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Abstract: The Internet of Things (IoT) is increasing in size by having more devices
connected to it as they are becoming low-cost to manufacture and easier to connect
to the internet. New use cases are being created by the need for it and feasibility to
provide it, with low-cost solutions. As a key enabler of IoT, Long Range Wide Area
Network (LoRaWAN) is gaining great attention in research and industry. It provides
a desirable solution for applications that require hundreds or thousands of actively
connected devices to monitor a process or an environment or to assist in controlling
a certain process. Some of these use cases require having the location information of
these devices. In some cases, localization can be the intrinsic purpose of deployment.
In this regard, the Received Signal Strength Indicator (RSSI) based localization offers
a feasible and affordable solution. Since LoRaWAN has only been there for only a
few years, research on utilizing LoRaWAN RSSI for localization purposes is in early
stages and is scarce. In this paper, we study LoRaWAN RSSI based localization
and evaluate its accuracy, impairments, and prospects. Additionally, we employ the
use of Software Defined Radios (SDR) into our work for the purpose of path-loss
characterization. Experimental results revealed the fact that a high variance of RSSI
due to frequency hopping feature of LoRaWAN could severely impact the localization
performance. Potential solutions are developed and presented to reduce this negative
impact, hence improve the performance.

In our work we study LoRaWAN IoT technology in terms of applicability in RSSI-
based localization applications, and show the range of localization error it produces.
We utilized Software Defined Radios and implement them for accurate path-loss
characterization. We show what possible localization applications are suitable for
LoRaWAN, and how to improve its performance.
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CHAPTER I

INTRODUCTION

1.1 Introduction to Localization

Localization is the process of determining the location of a certain entity in a cer-

tain space. Radio Frequency (RF) based localization utilizes properties of RF signals

and/or abilities to determine the location of an RF device in a certain network cal-

culating its location within certain accuracy. Localization of a node requires three or

more base stations (BSs) to have enough information for the mathematics to work

(more discussion provided in Section 2.3). In recent years, researchers are interested

in improving the accuracy of localization with low-cost technology that would last

long in terms of weariness and battery life [2].

RF localization methods fall into two categories which are range-free [3], and

range-based [4] localization [2; 5]. The former basically is determining the location of

a device by its connection to the network and other devices nearby and since that is

all what it requires, it offers low-cost localization system but with low accuracy [5].

While the latter needs separation distance (or geometrical) information [2; 6].

Various ranging and localization methods are available, but each one comes with

its own accuracy and cost trade-offs. One of the methods is using angle calculation

such as Angle-of-Arrival (AoA) which demands angle calculation of which direction

of the signal is received from (i.e., sent by the node), and then perform triangulation

for this node [3; 7; 8]. Distance-based ranging methods use trilateration algorithms

to determine the node’s location. In Time-of-Arrival (ToA) method, the distance be-

tween the anchor node and the unknown node is calculated by determining how much
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time is required for the signal to travel between them [3; 9]. It requires high precision

of time and synchronization to determine the time travel of the signal moving at the

speed of light. Time-Difference-of-Arrival (TDoA) method measures the difference of

propagation time between two different signals in terms of their nature, such as using

RF or ultrasonic signal [2; 3; 8].

1.2 Why RSSI Localization?

One of the most economical methods to perform ranging-based localization is the

Received-Signal-Strength (RSS) based method since it does not need additional ap-

paratus, and every RF chipset has RSS-Indicator (RSSI) [10; 11; 12]. RSSI lacks the

high accuracy of other range based methods due to signal deterioration caused by

fading. To overcome this inferior accuracy problem, high number of RSSI data read-

ings is needed, along with some data enhancement methods, to achieve comparable

accuracy [13; 14]. The received power of an RF signal decreases conforming to some

certain formula. By knowing the terms of this formula, we can deduce how far the

signal has traveled from the transmitter (Tx) to reach this certain received power at

the receiver (Rx) [15]. Global Positioning System (GPS) can be a solution for an

accurate outdoor localization, but it can be relatively an expensive option in terms of

device price when applied in large scale networks, and in shortening battery life [16].

Long Range Wide Area Network (LoRaWAN) technology was introduced to form

a very large scale network of low-cost devices all connected to the internet, hence it

is considered as a key enabler of the Internet of Things technologies. It provides long

range communication with very limited need for power consumption; thus, increasing

the battery life of the portable device making it a great solution for IoT applications

such as smart cities, smart irrigation, etc. A single gateway in LoRaWAN can support

thousands of devices [17].

In order to improve the ranging process accuracy, improve localization in turn,
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time averaging is performed on the logged RSSI values. Averaging can be performed

both in logarithmic and linear domains, but a better performance is gained in linear

scale domain [2]. We used SDRs to determine the channel’s path-loss characterization

as it offers more control over the signal’s parameters. SDRs have the ability to be

configured to imitate various communication systems and prototypes for testing. It

is controlled by a computer installed software to generate the base band signals and

up-conversion for the frequency occurs in the SDR’s hardware. We use the Universal

Software Radio Peripheral (USRP) from National Instruments as SDR platform, more

details of the setup is given in Section 2.5.

1.3 Organization of Thesis

This thesis will be divided into four main chapters: in Chapter I, an introduction

to localization is given. In Chapter II RSSI based ranging, path-loss model and

exponent, Multilateration, LoRaWAN, and SDR are all presented and discussed. In

Chapter III we discuss methodology and test setups, then we present the results.

Chapter IV concludes our work.
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CHAPTER II

MODELING RSSI-DISTANCE MEASUREMENTS

2.1 Ranging

Ranging is the process of inferring the distance separating two devices using any

means that can be translated into distance [2; 18]. Signal strength can indicate the

distance between a transmitter and a receiver using signal propagation models [19].

The received signal can be seen as a function of frequency and antenna properties,

but mainly distance:

Pr = f(d, f, Ap), (2.1)

where Pr is the received signal strength (power), d is the distance separating the Tx

and Rx, f is operating frequency, and Ap denotes antenna properties such as gain.

The received signal has many components as shown in Figure 2.1 with a Line-of-Sight

(LOS) being the strongest component.

The RSSI can be modeled as [2]:

Pr = D + ψ + α, (2.2)

where D is the deterministic part of the signal which can follow many path-loss models

(PLM) such as the single-slope model (log-normal model), Stanford University Interim

(SUI) Model, Hata model, Okumuras Model, etc.[18],[20]. It is dominantly governed

by the LOS component of the signal. ψ is called large scale fading (also known as

shadowing) [21], it is modeled as a random variable predicting the variation in the

4



Tx Rx

Figure 2.1: Radio frequency received signal components.

received signal in an obstructed environment. α is the small scale fading (known also

as multi-path) which is caused by the attenuated, diffracted, scattered, and reflected

copies of the signal arriving at the receiver [22].

The log-normal model is a very common LOS PLM and is a single slope form

which is given by:

D|dBm = K|dBm − 10γ log10

(
d

d0

)
. (2.3)

By increasing the distance d (in meters), the deterministic received power de-

creases. d0 is some reference distance away from the transmitter at which the far-field

transmission region of the antenna is considered. γ is the path-loss exponent (PLE)
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which is discussed in Section 2.2. K is a constant that is governed by the operating

frequency and the power being transmitted by this antenna, and is given by:

KdBm = Pt|dBm − CdB. (2.4)

where

CdB = 20 log10

(
λ

4πd0

)
, (2.5)

where Pt is the transmitted power, λ is the wavelength of the signal.

2.2 Path-loss Exponent

The single slope PLM of (2.3) is a linear equation in the dB domain where γ is the

slope of this line, referred to as PLE. This slope represents how ”fast” the signal is

attenuated (loss increases). This exponent is environment dependent and it’s either

determined imperially or from typical values tables for different environments. A

method to determine γ is the linear Least Square Error (LSE). LSE is a curve fitting

method that minimizes the squared error between the actual values (received power

readings-RSSI) and the fitted curve (line), giving us the slope of this line (γ).

2.3 Localization by Multilateration

Multilateration is a location determination technique where the known location of

a node is determined by finding the intersection point of three circles in 2-D space

[23; 24; 25]. Ranging is finding how far is a node away from a known position (e.g.,

a gateway or a BS) but with unknown direction, thus the node would be equally

possible to be located at any point on a circle of radius d. Combining at least three

of these ranging values will give us three circles intersecting at one point as shown

in Figure 2.2. This method is called as trilateration. Practically, this is not the case

as the ranging has inaccuracies resulting in a localization error inherited from these
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inaccuracies. Ranging error in RSSI is caused by ψ and α in (2.2), both are random

variables with means and variances, causing the circles to have an area intersection

instead of a single point. In [2], it is shown that, statistically, the average error caused

by these two random variables is negative, meaning the practical estimated radius of

the circle would be larger than the actual one.

Similarly, all the above can be said about localization in three dimensional (3-D)

space, the ranging is creating spheres rather than 2-D circles, and the intersection

of three surfaces of those spheres determines the location of the node. Erroneous

ranging will lead to an intersection of space rather than a single point.

Mathematically, in 2-D space these circles need to satisfy the following:

(x− xi)2 + (y − yi)2 = di
2 (i=1,2,...,n), (2.6)

and in 3-D space the spheres need to satisfy the following:

(x− xi)2 + (y − yi)2 + (z − zi) = di
2 (i=1,2,...,n), (2.7)

where x, y, and z are the unknown Cartesian coordinates of the node. xi, yi, and

zi are the known coordinates of the ith BS. di is the estimated distance between the

node and the ith BS.

In [26], an algebraic localization algorithm is proposed where the localization is

done in 3-D space of a node using minimum of three BSs, each forming a sphere where

the node lies on its surface. Similar to 2-D space, any two spheres would intersect

each other forming a circle, the third base stations would intersect with the circle in a

single point where the nodes real location. This algorithm proposes a solution for two

cases: 3 BSs and more than 3 BSs. We will show the mathematics of the algorithm in

3-D space even though in our tests we set z-axis values to zero for a 2-D localization
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Figure 2.2: Ranging using three base stations in 2-D space.

since both our Tx and Rx are at the same z-plane.

2.3.1 Multilateration Solution for 3 Base Stations

The three spheres in 3-D space form the equations:

(x− x1)2 + (y − y1)2 + (z − z1)2 = d1
2,

(x− x2)2 + (y − y2)2 + (z − z2)2 = d2
2,

(x− x3)2 + (y − y3)2 + (z − z3)2 = d3
2.

(2.8)
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(2.8) can be written as follows:

x2 + y2 + z2 − 2x1.x− 2y1.y − 2z1.z + x1
2 + y1

2 + z1
2 = d1

2,

x2 + y2 + z2 − 2x2.x− 2y2.y − 2z2.z + x2
2 + y2

2 + z2
2 = d2

2,

x2 + y2 + z2 − 2x3.x− 2y3.y − 2z3.z + x3
2 + y3

2 + z3
2 = d3

2.

(2.9)

(2.9) is a non-linear system with three unknowns (x, y, z) and three equations.

This is the well-known trilateration problem. There are many sources providing

potential solutions as in [13; 27; 26; 28]. For the sake of completeness of this study,

we present the detailed solution as follows: representing the system in matrix form

(A.~m = ~b) as [26]:


1 −2x1 −2y1 −2z1

1 −2x2 −2y2 −2z2

1 −2x3 −2y3 −2z3

 .


x2 + y2 + z2

x

y

z


=


d1

2 − x12 − y12 − z12

d2
2 − x22 − y22 − z22

d3
2 − x32 − y32 − z32

 , (2.10)

where A is the coefficient matrix, m is the unknowns (solution) vector and b is the

constant vector.

An additional constraint on the system is [26]:

m0 = m1
2 +m2

2 +m3
2,

S = {(m0,m1,m2,m3)
T ∈ R4 | m0 = m1

2 +m2
2 +m3

2}.
(2.11)

where ~m ∈ S.

Based on the alignment of the base stations, there are two solutions for the system

in (2.10).
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2.3.1.1 If the three base stations do not lie on a straight line

The system will be 3 dimensions with 4 column vectors, which means one of them is

dependent and this mathematically means:

Range(A) = 3, and null(A) = 1.

We get 3 pivot variable (independent columns) and one free variable (dependent

column) in the system, hence the solution of (2.10) would be in form of:

~m = ~mp + c. ~mh, (2.12)

where ~mp is the particular solution, and it can be found by setting the free variable

to zero and solving A.~m = ~b. ~mh is the homogeneous solution of A.~m = 0. c is a real

parameter. We can determine both with different solving methods, such as Gaussian

Elimination, Reduced Row-Echilon Form, or pseudo-inverse.

Determining c can be done as follows. Let

mp = (mp0 +mp1 +mp2 +mp3)
T ,

mh = (mh0 +mh1 +mh2 +mh3)
T ,

m = (m0 +m1 +m2 +m3)
T ,

(2.13)

and plugging (2.13) into (2.12) yields

m0 = mp0 + c.mh0 ,

m1 = mp1 + c.mh1 ,

m2 = mp2 + c.mh2 ,

m3 = mp3 + c.mh3 ,

(2.14)

10



using the constraint m ∈ S one can get:

mp0 + c.mh0 = (mp1 + c.mh1)
2 + (mp2 + c.mh2)

2 + (mp3 + c.mh3)
2, (2.15)

which gives

c2(mh1

2 +mh2

2 +mh3

2) + c(2.mp1mh1 + 2.mp2mh2

+2.mp3mh3 −mh0) +mp1
2 +mp2

2 +mp3
2 −mp0 = 0.

(2.16)

This quadratic equation, am2 + bm+ k, would give two solutions:

c1/2 =
(−b±

√
b2 − 4ak)

2a
. (2.17)

The solution of system of A.m = b would be:

m1 = mp + c1.mh,

m2 = mp + c2.mh.

(2.18)

2.3.1.2 If the three base stations lie on a straight line

In this case we would have a system of two pivot variables and two free variables.

The solution to A.~m = ~b would be:

~m = ~mp + c. ~mh1 + h. ~mh2 . (2.19)
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2.3.2 Solution for more than three Base Stations

Adding BSs to the 3-BS system will change equation (2.10) to [26]:



1 −2x1 −2y1 −2z1

1 −2x2 −2y2 −2z2

1 −2x3 −2y3 −2z3
...

...
...

...

1 −2xn −2yn −2zn


.



x2 + y2 + z2

x

y

z


=



d21 − x21 − y21 − z21

d22 − x22 − y22 − z22

d23 − x23 − y23 − z23
...

d2n − x2n − y2n − z2n


, (2.20)

where n is the number of BSs.

The system A.~m = ~b described in (2.20) is over determined, so it would result in

many solutions. We can optimize the solution quality by solving in LS method:

~m = (AT .A)
−1
AT .~b. (2.21)

The projection of each BS location (~p) on the column space of A would be:

~p = A(AT .A)
−1
AT .~b. (2.22)

The solution ~m is represented by projection of ~p on the column space of A. The

accuracy of the localization depends on the accuracy of determining the distances

between the unknown node and the base stations. If the process of determining

distances has some uncertainty, then we can use Weighted Least Squares (WLS). The

solution ~m would be [26]:

~m = (AT .V −1.A)
−1
AT .V −1.~b, (2.23)

where V is the co-variance matrix of random errors.
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2.4 Internet-of-Things and Long-Range-Wide-Area-Network

(LoRaWAN)

With the technological advancements made in the last 10 years in fields of wireless

communication, battery improvements and small-size low-cost mass-scale production

of electronic chips and devices, internet connection became more accessible to these

low-cost devices. These advances enabled new field of connection and manufacturing

to emerge; the Internet of Things (IoT). In recent years, IoT has attracted industrial

and environmental applications interest, so technology companies started developing

IoT devices that can be deployed in large numbers in a reasonable cost and long

run-life.

A solution to connect large numbers of devices was needed with low power re-

quirements; hence a low power, wide area network (LPWAN) was born. Some tech-

nologies were used to LPWANs such as WiFi, Bluetooth Low Energy (BLE), and

Zigbee, but they had an issue in range of operation, and in short battery life even

after efficient energy consumption reduction [29]. Technology organizations and com-

panies started to develop their own solutions for mass-population, low-cost, and long

range IoT technologies. The Third Generation Partnership Project (3GPP) came up

with three standards; Enhanced Machine-Type Communication (eMTC), Narrow-

band IoT (NB-IoT), and Extended Coverage GSM (EC-GSM) [30]. A company

called Ingenu developed its own LPWAN technology and operated in the 2.4 GHz

band which offered a good range of 5-6km but at the cost of high power consumption

[30; 31]. Other LPWAN standards are mentioned in [32] such as Sigfox, DASH-7,

Weightless-w/n/p with ranges of 10-50KM, 2KM, and 2-30KM respectively. In 2015,

an alliance of about 500 companies was formed under the name of LoRa Alliance [33].

These companies came together forming a new LPWAN technology standard called

LoRaWAN. LoRaWAN is the networking and MAC stacks enabling the networked

nodes to send messages to the internet gateways in a single hop manner in a network

13
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Figure 2.3: Depiction of a typical LoRaWAN network.

topology of star-of-stars [34]. Figure 2.3 shows a typical LoRaWAN network.

LoRa refers to the long range capability of the wireless communication of the

LoRaWAN technology[35; 36; 37]. LoRaWAN uses a modulation method based on

Chirp Spread Spectrum (CSS) which is similar to Frequency Shift Keying (FSK) [37;

30; 35]. It operates in the ISM license-free band (433, 868, and 915 MHz) providing

an economical solution than other cellular LPWAN services with a link budget of up

to 156 dB [29; 38]. LoRa can provide a secure, robust communication of 2-5 KM in

urban areas, up to 15 km in suburban areas, and up to 45 Km in rural areas with a

battery life of 8-10 years [35]. Such long battery life with the applicability of large

numbers of nodes made LoRaWAN a great system for large and massive applications

such as livestock monitoring, smart-city-parking, smart irrigation and agriculture,

smart metering, and many other applications [39].

2.5 Software defined radio

SDRs have configurable digital signal processing that can be controlled by software

to perform different tasks of a radio transceiver. They give the ability to researchers

and engineers to prototype wireless communications systems with its software mod-

14



Tx

Rx

Data
Source

Source
Encoder

Channel
Encoder

Symbol
Modulator

Digital to 
Analog

D/A

RF
Modules

Data
Sink

Source
Decoder

Channel
Decoder

Symbol
Demodulator

Analog to 
Digital

A/D

RF
Modules

Software

(computer)
Hardware

(USRP)
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eled ability. In an SDR, an antenna receives the signal and passes it to broadband

processing downstream including wide band filter, low noise amplifier, analog to digi-

tal converter, and down-converter to convert the high frequency signal into the base-

band signal [40], [41]. The technology of re-configurable radios started back in the

80’s and was profoundly known by the year 1995 in the IEEE special publication in

the Communication Magazine [42].

The USRP is a versatile use device manufactured by National Instruments. It has

a FPGA (Field Programmable Gate Array) motherboard that performs the digital

processing of the communication signal. An RF daughter-board is attached to it that

performs all the analog parts of the communication through the antenna forming

the RF front-end operating in a range of frequencies, which determines the USRP’s

frequency of operation range [27; 43]. A block diagram shown in Figure 2.4 depicts

an SDR’s transceiver.
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CHAPTER III

METHODOLOGY AND SETUP

3.1 Introduction

This section describes the testbed and hardware setup we used both in LoRa and SDR.

Tests were done on an open football field in Oklahoma State University with open

rectangular area of 280 by 150 meters. The area is surrounded by some buildings of

two-three stories around the field. The testbed area where the devices were positioned

was in an area of 50m by 90m in the middle of this field (Figure 3.1).

3.2 LoRaWAN Setup

In LoRaWAN experiments, we used a development kit (Figure 3.2) provided by Link-

Labs company who developed their open-source network protocol using the physical

layer of LoRa [44].

The LoRaWAN test setup was consisted of the following:

• Link-Labs gateway with WiFi connectivity for internet back-hauling, and a

915MHz SMA antenna for LoRa.

• Link-Labs evaluation board with a LoRa antenna.

• Link-Labs Network Tester.

• Arduino Due microcontroller board.

The evaluation board is a bi-directional radio transceiver that has a Semtech’s

LoRa modulation chip for wireless LoRa communication operating at central fre-
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Figure 3.1: Test area.

quency of 915 MHz[45]. It needs a USB connection to a PC to connect and send data

to the gateway, but a modification was made as per the guides of Link-Labs to be able

to control the evaluation board with the Arduino board. This enables the evaluation

board to become a mobile IoT node (from now on referred as node) by powering the

Arduino with a portable power bank which will in turn power the evaluation board.

The Arduino board is loaded with a software that operates the evaluation board in

order to use LoRa, and connect to the gateway, with proper server credentials, and

keep sending messages to the gateway. The gateway was positioned in the middle of

the field on a tripod 1.25 meters high from the ground. The node is positioned on a

tripod with similar height and was moved around the gateway at certain GPS fixated

positions. A python code (can be found in Appendix 1.1 was run on an independent

laptop at the start time of taking each measurement which would download the data
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Figure 3.2: Link-Labs LoRA IoT Kit [1].

from the Link-Labs server, which was uploaded by the gateway, onto a text file for

the purpose of further processing (e.g. Matlab). The Matlab codes can be found in

Appendix 1.2.

3.3 SDR Setup

The SDR setup consisted of two USRPs, one functioning as a transmitter (a node)

and the other as a receiver (a gateway), each installed on top of a tripod 1.25 meters

above the ground. Each USRP is controlled by a laptop with one of them having

portable power source. In determining the path-loss, two periods of RSSI logging

was conducted, for each position, separated by few seconds of stoppage time. Each

consisted of 250 (total of 500) RSSI readings which then is averaged in the linear

domain. Figure 3.3 shows our SDR setup.

3.4 Experimental Evaluation

To prepare the SDR setup, calibration needs to be performed on the USRP because

of the uncontrolled gains it has. In this section, we discuss the calibration required

to perform for the SDR setup and calculations for the path loss exponent. We have
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Figure 3.3: SDR setup.

also presented the localization performance results for different cases.

3.4.1 Calibration of USRP RSSI readings

The USRP is controlled by LabVIEW software. We logged the received signal at the

receiver terminal of the USRP. The transmitted signal was of a combined I and Q

components, which we received both as voltage signals. The I and Q voltage signal

were added, squared, and then divided by 50 Ohms (the receiver’s impedance) to

attain the power of received signal. Mathematically, it can be given as:

PrdB = 10 log(I +Q)2 − 20 log(50). (3.1)

The term 20log(50) results in a 33.979 dB of gain in reading if not taken in
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Figure 3.4: USRP calibration setup.
Source: Adapted from [47; 48; 49; 50].

consideration, this value was confirmed and verified using the calibration setup shown

in Figure 3.4. An additional gain is present at the 915 MHz frequency of about 1.5 to

2 dB [46]. The SMA-SMA cable was tested in practice using the Microwave Analyzer,

we observed that a loss of about 0.65 dB is credited by the cable. A total of 36.629

need to be offset.

The calibration setup consisted of the following components:

• NI USRP 2930.

• Keysight N5183B MXG X-Series Microwave Analog Signal Generator.

• Keysight N9918A FieldFox Handheld Microwave Analyzer.

• UHF/ FM - 2-WAY SPLITTER.

• Three SMA-SMA 1m long cables.
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RSSI [dB] d [m] 10log(d/d0)

11.510 1 0
9.172 1.2589 1
8.805 1.5849 2
6.105 1.9953 3
1.790 2.5119 4
4.381 3.1623 5
-1.493 3.9811 6
-0.798 5.0119 7
-2.486 6.3096 8
-10.903 7.9433 9
-7.882 10 10
-9.142 12.589 11
-10.424 15.849 12
-12.559 19.953 13
-15.009 25.119 14
-17.499 31.623 15

Table 3.1: Received signal values with linear and logarithmic distances for path-loss
exponent calculation.

3.5 Path-loss Exponent Calculation

To determine the PLE, we took 500 RSSI readings for each position. In order to be

able to use LSE, RSSI measurements needed to be logged at some distances away

from the transmitter and fit them to a curve. Since we have the RSSI values in

dB, we used a logarithmic scale of distance for the x-axis to have both axes in same

scale to optimize the LSE results. The x-axis values are in linear scale in step of 1

unit, thus we measured the RSSI at specific distances resulted from converting those

logarithmic scale equidistance values to linear metric values. These values of RSSI,

linear distance in meters, and the logarithmic distance are shown in Table 3.1.

Figure 3.5 shows the plotted values where the x-axis is the logarithmic distance

10 log(d/d0). The resulted path-loss exponent γ was 1.9134 , which is expected as

reflected copies of the signal exist (i.e. multi-path).
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Figure 3.5: Path-loss exponent calculation.

3.6 Results

To perform LoRaWAN RSSI-based localization, the procedure was as follows: the

transmitter device was fixed in the middle of the test field and the receiver was

moved around at certain fixed locations to imitate the existence of multiple BSs and

measuring, then logging the received power. The relative direction of the Tx and

Rx antennas was kept fixed to eliminate any discrepancies in the radiation patters of

antennas as was shown in [2]. The testbed scenario is laid out as shown in Figure

3.6. A base station was taken as a reference point for the Cartesian coordinates, seen

located at (0,0) in Figure 3.6.

After collecting RSSI values and averaging in linear domain, localization is per-
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Figure 3.6: Testbed positioning scenario.

formed utilizing at least 3 BSs and up to 6. For each BS, a total of 400 RSSI readings

were averaged in LoRaWAN setup. The localization algorithm is depicted in Figure

3.7.

In LoRaWAN, the operating frequency changes dynamically, i.e., frequency hop-

ping. From the logged data, we observed huge change in RSSI between different

frequencies and this affected the localization results negatively. Also, we noticed that

when considering only the 915 MHz signals out of all the logged signals, the results

were enhanced with better localization. Furthermore, we eliminated the RSSI values

which were obvious outliers (RSSI values away from the average by 15-20 dBs). This

enhanced the accuracy even more. The difference in average can be seen in Figure 3.8

between total average and refined average for multiple frequencies. We notice that
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the refined average signal is generally of lower values.

Figure 3.9 shows the improvement in the RSSI variation by showing the standard

deviation of the RSSI with normal averaging and refined averaging. The RSSI values

with refined averaging have less scattering around the average. Furthermore, as one

can observe the mean value of standard deviation is reduced from 6.5 (total average)

to 2.9 (refined average).

In Table 3.2, we show the localization error in meters for three cases: ”Total

average” represents averaging using RSSI readings of all frequencies, ”average at 915

MHz” is for values of RSSI at this frequency alone, and ”refined average” is for the

RSSI values at 915 MHz but with no outliers. For multiple cases of BSs used in

the localization. Similar to results in [51], we notice that the biggest improvement
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Rx.

is when adding a fourth BS to the localization system, and then the improvement is

more subtle when adding the fifth and sixth BSs.

Localization error [m]

No. of BS Total average
Average at a single

frequency (915 MHz)
Refined average at a single

frequency (915 MHz)

3 17.9 14.93 12.18
4 13.9 11.33 6.64
5 11.2 9.44 5.19
6 11.2 8.71 4.56

Table 3.2: Localization error for different number of base stations.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

4.1 Conclusions

We have studied LoRaWAN RSSI based localization. Results showed that LoRaWAN

technology can have large localization error due to frequency hopping. Thus, it makes

it less suitable for applications that need highly accurate localization. However, for

applications that do not require high accuracy in localization, LoRaWAN can offer a

economical and acceptable solution, particularly for deployments with large number

of devices. For example, in livestock monitoring, there would be large deployment

of devices (e.g., tags) and a location accuracy of tens of meters would be sufficient.

In addition, results also showed that the impact of frequency hopping on localization

accuracy can be reduced by selecting and averaging the RSSI readings of a single

frequency. The localization accuracy can be further improved when the outliers in

RSSI readings are omitted.

4.2 Future Work

LoRaWAN is in its early age, thus, there are some improvements that can be in-

troduced. Improvements can be made to optimize it’s operation by increasing the

number of nodes can be connected simultaneously to a single base station. Another

is optimize battery consumption to extend the node’s battery life. Localization can

be optimized by applying some advanced RSSI filtering methods, such as Particle

Filter.

The applications for LoRaWAN are numerous since many need the trade-off of
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low-cost price and lower accuracy relative to GPS. Livestock monitoring is a perfect

application where large number of nodes (e.g. ear tag) are required for each ani-

mal to give their location. This location can be fed to an algorithm to track their

grazing habits. These LoRaWAN nodes can collect data and send messages that in-

cludes information about the animal such as temperature, hear rate, etc., to achieve

continuous health monitoring which will help increase their productivity.
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APPENDICES

Programming Codes

We used Python and Matlab codes in our work for the purpose of finding the channel’s
path loss exponent, perform localization, and show the amount of localization error.
Following are the codes were written and used.

1.1 Python Code

The following Pyhton code was written and used to log the data from Link-Labs
servers in or experiments with Link-Labs setup.

1 import conductor # Import Link−Labs L i b r a r i e s
2 import re
3 import datet ime
4 app token= ' 8262 bbd8890f7ce9de0f '
5 net token= ' 4 f50454e '
6 account=conductor . ConductorAccount ( ' hkwasme@okstate . edu ' , '

comm 408 ' ) # account c r e d e n t i a l s on L−L s e r v e r
7 nodes =[”$301$0−0−0−0300033c3” , ”$301$0−0−0−0400022c3” ] #

s e r i a l numbers o f nodes we used
8 stop=False
9 di=0

10 bs=0
11 d =[ ]
12 naming=0
13 ## Prompting the user to ente r f i l e names to be saved
14 whi le naming==0:
15 name=input ( ”What r e c e i v e d power to read ? [1=PrPL | | 2=

PrBS ] : ” )
16 name=i n t (name)
17 i f name==1:
18 name=”PrPL”
19 naming=1
20 e l i f name==2:
21 name=”PrBS”
22 naming=1
23 bs=1
24 whi le stop==False : # acqu i r i ng d i s t anc e between Tx and Rx f o r

path−l o s s exponent measurements
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25 dtemp=input ( ” Enter Distance [ 0 to terminate ! ] [−1 f o r
Base s t a t i o n ] : ” )

26 dtemp=i n t ( dtemp )
27 i f dtemp==0:
28 break
29 d . append ( dtemp )
30 di+=1
31 s t a r t=input ( ” Sta r t Reading RSSI? [ Enter y ] : ” ) # Star t

l o g g e r t imer
32 whi le s t a r t != 'y ' :
33 s t a r t=input ( ”Wrong Entry , to START Reading RSSI Enter

: y : ” )
34 t imer on=datet ime . datet ime . now ( )
35 end=input ( ”End Reading RSSI? [ Enter y ] : ” ) # Stop l o g g e r

t imer
36 whi le end != 'y ' :
37 end=input ( ”Wrong Entry , to STOP Reading RSSI Enter : y

: ” )
38 mins back=(datet ime . datet ime . now ( )−t imer on ) .

t o t a l s e c o n d s ( ) /60 # Count minutes e l apsed
39 Hours back=mins back //60
40 hours=s t r ( Hours back%24)
41 days=s t r ( Hours back //24)
42 ### Get a l l messages r e c e i v e d from those node f o r the

e lapsed minutes
43 f o r nd in nodes :
44 node = account . get module (nd)
45 nmsgs = node . g e t r e c en t mes sage s ( mins back ) #

Download node ' s data from s e r v e r
46 f 1 = open ( name + nd + s t r ( d i ) + ” raw” + ” . txt ” , ”w

” ) # open a text f i l e
47 f 1 . wr i t e ( ”=== MESSAGES FOR LAST %s Days and %s Hours

and %s Minutes ====” %(days , hours , mins back ) )
48 f 1 . wr i t e ( '\n ' )
49 f o r i in range (0 , l en ( nmsgs ) ) : # s t a r t wr i t i ng the

downloaded data onto the text f i l e
50 snmsgs1=s t r ( nmsgs [ i ] )
51 f 1 . wr i t e ( snmsgs1 )
52 f 1 . wr i t e ( '\n ' )
53 f 1 . c l o s e ( )
54 ## parse the text f i l e l ook ing f o r RSSI va lue s only

to enable Matlab p r o c e s s i n g l a t e r .
55 snmsgs2=s t r ( nmsgs )
56 r s s i r a w=re . f i n d a l l ( r ' r s s i . . . . . . . . . ' , snmsgs2 )
57 r s s i r a w s=s t r ( r s s i r a w )
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58 r s s i=re . f i n d a l l ( r ' \ − . . . . . . . ' , r s s i r a w s )
59 f 2 = open ( name + nd + s t r ( d i ) + ” . txt ” , ”w” ) # open

another t ext f i l e
60 f o r j in range (0 , l en ( r s s i ) ) : # s t a r t wr i t i ng the

parsed data onto the new text f i l e .
61 f 2 . wr i t e ( r s s i [ j ] )
62 f 2 . wr i t e ( '\n ' )
63 f 2 . c l o s e ( )
64 i f bs==0:
65 f 3 = open ( ”d . txt ” , ”w” ) # open a th i rd f i l e and save

the d i s t a n c e s o f the path−l o s s measurements
66 f o r k in range (0 , l en (d) ) :
67 f 3 . wr i t e ( s t r (d [ k ] ) )
68 f 3 . wr i t e ( '\n ' )
69 f 3 . c l o s e ( )

1.2 Matlab Codes

After logging the data using the Pyhton codes to generate text files, a Matlab code
(shown below) was ran to read those text files and save them in a Matlab formatted
data files (.mat). The code reads the RSSI values from the text files, convert them
to dB, and finds the linear average of them. These .mat files then read as matrices
by the path-loss exponent and the localization codes.

1.2.1 Matlab Code: Text-to-.mat

1

2

3 % ===== Read txt f i l e s and f i n d average o f logged RSSI va lue s
===========

4 x1=”PrBS ( ” ;
5 n=6; % Number o f base s t a t i o n s
6 f o r i =1:1 :n
7 f i l ename1=x1+num2str ( i ) +”) . txt ” ;
8 f i l e 1=fopen ( f i l ename1 ) ; % Read text f i l e c r ea ted by

conta in ing r s s i va lue s
9 data1=ce l l 2mat ( t ext scan ( f i l e 1 , '%f ' ) ) ;

10 % PrBS( i )=mean( ce l l 2mat ( text scan ( f i l e 1 , '% f ' ) ) , 1 ) ;
11 data1 =10.ˆ(( data1−30) /10) ;
12 data1=mean( data1 , 1 ) ; % Avg o f l i n e a r RSSI v a l s
13 PrBS( i ) =(10.∗ l og10 ( data1 ) ) +30;
14 end
15 save ( 'PrBS . mat ' , 'PrBS ' )
16 % save ( ' pr PL . mat ' , ' pr ' )
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17 % save ( ' pr LOC . mat ' , ' pr1 ' )

1.2.2 Matlab Code: Path Loss Exponent calculation

Path loss exponent calculation were performed using the following code:

1

2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 %% == Control Ent r i e s ==
6 p l o t t =0; % Plot curve f i t t i n g : YES=1 | | NO=0.
7 PrPL=ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'PrPL . mat ' ) ) ) ; % Read path

l o s s RSSIs
8 d=ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'd . mat ' ) ) ) ; % Read d i s t a n c e s o f

path l o s s
9 % PrBS=ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'PrBS . mat ' ) ) ) ; % Read

l o c a l i z a t i o n RSSIs o f BSs
10 %% == PATHLOSS EXPONENT ==
11 d0=d (1) ;
12 d i s t ance d d0 = 10∗ l og10 (d/d0 ) ; % c a l c u l a t e the log s c a l e

d i s t a n c e s o f path l o s s
13 f =915e6 ; % 915 MHz operat ing f requency
14 lm=(3e8 ) / f ;
15 path l o s s = −PrPL ; % r e v e r s e a x i s to r ep r e s e n t l o s s
16 xdata = di s tance d d0 ' ;
17 ydata = path los s ' ;
18 [ f i t r e s u l t , go f ] = f i t ( xdata , ydata , ' poly1 ' ) ;%Linear Least

Square curve f i t .
19 PL = f i t r e s u l t . p1 ; % I s o l a t e path l o s s exponent
20 i f ( p l o t t )
21 f i g u r e (1 )
22 p lo t ( f i t r e s u l t , xdata , ydata , ' o ' ) ;
23 t i t l e ( 'PL Curve F i t t n i g ' ) ;
24 x l a b e l ( ' 10 log (d/d0 ) ' )
25 y l a b e l ( ' Path Loss (dB) ' )
26 hold on
27 l egend ( ' Measurement ' , ' Linear LS Curve F i t t i n g ' , '

Locat ion ' , ' best ' ) ;
28 g r id on ;
29 end

1.2.3 Matlab Code: Localization

Localization was performed using the following Matlab code:

1
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2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 %% == Control Ent r i e s ==
6 p l o t t = 0 ; % p lo t s c e n a r i o : YES = 1 | | NO = 0 .
7 BS = 6 ; % Number o f base s t a t i o n s
8 BS Loc = ze ro s (BS , 2 ) ; % I n i t i a l i z e X−Y of a l l BSs
9 l a t = ze ro s (1 ,BS) ; % I n i t i a l i z e l a t o f a l l BSs

10 lon = ze ro s (1 ,BS) ; % I n i t i a l i z e lon o f a l l BSs
11 [ l a t (4 ) , lon (4 ) ] = dea l (36 .125900 , −97.079828) ; %− r e f e r e n c e

[ 0 , 0 ]
12 [ l a t (2 ) , lon (2 ) ] = dea l (36 .125913 , −97.080436) ;
13 [ l a t (3 ) , lon (3 ) ] = dea l (36 .126264 , −97.080513) ;
14 [ l a t (1 ) , lon (1 ) ] = dea l (36 .126260 , −97.079949) ;
15 [ l a t (5 ) , lon (5 ) ] = dea l (36 .126091 , −97.079735) ;
16 [ l a t (6 ) , lon (6 ) ] = dea l (36 .125917 , −97.079582) ;
17 [ latNode , lonNode ] = dea l (36 .126097 , −97.080042) ; % Node ' s

a c tua l l o c a t i o n
18 PrPL = ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'PrPL . mat ' ) ) ) ; % Read path

l o s s RSSIs
19 d = ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'd . mat ' ) ) ) ; % Read d i s t a n c e s o f

path l o s s
20 PrBS = ce l l 2mat ( s t r u c t 2 c e l l ( load ( 'PrBS . mat ' ) ) ) ; % Read

l o c a l i z a t i o n RSSIs o f BSs
21 %% == PATHLOSS EXPONENT ==
22 d0 = d (1) ;
23 % di s tance d d0 = 10∗ l og10 (d/d0 ) ; % c a l c u l a t e the log s c a l e

d i s t a n c e s o f path l o s s
24 f = 915 e6 ; % 915 MHz operat ing f requency
25 lm = (3 e8 ) / f ;
26 k = PrPL(1) +30; %
27 PL = 1.9134 %with Hisham Mar−7−19
28 d i s tanceNo i sy = d0∗10.ˆ((−PrBS+k ) . / (10∗PL) ) ; % f i n d diameter

o f c i r c l e s us ing r s s i ( ranging )
29 %% == POSITIONING ==
30 % 1−Get GPS o f 1 BS as r e f e r e n c e [ 0 , 0 ] .
31 % 2−c a l c u l a t e x−y f o r remainig BSs w. r . t r e f e r e n c e [ 0 , 0 ] .
32 % 3−L o c a l i z e node in x−y plane us ing M u l t i l a t e r a t i o n .
33 % 4−Find GPS o f node usn ig found x−y .
34

35 % Find X−Y of each BS w. r . t r e f e r e n c e BS
36 f o r i = 1 : 1 : BS
37 d i s t = pos2d i s t ( l a t (1 ) , lon (1 ) , l a t ( i ) , lon ( i ) ) ; % Find

Distance
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38 theta = f i n d b e a r i n g ( l a t (1 ) , lon (1 ) , l a t ( i ) , lon ( i ) , f a l s e ) ;
% Find Bearing

39 [ x , y ] = f ind xy (0 , 0 , d i s t , theta ) ; % Find x−y o f BS
40 BS Loc ( i , : ) = [ x , y ] ;
41 end
42 %% == Find ac tua l X−Y of node from i t s GPS ==
43 distNode = pos2d i s t ( l a t (1 ) , lon (1 ) , latNode , lonNode ) ; % Find

Distance
44 thetaNode = f i n d b e a r i n g ( l a t (1 ) , lon (1 ) , latNode , lonNode , f a l s e )

; % Find Bearing
45 [ xnode , ynode ] = f ind xy (0 , 0 , distNode , thetaNode ) ; % Find x−y '

s wrt r e f BS
46 Node Loc Act = [ xnode , ynode ] ; % f o r p l o t t i n g and e r r o r

c a l c u l a t i o n
47 %% == LOCALIZATION ==
48 Error = [ ] ; % I n i t i a l i z e a v a r i a b l e to s t o r e e r r o r
49 f o r BS = 3 : 1 : 6
50 BS loc temp = BS Loc ( 1 : BS , : ) ; % Temporary coo rd ina t e s

ho lder f o r cur r ent #o f BS
51 P = [ BS loc temp ' ; z e r o s (1 , l ength ( BS loc temp ) ) ] ; % Add z

−a x i s z e r o s . Convert 2−D to 3−D
52 S = di s tanceNo i sy ( 1 :BS) ; % d i s t a n c e s (d) f o r cur r ent #o f

BS
53 W = diag ( ones (1 , l ength (S) ) ) ;
54 [ NEst2 , Y2 ] = T r i l a t e r a t i o n 2 (P, S ,W) ;
55 NEst2 = r e a l ( NEst2 ( 2 : 4 , : ) ) ;
56 Err2 = s q r t ( ( ( NEst2 (1 )−Node Loc Act (1 ) ) . ˆ2 + ( ( NEst2 (2 )−

Node Loc Act (2 ) ) . ˆ 2 ) ) )% Compute the Error
57 Error = [ Error Err2 ] ;
58 i f ( p l o t t )
59 f i g u r e (1 )
60 p1 = p lo t ( Node Loc Act ( : , 1 ) , Node Loc Act ( : , 2 ) , ' ro ' ,

' l i n ew id th ' , 2) ;
61 hold on
62 f o r i = 1 : 1 : BS
63 p2 = p lo t ( BS Loc ( i , 1 ) , BS Loc ( i , 2 ) , ' r ˆ ' , '

l i n ew id th ' , 2) ;
64 hold on ;
65 end
66 p3 = p lo t ( NEst2 (1 ) , NEst2 (2 ) , ' g∗ ' , ' MarkerSize ' , 8 , '

l ineWidth ' , 1 ) ;
67 f o r i = 1 : 1 : BS
68 %plo t the c i r c l e s
69 z1 ( i ) = BS Loc ( i , 1 ) ;
70 z2 ( i ) = BS Loc ( i , 2 ) ;
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71 c i r c l e p l o t ( z1 ( i ) , z2 ( i ) , d i s tanceNo i sy ( i ) ) ;
72 end
73 g r id on ;
74 t i t l e ( [ ' L o c a l i z a t i o n s c e n a r i o with ( ' num2str (BS) ' )

Base S ta t i on s PLE = ' num2str (PL) ] ) ;
75 e s t1 = [ ' L o c a l i z a t i o n ( ' num2str ( Err2 , 3 ) ' m e r r o r ) '

] ;
76 lgnd = legend ( [ p1 p2 p3 ] ,{ ' Actual l o c a t i o n ' , ' Base

Stat i on ' , e s t 1 } , ' l o c a t i o n ' , ' best ' ) ;
77 lgnd . FontSize = 8 ;
78 end
79 end

1.3 Matlab Functions

The functions used in the previously shown Matlab codes are below:

1.3.1 Matlab Code: Drawing-Ranging-Circles

1 f unc t i on c i r c l e p l o t ( z1 , z2 , d i s t ance2 )
2 %x and y are the coo rd ina t e s o f the cen te r o f the c i r c l e
3 %r i s the rad iu s o f the c i r c l e
4 %0.01 i s the ang le step , b i gge r va lue s w i l l draw the c i r c l e

f a s t e r but
5 %you might n o t i c e i m p e r f e c t i o n s ( not very smooth )
6 ang =0:0 .01 :2∗ pi ;
7 xp=d i s tance2 .∗ cos ( ang ) ;
8 yp=d i s tance2 .∗ s i n ( ang ) ;
9 p lo t ( z1+xp , z2+yp ) ;

10 hold on ;
11 end

1.3.2 Matlab Code: Calculate distance between two GPS points

The code can be found in [56].

1.3.3 Matlab Code: Calculate bearing between two GPS points

The code is inspired from [57].

1.3.4 Matlab Code: Calculate X-Y from another point knowing distance
and bearing

The code is inspired from [57].
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1.3.5 Matlab Code: Multilateration

The code can be found in [58].
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