each end. Adaptors 

are then ligated to the fragment ends. The adapter containing the 5’-biotin tag is used for 

immobilizing the DNA library to the streptavidin-coated beads. Nick repair occurs and 

releases the non-biotinylated strand, which is used as the single-stranded template DNA 

(sstDNA), and emPCR amplification occurs, and the templates remain encapsulated in 

water-in-oil mixture beads. The sstDNA beads are added to the DNA Bead Incubation Mix 

and layered with Enzyme Beads on the PicoTiterPlate device, and the beads are placed into 

the well through centrifugations where the sequencing reaction occurs. Nucleotides are 

then washed over the plate and are added to the templates in parallel. In wells where the 

addition of a nucleotide occurs, the light reaction is quantified by a CCD camera. The signal 

strength is proportional to the number of single nucleotides incorporated. However, the 

lack of ability to detect more than eight consecutive single nucleotide stretches 

(homopolymer) is a drawback of this type of sequencing. Roche 454 sequencing was 

removed from the market in 2016 when it was found to be noncompetitive, but it can be 

used to compare the effect of using long versus short reads in metagenomic community 

studies. A direct comparison of the Illumina and Roche 454 sequencing was completed to 

identify how the two different platforms treated the data (Luo et al., 2012; Roossinck et al., 

2010). The metagenomic sample tested was a complex freshwater planktonic community. 

The study summarized that despite differences in read length and sequencing protocols that 

both platforms overlapped in approximately 90% percent of the taxon assembled. It has 

been hypothesized that Roche 454 could be better for metagenomic community studies 
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since longer read lengths could provide a more complete picture of the community with 

less assembly (Xie et al., 2012). 

Ion Torrent  

The Ion Torrent improves upon the nucleotide addition method (Merriman et al., 

2012). The sample preparation and amplification are similar to that of the Roche 454 

platform, but instead of generating photons with each base addition, each microwell is a 

hypersensitive ion sensor, and as the base is added to the DNA strand, a hydrogen ion is 

released and detected. This method requires fewer reagents, thus reducing the cost of the 

method. 

Illumina  

Another NGS platform is Illumina (Rodrique et al., 2010). The nucleic acid 

preparation is similar to that of the Roche 454 platform, shredding of DNA, followed by 

adapter ligation. The Illumina method then uses massively parallel sequencing by 

leveraging clonal array formation and reversible terminator technology. Using the “bridge” 

technology, four fluorescently labeled nucleotides flow across the flow cell and when 

attaching to the nucleotide chain, release fluorescence that is base specific which is picked 

up by the device. Illumina is known for producing "short reads" that are from 50-150bps. 

Using very short reads without assembly may contribute to a high false positive rate in 

detection application since short reads are more likely to map to multiple areas in many 

genomes. "Long read" sequencing is less popular due to the higher cost.  

Pacific Biosciences  
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Unlike the other methods, Pacific Biosciences does not require an amplification 

step. This method is often referred to as third generation sequencing technology (Eid et al, 

2009). It uses single-molecule real-time (SMRT) sequencing on the original molecule (Eid 

et al., 2009). Small wells called zero-mode waveguides (ZMWs) house the DNA (Fichot 

et al., 2013). At the bottom of each well is a single polymerase enzyme that accepts 

fluorescently labeled nucleotides. The surface is washed with a mixture of uniquely 

fluorophore-labeled dNTPs, and as the bases are incorporated into the sequence, the 

fluorophore is detected at the bottom of the well.   

Oxford Nanopore 

 This technology is also considered a third-generation sequencing method and offers 

direct DNA/RNA sequencing in real time and yields ultra-long reals up to 2 Mb. The small 

size of the Oxford Nanopore MinION makes portable sequencing a possibility. The 

MinION technology identifies bases by measuring changes in electrical conductivity as a 

single strand passes through the biological pore (Lu et al., 2016). Because of the long reads 

produced, there is less need for complex de novo assembly which necessary when 

assembling short reads like those from the Illumina platform (Lu et al., 2016).  

Sequencing errors  

Each sequencing platform utilizes and combines different technologies, and 

therefore, each has different strengths and are prone to different errors. When comparing 

NGS sequencing platforms for detection, it is essential to understand these errors. 

Miscalling bases and sequencing bias can lead to false negatives when a sample is, in fact, 

positive. Another issue is unequal amplification, also called preferential amplification. An 

example of this is GC bias, which means that GC rich nucleic acids are favored during 
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amplification and will be in greater abundance after sequencing compared to the original 

sequence.  

Homo-oligomers 

Homo-oligomers are long sequences (>8) of identical nucleotides. Sequencing 

methods that rely on the amplitude of a single, like the Roche 454 and Ion Torrent 

platforms, have a difficult time accurately preserving the number of homo-oligomers in a 

single run (Huse et al., 2007). To combat this problem, improvements have been made by 

coating the wells with metal to increase the amplitude possible in a single run (Huse et al., 

2007; Voelkerding et al., 2009). Third generation sequencing technologies like Pacific 

Biosciences and Oxford Nanopore are able to deal with homo-oligomers much better than 

previous generations because they produce long reads and there is less to assemble and 

therefore less assembly bias (Lu et al., 2016).  

Base Calling  

Base miscalling is a common sequencing error that also occurs in nature. This error 

occurs when the wrong nucleotide is incorporated because of either the wrong nucleotide 

being incorporated into the synthetic strand or because of misinterpretation of the signal. 

Because in most platforms the signal of a single miscalled base is diluted by the overall 

clonal DNA cluster, it is not an issue, however, in SMRT sequencing, it is a problem and 

the PacBio error rate is 10-15% (Eid et al., 2009). The Oxford Nanopore technologies also 

have a higher error rate (5-15%) compared to second generation sequencing (Lu et al., 

2016). Illumina is known for substitution base calling errors causing the sequence to fall 

out of phase. Machine learning filters the background noise to read the base more 

accurately (Mardis, 2013).  
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Sequencing Bias  

Bias can also be introduced through ligation and amplification. In the Illumina 

platform, it has been observed that GC bias can occur in the adapter ligation steps, which 

can lead to low coverage of AT rich regions. Using an alternative ligase can mitigate this 

bias (Quail et al., 2008). For detection, GC bias could be used to favor targets that are GC 

rich to increase sensitivity. 

Read Length  

Read length can vary enormously from platform to platform. Illumina is known for 

producing the shortest average reads 50-150 bps, Ion Torrent produces read of 200 bps, 

Roche 454 produces 400bps. Third generation sequencing can produce the longest read 

length with PacBio averaging 10-15 kb and Oxford Nanopore averaging 900 kb (Eid et al., 

2009; Lu et al., 2016).  

Assembly  

For most pipelines, assembly is a necessary step in sequencing analysis. This is 

especially true with short read data like Illumina. During assembly, sequencing reads are 

assembled into contiguous sequences (contigs) and scaffolds. Many assembly programs 

are available, and some are preferred for specific sequence data (Chaisson & Pevzner, 

2008; Gnerre et al., 2011; Myers et al., 2000). Two main strategies exist for assembly 

referenced based assembly and de novo. Reference based assembly maps the reads to 

known genomes, while de novo bases assembly based on prediction algorithms. De novo 

assembly is computationally and time intensive (Pop et al., 2004). This time requirement 

reduces the speed of NGS pipelines, but it is necessary for most identification tools. 
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Newbler Assembler (de novo) 

The Newbler assembler is available from Roche Life Sciences (Chaisson & 

Pevzner, 2008). It is specifically designed to work with Roche 454 reads and has a default 

of a sixteen seed minimum match before it extends to find the optimal match. Large contigs 

are identified, and the overlapping reads are compiled into a single contig. Assembly is 

useful for many bioinformatic tasks, but it takes time and could limit the quantification 

capacity of a diagnostic technique by removing read depth and obscuring copy number.  

SOAP Assembler (de novo) 

Short Oligonucleotide Analysis Package (SOAP) is a software package that can be 

used for assembly, alignment, and analysis of next generation sequence data. It is optimized 

for alignment of short reads and is favored by people working with Illumina datasets. It has 

been used to assemble large genomes like human and animal genomes. However, like 

Newbler, it requires extra time after assembly.  

Mapping Assembly 

Mapping to a sequence is another method of assembly. A mapping alignment can 

be done with either reads or contigs. When assembling reads to a genome, a genome must 

already be chosen for the alignment.  This necessary foreknowledge is a limitation for 

metagenomic studies because it is a mixed sample and choosing genomes biases the results. 

Another limitation for use with metagenomic studies is the false assemblies that could 

occur because of shared genes. This means that even if a genome is not represented in a 

metagenomic sample, some reads could assemble to the genome because they are shared 

by many different organisms, which is an issue for pathogen detection (Iqbal et al., 2012).  
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Metagenomics  

Metagenomics is the study of the genomic makeup of environmental samples and 

can be used to assess sample biodiversity (Breitbart et al., 2002; Daniel, 2005; Gill et al., 

2006), gene expression (Frias-Lopez et al., 2008; Uchiyama et al., 2004), and gene 

interaction within an environment (Harrison, 1981; Jones et al., 2010). Metagenomic 

sequencing allows the direct genetic analysis of a complex environmental sample 

(Karlsson, 2013; Tucker et al., 2009). Using metagenomics streamlines the identification 

process by eliminating the need for culturing or isolation (Nakamura, 2009; Nakamura, 

2011). These breakthroughs in the field of microbial ecology can also contribute to other 

microbial fields, such as microbial identification (Nakamura, 2009; Schloss et al., 2005). 

This method has been primarily used to profile whole microbial communities in 

environmental samples associated with soil, water, and humans/animals. The strength of 

this type of work revolves around the ability to "reconstruct" an entire community from a 

single sample. Utilizing metagenomics has played a crucial role in discovering uncultivable 

organisms and viruses in complex environmental samples (Nakamura, 2009).  This has 

been key in uncovering viruses, as well as hard to culture pathogens. This method is not 

limited to presence or absence detection. By translating DNA reads into RNA or proteins, 

a more complete picture of community function and the genes involved can emerge. To get 

a quantitative view of community function, differential transcriptomics can be used to 

understand how inputs into soil, water or the human microbiome can influence the 

microbial community (Luo et al., 2017). This method also has almost limitless application 

for pathogen detection, since any genome present can be reconstructed from the sequence 

data. Using this method, it is possible to detect any pathogen present in the sample, but the 
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limitations arise from the limited information on the performance about the computational 

pipelines that can be used to process metagenomic data.   

Community Profiling Methods  

The two main strategies for sequence mapping are informative and non-

informative. Informative searches involve identifying biologically informative genes, also 

called open reading frames (ORFs) or coding domains (CDs) in the sequence data (Das et 

al., 2018; Tyson et al., 2004). Using the ORFs is a popular strategy because it classifies 

sequences based on relevance and reduces redundant searches (Pookhao et al., 2015). This 

is extremely relevant in sequence data involving eukaryotic organisms where non-coding 

regions and regions containing identical strings of nucleotides are prevalent (Liu et al., 

2013). Another benefit of this strategy is that it can reduce the amount of false positive 

mapping because the searches are limited to only well characterized gene regions. The 

main limitation of this strategy is that it relies on the identification and characterization of 

ORFs (Kolde et al., 2015). This is an issue with metagenomic research because many of 

the organisms in the mixed sample have not been well studied (Nagarajan et al., 2014). 

This means that many of the ORFs will not be able to be identified, and the ones that are 

may not be indefinable at an informative taxonomic level. This will likely improve as ORF 

databases increase.   

Non-informative searches look for sequence similarity without regard to gene 

coding regions or open reading frames (Chattaway et al., 2017: Zhang et al., 2000). This 

method can often achieve a higher degree of taxonomic resolution because it is not 

dependent on the characterization of ORFs. However, it is more likely to result in a higher 

rate of false identification, depending on how the search algorithm identifies matches (Pop 
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et al., 2018).  This type of search can often take longer than informative searches based on 

predicted ORFs because of the relative sizes of the databases. Regardless of which strategy 

is used, it is essential to understand how these different strategies compare; meaning that 

are different pipelines converging and resulting in similar taxonomic profiles at different 

levels of clarity or are different methods resulting in significantly different species 

abundance at all taxonomic levels? 

The most commonly used bioinformatic pipelines for analyzing metagenomic data 

are heuristic like those found in the widely used Basic Local Alignment Search Tool 

(BLAST)(Altschul, 2009). This tool from NCBI uses short three-word k-mers of the query 

sequences to identify similar sequences in the NCBI database. Even though this process is 

much faster than Bayesian and strict alignments based on perfect matches, the relative size 

of the databases makes this type of analysis computationally cumbersome. The BLAST 

tool has an online platform that is used extensively for local sequence searches, but for 

large datasets, a high-performance computer is still needed, and it can take many days 

(Santamaria, 2012). Programs like the Diamond pipeline attempt to improve the speed of 

BLAST by formatting the NCBI protein database with a proprietary algorithm (Buchfink, 

2015). Diamond was developed as a high throughput program for DNA protein coding 

sequences and protein sequence alignments, 20,000 times faster than traditional BLAST 

while retaining high sensitivity (Buchfink, 2015). Other programs, like Kraken2, assign 

taxonomic labels to DNA sequences using k-mer based binning. Kraken2 requires the use 

of the Bracken program for a re-estimation of read abundance (Wood, 2014). These 

pipelines can all result in a taxonomic profile, which can be used to estimate the 

approximate percentage of each taxon in the profile. The Kraken2 and Bracken programs 

require the construction of multiple scripts for running the analysis, as well as, extensive 
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computer resources and RAM. Additionally, alignment programs like Bowtie2 can be used 

as community profiling or by creating a custom database and used as a mapping assembly 

to genomes or sequences of interest.   

Targeted Detection Methods  

The Tool for Oligonucleotide Fingerprint Identification (TOFI) was created to 

generate a microarray in silico (Geyer et al., 2008; Stobbe, 2013; Stobbe, 2014; Satya et 

al., 2008). TOFI is an integrated, scalable, high-performance-computing tool that 

incorporates genome comparison and probe design software. It was designed as a high 

throughput method to simultaneously process multiple bacterial or viral genomes and 

identify fingerprints that are unique to each genome. It can also be used to find fingerprints 

that are common between genomes (Geyer et al., 2008). The TOFI pipeline includes three 

main steps. The first step is a comparison of pathogen sequence with those of near 

neighbors for unique fingerprinting, the second step is thermodynamic optimization, and 

the final step is a check for uniqueness with BLAST. The strength of this method is that it 

reduces that amount of data that needs to be queried by only searching for the fingerprinted 

regions. This method also suggests that by using the in silico fingerprinting method, 

hundreds of related genomes could be run in a single assay (Geyer et al., 2008).  However, 

for detection, it is not necessary to do all of the work in gene expression that is proposed 

by this pipeline, and this pipeline is limited in its application with metagenomic data due 

to its reliance on thermodynamics, which is not a concern in metagenomics. 

E-probe Diagnostic Nucleic-acid Analysis (EDNA) is a tool developed at 

Oklahoma State University in conjunction with the United State Department of Agriculture 

(USDA) to bridge the gap between profiling-based methods and diagnostically realistic 
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time requirements. This method builds on the TOFI method of probe creation and 

simplifies it while making it compatible with metagenomic data by using the probes as 

search queries in BLAST. EDNA is an in silico tool that allows for the creation of 

electronic probes (E-probes) based on a known pathogen sequence (Stobbe, 2013; Stobbe, 

2014). The E-probes are created by selecting a target pathogen genome and comparing it 

to a closely related genome that acts as the inclusivity/exclusivity determinate. The E-probe 

length is then chosen, which is dependent on the type of target organism and the length of 

the genome; however, previous studies have found that E-probes lengths of 60-80nt seem 

to work well for most organisms (Stobbe et al., 2014; Stajich et al., 2002). This produces 

the raw E-probes that are then cleaned by aligning the raw E-probes on the NCBI database 

and removing off-target hits. The resulting E-probes can be stored and used to detect targets 

in any FASTA datasets.  The E-probes can identify pathogens in sequence data, including 

large metagenomic data (Stobbe, 2014). While EDNA does not provide a taxon profile or 

a relative species abundance, it does have the potential to rapidly detect a pathogen in a 

metagenomic dataset by probe matches. It also has the benefit of being used for target 

detection in unassembled, non-quality checked sequence data (Stobbe et al., 2014). This 

method has been tested on viruses (RNA and DNA), bacteria, fungi, and oomycetes. Most 

of the targets used for detection have been plant pathogens; however, this technique has 

the potential to detect any target, including human pathogens from sequence data. This 

method provides an opportunity to detect human foodborne pathogens on non-host (fresh 

food substrates) which would be extremely beneficial to food safety.   

Metagenomic Dataset Construction  

Metagenomic mock datasets are simulations of real environmental data (Richter et 

al., 2008). These datasets are key in uncovering the limitations of currently available 
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metagenomic data analysis tools because they offer a way to test the output results against 

the inputs of an experiment (Richter, 2008). This has been a major problem in the 

evaluation of tools for metagenomic analysis because due to the nature of environmental 

samples, and the inputs are variable and exact quantities are unknown (Korem et al., 2015). 

Mock datasets allow for the creation of true positive and negative controls, something that 

is not possible in strict experiments using only metagenomic data from environmental 

samples. Without the use of true positive and negative samples, the experimental design is 

flawed, and conclusions derived from the study can be brought into question (Stobbe et al., 

2012). This is not to say that mock datasets are a complete substitute for real environmental 

data sets, only that they are a resource that can be utilized for the testing of metagenomic 

analysis tools to better understand the outputs from studies with metagenomic data.   

There are two main types of metagenomic mock datasets. The first type called an 

in vitro mock community dataset, is constructed by placing organisms in a simulated 

community before extracting the DNA or genetic material and sequencing the community 

(Fouhy, 2016; Fausser, 2011). This type of mock community is defined as a mixture of 

microbial cells, viruses or nucleic acids that were created in vitro to provide a simulation 

of the composition of a microbial sample (Castelino, 2014). This is considered a synthetic 

or laboratory mock community because it is not a community derived from a real 

environmental sample. Since the completion of the Human Genome Project and the Human 

Microbiome Project, this type of dataset has been used extensively to simulate the 

microbial community structure found in real environmental samples.  Examples of these 

datasets are The Human Microbiome Project’s BEI: HM-280, HM-281, HM-278D and HM 

-279D, these databases are available through BEI for researchers working on infectious 

diseases of humans (NIH HMMC web). Another popular mock community is the 
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Mock Bacteria ARchaea Community (MBARC-26) created for researchers working 

with archaea communities. However, this type of dataset is only an estimation of the 

community structure found in environmental metagenomic datasets and cannot completely 

replicate the relationships between community members (Wu, 2016). It should also be 

noted that since the community structure is calculated before sequencing, the actual amount 

of members is somewhat variable, due to extraction and sequencing errors (Miller, 2017).  

The second type of mock metagenomic dataset is derived from in silico modeling 

that has been used to analyze programs in computer science (Richter et al., 2008). Many 

fields are now using these statistical and computer based in silico models to evaluate and 

optimize products and tools before implanting them in further studies. These are known as 

in silico mock metagenomic datasets. This type of dataset uses sequencing data and 

genomes from databases like NCBI. The quality of the sequencing and genome 

completeness is analyzed prior to the incorporation of each genome into the datasets. This 

allows stricter calculations of detection limits and specificity compared to other methods 

where levels could be confounded by pre-analysis errors. MetaSim is one of the most 

successfully used open access metagenomic data simulators available (Richter, 2008). 

MetaSim allows for common errors based on sequencing platform to be incorporated into 

the datasets to more realistically simulate a metagenomic data (Richter, 2008). This 

software works by generating collections of synthetic reads from specifically chosen 

genomes. The genome's representation, as well as, the number of reads from each genome 

can be designated during the taxon profile phase. The program then generates mate pairs 

based on platform models.  More tools that enable experiments to mock metagenomic 

communities in silico are coming to the marketplace like InSilicoSeq (Gourle et al., 2018). 

This tool generates Illumina reads for simulating metagenomic samples. In addition to 
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providing more control on the mock community genome inputs, the cost of constructing 

an in silico mock metagenomic data set is minimal compared to other experiments that 

require extraction and sequencing. This is one reason why many fields, including food 

chemistry, have started regularly using in silico modeling for optimization studies 

(Lambert, 2012). This method also provides research at facilities that are not equipped to 

handle live human pathogens with the ability to conduct preliminary experiments 

containing sequence data from human pathogens without containment or health risks. The 

metagenomic analysis tools can then be evaluated by comparing the input data to the output 

data (Blagden, 2016). Like all modeling-based experiments, the tools used will then need 

to be validated using real metagenomic data from environmental and laboratory samples, 

because nothing can replace the use of real environmental data. 

Both in vitro and in silico mock metagenomic data types are extremely useful in 

understanding how metagenomic analysis tools process and profile data. These tools are 

essential because completing metagenomic studies without an understanding of the biases 

and detection limits of the tools, can result in errors. If erroneous conclusions are made 

about metagenomic datasets due to the use of unvalidated tools, the understanding of 

metagenomic community structure can be obscured.  
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CHAPTER III 
 

 

EVALUATION OF BIOINFORMATIC PIPELINES FOR DETECTION OF 

SALMONELLA ENTERICA IN METAGENOMIC DATA 

 

Abstract  

Aim: Compared to the current pathogen detection methods, a metagenomics-based 

approach offers the potential to detect any and all known and unknown pathogens present 

in a complex sample in one assay. However, there are challenges that need to be addressed 

before pathogen detection from complex metagenomic data becomes practical. The aim of 

this study was to evaluate the influence of sequencing platforms, assembly and 

bioinformatic pipelines on the detection of foodborne pathogen Salmonella enterica in 

metagenomic data generated from fresh tomato surface wash. 

Materials and Results: DNA was extract from the surface wash of commercial tomatoes 

with two S. enterica contamination levels (S1 and S2) and one control group (T1).  Four 

community profiling bioinformatic pipelines (BLAST, DIAMOND, Kraken2, and 

Bowtie2) and one targeted pipeline, E- probe Diagnostic Nucleic-acid Analysis (EDNA) 

were used to analyze Illumina and 454 metagenomic cleaned clean reads and contigs for  
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detection of Salmonella enterica from the surface washes of tomatoes inoculated with two 

bacterial suspensions (103 or 106 cells per tomato). Detection limit and overall pipeline 

performance were compared. It was found that only Kraken and EDNA provided the speed 

necessary for rapid detection and only EDNA provided the sensitivity necessary for 

detection.  

Conclusions: Among the bioinformatics pipelines evaluated, EDNA offers a faster and a 

more straight forward detection of human foodborne pathogens in metagenomic data. 

Significance and Impact of the study:  Utilizing metagenomics allows for an entire 

community of organisms to be analyzed from sequence data. Identifying bioinformatic 

tools for bacterial human pathogen detection from sequence data should enhance the safety 

of food products by expediting forensic trace-back investigations and determining the 

causal agents and sources of human diseases. The evaluation of speed and detection among 

databases and bioinformatic pipelines provides a further understanding of the benefits and 

limitations of currently available methods of pathogen detection in metagenomic sequence 

data. 

Introduction  

Foodborne human pathogens pose a significant risk to human health and welfare and are 

of particular concern to children, the elderly and those with compromised immune systems 

(Lund, 2011: Liu et al., 2018). Currently, 31 foodborne pathogens have been identified as 

the causal agents of diseases in humans (CDC, 2016). Fresh produce, an essential part of a 

healthy diet and often eaten raw, is particularly at risk for foodborne pathogen 

contamination due to the lack of pathogen killing steps such as cooking before consumption 

(Jung, 2014). In many developed countries, including the United States, improvements in 
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sanitation and farming practices have mitigated the levels of foodborne pathogen 

contamination on food. However, the CDC estimated that in 2016, foodborne pathogens 

resulted in 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths in the United 

States (CDC, 2016). Bacterial pathogens make up the majority of the pathogens known to 

cause foodborne illnesses, and Salmonella enterica is listed as the top foodborne pathogen 

contributing to hospitalization (35%) and death (28%) in the United States (CDC, 2016). 

Because of the risk posed to human health, accurate and rapid detection of foodborne 

pathogens in complex food matrix is critical for routine quality control as well as foodborne 

outbreak investigations.  

 In the United States, the standard detection protocols for foodborne pathogens in 

various foods are developed and validated by two regulatory agencies: the U.S. Food and 

Drug Administration (FDA) and the U. S. Department of Agriculture (USDA). These 

assays are published as FDA’s Bacteriological Analytical Manual (FDA, 2013) and 

USDA’s Microbiology Laboratory Guidebook (USDA, 2007). The MLG assays are 

designed for detection of foodborne pathogens in meat, poultry, and certain egg products 

while FDA’s assays for detection in all the remaining food matrices.  Despite this 

difference, the overall laboratory procedures for the detection of each pathogen between 

the two regulatory agencies are very similar.  In general, the standard assays consist of pre-

enrichment, selective enrichment, plating on differential media, and biochemical, 

serological, or molecular tests for confirmation.  Each assay could take 4-6 days to 

complete, and only one pathogen could be detected in each assay. 

For rapid detection, Polymerase Chain Reaction (PCR) has long been considered 

the gold standard (Avaniss-Aghajani, 1994; Priyanka, 2017). This process is rapid (how 

long to complete?) and sensitive with detection limits as low as femtograms (10-15g) 



 

47 
 

(Priyanka, 2017). For foodborne pathogens, the detection limit of multiplex PCR has been 

published as 103 CFU/ml (Yu et al., 2016).  This method can also generate high false 

positive rates depending on the specificity of the primers used (Avaniss-Aghajani, 1994; 

Priyanka, 2017). In addition to their individual limitations, the detection methods above 

are limited by their ability to only detect a single pathogen or a small group of pathogens 

in one assay (Avaniss-Aghajani, 1994; Priyanka, 2017).  

Metagenomics is the study of the genomic makeup of environmental samples and 

can be used to assess sample biodiversity (Breitbart et al., 2003; Gill et al., 2006; Hirano, 

1983), gene expression (Frias-Lopez et al., 2008; Uchiyama et al., 2004), and gene 

interaction within an environment (Schwartz and Beaver 2011; Singh et al., 2013). 

Metagenomic sequencing allows the direct genetic analysis of a complex environmental 

sample (Karlsson, 2013). This streamlines the microbial identification process by 

eliminating the need for culturing or isolation (Nakamura, 2009; Nakamura, 2011). These 

breakthroughs in the field of microbial ecology can also contribute to other microbial 

fields, such as microbial identification (Nakamura, 2009). This method has been primarily 

used to profile whole microbial communities in environmental samples associated with 

soil, water, and humans/animals. The strength of this type of work revolves around the 

ability to "reconstruct" an entire community from a single sample. Metagenomics has 

played a vital role in discovering uncultivable organisms and viruses in complex 

environmental samples (Nakamura, 2009). This has been key in uncovering viruses as well 

as hard to culture pathogens. By aligning the assembled contigs to viral genomes, Yang et 

al (2011) were able to detect viral pathogens from clinical samples. This method is not 

limited to presence or absence detection. By translating DNA reads into RNA or proteins, 

a more complete picture of community function and the genes involved can emerge. In 
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order to get a quantitative view of community function, differential transcriptomics can be 

used to understand how inputs into soil, water or the human microbiome can influence the 

microbial community (Luo et al., 2017). This method also has almost limitless application 

for pathogen detection, because any genome present can be reconstructed from the 

sequence data (Wylezich et al., 2018). Using this method, it is possible to detect any 

pathogen present in the sample, but the limitations arise from the limited information on 

the performance about the computational pipelines that can be used to process 

metagenomic data.  

Bioinformatic pipelines are formed by stringing together bioinformatic tools and 

programs (Golob et al., 2017). Each tool takes data in and performs a function on the data. 

The functions include trimming and refining the data, assembling overlapping reads into 

long contigs, mapping reads to sequences in databases, and assigning taxonomy to the 

mapped reads. These programs are necessary for bioinformatic work, however, because 

each tool is based on a specific algorithm the data that is processed by a specific program 

is marked with the inherent biases of the algorithm. To meet the demand of data processing, 

new bioinformatic tools are emerging constantly, but the inherent biases of the algorithms 

in these tools are not always obvious. One of the most informative tests to identify 

algorithm bias is by running the same data through multiple tools and pipelines and 

assessing the differences in output (Golob et al., 2017). Bias is of particular concern in 

pathogen detection because the degree of taxonomic resolution needed is extremely high. 

If a pipeline is unable to resolve taxonomy below the genus level it is not going to be useful 

in pathogen detection because many pathogenic and nonpathogenic species share the same 

genera.     
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Computational pipelines begin with sequence data. The most popular sequencing 

platform is Illumina due to the amount of data output compared to the cost (Mitra et al., 

2010; Lawrence Berkeley National Laboratory 2010). The Illumina method uses massively 

parallel sequencing by leveraging clonal array formation and reversible terminator 

technology. Using the “bridge” technology, four fluorescently labeled nucleotides flow 

across the flow cell. When they attach to the nucleotide chain, they release fluorescence 

that is base specific and picked up by the device. Illumina is known for producing "short 

reads" that are from 50-150bps. Using very short reads without assembly may contribute 

to a high false positive rate in detection applications due to the fact that short reads are 

more likely to map to multiple areas in many genomes or be assigned to a species in greater 

abundance in the database depending on the algorithm used. "Long read" sequencing is 

less popular due to the higher cost. Roche 454 was one of the first commercial platforms 

for next generation sequencing. It used large scale parallel pyrosequencing with a 

capability to sequence approximately 400-600 megabases (Mb) of DNA in a ten turn run 

(Klein et al., 2011). The library preparation is done by shredding the DNA into 300-800bp 

and blunting each end. Adaptors are then ligated to the fragment ends. The adapter 

containing the 5’-biotin tag for immobilizing the DNA library to the streptavidin-coated 

beads. Nick repair occurs and releases the non-biotinylated strand, which is used as the 

single-stranded template DNA (sstDNA) and emPCR amplification occurs and the 

templates remain encapsulated in water-in-oil mixture beads. The sstDNA beads are added 

to the DNA Bead Incubation Mix and layered with Enzyme Beads on the PicoTiterPlate 

device and the beads are placed into the well through centrifugations were the sequencing 

reaction occurs. Nucleotides are then washed over the plate and are added to the templates 

in parallel. In wells where a nucleotide addition occurs, the light reaction is quantified by 
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a CCD camera. The signal strength is proportional to the number of single nucleotides 

incorporated. However, the lack of ability to detect more than eight consecutive single 

nucleotide stretches (homopolymer) in a drawback of this type of sequencing which 

Illumina does not share. Roche 454 sequencing was removed from the market in 2016 

when it was found to be noncompetitive, but it can be used to compare the effect of using 

long versus short reads in metagenomic community studies. A direct comparison of the 

Illumina and Roche 454 sequencing was completed in order to identify how the two 

different platforms treated the data (Luo et al, 2012). The metagenomic sample tested was 

a complex freshwater planktonic community. The study summarized that despite 

differences in read length and sequencing protocols that both platforms overlapped in 

approximately 90% percent of the taxon assembled. It has been hypothesized that Roche 

454 could be better for metagenomic community studies due to the fact that longer read 

lengths could provide a more complete picture of the community with less assembly (Mitra 

et al., 2010). However, the greater amounts of reads produced by an Illumina run could 

provide more targets for detection and a lower sequencing cost.  

After sequencing, many pipelines choose to assemble reads into contigs which 

reduces the overall amount of data by consolidating many reads into a single contig and 

allows for longer sequences alignments. Creating contigs can also result in fewer false 

positive hits in BLAST because longer sequences with lower E-values are statistically more 

relevant.  There is some debate about how this affects the reduction of reads and the relative 

abundance calculations but there is not a consensus (Knight et al., 2018). However, contigs 

creation has the benefit of resulting in more significant database searches due to the fact 

that longer queries do not result in as many false positive classifications as shorter reads 

(Jones et al., 2013; Carr et al., 2014). The contigs can then be used for informative or non-
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informative database searches. Creating contigs takes time and the program used to create 

the contigs may impact the taxonomic assignment. It is important to observe the potential 

differences between pipelines that use mapped contigs verse clean read data. 

The two main strategies for sequence mapping are informative and non-

informative. Informative searches involve identifying biologically informative genes also 

called open reading frames (ORFs) or coding domains (CDs) in the sequence data (Das et 

al., 2018). Using the ORFs is a popular strategy because it classifies sequences based on 

relevance and reduces redundant searches (Pookhao et al., 2015). This is extremely relevant 

in sequence data involving eukaryotic organisms where non-coding regions and regions 

containing identical strings of nucleotides are prevalent (Liu et al., 2013). Another benefit 

of this strategy is that it can reduce the amount of false positive mapping because the 

searches are limited to only well characterized gene regions (Dos Santos et al., 2017). The 

main limitation of this strategy is that it relies on the identification and characterization of 

ORFs (Kolde and Vilo, 2015). This is an issue with metagenomic research because many 

of the organisms in the mixed sample have either not been well studied or are unknown 

(Nagarajan et al., 2014). This means that many of the ORFs will not be able to be identified 

and the ones that are may not be indefinable at an informative taxonomic level. This will 

likely improve as ORF databases increase This method has been used for functional 

analysis of microbial communities but not detection (Dos Santos et al., 2017). Because of 

the current limited taxonomic clarity, this method is not suitable for detection application 

from complex metagenomic data.   

Non-informative searches look for sequence similarity without regard to gene 

coding regions or open reading frames (Chattaway et al., 2017). This method can often 

achieve a higher degree of taxonomic resolution because it is not dependent on the 
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characterization of ORFs. However, it is more likely to result in a higher rate of false 

identification depending on how the search algorithm identifies matches (Popic et al, 

2018).  This type of search can often take longer than informative searches based on 

predicted ORFs because of the relative sizes of the databases. Regardless of which strategy 

is used, it is important to understand how these different strategies compare. Meaning, are 

different pipelines converging and resulting in similar taxonomic profiles at different levels 

of clarity, or are different methods resulting in significantly different species abundance at 

all taxonomic levels? 

The most commonly used bioinformatic pipelines for analyzing metagenomic data 

are heuristic like those found in the widely used Basic Local Alignment Search Tool 

(BLAST) (Altschul, 2009; Martins et al., 2015). This tool from NCBI uses short three-

word k-mers of the query sequences to identify similar sequences in the NCBI database. 

Even though this process is much faster than Bayesian and strict alignments based on 

perfect matches, the large size of the databases makes this type of analysis computationally 

cumbersome. The BLAST tool has an online platform that is used extensively for local 

sequence searches but for large datasets a high-performance computer is still needed, and 

it can take many days (Santamaria, 2012). Programs like the Diamond pipeline attempts to 

improve the speed of BLAST by formatting the NCBI protein database with a proprietary 

algorithm (Buchfink, 2015). Diamond was developed as a high throughput program for 

DNA protein coding sequences and protein sequence alignments, 20,000 times faster than 

traditional BLAST while retaining high sensitivity (Buchfink, 2015). Other programs like 

Kraken2 assign taxonomic labels to DNA sequences using k-mer based binning. Kraken2 

requires the use of the Bracken program for a re-estimation of read abundance (Wood, 

2014). These pipelines can all result in a taxonomic profile, which can be used to estimate 
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the approximate percentage of each taxon in the profile. The Kraken2 and Bracken 

programs require the construction of multiple scripts for running the analysis, as well as, 

extensive computer resources and RAM. 

Alternatively, E-probe Diagnostic Nucleic-acid Analysis (EDNA) is an in silico 

tool that allows for the creation of electronic probes (E-probes) based on a known pathogen 

sequence (Stobbe, 2013; Stobbe, 2014). The E-probes are created by selecting a target 

pathogen genome and comparing it to a closely related genome that acts as the 

inclusivity/exclusivity determinate (Figure 1). The E-probe length is then chosen, which is 

dependent on the type of target organism and the length of the genome. However, previous 

studies have shown that E-probes lengths of 60-80nt performed well for most 

microorganisms (Stobbe et al, 2014). This produces the raw E-probes that are then cleaned 

by aligning the raw E-probes on the NCBI database and removing off-target hits. The 

resulting E-probes can be stored and used to detect targets in any FASTA datasets.  The E-

probes are able to identify pathogens in sequence data including large metagenomic data 

(Stobbe, 2014). While EDNA does not provide a taxon profile or an approximate species 

abundance, it does have the potential to rapidly detect a pathogen in a metagenomic dataset 

by probe matches. It also has the benefit of being used for target detection in unassembled, 

non-quality checked sequence data (Stobbe et al., 2014). This method has been tested on 

viruses (RNA and DNA), bacteria, fungi, and oomycetes (Espindola et al, 2015). Most of 

the targets used for detection have been plant pathogens. However, this technique has the 

potential to detect any target including human pathogens from sequence data. This method 

provides an opportunity to detect human foodborne pathogen on non-host (fresh food 

substrates) which would be extremely beneficial to food safety.   
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  Many variables in metagenomic approaches can influence the accuracy and speed 

in the detection of foodborne pathogens in a complex food sample. The aim of this study 

was to evaluate the influence of sequencing platforms, sequence input (clean reads vs. 

contigs), reference databases and bioinformatic pipelines on the detection of Salmonella in 

metagenomics data generated from commercial tomato surface wash (Figure 1).  

 

Materials and Methods  

DNA Extraction  

Fresh Roma tomatoes were purchased from local commercial retailer located in Stillwater, 

OK. The tomatoes were spiked with Salmonella at 106 cell/tomato (S1), 103 cells/tomato 

(S2), and un-spiked control (T) inside the biosafety cabinets and left for air drying. For 

each treatment 27 tomatoes (9 tomatoes in three replicates) were taken; briefly, three 

tomatoes were placed in the stomacher bag containing 100 ml of UPB broth. To wash the 

bacteria/ native microflora from the surface of the tomatoes, 3 tomatoes were placed in the 

stomacher bags, shaken manually for 1 min, rubbing each tomato for 2 min, again shaking 

for 1 min.  These tomatoes were removed, and another 3 tomatoes were placed in the same 

bag, washed in the similar way, removed, and another 3 tomatoes were washed in the same 

wash fluid. A total of 9 tomatoes were washed in same 100 ml of UPB broth. A total of 

300 ml of wash fluid was collected for each treatment. Total DNA was extracted using the 

traditional method of DNA extraction, briefly- A total of 300 ml of the wash fluid from 

each of the treatment above was divided into 150 ml each in centrifuge bottles and 

centrifuged at 10,000 rpm for 50 mins. The pellet in each was removed by dispensing in 

1ml of lysis solution [25 mM Tris, 10 mM EDTA and lysozyme (20 mg/ml)] and incubated 
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at 37 °C for 1 h. Sixty microliter of 10% SDS was added, and the mix was incubated at 56 

°C for 30 min, followed by 2.5 µl of RNase A (20 m/ml) incubating at 37 °C for 30 mins, 

further 10 µl of  Proteinase K (20 mg/ml; Promega) treatment was given at 56 °C for 30 

mins. To the above lysate equal volume of phenol: chloroform: isoamyl alcohol (25:24:1, 

Sigma Aldrich, St. Louis, MO, USA) was added, mixed and centrifuged at 12,000 rpm for 

15 mins. The above layer was removed carefully and extracted with equal volume of 

chloroform: isoamyl alcohol (24:1) and centrifuged again at 12,000 rpm for 15 mins. The 

supernatant was carefully separated, and the DNA was precipitated by adding 1/10 volume 

of sodium acetate (pH=5.2) and 2 volume of 100% chilled ethanol. The mix was 

precipitated by overnight incubation at -20°C.  The pellet was finally collected by 

centrifugation at 12,000 rpm for 15 mins, washed twice with ice cold 70% ethanol, air dried 

in biosafety cabinet and finally, the pellet was dissolved in 50 µl of TE buffer. For the high-

quality DNA for the Illumina run, the DNA was further purified and concentrated using 

the Zymo Research DNA clean and Concentrator kit (Zymo Research, Irvine, CA USA). 

For each treatment, DNA from 3 rounds of extractions were pooled together to produce the 

desired concentration for the Illumina run. 

Illumina And Roche 454 Sequencing and Assembly  

High-throughput sequencing was performed by BGI (Shenzhen, China) using the 

Illumina Hiseq 2000. After sequencing, the raw data was parsed to remove reads containing 

‘N’ and adapters. The number and rate of cleaned reads were calculated. Contigs were 

created using the SOAP de novo program which utilizes the Bruiji graph tool that 

specializes in assembling NGS very short reads (Li et al., 2008).  
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Barcoded Roche 454 sequencing was completed using the Roche 454 GS Junior 

(OSU). Trimming of the raw reads and creation of contigs was completed using the 

Newbler (2.5pl) program for de novo sequence assembly (Miller, 2016). A copy of cleaned 

read data was used for the downstream cleaned read analyses. For contig creation, the 

program began assembly by finding overlapping reads by calculating the number of reads 

for alignment and building trees based on seeds of 16-mer lengths with each seed beings 

12 bases upstream from the preceding seed. This was done to increase the speed of the 

calculation. If identical seeds are detected, the program extends the overlap between the 

reads until a minimum overlap of 40bps and a minimum alignment percentage of 90% is 

reached. The overlapping reads are compiled into a consequence sequence and the quality 

of each possible alignment of reads is calculated based on the consensus estimate which is 

based on the alignment reads called ‘nodes' and the reads between the nodes called ‘edges'. 

The optimal estimate is chosen based on the overall length of the contig and number of 

nodes versus edges in the contig. Scaffolds are calculated as a series of contigs and gaps 

between those contigs. Newbler provided reports that contained the identity and number of 

the scaffolds as well as contigs that were greater than 500bps in length. The reads and 

contigs from both platforms (Illumina and Roche 454) were used for downstream analysis.  

BLAST-nt Pipeline  

The data used was the cleaned reads and contigs from the three sample groups (S1, S2, and 

T1) from Illumina and 454 platforms. The non-redundant nucleotide (nt) database of NCBI 

was downloaded (Feb 2017). The BLAST+ program was run on the command line using 

the Oklahoma State University (Okstate) High Performance Computer (HPC) designated 

Cowboy (Altschul et al.,1990). The blastn application was used with the traditional 

parameters from the program that require an exact match of 11 nucleotides and the 
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BLOSUM62 scoring matrix.  The BLAST nt data was parsed with a PERL script to obtain 

hits with e-values of 10^-9 or more stringent. Then MEGAN6 was used to assign the 

mapped reads and contigs to species level taxa. Species abundance of S. enterica was 

calculated as reads assigned to a specific taxon over all assigned reads. The percent 

abundance of S. enterica was compared to other pipelines. The speed of the pipeline was 

computed based on approximate run time without interruption. 

Diamond-nr Pipeline  

The Illumina and Roche 454 cleaned reads and contigs (S1, S2, and T1) were 

translated into protein coding sequences using the BLASTx program on the Okstate high 

performance computer “Cowboy”. The NCBI non-redundant protein database (nr) was 

downloaded in FASTA format (Feb 2017). The Diamond program was loaded onto the 

Okstate HPC Cowboy (Feb 2017). Diamond was used to convert the nr database into a 

binary diamond database file. This database was used to align the data using the Standard 

Genetic code for the translation of the query. The standard alignment scoring matrix 

BLOSUM62 was used on the least sensitive mode. Alignments were parsed with a PERL 

script for hits with E-values of 10-9 or less.  MEGAN6 was used for taxon assignment and 

a taxon abundance table was constructed. Species abundance of S. enterica was calculated 

as reads assigned to a specific taxon over all assigned reads. The percent abundance of S. 

enterica was calculated. The speed of the pipeline was computed based on approximate 

run time without interruption. 

Kraken2 Pipeline 

The data used was the cleaned reads and contigs from the three sample groups (S1, S2, and 

T1) from Illumina and 454 platforms. Kraken2 was imported into the Okstate HPC 
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Cowboy used to build the kraken2 Standard Database containing NCBI taxonomic 

information and complete RefSeq genomes for bacterial, archaeal and viral domains as 

well as the human genome and UniVec Core (Nov. 2018). The default parameters were 

used which included kmer (35) and length (31). The program uses a simple spaced seed 

algorithm (s < l/4) in order to increase alignment accuracy. The default for s=6 meaning 

that >1 position will be masked. This increases speed while maintaining a high level of 

accuracy for most alignments. The BLAST+ suit application dustmasker was used to mask 

low complexity sequences. The output from the kraken2 files was analyzed using the 

Bracken program (Wood et al., 2014). Bracken stands for Bayesian Re-estimation of 

AbundanCe with KrakEN. It is recommended by the creator of Kraken2 as a statistical 

method of computing the abundance of species from metagenomic DNA samples. It does 

this by estimating the number of reads originating for each species present in a sample. The 

percent abundance of S. enterica was calculated. The speed of the pipeline was computed 

based on approximate run time without interruption. 

Bowtie2 Alignment of Salmonella enterica and Construction of Custom Database 

In order to test how nonstandard parameters and custom databases affect the speed 

and detection of a target, an alignment to S. enterica was completed using a custom 

database containing only a S. enterica genome (NCBI Accession #AE006468.2) another 

custom database was created that contained only S. bongori (NCBI Accession 

#NZ_NAPQ01000027.1).   The data used was the cleaned reads and contigs from the three 

sample groups (S1, S2, and T1) from Illumina and 454 platforms. The Bowtie2 program 

on the Okstate HPC Cowboy was used to create two custom databases containing an S. 

enterica genome (NCBI Accession #AE006468.2) and an S. bongori (NCBI Accession 

#NZ_NAPQ01000027.1). The Bowtie2 program was then used to locally align the 
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metagenomic reads and contigs to the S. enterica genome and S. bongori genomes. 

Alignment files were then visualized using the IGV and the CG View Server software 

package (Robinson et al., 2011). The percentage abundance of S. enterica and S. bongori 

were calculated as aligned reads over total reads and the overall speed of the alignment was 

evaluated as approximate run time without interruption. 

E-probe Diagnostic Nucleic-acid Analysis (EDNA) Pipeline 

The data used was the cleaned reads and contigs from the three sample groups (S1, 

S2, and T1) from Illumina and 454 platforms. The first step in EDNA is to create E-probes 

for Salmonella enterica, the reference sequence (NCBI Accession #AE006468.2) from 

NCBI was downloaded and compared to a reference sequence from Salmonella borgori 

(NCBI Accession #NZ_NAPQ01000027.1). This was done to establish the 

inclusivity/exclusivity determinate. The inclusivity/exclusivity determinate sequence 

chosen allows for the specificity of the probe set to be established. After comparison to the 

neighbor sequence using the MUMmer global sequence aligner, the sequence regions 

unique to Salmonella enterica were extracted using EDNA scripts and used to generate the 

probe set. BLAST on NCBI was used to identify if any of the probes hit on non-Salmonella 

enterica sequences in the NCBI database. The raw e-probes were mapped to the NCBI nt 

and genome databases If any sequences did hit on non-target organisms with an E-value of 

10-9 or percent ID of >97%, they were removed from the probe set.  Salmonella enterica 

probes of 60 and 80 nucleotides were created using the EDNA program. Six hundred and 

twenty-three probes were created with 60 nucleotides and 178 probes were created with 80 

nucleotides. The probes were run against (Blastn) the Illumina and 454 metagenomic 

sequence clean reads and contigs. The matches were retrieved having percent identity 

>97% and e-value 10^-9 or more stringent. Hits occurred when a probe aligned to read in 
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the metagenomic data and was considered a positive match if the percent identity was at or 

above 97% with an E-value of 10^-9 or greater with a read depth of two or greater. The E-

probe matches for each individual probe were counted and the number of times each 

individual E-probe resulted in a high-quality match was calculated as depth.  S. enterica 

was compared to other pipelines. The speed of the pipeline was computed based on 

approximate run time without interruption. The 60nt and 80nt E-probes were mapped to 

the S. enterica genome using Integrated Genomics Veiwer and the CG View Server in 

order to visualize the matches in the genome and compare them with ORFs. The E-probes 

were also mapped to the S. bongori genome to observe any possible off target matches.  

 

Results  

Overview of Metagenomics Data Sets 

From the 454 platform, the three samples were estimated to have an average of 22 

Mb per sample with a Sample Standard Deviation (SSD) of 3.3. The Illumina paired-end 

sequencing resulted in over 23,000,000 clean reads per sample with an average read length 

of 100bp (Table 1). Using the SOAP aligner, an average of 35,354 contigs were created 

per sample with an average length of 46,949,175bps. The 454 single end sequencing 

resulted in over 109,000 cleaned reads per sample with an average read length of 402bps. 

Using the Newbler aligner an average of 7,616 contigs were created per sample with an 

average length of 722bps.  

BLAST-nt Pipeline Profiles and Detection 
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All three samples ran for 500 hours regardless of platform or assembly (Table 2). 

Both the Illumina and 454 clean reads had similar patterns of S. enterica percent 

abundance. S1 had a percentage abundance of 30-32, S2 had a percentage abundance of 

0.6-0.4 and T1 had range of percent abundance of 0.5-0.2. This pattern was also seen in 

the Illumina and 454 contigs data.  Another trend seen across all sample sets was a decrease 

in the percent abundance of S. enterica from S1 to S2 and T1. The detection between S2 

and T1 was difficult to distinguish even though S2 was spiked with S. enterica and T1 was 

not. In the community profile, Pseudomonas sp. Raoultella sp. (formerly Klebsiella) and 

Clavibacter michiganensis dominated the highest percentage abundances regardless of 

platform or assembly (Appendix). There was not a consensus on the percent abundance of 

these species, but they tended to be in high abundance in all BLAST pipelines. Salmonella 

enterica was also found in all samples regardless of platform or assembly. The percent 

abundance of this pathogen was the top hit in all S1 samples with however percent 

abundance in S1 and the lowest percent abundance in T1.  

Diamond Pipeline Profiles and Detection  

It took 24 hours to complete diamond pipeline profiling for each sample (Table 3). 

Similar to the results from the BLAST pipeline, the trend was for S1 to have the highest 

percentage abundance with S2 and T1 having lower and similar percent abundances. 

Similarly, to the BLAST community profiles, Pseudomonas sp. Raoultella sp (formerly 

Klebsiella) and Clavibacter michiganensis dominated the highest percentage abundances 

regardless of platform or assembly (Appendix). There was not a consensus on the percent 

abundance of these species, but they tended to be in high abundance in all pipelines. 

Salmonella enterica was also found in all samples regardless of platform or assembly. The 

percent abundance of this pathogen was the top hit in all S1 samples with lower percent 
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abundance in S2 and the lowest percent abundance in T1. The full taxon profiles for S1, 

S2, and the Control samples (T1) for both platforms are summarized in the supplementary 

information. 

Kraken2/Bracken Profiles and Detection  

All three samples ran for 2 hours (Table 4). Kraken2 is the only profiling pipeline 

developed for metagenomic profiling and it closely mirrored the results of the BLAST and 

DIAMOND pipeline and S. enterica percent abundances. It had the greatest total number 

of taxa assigned for the Illumina clean reads and contigs, while the 454 reads and contigs 

were similar to the other profiling pipelines. Similarly, to the BLAST and DIAMOND 

community profiles, Pseudomonas sp. Raoultella sp (formerly Klebsiella) and Clavibacter 

michiganensis dominated the highest percentage abundances regardless of platform or 

assembly (Appendix). There was not a consensus on the percent abundance of these 

species, but they tended to be in high abundance in all pipelines. The notable difference in 

the Kraken2 pipeline was that S. enterica was not in the top highest abundance in S1, 

although it was still close to the top and followed the sample percent abundance trend seen 

in the other pipelines.  

Bowtie2 Alignment  

The cleaned reads from samples S1, S2 and T1 were mapped to an S. enterica 

complete genome using Bowtie2. The alignment took 2 hours on the high performance 

computer. Alignment files were then visualized using the IGV software package. The 

percentage abundance of S. enterica was calculated as aligned reads over total reads and 

the overall speed of the alignment was evaluated as approximate run time without 

interruption (Table 5). Following the same trend seen in the previous profiling pipelines, 
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S1 had the highest percentage of S. enterica followed by S2 and T1. The alignment of the 

samples to S. bongori yielded nearly identical percentage abundances at each 

contamination level (Table 5).  

EDNA Pipeline  

The speed of detection using EDNA was 5 min regardless of platform or assembly. 

EDNA detected Salmonella enterica in the S1 clean read samples at both E-probe lengths 

(60nt and 80nt) regardless of whether the cleaned reads were sequenced using the Illumina 

or 454 platform (Table 6). The S1 contigs from the both the Illumina and 454 platforms 

also resulted in detection of S. enterica. In the S2 unassembled read samples, EDNA 

detected Salmonella enterica in the unassembled reads from the Illumina platform at both 

E-probe lengths but not from the 454 platform at either E-probe length (Table 6). Neither 

the contigs from the 454 nor from the Illumina platform resulted in S. enterica detection at 

either E-probe length in S2.  No detection of S. enterica was found from the unassembled 

or contig data for the control sample (T1) set on either platform. The E-probes were mapped 

to the S. enterica genome and the open reading frames with Prokka annotation were 

correlated to the E-probes (Figures 2 & 3). No E-probes were able to be mapped to the S. 

bongori genome which was expected because the E-probes have been curated to only map 

to regions in S. enterica that are not found in S. bongori. 

Comparison of Pipeline Profiles for S. enterica Detection  

There is a consistent trend seen in all profiling pipelines. S1, the sample with the 

highest level of contamination, was consistently high for S. enterica across all pipelines, 

assemblies, and platforms. The percent of S. enterica in samples S2 and T1 were also 

similar in most of the pipelines.  
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Pipeline Speed Comparison  

The difference in speed between the three profiling pipelines (BLAST-nt, Diamond 

and Kraken2/Bracken) was drastic for all samples (S1, S2 and T1). The BLAST-nt pipeline 

took 30,000 minutes for each sample (S1, S2, T1). The Diamond pipeline took 1440-120 

minutes for each sample and the Kraken2/Bracken and Bowtie pipelines took 120 minutes. 

The EDNA pipeline took less than 5 min to detect S. enterica with 60nt and 80nt length E-

probe sets. The speed was calculated after each pipeline was constructed from sample input 

to final output files.  

Clean Read Verses Contigs S. enterica Detection  

Contigs consistently resulted in less read/contig assignments and lower percentage 

of S. enterica in the S1 sample. The percentage abundances of S. enterica for samples S2 

and T1 on both platforms were proportional with the clean reads. The EDNA pipeline 

showed that compared to clean reads the contigs resulted in negative detection at S. enterica 

lower titers (<1000 cells of S. enterica).  

 

Discussion   

S. enterica Detection Across Pipelines  

This study focused on bioinformatic tools for detection of human foodborne 

pathogens in metagenomic sequence data. Using informative genes is popular in ecological 

surveys using whole genome metagenomic data because this type of analysis can be used 

to gain a greater understanding of the possible gene function in a metagenomic community, 

but it does not have enough taxonomic resolution to be used for detection at this time. 
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However, in this study there was not a notable difference in percent abundance of phyla 

between the Illumina and Roche 454 platforms. This supports the early work by Luo et al. 

who concluded that there was agreement between the Illumina and Roche 454 percent 

abundance profiles in freshwater metagenomic samples (Luo et al., 2012). This puts the 

burden of profile bias on the downstream analysis pipelines. Using non-informative 

methods means that a greater number kmers are available for analysis and therefore the 

greater number of regions likely results in the greater taxonomic clarity seen in the profiles 

from the non-informative datasets. Profiling methods like those used in the BLAST-nt, 

DIAMOND and Kraken2 pipelines, provide a more in-depth understanding of the 

microbial community and are able to estimate the abundance of all species with regard to 

the number of reads allocated to each taxon. The BLAST-nt pipeline tools are the oldest 

and most often utilized for sequence alignments. This tool was not originally intended for 

use with metagenomic data, it was used to find regions of local similarity between two 

sequences or small groups of sequences (Altschul, 1990). For this reason, the algorithms 

are not optimized for metagenomic data or unassembled reads. It is important to note that 

the profile of percent abundance of S. enterica was similar to the DIAMOND and 

Kraken2/Bracken and the standard deviation also was similar with respect to the type of 

data (Tables 2, 3, & 4). This indicates that there is a consensus between profiles and the 

database bias, while still present, is affecting the output of each pipeline in a similar way. 

In the community profiles, while there was not a consensus in species abundance, several 

species (Pseudomonas sp. Raoultella sp (formerly Klebsiella) and Clavibacter 

michiganensis) that were expected to be in the agricultural environment were found in high 

abundance across all profiling pipelines regardless of platform or assembly (supplemental). 

Compared to the Diamond pipeline the BLAST-nt pipeline resulted in more taxa 
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assignment for each sample even though the same scoring matrix was used. This is likely 

due to the fact that the Diamond uses translated protein coding sequences and not all kmers 

code for proteins. This limits the amount of data the Diamond pipeline sorted through 

compared to the BLAST-nt pipeline. Of the profiling pipelines, Kraken2 had the highest 

number of taxa assigned to the lowest percentage of S. enterica. This is likely due to the 

fact that since Kraken2 is designed for metagenomic datasets it assigns reads that match to 

more than one organism to the lowest common ancestor, meaning that read or contigs 

assigned to S. enterica by the other profiling pipelines are likely not represented at the 

species level due to overlapping between multiple taxa. The Bowtie2 alignment of the 

metagenomic clean reads and contigs to S. enterica provided not only a way to confirm the 

presence of S. enterica reads in the samples, but also a potential means for detection. This 

was done creating a custom dataset that contained only the target S. enterica genome. The 

creation of a limited custom database limits the targets that the data is aligned to. However, 

this neuters one of the strengths of the profiling method in that by reducing the number of 

targets, the ability to accurately predict the species abundance is limited. Additionally, this 

pipeline is also likely to mis-assign taxa as was seen when the reads were aligned to S. 

bongori and nearly identical percent abundances were observed (Table 5). In the case of 

detecting known pathogens, when a profile of the metagenomic community is not needed, 

methods like EDNA detection are preferable. Instead of detecting a target based on the 

percentage of reads over total assigned reads, EDNA gives a positive or negative result 

based on the number of E-probe matches set by the threshold parameters. EDNA only 

retrieves hits that match unique regions of the target sequence which alleviates the issue of 

false positives due to common gene regions. This is particularly important in detection of 

human foodborne pathogens because the fact that many human foodborne pathogens are 



 

67 
 

in high numbers in databases like NCBI increase the likelihood of a gene that is common 

among many bacterial species being taxonomically assigned to a human foodborne 

pathogen during profiling pipeline classification. EDNA also has the benefit of working 

optimally with unassembled Illumina data. Both contigs and clean reads from both 

platforms were run on the EDNA pipeline and it was found that EDNA was able to detect 

S. enterica at lower titers in the clean read data compared to the contig data. This is likely 

due to the fact that EDNA threshold was originally created for working with clean reads 

and the depth needed for a positive match was two or greater. Since the creation of contigs 

condense overlapping reads into a single sequence the depth needed for detection would 

need to be lowered and optimized for use with contigs. 

Pipeline Speed  

The BLAST-nt algorithm is too slow for detection application from complex 

metagenomic data sets. The Diamond pipeline was also not specifically built for 

metagenomic taxa assignment. It was designed to improve the speed of the original BLAST 

tool due to the way the algorithm partitions the data. The Diamond pipeline generated the 

profiles for all samples and platforms in less than 24 hours (Table 3). This speed is a great 

improvement on the BLAST tool, however, it is comparable to PCR and culture-based 

methods that are already well validated. The speed of the tool would need to be less than 

eight hours in order to improve upon other validated detection methods. The 

Kraken2/Bracken pipeline was created in order to assign taxa to metagenomic reads. Since 

the program was developed for this type of work, both the clean reads and contigs from 

both platforms were run in all three samples (Table 4). It was thought that perhaps using 

contigs would increase the speed of the pipeline, however, no increase in speed was found 

between the clean reads and contig S. enterica detection. Its overall percent abundance of 
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S. enterica in the clean read and contig data is similar, which was of concern because it 

was thought that the construction of contigs could obscure the percent abundance of some 

species due to the way the reads are combined into a single copy. Since the use of contigs 

did not increase the speed of the pipeline, it is probably unnecessary due to the time 

required to assemble the contigs after sequencing. The EDNA pipeline was the fastest of 

all the pipelines, requiring only 5 min to complete the detection of S. enterica. This 

difference in speed is likely due in part to the sizes of the databases used. For the BLAST-

nt the entire non-redundant NCBI nt database was used in order to reduce potential 

database bias by only selecting for human foodborne pathogens or bacterial genomes. 

Similarity, the whole non-redundant NCBI protein database was used for the Diamond 

pipeline. The Kraken2 pipeline used a slightly smaller dataset and this was deemed 

appropriate because the Kraken2 pipeline is less susceptible to database bias because of the 

way that the algorithm assigns exact kmer matches to the lowest common ancestor. EDNA 

had the smallest database of all because it probed the metagenomic sample directly. EDNA 

is not subject to database bias because it uses unique target genome region for detection.  

Limitations and Future Work 

Like many metagenomic studies, there was not a “true” negative control (Miller, 

2016). This was due to the fact that, while the Control sample (T1) was not spiked with S. 

enterica, there was no way to guarantee it was free of S. enterica reads. However, since 

culture based, and PCR methods did not detect the presence of S. enterica in the control 

sample this means that contamination was likely introduced after sampling for PCR and 

Culture based methods or due to the detection of nonliving cells. Assuming contamination 

or sample mislabeling occurred, it would have had to happen prior to sequencing, since 

samples were sent to separate facilitates for each platform and both platforms have similar 
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levels of contamination. It is also possible that a mistake was made when the data files 

were transferred from the sequencing facilities to the external storage hard-drive. The only 

thing that is certain is that no evidence of S. enterica was found prior to sequencing, but 

alignments show that the presence of S. enterica post sequencing. Because this was verified 

and accounted for, it does not affect the outcome of pipeline testing.  

The Kraken2/Bracken and EDNA pipelines were the fastest at pathogen identification of 

the pipelines tested. However, they are difficult to directly compare due to the fact that 

EDNA currently lacks a quantitative capacity. Kraken2 also required substantial RAM to 

run part of the pipeline and was not as user-friendly as the other tree pipelines. EDNA also 

lacks a verified statistical test that would allow it to be compared to PCR for accuracy and 

precision. The evaluation of speed and detection among databases and bioinformatic 

pipelines provides a further understanding of the benefits and limitations of currently 

available methods of pathogen detection in metagenomic sequence data. Understanding 

potential pitfalls in bioinformatic analyses and the ability to optimize detection speed has 

important applications in the field of microbial forensics and biosecurity.  

Based on this study, the effect of platform bias was minimal, but Illumina is better 

supported.  The BLAST-nt and Diamond pipelines took longer to reach identification 

compared to Kraken2/Bracken and EDNA. Both Kraken2/Bracken are decent tools for 

detection from metagenomic sequence data. However, EDNA shows the most potential 

because of its ability to specify unique regions of the target genome. It will need to be 

optimized and the lack of quantitative capacity and statistical verification currently limit 

the ability of EDNA to be compared to the current PCR standards will need to be addressed 

by future studies.  
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This study had laid the groundwork for understanding the potential of current and 

emerging bioinformatic tools for human pathogen detection in complex metagenomic data. 

From this work, it is clear that tools developed for metagenomic analysis like Kraken2 and 

EDNA have the most potential for detection studies. With the strengths of Kraken2 being 

the generation of a metagenomic community profile and the weaknesses being the speed 

and lack of specificity, EDNA is a clear front runner for metagenomic detection studies, 

however, it will still need to be optimized to address the issues of low titer pathogen 

detection. These optimizations include increasing the sensitivity through assessing the E-

value and percent ID thresholds, exploration of different E-probe lengths and lowing of the 

read depth.  
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TABLES  

Table 1) Summary of sequencing and clean data output, number of cleans reads per 
sample, average read length per sample, number of contigs per sample. 

 

Table 2) Summary of the BLAST pipeline took. The pipeline took 500hrs (30,000 min). 

 

Table 3) Summary of the DIAMOND pipeline. The pipeline took 24 hrs (1,440 min). 

 

Table 4) Summary of the Kraken2 pipeline. The pipeline took 240 min. 

 

Table 5) Summary of the Bowtie2 pipeline. The pipeline took 240 min.  

 

Table 6) Summary of the EDNA pipeline detection of S. enterica. The pipeline took 5 
min. 

 

 

60nt 80nt 60nt 80nt 60nt 80nt 60nt 80nt
S1 23,719,434 623 159 25805 212 32 135631 146 40 10942 30 5
S2 23,927,370 27 4 44903 0 0 109647 0 0 6734 0 0
T1 23,877,420 0 0 40734 0 0 120211 0 5173 0 0

Sample Read # Contig # Read # Contig #

Illumina 454
Hit # Hit # Hit # Hit #
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FIGURES  

Figure 1) Overview of pipeline workflow. Each pipeline’s speed is an estimation of the 
workflow between the gray areas without interruption.  
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Figure 2) 60nt and 80nt E-probes mapped to an S. enterica genome using the CGView 
Server.  

 

Figure 3) S. enterica genome with mapped 60nt and 80nt E-probes. Shown with Prokka 
annotation (CDS). Created on the CGView Server. 
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CHAPTER IV 
 

 

OPTIMIZATION OF EDNA FOR HUMAN FOODBORNE PATHOGEN DETECTION 

IN COMPLEX METAGENOMIC DATA 

 

.Abstract  

Aim: The objective of this study is to optimize E-probe Diagnostic Nucleic-acid Analysis 

bioinformatics pipeline for rapid and sensitive detection of human foodborne bacterial 

pathogens in metagenomics datasets.  

Materials and Methods: In silico complex metagenomic datasets were constructed in 

Illumina sequencing format using MetaSim.  The datasets consisted of tomato genome 

(host plant) and ten species of bacteria commonly present on fresh tomato surfaces to serve 

as background in addition to Salmonella bongori (Inclusivity/Exclusivity determinate).  

Salmonella enterica was spiked at five concentrations with ten replicates for each 

concentration in these datasets. The laboratory samples consisted of DNA extracted from 

the surface washes of commercial tomatoes spiked with Salmonella enterica at two 

concentrations and sequenced using the Illumina platform. E-probe sets were constructed 

to test the impact of the E-probe length (60nt, 80nt and 100nt) and E-  
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value (1x10-3, 1x10-6, 1x10-9) parameters. During the EDNA detection pipeline, the query 

coverage (90, 95 and 100) and percent identity (90, 95 and 100) were used to establish the 

sensitivity and specificity thresholds of the E-probe sets.  Results: It was found that using 

unassembled Illumina data was the optimal data input. E-probes of 80nt lengths and curated 

with an E-value of 1x10-3 where able to detect Salmonella enterica when it made up at least 

0.0018% of the metagenomic dataset. The optimal parameters for detection were a query 

coverage of 90% and a percent identity of 95%.  

Significance and Impact of the study: E-probe Diagnostic Nucleic-acid Analysis 

(EDNA) is a targeted detection in silico probe-based bioinformatic pipeline that has the 

potential to quickly detect any pathogen present in a single complex sample through 

metagenomic data mining. 

 

Introduction  

 Metagenomics emerged first as a new approach for genomic analysis in the field of 

ecology, where it was necessary to sequence a whole community of organisms in order to 

gain insight about community structure and function. Since many of the organisms in 

environmental samples are not culturable or known, it was not possible to observe all of 

the members or potential gene interactions in situ in an environmental community by 

culture methods before the metagenomic breakthrough. Metagenomic sequencing allows 

direct genetic analysis of a complex environmental sample (Karlsson et al., 2013). Using 

this method for detection streamlines the identification process by removing the need for 

culturing (Nakamura, 2009; Nakamura, 2011).  While current metagenomic studies have 

primarily focused on profiling microbial communities in a sample, this approach has the 
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potential to detect any and all microbes in a given sample including pathogens (Stobbe et 

al., 2013; Yang 2011). A metagenomic approach has been used to detect previously 

unknown organisms and viruses in a variety of hosts, including mammals, insects, and 

plants through community profiling (Adams et al., 2009, Cox-Foster et al., 2007, Palacios 

et al., 2008; Adams et al., 2009, Roossinck et al., 2010). However, community profiling of 

metagenomics sequences is time demanding and computationally intensive and may lack 

the specificity needed to differentiate between closely related pathogenic and non-

pathogenic organisms. For example, from previous work it was found that using BLAST 

under standard parameters took >500 hours on a high-performance computer to complete 

(My Paper1). Also, all of the community profiling pipelines analyzed detected target in the 

negative control samples which had been confirmed as negative for the target through plate 

streaking and PCR. This is likely due to the community profiling algorithms not having 

enough specificity when designating taxon. For detection of a particular target 

microorganism in a sample through metagenomics approach, it is not necessary to know 

the composition of an entire community, instead, the focus could be only on the sequences 

or signatures of the target microorganism during bioinformatics analysis which would 

reduce the intensive computational component of community profiling. This is a targeted 

detection from complex metagenomic samples and has been used to identify viral 

pathogens from clinical samples in order to rapidly and accurately identify human 

pathogenic viruses for outbreak investigations (Yang, 2011). Using metagenomic approach 

the samples were sequenced on the Illumina platform, and the Bowtie program was used 

to align the reads to the NCBI non-redundant nucleotide database and MEGAN was used 

to assign the alignments to the lowest common ancestor and the reference sequences were 

used to assemble the viral genomes.   The limitation of this method for pathogen detection 
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was the amount of sample available from each individual which could have biased some 

of the samples since individual were only sampled once. The assembly of the pathogen is 

also unnecessary for detection and increases the computational load of the pipeline. 

However, because of the success of these methods and the ever-lowering price of next 

generation sequencing technologies (NGS), detection of foodborne pathogens through 

metagenomic sequencing has now become a possibility (Nakamura, 2011).   However, the 

pipelines necessary to analyze this type of metagenomic data have not been fully 

elucidated.  

 In our previous study the potential of community profiling pipelines, custom 

databases and targeted region detection were examined for their use in bacterial human 

food pathogen detection. For community profiling it was found that the most commonly 

used pipelines like the Basic Local Alignment Search Tool are too computationally 

intensive to be used with complex metagenomic samples because of the time requirement 

>500 hours (NCBI 2017, Chapter III). Even pipelines such as Kraken that have been 

developed specifically for rapid assigning taxa to metagenomic read data have issues with 

specificity (Wood, 2014). Kraken consistently assigned reads as Salmonella enterica when 

this was not backed up by culture method or PCR as did the Bowtie pipeline using custom 

databases. The lack of specificity is a critical issue in pathogen detection because 

pathogenic and non-pathogenic species are often separated at the species level or below. 

From these studies it was found that only the targeted region detection pipeline E-probe 

Diagnostic Nucleic-acid Analysis (EDNA) met both the time and specificity criteria to 

move on to an optimization phase for human food borne pathogen detection.    

E-probe Diagnostic Nucleic-acid Analysis (EDNA) is a tool developed at 

Oklahoma State University in conjunction with the United State Department of Agriculture 
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(USDA) to bridge the gap between profiling-based methods and diagnostically realistic 

time requirements. This method is inspired by the Tool for Oligonucleotide Fingerprint 

Identification (TOFI) method of simulated in silico microarray (Satya et al., 2008). Like 

TOFI, EDNA uses in silico probes creation but does not require the thermodynamic 

optimization and makes the probes compatible with metagenomic data by using the probes 

as search queries in BLAST. EDNA was originally utilized to detect plant pathogens, but 

it is also ideal for detection of human foodborne pathogens in unassembled metagenomic 

sequence data. This method works by creating electronic probes (E-probes) based on a 

known pathogen sequence (Stobbe, 2013; Stobbe, 2014). Target specific E-probes are 

created by choosing the genome of target organisms and aligning it to a closely related 

genome which will act as the inclusivity/exclusivity determinate using MUMmer for 

pairwise comparison (Delcher et al., 2002). The MUMmer program is used to find and 

identify the maximal matches in the global alignment of the two genomes and eliminate 

regions of similarity. The output is lengths of the target genome that do not overlap with 

the inclusivity/exclusivity determinate genome. The regions of the target genome are then 

shredded into E-probes using BioPerl scripts (Staijch et al., 2002). Based on the chosen 

length, longer regions are partitioned, and shorter regions are discarded. Previous studies 

have suggested that the size of the target genome and the similarity of the 

inclusivity/exclusivity determinate influence the number and size of unique regions and is 

likely to be greater in larger genomes (Stobbe et al., 2013). This has presented a problem 

in eukaryotic genomes where the larger number of genomes generated inhibit the speed of 

the downstream BLAST (Altschul et al., 1990). To get around this issue, previous studies 

suggested choosing an E-probe length of 60-80nt, although it is possible to make E-probes 

between 20-120nt (Stobbe et al, 2013). The E-probes are then curated by mapping them to 
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the nucleotide database of NCBI using BLAST. This is a critical step because even though 

only unique regions of the target were chosen compared to the closely related genome, it 

is likely that other genomes in the database share common or similar regions that can result 

in false positives in metagenomic data which is known as background noise. It is ideal to 

curate the E-probe set with as much of the potential background genomes as possible in 

order to reduce the background noise which is particular concern in metagenomic samples. 

The E-value is used to evaluate the E-probes and the lower the E-value is set the more E-

probes will be removed. In BLAST the E-value is an estimate of how many times a 

nucleotide alignment score is expected to occur by random chance. After the BLAST, the 

curated E-probe library is ready to use for detection applications. The E-probe sets can be 

used simultaneously on the same sample potentially allowing for simultaneous detection 

of multiple pathogens (Geyer et al., 2008).  

The matches are parsed based on the combined score of the Query Coverage (QC) 

and Percent Identity (%ID). The QC is a threshold parameter based on the number of 

nucleotides that have to match in order for the alignment of the E-probe read to be reported. 

The %ID is simultaneously measured and is similar to the match/mismatch parameter of 

BLAST. The %ID establishes a baseline percentage of nucleotides that have to be identical 

given a particular alignment length (QC). Both QC and %ID are calculated as percentages 

and reported as the “Score”. The final step is the diagnostic call. In almost all diagnostic 

pipelines, it is assumed that there will be some level of false positives/false negatives and 

EDNA is no different. Several different strategies for determining the statistical relevance 

of the diagnostic call have been used. The first way is by running Decoy E-probes alongside 

the E-probes in every sample. A Decoy E-probe is created for each E-probe by using the 

reverse sequence of the E-probe. The Decoy E-probes are then subjected to the same E-
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value, QC and %ID thresholds that the E-probes are. Then a Student’s t Test is completed 

for the Score between each E-probe and Decoy E-probe couple. Since it is assumed that 

the Decoy E-probe sequence is not diagnostically relevant then the Score of positive E-

probes should be significantly higher than the Score of the Decoy E-probe. This method 

was suggested because many of the metagenomic studies are not able to ensure that a 

metagenomic sample is a true negative control. When true negative and positive controls 

are available, it is possible to set the threshold for positive diagnostic calls relative to the 

difference in Score between the hits in the negative control versus the positive control. Not 

only is this method more diagnostically relevant since it is not assuming the absence of the 

Decoy E-probe sequences in the data, it is also computationally simpler. The only issue is 

obtaining or creating a relevant true negative control for each metagenomic sample set. 

The simplest and most cost-effective way to create a true negative is through the creation 

of in silico mock metagenomic datasets. In previous studies, the datasets have been created 

using the MetaSim program (Richter et al., 2008; Stobbe et al., 2012).  

Metagenomic mock datasets are simulations of real environmental data (Richter et 

al., 2008). These datasets are key in uncovering the limitations of currently available 

metagenomic data analysis tools because they offer a way to test the output results against 

the inputs of an experiment (Richter, 2008). This has been a major problem in the 

evaluation of tools for metagenomic analysis, because due to the nature of environmental 

samples, the inputs are variable and exact quantities are unknown (Korem et al., 2015). 

Mock datasets allow for the creation of true positive and negative controls, something that 

is not possible in strict experiments using only metagenomic data from environmental 

samples. Without the use of true positive and negative samples, the experimental design is 

flawed, and conclusions derived from the study can be brought into question (Stobbe et al., 
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2012). This is not to say that mock datasets are a complete substitute for real environmental 

data sets, only that they are a resource that can be utilized for the testing of metagenomic 

analysis tools in order to better understand the outputs from studies with metagenomic data.  

There are two main types of metagenomic mock datasets. The first type called an 

in vitro mock community dataset, is constructed by placing organisms in a simulated 

community before extracting the DNA or genetic material and sequencing the community 

(Fouhy, 2016; Fausser, 2011). This type of mock community is defined as a mixture of 

microbial cells, viruses or nucleic acids that were created in vitro to provide a simulation 

of the composition of a microbial sample (Castelino, 2014). This is considered a synthetic 

or laboratory mock community because it is not a community derived from a real 

environmental sample. However, this type of dataset is only an estimation of the 

community structure found in environmental metagenomic datasets and cannot completely 

replicate the relationships between community members (Wu, 2016). It should also be 

noted that since the community structure is calculated prior to sequencing, the actual 

amount of members is somewhat variable, due to extraction and sequencing errors (Miller, 

2017).  

The second type of mock metagenomic dataset is derived from in silico modeling 

that has been used to analyze programs in computer science (Richter et al., 2008). Many 

fields are now using these statistical and computer based in silico models to evaluate and 

optimize products and tools before implanting them in further studies. These are known as 

in silico mock metagenomomic datasets. This type of dataset uses sequencing data and 

genomes from databases like NCBI. The quality of the sequencing and genome 

completeness is analyzed prior to incorporation of each genome into the datasets. This 

allows stricter calculations of detection limits and specificity compared to other methods 
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where levels could be confounded by pre-analysis errors. MetaSim was one of the most 

successfully used open access metagenomic data simulators available (Richter, 2008). 

MetaSim allows for common errors based on sequencing platform to be incorporated into 

the datasets in order to more realistically simulate a metagenomic data (NIH web). This 

software works by generating collections of synthetic reads from specifically chosen 

genomes. The genome’s representation, as well as, the number of reads from each genome 

can be designated during the taxon profile phase. The program then generates mate pairs 

based on platform models. In addition to providing more control on the mock community 

genome inputs, the cost of constructing an in silico mock metagenomic data set is minimal 

compared to other experiments that require extraction and sequencing. This is one reason 

why many fields including food chemistry have started regularly using in silico modeling 

for optimization studies (Lambert, 2012). This method also provides research at facilities 

that are not equipped to handle live human pathogens with the ability to conduct 

preliminary experiments containing sequence data from human pathogens without 

containment or health risks. The metagenomic analysis tools can then be evaluated by 

comparing the input data to the output data (Blagden, 2016). Like all modeling-based 

experiments, the tools used will then need to be validated using real metagenomic data 

from environmental and laboratory samples, because nothing can replace the use of real 

environmental data. 

Both in vitro and in silico mock metagenomic data types are extremely useful in 

understanding how metagenomic analysis tools process and profile data. These tools are 

extremely important because completing metagenomic studies without an understanding 

of the biases and detection limits of the tools, can result in errors. If erroneous conclusions 
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are made about metagenomic dataset due to the use of unvalidated tools, the understand of 

metagenomic community structure can be obscured.  

In this study, EDNA was optimized for the detection of the model human foodborne 

pathogen S. enterica. The sensitivity and specificity thresholds and parameter optimization 

were tested first using in silico unassembled Illumina metagenomic samples constructed 

form NCBI genomes and then validated laboratory metagenomic samples spiked with the 

target pathogen. 

 

Material and Methods  

General Experiment Design 

The experimental design included three complex metagenomic datasets from 

laboratory samples and six in silico complex metagenomic datasets with ten replications at 

each concentration (Figure 1). The laboratory samples were prepared and sequenced into 

Illumina unassembled metagenomic databases. The in silico mock databases from NCBI 

genomes including background host (Solanum lycopersicum), I/E genome, the top ten 

bacterial species from previously sampled and profiled communities and target pathogen 

genome into the MetaSim program where five mock dilutions of target and negative control 

databases were constructed. An E-probe set was constructed, and detection parameters 

identified for testing. 

MetaSim Database Construction  

 The in silico metagenomic mock Illumina datasets were constructed to simulate 

massively parallel Illumina sequencing using the MetaSim program (Satya et al., 2008). In 
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order to simulate the complex background found in real metagenomic community samples, 

the genomes from the top ten bacterial species identified across the previous metagenomic 

community studies were extracted from the NCBI genome database (NCBI Accession 

#CP001191.1, NC_002947.4, NC_007005.1, NC_010407.1,  NC_014121.1, 

NC_016830.1, NC_016845.1, NZ_CP007557.1, NZ_CP016889.1, NZ_LN907827) along 

with chromosome one of Solanum lycopersicum (NCBI Accession #CM001064.3) to 

further mimic the real metagenomic profiles. The inclusivity/exclusivity determinate 

genome (I/E) that was used to construct the E-probes was also included in the mock 

datasets to determine the specificity of the E-probe hits (NCBI Accession #CP006692.1). 

Six mock datasets were constructed including a negative control (Table 1). Each dataset 

was made to simulate a dilution of target pathogen in the complex metagenomic 

background. The dilutions were chosen by calculating the ratios between background 

community and the target in previously profiled metagenomic communities. Based on 

previous metagenomic reads of laboratory samples, each dataset contains 24,000,000 reads 

of 100 bps and the dilutions range from 0.00018-0.18 percent of target pathogen in the 

community which was the equivalent of 1-1,000 cells of S. enterica. Ten replicate 

databases were constructed for each dilution and negative control.  

Laboratory Metagenomic Datasets 

Fresh Roma tomatoes were purchased from local commercial retailer located in Stillwater, 

OK. The tomatoes were spiked with Salmonella at 106 cell/tomato (S1), 103 cells/tomato 

(S2), and un-spiked control (T) inside the biosafety cabinets and left for air drying. For 

each treatment 27 tomatoes (9 tomatoes in three replicates) were taken; briefly, three 

tomatoes were placed in the stomacher bag containing 100 ml of UPB broth. To wash the 

bacteria/ native microflora from the surface of the tomatoes, 3 tomatoes were placed in the 
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stomacher bags, shaken manually for 1 min, rubbing each tomato for 2 min, again shaking 

for 1 min.  These tomatoes were removed, and another 3 tomatoes were placed in the same 

bag, washed in the similar way, removed, and another 3 tomatoes were washed in the same 

wash fluid. A total of 9 tomatoes were washed in same 100 ml of UPB broth. A total of 

300 ml of wash fluid was collected for each treatment. Total DNA was extracted using the 

traditional method of DNA extraction, briefly- A total of 300 ml of the wash fluid from 

each of the treatment above was divided into 150 ml each in centrifuge bottles and 

centrifuged at 10,000 rpm for 50 mins. The pellet in each was removed by dispensing in 

1ml of lysis solution [25 mM Tris, 10 mM EDTA and lysozyme (20 mg/ml)] and incubated 

at 37 °C for 1 h. Sixty microliter of 10% SDS was added, and the mix was incubated at 56 

°C for 30 min, followed by 2.5 µl of RNase A (20 m/ml) incubating at 37 °C for 30 mins, 

further 10 µl of  Proteinase K (20 mg/ml; Promega) treatment was given at 56 °C for 30 

mins. To the above lysate equal volume of phenol: chloroform: isoamyl alcohol (25:24:1, 

Sigma Aldrich, St. Louis, MO, USA) was added, mixed and centrifuged at 12,000 rpm for 

15 mins. The above layer was removed carefully and extracted with equal volume of 

chloroform: isoamyl alcohol (24:1) and centrifuged again at 12,000 rpm for 15 mins. The 

supernatant was carefully separated, and the DNA was precipitated by adding 1/10 volume 

of sodium acetate (pH=5.2) and 2 volume of 100% chilled ethanol. The mix was 

precipitated by overnight incubation at -20°C.  The pellet was finally collected by 

centrifugation at 12,000 rpm for 15 mins, washed twice with ice cold 70% ethanol, air dried 

in biosafety cabinet and finally, the pellet was dissolved in 50 µl of TE buffer. For the high-

quality DNA for the Illumina run, the DNA was further purified and concentrated using 

the Zymo Research DNA clean and Concentrator kit (Zymo Research, Irvine, CA USA). 
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For each treatment, DNA from 3 rounds of extractions were pooled together to get the 

desired concentration for the Illumina run. 

E-probe Construction 

 A complete S. enterica genome (NCBI Accession #NC_003198.1) was 

downloaded from NCBI and the inclusivity/exclusivity determinate genome (NCBI 

Accession #CP006692.1) was also downloaded from NCBI. The MUMmer program was 

used to find the optimal global alignment between the genomes and the genome regions 

unique to S. enterica were binned. During the MUMmer alignment the maximum number 

of gaps was equal to zero and the minimal length of alignment was 15nt. The BioPerl 

program was used to divide the binned sequences into seven different E-probe sets with set 

lengths (60nt, 80nt, 100nt).  

The E-probes were then curated by mapping them to the NCBI non-redundant 

nucleotide database and custom databases using BLAST. To test the effect of the E-value 

and background noise, sequences were retrieved after being curated at three different E-

values (10-3, 10-6, 10-9) and examined as separate E-probe sets. The process of E-probe 

creation was repeated from the MUMmer alignment to database curation, 100 times per E-

probe set. This was done to test the hypothesis that under identical circumstances that the 

same E-probes sure be created.   

Detection  

The E-probe sets were aligned to the metagenomic data sets (mock and laboratory 

samples) and query coverage (QC) and percent identity (%ID) were measured at each 

intersection of 90%, 95% and 100%, with 27 total points of comparison and three E-probe 
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lengths (60nt, 80nt, 100nt). A hit was defined as any instance where a read had a 

counterpart E-probe and the count of hits of a particular E-probe is referred to as the hit 

depth.  

The false positive threshold was established by comparing the hit alignments of the 

true negative control and observing the threshold parameters where no false positives were 

present. Using the True Negative/True Positive control method, the number of hits and hit 

depth for each E-probe in the True negative mock metagenomic data set and the true 

positive metagenomic datasets were calculated. Detection and hit number were compared 

in both the in silico and laboratory metagenomic datasets.  

Results and Discussion  

 It was found that when using unassembled Illumina data, that E-probes with 80nt 

were able to detect the target when it made up at least 0.0018% of the metagenome using 

a query coverage of 90% and a percent identity of 95%. The next lowest detection (0.018%) 

was achieved using the same parameters but with E-probes of 100nt lengths. The 60nt E-

probes were able to detect the target at (0.019%) using parameters of 90% query coverage 

and 100% percent identity.  

In previous studies the E-value parameter was explored using viral, fungal and 

bacterial plant pathogens and it was found that there was not a significant difference using 

the E-values of 10-3 10-6 and 10-9 (Stobbe et al., 2012; 2013). However, this had not been 

tested using human foodborne pathogens like S. enterica and it was hypothesized that more 

significant hits will be retrieved from the BLAST due to the high abundance of human 

pathogens in the non-redundant NCBI database compared to plant pathogens. The E-value 

had also not been evaluated on samples containing very low titers (less than 0.5%) (Stobbe 
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et al., 2012; 2013; Espindola et al, 2018). In this study the E-value parameter was tested at 

10-3, 10-6 and 10-9 and the number of false positives in the mock metagenomic negative 

control and laboratory metagenomic negative control was calculated (Table 2). Because of 

the type of curation, the threshold of 10-3 resulted in the removal of the greatest number of 

E-probes from the set and the lowest number of false positives followed by the 10-6 and 10-

9. This is due to the fact that more E-probe alignment occur that fall within the 10-3 level 

and are therefore removed from the set. Because an E-value of 10-3 resulted in the fewest 

number of false positives the resulting parameters were tested under this value.  

Previous studies used assembled and unassembled data from both Illumina and 

Roche 454 sequencing platforms in the EDNA detection pipeline (Chapter III, Stobbe et 

al., 2012). It was thought that since Roche 454 had longer average read lengths, that longer 

E-probes could result in more significant matches at lower pathogen titers as could using 

assembled contigs. However, from previous work using EDNA in S. enterica detection, it 

was found that the lower amount of sequencing data produced by Roche 454 and contig 

creation compared to unassembled Illumina data contributed to less detection of S. enterica 

at lower pathogen titer. Like in all sequence mapping, longer sequences result in more 

significant matches because the longer the match the less likely it is to happen by chance 

(E-value) and the less likely it is to be a region common among many organisms (Zhang et 

al., 2000). The length of the nucleotides tested 60nt, 80nt and 100nt resulted in detection 

thresholds based on query coverage and percent identity (Table 3). The 60nt E-probes 

where not able to detect pathogen with enough sensitivity and specificity until the target 

made up 0.18% of the dataset in both the mock and laboratory samples. This is because 

using shorter E-probes results in a greater number of false positive alignments using the 

same detection parameters.  The 100nt E-probes were able to detect the target when it made 
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up 0.018% of the sample or greater. The 80nt E-probes had the greatest sensitivity and 

specificity tested and they were able to detect the target at only 0.0018% of the dataset. 

The laboratory metagenomic samples exhibited the same pattern found in the in silico mock 

metagenomic datasets (Table 4). All E-probe sets showed an increase in number of hits 

with increasing number of pathogen reads. No detection was achieved with a percent 

identity lower than 95% which is likely due to the inclusion of the E/I genome in the 

datasets which has high similarity >90% to the target. The greatest number of hits was 

achieved when the E-probes were curated at the 10-3 E-value and run with detection 

parameters of percent identity of 95% a query coverage of 90% and 80nt length E-probes.  

  Based on previous work the difference in speed seems to be correlated with the 

number of alignment and therefore the number of E-probes in a set. Because of the way 

that the EDNA pipeline is constructed the shorter the length of the individual E-probes, the 

greater number of E-probes that will be produced. If an EDNA parameter increases the 

length of time required to reach a diagnostic call to greater than 2 hrs., then it would be 

possible to employ a profiling-based method and some of the strength of this diagnostic 

method would be lost (Miller et al., 2010). From previous work it was found that E-probe 

sets with fewer than one thousand E-probes were able to run all alignments in less than five 

minutes. This combined with the fact that more significant alignments occur with 

increasing length supports the findings that 80nt are optimal for this study. This was the 

second longest length tested, however because the 100nt length E-probes were the same 

length as the reads it was more challenging to get an alignment.   

A metagenomics-based approach has many advantages for human foodborne 

pathogen diagnostics. Next generation sequencing (NGS) has made it possible to generate 

billions of sequences from a single nucleic acid sample that can be used to represent an 
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entire metagenomic community (Jones et al., 2010: Tyson et al. 2004) This allows for any 

pathogen present in a sample to be detected from a single assay. Metagenomic studies have 

been used in order to identify the causal agent of an unknown disease, but it is not a 

regularly used method (Adams et al., 2009, Cox-Foster et al., 2007, Palacios et al., 2008). 

 One of the biggest hindrances in using metagenomics in detection is the current 

cost per run. Metagenomic samples are often large and it is almost impossible to estimate 

coverage because the amount and identity of sequences are not known. The typical 

metagenomic diagnosis approach is nucleic acid extraction, sequencing, assembly and a 

BLAST of the assembled contigs. Based on current trends, it is likely that sequencing 

technologies will continue to drop in cost per run, due to advances in technology and 

greater access (Parameswaran et al., 2007). 

 However, as sequencing decreases in cost, increases in speed and increases in 

number of reads generated, the issues of downstream data handling becomes a bigger issue. 

These same advances in NGS will have an additional exponential growth effect on the 

databases (GenBank) that are used for the BLAST searching of sequence data, suggesting 

that the current metagenomic approach to pathogen diagnostics will eventually become too 

computationally intensive for everyday use. 

Rapid detection pipelines like The Tool for Oligonucleotide Fingerprint 

Identification (TOFI) was created to generate a microarray in silico and provided a starting 

point for the EDNA pipeline (Geyer et al., 2008; Stobbe, 2013; Stobbe, 2014; Satys et al. 

2008). TOFI is an integrated, scalable, high-performance-computing tool that incorporates 

genome comparison and probe design software. It was designed as a high throughput 

method to simultaneously process multiple bacterial and/or viral genomes and identify 
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fingerprints that are unique to each genome. It can also be used to find fingerprints that are 

common between genomes (Geyer et al., 2008). The TOFI pipeline includes three main 

steps. The first step is a comparison of pathogen sequence with those of near neighbors for 

unique fingerprinting, the second step is thermodynamic optimization and the final step is 

a check for uniqueness with BLAST. The strength of this method is that it reduces that 

amount of data that needs to be queried by only searching for the fingerprinted regions. 

This method also suggests that by using the in silico fingerprinting method, hundreds of 

related genomes could be run in a single assay (Geyer et al., 2008).  However, for detection 

it is not necessary to do all of the work in gene expression that is proposed by this pipeline 

and this pipeline is limited in its application with metagenomic data due to its reliance on 

thermodynamics which is not a concern in metagenomics. 

 The EDNA system provides a simplified bioinformatic approach for managing the 

complexity and exponential growth of metagenomic sequencing. EDNA uses the sample 

as the searchable database and identifies unique regions of the target using E-probes for 

detection without the need for assembly. This streamlines the detection pipeline by 

removing the quality checking and assembly steps used by most data analysis pipelines. 

This technique has been demonstrated in plant pathogen studies where viral, fungal and 

bacterial plant pathogen E-probes were able to successfully detect multiple targets from a 

single metagenomic sample (Stobbe et al., 2012). It has also been effective in targeting the 

plant secondary metabolite aflatoxin from toxin-producing Aspergillus flavus (Espindola 

et al., 2018). Based on previous work, using EDNA for detection of human foodborne 

pathogens, it was established that the EDNA method has great potential for detection in 

human foodborne pathogens, but it was not optimized for this application.  
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 In order to establish optimized parameters for human foodborne pathogen detection 

using the EDNA system, the pipeline was deconstructed, and each parameter was tested 

for its contribution to detection. Metagenomic data from the Illumina platform was chosen 

due to the lower cost per run compared to other methods, as well as, the accessibility of the 

technology. In addition to the laboratory metagenomic data sets, (S1, S2 and T1) in silico 

mock datasets were constructed that represented five simulated levels of S. enterica in 

Illumina metagenomic sample and a negative control with ten replicates for each 

concentration the target (M0-NC, M1, M2, M3, M4 and M5). These samples represented 

very low titers of target (< 0.5%). In previous studies, it was found that the standard 

parameters for detection correctly called positive sample positive except for those at very 

low titers (<0.5%). Because S. enterica found on fresh food substrates like tomato are likely 

in very low abundance, it was decided that the detection limit needed to be lower for the 

optimized parameters. It was suggested that in order to lower the detection threshold below 

< 0.5%, three parameters could be adjusted. These were E-probe number, length and 

parsing the E-value (Stobbe et al., 2012).  

 Earlier studies concluded that the number of hits (any instance where an individual 

e-probe finds a counterpart or counterparts in the database) and hit depth (cumulative total 

of e-probe/counterpart finds) were correlated to the number of e-probes available for a 

pathogen, to the pathogen abundance, to the E-value threshold used when parsing the data, 

and inversely correlated to the length of the E-probes. Because of this, it was hypothesized 

that a greater number of E-probes could increase the number of matches. In order to 

increase the number of E-probes, the overall length of the E-probes needed to decrease. 

However, using variable length E-probes and E-probes < 60nt significantly reduced the 

speed and were removed from the optimization study. It was also observed that longer E-
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probes had a reduced number of false positives in the negative control. When all E-probe 

lengths were “normalized” by calculating the percent of S. enterica detection in each 

sample by dividing the number of matches by the total number of E-probes in a set, it was 

found that there was no significant difference in the level of detection between sets. It was 

found that by artificially reducing the number of E-probes to the 60nt, 80nt and 100nt 

length sets, that detection was greatly reduced. Additionally, at very low titers, E-probes 

with 60nt were found to overestimate the hit depth and resulted in an overestimation of S. 

enterica abundance in each sample. This is likely due to more than one E-probe matching 

reads since the read lengths were 100bps long. E-probes that were longer than 100nt did 

not provide any increase in detection compared to E-probes that were 80nt and 100nt. It 

was therefore decided that E-probes of 80nt were optimal because that length provided the 

greatest number of E-probes without reducing the speed of the pipeline or overestimating 

the abundance of the target.  The curating the E-probes with and E-value of 10-3 reduced 

background noise and false positives compared to curating with E-values of 10-6 or 10-9. 

In the original parameters for EDNA, a read depth of two or greater was required 

for detection. This was based on the error rate for Illumina sequencing. However, since in 

human food borne pathogen detection a false negative can result in serious human health 

ramifications, the detection limit was lowered to a depth of one. In addition to the human 

help implications, it was rationalized that with the other optimizations to EDNA, like the 

percent identity of 97% or higher, that the match/mismatch of a nucleotide was unlikely to 

result in a greater number of false positives.  

The number of false positives in a sample was of great concern because previous 

work had listed that as an issue in detection at very low pathogen titer. This work was able 

to achieve a stable threshold for the false positive rate that is based on the biological 
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similarity between the target genome and the I/E genome and not a limitation from the 

EDNA pipeline. It was originally thought that the more complex background of the 

laboratory metagenomic samples could result in higher false positive rates due to increased 

background signal. However, the same amount of false positive was found in both samples 

which could indicate that the mock metagenomic samples are an adequate representation 

of the complexity found in the laboratory samples.  

The optimization of EDNA for human foodborne pathogens successfully detected 

S. enterica in all positive samples and resulted in a biologically base false positive 

alignment rate due to the I/E genome in the negative sample. Preliminary data suggests that 

the optimized parameters for S. enterica detection can be transferred to other human 

foodborne pathogens of concern. It should also be noted that biological group of S. enterica 

used for this study theoretically includes all subspecies of S. enterica and excludes all 

species, subspecies and strains of S. bongori. This was not expressly tested by this study 

and should be confirmed by future work. Additionally, since S. enterica is a diverse group, 

work to analyze the proportion of the S. enterica pan genome verses accessory genome 

represented by the E-probes could shed more light on the potential detection capability of 

this E-probe set.  

The diagnostic positive/negative call is arguably the most important parameter in a 

diagnostic test. For molecular techniques, like PCR, the presence or absence of a product 

is easily determined. However, using quantitative measurements like those in fluorescence 

or absorbance in ELISA, the determination involves statistical analysis. The Decoy method 

is meant to be similar to molecular quantitative methods. For ELISA, a common approach 

is to make a diagnostic call by comparing the fluorescence value of a well to those of a set 
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of negative control wells and define the threshold cutoff as a certain number of standard 

deviations over background. The original EDNA design proposed converting these 

methods for use with NGS. Decoy E-probe sets were developed for S. enterica, and these 

Decoy E-probe sets were used to determine the chances that a random sequence would find 

a counterpart in a eukaryotic host background by chance. The problem with this approach 

was that the Decoy E-probes were more likely to match in complex metagenomic data than 

in a simple eukaryotic host. The Decoy method versus the true negative/positive method 

yielded similar results. However, there is concern that since the Decoy method measured 

an assumed negative that it could contribute to a higher false Positive/False negative rate 

depending on the specific Decoy E-probes created. It is also computationally more 

extensive without supplying a better test compared to the true negative/positive method. 

The true negative method simply removes the false positives created by background noise 

by comparing the true negative to the true positive. The only confounding factor is the 

creation of a true negative/positive experimentally or simulating an adequate background 

for a mock true negative. The ability to combine metagenomic sequencing with a rapid 

bioinformatic detection tool presents an opportunity to improve the access and usability of 

both fields. This streamlines the detection process of complex metagenomic sequence data 

into a five-minute analysis of all possible pathogens in a single assay. Additionally, the 

optimization of this tool for very low titer human foodborne pathogen detection confirms 

that this tool can be used in both the plant and human fields and could greatly improve 

upon the methods currently used by the FDA and USDA. 
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TABLES 

Table 1) In silico mock Illumina metagenomic datasets created with MetaSim. The 
taxonomic profile contains the target pathogen Salmonella enterica, I/E Salmonella 
bongori and the top ten bacterial species from previously profiled tomato fruit surface 
communities and the background host Solanum lycopersicum. Each dataset was replicated 
ten times which is not shown. The only change in the dataset is the concentration of S. 
enterica.  

 

Table 2) False positives rates in the in silico mock negative control at 1x10-3 1x10-6 and 
1x10-9. The use of the least stringent E-value 1x10-3 resulted in the removal of the greatest 
number of E-probes from the sets during curation and was correlated to the lowest false 
positive rate during detection followed by 1x10-6 and 1x10-9. 

 

M0a-NC Ev= 10^-3
#rdsSE=0 60nt 80nt 100nt

90 P P P 90
95 P P P 90

100 P P P 90
90 P N N 95
95 P N N 95

100 P N N 95
90 N N N 100
95 N N N 100

100 N N N 100
M0a-NC Ev= 10^-6
#rdsSE=0 60nt 80nt 100nt

90 P P P 90
95 P P P 90

100 P P P 90
90 P P P 95
95 P N N 95

100 P N N 95
90 N N N 100
95 N N N 100

100 N N N 100
M0a-NC Ev= 10^-9
#rdsSE=0 60nt 80nt 100nt

90 P P P 90
95 P P P 90

100 P P P 90
90 P P P 95
95 P P P 95

100 P N N 95
90 N N N 100
95 N N N 100

100 N N N 100

Length

QC %ID

Length

QC %ID

Length

QC %ID
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Table 3) The in silico mock metagenomic datasets show twenty-seven detection 
intersections from testing E-probe length (60nt, 80nt and 100nt) against QC (90%, 95% 
and 100%) and %ID (90%, 95% and 100%). Nine additional replicates not shown. The 
negative control shows that the false positive threshold for the 60nt is at 90% QC and 100% 
ID which was only able to result in detected target when the target made up 0.18% of the 
dataset or greater. The 80nt E-probes had the most optimal threshold with a QC of 90% 
and a %ID of 95 with the lowest level of detection being when the target made up 0.0018% 
of the databases. The 100nt E-probes were able to achieve detection at 90% QC and %ID 
of 95% when the target was at least 0.018% of the databases.   

 

M0a-NC
#rdsSE=0 60nt 80nt 100nt

90 P P P 90
95 P P P 90

100 P P P 90
90 P N N 95
95 P N N 95

100 P N N 95
90 N N N 100
95 N N N 100

100 N N N 100
M1 1 cell
#rdsSE=48 %SE=0.00019 60nt 80nt 100nt

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP N N 95
95 FP N N 95

100 FP N N 95
90 N N N 100
95 N N N 100

100 N N N 100
M2 10 cells
#rdsSE=437 %SE=0.0018 60nt 80nt 100nt

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 5H/3HD N 95
95 FP 4H/1HD N 95

100 FP 4H/1HD N 95
90 N N N 100
95 N N N 100

100 N N N 100
M3 100 cells
#rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 27H/1HD 5H/1HD 95
95 FP 24H/1HD N 95

100 FP 19H/1HD N 95
90 N N N 100
95 N N N 100

100 N N N 100
M4 1,000 cells
#rdsSE=45234 %SE=0.19 60nt 80nt 100nt

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 271 29 95
95 FP 241 15 95

100 FP 171 10 95
90 27 10 N 100
95 24 5 N 100

100 N N N 100
M5 10000 cells
#rdsSE=444921 %SE=1.9 60nt 80nt 100nt

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 2669 231 95
95 FP 2561 191 95

100 FP 2100 15 95
90 31 15 3 100
95 29 10 1 100

100 10 5 N 100

Length

QC %ID

Length

QC %ID

Length

QC %ID

Length

QC %ID

Length

QC %ID

Length

QC %ID
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Table 4) The laboratory metagenomic datasets showing twenty-seven detection 
intersections from testing E-probe length (60nt, 80nt and 100nt) against QC (90%, 95% 
and 100%) and %ID (90%, 95% and 100%). These tests exhibit the same pattern in the 
above Table 3. In this table, S2 is approximately equivalate to Table 3 M4 where the 
database contains approximately 0.18% of target from 1,000 cells of S. enterica. In this 
Table S1 contains over the amount of Table 3 M5 which is also reflected in the number of 
hits, however no change in detection threshold occurred.  

 

 

 

 

 

 

T1
60 80 100

90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP N N 95
95 FP N N 95

100 FP N N 95
90 N N N 100
95 N N N 100

100 N N N 100
S2 1000 cells SE

60 80 100
90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 260 21 95
95 FP 253 15 95

100 FP 173 10 95
90 29 10 N 100
95 23 5 N 100

100 N N N 100
S1 1000000 cells SE

60 80 100
90 FP FP FP 90
95 FP FP FP 90

100 FP FP FP 90
90 FP 3769 1521 95
95 FP 2567 1393 95

100 FP 2303 57 95
90 570 551 15 100
95 331 59 10 100

100 10 5 N 100

Length

QC %ID

length

QC %ID

Length

QC %ID
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FIGURES  

Figure 1) Overview of the experimental design and pipeline construction. (Far left) 
laboratory sample preparation and sequencing into Illumina unassembled metagenomic 
databases. (Middle) Construction of the in silico mock databases from NCBI genomes 
including background host (Solanum lycopersicum), I/E genome, the top ten bacterial 
species from previously sampled and profiled communities and target pathogen genome 
into the MetaSim program where five mock dilutions of target and negative control 
databases were constructed (Ten replicates for each concentration and negative control not 
shown). (Far right) E-probe construction and detection parameters identified for testing.  
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CHAPTER V 
 

 

SIMULTANEOUS DETECTION OF HUMAN FOODBORNE PATHOGENS USING EDNA  

 

Abstract  

Aim: The objective of this study is to evaluate the range of the optimized detection capacity 

of the EDNA system for bacterial human foodborne pathogens by comparing the detection 

capability of the optimized parameters for the model bacterial pathogen Salmonella 

enterica to three additional human foodborne pathogens of concern Campylobacter jejuni, 

Escherichia coli O157:H7(STEC), Listeria monocytogenes. 

Materials and Methods: Unassembled metagenomic DNA sequence data from the 

Illumina platform was simulated using the MetaSim program. In silico complex 

metagenomic samples were constructed at five concentrations of the four pathogens with 

ten replicates for each concentration using the MetaSim Illumina algorithm in order to 

mimic the complex metagenomic communities found from the community profiling of 

metagenomic laboratory samples. Using the optimized model parameters for S. enterica as 

a reference for sensitivity and specificity, the detection compacity of the three new 

pathogen E-probes sets will be compared for hit number, sensitivity and specificity.  

. 
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Results: No difference in detection was observed when the number of read for each target 

made up at least 0.0018% of the dataset. However, because of the difference in genome 

length among the four pathogens, the number of the reads were not equivalent to the 

estimated cell number.  

Significance and Impact of the study: E-probe Diagnostic Nucleic-acid Analysis 

(EDNA) is a probe-based bioinformatic pipeline that has the potential to rapidly and 

simultaneously detect any and all pathogens present in a single complex sample through 

metagenomic data mining.  

 

Introduction  

Foodborne human pathogens pose a significant risk to human health and welfare. 

According to the data gathered by the Center of Disease Control (CDC), there are currently 

31 pathogens that have been identified on food as the causal agents of disease in humans 

(CDC, 2016). Improvements in sanitation and farming practices have mitigated the levels 

of pathogen contamination on food, however, the CDC estimates that in 2016 foodborne 

pathogens have resulted in 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths 

in the United States (CDC, 2016). Bacterial pathogens make up a majority of the pathogens 

known to cause foodborne illnesses and Salmonella enterica is listed as the top foodborne 

pathogen contributing to hospitalization (35%) and death in at risk groups (28%) in the 

United States (CDC, 2016).  

 Salmonella is a popular organism for pathogen modeling studies (Preeti et al., 

2012). It is representative of Gram-negative facultative anaerobic bacteria (Eo’Donnell and 
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Emcsorley, 2014). The Salmonella genus has high sequence similarity (96-99%) and is 

divided into two species Salmonella enterica and Salmonella bongori, with eight 

subspecies. Of the two species, S. bongori is considered significantly smaller having only 

one subspecies known as subspecies V. The other seven subspecies (I, II, IIIb, IV, VI and 

VII) belong to S. enterica. Subspecies I is specific to warm blooded animals, while the 

other six subspecies are found in cold blooded animals. There are over 2,500 serovars that 

have been identified with Salmonella enterica servovars Tyhimurium and Typhi 

specifically of concern in humans (Fey at al, 2004). It is estimated by the CDC that 

Salmonella species are the causal agents of 1.2 million illnesses, 23,000 hospitalizations 

and 450 deaths annually in the united states (CDC, 2019). Because of the risk to human 

health and subsequent surveillance by government agencies, Salmonella is widely 

available for research. It also has a high rate of growth making it an ideal model pathogen 

for laboratory study (Fey et al., 2004).   

Escherichia coli (STEC) are also Gram negative, rod-shaped, non-spore forming, 

facultative anaerobic bacteria in the family Enterobacteriaceae. The well-known serotype 

E. coli O157:H7 is most commonly associated with foodborne illness, but additional 

virulent strains continue to be isolated and identified as the causal agents in multinational 

outbreaks (Luna-Gierke et al., 2014; Johnson et al., 2006) (Sodha et al., 2014; Luna-Gierke 

et al., 2014). It is unclear whether these new strains are a product of new isolation and 

detection capabilities or new emerging strains (Brooks et al., 2005; Johnson et al., 2006). 

The CDC estimates that E.coli STEC is the causal agent of 95,400 illness and yearly in the 

united states and STEC infections are of great concern due to the possible complication of 

hemolytic uremic syndrome (HUS) which affects the kidneys and is life threatening 

(Karmali, 1989). This pathogen is most often thought of as a contaminate in ground beef 
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and meat products; however, it was also implicated in the human foodborne illness 

outbreaks in spinach (CDC 2016), fenugreek sprouts (CDC 2011), clover sprouts (CDC 

2012) and precut salad (2013). This trend toward fresh produce is concerning and research 

into the survival mechanisms on these products is ongoing (Leff and Fierer, 2013).  

Listeria monocytogenes is a species of Gram positive, rod-shaped, non-spore 

forming, facultative anaerobic bacteria in the family Listeriaceae.  The human mortality of 

this pathogen is between 20-30% of 1,600 cases annually in the US making it the mostly 

deadly human foodborne pathogen (CDC 2012; Ramaswamy et al., 2007). Of the six 

species only, L. monocytogenes has been identified as a causal agent of disease in humans. 

Of the thirteen serotypes, only three are associated with foodborne illness (1/2a, 1/2b and 

4b)(Ward et al., 2004; Painter et al., 2013). Listeria is relatively rare but because of its high 

virulence and serious complications like pneumonia, meningitis, septicemia and 

spontaneous abortion it is treated as a pathogen of concern and monitored by the CDC 

(CDC, 2018) (Scallan et al., 2011; Ramaswamy et al., 2007). This pathogen is most often 

associated with preserved products like cheese and deli meet, however it has also been 

found on fresh produce (Bae et al., 2013; Kovacevic et al., 2013; Painter et al., 2014).  

Campylobacter jejuni is a common food contaminate estimated as the causal agent 

in 1.3 million cases of illness from food in the United States yearly (CDC, 2019).  It is a 

motile Gram-negative non-spore forming spiral shaped that thrives in microaerophilic 

environments. There are 34 recognized species of Campylobacter with jejuni and coli most 

often implicated in human disease. The two most cited subspecies of Campylobacter jejuni 

are jejuni and doylei. These bacteria are often associated with poultry contamination 

(Parker et al., 2007). 
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EDNA Optimization  

 Builds on the fundamentals of the Tool for Oligonucleotide Fingerprint 

Identification (TOFI) and streamlines it for use with metagenomic data. The TOFI tool was 

created to simulate a microarray in silico (Geyer et al., 2008; Stobbe, 2013; Stobbe, 2014; 

Satya et al., 2008). The strength of this method is that it reduces that amount of data that 

needs to be queried by only searching for unique fingerprinted regions. This method also 

suggests that by using the in silico fingerprinting method, hundreds of related genomes 

could be run in a single assay (Geyer et al., 2008).  However, for detection it is not 

necessary to do all of the work in gene expression that is proposed by the TOFI pipeline 

and the pipeline is limited in its application with metagenomic data. E-probe Diagnostic 

Nucleic-acid Analysis (EDNA) is a tool developed at Oklahoma State University in 

conjunction with the United State Department of Agriculture (USDA) to bridge the gap 

between profiling-based methods and diagnostically realistic time requirements. Similar to 

TOFI, this pipeline is completely in silico which reduces the cost. EDNA was originally 

utilized to study plant pathogens due to the fact that many of the organisms and viruses in 

plant pathogen systems are not well characterized and the amount of unculturable and 

unknown pathogens are likely higher than in human and animal systems. EDNA requires 

genomes of the targets and can be used with incomplete genomes, although this reduces 

the specificity. This pipeline is also ideal for detection of human foodborne pathogens like 

Salmonella enterica because it presents a rapid detection that can be done with 

unassembled metagenomic sequence data which greatly reduces computational time after 

sequencing and has great potential for in field use. The EDNA system was optimized for 

S. enterica detection and the optimal pipeline is as follows. By following the standard 

workflow of choosing a representative target sequence of S. enterica and an inclusivity 
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exclusivity determinate genome S. bongori. The two sequences were aligned using the 

MUMmer program for pairwise comparison (Delcher et al., 2002). The MUMmer program 

is used to find and identify the maximal matches in the global alignment of the two 

genomes and eliminate regions of similarity. The output is lengths of the target genome 

that do not overlap with the inclusivity/exclusivity determinate genome. The regions of the 

target genome are then shredded into 80nt length E-probes using BioPerl (Staijch et al., 

2002). The E-probes are then curated by mapping them to the nucleotide database of NCBI 

using BLAST as well as the genomes of the organisms in the negative control samples if 

they were not complete or present in the NCBI database. The E-probes were removed from 

the dataset if they aligned to non-target reads at an E-value of 1x10-3. This is a critical step 

because even though only unique regions of the target were chosen compared to the closely 

related genome, it is likely that other genomes in the database share common or similar 

regions that can result in high scoring false positives in metagenomic data. This is a major 

issue for community profiling pipelines, but one that EDNA has been able to alleviate 

though optimized curation.  After the BLAST, the curated E-probe library is ready to use 

for detection applications.  

EDNA is designed to detect targets in unassembled metagenomic sequence data. The E-

probes are mapped to the sequence data using BLAST and the hits are filtered based on the 

combined score of the Query Coverage (QC) and Percent Identity (%ID). The QC is a 

threshold parameter based on the number of nucleotides that have to match in order for the 

alignment of the E-probe read to be reported. The %ID is simultaneously measured and is 

similar to the match/mismatch parameter of BLAST. The %ID establishes a baseline 

percentage of nucleotides that have to be identical given a particular alignment length 

(QC). Both QC and %ID are calculated as percentages and reported as the “Score”. The 
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optimal threshold settings for QC was 90 while the %ID needed to be at least 95% for S. 

enterica. The final step is the diagnostic call, meaning does the sample contain the 

pathogen or is it negative for the pathogen? In almost all diagnostic pipelines, it is assumed 

that there will be some level of false positives/false negatives and EDNA is no different. 

When true negative and positive controls are available, it is possible to set the threshold for 

positive diagnostic calls relative to the difference in Score between the hits in the negative 

control versus the positive control. Using these optimized parameters EDNA was able to 

detect the S. enterica target when it was as low as 0.0018% of a complex metagenomic 

dataset of 24,000,000 reads of 100 bps in length. Theoretically, EDNA can be used for 

simultaneous detection of multiple pathogens (Geyer et al., 2008; Stobbe et al., 2012). But 

this has not been tested using bacterial foodborne pathogen or complex metagenomic data.  

 In previous studies in silico complex metagenomic datasets have been used to 

assess the detection limit, sensitivity and specificity of the EDNA optimization parameters. 

The in silico findings where then compared to the detection from laboratory metagenomic 

datasets and they were found to follow the same patterns without divergence which could 

indicate that the simulated complex background in the in silico datasets was an adequate 

representation of the laboratory samples. Metagenomic mock datasets are simulations of 

real environmental data (Richter et al., 2008). These datasets are key in uncovering the 

limitations of currently available metagenomic data analysis tools because they offer a way 

to test the output results against the inputs of an experiment (Richter, 2008). This has been 

a major problem in the evaluation of tools for metagenomic analysis, because due to the 

nature of environmental samples, the inputs are variable and exact quantities are unknown 

(Korem et al., 2015). Mock datasets allow for the creation of true positive and negative 

controls, something that is not possible in strict experiments using only metagenomic data 
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from environmental samples. Without the use of true positive and negative samples, the 

experimental design is flawed, and conclusions derived from the study can be brought into 

question (Stobbe et al., 2012). This is not to say that mock datasets are a complete substitute 

for real environmental data sets, only that they are a resource that can be utilized for the 

testing of metagenomic analysis tools in order to better understand the outputs from studies 

with metagenomic data.  

There are two main types of metagenomic mock datasets. The first type called an 

in vitro mock community dataset, is constructed by placing organisms in a simulated 

community before extracting the DNA or genetic material and sequencing the community 

(Fouhy, 2016; Fausser, 2011). This type of mock community is defined as a mixture of 

microbial cells, viruses or nucleic acids that were created in vitro to provide a simulation 

of the composition of a microbial sample (Castelino, 2014). This is considered a synthetic 

or mock community because it is not a community derived from a real environmental 

sample. Since the completion of the Human Genome Project and the Human Microbiome 

Project, this type of dataset has been used extensively to simulate the microbial community 

structure found in real environmental samples.  Examples of these datasets are The Human 

Microbiome Project’s BEI: HM-280, HM-281, HM-278D and HM -279D, these databases 

are available through BEI for researchers working on infectious diseases of humans 

(NIH HMMC web). Another well-known mock community is the 

Mock Bacteria ARchaea Community (MBARC-26) created for researchers working 

with archaea communities. However, this type of dataset is only an estimation of the 

community structure found in environmental metagenomic datasets and cannot completely 

replicate the relationships between community members (Wu, 2016). It should also be 

noted that since the community structure is calculated prior to sequencing, the actual 
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number of members is somewhat variable, due to extraction and sequencing errors (Miller, 

2017).  

The second type of mock metagenomic dataset is derived from in silico modeling 

that has been used to analyze programs in the computer science field (Richter et al., 2008). 

Many fields are now using these statistical and computer based in silico models to evaluate 

and optimize products and tools before implanting them in further studies. These are known 

as in silico mock metagenomomic datasets. This type of dataset uses sequencing data and 

genomes from databases like NCBI. The quality of the sequencing and genome 

completeness is analyzed prior to incorporation of each genome into the datasets. This 

allows stricter calculations of detection limits and specificity compared to other methods 

where levels could be confounded by pre-analysis errors. MetaSim was one of the most 

successfully used open access metagenomic data simulators available (Richter, 2008). 

MetaSim allows for common errors based on sequencing platform to be incorporated into 

the datasets in order to more realistically simulate a metagenomic data (NIH web). This 

software works by generating collections of synthetic reads from specifically chosen 

genomes. The genomes representation, as well as, the number of reads from each genome 

can be designated. The program then generates mate pairs based on platform models.  More 

tools that enable experiments to mock metagenomic communities in silico are coming to 

the marketplace like InSilicoSeq (Gourle et al., 2018). This tool generates Illumina reads 

for simulating metagenomic samples. In addition to providing more control on the mock 

community genome inputs, the cost of constructing an in silico mock metagenomic data 

set is minimal compared to other experiments that require extraction and sequencing. This 

is one reason why many fields including food chemistry have started regularly using in 

silico modeling for optimization studies (Lambert, 2012). This method also provides 
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research at facilities that are not equipped to handle live human pathogens with the ability 

to conduct preliminary experiments containing sequence data from human pathogens 

without containment or health risks. The metagenomic analysis tools can then be evaluated 

by comparing the input data to the output data (Blagden, 2016). Like all modeling-based 

experiments, the tools used will then need to be validated using real metagenomic data 

from environmental samples, because nothing can replace the use of real environmental 

data. 

Both in vitro and in silico mock metagenomic data types are extremely useful in 

understanding how metagenomic analysis tools process and profile data. These tools are 

extremely important because completing metagenomic studies without an understanding 

of the biases and detection limits of the tools, can result in errors. If erroneous conclusions 

are made about metagenomic dataset due to the use of unvalidated tools, the understand of 

metagenomic community structure can be obscured. Both in silico mock databases and 

laboratory databases were used in the optimization of EDNA for S. enterica.  

In this study, the optimized parameters of EDNA for the detection of the model 

human foodborne pathogen S. enterica will be used to construct E-probes for three 

additional human foodborne pathogens of concern (E. coli STEC, Listeria monocytogenes 

and Campylobacter jejuni) (Figure 1). The detection limit and possible areas of model bias 

will be examined by comparing the detection of S. enterica verses its possible reads to the 

four other pathogens and their equivalent possible reads. To do this in silico mock datasets 

will be constructed for side by side testing. 
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Material and Methods  

The in silico metagenomic mock Illumina datasets were constructed to simulate 

massively parallel Illumina sequencing using the MetaSim program (Satya et al., 2008). 

Based on previous work, datasets were constructed to simulate the complex background 

found in real metagenomic community samples, the genomes from the top ten bacterial 

species identified across the previous metagenomic community studies were extracted 

from the NCBI genome database (NCBI Accession #CP001191.1, NC_002947.4, 

NC_007005.1, NC_010407.1,  NC_014121.1, NC_016830.1, NC_016845.1, 

NZ_CP007557.1, NZ_CP016889.1, NZ_LN907827) along with chromosome one of 

Solanum lycopersicum (NCBI Accession #CM001064.3) to further mimic the real 

metagenomic profiles. The inclusivity/exclusivity determinate genomes (I/E) for each of 

the four pathogens that was used to construct the E-probes was also included in the mock 

datasets to determine the specificity of the E-probe hits (NCBI Accession #CP006692.1, 

CP001665.1, NC_003212.1, NZ_CP019977.1). Four mock datasets were constructed 

including a negative control. Each dataset was made to simulate a dilution of target 

pathogen in the complex metagenomic background. The dilutions were chosen by 

calculating the ratios between background community and the target in previously profiled 

metagenomic communities. This takes into account the factors that influence detection like 

incomplete extractions and limitations in sequencing depth. Based on previous 

metagenomic community profiles, it was decided that each dataset should contain 

24,000,000 reads of 100 bps and the dilutions ranged from the equivalent of 1-1,000 cells 

of each pathogen. Ten replicate databases were constructed for each dilution and negative 

control.  
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E-probe Construction 

 Complete genomes of S. enterica, E. coli (STEC), L. monocytogenes and 

Campylobacter jejuni (NCBI Accessions #CM001064.3, #NC_002695.2, #NC_003210.1, 

#NC_009495.1) were downloaded from NCBI and the inclusivity/exclusivity determinate 

genomes (NCBI Accession #CP006692.1, #CP001665.1, #NZ_NYPG01000001-16.1, 

CP006905.1) were also downloaded from NCBI. The MUMmer program was used to find 

the optimal global alignment between the genomes and the corresponding 

inclusivity/exclusivity determinate genome, the regions unique to each target genome were 

binned. During the MUMmer alignment the maximum number of gaps was equal to zero 

and the minimal length of alignment was 15nt. 

 The BioPerl program was used to divide the binned sequences into lengths of 80 

nucleotides. The E-probe sets were then curated by mapping them to the NCBI non-

redundant nucleotide database using BLAST. Additionally, the E-probes were mapped to 

a database of complete genomes in the negative control which consisted of the background 

for all of the metagenomic datasets used and the I/E determinate genomes. The process of 

E-probe creation was repeated from the MUMmer alignment to database curation, 100 

times per E-probe set. This was done to test the hypothesis that under identical 

circumstances that the same E-probes sure be created.  BLAST alignments of the four E-

probe sets were completed against each corresponding target genome and visualized using 

the CG View program.  
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Results  

E-probes  

 All but one of the targets and I/E pairs were at the species level. By examining the 

alignments of E-probes to the target genome S. enterica, L. monocytogenes and 

Campylobacter jejuni a similar pattern of E-probes can be see spread relatively evenly 

across the genome (Figure 2). This is in contrast to the E. coli (STEC) alignment which 

shows greater clustering of E-probes. This is likely due to the fact that E. coli (STEC) was 

the only set created using a pathogenic target subspecies and a non-pathogenic target of the 

same subspecies. The pairs were chosen for biological inclusivity/exclusivity reasons. 

Meaning that it represented either clinically or biologically relevant groups for detection. 

All of the target genomes had different lengths, however they corresponded to their I/E 

genomes using the same ratios (Table 1). Most importantly, the number of E-probes in each 

pathogen set were not significantly different (Table 1).  

Detection  

 By observing the number of reads and calculating the percentage that each target 

made up in the dataset it is possible to see that EDNA was able to achieve detection when 

the number of reads of each pathogen made up at least 0.0012% of the dataset (Table 2). 

However, in food microbiology it is necessary to correlate the number of reads to the 

number of cells. This means that species with smaller genomes will have fewer reads at the 

same cell dilution and it will be necessary to have a greater number of cells to achieve 

detection (Table 3).  
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Discussion 

A metagenomics-based approach has many advantages for human foodborne pathogen 

diagnostics. Next generation sequencing (NGS) has made it possible to generate billions 

of sequences from a single nucleic acid sample that can be used to represent an entire 

metagenomic community ( Jones et al., 2010; Tyson et al., 2004). This allows for any 

pathogen present in a sample to be detected from a single assay. Metagenomic studies have 

been used in order to identify the causal agent of an unknown disease, but it is not a 

regularly used method (Adams et al., 2009; Cox-Foster et al., 2007; Palacios et al., 2008).  

 One of the biggest hindrances in using metagenomics in detection is the current 

cost per run. Metagenomic samples are often large and it is almost impossible to estimate 

coverage because the amount and identity of sequences are not known. The typical 

metagenomic diagnosis approach is nucleic acid extraction, sequencing, assembly and a 

BLAST of the assembled contigs. Based on current trends, it is likely that sequencing 

technologies will continue to drop in cost per run, due to advances in technology and 

greater access (Parameswaran et al., 2007).  

 However, as sequencing decreases in cost, increases in speed and increases in 

number of reads generated, the issues of downstream data handing become a bigger issue. 

These same advances in NGS will have an additional exponential growth effect on the 

databases (GenBank) that are used for the BLAST searching of sequence data, suggesting 

that the current metagenomic approach to pathogen diagnostics will eventually become too 

computationally intensive for everyday use. 

 The EDNA system provides a simplified bioinformatic approach for managing the 

complexity and exponential growth of metagenomic sequencing. EDNA uses the sample 
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as the searchable database and identifies unique regions of the target using E-probes for 

detection without the need for assembly. This streamlines the detection pipeline by 

removing the quality checking and assembly steps used by most data analysis pipelines. 

This technique has been demonstrated in plant pathogen studies where viral, fungal and 

bacterial plant pathogen E-probes were able to successfully detect multiple targets from a 

single metagenomic sample (Stobbe et al., 2012). It has also been effective in targeting the 

plant secondary metabolite aflatoxin from toxin-producing Aspergillus flavus (Espindola 

et al., 2018). Based on previous work, optimizing EDNA for detection of human foodborne 

pathogens, EDNA can be used as a tool for simultaneous bacterial pathogen detection from 

complex metagenomic data.  

 The thresholds for sensitivity and specificity set by the EDNA optimization 

parameters using S. enterica as a model were able to detect the target when it made up at 

least 0.0018% of the sample. The new E-probe sets showed the same ability to detect target 

as low as 0.0012% of the sample. However, differences in genome size among the target 

sets affects the number of reads in the set and the percentage of target at a specific cell 

number. In the E coli (STEC) E-probe set another subspecies was used as the I/E 

determinate which phylogenetically make to the sequences more similar compared to the 

other E-probe sets. This did not seem to affect detection or E-probe number, however in 

the alignment of the E-probes to the target sequence it was observed that the E-probes 

clustered more closely together.  

The ability to combine metagenomic sequencing with a rapid bioinformatic 

detection tool presents an opportunity to improve the access and usability of both fields. 

This streamlines the detection process of complex metagenomic sequence data into a five-

minute analysis of all possible pathogens in a single assay. Additionally, the optimization 
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of this tool for very low titer human foodborne pathogen detection confirms that this tool 

can be used in both the plant and human fields and could greatly improve upon the methods 

currently used by the FDA and USDA
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TABLES 

Table 1) The number of Hits and Hit depth of each E-probe set in each concentration of 
pathogen in the in silico complex metagenomic datasets. Nine replicates for each 
concentration not shown.  

 

 

MM0-NC
0 cells SE EC LM CJ

90 FP FP FP FP 90
95 FP FP FP FP 90

100 FP FP FP FP 90
90 N N N N 95
95 N N N N 95

100 N N N N 95
90 N N N N 100
95 N N N N 100

100 N N N N 100
MM1a
1 cell SE EC LM CJ

90 FP FP FP FP 90
95 FP FP FP FP 90

100 FP FP FP FP 90
90 N N N N 95
95 N N N N 95

100 N N N N 95
90 N N N N 100
95 N N N N 100

100 N N N N 100
MM2a
10 cells SE EC LM CB

90 FP FP FP FP 90
95 FP FP FP FP 90

100 FP FP FP FP 90
90 5H/3HD 9H/1HD 3H/1HD N 95
95 4H/1HD 7H/1HD 1H/1HD N 95

100 4H/1HD 7H/1HD 1H/1HD N 95
90 N N N N 100
95 N N N N 100

100 N N N N 100
MM3a
100 cells SE EC LM CB

90 FP FP FP FP 90
95 FP FP FP FP 90

100 FP FP FP FP 90
90 27H/1HD 49H/1HD 17H/1HD 9H/1HD 95
95 24H/1HD 42H/1HD 5H/1HD 5H/1HD 95

100 19H/1HD 33H/1HD 5H/1HD 5H/1HD 95
90 N N N N 100
95 N N N N 100

100 N N N N 100
MM4a
1000 cells SE EC LM CJ

90 FP FP FP FP 90
95 FP FP FP FP 90

100 FP FP FP FP 90
90 271H/1HD 491H/1HD 181H/1HD 175H/1HD 95
95 241H/1HD 431H/1HD 173H/1HD 171H/1HD 95

100 171H/1HD 335H/1HD 95H/1HD 89H/1HD 95
90 10H/1HD 15H/1HD 10H/1HD 10H/1HD 100
95 5H/1HD 5H/1HD 5H/1HD 5H/1HD 100

100 N N N N 100

Length 80nt 

QC %ID

%ID

Length 80nt 

QC %ID

Length 80nt 

QC %ID

Length 80nt 

QC %ID

Length 80nt 

QC
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Table 2) The read number and cell number in each of the in silico complex metagenomic 
dataset correlated to the number of hits and total percentage of the datasets. 

 

Table 3) The genome sizes of each target pathogen and I/E genome and resulting E-probe 
number. 

 

Org. Genome Size 
S. enterica 4.86 Mb
I/E S. bongori 4.4 Mb
E. coli  (STEC) 5.5 Mb
I/E E. coli  5.2 Mb
L. mono 2.9 Mb
I/E L. innocua 2.9 Mb
C. jejuni 1.6 Mb
I/E C. coli 2 Mb 
Org. E-probe #
SE 405
EC 411
LM 397
CJ 371
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FIGURES  

Figure 1) Overview of the creation of E-probes for S. enterica, E. coli (STEC), L. 
monocytogenes and Campylobacter jejuni and detection in complex metagenomic datasets 
using the EDNA pipeline. Target genomes for the four pathogens were extracted from 
NCBI as well as their I/E determinate genomes. Alignments were completed using the 
MUMmer program and overlapping regions of the genomes were removed.  BioPerl was 
used to shred the remaining sequences of target into 80nt length segments. For curation, 
the sequences were used as BLAST queries and run against the NCBI nucleotide database, 
as well as, the fasta files for the negative control and non-target alignments with an E-value 
of 1x10-3 or more stringent were removed. The curated E-probe sets were then saved in 
fasta format. For detection, the E-probe sets were run simultaneously as BLAST queries 
against the in silico mock metagenomic datasets. The alignments were scored using a QC 
of 90% and a %ID of 95%. The target containing dataset hits were compared to the hits in 
the negative control to identify false positives and detection limits. 
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Figure 2) Alignment of each E-probe set to their corresponding target genome. The S. 
enterica, L. monocytogenes and C. jejuni E-probe sets show a similar pattern of dispersal 
across the respective target genome. E. coli (STEC) E-probes show a greater degree of 
clustering compared to the other sets. Alignments done using BLAST on the CG View 
Server.  

 

 

 



 

135 
 

 

APPENDICES 
 

 

 

 



 

136 
 

TABLES 

Table 1) Ten replications of the in silico mock metagenomic datasets show twenty-seven 
detection intersections from testing E-probe length (60nt, 80nt and 100nt) against QC 
(90%, 95% and 100%) and %ID (90%, 95% and 100%). Nine additional replicates not 
shown. The negative control shows that the false positive threshold for the 60nt is at 90% 
QC and 100% ID which was only able to result in detected target when the target made up 
0.18% of the dataset or greater. The 80nt E-probes had the most optimal threshold with a 
QC of 90% and a %ID of 95 with the lowest level of detection being when the target made 
up 0.0018% of the databases. The 100nt E-probes were able to achieve detection at 90% 
QC and %ID of 95% when the target was at least 0.018% of the databases.   

 

 

 

M0a-NC M1 1 cell M2 10 cells M3 100 cells
#rdsSE=0 60nt 80nt 100nt #rdsSE=48 %SE=0.00019 60nt 80nt 100nt #rdsSE=437 %SE=0.0018 60nt 80nt 100nt #rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0b-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=46 %SE=0.00019 60nt 80nt 100nt #rdsSE=436 %SE=0.0018 60nt 80nt 100nt #rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0c-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=45 %SE=0.00019 60nt 80nt 100nt #rdsSE=437 %SE=0.0018 60nt 80nt 100nt #rdsSE=4494 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0d-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=46 %SE=0.00019 60nt 80nt 100nt #rdsSE=432 %SE=0.0018 60nt 80nt 100nt #rdsSE=4496 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/2HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0e-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=44 %SE=0.00018 60nt 80nt 100nt #rdsSE=434 %SE=0.0018 60nt 80nt 100nt #rdsSE=4498 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0f-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=44 %SE=0.00018 60nt 80nt 100nt #rdsSE=437 %SE=0.0018 60nt 80nt 100nt #rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0g-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=45 %SE=0.00019 60nt 80nt 100nt #rdsSE=435 %SE=0.0018 60nt 80nt 100nt #rdsSE=4495 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0h-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=47 %SE=0.00019 60nt 80nt 100nt #rdsSE=437 %SE=0.0018 60nt 80nt 100nt #rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/2HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0i-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=46 %SE=0.00019 60nt 80nt 100nt #rdsSE=437 %SE=0.0018 60nt 80nt 100nt #rdsSE=4494 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/3HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
M0j-NC M1 M2 M3
#rdsSE=0 60nt 80nt 100nt #rdsSE=45 %SE=0.00019 60nt 80nt 100nt #rdsSE=436 %SE=0.0018 60nt 80nt 100nt #rdsSE=4497 %SE=0.019 60nt 80nt 100nt

90 P P P 90 90 FP FP FP 90 90 FP FP FP 90 90 FP FP FP 90
95 P P P 90 95 FP FP FP 90 95 FP FP FP 90 95 FP FP FP 90

100 P P P 90 100 FP FP FP 90 100 FP FP FP 90 100 FP FP FP 90
90 P N N 95 90 FP N N 95 90 FP 5H/2HD N 95 90 FP 27H/1HD 5H/1HD 95
95 P N N 95 95 FP N N 95 95 FP 4H/1HD N 95 95 FP 24H/1HD N 95

100 P N N 95 100 FP N N 95 100 FP 4H/1HD N 95 100 FP 19H/1HD N 95
90 N N N 100 90 N N N 100 90 N N N 100 90 N N N 100
95 N N N 100 95 N N N 100 95 N N N 100 95 N N N 100

100 N N N 100 100 N N N 100 100 N N N 100 100 N N N 100
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FIGURES 

Figure 1) T1 Illumina taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity 

 

Figure 2) S2 Illumina taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity 
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Figure 3) S1 Illumina taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity. 

 

Figure 4) T1 454 taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity. 
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Figure 5) S2 454 taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity. 

 

Figure 6) S1 454 taxon assignments with 10,000 alignments or greater graphed as a 
function of percent identity. 
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