AN EXACT TEST OF SIGNIFICANCE IN THE BALANCED INCOMPLETE BLOCK DESIGN WITH RECOVERY OF INTER-BLOCK INFORMATION

By
DAVID LEE WEEKS
13
Bachelor of Science
Oklahoma Agricultural and Mechanical Oollege
Stillwater, Oklahoma

1952

Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Machanical College
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENGE
May, 1957

an exact test of significance in the balanced incomplete block design WITH RECOVERY OF INTER=BLOCK INFORMATION

Thesis Approved:

38.3200

PREFACE

In the balanced incomplete bock design, we ape frequentyy intern ested in testhing the nuld bypothesis that ald whe troatment offets are equal. In the conventional anelysis, assuming Eisenhartis Model Io thios bypothesig is tested using Snededow ${ }^{18}$ "p statistic, that is forming the ratio of the mean square fom treatments (eliminating blocks) and the meas suram for the intwambok error.

This thesis shows that whon we assume the blow effects random waniw
 greater than the numer of treatments then there exist tup independent tests of the mul hypothesis. A method for combining the tho tests is also givero

The muthor is deply indebted to Dro Fronklin Ao Graybill fox his assigtance in the preparation of this thesis and also for suggestirg the problem.

TABLE OF CONTENTS

Chapter

INTRODUCTION. 1

II. THE BALANCED INCOMPLETE BLOCK DESIGN 6

III。 COMBINING INDEPENDENT TEST OF SIGNIFICANCE 22
IV. APPLICATION OF TEGHNIQUES 25

BIBLIOGRAPHY 29

LIST OF TABLES

Table Page
I。 Analysis of Variance Under Model III 8
II．Subeanalysis of Variance Under Model II 20
III。 Statistical Layout 25
IV．Analysis of Variance for Statistical Layout in Table III ．。． 27
LIST OF FIGURES

Figure
1．Graph of Function $u_{1} u_{2}=c(a) \ldots \ldots .0 .0 .0 .0 .0$.

INTRODUCTION

Consider a balanced incomplete block design having the mathematical model (Eisenhart's Model I)

$$
\begin{aligned}
\mathrm{y}_{\mathrm{ijm}} & =\mu_{0}+{B_{i}}+\alpha_{j}^{\eta}+\Theta_{i j m} \\
i & =1_{9} 2_{9} \ldots \circ b \\
j & =1_{,} 2_{9} \ldots \ldots t \\
m & =0_{9} 1_{9} \ldots \ldots n_{i j}
\end{aligned}
$$

where t treatments are applied to b blocks with k plots per block and r replicates per treatment. The following conditions hold:

$$
\begin{aligned}
& \mathrm{bk}=\mathrm{tr} \\
& n_{i, j}=1 \text { if the jeth treatment occurs in block i. } \\
& =0 \text { if the joth treatment does not occur in block i } \\
& \sum_{i} n_{i j}=N_{o j}=r \text { for all j } \\
& \sum_{j} n_{\text {ij }}=N_{\text {io }}=k \text { for all } 1 \\
& \sum_{i} n_{i j} n_{i j}=\lambda \text { for all pairk (jji) where } j j^{\circ} j^{0} \text {. }
\end{aligned}
$$

The errors are normally distributed with

$$
\begin{aligned}
& E\left(e_{i j m}\right)=0 \\
& E\left(e_{i j m p q s}\right)=\sigma^{2} \text { if } i=p, j=q \text { and } m=s \\
&=0 \text { otherwise. }
\end{aligned}
$$

We will consider in this paper from the outset the reparameterized model

$$
y_{i, j m}=\mu+\beta_{i}+a_{j}+\theta_{i j m}
$$

where

$$
\begin{aligned}
\mu & =\mu s+a_{!}^{\eta} \\
a_{j} & =a_{j}^{8}-a_{0}^{0}
\end{aligned}
$$

This gives

$$
\sum_{j} a_{j} \equiv 0_{a}
$$

We will also be interested in the model (Eisenhart's Model III) where the $B_{i}{ }^{\text {is }}$ are assumed to be normally distributed with

$$
\begin{aligned}
E\left(B_{i}\right) & =0 \\
E\left(B_{i} B_{p}\right) & =\sigma_{b}^{2} \text { if } i=p \\
& =0 \text { if } i \neq p \\
E\left(\beta_{i} e_{p q s}\right) & =0 \text { for all } i, p, q \text { and } s .
\end{aligned}
$$

CHAPTER I

THE GENERAL TWO WWAY CLASSIFICATION

Consider the general twoway classification model with unequal numbers and no interaction, $\mathrm{i}_{\mathrm{o}} \mathrm{e}_{\mathrm{o}}$, the Eisenhart Model I_{0}

$$
\begin{aligned}
y_{i j m} & =\mu+\beta_{i}+a_{j}+e_{i, j m} \\
i & =1,2, \ldots 0, b \\
j & =1,2, \ldots 0, t \\
m & =0, I_{,} \ldots \ldots n_{i j}
\end{aligned}
$$

where

$$
\begin{gathered}
\mu=\text { general mean } \\
\mathcal{B}_{\mathfrak{i}}=\text { effect of the i-th block }
\end{gathered}
$$

$$
\alpha_{j}=\text { effect of the } j-\text { th treatment }
$$

$e_{i, j m}=a$ random variable with the following characteristics

$$
\begin{gathered}
E\left(e_{i j m}\right)=0 \\
E\left(e_{i j m} e_{u v p}\right)=\sigma^{2} i=u_{, j}=v_{g} m=p \\
\\
=0 \text { otherwise }{ }_{j}
\end{gathered}
$$

The object here will be to show by the method of least squares the estimate of ($\alpha_{i}-a_{0}$) considering the B_{i} as fixed parameters. Proceeding, we have

$$
e_{i, j m}=y_{i, j m}=\mu \infty B_{i}=a_{j}
$$

and we wish to minimize

$$
\sum_{i} \sum_{j m} \sum_{i j m}\left(e_{i j}\right)^{2}=\sum_{i} \sum_{j m} \sum_{i j m}\left(y_{i j}-\mu=B_{j}-a_{j}\right)^{2}
$$

with respect to each of the parameters in the model. If we let

$$
Z=\sum_{i j m} \sum_{i j m}\left(e_{j}\right)^{2}
$$

we have

$$
\begin{aligned}
& \frac{\partial Z}{\partial \mu}=-2 \sum_{i} \sum_{j m}\left(y_{i j m}-\mu-\beta_{i}-a_{j}\right) \\
& \frac{\partial Z}{\partial B_{i}}=-2 \sum_{j m} \sum\left(y_{i j m}-\mu-B_{i}-a_{j}\right) \\
& \frac{\partial Z}{\partial a_{j}}=-2 \sum_{i m}\left(y_{i j m}-\mu-B_{i}-a_{j}\right)
\end{aligned}
$$

Setting these partial derivatives equal to zero and solving for the estimates of the parameters we obtain the normal equations, namely,

$$
\begin{aligned}
& N_{00} \hat{\mu}+\sum_{i} N_{i_{0}} \hat{B}_{i}+\sum N_{0 j} \hat{a}_{j}=Y_{000} \\
& N_{i_{0}} \hat{\mu}+N_{i_{0}} \hat{B}_{i}+\sum_{j} n_{i j j} \hat{a}_{j}=Y_{i o 0} \\
& N_{0 j} \hat{\mu}+\sum_{i} n_{i j j} \hat{B}_{i}+N_{0 j} \hat{a}_{j}=Y_{0 j 0}
\end{aligned}
$$

where the dot subscript denotes summation over that subscript 。
We must now solve the normal equations for the $\hat{a}_{j}{ }^{\circ} \mathrm{s}$. To accomplish this we will determine each $\hat{\mu}+\hat{\mathcal{B}}_{1}$ in terms of the observations. The equations for the B_{i} are

$$
N_{i_{0}} \hat{\mu}+N_{i_{0}} \hat{B}_{i}+\sum_{j} n_{i j} \hat{\sigma}_{j}=Y_{i_{0 a}}
$$

Then when

$$
\begin{aligned}
& i=1 \\
& 1=b \\
& \left(\hat{\mu}+\hat{B}_{i}\right)=\frac{1}{N_{L_{0}}}\left(Y_{I_{00}}-\sum n_{j o}^{0} \hat{a}_{j 0}\right) \\
& \therefore \\
& 0 \\
& \left(\hat{\mu}+\hat{B}_{b}\right)=\hat{\bar{W}}_{b_{0}}\left(Y_{b_{0}}-\sum_{j 0} n_{b j 0} \hat{\alpha}_{j o}\right)
\end{aligned}
$$

The first a_{j} equation is (for a_{1})

$$
Y_{0 L_{0}}=N_{01} \hat{\mu}+\sum_{i} n_{i 1} \hat{\beta}_{i}+N{ }_{01} \hat{C}_{1}
$$

Expanding, we have

$$
Y_{010}=n_{11}\left(\hat{\mu}+\hat{B}_{1}\right)+n_{21}\left(\hat{\mu}+\hat{\beta}_{2}\right)+00+n_{b 1}\left(\hat{\mu}+\hat{\beta}_{B}\right)+N_{0.1} \hat{a}_{1}
$$

Substituting in this equation for ($\hat{\mu}+\hat{B}_{\mathrm{i}}$) we obtain

$$
\begin{aligned}
& n_{11}\left[\frac{1}{N_{10}}\left(Y_{100}-\sum_{j 0} n_{1 j}{ }_{0} \hat{a}_{j 0}\right)\right]+n_{21}\left[\frac{1}{\mathbb{N}_{20}}\left(Y_{200}-\sum_{j 0} n_{2 j 0} \hat{a}_{j 0}\right)\right]+0.0 \\
&+n_{b l}\left[\frac{1}{N_{b_{0}}}\left(Y_{b_{00}}-\sum_{j 0} n_{b_{j j} 0} \hat{a}_{j 0}\right)\right]+N_{01} \hat{a}_{1}
\end{aligned}
$$

Simplifying, we obtain

$$
\begin{aligned}
& Y_{01,0}=\sum_{i} n_{i 1}\left[\frac{1}{\mathbb{N}_{10}}\left(X_{i_{00}}-\sum_{j 0} n_{i j 0} \hat{0}_{j 0}\right)\right]+N_{0,1} \hat{a}_{1} \\
& =\sum_{i} n_{i 1}\left[\frac{1}{\hat{N}_{i_{0}}}\left(Y_{i_{00}}-\sum_{j 0 \rho 1} n_{i j 0} \hat{a}_{j 0}-n_{i 1} \hat{a}_{1}\right)\right]+N{ }_{01} \hat{\alpha}_{1}
\end{aligned}
$$

This is the first of the a_{j} equations. We may write the general a_{d} equation as

Imposing the conditions of the balanced incomplete block design on equation (1) simplifies it greatly and thereby we are able to ob tain estimates of the treatment effects easily as whall see latero

The quantity to the left of the equality in (1) is usually denoted by Q_{j} and henceforth will be referred to as such.

CHAPTER II

THE BALANCED INGOMPLETE BLOCK DESIGN

The balanced incomplete block design is defined as a design in which there are t treatments applied to b blocks where there are $k<t$ plots per block and each treatment is replicated r times with any pair of different treatments occuring in all blocks λ times. The conditions enumerated in the introduction now hold.

There are two sources of information used to estimate the a_{j} effects using the estimation techniques for this design. The purpose here will be to derive a method for obtaining an exact test of significance that the treatment effects are equal in designs where the number of blocks is greater than the number of treatments, $i_{0} e_{0}, b>t$, and where the block effects are assumed to be a normally distributed random variable.

We will first use the equation (1) to estimate α_{j} in the balanced incomplete block design. The incomplete block design imposes the followo ing conditions on the twoway classification:

$$
\begin{aligned}
& \mathbb{N}_{o j}=r \text { constant for all } j \\
& \mathbb{N}_{i,}=k \text { constant for all } i \\
& n_{i j}^{2}=n_{i j} \\
& \sum_{i} n_{i j} n_{i j l}=\lambda \text { for all } j \not j_{j}{ }^{\eta} .
\end{aligned}
$$

Imposing the abore conditions on equation (1), we obtain

$$
\left(x=\sum_{\mathbb{H}}^{W}\right) \hat{a}_{i}-\frac{\lambda}{K} \sum_{\substack{j 0 \\ j \not y^{0}}} \hat{a}_{j 0}=Q_{j}
$$

09

The Q_{f} becomes

$$
Q_{j}=Y_{0 j 0}=\frac{\sum_{j}^{j_{i j j}^{j} \sum_{0,0}}}{\mathbb{N}_{i_{0}}}=V_{j}-\frac{\mathbb{T}_{j}}{k}
$$

where

$$
\begin{gathered}
V_{\mathfrak{j}}=\text { total yield of treatment } \mathfrak{j} \\
T_{\mathfrak{j}}=\text { total of all blocks containing treatment } \mathfrak{j o}
\end{gathered}
$$

The estimate of the juth treatment effect is then

$$
\hat{a}_{j}=\frac{Q_{j}}{\left(r-\frac{\mathbb{T}^{W}}{K}+\frac{\lambda}{k}\right)}
$$

The additional source of treatment comparisons is given by the block totalswhen Model III is assumed, ine. considering the model

$$
B_{i}=k \mu+\sum_{j} x_{i j} a_{j}+k B_{i}^{L}
$$

where the $\mathbb{B}_{\mathbb{I}}^{\ell}$ are considered a random variable distributed normally with

$$
\begin{aligned}
E\left(B_{i}^{d}\right) & =0 \\
E\left(B_{i}^{p} B_{p}^{0}\right) & =\sigma^{2}+k \sigma_{b}^{2} \text { if } i=p \\
& =0 \text { if i } \alpha p
\end{aligned}
$$

In order to find estimates of the treatment effects under this model we minimize

$$
\sum_{i} B_{i}^{p^{2}}=\sum_{i}\left(\frac{B_{j}}{k}-\mu \Leftrightarrow \frac{\sum n_{i j} a_{j}}{k}\right)^{2}
$$

with respect to the $t+1$ parameters in the model.
Taking the partial derivatives with respect to each of the parameters, setting the result equal to zero and solving for $a_{j 2}$ we obtain the least
squares estimates of the a_{g} namely,

$$
\hat{a}_{j}=\frac{T_{i}}{(r-\lambda)}
$$

We now have two independent estimates of the treatment effects, $i_{0} e_{0}$

The analysis of variance for the balanced incomplete block design under the assumption of Model III is presented in TABLE $]_{0}$

TABLE I

ANALYSIS OF VARIANCE UNDER MODEL III
Source
$\begin{array}{ll}d_{A} f_{s} & \text { Sum of Squares } \\ b k-1 & \sum \sum \sum\left(y_{i, j m}-\frac{q_{0,0}}{b k}\right)^{2}\end{array}$

Blocks (ignoring treatments)
$b-1 \quad \frac{1}{k} \sum_{i}\left(B_{i}-\frac{B}{b}\right)^{2}$
Treatment component $\quad t=1$
$\frac{1}{k(r-\lambda)} \sum_{j}\left(T_{j}-\frac{T}{t}\right)^{2}$

Remainder
$b-t$
Subtraction
Treatments (eliminating blocks) toll
$\sum_{x \rightarrow 2} \sum_{j} Q_{j}^{2}$
Intramblock error
w
Subtraction
where
$\lambda=\frac{P(k-1)}{(t-1)}, \quad \neq \frac{t(k-1)}{k(t-1)}$ and $w=b k-t=b+1$
We wish now to investigate in detail the quantity termed Blocks (ignoring treatments) \& Let B_{i} denote the isth block total. Then in terms of the model,

$$
B_{i}=k \mu+k \beta_{i}+\sum_{j} n_{i j} \alpha_{j}+\sum_{j m} \sum_{i j m}
$$

We will now prove the following Lemma.
Lemma I.
The B_{i} are distributed normally and independently with mean
$\underline{k \mu} \pm \sum_{j} n_{i j}{ }_{j}$ and variance $k\left(\sigma^{2}+k \sigma_{b}^{2}\right)$ 。
Proof.
Mean of B_{i} :

$$
\begin{aligned}
E\left(B_{i}\right) & =E\left(k \mu+k \beta_{i}+\sum_{j} n_{i j} a_{j}+\sum_{j m}^{\sum} e_{i j m}\right) \\
& =k \mu+\sum_{j} n_{i j} a_{j}
\end{aligned}
$$

Variance of B_{i} :

$$
\begin{aligned}
E\left(B_{i}-E B_{i}\right)^{2} & =E\left(k \mu+k \beta_{i}+\sum_{j} n_{i j} \alpha_{j}+\sum_{j m} \sum_{i j m}-k \mu-\sum_{j} n_{i j} a_{j}\right)^{2} \\
& =E\left(k B_{i}+\sum_{j m} \sum_{i j m} e_{i}\right)^{2}=E\left[k^{2} B_{i}^{2}+\left(\sum \sum_{j m} e_{i j m}\right)^{2}\right] \\
& =k\left(\sigma^{2}+k \sigma_{b}^{2}\right)
\end{aligned}
$$

Covariance of $B_{i} B_{p}(i \neq p)$:

$$
\begin{aligned}
& \underset{i \neq p}{E}\left(B_{i} B_{p}-E B_{i} E B_{p}\right)=E\left(k \mu+k B_{i}+\sum_{j} n_{i j} a_{j}+\underset{j m}{\left.\sum \sum e_{i j m}\right)\left(k \mu+k B_{p}\right.}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =0
\end{aligned}
$$

and the Lemme is proved.
Now, consider the following identity in the B_{i} :
（4）$\quad\left(\frac{B_{j}}{k}-\frac{B}{b k}\right)=\frac{1}{(r-\lambda)} \sum_{p} \sum_{j} n_{i j} n_{p j}\left(\frac{B_{p}}{k}-\frac{B}{b k}\right)$

$$
\begin{aligned}
& +\left(\frac{B_{i}}{k}-\frac{B}{b k}\right)-\frac{1}{(r-\lambda)} \sum_{p} \sum_{j} n_{i, j} n_{p j}\left(\frac{B_{p}}{k}-\frac{B}{b k}\right) \\
i & =1,2, \ldots \circ b_{0}
\end{aligned}
$$

Before proceeding we define the following matrices：
$\underset{b x I}{B}=\left[\begin{array}{c}B_{1} \\ B_{2} \\ 0 \\ 0 \\ 0 \\ B_{b}\end{array}\right]$
$\underset{b x i}{B}=\left[\begin{array}{c}a^{0} B \\ a^{i} B \\ 0 \\ 0 \\ 0 \\ a^{0} B\end{array}\right]$
where $\begin{array}{rlllll}a^{\rho} \\ 1 x b\end{array}=\left[\begin{array}{lllll}1 & 1 & \circ & \circ & 1\end{array}\right]$ 。

We will denote（4）in matrix form as

$$
\underset{\mathrm{bxl}}{\mathrm{~T}}=\underset{\mathrm{bxl}}{\mathrm{~F}}+\underset{\mathrm{bxl}}{\mathrm{~S}}
$$

Squaring both sides of（4）and summing on i, j and m we may write the resulting expression in matrix form as

$$
\begin{array}{r}
\mathrm{T}^{*} \\
1 \mathrm{xl}
\end{array}=\underset{\mathrm{F}^{*}}{\mathrm{Ixl}}+\underset{\mathrm{R}}{\mathrm{R}}
$$

where $T^{*}=c_{1} T^{8} T_{9} F^{*}=c_{2} F^{8} F$ and R is a matrix composed of all rem maining factors resulting from the summing and squaring．

Since T^{*} is a quadratic form in the $B_{i}{ }^{1} s$ ，$i_{0} \theta_{0}$,
 we will denote T^{*} in matrix form as

$$
\frac{1}{k} B^{3} X_{0}^{B} X_{0}=T \text { 粦。 }
$$

We must now find a matrix X_{0} such that

$$
\begin{equation*}
\frac{1}{k}\left(B_{0}^{0} X_{o}^{p}\right)\left(X_{o} B\right)=\frac{1}{k} \sum_{i}\left(B_{i}-\frac{B}{b}\right)^{2} \tag{5}
\end{equation*}
$$

Consider the matrix

$$
\underset{b}{X_{0}}=\left[\begin{array}{ccccc}
1-\frac{1}{b} & -\frac{1}{b} & 0 & 0 & -\frac{1}{b} \\
-\frac{1}{b} & 1-\frac{1}{b} & 0 & 0 & 0 \\
0 & 0 & & \frac{1}{b} \\
0 & 0 & & 0 \\
0 & 0 & & 0 \\
-\frac{1}{b} & -\frac{1}{b} & 0 & 0 & 1-\frac{1}{b}
\end{array}\right]_{0}
$$

Then using this X_{0}, the equation (5) holds. The matrix X_{0} is symmetric idempotent, i.e., $X_{0} X_{0}=X_{0}{ }^{\circ}$ Therefore

$$
\frac{1}{k} B^{0} X_{0}^{0} X_{0} B=\frac{1}{k} B^{0} X_{0} B_{0}
$$

We wish now to find the distribution of this quadratic form. Before proceeding we state the following theorem, proved in reference (5). THEOREM I.

If a rector $\frac{X}{p x I}$ is distributed as the pryariate normal, mean vector μ_{1}, variance covariance matrix $\sigma_{1}^{2} I_{0}$ then Y IAY is distributed as the noncentral chi-square distribution with parameters f and λ if and only if $A\left(\sigma^{2} I\right)$ is idempotent, where f is the rank of $A\left(\sigma^{2} I\right)$ and $\lambda=\frac{1}{2} \mu_{1} A^{\mu} \mu_{1}$ 。 Applying this to the problem of finding the distribution of $\frac{1}{k} B 0 X_{0} B$ we have...

$$
\underset{\mathrm{bxl}}{\mathrm{~B}} \sim \mathrm{~N}_{\mathrm{b}}\left[\mathrm{~m}+\pi, \mathrm{k}\left(\sigma^{2}+k \sigma_{b}^{2}\right) I\right]
$$

where

Then $B^{\circ} A B$ is distributed as the non-central chiosquare with parameters f_{0} and λ_{0} where

$$
\begin{gathered}
A=\frac{X_{0}}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} \quad f_{0}=(b-1) \\
\lambda_{0}=\frac{\left(m^{8}+\pi^{1}\right) X_{0}(m+\pi)}{2 k\left(\sigma^{2}+k \sigma_{b}^{2}\right)}
\end{gathered}
$$

for

$$
\begin{aligned}
A\left(\sigma^{2} I\right) & =\frac{X_{0}}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} k\left(\sigma^{2}+k \sigma_{b}^{2}\right) I \\
& =X_{0} I=X_{0}
\end{aligned}
$$

which has been found to be symmetric idempotent of rank ($b=1$).
The non-centrality parameter λ_{0} must be evaluated in order to completely specify the distribution. Proceeding, We have

$$
2 k\left(\sigma^{2}+k \sigma_{b}^{2}\right) \lambda_{0}=m^{0} X_{0} m+m^{n} X_{0} \pi+\pi^{0} X_{0} m+\pi^{0} X_{0}^{\pi}
$$

It may be readily verified that the first three terms to the right of the equality are zero. The remaining term $\pi^{0} X_{0} \pi$ then equals

$$
\begin{aligned}
& =r \sum_{j} a_{j}^{2}+\lambda \sum_{\substack{j \\
j \neq j \square \\
j \neq j}} a_{j} a_{j \beta}=x \sum_{j} a_{j}^{2}-\lambda \sum a_{j}^{2}=(r-\lambda) \sum \sum_{j}^{2} a_{j}^{2}
\end{aligned}
$$

Therefore the non ∞ centrality λ_{0} is

$$
\begin{equation*}
\frac{(r-\lambda)}{2 k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} \sum a_{j 0}^{2} \tag{6}
\end{equation*}
$$

We now consider the term

$$
F^{*}=\sum_{i \sum m} \sum \sum \frac{I}{(r-\lambda)} \sum_{p j} \sum n_{i, j} n_{p j}\left(\frac{B}{k}-\frac{B}{b k}\right)^{2}
$$

and we will show that F^{*} is equal to

$$
\begin{equation*}
\frac{1}{k(r-\lambda)} \sum_{j}\left(\sum_{i} n_{i j} B_{i}={\underset{t}{{\underset{t}{k}}^{B}}}_{k_{0}}\right)^{2} \tag{7}
\end{equation*}
$$

and also

$$
\begin{equation*}
\frac{1}{k(r-\lambda)} \sum_{j}\left(T_{j}-\frac{1}{t} T\right)^{2} \tag{8}
\end{equation*}
$$

where T_{j} is the total of all blocks containing treatment j and $T=\sum_{j} T_{j}$ Denoting the quantity $\left(\frac{\mathrm{B}_{\mathrm{i}}}{\mathrm{I}} \frac{\mathrm{B}}{\mathrm{k}}-\frac{0 . \cos }{\mathrm{bk}}\right)$ by $\overline{\mathrm{B}}_{\mathrm{i}}$, we have

$$
\begin{aligned}
& F *=\sum_{i} \sum_{j} \sum_{j}\left[\frac{1}{\left.(r-\lambda)_{p} \sum \sum_{j} n_{i j} n_{p j} B_{p}\right]^{2}=\frac{1}{(r \infty \lambda)^{2}} \sum_{i}\left[\sum_{j}^{n_{i j}}\left(\sum_{p} n_{p j} B_{p}\right)\right]^{2}, ~}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{(r-\lambda)^{2}}\left[\sum_{j}\left(\sum_{p} n_{p j} \stackrel{B}{B}_{p}\right)^{2}+\lambda \sum \sum \sum \sum n_{p j}\left(k-n_{q j}\right) \bar{B}_{p}^{\infty} \bar{B}_{q}\right] \\
& =\frac{x}{(r-\lambda)^{2}}\left[r \sum_{j}\left(\sum_{p} n_{p d} \bar{B}_{p}\right)^{2}-\lambda \sum_{j}\left(\sum_{p} n_{p j} \mathbb{B}_{p}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{(r-\lambda)^{2}}(r-\lambda) \sum_{j}\left(\sum_{p} n_{p j} B_{p}\right)^{2}=\frac{k}{(r-\lambda)} \sum_{j}\left(\frac{1}{k} \sum_{p} n_{p j} B_{p}-\frac{x}{b k} B\right)^{2} \\
& =\frac{1}{k(r-\lambda)} \sum_{j}\left(\sum_{i} n_{i j} \|_{i}^{B_{i}}-\frac{k}{t} B_{0}\right)^{2}=\frac{1}{k(r-\lambda)} \sum_{j}\left(T_{j}-\frac{1}{t} T_{0}\right)^{2}
\end{aligned}
$$

which are the forms (7) and (8).
This is a quadratic form in the B_{i} and we shall write it in matrix notation as follows:

$$
\left.\underset{\operatorname{txl}}{Z}=\left[\begin{array}{cccccc}
n_{11} & n_{21} & n_{31} & \cdots & \cdots & 0 \\
n_{b 1} \\
n_{12} & n_{22} & n_{32} & \cdots & 0 & 0 \\
n_{b 2} \\
0 & 0 & 0 & & & \\
0 & 0 & 0 & & & \\
0 & 0 & 0 & & & \\
n_{1 t} & n_{2 t} & n_{3 t} & \cdots & \cdots & 0 \\
n_{b t}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
0 \\
0 \\
B_{b}
\end{array}\right] \cdots \cdots \begin{array}{c}
\frac{k}{t} \\
0 \\
B_{0} \\
0 \\
0 \\
B_{0}
\end{array}\right]
$$

Then, using the notation used previously and letting N denote the coedficient matrix of B, we have

$$
\begin{equation*}
Z=N B-\frac{k}{t} B^{*} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& B^{*}: \\
& \dot{\circ} \mathrm{xt}
\end{aligned}=\left[\begin{array}{lllll}
\mathrm{B} & \mathrm{~B}_{0} & 0 & 0 & 0 \\
0 & B_{0}
\end{array}\right]
$$

Then the form $\frac{1}{k\left(r^{\prime}-\lambda\right)} Z Z$ is equivalent to (7) and (8) 。Using (9) we have

$$
\frac{1}{k(r-\lambda)} Z^{8} Z=\frac{1}{k(r-\lambda)}\left(B^{1} N^{1}-\frac{k}{t} B^{*} \cdot\right)\left(N B-\frac{k}{t} B_{0}^{*}\right) .
$$

Letting A be a tub matrix of ones, : we may write $B^{*}=A B$ and

$$
\frac{1}{k(r-\lambda)} Z^{0} Z=\frac{1}{k(r-\lambda)}\left(B^{\prime} N^{8} N B-\frac{k}{t} B^{0} N^{B} A B-\frac{k}{t} B^{0} A^{0} N+\frac{k^{2}}{t^{2}} A^{0} A\right)
$$

which may be written as a quadratic form in the $B_{i}{ }^{1} s$ as

$$
\begin{equation*}
\frac{1}{k(r-d)} B^{V}\left(N^{0 N}-\frac{k}{t} N^{V} A-\frac{k}{t} A^{0} N+\frac{k^{2}}{t^{2}} A^{8} A\right) B_{0} \tag{10}
\end{equation*}
$$

Examining the product of $A_{i} N$ we find that the result is a matrix of bxttxb
order bxb with every element equal to k. Denote this matrix by K^{*} 。 Similarly the product of $A^{0} A$ is a bxb matrix of all tis. Denote $A^{9} A$ by T^{*}. If we now let a bxb matrix of all ones be denoted by δ, we may write (10) as

$$
\frac{1}{k\left(x^{*}-\lambda\right)} B^{?}\left(N^{1} N-\frac{2 k}{t} K^{*}+\frac{k^{2}}{t^{2}} q^{*}\right) B
$$

or

$$
\frac{1}{k(r-\lambda)} B^{0}\left(N^{Q} N-\frac{k^{2}}{t^{\prime}} \delta\right) B
$$

We now desire to ascertain whether the form

$$
U=\frac{1}{k(r-\lambda)}\left(N^{\theta}-\frac{k^{2}}{t} \delta\right)
$$

is idempotent. The $p-p^{0}$ th element of $U U$ is

$$
\begin{equation*}
\frac{1}{k^{2}(r-\lambda)^{2}} \sum\left(\sum_{j} n_{p} p^{p} n_{i j}-\frac{k^{2}}{t}\right)\left(\sum_{j} n_{i j} n_{p j}-\frac{k^{2}}{t}\right), \tag{II}
\end{equation*}
$$

and the $\mathrm{p}-\mathrm{p}^{\mathrm{i}}$ th element of U is

$$
\begin{equation*}
\frac{1}{k(r-\lambda)}\left(\sum_{j} n_{p j} n_{p} j-\frac{k^{2}}{t}\right)_{0} \tag{12}
\end{equation*}
$$

We will now expand (11) and find the relationship to (12)。 Expanding (11) we obtain
(13) $\frac{1}{k^{2}(r-\lambda)^{2}}\left(\sum_{i} \sum_{j} \sum_{j} n_{p} p^{0} j^{n_{i j}} n_{p j}-\frac{k^{2}}{t} \sum_{i} \sum_{j^{0}} n_{p^{0} j 0}-\frac{k^{2}}{t} \sum_{i} \sum_{j} n_{i j} n_{p j}+\sum_{i} \frac{k^{4}}{t^{2}}\right)$

Evaluating (13) term by term we have

$$
\text { (a) } \frac{1}{k^{2}(r-\lambda)^{2}}\left(\sum_{i} \sum_{j j^{8} n_{p \cdot j} n_{i j 0} n_{p j}}\right)
$$

$$
\begin{aligned}
& =\frac{1}{k^{2}(r-\lambda)^{2}}\left(\underset{j}{ } \sum_{j} n_{p i j} n_{p j}+\lambda k \sum_{j} n_{p j}-\lambda \sum_{j} n_{p^{j} j^{n} p j}\right) \\
& =\frac{1}{k^{2}(r-\lambda)^{2}}\left[(r-\lambda) \cdot \ln _{p j} n_{p} j+\lambda k^{2}\right] \text {. } \\
& \text { (b) } \frac{-1}{k^{2}(r-\lambda)^{2}}\left(\frac{k^{2}}{t}\right)\left(\sum_{i j 1} \sum_{p!j} t_{i j!}\right) \\
& =\frac{-r k^{3}}{t k^{2}(r-\lambda)^{2}}=\frac{-r k}{t(r-\lambda)^{2}} \\
& \text { (c) } \frac{-1}{k^{2}(r-\lambda)^{2}}\left(\frac{k^{2}}{t}\right)\left(\sum_{i j} \sum_{i j} n_{p j}\right) \\
& =\frac{-r k}{t(r-\lambda)^{2}} \\
& \text { (d) } \frac{1}{k^{2}(r-\lambda)^{2}} \sum_{i} \frac{k^{4}}{t^{2}}=\frac{b k^{2}}{t^{2}(r-\lambda)^{2}} \text {. }
\end{aligned}
$$

Combining theresults of (a), (b), (c) and (d) we have as the p-ppthelement of UU

$$
\frac{1}{k^{2}(r-\lambda)} \sum_{j} n_{p j} n^{n} p^{1} j+\frac{\lambda}{(r-\lambda)^{2}}-\frac{2 r k}{t(r-\lambda)^{2}}+\frac{b k^{2}}{t^{2}(r-\lambda)^{2}}
$$

Simplifying the above result we obtain

$$
\begin{equation*}
\frac{1}{k^{2}(r-\lambda)}\left(\sum_{j} n_{p j} n^{n} p^{i} j-\frac{k^{2}}{t}\right)_{0} \tag{14}
\end{equation*}
$$

This result differs from the $p-p^{\text { }}$ th element of $U(12)$ by the factor $\frac{1}{k}$ Therefore since $U J=\frac{1}{k} U_{\text {, }}$ this implies that $k U$ is idempotent $i_{9} i_{0} e_{0}$

$$
(k U)(k U)=k^{2} U U=k^{2} \frac{1}{k} U=k U
$$

Since $F *$ is a quadratic form in the $B_{i}{ }^{\prime} s_{9}$ then $F \%=B^{\prime} A B$ for some matrix A. Letting U be denoted by X_{1} and applying Theorem I we have

$$
\begin{equation*}
B^{\prime} A B=\frac{1}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} B^{9}\left(k X_{1}\right)\left(k X_{1}\right) B \quad \cdots K^{\prime 2}\left(f_{1}^{0} \lambda_{1}\right) \tag{15}
\end{equation*}
$$

for if

$$
\begin{aligned}
A=\frac{k X_{1}}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)}, \text { then } A\left(\sigma_{1}^{2} I\right) & =\frac{k X_{1}}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} k\left(\sigma^{2}+k \sigma_{b}^{2}\right) \\
& =k X_{1}
\end{aligned}
$$

which we have shown to be idempotent.
We must now evaluate the two parameters of the non-central chisquare distribution in (15) 。We will evaluate the nonmcentrality paros meter λ_{1} first. We know that $\lambda_{1}=\frac{1}{2} \mu_{1} A_{1} \mu_{1}$ 。 Substituting for μ_{1} and A we have

$$
2 k(r-\lambda)\left(\sigma^{2}+k \sigma_{b}^{2}\right) \lambda_{1}=\left(m^{0}+\pi^{\eta}\right) k X_{1}(m+\pi)
$$

Letting the coefficient of λ_{1} be c_{1} and substituting for $k X_{1}$ we obtain

$$
c_{1} \lambda_{I}=\left(m^{\mathbb{n}}+\pi\right)\left(N N_{N}-\frac{k^{2}}{t}\right)(m+\pi)
$$

Expanding we obtain

$$
c_{1} \lambda_{1}=m^{n} N^{n} H m+2 m^{1} N^{1} N \pi-\frac{2 k^{2}}{t^{0} \delta m+\pi^{0} N N \pi-\frac{k^{2}}{t} \pi^{0} \delta \pi .}
$$

Simplifying we fire that λ_{1} equals

$$
\frac{(r-\lambda)}{2 k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} \sum_{j} a_{j a}^{2}
$$

We may now apply the fact that the rank of an idempotent matrix is equal to the trace to find f_{1} in (15). Thus f_{1} may be found to be $t-1$, and we have the distribution in (15) completely specified.

We now have

$$
B^{B} X_{0} B=B^{a}\left(k X_{1}\right) B+R
$$

and let us denote R by the quadratic form in the B_{i} 's as $B^{0} X_{2} B$ 。 We may then write
or

$$
\begin{aligned}
& B^{0} X_{0} B=B^{y}\left(k X_{1}\right) B+B^{1} X_{2} B \\
& B^{0} X_{2} B=B^{8}\left(X_{0}-k X_{1}\right) B \text { and this implies the }
\end{aligned}
$$

relation $X_{2}=\left(X_{0}-k X_{1}\right)$ and we may write $X_{0}=k X_{1}+\left(X_{0}-k X_{1}\right)_{0}$
Let us examine the product of the two matrices $k X_{1}$ and X_{2}. We have then

$$
\left(k X_{1}\right)\left(X_{0}-k X_{1}\right)=k X_{1} X_{0}-k X_{1} X_{1}=k X_{1} X_{0}-k X_{1}=k X_{1}\left(X_{0}-I\right)_{0}
$$

Now ($X_{0}-I$) is a matrix where every element is $-\frac{1}{b}$. In element form $k X_{1}\left(X_{0}-I\right)$ is

and the pmpthelement of the product is

$$
\frac{1}{k(r-\lambda)} \sum_{1}\left(\sum_{j} n_{p j} n_{p} j-\frac{k^{2}}{t}\right)=\frac{1}{k(r-\lambda)}\left(r k-\frac{b k^{2}}{t}\right)=0
$$

Using this result we have

$$
\begin{equation*}
x_{0}=k x_{1}+\left(x_{0}-k x_{1}\right) \tag{16}
\end{equation*}
$$

Squaring both sides we obtain
or

$$
X_{0} X_{0}=k^{2} X_{1} X_{1}+2 k X_{1}\left(X_{0}-k X_{1}\right)+\left(X_{0}-k X_{1}\right)\left(X_{0}-k X_{1}\right)
$$

$$
X_{0}=k X_{1}+\varphi+\left(X_{0}-k X_{1}\right)\left(X_{0}-k X_{1}\right)
$$

or

$$
X_{0}-k X_{1}=\left(X_{0}-k X_{1}\right)\left(X_{0}-k X_{1}\right) .
$$

Since $X_{2}=\left(X_{0}-k X_{1}\right)$ the above expression becomes $X_{2}=X_{2} X_{2}$ and we have show that X_{2} is idempotent.

We now have $X_{0}=k X_{1}+X_{2}$ and we have found the ranks of X_{0} and X_{1} to be $(b-1)$ and $(t-1)$ respectively。 It is well known that the sum of the ranks of two matrices is greater than or equal to the rank of the sum. Applying this to (16), we have if we denote the unknown rank of X_{2} as q_{9}
or

$$
b-1 \leqq t-1+q
$$

$$
b-t \leqq q
$$

or
or

$$
b-t=q-c^{2}
$$

$$
q=b-t+c^{2}
$$

Then

$$
b=1=t-1+b=t+c^{2}
$$

or

$$
\sigma^{2}=0=a_{0}
$$

Therefore the rank of X_{2} is $(b-t)$.
We have yet to find the distribution of $\mathrm{BX}_{2} \mathrm{~B}_{\text {。 Applying Theorem I }}$ we have

$$
B^{\prime} A B \sim X^{i_{2}}\left(b-t, \lambda_{2}\right)
$$

for if we let

$$
A=\frac{x_{2}}{k^{2}\left(\sigma^{2}+k \sigma_{b}^{2}\right)}, \text { then } A\left(\sigma_{1}^{2} I\right)=\frac{X_{2}}{k\left(\sigma^{2}+k \sigma_{b}^{2}\right)} k\left(\sigma^{2}+k \sigma_{b}^{2}\right)
$$

or $A\left(\sigma_{I}^{2} I\right)=X_{2}$, which we have shown to be idempotent of rank $(b-t)$. λ_{2} may be found from the relation

$$
x_{0}=k x_{1}+x_{2}
$$

Multiplying on the right and left by $(m+\pi)=\mu_{0}$ (say), we have

$$
\mu_{0} X_{0} \mu_{0}=k \mu_{0} X_{1} \mu_{0}+\mu_{0}^{\mu X_{2} \mu_{0}}
$$

If we divide this equation through by the quantity $2 k\left(\sigma^{2}+k \sigma_{b}^{2}\right)$ we will have an equation in the nonocentralities of the quadratic forms $\mathrm{T}_{\mathrm{H}}, \mathrm{F}$. and R. The non-centralities of $T \%$ and $F \%$ have been shown to be equal and therefore the non-centrality of R is zero. Then R is distributed as the central chiosquare with $(b-t)$ degrees of freedom.

The non-centrality of $F \%$ is a function of $\sum_{j} a_{j}^{2}=\sum_{j}\left(a_{j}^{0}-a_{0}^{0}\right)^{2}$ 。
Then, under the null hypothesis $H_{0}^{0} a_{1}=\alpha_{2}^{2}=0.0=a_{t}^{p}$, the non centrality of F^{*} is zero and F^{*} is distributed as the central chimsquare with ($t \sim 1$) degrees of freedom. The foregoing results are sumnarized in Table II。

Then, under the null hypothesis, the ratio

$$
\frac{Q_{2}(b-t)}{Q_{2}(t-1)}
$$

is distributed as Snedecor!s " $F^{\text {p }}$ with $(t-1)$ and $(b-t)$ degrees of freedom.

We now have two independent tests of the null hypothesis for the treatment effects assuming Eisenhart's Model III. The next chapter will be concerned with combining these two tests of significance into a single test of significance.

COMBINING INDEPENDENT TESTS OF SIGNIFICANCE

We have shown that two independent tests of significance of H_{0} ： $a_{1}^{i}=a_{2}^{\ell}=0 \quad a_{t}^{0}$ can be obtained in a balanced incomplete block design when b is greater than t and when Eisenhart ${ }^{1}$ s Model III is assumed． The purpose of this chapter will be to give a method of combining these two independent tests。

There exist many criteria for combining independent tests and the one which will be considered here is by R 。A。Fisher．His criteria consists of rejecting H_{0} if and only if $u_{1} u_{2} \leqq c$ where u_{1} and u_{2} are the signifo icance levels of the two independent tests and c is a predetermined cons stant corresponding to the desired significance leve1．

It has been shown that $=2 \log _{e} u_{1} u_{2}$ is distributed as the chimsquare variate with 4 degrees of freedom when H_{0} is true。 Then if x is such that Probability $[\chi(4) \leqslant x]=a_{0}$ where $1=a$ is the desired signifficance level，and setting $-2 \log _{6}=x$ ，we find that $\log _{e}=-x / 2$ and 0 may be computed from chimsquare and $\log _{e}$ tables．

In the table which follows， 0 has been computed for several values of $a_{\text {and }}$ the function $u_{1} u_{2}=c$ plotted on log paper so that the curve is represented by a straight line．To find the significance level of the combined independent tests，merely find the significance level of each ＂F＂and find the point in the $u_{1} u_{2}$ plane．A point falling in the area
between say the a_{p} and a_{q} levels of significence $\left(a_{p}<a_{q}\right)$ is sige nificant at the a_{q} but not at the a_{p} level.

FIGURE 1

GHAPTER IV

APPLICATION OF TECHNIQUES

We will consider here an example and work through the analysis showing the techniques which may be used to best advantage when Model III is assumed for this design.

Consider the following layout in a balanced incomplete block with $\mathrm{b}=6, \mathrm{t}=4, \mathrm{k}=2, \mathrm{~m}=3 \mathrm{and} \lambda=1_{9}$ and artificial data。

TABLE III
STATISTIGAL LAYOUT

Letting V_{j} denote the j oth treatment total and T_{j} denote the total of all blodks containin troatnent f_{9} form the following quantities:

	V_{i}	\mathbb{T}_{0}	$T_{i} / 2$	$\underline{V-T . j}$
j $£ 1$	28	42	21.0	-3.0
$=2$	30	49	24.5	5.5
$=3$	37	61	30.5	6.5
$=4$	12	42	21.0	-9.0
Totals	$97=6 T$	$194=2 G T$	$97=G T$	0.0

and also find the quantities r 在 $=2$ and $k(r-\lambda)=40$
We are now ready to compute the Analysis of Vawiance for this layout. The sums of squares are obtained in the following manner:

Total: $6^{2}+7^{2}+\ldots+3^{2}-\frac{97^{2}}{12}=154092$
Blocks (ignoring treatments): $\frac{14^{2}+20^{2}+0.2+21^{2}}{2}-\frac{97^{2}}{12}=64.42$
Treatment component: $: \frac{1}{4}\left(42^{2}+49^{2}+61^{2}+42^{2}-\frac{194^{2}}{4}\right)=60,25$

Remainder: By subtraction, $64042=60.25=40.17$

Treatments (eliminating blocks): $\frac{1}{2}\left[(-3)^{2}+5.5^{2}+6.5^{2}+\right.$

$$
(-9 .)^{2}=81.05
$$

Intramblock erroxa By subtraction, 154.92-64.42-81.25=9.25
The results of this particular layout are sumarized in TABLE IV which is show on the next page.

Going to FIGURE I and looking on the u_{1} axis for $u_{1}=0.0975$ and on the u_{2} axis for $u_{2}=0.0625$ we find that the resulting test is sig. nificant between the 3% and 4% level, and therefore we would reject the null hypothesis at the 4% level but not at the 3% level。

TABLE IV

ANALYSIS OF VARIANCE FOR STATISTICAL LAYOUT IN TABLE III

Source	do fo	Sos:	Mos.	F
Total.	11	154.92		
Blocks (ignoring treatments)	5	64.42		
Treatment component	3	60.25	20.05	9.65
Remainder	2	4.17	2.08	
Treatments (eliminating blocks)	3	81.25	27.08	8.79
Intramblock error	3	9.25	3.08	

and we find that
Probability $\left\langle\mathrm{F}_{\text {tab }}(3,2)>9.657=0.0975=u_{1}\right.$
and

GONCLUSIONS

The results of this thesis may be stated in the form of a theorem namely,

THEOREM

When Eisenhart ${ }^{\text {is }}$ Model III is assumed in a balanced incomplete block design and the number of blocks is greater than the number of treatm ments, then there exist two independent tests of the nyll bypothesis
 are equal.

If an exact method of combining independent tests is employed to combine the two tests of $H_{0^{\circ}}$ then the test of H_{0} under Model III is exact.

These results give rise to problems which could be investigated that are not solved here. A few of which are
(1) examining the power of the test of the null hypothesis under

Model III $_{9}$

(2) developing a criteria for combining independent confidence intervals on the same parameter of a distribution and
(3) developing a criteria for combining independent estimates of the same pasameter of a distribution.

BIBLIOGRAPHY

（1）Anderson，R．L。 and Bancroft，T．A．Statistical Theory in Research． New York：McGraw－Hill Book Company，Inc．，1952．
（2）Birnbaum，Allan．＂Combining Independent Tests of Significance＂ Journal of the American Statistical Association， 49 （September， 1954），559 574．
（3）Eisenhart，Co＂The Assumptions Underlying the Analysis of Varianceo＂ Biometrics，3，1－21，1947．
（4）Fisher，R．A，Statistical Methods for Research Workers．Fourth and later Editions，Edinburgh and London：Oliver and Boyd， 1932 and later， Section 21．1．
（5）Graybill，Franklin A。 and Marsaglia，George．＂Idempotent Matrices and Quadratic Forms in the General Linear Hypothesis．＂To be published in Annals of Mathematical Statistics，September，1957。
（6）Kempthorne，Oscar Design and Analysis of Experiments．New York： John Wiley and Sons，Inco，1950。
（7）Pearson，E．S．＂The Probahility Integral Transformation for Testing Goodness of Fit and Combining Independent Test of Significance．＂ Biometrika $30,1 / 2,134-148$ ，1938。
（8）Rao，G．Radhakrishna．Adyanced Statistical Methods in Biometric Research．New York：John Wiley and Sons，Inc．，1952．

VITA

David Lee Weeks
candidate for tise degree of Master of Science

Thesis: AN EXACT TEST OF SIGNIFICANCE IN THE BALANCED INCOMPLETE BLOCK DESIGN WITH RECOVERY OF INTER-BLOCK INFORMATION.

Major: Mathematics
Minor: Statistics
Biographical and Other Items:
Born: June 24, 1930 at Boone, Iowa
Undergraduate Study: O. A. Mo Go, 1948-52.:
Graduate Study*。 OoA。MoCos 1954-55, 1956-57
Experiences: Arny Signal Corps, I US Corps in Korea 1952w54\% Graduate Assistant in Mathematics Department 1954 m5. $19560-57$

Member of Phi Kappa Phi, Pi Mu Epsillon and The American Statistical Association

Date of Final Examination: May, 1957

THESIS TITLE: AN EXACT TEST OF SIGNIFICANCE IN TEE BALANGED INCOMPLETE BLOCK DESIGN WITH RECOVERY OF INTER $-\mathrm{BLOCK}_{\mathrm{L}}$ INFORMATION

AUTHOR: David Lee Weeks

THESIS ADVISER: DroFraniklin Graybill

The content and form have been checked and approwed by the author and thesis adviser. The Graduate School Office assumes no responsibility for errors either in form or content. The copies are sent to the bindery just as they are approved by the author and the faculty adviser.

TYPIST: David Lee Weeks

