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Abstract: The structure of turbulent flow over non-flat surfaces is a topic of major
interest in practical applications in both engineering and geophysical settings. A lot
of work has been done in the fully rough regime at high Reynolds numbers where the
effect on the outer layer turbulence structure and the resulting friction drag is well
documented. It turns out that surface topology plays a significant role on the flow drag
especially in the transitional roughness regime and therefore, is hard to characterize.
Survey of literature shows that roughness function depends on the interaction of
roughness height, flow Reynolds number and topology shape. In addition, if the
surface topology contains large enough scales then it can impact the outer layer
dynamics and in turn modulate the total frictional force. Therefore, it is important
to understand the mechanisms underlying drag increase from systematically varied
surface undulations in order to better interpret quantifications based on mean statistics
such as roughness function. In this study, we explore the mechanisms that modulate
the turbulence structure over a two-dimensional (2D) sinusoidal wavy surface with a
fixed amplitude, but varying slope. To accomplish this, we model the turbulent flow
between two infinitely wide 2D wavy plates at a bulk Reynolds number, Reb = 2800.
We pursue two different but related flavors of analysis. The first one focuses on
understanding the non-equilibrium near surface turbulence structure and the second
one adopts a roughness characterization of such wavy surfaces. Analysis of the different
statistical quantifications show strong dependence on wave slope for the roughness
function indicating drag increase due to enhanced turbulent stresses resulting from
increased production of vertical velocity variance from the surface undulations. Also,
pronounced asymmetry is reported when comparing the turbulence structure on the
upstream and downstream region of the wave.
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CHAPTER I

Introduction

1.1 Application and Early Literature

Surface undulations can have significant impact on turbulent boundary layers both

in the atmosphere as well as in engineering applications. In particular, engineering

applications such as internal flows in pipes and turbomachinery, external flows over

fouled ship hulls (Schultz, 2007), wind turbine blades and other aerodynamic surfaces

are common examples. In the atmospheric side, while most roughness such as grass

and shrubs are very small, there exist medium to large scale roughness in the form of

tree canopies, man made structures and hills. The ubiquitous nature of such flows

has made understanding their dynamics a necessity. A significant amount of research

has been devoted to understanding turbulent flows over pipe roughness, for example,

the work of Darcy (1857) nearly two hundred years ago, in the early half of twentieth

century by Nikuradse (1950), Colebrook et al. (1939) and Moody (1944) and more

recently by various research groups (Shockling et al., 2006; Hultmark et al., 2013;

Chan et al., 2015). In the last two decades, fundamental investigation of turbulent

flows over uniform roughness embedded in flat surface has been undertaken through

a series of experimental studies (Flack et al., 2005; Schultz and Flack, 2005, 2007,

2009; Flack and Schultz, 2014; Flack et al., 2007; Flack and Schultz, 2010) as reviewed

in Jiménez (2004) and Flack and Schultz (2014). In addition there has been extensive

simulation-based research of turbulent boundary layers over systematically designed

roughness using direct numerical simulation (DNS) (Napoli et al., 2008; Chan et al.,

2015; Leonardi et al., 2007) and large eddy simulation (LES) (De Marchis and Napoli,
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2012). There has also been interesting recent work on reproducing Nikuradse-type

sand grain roughness using DNS at moderately high Reynolds numbers (Thakkar

et al., 2018; Busse et al., 2017).

1.2 Estimating Drag and Related Effects Due to Rough Topology

Through the extensive and growing body of literature, the underlying goals and

fundamental questions remain consistent, namely, how to estimate flow drag over

a given roughness topology at a specified Reynolds number or flow rate. From a

geophysical perspective, the goal is to model the outer layer dynamics and understand

the turbulent coherent structures within the roughness sublayer that impact man-made

applications in the lower atmosphere (Jayaraman and Brasseur, 2014, 2018; Coceal

et al., 2006). From a computational standpoint, the question is one of modeling the

effective dynamics within the roughness sublayer to bypass the complexity of resolving

the roughness elements.

Significant early attempts to answer some of the above questions were the work

of Nikuradse (1950) and the subsequent extension by Colebrook et al. (1939) to relate

flow drag with roughness. Both these efforts classify roughness as hydraulically smooth,

transitional or fully rough regimes depending on the relationship between drag and

roughness scales. In the fully rough regime, drag is independent of the Reynolds

number and depends only on the roughness scale whereas in the transitional regime

both of these are important as per Colebrook et al. (1939) and Nikuradse (1950). These

ideas are summarized in the popular Moody diagram (Moody, 1944). A more generic

quantification of roughness induced effects applicable across different classes of flows is

the Hama roughness function (Hama, 1954), ∆〈u〉+ which is commonly aligned with

the classical view of rough wall turbulent boundary layers. Specifically, the classical

view is that roughness influences the turbulence structure only up to a few roughness

lengths from the mean surface location while the outer layer flow is unaffected except
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for a modulation in the velocity and length scales - a rough wall extension of Townsend’s

Reynolds number similarity hypothesis (Townsend, 1980). Townsend’s hypothesis

states that in the high Reynolds number limit, the outer layer motions (outside the

roughness sublayer) are independent of the wall boundary condition except for the

role it plays in modifying the outer layer velocity (uτ ) and length scale, δ. Therefore,

this notion of ‘wall similarity’ (Raupach et al., 1991) implies that shape of the mean

velocity in the overlap and outer layers is unaffected (relative to a smooth wall) by the

roughness. This phenomenology is mostly consistent with observations as per Jiménez

(2004), but exception do exist. Quantitatively, the roughness function represents

the downward displacement in the mean velocity profile plotted in a semi-log scale

indicative of the increased drag from the surface inhomogeneities. Combined with

Townsend’s wall similarity hypothesis, ∆〈u〉+ represents the shift in the intercept used

to describe the logarithmic region of the mean velocity profile as

〈u〉+ =
1

κ
ln(y+) +B

︸ ︷︷ ︸
Log law for smooth wall

− ∆〈u〉+︸ ︷︷ ︸
Roughness

function

, (1.1)

where, κ is the von Kármán constant, 〈u〉+ is the averaged streamwise velocity over a

rough surface and y+ is the wall coordinate. Normalization is done using the inner

layer variables such as friction velocity, uτ and kinematic viscosity, ν expressed as

〈u〉+ = 〈u〉
uτ

and y+ = yuτ
ν

.

1.3 Outer Layer Similarity

Understanding the extent of universality and conditions for the existence of outer

layer similarity continues to be a major topic of interest (Flack and Schultz, 2014;

Jiménez, 2004). The underlying assumption behind wall similarity is that there is

sufficient scale separation between the boundary layer thickness, δ and the roughness

height, k. Consequently, the roughness sublayer is expected to be relatively thin
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(compared to the boundary layer thickness) as it scales with k. However, the precise

nature of this scaling relationship depends on the detailed roughness topology. Flack

et al. (2005, 2007) explored the concept of ‘critical’ roughness height and conditions

for the existence of outer layer similarity. In their work, outer layer similarity was

consistently encountered even for moderately high Reynolds numbers over uniform

three-dimensional rough surfaces with reasonably large roughness elements. In fact,

little to no deviations in outer layer similarity was observed for δ/k & 20 and δ/ks & 6

where k, ks are the mean roughness height and equivalent sand grain roughness

respectively. Importantly, it was reported that there exists no critical roughness

height (i.e. a height corresponding to a sharp transition) as the influence of roughness

size on outer layer statistics is more gradual. These trends appear to break down

for two-dimensional roughness (especially periodic) which are known to generate

stronger vertical disturbances due to the absence of significant spanwise motions in

the roughness sublayer. This two-dimensional surface effect is clearly observed in

higher order statistics and less so for the mean velocity profiles. Volino et al. (2011,

2009) clearly illustrate this using experiments with transverse two-dimensional bars

and three-dimensional cubes as roughness elements (δ/ks ≈ 2− 3) and flow friction

Reynolds numbers, δ+ ≈ 2000. Subsequently, Krogstad and Efros (2012) show that

flow over two-dimensional roughness elements with higher δ/k and at higher Reτ

(larger scale separation) generate outer layer similarity just like three-dimensional

roughness. Therefore, the details of the roughness topology along with the roughness

scale and the flow Reynolds number modulate turbulence structure. It is only their

relative importance that changes across the different regimes.

1.4 Challenge in Roughness Characterization

The frictional drag from the surface is also strongly influenced by the surface topology

and not just the roughness scale. The correlation of friction coefficient with Reynolds
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number in the Moody diagram (Moody, 1944) is parameterized for mean roughness

height. By leveraging the existence of outer layer similarity, the shift in the mean

profile or roughness function is used as a surrogate for prediction of increase in

friction drag over a given rough surface. The roughness correlations of Nikuradse

(1950) or Colebrook et al. (1939) relate ∆〈u〉+ to k+ (scaled roughness height) using

∆〈u〉+ = (1/κ) log(k+) +B − 8.5 and ∆〈u〉+ = (1/κ) log(1 + 0.3k+) respectively. The

Nikuradse expression is calibrated for the uniform sand grain roughness while the

Colebrook relationship is designed for commonly occurring surfaces. However, there

exists many examples where ∆〈u〉+ does not depend solely on k+ such as a turbulent

flow over two-dimensional transverse (or wavy surfaces as reported in this work)

bars (Perry and Li, 1990) separated by distances comparable to the height. Perry et al.

(1987) classify such cases as “d-type” roughness in contrast to “k-type” roughness where

∆〈u〉+ scales with k+. In the case of closely spaced transverse bars, there exist vortical

flow cells between each of these elements thus causing the turbulent flow to skim over

which makes ∆〈u〉+ depend little if any on k+. Schultz and Flack (2009) systematically

study turbulent flow over three-dimensional pyramid elements of different heights

and inclination angles to understand the role of roughness slope in addition to k

on the drag. Their results clearly indicate that smaller slopes produce significant

deviation from the uniform sand roughness behavior with ∆〈u〉+ changing slower

with k+ in the transitionally rough regime. Further, these deviations get stronger

with increase in inner scaled roughness height. Nakato et al. (1985) report similar

observations for sinusoidal wavy surfaces with slopes greater than ∼ 6◦ mimicking the

uniform sand roughness behavior. Physical insight for these observations is available

from the numerical work of Napoli et al. (2008) who superposed sinusoidal waves to

generate a corrugated two-dimensional rough surface. From their work, the anomalous

relationship between ∆〈u〉+ and k+ at small slopes or ‘waviness’ regime is attributed

to the dominance of viscous drag over form drag. On the contrary, in the ’roughness’
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regime involving higher slopes (as in Nikuradse (1950); Thakkar et al. (2018); Flack

et al. (2007)), the form drag dominates. To characterize these deviations, they design

a slope dependent roughness parameter termed as effective slope, ES, that represents

the average surface slope magnitude over a given sampling region. In their findings,

∆〈u〉+ varies linearly with ES for ES < 0.15 (beyond which ∆〈u〉+ is constant for a

given k+) whereas Schultz and Flack (2009) report that the transition happens at

ES < 0.35. Therefore, ES is an additional ‘waviness’ parameter along with k+ that

modulates ∆〈u〉+, i.e. ∆〈u〉+ = f(k+, ES). Of course, one can build a rich enough

parameter space in addition to ES and a to learn f using advanced data science

methods.

1.5 Scope of the Current Work

In this study we explore the structure of near-wall turbulence and deviations from

equilibrium flat channel turbulence in the waviness regime using direct numerical

simulation of wavy channel flow at a friction Reynolds number, Reτ = δ+ ≈ 180.

The simulation infrastructure uses higher-order spectral like compact schemes (Laizet

and Lamballais, 2009) for both advection and diffusion terms while a third-order

multi-step method is used for time integration. The wavy surface is represented

using an immersed boundary method (Peskin, 1972; Parnaudeau et al., 2004) similar

to many other efforts (Busse et al., 2017; Leonardi et al., 2007). The focus of our

current analysis is to better understand the mechanisms underlying the drag increase

at small slope angles dominated by viscous drag. For the sinusoidal two-dimensional

surfaces considered in this study, the effective slope, ES is directly related to the

non-dimensional ratio of the amplitude (a) and wavelength (λ) of the sinusoid, i.e.

ES = 4a/λ = 2ζ where ζ is the steepness factor. In this research, ζ is deliberately

varied from 0 to 0.044 (ES ∼ 0− 0.088) which is nearly an order of magnitude smaller

than the transition location (in ES) beyond which ∆〈u〉+ becomes constant for a
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given mean roughness height a+. For this range of slope parameter (ζ), there exists

very little flow separation over the 2D surface and consequently, very little spanwise

flow. The roughness height or wave amplitude, a, is chosen to generate moderate scale

separation, i.e. δ/a ≈ 15 and the ratio based on the equivalent sand roughness height

(assuming the Nikuradse (1950) form) turns out to be δ/ks ≈ 30−50. These values are

normally sufficient to generate outer layer similarity based on the three-dimensional

surface roughness studies of Flack et al. (2007) and Flack and Schultz (2014), but may

not be adequate for the two-dimensional wavy surfaces used in this study. Therefore,

analysis in this work will focus on assessing the extent of outer layer similarity and the

relationships between roughness function, effective slope and roughness/wave height.

In addition, we delve into the nature of roughness induced deviations on higher order

turbulence statistics and their production mechanisms in order to generate a process

level understanding. Note that the roughness Reynolds numbers used in the work

(a+ ≈ 13− 14) fall within the transitional regime.

The primary goal of this study is three-fold: (i) to explore the non-equilibrium,

near-surface turbulence structure over systematically varied sinusoidal undulations,

(ii) characterize the roughness characteristics of such wavy surfaces and (iii) explore

the inhomogeneity induced streamwise asymmetry. In addition, wherever possible,

we quantify deviations from equilibrium phenomenology as evidenced in flat channel

turbulence, assess the extent of outer layer similarity and relate to characteristic

roughness induced effects as appropriate. To accomplish this, we use conventional

turbulence quantifications such as mean first and second order statistics (velocity

variances and turbulent kinetic energy (TKE)), horizontal flow stress, mean non-

dimensional velocity gradient profiles.
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1.6 Organization

The rest of the article is organized as follows. In chapter II, we describe the numerical

methods, simulation design, quantification of statistical convergence and validation

efforts. In chapter III, we present the results from the analysis of outer layer similarity,

roughness induced drag quantification. We further characterize how the turbulence

structure, namely, components of the Reynolds stress tensor and the different produc-

tion mechanisms are modulated by the wavy surface undulations. Characterization

of roughness along with the analysis on flow stresses are presented in chapter IV. In

chapter V, the streamwise asymmetry is discussed and quantified. Also, the complexity

of streamwise averaging in presence of inhomogeneous surface is addressed in this

chapter. Finally in chapter 6.1 we summarize the major findings from this study and

in chapter 6.2.
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CHAPTER II

Numerical Methods

2.1 Governing Equations

In this study, we adopt a customized in-house version of the Incompact3D code

framework developed by Laizet and Lamballais (2009) to perform our DNS study.

The dynamical system being solved is the incompressible Navier-Stokes equation for

Newtonian flow described in a Cartesian co-ordinate system with x,y,z pointing to

streamwise, vertical and spanwise directions respectively. The skew-symmetric vector

form of the equations are given by

∂u

∂t
= −∇p− 1

2

[
∇(u⊕ u) + (u∇)u)

]
+ ν∇2u + f and (2.1)

∇.u = 0. (2.2)

Here f represents the body force, p represents the pressure field. The fluid density

(ρ) is considered unity for this incompressible fluid as we solve these equations in

non-dimensional form. We denote the advection-diffusion term by F for simplicity.

Naturally, the above systems of equation can be rewritten to generate a separate

equation for pressure.

The system of equations are advanced in time using a 3rd order Adam-Bashforth

(AB3) time integration with pressure-velocity coupling using a fractional step method (Kim

and Moin, 1985). For the channel flow, the body force term, f is dropped. The velocity
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is staggered by half a cell to the pressure variable for exact conservation of mass. A 6th

Order Central Compact Scheme (6OCCS) with quasi-spectral accuracy is used to cal-

culate the first and second derivative terms (contained in F) in the transport equation.

The pressure Poisson equation (PPE) is solved using a spectral method by applying

Fast Fourier Transform on the elliptic equation to generate an algebraic equation. The

right hand side of the PPE is computed using a quasi-spectral accuracy using 6OCCS

and then transformed to Fourier space. To account for the discrepancy between the

spectrally accurate derivative for the pressure gradient and a quasi-spectral accuracy

for the divergence term, the algorithm uses a modified wavenumber in the pressure

solver. Appendix A provides more details on the schemes and discretizations.

2.2 Immersed Boundary Method (IBM)

A major downside to the use of higher order schemes as above is the representation

of the complex geometry. In particular, the boundary conditions for higher order

methods are complex and hard to implement without loss of accuracy near the surface.

In this work, we adopt an immersed boundary method (IBM) framework to represent

the complex surface shapes. In the IBM the surface representation is accomplished

through an added body force term to the governing equations while the background

grid can be a simple Cartesian grid. Therefore, this approach saves significant grid

generation effort, but is prone to inaccuracies. In this study, we leverage the higher

order IBM implementation in Incompact3D using the direct forcing method requiring

reconstruction of the velocity field inside the solid region. This can be illustrated using

the schematic in figure 2.1. Figure II.1(a) denotes the solid nodes in red, fluid nodes

in blue and the interfacial nodes in green. The solid curve represents the continuous

shape of the fluid-solid interface. The IBM framework aims to enforce zero velocity at

the interface through a velocity field reconstruction in the red solid nodes so that the

6OCCS gradient computations are unaffected. Therefore, the key to the accuracy of
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this approach is the velocity reconstruction step inside the solid region (red nodes in

the schematic) using information at the blue and green nodes. The numerous different

IBM implementations (Parnaudeau et al., 2004) differ in the details of this velocity

reconstruction.

X

Y

Solid

F luid

(a)

V elocity

(b)

Figure 2.1: Illustration of 1D polynomial reconstruction based on Lagrangian
polynomial. The solid black curve in (a) represents the fluid-solid interface, red
triangular markers represents solid gridpoints where the reconstruction is performed
using the fluid gridpoints shown as filled blue circular markers along with the target
quantity on the interface marked as filled green circular marker. To retain stability
the gridpoints represented as the empty blue circular markers just above the interface
is ignored from the reconstruction computation. Dotted black rectangle shows the
direction along which the 1D reconstruction is performed as the gridpoints under
consideration is enclosed by this rectangle. In (b) a velocity curve is shown which has
zero enforced value on the surface (at filled green circular marker). Using the values
on the three gridpoints marked as filled blue circle, we extend the curve by computing
values on the solid region (at red triangular markers).

In the current study, we adopt the one-dimensional higher order polynomial

reconstruction as reported in Gautier et al. (2014). This reconstructed velocity field is

directly used to estimate the derivatives in the advection and diffusion terms of the

transport equation. An illustration of this approach is shown in figure II.1(b). Using

this 1D polynomial reconstruction, one estimates different solid region velocity fields
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when computing the derivatives along the different directions (x, y and z). This is

an advantage as well as a disadvantage. However, for the purposes of this study, this

approach has shown to be reasonably accurate as described in Section 2.5.

2.3 Simulation Design

We carry out five different simulations of turbulent flows in flat and wavy channels

with different steepness levels (ζ), but with the same peak wave height (a) as shown

in figure II.2(a). We define an average wave steepness, ζ = 2a/λ, where λ is the

wavelength. In our study ζ varies from 0− 0.044 corresponding to zero, one , one and

one half, two and finally, four waves over the streamwise length of the domain. For

all these cases, care was taken to ensure that the bulk Reynolds number, Reb = ubδ
ν

is maintained to a constant value of ∼ 2800. The corresponding friction Reynolds

number, for the flat channel case is ∼ 180 which increases slightly with higher ζ. For

the wavy channel turbulent flows with the same effective flow volume and mean channel

heights, maintaining the same flow rate (or bulk velocity) increases the corresponding

friction Reynolds number, Reτ = uτ δ
ν

, due to increase in uτ with wave steepness, ζ.

However, this increment is as at most ∼ 10% in the current work for upto two waves

and therefore is not expected to influence our analysis significantly. In the four wave

case, this increment is ∼ 25% and a slight modulation on the regular the analysis is

necessary. The simulation parameters for the different cases are summarized in Table

2.1. The simulation domain is chosen as 4πδ× 2.2δ× 4πδ/3 (including the buffer zone

for the IBM) where δ is the boundary layer height. This volume is discretized using a

resolution of 256× 257× 168 grid points. In the streamwise and spanwise directions,

periodic boundary conditions are enforced while a uniform grid distribution is adopted.

In wall normal direction, no slip condition representing the presence of the solid wall

causes inhomogeneity. To capture the viscous layers accurately, a stretched grid is

used. The grid stretching in the inhomogeneous direction is carefully chosen using a
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mapping function that operates well with the spectral solver for the pressure Poisson

equation. The different inner scaled grid spacings are also included in Table 2.1.

Case λ λ+ a+ ζ ∆x+ ∆y+
w ∆y+

cl ∆z+ Recl Reb Reτ uτ × 103

A ∞ ∞ 0 0 8.94 1.05 2.00 4.55 3263 2800 180.9 43.07
B 4π 2354 13.07 0.011 9.23 1.15 2.25 4.70 3277 2800 186.8 44.48
C 8

3
π 1618 13.48 0.017 6.34 1.19 2.32 4.84 3285 2800 192.6 45.85

D 2π 1252 13.92 0.022 9.82 1.23 2.39 5.00 3398 2800 198.7 47.32
E π 712 15.82 0.044 11.17 1.40 2.72 5.69 3337 2800 226.0 53.82

Table 2.1: Tabulation of different design parameters for the simulations such as:
wavelength (λ), amplitude (a) and steepness (ζ = 2a

λ
) of the wavy surface, friction

velocity (uτ ), Reynolds numbers (Re) based on boundary layer height (δ) and differ-
ent velocities expressed as the subscripts (’cl’=centerline velocity, ’b’=bulk velocity,
’τ ’=friction velocity) and the grid spacing in different directions (’∆x’=streamwise,
’∆z’=spanwise, ’∆yw’=wall normal near the wall, ’∆ycl’=wall normal near the flow
centerline). Superscript ’+’ refers to inner scaled quantity (scaled with respect to
dynamic viscosity (ν) and friction velocity (uτ )).
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Figure 2.2: Schematic illustration of the Cartesian grid with the immersed boundaries
of different shapes in (a) and a close-up of the buffer region in (b). The solid thick
curve represents the wave for λ = 4π and the dashed line for λ = 8π

3
. A similar setup

is used for other surface shapes as well.

2.4 Convergence of Turbulence Statistics

In order to quantify the convergence of the simulation and ensure statistical stationarity

of the turbulence, we consider the streamwise component of the inner scaled mean

spatial and temporally averaged horizontal stress that includes both the mean viscous

and Reynolds stress components as τH,x = 〈∂u
∂y
〉+x,z,t − 〈u′v′〉+x,z,t. Here 〈〉x,z,t represents

the averaging operation with subscripts denoting averaging directions. In the limit
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of statistically stationary and horizontally homogeneous turbulence, τH,x(y) can be

approximated to a linear profile, 1−y
δ

as derived from the mean momentum conservation

equations. We estimate a residual convergence error εRes as

εRes = 〈∂u
∂y
〉+x,z,t − 〈u′v′〉+x,z,t − (1− y

δ
), (2.3)

whose variation with y/δ is shown in figure 2.3.
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y/δ
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0.2

ε R
es
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ζ = 0.011
ζ = 0.017

ζ = 0.022
ζ = 0.044

Figure 2.3: Quantification of statistical stationarity for the different DNS data sets
using the residual of mean horizontal stress from 2500 samples collected over ∼ 12 δ

uτ
.

We note that this error is sufficiently small for the flat channel (ζ = 0) with

magnitudes approaching 0.01 near the surface and much smaller in the outer layers.

The plot also shows similar quantifications for wavy channel turbulence data with large

residual errors near the surface. This is not surprising given that closer to the wall,

the turbulence structure is known to deviate from equilibrium due to deviations from

horizontal homogeneity. In fact, such deviations from equilibrium phenomenology will

be expounded further in the later sections of the article. Nevertheless, we show here

that farther away from the surface, the mean horizontal stress approaches equilibrium

values as an indicator of stationarity.
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2.5 Assessment of Simulation Accuracy

We perform a baseline assessment of the computational accuracy for the turbulent

channel flow using an immersed flat channel surface before adopting it for more

complex surface shapes. We compare the mean and variance profiles from the current

DNS of immersed flat channel flow with the well known work of Kim et al. (1987)

(KMM87 here onwards). This turbulent channel flow corresponds to a bulk Reynolds

number, Reb ≈ 2800, mean centerline velocity Reynolds number, Recl ≈ 3300 and a

friction Reynolds number, Reτ ≈ 180. KMM87 used nearly 4× 106 (128× 129× 128)

grid points and solved the flow equations by advancing modified variables, namely,

wall-normal vorticity and Laplacian of the wall-normal velocity without explicitly

considering pressure. They adopt a Chebychev-tau scheme in the wall-normal direction,

Fourier representation in the horizontal and Crank-Nicholson scheme for the time

integration. In our work, we adopt a spectrally accurate 6th order compact scheme in

space and a third order Adam-Bashforth time integration as reported in Laizet and

Lamballais (2009). Figure 2.4 clearly shows that the inner-scaled mean (figure II.4(a))

and root mean square of the fluctuations (figure II.4(b)) from the current simulations

match that of KMM87. We observe slight differences for the streamwise velocity

fluctuation RMS in the outer layer which can be attributed to the improved resolution

(and accurate time integration) in our simulations. The method employs a staggered

grid arrangement for improved mass conservation.
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Figure 2.4: Comparison of mean velocity and RMS velocity fluctuation between DNS
of flat channel turbulent flow with IBM and the Kim et al. (1987) DNS without IBM
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CHAPTER III

Mean Turbulence Structure

As discussed in section 2.3, we consider four different steepness (ζ) levels (table 2.1)

including the flat surface to understand the impact on turbulence structure. The flat

channel with ζ = 0 represents equilibrium turbulent flow due to horizontal homogeneity

and stationarity. To contrast, we consider turbulent flows over wavy surfaces with

very little to medium separation as shown in figure 3.1.

(a) ζ = 0.011 (b) ζ = 0.017

(c) ζ = 0.022 (d) ζ = 0.044

Figure 3.1: Comparison of instantaneous flow separation for the different wave
steepness, ζ. The wavy surface is denoted in cyan and the separation in red.
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The analysis can be realized using both instantaneous as well as averaged turbulence

structure. In this section we focus on the streamwise-averaged or more commonly

known as the ‘double-averaged’ turbulence structure which is a function of solely

the wall normal distance. The term ‘double-averaging’ refers to the combination of

averaging along homogeneous (z, t) and inhomogeneous (x) directions. For the spatial

averaging we include both streamwise (x) and spanwise (z) spatial directions and

for the temporal (t) averaging we include 2500 three-dimensional snapshots over 20

flow through times for the chosen friction Reynolds number. We use the notation

〈u〉x,z,t to specify a quantity u being averaged over x, z and t. For the flat surface,

horizontal homogeneity and stationarity implies that x, z and t are equivalentin the

averaging operation, 〈 〉x,z,t (i.e. generate equivalent results in the limit of sufficient

samples). However when dealing with two-dimensional non-flat surfaces as in this

work, only z, t are equivalentand provide sameresults, but depend on x due to absence

of streamwise homogeneity near the surface. Therefore, in such situations it is only

natural to consider averaged quantities that have both streamwise (x) and vertical

(y) variability. This allows one to characterize the near-surface inhomogeneity along

both directions. However, in order to quantify deviations from equilibrium and assess

the impact of near-surface inhomogeneity on the turbulence we consider streamwise

averaged statistics.

3.1 Streamwise Averaging of Turbulence Statistics

In this section, we focus on the deviations from equilibrium in turbulence structure

using streamwise averaged statistics that depend only on y
δ

and ζ. To average along

the wavy surface, we define a local vertical coordinate, ylocal,1 at each streamwise

location with ylocal,1 = 0 at the wall. Its maximum possible value is the mid channel

height and changes with streamwise location. We then perform streamwise averaging

along constant values of ylocal,1, to generate mean statistical profiles. A slight variant

18



of the above is to use a rescaled coordinate ylocal,2 = ylocal,1 × δ
δlocal

which stretches

ylocal,2 everywhere between [0, δ] where δ is the mean half channel height. One

averages over constant values of ylocal,2 to generate another set of double-averaged

mean statistics. Both these approaches implicitly approximate the terrain as nearly

flat with a large radius of curvature in a local sense and therefore, nearly homogeneous.

This approximation works well when a
δ
<< 1. In our study a

δ
= 0.07 which is an order

of magnitude larger than the typical viscous length scale, Lv = ν/uτ = 1/Reτ ≈ 0.0055,

but smaller than the log layer (y+ ≈ 50) with strong inertial dynamics.

100 101 102

y+

0

5

10

15

〈u
〉+ x
,z
,t

ζ = 0
ζ = 0.011
ζ = 0.017
ζ = 0.022
ζ = 0.044

(a)

100 101 102

y+

0.00

0.05

0.10

0.15

〈v
〉+ x
,z
,t

(b)

100 101 102

y+

−0.1

0.0

0.1

〈w
〉+ x
,z
,t

(c)

0.00 0.25 0.50 0.75 1.00

y/δ

0

5

10

15

〈u
cl
〉+ x
,z
,t
−
〈u
〉+ x
,z
,t

(d)

Figure 3.2: Inner scaled mean (a) streamwise velocity, (b) vertical velocity, (c) spanwise
velocity and (d) defect velocity computed using local coordinate-based average. The
thick lines represent averaging at constant ylocal,1 and the thin lines with markers
represent averaging at scaled ylocal,2. Three vertical straight lines correspond to the
different a+ for ζ > 0 (see Table 2.1).

For the mean velocity results presented in this section, we compare both the
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averaging approaches to illustrate their closeness to each other. Specifically, we use

thick solid lines to denote the mean profiles averaged over constant local coordinate,

ylocal,1 and thin lines with markers to denote averaged quantities using scaled local

coordinate, ylocal,2. However, for the rest of our analysis, we average over ylocal,1 in

a manner consistent with the literature. The different colors, namely, blue, green,

red, lime and magenta are associated with different wave steepness, ζ = 0, ζ = 0.011,

ζ = 0.017, ζ = 0.022 and ζ = 0.044 respectively.

3.2 Outer Layer Similarity and Mean Velocity Profiles

As the mean channel height (for wavy geometry) is kept constant across all the different

steepness, ζ, the observed changes in the mean statistics are only due to surface effects

and not the outer layer dynamics. In figure 3.2 we show the inner-scaled, double

averaged streamwise, vertical and spanwise velocity along with the streamwise defect

velocity for the different cases. The prominent observation for the streamwise velocity

is an upward shift (downward shift in the u+− y+ plot) of the logarithmic region with

increasing wave steepness, ζ (figure III.2(a)) which increases with y+ before showing

near linear growth in the log-layer. This trend is well known for rough-wall turbulent

boundary layers (Jiménez, 2004) and is indicative of slowing down of the flow near

the wall from increased drag due to the wavy surface for a fixed mass flow rate (bulk

Reynolds number). This would naturally result in higher centerline velocities and Recl

as seen in Table 2.1 in order to maintain the prescribed flow rate. The vertical mean

velocity structure (figure III.2(b)) is consistent with this interpretation as the wavy

undulations generate increasingly stronger net vertical velocity close to the surface

with increase in ζ. As seen from figure III.2(b), the mean vertical velocity profile shows

systematic upward flow in the viscous and buffer layer along with a weak downward

flow in the logarithmic region in order to maintain zero net flow in the vertical direction.

It is well known that the mean vertical velocity is zero due to horizontal homogeneity
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for the flat channel (ζ = 0). Therefore, these well established vertical motions in the

mean over wavy surfaces, although small (〈v〉+ = O(0.1)), represent the most obvious

form of deviations from horizontal homogeneity, a prerequisite for equilibrium.
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Figure 3.3: Spanwise and temporally averaged streamwise and vertical velocity over
wavy surfaces in turbulent channel flow.

In particular, the vertical velocity is asymmetric with respect to the symmetric

wavy shape as seen from isocontours of time-averaged mean vertical velocity shown in

figure 3.3. We observe that the upward and downward slopes display varying tendencies

due to presence of adverse and favorable pressure gradients which decelerate (push

the flow upward) and accelerate (push downward) the flow as expected. However, the

extent of upward deceleration dominates the downward acceleration which breaks the

symmetry of the flow patterns around the wave crest. This asymmetry increases with
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ζ resulting in stronger net vertical flow in the lower buffer layer (figure III.2(b)).

In spite of these near surface deviations, the dynamics outside the roughness

sublayer tend to be similar when normalized and shifted appropriately. To illustrate

this outer layer similarity, we show the defect velocity profiles in figure III.2(d) that

indicate little to no deviation between ζ = 0 and ζ = 0.044. If anything, the deviation

is slightly higher near the surface in the roughness sublayer.

There is no significant trend observed in the spanwise velocity profile shown in

figure III.2(c), which can be attributed to the homogeneous nature of the turbulence

as well as the geometry in spanwise direction

3.3 Quantification of Mean Velocity Gradients and Inertial Sublayer

The normalized mean streamwise velocity gradients identify the different regions of the

turbulent boundary layer and are especially useful to quantify the extent of the inertial

sublayer (or the logarithmic region) and the von Kármán constant. In this study, we

estimate the normalized premultiplied inner-scaled mean gradient, γ = y+
d〈u〉+x,z,t
dy+

as

shown in figure III.4(a). This function achieves a near constant value of 1/κ (where

κ is the von Kármán constant) in the inertial sublayer due to normalization of the

mean gradient by characteristic law of the wall variables, i.e., surface layer velocity

(uτ ) and distance from the wall (y). In this study, for the chosen bulk Reynolds

number, Reb (and the realized narrow range of friction Reynolds numbers, Reτ ) we

observe that the inertial layer exists over y+ ∼ 60 − 110 for ζ = 0 which shifts to

y+ ∼ 75 − 125 for ζ = 0.022 and y+ ∼ 85 − 135 for ζ = 0.044. At the outset, this

upward shift (rightward in the plot) in the log layer appears to be associated with the

change in wave steepness, ζ and not the small changes (∼ 10% or lower) in friction

Reynolds number, Reτ for up to ζ = 0.022. For ζ = 0.044, friction Reynolds number is

expected to start influencing this shift slightly. The estimated von Kármán constants

are tabulated in Table 4.1 and show a range of 0.38− 0.40 for the different runs. In
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this study, we use the appropriate value of κ to compute the different metrics.
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Figure 3.4: Variation of non-dimensional mean streamwise velocity gradients, (a)

γ = y+
d〈u〉+x,z,t
dy+

and (b) Φ = κy
uτ

d〈u〉x,z,t
dy

.The thin dashed black line in (a) corresponds to

the mean γ valued 2.5582 computed based on y+ = 60− 110.

A related quantification often employed to interpret near wall structure is the

non-dimensional mean streamwise velocity gradient, Φ = κy
uτ

d〈u〉x,z,t
dy

whose variation

with inner-scaled wall normal distance is shown in figure III.4(b). It is easy to see

that γ = Φ/κ. We observe that the Φ profiles for different ζ mimic the characteristic

equilibrium structure starting from zero at the wall followed by a peak at the edge of

viscous layer and subsequently, a gradual decrease in the buffer layer to a value of

one in the inertial sublayer. This clearly indicates outer layer similarity. In fact, there

exists an overall shape similarity in Φ hinting at the potential for universality if only

the appropriate scales at the different regimes can be identified.

The origin of the ‘overshoot’ or near-surface peak is well known and is related to

the inconsistency from normalization of the mean gradient using inertial scale variables

closer to the surface (viscous layer) where the physically relevant characteristic length

scale is Lv = ν/uτ . With some analysis, one can easily show that Φ undergoes a linear

growth as Φ = κy/Lv near the surface (Lv being a constant). In the buffer layer, one

can similarly formulate Φ = κy/Lbl with Lbl increasing super linearly with y to cause

the peak followed by a decrease as one approaches the inertial sublayer. In the inertial
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layer, Φ = κy/Lil with Lil varying linearly with y as per law of the wall (resulting in

Φ and γ assuming constant values).

In this context, we see that as the friction velocity, uτ increases with ζ (see

Table 2.1), the viscous length scale, Lv decreases resulting in faster growth of Φ =

κy/Lv in the viscous layer, but over a smaller height that scales with Lv. This is

consistent with figures III.4(a) and III.4(b) which show that the magnitude of the

peak at the viscous-buffer layer transition decreases with increase in ζ. In addition,

we observe an upward (rightward) shift in the log region (i.e. region of nearly constant

Φ and γ) with ζ. Taken together, the above observations, namely the upward shift in

the log region (figure III.4(a)) and the smaller peak in Φ with increase in ζ, indicate

that the buffer layer becomes increasingly thicker for steeper waves. The ‘buffer layer’

is known as a region of high turbulence production (Pope, 2001) where both the

viscous and Reynolds stresses are significant. Therefore, the expansion of the buffer

layer with ζ is a consequence of the turbulence production zone expanding due to the

wavy surface. This is evident from figure 3.5 where the decay in turbulence kinetic

energy (TKE) production is slower for higher ζ in the buffer region (y+ ≈ 10− 50)

in both inner-scaled (figure III.5(a)) and dimensional (figure III.5(b)) forms. We

expect this trend to be even stronger in the presence of significant separation at larger

values of ζ. This trend is consistent with prevalent understanding of classical rough

wall boundary layers at high Reynolds numbers, especially in the lower atmosphere

where the roughness elements of size a+ & 50− 100 tend to completely destroy the

viscous layer (Jiménez, 2004) if not most of the buffer layer. In our studies, a+ ≈ 13

for the different ζ (see Table 2.1) and only modulates the buffer layer. A related

observation is that the vertical location of the inner scaled peak turbulence production

(y+ ≈ 12) does not change with ζ, but the magnitude decreases. This is not surprising

as for ζ > 0, there exists other sources of turbulence generation, i.e. from the surface

roughness or undulations which contributes to the total friction.
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Figure 3.5: Schematic illustrating the wall-normal variation of streamwise averaged
production of turbulent kinetic energy in (a) inner variable non-dimensionalized and
(b) dimensional (m2/s3) forms.

3.4 Characterization of Reynolds Stress Tensor and its Production

In the earlier discussions, we focused on the mean gradients and their impact on

the horizontal flow stresses. In this section, we focus on the effect of changing ζ on

elements of the Reynolds stress tensor and the turbulent kinetic energy that are borne

out of the interaction between mean gradients and the Reynolds stress. We observed

earlier (figure 3.4) that the peak in the mean gradients at the start of the buffer

layer decreases with surface undulations which also impacts turbulence production

(figure 3.5) in the lower buffer layer and in turn the individual components of the

streamwise averaged Reynolds stress tensor, 〈ui′uj ′〉x,z,t.
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Figure 3.6: Inner scaled mean (a) streamwise variance, (b) vertical variance, (c)
spanwise variance and (d) turbulent kinetic energy (TKE). The horizontal lines
correspond to height with maximum value of the statistics along the profile.

3.4.1 Streamwise Variance

In fact, the most noticeable deviations from equilibrium in wavy wall turbulence

occur in the second order statistics. In particular, we observe in figure III.6(a) the

inner-scaled streamwise variance that peaks in the buffer layer and this peak value

decreases with increase in ζ. In addition, the inner scaled profiles nearly collapse

in the outer region for all ζ while the location of peak streamwise variance shifts

upward as ζ increases. Given the lack of significant flow separation, this upward

shift in the peak variance is modest, but noticeable. In figure 3.6 we identify the

peak location for each curve with color matched horizontal lines so that the trends

can be identified. Using this, we see a systematic upward shift of the peak value of

〈u′2〉+x,z,t with ζ in figure III.6(a). Related research by Ganju et al. (2019) has shown

that this upward shift is tied to significant increases in roughness scale, a+ which can

cause very different dynamics around the wave including flow separation. Further,

the effect of changing λ was reported to be minimal in their investigation. Their
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first observation is consistent with classical understanding of high Reynolds number

rough wall turbulence (Pope, 2001; Jiménez, 2004) where the peak variances occur

at nearly the roughness height, a. In fact, wall stress boundary conditions for large

eddy simulation over rough surfaces are designed to model the same. In our study, the

amplitude, a is fixed while the wavelength, λ is decreased in order to change ζ = 2a/λ.

For a fixed bulk Reynolds number, the decrease in λ (or increase in ζ) increases the net

drag and in turn the friction velocity, uτ . The resulting decrease in the viscous length

scale, Lv = ν
uτ

changes the inner-scaled wave height, a+ = a/Lv rather modestly from

13.07− 15.82 when ζ increases 4 times from 0.011 to 0.044 (see Table 4.1). Therefore,

this systematic upward shift in the location of peak streamwise variance cannot be

solely attributed to these very modest increases in a+. In fact, the wave steepness

significantly impacts the buffer layer dynamics and in turn the variance distribution

through the turbulence production mechanisms as delineated under.

We further dissect the above observations using the variance production (figure 3.7)

term 〈P11〉x, in the Reynolds stress transport equation. Note that we further split

this component variance production into its dominant contributions, 〈P u′u′
11 〉x =

〈〈u′u′〉z,td〈u〉z,t/dx〉x and 〈P u′v′
11 〉x = 〈〈u′v′〉z,td〈u〉z,t/dy〉x as shown in figures III.7(b)

and III.7(c) respectively. Details on the computation of the production terms can be

found in appendix C. We clearly observe that the inner-scaled streamwise variance

production due to interaction of the scaled mean shear (i.e., inner-scaled vertical

gradient of the mean horizontal velocity, d〈u〉+z,t/dy+) with the vertical momentum

flux (〈u′v′〉z,t) denoted by 〈P u′v′
11 〉+x clearly peaks in the buffer layer (y+ ≈ 11− 15 as

seen in figureIII.7(c)) and this peak shifts upward (with minimal change in magnitude)

for increasing ζ. This trend can be interpreted through figures III.9(a) and III.9(c)

representing the double averaged profiles of normalized covariance, 〈u′v′〉+x,z,t and mean

gradient, d〈u〉+z,t/dy+ respectively. It is to be noted that 〈u′v′〉+x,z,t peaks at the edge

of the buffer layer at y+ ≈ 32 whereas the normalized mean gradient, achieves its
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maximum value near the surface. In addition, the location of the peak in 〈u′v′〉+x,z,t (at

y+ ≈ 32) shows very little variation with no clear trend, but its magnitude increases

with ζ all through the buffer and log layers. Contrary to this, the magnitude of

d〈u〉+z,t/dy+ decreases with ζ due to surface undulations whose influence decreases

away from the surface (through the viscous and buffer layers). In summary, we

understand that the combined influence of the surface-induced trends in 〈u′v′〉+x,z,t and

d〈u〉+z,t/dy+ yields the trends observed for 〈P u′v′
11 〉+x as shown in figure III.7(c) with

peak values occurring over y+ ≈ 11 − 15 for different ζ. In addition, the surface

undulations play a secondary role in the variance transport (see figureIII.7(b)) with

significant production in the roughness sublayer (y+ / a+) followed by destruction

above the roughness scale, a+ that decays with height. This production and destruction

process clearly represents deviation from equilibrium as its origins lie in the streamwise

mean velocity gradient, d〈u〉z,t/dx being non-zero from horizontal inhomogeneity.

A key consequence of this inhomogeneity driven destruction process is that both

the peak inner-scaled variance production and the peak variance decrease with ζ

(figure III.6(a)). However, it also turns out that the systematic upward shift observed

for the peak in 〈P u′v′
11 〉+x is non-existent for the 〈P11〉+x profiles (the peak occurs at or

around y+ ≈ 12) shown in figure III.7(a). In summary, we observe that more severe

the surface inhomogeneities, smaller the rate of streamwise turbulence production

through d〈u〉+z,t/dy+, d〈u〉+z,t/dx+ and 〈u′v′〉+x,z,t, but the location of peak production in

wall coordinates remain unaffected. Therefore, the observed upward shift in the peak

of 〈u′2〉+x,z,t (figure III.6(a)) should arise from other turbulent transport mechanisms

including return to isotropy.
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Figure 3.7: Schematic illustration of the wall-normal variation of inner-scaled double
averaged production of streamwise (a,b,c) variance, 〈P11〉+x and vertical (d,e,f) variance,
〈P22〉+x . In each row, we further split the corresponding production terms into 〈P u′u′

11 〉+x
(b), 〈P u′v′

11 〉+x (c), 〈P v′u′
22 〉+x (e) and 〈P v′v′

22 〉+x (f) respectively. The horizontal lines
correspond to the vertical location of maximum value for a chosen statistic. If the peak
locations are different, we color match the horizontal lines with the corresponding
curves.
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Figure 3.8: Inner scaled mean production contours

3.4.2 Vertical Variance

The effect of surface undulations on vertical variance profiles is opposite to that
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observed for the streamwise variance, i.e. the peak variance in the buffer-log transition

region (y+ ≈ 55) increase and shift downward with ζ in comparison to flat channel

turbulence data. While the shift in the peak location is systematic, we note that the

peak value in itself changes very little from ζ = 0.011 to 0.022 after making a sharp

jump from ζ = 0.0 to 0.011 and exhibits another jump from ζ = 0.022 to 0.044. It is

well known (Pope, 2001) that streamwise turbulent fluctuations are generated closer to

the surface in the buffer layer and is then distributed to the other components through

the pressure-strain term (Lumley and Newman, 1977). Consequently, the vertical and

spanwise variances peak further away from the surface, closer to the log layer. Among

the two, the vertical variance is nominally expected to achieve maximum value further

away from the surface due to the wall effect, i.e. vertical fluctuations are damped

closer to the wall. In our investigations, the vertical variance peaks closer to the log

layer (y+ ≈ 55) while the spanwise variance peaks lower in the buffer-log transition

(y+ ≈ 35) as observed in figures III.6(b) and III.6(c) respectively.

Due to the presence of surface undulations (non-zero ζ), vertical velocity variance

is produced closer to wall (or effective wall for wavy surfaces) in the roughness sublayer

(i.e y+ . a+) as seen from the inner-scaled vertical variance production, 〈P22〉+x in

figure III.7(d). The extent of near surface production increases with wave steepness,

ζ. To dissect further, 〈P22〉+x is further split into 〈P v′u′
22 〉+x = 〈〈v′u′〉z,td〈v〉z,t/dx〉+x and

〈P v′v′
22 〉+x = 〈〈v′v′〉z,td〈v〉z,t/dy〉+x as shown in figures III.7(e) and III.7(f) respectively.

The dominant variance production originates from non-zero streamwise gradient of

vertical velocity (see figure III.2(b)) which is positive below the roughness scale

and negative above it. Consequently, the surface imhomogeneity driven non-zero

mean vertical flow over the wavy surface impacts turbulence production by generating

vertical variance below the roughness scale and destroying some of it above in the buffer

layer (figure III.7(e)). Therefore, unlike flat channel turbulence, return to isotropy

is accelerated with increase in ζ causing 〈v′2〉x,z,t
+

to grow faster (figure III.6(b))
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through the viscous and buffer layers to ultimately peak closer to the surface (in

the buffer-log transition). The location of peak vertical variance is illustrated in

figure III.6(b) through coloured horizontal lines that show a clear downward shift from

ζ = 0 − 0.044. In essence, what we are observing is that changes in λ with fixed a

impacts the growth rate in the buffer layer with perceptible effect on the peak location

and magnitude. This trend is maintained until strong separation related dynamics

including detachment of the shear layer sets in at higher ζ. As shown in Ganju

et al. (2019), this causes a secondary peak in the buffer layer for both vertical and

spanwise variance, possibly due to turbulence production within the separation bubble

as well as above it. Such effects are absent in the current study as evidenced by just a

single peak for the vertical variance production for at least the cases up to ζ = 0.022.

However, the jump of the profile from ζ = 0.022 to ζ = 0.044 hints the incipience of

the secondary peak due to the onset of separation bubble.

We would like to report that small noise is generated very close to the wall for the

vertical velocity due to the effect of immersed boundary method employed in presence

of streamwise undulation. Although this noise is ignorable for vertical variance,

while multiplied with the Reynolds stress term it partially contributes for the visible

discontinuities in the overall vertical variance production structure as in figure III.7(d).

This small noise can be avoided by clustering the grid more near the wall. However, as

the conclusion of our analysis is not expected to be influenced by this slight numerical

deviation, we decided to not go through further clustering which would raise the

computational cost and also make the derivative calculation in the clustered region

erroneous.

3.4.3 Spanwise Variance

Similar to 〈v′2〉+x,z,t, the inner-scaled spanwise variance, 〈w′2〉+x,z,t also shows stronger

growth (see figure III.6(c)) through the viscous and lower regions of the buffer layer to
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ultimately peak in the buffer layer (y+ ≈ 35). Intriguingly, we note a systematic shift

in the peak location and magnitude only for ζ = 0.0 to 0.011 and ζ = 0.022 to 0.044,

but little variation from ζ = 0.011 to 0.022. This may be attributed to the peak

occurring farther away from the surface where the inhomegeneity effects are small.

As we are dealing with mildly steep two-dimensional wavy surfaces in this study, we

observe that 〈w′2〉x,z,t is not produced near the surface as evidenced by the production

terms in the variance transport equation (not shown here) being nearly zero throughout

the boundary layer due to d〈w〉z,t/dx = d〈w〉z,t/dy = 0. In spite of the quasi-two-

dimensional wavy surfaces employed here, the above trends will breakdown in the

presence of strong separation that can introduce three-dimensional flow patterns. As

part of an ongoing research study we are exploring higher values of ζ to verify the

above statement.
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Figure 3.9: Inner scaled mean (a) covariance 〈u′v′〉+x,z,t, (b) covariance 〈u′v′〉+x,z,t
(zoomed near the surface) and (c) vertical gradient of streamwise velocity,
d〈u+〉x,z,t/dy+. The black horizontal line corresponds to the average of the maxi-
mum magnitude of 〈u′v′〉+x,z,t for the different ζ. Note that the individual peak values
were too close to each other to be shown separately.

33



In the absence of three-dimensional flow (both forced by a three-dimensional

surface and induced by separation over a two-dimensional surface), the location of

peak 〈w′2〉+x,z,t shows no clear monotonic trend although a consistent downward shift

is observed for ζ > 0 for up to ζ = 0.022. This can be attributed to either the small

amounts of separation observed in these flows (see figure 3.1) or due to conversion of

the vertical variance produced from the surface undulation through the pressure-strain

term. We expect the latter to be the likely mechanism although no quantification

is provided work to support this hypothesis. However, for ζ = 0.044, a downward

shift of the peak location is evident that can be attributed to the onset of consistent

separation bubble. As one would expect away from the surface, the 〈v′2〉+x,z,t and

〈w′2〉+x,z,t profiles across different values of ζ approach each other in the outer layer

indicating that the effect of the surface undulations is concentrated closer to the

surface. We nevertheless note that in this region of the TBL, 〈v′2〉+x,z,t (figure III.6(b))

and 〈w′2〉+x,z,t (figure III.6(c)) are slightly higher for non-zero ζ when compared to the

flat channel with ζ = 0.

3.4.4 Mean Turbulent Kinetic Energy

The mean inner scaled turbulent kinetic energy, TKE+, displays the cumulative effect

of the individual variances as shown in figure III.6(d). In particular, we observe an

exaggerated upward shift (note the horizontal lines in figure III.6(d)) in the location of

peak k+ in the buffer layer. This is caused by the combined effects of the upward shift

in 〈u′2〉+x,z,t along with the downward shifts in both 〈v′2〉+x,z,t and 〈w′2〉+x,z,t. Beyond the

peak, the different curves nearly collapse in the outer layer although in the inertial

logarithmic region, TKE+ shows consistently higher values for the wavy turbulence

cases due to systematically higher 〈v′2〉 and 〈w′2〉 for ζ > 0.
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3.4.5 Vertical Turbulent Momentum Flux

In addition to the diagonal components of the Reynolds stress tensor discussed above,

we also look at the dominant off-diagonal terms, namely, −〈u′v′〉+x,z,t and −〈w′v′〉+x,z,t
as shown in figure 3.9. In the limit of high Reynolds number (i.e Reτ ≥ 4000), for

channel flow turbulence over smooth flat surfaces, there exists a well defined log layer

with nearly constant 〈u′v′〉+x,z,t (Lee and Moser, 2015). This nearly constant 〈u′v′〉+x,z,t
layer is very narrow at low Reynolds numbers. Nevertheless, this study still lets us

characterize the influence of the wavelike undulation on the turbulence structure.

As discussed earlier, the location of the peak in 〈u′v′〉+x,z,t (at y+ ≈ 32) shows very

little variation with no clear trend, but its magnitude increases with ζ. The peak

location in 〈u′v′〉+x,z,t falls roughly between the peak values of 〈u′2〉+x,z,t and 〈v′2〉+x,z,t as

shown in figures III.6(a) and III.6(b). This increase in peak value is not surprising as

the wavy surfaces naturally generate (figures III.7(a) and III.7(d)) stronger u′ and

v′ fluctuations. As shown in figures III.9(a) and III.9(b), increase in the positive

peak of −〈u′v′〉+x,z,t is correlated with a small negative peak in the viscous layer at

higher values of ζ, indicative of the surface shape induced mixing that is different

from turbulence induced stress. This negative value of −〈u′v′〉+x,z,t close to the surface

indicate that higher momentum fluid particles move away from the wall due to up

slope part of the wavy surface.
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CHAPTER IV

Roughness Characterization

4.1 Characterization of the Roughness Function and Roughness Scales

A common way to assess the influence of the wavy surface on turbulence structure

is to quantify the effective drag and its influences on the flow structure. While the

increase in friction velocity for a fixed Reb (apparent from Table 2.1) is a natural way

to quantify the increased drag, estimating the downward shift in the mean streamwise

velocity profile (figure III.2(a)) is another approach and often used to characterize

the effective roughness scales. It is well known that the logarithmic region in the

equilibrium flat channel turbulent boundary layer (TBL) is given by

〈u〉+x,z,t =
1

κ
ln(y+) +B (4.1)

where the additive constant B is typically estimated to fall within the range, ≈ 5.0−6.0

and depends on the details of the buffer and viscous layer for a given simulation or

measurement. The flat channel data in the current work provides an estimate of

≈ 5.6, possibly due to a combination of the friction Reynolds number regime and

simulation algorithm. In the presence of surface undulations of scale a, we observed

from the earlier discussion that the log region underwent a upward shift due to an

expanding buffer layer. As per Hama (1954); Jiménez (2004); Flack and Schultz (2014),

the influence of these buffer layer modulations on the log layer shift is characterized

in terms of a modified logarithmic profile for rough-wall turbulent boundary layers
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(TBLs),

〈u〉+x,z,t =
1

κ
ln(y+) +B −∆〈u〉+x,z,t (4.2)

where ∆〈u〉+x,z,t is defined as the roughness function. The roughness function, ∆〈u〉+x,z,t
can be related to the characteristic “equivalent” sand grain roughness, ks as

∆〈u〉+x,z,t =
1

κ
ln(k+s ) +B − 8.5, (4.3)

and the characteristic roughness length, k0 as

∆〈u〉+x,z,t =
1

κ
ln(k+0 ) +B. (4.4)

It is easily seen that k0 = kse
−8.5κ. While ks and k0 are used to quantify the

non-equilibrium ’roughness’ effects near the surface, they mostly cater to complex

roughness such as grasslands, urban canopies or sand grain type surfaces. Of course,

ks corresponds to a case where the buffer layer dynamics is significantly modified by

the roughness while k0 corresponds to a situation where the buffer and. viscous layers

are completely destroyed by the roughness. Therefore, such metrics do not represent

the smooth, low steepness surfaces adopted in this work. Table 4.1 compiles estimates

of the roughness function, 〈∆〈u〉+x,z,t〉y, averaged over the entire logarithmic region

given by y+ ≈ 60− 120 as illustrated in figure IV.1(d) over which the values are nearly

constant. For all the metrics reported in this work, we use data from the averaged

profiles across constant values of the non-scaled local coordinate, ylocal,1.

For comparison sake, we also report the equivalent sand grain roughness, ks

of Nikuradse (1950) and the characteristic roughness length, k0 scaled by the inner-

layer variables for different values of ζ. As expected, these different roughness metrics

increase linearly with wave steepness as seen in figures IV.1(a)-IV.1(c). The effective
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sand grain roughness assumes a non-zero value of ≈ 3.3 for ζ = 0 due to the upward

shift caused by the viscous and buffer layers. Therefore, k+s ≈ 4 is indicative of a

nearly smooth wall which in our study corresponds to ζ ∼ 0− 0.01. The higher values

of ζ considered in this work generate k+s ∼ 6 although no substantial flow separation

is observed for up to ζ = 0.022. However, for ζ = 0.044, k+s ∼ 14 which can be

partially attributed to the increased friction Reynolds number. As expected, the k+0 is

extremely small indicating that the flow is smooth enough to retain the viscous and

buffer layers.
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Figure 4.1: Variation of the different roughness quantifications with ζ in (a), (b), (c)
and wall normal variation of mean roughness function in (d).

Given that a+ is nearly constant for all the cases while k+s and k+0 show near
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linear growth confirm that such wavy surfaces do not fit the k-type roughness descrip-

tion (Perry et al., 1969; Jiménez, 2004). In addition, given that the boundary layer

height in channel flow turbulence is fixed as a constant δ, the independence of ks, k0

on δ indicate a departure from d-type classification (Perry et al., 1969). In fact such

surfaces as considered in this work belong to the ’transitional’ and ‘waviness’ regime

as a+ ∼ 13− 15 does not represent a sufficiently large (i.e O(100)) roughness Reynolds

number, Rea = auτ/ν. We have also reported the λ+ values for the different cases in

Tables 2.1 and 4.1.

ζ κ 〈∆〈u〉+x,z,t〉y k+s k+0 a+ λ+

0.000 0.3954 0.0000 3.2838 0.1215 0.0000 ∞
0.011 0.3805 0.8150 4.5867 0.1806 13.070 2354
0.017 0.3839 1.3242 5.6514 0.2163 13.480 1618
0.022 0.4033 1.7655 6.7725 0.2197 13.920 1252
0.044 0.4000 3.6174 14.4711 0.4831 15.820 712

Table 4.1: Tabulation of estimated turbulence parameters, namely, von Kármán
constants for the different cases and commonly used roughness parameters.
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with the current DNS (See appendix for the cor-
relation equations).
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Figure 4.2: Variation of mean roughness function (a) with roughness Reynolds number
and (b) with effective slope in comparison with reported data from known literature.

The ‘waviness’ regime implies a surface that is very different from a Nikuradse
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roughness dominated by form drag caused by flow separation and vortical re-circulation

zones within the roughness sublayer. Therefore, strong waviness causes the drag (as

estimated by the roughness function ∆〈u〉+x,z,t) to be smaller than the corresponding

Nikuradse value for a given k+ = a+. At low slopes (waviness) the overall drag

is more dominated by viscous shear and less by the form drag. The opposite is

true in the roughness regime. This is clearly illustrated in figure IV.2(a) where the

correlation between ∆〈u〉+x,z,t and k+ = a+ from Nikuradse (1950) and Colebrook

et al. (1939) are compared with our current DNS data. We clearly see that for the

current study with nearly constant a+, ∆〈u〉+x,z,t increases with wave steepness ζ to

approach the Nikuradse curve. The wave slope dependence on the flow drag is evident

from figure IV.2(b) where ∆〈u〉+x,z,t is shown against the effective slope, ES= 2ζ.

We clearly see that our data follows the trend of Napoli et al. (2008), i.e., ∆〈u〉+x,z,t
increases with ES until it asymptotes to a value dependent on k+ = a+ and the flow

Reynolds number. This capping value can be estimated somewhat accurately from

the Nikuradse curve (Nikuradse, 1950) for sand grain roughness (this value is denoted

by the horizontal line in figure IV.2(b) for our DNS data) as the sand grains typically

represent a high effective slope surface. However, the data point for ζ = 0.044 in

our case is placed above the horizontal line because of increased roughness Reynolds

number which corresponds to a slightly higher capping value as suggested by the

Nikuradse curve. Figure IV.2(b), also shows the data from Schultz and Flack (2009)

who performed experiments with systematically varied pyramid roughness elements of

different slope. These data trends indicate that the slope transition from waviness to

Nikuradse type roughness regime (denoted by a vertical line in figure IV.2(b)) occurs

between ES ∼ 0.25− 0.4 (ζ ∼ 0.12− 0.18) with possible dependence on the extent

of separation between the surface and outer layer scales (δ/k) and Reynolds number

(Reτ ). This transition has been correlated to the dominance of form drag over viscous

drag (Schultz and Flack, 2009; Napoli et al., 2008). For the benefit of the reader,
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we have explicitly documented the roughness function correlations of Nikuradse and

Colebrook used above in Appendix B.

In summary, the modulations in the mean averaged first order statistics from wavy

surface undulations manifest as: (i) increase in drag (through friction velocity uτ ); (ii)

modified buffer region including (iii) a systematic upward flow in the buffer layer and

a smaller downward flow at the lower logarithmic layer. To interpret the above effects

better, we analyze the horizontal flow stress and components of the Reynolds stress

tensor in the following sections.

4.2 Characterization of Horizontal Flow Stress and Implications to

Drag

The horizontal flow stress directly impacts the flow drag through the boundary layer

and in turn the mean velocity profiles discussed above. The viscous flow stress τV acting

on a fluid particle is described including both spanwise and streamwise components

as τV = τVxy î+ τVzyk̂, where τVxy = µ
(∂〈u〉x,z,t

∂y
+ ∂〈v〉x,z,t

∂x

)
and τVzy = µ

(∂〈w〉x,z,t
∂y

+ ∂〈v〉x,z,t
∂z

)
.

Similarly, the Reynolds stress is given by τR = τRxy î+τRzyk̂, where τRxy = −〈u′v′〉x,z,t and

τRzy = −〈w′v′〉x,z,t. The total horizontal stress is then τH = τR+τV with τH , τR and τV

without overbars denoting their magnitudes.

Figure IV.3(a) shows the inner-scaled double-averaged horizontal stress magnitude,

τH felt by a fluid particle. We further split this into the inner-scaled viscous and

turbulent parts, τV and τV respectively as shown in figures IV.3(b) and IV.3(c). In

the viscous layer, the total stress is dominated by the viscous stress for the different

cases A-E with different ζ varying between 0− 0.044. The inner scaled mean viscous

shear stress magnitude (figure IV.3(b)) decreases with steepness (figure IV.3(b)) in

the viscous layer where it is nearly constant before decreasing across the buffer layer.

Away from the mean surface level, in the buffer layer, the inner-scaled Reynolds stress

magnitude grows (from near-zero values in the viscous layer) into a peak value at
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y+ ≈ 35 (figure IV.3(c)) whose magnitude increases with ζ before collapsing over each

other in the log layer. Overall, the viscous stress dominates in the viscous layer while

the Reynolds stress grows through the buffer layer (a region where the viscous stresses

continually decrease in importance) to peak at the buffer-log transition region.
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Figure 4.3: The schematic shows the inner scaled mean (a) horizontal stress, (b)
viscous stress and (c) Reynolds stress in the top row and the dimensional mean (d)
horizontal stress, (e) viscous stress and (f) Reynolds stress in the bottom row. The
vertical lines correspond to the different a+ values.

The decrease in magnitude of the inner-scaled viscous stress with ζ in the viscous

and lower buffer layers is a consequence of the normalization using the averaged

wall stress, u2τ which increases with wave steepness. We observe that the mean τV is

relatively unaffected, but its contribution to the total drag decreases with increase in

ζ. In general, the mean streamwise flow near the wall slows down due to the presence

of wave-like undulations (see figure III.2(a)) which in turn reduces its gradient in the

wall normal direction. This reduction in the average viscous stress is compensated

by the non-zero vertical velocity and its variation along the streamwise and vertical

direction. This explains why the net double-averaged (i.e. both temporally and

42



spatially averaged) dimensional viscous stress sees very little increase in the viscous

layer as seen from the dimensional stress profiles in figure IV.3(e). This observation

clearly indicates that the increase in net wall stress (u2τ ) with ζ has its origins in the

increase of Reynolds stress in the buffer-log layer transition as seen in figure IV.3(f)

which is reflected in the total mean stress variation as well (figure IV.3(d)). Given that

the non-dimensional roughness scale, a+ ≈ 13− 15 corresponds to the buffer layer, it

is not surprising that the buffer layer shoulders much of the effect of increasing wave

steepness. However, the mechanism underlying increase in the peak double-averaged

Reynolds stress with ζ will invariably depend on the structure of the attached (or

detached) shear layers in the vicinity of the wavy surface resulting in a coupling

between the viscous shear layers and buffer layer turbulence production. The nature

of this coupling will be further explored in the future. Of course, when the shears

layers are detached as in a separated flow, the interactions could entail very different

characteristics which is hinted by the ζ = 0.044 curve showing a major jump from

the other four cases. An incipient secondary peak is also observed for this case

(figure IV.3(c) and IV.3(f)) in the Reynolds stress profile that can be attributed to the

onset of strong separation isolating the different behavior in the roughness sublayer

and the shear layer

43



CHAPTER V

Streamwise Variability and Asymmetric Structure

All of the 1D statistical analysis in the section III and IV to understand different

turbulence structure as a function of only vertical distance from the wall are decent

yet not complete because of the underlying assumption of streamwise homogeneity.

In reality, richer physics is expected to be involved varying in streamwise direction

due to the inhomogeneity introduced by the wavy geometry. Ideally we would want

to look at 3D structures which would make this analysis too complicated. However,

our simulations ensure spanwise homogeneity which allows us to learn the streamwise

variability by analyzing only 2D statistical structures. So, we look at the inner scaled

spanwise and temporally averaged statistics. Later, we perform a station by station

dissection of the local 1D profiles to investigate the origin of the deviation from

equilibrium.

5.1 Streamwise Variability of Turbulence Structure

Streamwise velocity for the cases with ζ > 0 is clearly skewed towards the upslope

region near the wall as observed in figure V.1(a) indicating the high velocity particles

getting rolled over the low velocity particles beyond the wave peaks. This is the

dominant horizontal asymmetry that originates in the downslope region beyond the

wave peak as the backward facing wall in that region enforces minimum form drag

contrary to the symmetric upslope region where the fluid particles near the wall climb

up the wave against maximum drag. This conclusion is bolstered looking at the

horizontal stress distribution near the wall as in figure V.1(c) that suggests high stress
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in the upslope as the frictional drag is added with form drag whereas in the downslope

only the viscous shear acts on the fluid. This also hints that the streamwise turbulence

production is maximum in the downslope region driving the flow over the next wave

as suggested in figure V.2(a). This deviation gets more and more pronounced with

increasing zeta suggested by the increasingly thicker low velocity region as well as

decreasing horizontal stress in the downslope. This behavior whatsoever is limited

inside the viscous layer as Reynolds stress starts building away from the wall in the

buffer layer and starts dominating the total shear. So in the buffer layer of the flows

with undulation, the total shear peaks due to dominant Reynolds stress. Magnitude

of the peak increases with increasing steepness of the wave which is consistent with

the behavior of Reynolds stress component as shown in figure V.3(a) At ζ = 0.044,

we see a negative streamwise velocity bubble built up in the downslope marked by the

cyan region indicating the onset of dominant separation.

Vertical velocity on average shows opposite sign in the upslope and downslope

of the wave peak as observed in figure V.1(b). The positive skew of the 1D profile

in figure III.2(b) can be explained if the dark red 〈v〉+z,t ' +0.30 and the dark blue

〈v〉+z,t / −0.30 contour regions are observed closely. Areas enclosed by these two blobs

are different in a sense that positive contour region is bigger than the corresponding

negative contour region. Therefore, the resulting averaged vertical velocity profile is

expected to be skewed into the positive. The reason is uplifting of the fluid particles

in the upslope of the wave due to the form drag enforced by the forward facing wave

while the downslope is more free for the particles to keep the momentum and climb

down as there is no hindrance from the backward facing wall to push the particle

downward.
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Figure 5.1: Spanwise and temporally averaged inner scaled (a) streamwise and (b)
vertical velocity and (c) horizontal stress

Second order statistics of the cases with ζ > 0 provides major information the

behaviors of the distribution of turbulence kinetic energy (TKE). Streamwise variance

as in figure V.2(a) decreases significantly with increasing steepness and peaks very

near the wall in the buffer region indicated by the dark red region. However the higher

streamwise variance region seems to be significantly more pronounced in the downslope

region suggesting maximum production of streamwise TKE taking place there. Away

from the buffer region this streamwise fluctuation is distributed into vertical and

spanwise fluctuation which peaks at the upslope region indicated by the yellow-red

region in figure V.2(b) and figure V.2(c) respectively. Unlike streamwise fluctuation,

there two components gets stronger with increasing ζ. Therefore, to conclude, the

streamwise variance is the major contributing component in the TKE production

(P) peaking in the downslope region, which converts using the pressure-strain-rate
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term (R) to the vertical and spanwise variance away from the buffer layer peaking in

the upslope region. While getting an overall idea on the transport of TKE is a bit

complex just by looking at the distribution of individual variance components, the

cumulative effect shows clear trend in terms of streamwise variability. As suggested in

figure V.3(b), the streamwise position of the maximum TKE shifts from the downslope

of the wave to the upslope of the next wave with increased ζ while the magnitude

decreases in and averaged sense
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Figure 5.2: Spanwise and temporally averaged inner scaled (a) streamwise, (b) vertical
and (c) spanwise variances

Interesting behavior of the shear layer can be identified from the 2D structure of

spanwise vorticity in presence of undulation. As we observe from figure V.3(c), we see a

thin dark red high negative vorticity region adjacent to the bottom wall in the upslope

of the wave crest. But, in the downslope region this structure starts breaking up with

increasing ζ signifying the upward motion of the low velocity particles. The higher the
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ζ, the earlier the breaking up happens in terms of phase angle. Also, with increasing ζ,

beneath that disturbed structure in the downslope low vorticity region starts building

up indicating incipient separation as the streamwise gradient of vertical velocity ( ∂v
∂x

)

takes over the dominance of vertical gradient of streamwise velocity ( ∂v
∂x

) slowly. At

ζ = 0.044, the shear layer (i.e. the thin red region) is completely uprooted/detached

from the wall, and a cyan positive vorticity region emerges indicating the onset of flow

detachment/separation in the downslope.
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Figure 5.3: Spanwise and temporally averaged inner scaled (a) 〈u′v′〉z,t co-variance,
(b) TKE and (c) spanwise vorticity

This phenomenon can be justified by the well understood fact of attached shear

layer for turbulent flow in absence of separation which is true even in presence of

undulation when the separation is very little. When closely observed, it can seen that

the thin red vortical structure for ω+
z / −0.6 breaks at about ∆φ ≈ 0.1π phase angle

unit early in the ζ = 0.022 case compared to the ζ = 0.011 case and it seems to be
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completey lifted up by a separation bubble in ζ = 0.044 case.

5.2 Averaging in Fixed Global Coordinate and Inhomogeneity Effect

By far we discussed the 1D profiles of turbulence structure using a streamwise averaging

along a vertical co-ordinate that assumes local homogeneity. However, it needs

addressing that this averaging along inhomogeneous direction is rather complex if we

take into account the streamwise varying physics. In this section we present a different

averaging technique that adopts a global coordinate system, yglobal which is nothing

but the co-ordinate system of the actual simulation. In terms of understanding, there

are both advantages and disadvantages of this technique. This method limits the

sampling rate of ensemble averaging at y-levels below the peak of the wavy surface

as the effective fluid region reduces with height. However, we expect this effect to

minimally impact the results due to temporal averaging across nearly 2500 snapshots

to approximate the statistics. We set the mean height of the wave to be yglobal = 0 and

render the yglobal < 0 to be the lower half of the roughness sublayer. Nevertheless, the

motivation behind computing such streamwise averaged statistics is to clearly isolate

the dynamics of the flow in the roughness layer, shear layer and free boundary layer

(BL). Because in reality we do not get locally smooth structured undulation where

we can deal with every streamwise station in the streamwise direction individually to

compute different vertical coordinates. In addition such measures represent practical

data acquisition where sensors are fixed at uniform altitudes.

In figure 5.4, some of the major first and second order quantities are presented

as a function of yglobal. To start with, the most noticeable difference in the profiles

compared with the conventional averaging is the sharp jump exactly at the roughness

height a+ (represented by the horizontal lines color matched with the 1D profile for

each case) for all the cases with ζ > 0. This can be interpreted as the sudden change

in the physical behavior above the peak of the wave in an averaged sense. This
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measurement is also useful to identify three different region of the turbulence structure

based on vertical height from the wall:

i Roughness sublayer below the wave peak,

ii Shear layer near the jump and

iii Outer layer.
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Figure 5.4: Inner scaled mean (a) streamwise velocity, (b) horizontal stress, (c) spanwise
vorticity, (d) turbulent kinetic energy, (e) streamwise variance, (f) vertical variance, (g)
spanwise variance and (h) covariance 〈u′v′〉 computed using global coordinate-based
average. The thin horizontal dashed lines correspond to the different a+ for ζ > 0 (see
Table 2.1).
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Distinctly different streamwise velocity distribution is observed inside the rough-

ness sublayer and above the peak of the wave as in figure V.4(a). Change in the

vertical gradient with ζ is very clear inside the sublayer while this gradient becomes

comparatively insensitive to ζ above the peak indicated by the near parallel lines.

This suggests that inside the the roughness sublayer, viscous stress is dominant. This

claim is further bolstered when we observe the horizontal stress profiles (figure V.4(b))

shifting the trend near a+ (i.e. shear layer) because of the production of Reynolds

stress in the buffer region.

While the turbulent kinetic energy (figure V.4(d)) and its most dominant component

streamwise variance (figure V.4(e)) nearly collapses with each other in the outer layer

similar to what we observed before, the profiles in the shear layer and the roughness

sublayer behave very differently. Clearly the production of all the components of

TKE starts from inside the roughness sublayer and the trends we observed from the

averaging using local co-ordinate is still valid for ζ > 0 both below and above a+. Also,

spanwise vorticity shows completely opposite trend on two side of a+ and collapses in

the outer layer as observed in figure V.4(c).

This is to be noted that the mechanistic interpretation of the streamwise averaged

structure using this new averaging technique as compared to the conventional technique

has yet not been thoroughly explored. There is scope of stretching this analysis

even deeper for understanding the streamwise dispersion in presence of streamwise

inhomogeneity. However, we present a different 2D analysis of the inhomogeneity

effect where we observe how the deviation from equilibrium is distributed along the

streamwise and vertical direction. Figure 5.5, 5.6 and 5.7 represent inner scaled

quantification of inhomogeneity effect, εI for different turbulent quantities by taking

out the 1D averaged profile using global co-ordinate from the 2D structure of that
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quantity. As example, inhomogeneity effect on the streamwise velocity is expressed as:

ε+I,〈u〉 = 〈u〉+z,t − 〈u〉+x,z,t, (5.1)

where, 〈u〉+x,z,t varies only with yglobal.
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Figure 5.5: Inner scaled inhomogeneity effect on (a) streamwise velocity (b) vertical
velocity and (c) horizontal stress

In the inner scaled streamwise velocity, the surface inhomogeneity effect is positive

in the trough of the wave (ε+I,〈u〉 > 0) representing higher local streamwise velocity

compared to the streamwise averaged 1D profile. On the other hand adjacent to the

wall near the peak this effect is negative evident from the thin blue layer wrapping

around the crest as in figure V.5(a). With increasing steepness (ζ), inhomogeneity

effect gets weaker, particularly around the trough. Also, the negative effect is skewed

into the downslope region of the wave indicating significantly lower velocity region

near the surface of the downslope. While this skewed nature is consistent with the
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observations we have already made, the decreasing trend of the effect with increasing

ζ is intriguing. This is most likely related to the flow through time required for the

particle to traverse a single wave. The less time a particle gets to traverse a full wave,

the less deviation from equilibrium it experiences below the inertial layer. However,

the vertical variability of this streamwise velocity increases with ζ indicated by the

increasingly higher magnitude of horizontal stress (τH) observed in figure V.5(c).

Inhomogeneity effect for horizontal stress is also asymmetric showing more stress than

average in the trough region while less stress is evident near the peak. Surprisingly

for up to ζ = 0.017 the effect of inhomogeneity seems to be very little as observed in

figure V.5(b). For ζ = 0.022 we see the inhomogeneity structure growing and reaching

to significant amount for ζ = 0.044. This is definitely an artifact of the onset of

separation, because we only see relatively consistent separation for ζ > 0.017.
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Figure 5.6: Inner scaled inhomogeneity effect on (a) streamwise variance (b) vertical
variance and (c) spanwise variance
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Effect of the inhomogeneity on the second order statistics seem to be insensitive

to the steepness (ζ) until separation becomes consistent in the downslope region. The

structure of the inhomogeneity effect is different on the two side of the wave peak

whatsoever. Position of the peak vertical and spanwise variance gets closer to the

surface at the upslope region for ζ = 0.044 as evidenced in figure 5.6. Reynolds

stress also shows similar behavior as in figure V.7(a). Positive inhomogeneity effect

in the streamwise variance indicates more production at the downslope compared

to the upslope of the wave (figure V.6(b)). On the contrary, vertical and spanwise

variance seems to peak in the upslope while showing large negative effect region in

the downslope (figure V.6(b) and figure V.6(c))
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Figure 5.7: Inner scaled inhomogeneity effect on (a) 〈u′v′〉z,t covariance (b) spanwise
vorticity and (c) TKE

A thin blue region (ωz ≈ −1) of negative effect of inhomogeneity in vorticity

distribution seems to wrap around the peak of the wave that extends mostly over the
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upslope region and ends just after the peak is reached. This represents the potential

destruction of the shear layer in the downslope. If we compare with the 2D spanwise

vorticity in figure V.3(c), we see the similar trend of the blue structure compared with

the shear layer in a sense that the blue inhomogeneity structure also ends earlier as ζ

increases.

Based on this analysis of 2D deviation from the 1D averaged profile, one conclu-

sion is clear that the roughness sublayer is of immense importance in the study of

inhomogeneity borne asymmetric structure. Because, the effects of the inhomogeneity

is most pronounced in that region.

5.3 Stationwise Dissection of Asymmetric Structure

At this stage, we have completed a decent study of global structures corresponding

to first and second order statistics to understand the dynamics of fluid particles in

presence of a undulated boundary as a function of vertical position. Moreover, we

looked at the 2D structure to understand the streamwise variability along with the

effect of inhomogeneity to a reasonable extent. However, for better understanding the

asymmetric structure due to the presence of geometric inhomogeneity, we perform

a stationwise dissection of local 1D structure that varies only with vertical distance

ylocal,1 (coordinate system explained in section 3.1).

π
32

π
8

π
4

π
2 π 2π

x

0.0

0.5

1.0

1.5

2.0

2.5

y

Upslope Downslope

Figure 5.8: Station architecture for the analysis
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We choose systematically located pairs of streamwise stations with varying phase

angle, φ. More specifically, if the upslope station of a pair is at φ = π
2

then the

corresponding downslope station would be at φ = 2π− π
2
. This allows us to accurately

characterize the difference in turbulence structure between the upslope and the

downslope of the wave. Figure 5.8 illustrates the location of the stations as vertical

lines where the dashed and dotted lines represents the upslope and downslope stations

respectively. This is to be noted that due to the periodic nature along the stream,

the first pair of stations (φ = π
32

and φ = 2π − π
32

) shows very similar behavior. But

the structures starts deviating as we start climbing towards the peak from both end

of the computational domain. For the sake of representing the vertically varying 1D

structure at both the upslope and the corresponding downslope station, we use the

same color code that we have been using throughout the paper. More specifically we

use dashed blue, dash-dotted green, dotted red, dotted lime and dash-dotted magenta

lines for the upslope structure corresponding to ζ = 0, ζ = 0.011, ζ = 0.017, ζ = 0.022

and ζ = 0.044 respectively. On the other hand thin solid lines with square blue,

upward-pointing triangular green, circular red, asterisk lime and downward-pointing

triangular markers have been used to represent corresponding downslope profiles

respectively.

Major difference in the streamwise velocity behavior is observed between the

upslope and downslope 1D profile at φ = π
4

and φ = π
2
, particularly at y/δ ≈ 0.0− 0.2

as illustrated in figure 5.9. Slowing down of the fluid particle at the downslope station

is fairly evident which results into the downward shift of the logarithmic profile in

figure III.2(a). Outer layer streamwise velocity in the downslope station exhibits

higher magnitude but almost the same vertical gradient compared to the upslope

profile to compensate for the mass flow deficit in the near wall region. This near wall

asymmetry is immensely important to ultimately characterize the roughness behavior

of wavy wall as they are directly related to the quantification of the roughness function.
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Now, this small vertical gradient of streamwise velocity is dominantly responsible for

the low viscous drag felt by fluid particles at surface in the downslope. On top of

that the form drag is also significantly small in the downslope as the particles deal

with the backward facing surface when they climb down from the wave peak. This

two effect cumulatively results in the asymmetry in the total horizontal stress near

the wall as shown in figure 5.10. At the the upslope stations for each ζ > 0 where

φ > π
32

shows a small kink (local minima) indicating the enforced form drag acting on

the particles at the upslope by the forward facing wave surface which is absent in the

downslope stations. The second peak away from the wall represents the inclusion of

Reynolds stress which starts getting produced at the buffer layer and gains dominance

over viscous stress at a height which shifts closer to the surface with increasing ζ.
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Figure 5.9: Comparison of spanwise and temporally averaged inner scaled streamwise
velocity profile at different phase locations (φ) of the wave.
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Figure 5.10: Comparison of spanwise and temporally averaged inner scaled horizontal
stress profile at different phase locations (φ) of the wave.

Asymmetry in the vertical velocity is expected between upslope and downslope

in a sense that opposite sign would be expected as the fluid particles climb up and

down from the peak in the upslope and downslope region respectively. However,

the downslope profile is even more disturbed because of the absence of any forward
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facing surface that results in the downslope fluid particles near the trough to roll over

particles having very small streamwise velocity. This causes those particles to get

pushed down in the middle phases (i.e. φ = π
8

and φ = π
4
) indicated by very high

negative vertical velocity in the downslope as shown in 5.11.
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Figure 5.11: Comparison of spanwise and temporally averaged inner scaled vertical
velocity profile at different phase locations (φ) of the wave.

60



0 2 4 6 8

〈u′2〉+z,t

0.0

0.2

0.4

0.6

0.8

1.0
y
/δ

ζ = 0

ζ = 0.011

ζ = 0.017

ζ = 0.022

ζ = 0.044

(a) φ = π
32

0 2 4 6 8

〈u′2〉+z,t

0.0

0.2

0.4

0.6

0.8

1.0

y
/δ

(b) φ = π
8

0 2 4 6 8

〈u′2〉+z,t

0.0

0.2

0.4

0.6

0.8

1.0

y
/δ

(c) φ = π
4

0 2 4 6 8

〈u′2〉+z,t

0.0

0.2

0.4

0.6

0.8

1.0
y
/δ

(d) φ = π
2

Figure 5.12: Comparison of spanwise and temporally averaged inner scaled streamwise
variance profile at different phase locations (φ) of the wave.

Being the most dominant among the three variance profiles, streamwise variance

exhibits significant deviations between the upslope and downslope as observed in figure

5.12. Downslope stations shows much higher streamwise variance compared to the

corresponding upslope stations. Moreover, the peak of the variance starts decreasing
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while climbing up the wave and increases while climbing down. This deviation gets

biggest at φ = 2π − π
4

as the upslope peak of the profile reaches minimum and the

downslope peak reaches maximum.
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Figure 5.13: Comparison of spanwise and temporally averaged inner scaled TKE
profile at different phase locations (φ) of the wave.

Similar trend is observed in the TKE profiles in figure 5.13 which is obviously

expected to be influenced by the behavior of streamwise variance . On the contrary,
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vertical and spanwise variance shows opposite behavior which is bigger magnitude

in the upslope peak and smaller magnitude in the downslope peak as observed in

figure 5.14 and 5.15 respectively. Also in consistence with the 1D profiles, the effect of

changing wavelengths in the undulation-affected cases is not straightforward.
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Figure 5.14: Comparison of spanwise and temporally averaged inner scaled vertical
variance profile at different phase locations (φ) of the wave.
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Figure 5.15: Comparison of spanwise and temporally averaged inner scaled spanwise
variance profile at different phase locations (φ) of the wave.

Only the pair of stations closest to the peak (φ = π
2

and Φ = 2π− π
2
) shows higher

peak of vertical and spanwise profiles for increased wave steepness. So it makes more

sense that on average the effect of changing wave steepness is not that significant

while there is certain jump between with and without undulation flows. For ζ = 0.044
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there is another dominant asymmetry which is characterized by the magnitude of the

two peaks. As earlier said in section 3.4.2, this double peak is a result of isolated

vertical variance structure inside and outside the separation bubble. It is clear form

the profiles for φ = π
8

and φ = π
4

that in the upslope, the inner peak is dominant while

in the downslope, the outer peak is dominant.
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Figure 5.16: Comparison of spanwise and temporally averaged inner scaled Reynolds
stress profile at different phase locations (φ) of the wave.
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Onset of flow detachment is hinted in the upslope station having positive Reynolds

stress profiles particularly visible at φ = π
2

as shown in figure 5.16. The peak of the

profile increases with increased ζ in all stations consistently with our observation from

the corresponding streamwise averaged profile..
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Figure 5.17: Comparison of spanwise and temporally averaged inner scaled spanwise
vorticity profile at different phase locations (φ) of the wave.

The breaking up of the shear layer is also visible in the local stations in the
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downslope region as shown in the spanwise vorticity profiles in figure 5.17. Thin low

vorticity kinks near the downslope wall is observed that indicates that the shear layer

tends to break up and incipient separation is hinted.

5.4 Quantification of the Deviation

Now that we have good understanding of the global and local structures as a function

of both streamwise and vertical distance, we quantify the asymmetry induced errors as

a function of steepness (ζ) and phase angle (φ) and interpret the trends through the

lens of wall turbulence physics. This final analysis will provide concrete idea on the

strength of deviation and the streamwise position where it is pronounced maximum.

Both 1D and 2D representation of the asymmetry error is provided. In the 1D analysis

as in figure 5.18, φ = 0 specifies the lowest point of the wave (i.e. centre of the trough)

while φ = π specifies the maximum (i.e. peak of the wave).

Streamwise velocity deviation slightly increases with the increasing wave steepness

for the cases where ζ < 0.044. At ζ = 0.044 the peak of the asymmetry induced error

seems to go down in magnitude. This is most likely because of the detachment of

the flow happening at that steepness. Maximum deviation is identified just before

the midway of the climb (mid-climb is specified as φ = π
2
) as shown in figure V.18(a).

Vertical velocity shows the similar trend in deviation, however, the maximum is

identified just after the midway of the climb as shown in figure V.18(b). The peak of

the asymmetry error shifts closer to the peak with increasing ζ. Therefore, one thing

can be said from the current analysis that the asymmetry induced error is sensitive

to the presence of separation in case of streamwise velocity but insensitive in case of

vertical velocity. The position of the maximum deviation is critical because mid way

of the climb basically represents the steepest point (i.e. maximum local slope) of the

wave where the form drag is expected to be maximum. This is evident from the 2D

asymmetry structure shown in figure V.19(a) where we see a thick dark blue region
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near the wall centered around the mid-climb of the wave. The shift towards the wave

peak of the vertical velocity is also clear from figure V.19(b).
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Figure 5.18: Normalized L2 norm error (||ε||+2 ) between upslope and downslope profile
of different turbulent quantities: (a) streamwise velocity, (b) wall normal velocity, (c)
horizontal stress, (d) streamwise variance, (e) vertical variance, (f) spanwise variance,
(g) Reynolds stress, (h) turbulent kinetic energy and (i) spanwise vorticity, plotted
against the phase angle, φ (The dash-dotted green, dotted red, dotted lime and dash-
dotted magenta lines correspond to ζ = 0.011, ζ = 0.017, ζ = 0.022 and ζ = 0.044
respectively)
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Figure 5.19: Inner scaled asymmetry-induced error in (a) streamwise velocity, (b)
vertical velocity, (c) horizontal stress, (d) streamwise variance, (e) vertical variance
and (f) spanwise variance
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Figure 5.20: Inner scaled asymmetry-induced error in (a) 〈u′v′〉z,t covariance (b)
spanwise vorticity and (c) TKE

Asymmetric error in total stress is also maximum at around the midway of the

climb shifting slightly to the right for up to ζ = 0.022. However, this error is sensitive

to the separation of flow as for ζ = 0.044, the peak of the error shifts towards the peak

from φ = π
2
. From the 2D structure, it is clear that the high stress region indicated by

the red zone as in figure V.19(c) is shifting towards the wave peak for ζ = 0.044 while

the same shift is almost ignorable in other ζ > 0.

In all three error plots for variances monotonic trend is evident as the position

of peak value gets shifted to the left (i.e. away from the peak) indicating the skew

towards the trough region of the wave as suggested in figure V.18(d), V.18(e) and

V.18(f). However the magnitude of the peak shows different trend between streamwise

variance and the other two components. While the peak magnitude of streamwise

variance decreases with increasing ζ, spanwise and vertical variance increases with
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increased steepness on the contrary.Similar to horizontal stress, the asymmetric error

for vertical and spanwise variance seems to be sensitive to separation. As observed in

figure V.19(e) and V.19(f) sudden jump in the magnitude takes place when ζ = 0.044.

Position of the maximum deviation suggests that the energy production is maximum

near the trough of the wave which is suggested in figure V.18(i) too. However, the

trend of the peak error with increasing ζ is yet inconclusive.

Reynolds stress deviation between the upslope and downslope is maximum just

before the midpoint of the climb, but with increasing steepness this peak shifts towards

the peak of the wave as suggested by figure V.18(g). Maximum magnitude of the

deviation increases with ζ.

Spanwise vorticity seems to peak exactly at the midpoint of the climb, where the

steepness is highest for ζ = 0.011− 0.022. But, it gets shifted closer to the peak as

consistent flow separation is present for steeper wave steepness (i.e. ζ = 0.044) of this

asymmetric error increases as in figure. V.18(h) and V.20(b).
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CHAPTER VI

Conclusion and Future Work

6.1 Conclusion

In this work, we report outcomes from a DNS-based investigation of the turbulence

structure and its deviation from equilibrium using high Reynolds number flow between

two infinitely parallel plates with 2D wavy undulations. In particular, we set out to

assess the influence of small wave slopes (with little to medium flow separation) on the

turbulence structure and their correspondence to common roughness characterization

that invariably deals with the high slope regime. To maximize the shape sensitivity

on the flow structure, we operate in a transitional roughness Reynolds number (k+ =

a+ ∼ 13− 15) which is much smaller than the fully rough regime corresponding to

(k+ = a+ & 70).

The streamwise mean velocity structure indicates a characteristic downward shift

(to higher y+) of the logarithmic region of the TBL indicating increased flow drag

with increase in wave slope, ζ. This is associated with a sustained upward vertical

flow in the lower roughness sublayer and corresponding downward flow in the buffer

layer. The strength of these vertical motions increases with ζ and have a dominant

role to play in the near surface turbulence production processes. In fact, analysis of

the mean non-dimensional streamwise velocity gradients and inner-scaled turbulence

production show that the buffer layer expands with increasing wave slope, ζ indicating

that the well-known equilibrium understanding of near-wall turbulence processes is

modulated even for such highly shallow wavy surfaces.

In fact, characterization of the roughness effects from such shallow surface un-
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dulations with minimal flow separation is very different from the strong separation

and form drag dominated Nikuradse type sand grain rough surfaces. Therefore, in

our case, drag as represented by the roughness function turns out to be very weakly

dependent on the wave amplitude (related to roughness height, k+ = a+) and more

on the effective wave slope (2ζ). These conclusions are consistent with Napoli et al.

(2008); Schultz and Flack (2009) where wavy surfaces in the high slope limit approach

Nikuradse type roughness. Therefore, in such cases, one needs to model ∆〈u〉+ as

f(a+, ζ).

In presence of weak (if not inconsistent) flow separation, the turbulence generation

process within the roughness sublayer is primarily topology driven. For the two-

dimensional surface undulations considered in this work, the differences in turbulence

generation for different ζ originate in the production of small quantities of vertical

velocity variance closer to the surface due to non-zero values for the vertical velocity

gradients. In contrast, for the equilibrium TBL over a flat surface, horizontal homo-

geneity implies that the mean vertical velocity and its gradients are zero. However, the

predominant generation of vertical variance still occurs through redistribution of the

streamwise velocity variance (generated closer to the surface) through the return to

isotropy term. Therefore, these two different production mechanisms interact to cause

〈v′2〉+x,z,t to peak at a larger value and closer to the surface (relative to a flat TBL)

with increasing wave steepness, ζ. Similar trends are observed for the inner-scaled

spanwise velocity variance.

The effect on the streamwise velocity variance, 〈u′2〉+x,z,t is more complicated.

Specifically, the inner-scaled streamwise variance, 〈u′2〉+x,z,t (and consequently, TKE+)

displays a distinct upward shift in the location of this peak value for increasing

wave steepness. In addition, the normalized peak variance magnitude decreases

with ζ. Our analysis shows that even though surface-driven changes impact the

various production terms (〈P u′u′
11 〉+x,z,t and 〈P u′v′

11 〉+x,z,t) for 〈u′2〉x,z,t, the overall variance
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production, 〈P11〉+x,z,t, does not show an upward shift in the peak. Therefore, plausible

mechanisms for generation of this upward shift still point to the vertical variance

being modulated through the pressure-strain term.

Overall, in the absence of significant flow separation, the surface undulations seem to

generate vertical turbulence fluctuations closer to the surface which in turn modulates

the entire near-wall turbulence structure. In the presence of steeper 2D waves with

significant flow separation or three-dimensional wavy surfaces, the complexity starts

to rise due to the generation of spanwise fluctuations near the surface.

Also, the deviation from equilibrium is not only a function of vertical distance due

to the presence of streamwise homogeneity. Comparison between the upstream and

downstream physics exhibits intriguing asymmetric structure that is strongest near

the region with maximum local slope.

6.2 Future Work

Major follow up research can be conducted taking into account the outcome of the

current study. Some of them are as follows:

• Higher Reynolds number cases can be investigated, which we have already

started working on. That will give us even more information to characterize the

roughness and understand the roughness sublayer physics.

• Also, we are working on a similar set of cases where we are taking care to fix the

frictional Reynolds number so that the increased friction velocity has minimal

influence on our analysis.

• While in the current work we modulated the steepness only by changing the

wavelength, both wavelength and amplitude can be varied so that their individual

effect can be identified.
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• More separation dominated cases can be included in the analysis to understand

the physics driven by the flow detachment near the wall.

• To better understand the deviations from equilibrium in the components of the

Reynolds stress tensor, a dissection of the various terms in the Reynolds stress

transport including production (P), dissipation (E) and pressure-rate-of-strain

(R) terms can be performed.

• Inhomogeneity effect due to the horizontal undulation can be further analysed

based on the dispersion of turbulence structure which can potentially utilize the

averaging using global coordinate system as discussed in section 5.2.
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APPENDIX A

Numerical Scheme Expanded

1.1 Governing Equations

Incompressible Navier-Stokes equations for Newtonian flow in a Cartesian co-ordinate
system where x,y,z refers to streamwise, vertical and spanwise directions respectively:

∂u

∂t
= −∇p− 1

2

[
∇(u⊕ u) + (u∇)u)

]
+ ν∇2u + f (1.1)

∇.u = 0. (1.2)

Here, f is the body force, p is the pressure field and density is considered constant
ρ = 1. Now we let F be expressed as:

F =
1

2

[
∇(u⊕ u) + (u∇)u)

]
+ ν∇2u (1.3)

To further break down into components in different direction, the x-momentum
equation (streamwise component) is expressed as:

∂u

∂t
= −∂p

∂x
− 1

2

[
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
+ u

∂(u)

∂x
+ v

∂(u)

∂y
+ w

∂(u)

∂z

]

+ν

[
∂2(u)

∂x2
+
∂2(u)

∂y2
+
∂2(u)

∂z2

]
+ fx. (1.4)

Y and z-momentum equations can be expressed in a similar fashion.

1.2 Fractional Step Method

Assuming the x-directional body force fx = 0, the first fractional step for x-momentum
equation of AB3 scheme is expressed as:

u∗∗ − uk
∆t

=
1

12

[
23F k

x − 16F k−1
x + 5F k−2

x

]
(1.5)

Staggered grid system is used for storing pressure and velocities are stored on collocated
nodes. 6OCCS is used to calculate the first and second derivatives in the Fx terms
which are also stored at collocated nodes. This ends the first fractional step. The
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procedure for the second fractional step is as follows:

uk+1 − u∗∗
∆t

= −ck∇p̃k+1 (1.6)

For AB3, ck = 1. Now, to get ∇p̃k+1 we take the divergence of equation 1.6 and
set ∇uk+1 = 0 to ensure zero divergence condition and thereby conserve mass flow.
Thus, we get the following Pressure Poisson Equation (PPE):

∇.∇p̃k+1 =
∇[−u∗∗(1− ε)]

ck∆t
(1.7)

Here, the ∇ is a 6OSCS operator that acts on p to give ∇p̃k+1 on collocated nodes.
Then it acts again to give ∇.∇p̃k+1 on staggered grid. This technique ensures strict
equivalence of derivatives in the physical space and proper coupling between velocity
and pressure. In IBM framework, ε is a flag to distinguish between solid body and fluid
region (ε = 1 for solid body, ε = 0 for everywhere else). Now, we apply Fast Fourier
Transform (FFT) on the equation 1.7. We would like to specify for the clarification of
the reader that this spectral treatment is done only in the streamwise and spanwise
direction in the current simulations leveraging the periodic boundary condition. In the
vertical direction, classical tridiagonal solver is used because of the no-slip boundary
condition as well as the clustered grid very near the wall. However, the benefit of
staggered grid system is employed to ensure strict equivalence in the spectral space.
The first derivative 6OSCS can be expressed as follows:

αf ′
i− 1

2
+ f ′

i+ 1
2

+ αf ′
i+ 3

2
= a

fi+1 + fi
∆x

+ b
fi+2 + fi−1

3∆x
(1.8)

The numerator of PPE is the divergence which can be expressed as D. So,
considering D = ∇[−u∗∗(1− ε)] the equation becomes:

∇.∇p̃k+1 =
D

ck∆t
(1.9)

D is first calculated and then FFT is applied along the streamwise and spanwise
direction while a direct banded Tridiagonal Matrix Algorithm (TDMA) solver is used
along the vertical direction as mentioned before to solve for p̃k+1 on collocated nodes.
At this point, u∗∗ in the 2nd fractional step as in equation 1.6 is consistent with the
p̃k+1. So, we proceed to get uk+1 on collocated nodes as shown by the following
equation:

uk+1 = u∗∗ − ckp̃k+1 (1.10)

More details on the technique of solving PPE for inhomogeneous geometry is found
in Laizet and Lamballais (2009).
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1.3 Discretizing the Derivatives

The first derivative is discretized as follows:

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 + fi−1

2∆x
+ b

fi+2 + fi−2
4∆x

(1.11)

And, second derivative is discretized as follows:

αf ′′i−1 + f ′′i + αf ′′i+1 = a
fi+1 − 2fi + fi−1

2∆x2
+ b

fi+2 − 2fi + fi−2
4∆x2

+ c
fi+3 − 2fi + fi−3

9∆x2
(1.12)

Laizet and Lamballais (2009) used the same compact scheme to build their incom-
pressible flow solver with quasi-spectral accuracy. We built on their numerical scheme
and chose the co-efficient α,a,b,c exactly as they did. Their approximations is based on
the work of Lele (1992) who discussed elaborately on different compact schemes and
how the right choice of co-efficients can lead to different order of accuracy. To obtain
spectral-like accuracy he chose α = 1

3
, a = 14

9
and b = 1

9
for the first derivative that

gives a sixth order tridiagonal scheme. For second derivative same order of accuracy
is obtained by choosing α = 2

11
, a = 12

11
, b = 3

11
and c = 0. However, these sixth order

tridiagonal schemes can only be used in the internal nodes. For the boundary nodes
we use one-sided formulations for both first and second derivatives as shown below
respectively which are both third order accurate:

f ′1 + 2f ′2 =
1

2∆x
(−5f1 + 4f2 + f3) (1.13)

f ′′1 + 11f ′′2 =
1

∆x2
(13f1 − 27f2 + 15f3 − f4) (1.14)

Again, for the nodes adjacent to the boundary, three point formulations are used.
Both first and second derivative the schemes are fourth order accurate and expressed
as following respectively:

1

4
f ′1 + f ′2 +

1

4
f ′3 =

3

2

f3 − f1
2∆x

(1.15)

1

10
f ′′1 + f ′′2 +

1

10
f ′′3 =

6

5

f3 − 2f2 + f1
∆x2

(1.16)
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APPENDIX B

Roughness Function Correlations of Nikuradse and Colebrook

2.1 Nikuradse’s Correlations

The logarithmic velocity profile corresponding to the law of the wall for turbulent
boundary layers is given by

〈u〉+ =
1

κ
ln(y+) + A, (2.1)

where, A is the intercept. Nikuradse (1950) generated correlations for this intercept as
a function of roughness Reynolds number, k+ = kuτ

ν
as Anik = f(k+). For hydraulically

smooth regime this correlation is

Anik,smooth = 5.5 + 5.75log10k
+; for 0 ≤ log10k

+ ≤ 0.55. (2.2)

The transitionally rough regime is further divided into three regions and different
correlations were proposed as follows

Anik = 6.59 + 3.5log10k
+; for 0.55 ≤ log10k

+ ≤ 0.85 (2.3a)

Anik = 9.58; for 0.85 ≤ log10k
+ ≤ 1.15 (2.3b)

Anik = 11.5− 1.62log10k
+; for 1.15 ≤ log10k

+ ≤ 1.83 (2.3c)

For fully rough regime the intercept is a constant:

Anik,rough = 8.48; for log10k
+ ≥ 1.83. (2.4)

Using these correlations, the mean roughness function can be expressed as:

∆〈u〉+ = Anik,smooth − Anik (2.5)

2.2 Colebrook’s Correlation
Colebrook et al. (1939) proposed an alternative relationship for the entire roughness

Reynolds number regime given by

∆〈u〉+ =
1

κ
ln(1 + 0.3k+), (2.6)
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k+ being the normalized equivalent roughness height. The asymptotic behavior in the
fully rough limit is then written as:

∆〈u〉+ =
1

κ
ln(0.3k+) (2.7)

with κ = 0.4.
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APPENDIX C

Dissection of the Transport Equation for Reynolds Stress Tensor

Transport equation for Reynolds stress tensor is expressed using index notation as

∂

∂t
〈u′iu′j〉z,t

︸ ︷︷ ︸
Lij

+ 〈uk〉z,t
∂〈u′iu′j〉z,t
∂xk︸ ︷︷ ︸

Cij

= −〈u′ku′j〉z,t
∂〈ui〉z,t
∂xk

− 〈u′ku′i〉z,t
∂〈uj〉z,t
∂xk︸ ︷︷ ︸

Pij

− 2ν
〈∂u′j
∂xk

∂u′i
∂xk

〉
z,t︸ ︷︷ ︸

εij

+
〈p′
ρ

(∂u′i
∂xj

+
∂u′j
∂xi

)〉
z,t︸ ︷︷ ︸

Rij

+
∂

∂xk

[
〈−u′iu′ju′k〉z,t + ν

∂

∂xk
〈u′iu′j〉z,t −

〈p′
ρ

(δkiu
′
j + δkju

′
i)
〉
z,t

]

︸ ︷︷ ︸
Dij

.

(3.1)

Here Lij is the term corresponding to local change with time. Cij is the convective
transport term. Pij represents the production of Reynolds stresses which is the negative
product of Reynolds stress and the gradient of time-averaged velocity. Diagonal
terms of the production tensor contributes to the production of turbulent energy.
Dissipation of Reynolds stress is represented by εij. Rij is the pressure-rate-of-strain
correlation contributing to the redistribution of Reynolds stress. Finally Dij represents
the diffusion of Reynolds stresses. In our study, leveraging spanwise homogeneity
and temporal stationarity, all turbulent quantities are averaged along spanwise (z)
direction and over 2500 temporal snapshots suggested by the <>z,t notation. Statistical
stationarity renders Lij = 0 in our case. So,

Cij = Pij − εij +Rij +Dij. (3.2)

In the following analysis, we averaged all of these quantities along the inhomogeneous
streamwise (x) direction (i.e. double averaging). The unified effect of production,
dissipation and pressure-rate-of-strain is characterized using a term Λ expressed as

〈Λij〉x = 〈Pij〉x − 〈εij〉x + 〈Rij〉x. (3.3)

Also we computed the diffusion term (〈D〉x) as

〈Dij〉x = 〈Cij〉x − 〈Λij〉x. (3.4)

We point to the benefit of readers that the streamwise averaging can not be interchanged
with the spanwise and temporal averaging because of the streamwise inhomogeneity
(i.e. 〈Pij〉x 6= 〈u′ku′j〉x,z,t ∂〈ui〉x,z,t∂xk

). Also, the superscript a and b in the convective
transport term represents k = 1 and k = 2 components respectively.
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