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Abstract: Chlamydia trachomatis is an obligate intracellular organism that is the leading 

cause of preventable blindness and sexually transmitted bacterial infections. C. 

trachomatis exhibits a biphasic developmental cycle involving infectious elementary 

bodies (EB) and non-infectious, replicative reticulate bodies (RBs). At the end of its 

developmental cycle, EBs disseminate to neighboring cells either via host cell lysis or a 

novel mechanism of exit, called extrusion. It has been hypothesized that extrusions serve 

as a means of immune response evasion due to enclosure within host membrane. In 

addition, extrusions filled with multiple EBs may serve as a mode for high dose delivery 

of infectious organisms to tissues, rather than individual EBs from lysed host cells. 

Herein, female mice were intra-vaginally infected with either a C. trachomatis serovar L2 

wild type strain or a mutant strain containing a silenced CT228 gene, which produces 

significantly more extrusions in vitro, relative to the wild type. All mice were 

characterized for, i.) time course of infection, ii.) systemic and mucosal immune response 

to infection, iii.) degree of reproductive tissue damage following clearance of infection, 

and iv.) recruitment of different immune cell types to reproductive tracts. In comparison 

to the wild-type strain, mice infected with the mutant strain revealed an increase in the 

time needed to clear infection, a reduction in the systemic anti-Chlamydia antibodies, and 

a decrease in mucous production. However, there were no significant differences 

amongst the concentrations of immune cells recruited to the reproductive tracts. These 

data may suggest that EB antigen within extrusions dampen recognition by the immune 

system. Therefore, further research is warranted to quantitate cytokine concentrations, to 

examine antigen presentation, and to examine the development of protective immunity.  
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CHAPTER I 

 

BACKGROUND AND INTRODUCTION 

 

Chlamydia trachomatis is one of the most common bacterial sexually transmitted 

diseases worldwide and, even if treated or upon recurrence, it can lead to a myriad of 

complications including infertility, pelvic inflammatory disease, loss of vision, and 

ectopic pregnancies (Haggerty et al., 2010). There has been substantial evidence that 

associates chlamydial genital mucosa infection to an increased risk for ovarian and 

cervical cancers as well (Das, 2018). The species consists of two separate biovars that are 

further categorized into 15 serovars based on variable regions of the surface antigens 

present on the major outer membrane protein encoded by ompA, MOMP (Byrne, 2010). 

These serovars present as different types of disease: Serovars A-C are responsible for 

trachoma, the most preventable cause of vision loss in underdeveloped countries, 

serovars D-K are responsible for disease of the genital mucosa and are the most common 

form of sexually transmitted infection (STI) reported, and serovars L1-L3 are responsible 

for lymphogranuloma venererum, an invasive STI (Schachter, 1999). In the US alone, 

there are over 1 million cases that are reported each year within the past decade with 

approximately 100 million genital infections occurring annually worldwide (World 

Health Organization, 2008). However, due to the occurrence of asymptomatic infections 
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that are predominately presented in women, the predicted number of cases may be under-

reported.   

 Chlamydia spp. are obligate intracellular bacteria known to possess a unique 

biphasic developmental cycle that involves the transition between two distinct forms: the 

intracellular reticulate body (RB), which is the non-infectious, metabolically active, 

replicative form (RB) and the extracellular elementary body (EB), which is the infectious, 

non-metabolically active, non-replicative form (Moulder, 1991) (Fig. 1). Initiation of 

infection occurs once an EB binds to the surface of an epithelial cell followed by 

internalization of the EB. During internalization, the EB resides in a host-derived 

membrane vesicle termed the inclusion. The inclusion provides a safe environment for 

the bacteria to thrive and serves as the interface between the bacteria and the host cell, 

which allows acquisition of nutrients, lipids, and aid in trafficking (Bastidas et al., 2013). 

It is within the inclusion that the transition of EBs to RBs occurs whereby, during the first 

20hrs, the RBs replicate via a polarized budding process (Abdelrahman et al., 2016). 

After this time point, the population begins an asynchronous transition back into the EB 

form. Depending on the species or the cell lines used for growth of the organisms in vitro, 

the EBs escape from the infected host cell after 48 to 72hrs either via lysis or another 

mechanism of exit termed extrusion (Hybiske and Stephens, 2007). 
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Figure 1. Chlamydial Developmental Cycle (Elwell et al., 2016) 

 

Due to the obligate intracellular lifestyle coupled with the unique biphasic 

developmental cycle, vaccine development and genetic manipulation have been 

historically underwhelming.  Many of the vaccine strategies investigated since the early 

1960’s mainly targeted a component of serovars A-C, which are responsible for 

trachoma. Trachoma is the leading cause of bacterial induced vision loss in under-

developed countries, and even with treatment, irreversible scarring resulting in blindness 

can occur (Burton and Mabey, 2009). The availability of antibiotics required to clear this 

infection is scarce in many of these regions which is further compounded by poor 

hygienic living conditions thus prompting the demand for an increase in chlamydial 

vaccine-based research. Since discoveries made in the 1960’s, there have been numerous 

potential vaccine candidates against both C. muridarum and C. trachomatis strains 

(Schautteet et al., 2011). This includes the development of a vaccine in Phase 1 that 
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induces immunity against trachoma in nonhuman primates (Kari et al., 2011). In the past 

decade, there have been significant advancements in chlamydial genetics across all 

species. These include the development of a conditional expression vector that utilizes a 

tetracycline-inducible system (Bauler and Hackstadt, 2014), the development of vectors 

that confer blasticidin and chloramphenicol resistance (Ding et al., 2013; Xu et al., 2013), 

the ability to perform forward and reverse genetic screens due to the use of chemical 

mutagenesis (Nguyen and Valdivia, 2012), and the ability to employ targeted 

mutagenesis techniques using TargeTron, a group II intron-based gene knockout system 

(Johnson and Fisher, 2013). Such advancements have led to the discovery and elucidation 

of virulence factors, polymorphic membrane proteins, and phosphatases.   

 During the developmental cycle of Chlamydia spp., the inclusion membrane 

serves as the interface between the bacteria and the host cell that undergoes modification 

for functions such as trafficking to the MTOC (Clausen et al., 1997) and host cell lipid 

acquisition (Hackstadt et al. 1996). The membrane of the inclusion is decorated with 

different Type III secreted proteins termed inclusion membrane proteins, or Incs, that 

play critical roles in autophagy avoidance, promotion of nutrient acquisition, innate 

signaling, fusion of membrane, etc (Moore and Ouellette, 2014). The exact number of 

Incs varies per chlamydial species, but to date, C. trachomatis is predicted to contain 36-

59 of these proteins (Shaw et al., 2000; Lutter et al., 2012). Few have been characterized 

using in vitro methods over the past decade due to the lack of chlamydial genetic 

advancements (See Table 1), and regarding the few Incs in which function has been 

elucidated, in vivo studies involving animal infection models have been nonexistent.  
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Table 1. List of characterized Incs  

Inc Function Cited Source 

IncA (CT119) Homotypic fusion of inclusions; 

Encodes SNARE-like motifs 

(Hackstadt et al., 1999) 

IncB (CT232) Contains Src kinases; aids in 

intracellular growth and 

migration of inclusion 

(Mital et al., 2010) 

IncD (CT115) Recruits a protein responsible in 

transfer of lipids, known as 

ceramide endoplasmic reticulum 

transferase (CERT) 

(Agaisse and Derre, 2014) 

IncG (CT118) Enhances host cell viability via 

recruitment of adaptor protein, 

14-3-3β 

(Scidmore and Hackstadt, 

2001) 

IncV (CT005) Aids in attachment of inclusion to 

the endoplasmic reticulum (ER) 

via the interaction with ER 

integral membrane VAP 

(Stanhope et al., 2017) 

CT229 Interacts with GTPase Rab4 to 

regulate endosomal trafficking 

(Rzomp et al., 2006) 

CT850 Promotes migration of inclusion 

to the MTOC via the interaction 

with dynein 

(Mital et al., 2015) 
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CT813 Promotes migration of inclusion 

to Golgi mini-stacks via the 

binding to ARF1 and ARF4  

(Wesolowski et al., 2017) 

CT101 (MrcA) Regulates host cell exit via 

extrusion; utilized for 

management of calcium via the 

interaction with host inositol tri-

phosphate (IP3)  

(Nguyen et al., 2018) 

CT228 Regulates host cell exit via 

extrusion; Recruits myosin 

phosphatase (MYPT1) to 

inclusion membrane 

(Lutter et al., 2013) 

 

 Since the early 1980’s, extensive knowledge regarding pathogenicity, vaccine 

candidates, immune response, and fertility has been acquired from murine infection 

models infected with either Chlamydia muridarum or Chlamydia trachomatis strains 

(Perry et al., 1997; Morrison and Caldwell, 2002; Morrison et al., 2011; De Clercq et al., 

2013). Murine models are the most commonly used animal models in chlamydial 

research, and it is important to note the differences in these murine models infected with 

either C. muridarum or C. trachomatis: Genital inoculation with C. muridarum typically 

leads to more virulent, tissue damaging sequelae that closely mimics human 

histopathology in comparison to genital inoculation with the human serovars (Lyons et 

al., 2005). C. muridarum infection also naturally ascends from the tissues of the lower 
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genital tract to establish itself in the upper genital tract tissues (Naglak et al., 2016). 

Further discussion of the immune response to genital chlamydial infection is detailed in 

Chapter 3.   

Comparative studies involving the utilization of different techniques for the 

infection of different mouse strains with multiple chlamydial strains have been examined, 

and all of these studies have utilized wild-type strains of Chlamydia only. Although there 

has been substantial in vivo research over the past 70 years involving the identification of 

a possible vaccine candidate that has predominantly favored the targeting of C. 

trachomatis and C. muridarum via the delivery of the major outer membrane protein 

(MOMP) within mice (Phillips et al., 2019), other features of these bacteria such as the 

mechanism of extrusion formation during host cell exit and the effects of these extrusions 

on the host immune response has been lacking.  

 The process of extrusion as a method of host cell exit is unique to Chlamydia spp. 

and has been hypothesized to be involved in host immune response evasion, 

dissemination of infectious progeny to different tissues, and the spread of infectious 

progeny from cell-to-cell (Hybiske and Stephens, 2007). The presence of extrusions was 

recognized in vitro several decades ago (Todd and Caldwell, 1985). However, they have 

only recently been shown to occur in vivo using a murine infection model (Shaw et al., 

2017). In this study, extrusions were successfully harvested and imaged via microscopy. 

The availability of the tools gained from this study has facilitated further examination of 

this phenomenon, taken together with new genetic systems enabling the assessment of 

mutant strains with disrupted regulation of extrusion formation in vivo. Data suggest that 

the presence of extrusions may lead to an altered immune response suggestive of evasion.   
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Purpose and Aims of Study 

 In the field of chlamydial pathogenesis, there are currently no published data that 

encompass infection of an animal model with Chlamydia trachomatis mutant strains with 

a known phenotype that have been fully characterized. There is also a lack of   

exploratory studies into the possibility that inclusion extrusion provides a mechanism for 

immune response evasion. The overall objectives of this study are to utilize in vivo 

methods to gain a more profound understanding of chlamydial urogenital infection and 

the host immune response using C. trachomatis mutant strains that function in the 

regulation of extrusion formation in vitro, and to determine the potential effects of 

extrusions in vivo and their role in immune response evasion. Our central hypothesis is 

that Chlamydia host cell exit via inclusion extrusion enables evasion of the host 

immune response. In order to test our central hypothesis, we propose two aims: 

Aim 1: Utilize a murine infection model to examine and compare the physiological and 

immunological effects of a murine L2-wild type infection versus a mutant L2 infection in 

which the mutated gene product is known to have a role in the regulation of extrusion 

formation in vitro. 

Aim 2:  Examine and compare the recruitment of different immune cells to whole 

reproductive tracts of a murine L2-wild type infection versus a mutant-L2 infection that 

was utilized in Aim 1.  
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CHAPTER II  

 

GENETIC INACTIVATION OF CHLAMYDIA TRACHOMATIS INCLUSION 

MEMBRANE PROTEIN CT228 ALTERS MYPT1 RECRUITMENT, EXTRUSION   

PRODUCTION, AND MURINE INFECTION 

 

It has been hypothesized that the extrusion exit mechanism may either, (1) 

maximize the dissemination of vesicles that are abundant in Chlamydia instead of 

maximizing dissemination of individual EBs to neighboring host cells or, (2) provide a 

means to evade or subvert the host immune response temporarily via the enclosure of 

infectious progeny within a portion of host cell membrane. In vitro, the occurrence of 

extrusions has been documented for many years, but only recently was an extensive in 

vitro analysis of their morphology and function performed. This particular study showed 

that macrophages are capable of phagocytosing extrusions and promoting chlamydial 

survival (Zuck et al., 2017). There has also been a study that identified protein 

interactions that play a role in host cell egress allowing us to examine host immune 

response evasion in more detail (Lutter et al., 2013). Recently, in 2017, in vivo 

documentation of extrusion occurrence was finally obtained across multiple wild type 

serovars, in which extrusions were successfully harvested from a murine infection model 

and imaged via microscopy (Shaw et al. 2017). However, there remains a need to gain a 
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deeper understanding as to how and why extrusions serve as an alternative mechanism of 

exit as well as their effects on the host immune response.  

 Since extrusions are now capable of being harvested, imaged, and quantified in 

vitro, it is apparent that selection of mutants expressing altered chlamydial proteins 

known to regulate the formation of extrusions in vitro for the use in an animal infection 

model is a significant step. Due to genetic advancements in the field, identifying target 

proteins that regulate this process is now possible. In vitro studies demonstrated that C. 

trachomatis inclusion membrane protein CT228 negatively regulates extrusion formation 

via the complex interaction between this Inc and host myosin phosphatase target subunit 

(MYPT1) (Fig. 2). Chlamydia exit via extrusion or lysis depends on the phosphorylation 

state of myosin light chain 2 (MLC2): dephosphorylation of MLC2 enhances the process 

of lysis, while phosphorylation of MLC2 promotes extrusion. Recruitment of MYPT1 by 

CT228 to the inclusion alters the phosphorylation state of MLC2 thereby regulating exit 

from the host cell. (Lutter et al. 2013).  

  

Figure 2. Representation of myosin phosphatase pathway in C. trachomatis in 

relation to CT228 (Lutter et al. 2013) 
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 For this study, we utilized a mutant generated by TargeTron, a gene knockout 

system, which consists of a targeted chromosomal mutation in C. trachomatis serovar L2 

inclusion membrane protein CT228 (L2-ΔCT228). We examined immunological and 

phenotypical differences in response to infection with wild type C. trachomatis serovar 

L2 versus L2-ΔCT228 by monitoring the course of infection, examining the histology of 

the whole murine reproductive tracts, and obtaining anti-Chlamydia antibody titers in 

sera and vaginal washes.    

 

Hypothesis and predictions 

We hypothesized that there would be immunological and pathological differences 

between the wild type C. trachomatis infection and L2-ΔCT228 infection. A prior in vitro 

study revealed that L2-ΔCT228 produced more extrusions in vitro (Lutter et al. 2013). If 

immune response evasion was observed, we could predict that, in comparison to a wild 

type infection, the mutant strain would produce a prolonged infection, a decrease in 

damage to the reproductive tract, and a decrease in antibody concentration obtained from 

sera and vaginal washes. 

 

Methods 

 

Intravaginal Infection of Mice 

Female inbred C3H/Hej mice were purchased from Jackson Laboratories (Bar Harbor, 

Maine) at six weeks old and were acclimated for one week prior to any experimentation. 

All mice were subcutaneously injected with Depo Provera formulation of 2.5mg of 

medroxyprogesterone acetate (Upjohn, Kalamazoo, MI) at 7 and 3 days before infection 
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to synchronize estrus. On the day of infection, mice were infected intravaginally with 1 

million C. trachomatis L2-wild type EBs or L2-ΔCT228 EBs in 5ul sucrose-phosphate-

glutamate (SPG). The course of infection along with the histopathology (n = 5/group) or 

immune response (n = 8-9/group) were monitored. 

 

Quantification of Recoverable IFUs from the Cervicovaginal Tract 

Cervicovaginal tracts were swabbed (Puritan Diagnostics, HydraFlock 6” 15 cm swabs; 

Guilford, ME) at days 7, 14, 21, 28, and 42 post infection (p.i). As adopted from previous 

studies, each swab was added to microcentrifuge tubes containing 600ul of SPG and two 

glass beads and placed on ice. EBs were liberated from each swab via vortexing and used 

in serial dilution and inoculation of confluent HeLa cell monolayers in 96 well plates 

(CellTreat Scientific, Pepperell MA). EB entry was promoted via centrifugation at 700 x 

g for 1 hour. The cells were then incubated at 37°C with 5% CO2 for 30 min. before 

washing to remove any extracellular EBs. After washing, these cells were incubated in 

RPMI 1640 + 5% FBS + gentamycin (10ug/mL) for 24 hrs. at 37°C with 5% CO2. The 

cells were fixed with methanol, stained with anti-MOMP (courtesy of Dr. Harland 

Caldwell) followed by staining with anti-mouse DyLight 488 (Jackson 

ImmunoResearch). A Leica MI6000B fluorescent microscope with a 20x objective was 

used to count a total of twenty fields of view in order to obtain a calculation of total 

recoverable IFUs per mouse.  
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Quantification of Mucosal and Systemic Antibody Response 

Vaginal lavages and sera were collected at day 31 p.i. for ELISA to measure both 

systemic and mucosal immune responses to chlamydia infection. Vaginal lavages were 

collected by washing the vaginal vault with 60 ul 0.5% BSA-PBS twice, and each of the 

samples collected was stored at -20°C until ELISA was performed. 1 ug of formalin fixed 

EBs (serovar L2) was used to coat each well of 96-well polystyrene plates (Immulon 

2HB; Thermo, Milford, MA) in 100 ul TBS (50 mM Tris buffer pH 7.5, 0.15 M NaCl) 

and were incubated at 4°C overnight. After this incubation period, wells were washed to 

remove any unbound EBs and then blocked with 200ul 2% BSA in 0.012 M Tris pH 7.4, 

0.14 M NaCl, 3.0 mM KCl, 0.05% Tween 20 for 90 minutes at 37°C. Serial dilutions of 

vaginal washes and sera were added to washed plates and incubated at 37°C for 90 min. 

Alkaline anti-mouse IgG and IgGA antibodies (vaginal lavage samples) with anti-mouse 

IgG2a (sera samples) (Southern Biotech Associates, Burningham, AL) were used to 

measure Chlamydia-specific antibody titers. Absorbance was read at 405nm (Biotech 

Synergy, Winooski, VT) after the addition of the substrate, P-nitrophenyl phosphate 

(pNPP) to determine relative concentrations of antibody titers. The highest sample 

dilution that displayed an absorbance more than or equal to 3X the absorbance of the 

concentrated uninfected (sham) was considered positive. 

 

Reproductive Tract Histology 

On day 23 and day 64 p.i. the whole reproductive tracts of mice were excised and 

immersion fixed in 10% buffered neutral formalin with the purpose of scoring 

inflammatory damage. After the process of fixation, these tracts were processed in whole 
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and embedded en bloc into paraffin, cut into sections at 4 µm, and stained with eosin and 

hematoxylin (H&E). Each section was examined by an American College of Veterinary 

Pathologists (AVCP) certified veterinary pathologist and scored with the respective 

designations: 0=normal, 1=minimal change, 2=mild change, 3=moderate change, and 

4=severe change. Uterine stratum and luminal compactum inflammation, hydrosalpinx, 

periglandular mucinous change, and overall impression were all the parameters that were 

scored using the above designations. Olympus CellSens software linked to an Olympus 

DP70 microscope camera were used to take calibrated measurements of endometrial 

luminal epithelial height morphometric analyses. A total of six locations (distal, 

proximal, and mid-locations of both uterine horns) of each whole reproductive tract was 

evaluated morphometrically and regionally. Each of the locations was determined to be 

free of tissue curves and bends as well as uniform.  

 

Statistics 

 

The total extrusion numbers between L2-wild type and L2-ΔCT228 as well as the mean 

+/- SE growth (IFUs) were compared using the student’s unpaired two-tailed t-test with 

equal variance. Log IFU data was analyzed across four time points following infection 

using one-way ANOVA repeated measures.  Both mucosal (IgA and IgG) and systemic 

(IgG2a) mean +/- SE antibody titers were analyzed using student’s unpaired two-tailed t-

test. The same test was used on the histopathology clinical scores between both types of 

infection.  Prism 5.0 was utilized to obtain statistical analyses, and for all analyses, data 

were considered to be significant at p<0.05. 
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Results  

From this study, it was determined that infection with the mutant strain produced 

alterations in the duration of chlamydial infection, in the mucinous changes in the 

reproductive tracts, and in the concentration of antibodies present in the mucosa and sera. 

The quantitated recoverable log IFUs, as shown in Fig. 3, revealed a statistically 

significant effect of time on the clearance of L2-wild type (p=0.006) that was absent in 

response to L2-ΔCT228 (p=0.371). Only 3/9 L2-ΔCT228 infected mice were clear by 

day 28 in comparison to the 6/8 L2-wild type infected mice.  
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Figure 3. Recoverable IFUs shed by mice infected with C. trachomatis L2-wild type 

and L2- CT228. Female C3H/HeJ mice were intravaginally infected with 1 × 106 EBs of 

either L2-wild type or L2- CT228. Recoverable IFUs were obtained by swabbing vaginal 

tracts and enumerating on HeLa cell monolayers. Recoverable IFU data are expressed for 

(A) L2-wild type (n = 8) and (B) L2- CT228 (n = 9) on a logarithmic scale from Day 7 to 

42 post-infection. Effect of time (*p = 0.006) was observed in mice infected with L2-wild 

type (repeated measures one-way ANOVA). For day 28, 6/8 L2-wild type infected mice 

were clear compared to 3/9 L2- CT228. Triangles represent individual mice, bars 

represent mean of group for each time point.  
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At day 31 p.i., L2-ΔCT228 infected mice produced significantly lower systemic 

anti-Chlamydia IgG2a titers relative to L2-wild type infected mice, and there were 

negligible mucosal IgG titers in both groups at Day 31 which is expected in response to 

infection with serovar L2 as presented in Shaw et al. 2018. Mean mucosal IgA titers were 

very low. However, there was a slight decrease observed in the mice infected with L2-

ΔCT228 (Fig. 4).  

 

Figure 4. Systemic and mucosal antibody titers following infection with  C. 
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trachomatis L2-wild type and L2- CT228. (A) Sera were collected from mice 31 days 

post-infection with L2-wild type (n = 8) or L2- CT228 (n = 9) and assayed for the 

presence of anti-chlamydial IgG2a. (B,C) Vaginal lavages were collected 31 days post-

infection and assayed for the presence of anti-chlamydial IgA and IgG. Antibody titers 

are expressed for individual mice as the highest dilution tested that produced >3-fold the 

absorbance as control/uninfected mice. Bars represent mean antibody titer per group.  *p 

= 0.0412, unpaired two-tailed Student t-test.  

 Finally, there were slight decreases in mucinous changes and inflammation 

following infection with L2-ΔCT228 than with L2-wild type according to the histological 

analyses of whole murine reproductive tissue at Days 23 and 64 post-infection (Fig. 5 and 

Table 2). The decreases in mucinous changes and inflammation may or may not be of any 

biological consequence due to the low reliance and pathological relevance of the clinical 

scoring parameters that are utilized across different chlamydial studies. C. trachomatis 

serovar L2 is also known to elicit marginal histopathological changes in a murine model 

that are not considered significant (Shaw et al., 2017). 

  
 

 

Figure 5. Histopathological assessment of reproductive tracts post-infection. Mice (n 
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= 5 per group) were euthanized at 23 and 64 days post-infection (dpi) and entire 

reproductive tracts were removed and formalin fixed for histology. Representative 

images of H&E stained sections of uterine tissue were captured using an Olympus DP70 

for mice infected with (A)  C. trachomatis L2-wild type, 23 dpi, (B) C. trachomatis L2- 

CT228, 23 dpi, (C) C. trachomatis L2-wild type, 64 dpi, (D) C. trachomatis L2- CT228, 

64 dpi. See Table 2 for pathological clinical scoring of reproductive tracts at 64 dpi.  

 

Table 2.  Pathological scoring of murine reproductive tracts.  

 

Infectious 
agent 

Overall 
impression 

Mucinous          
change 

Hydrosalpinx  Uterine tubal 
dilation 

Uterine 
luminal    
PMN 

Representative  
images 

L2-Wild type 1, 0, 1, 0, 3 2, 1, 2, 1, 1 0 1, 1, 0, 2, 3 0 Fig 6A,6C 

L2-ΔCT228 2, 0, 0, 0, 0 0, 1, 0, 1, 0* 0 2, 0, 0, 1, 0 0 Fig 6B, 6D 

 

Histological sections of reproductive tracts (n = 5/group at 64 dpi) were examined and 

scored by an ACVP certified veterinary pathologist via light microscopy with the 

following numerical designations: 0, normal; 1, minimal change; 2, mild change; 3, 

moderate change; 4 severe change (mean ± SE). *p = 0.02 (L2-wild type vs. L2- CT228).  

 

Discussion 

 Based on in vitro research, L2-ΔCT228 produced significantly more extrusions 

than L2-wild type in a HeLa tissue cell culture line. Our central hypothesis is that 

Chlamydia host cell exit via inclusion extrusion enables evasion of the host immune 

response in vivo. EB enclosure within increased numbers of extrusions that are enveloped 

by portions of the host cell membrane may alter the ability of the host immune response 

to recognize EB antigens. Such a phenomenon may support the significant decrease in 

clearance at day 28 p.i. of mice intravaginally infected with L2-ΔCT228. The data above 

reveals that only 3/9 L2-ΔCT228 infected mice cleared by day 28 versus the 6/8 L2-wild 

type infected mice (Figure 3). In addition, L2-ΔCT228 infected mice produced 
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significantly lower systemic anti-Chlamydia IgG2a titers at day 31 p.i. (Figure 4A) along 

with negligible mucosal IgA and IgG titers that were also present at negligible levels in 

the wild type strain (Figure 4B,C). The histological analyses listed above also revealed a 

significant but minor decrease in the production of mucous within sections of murine 

uterine tissue at day 23 and day 64 p.i. with L2-ΔCT228 in comparison to L2-wild type 

(Table 2.). In comparison to other genital serovars, serovar L2 elicits minimal 

histopathological changes, and any interpretations of these changes are restricted due to 

the low reliance and restricted parameters of the clinical scoring system. From previous 

studies, the clinical scores of mucinous changes in L2-wild type infected mice revealed 

an overlapping but lower numerical range despite the prevalence of higher recoverable 

IFUs (Shaw et al., 2017) than what was revealed in this study.  

 Overall, these in vivo findings reveal a delay in clearance following intravaginal 

infection with L2-ΔCT228, along with an associated decrease in anti-Chlamydia humoral 

responses. We assume that these differences along with the differences in EB release via 

lysis or extrusion may affect the ability of host immune response to clear infection. This 

may be due to the possible alteration in the degree of antigen presentation and recognition 

via dendritic cells and macrophages. Disruption of CT228 and the loss of MYPT1 

recruitment, as a result, have an effect on the longevity of infection in vivo. This may be 

in relation to the degree of extrusion-mediated host cell exit.  

 Future directions would include the elucidation of mechanisms mediated by L2-

ΔCT228 that are involved in host immune response evasion/alteration. This would 

involve the characterization and enumeration of immune cells recruited to murine 

reproductive tracts that will play roles in antigen presentation, initial clearance, 
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development of protective immunity, interleukin and IFN-y production, and the 

onset/occurrence of cytotoxic events. The development of a CT228 mutant in other 

serovars that more closely mimic the histopathology observed in human disease is 

crucial. The investigation on the effects of the functions and localization of other Incs as 

a result of CT228 inactivation would be of interest as well.  
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CHAPTER III 

 

POPULATIONS OF IMMUNE CELLS RECRUITED TO WHOLE MURINE 

REPRODUCTIVE TRACTS BY CHLAMYDIA TRACHOMATIS 

 

In order to gain a thorough understanding of the immune response to genital 

infections, animal models are implemented, such as murine, guinea pig, porcine, 

macaque, and non-human primate models.  The murine model is most commonly used 

for chlamydial research with many advantages: lower costs, smaller size, and availability 

of transgenic strains as well as mouse-specific reagents. In comparison to genital 

infection with C. muridarum, which is frequently used for genital infection studies, 

genital infection of a murine model with C. trachomatis is typically less severe, requires a 

larger number of infection forming units, resolves faster, and produces less pathology 

unless directly injected transcervically into the upper genital tract (Carmichael et al., 

2011; Gondek et al., 2012; De Clercq et al., 2013). Despite these characteristics, women 

who have a C. trachomatis genital infection can present with no symptoms or upper 

genital tract pathology. It has been argued that the clinical presentation during a genital 

infection in women warrants the use of C. trachomatis in the murine urogenital model for 

comparative studies to glean knowledge toward advancing human medicine (Lyons et al., 

2005).  
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Immune responses to genital chlamydial infections are quite intricate. Different 

cells and mediators from both the humoral and cell-mediated components of the immune 

response are required for the elimination of and protection against genital chlamydial 

infection (Vasilevsky et al., 2014). This intracellular organism has evolved multiple 

methods involved in the evasion of the immune response, but in order to elucidate these 

mechanisms, it is important to examine the effects of the immune cells.  Initial clearance 

is due to the activation of NK cells, macrophages, neutrophils, and mediators such as 

IFN-y and IL-12 (Vasilevsky et al., 2014). For protective immunity to be generated, 

activation and expansion of T cells via the presentation of chlamydial antigens by 

dendritic cells (DCs) are required (Vasilevsky et al., 2014). B cells then interact with the 

activated clonal T cells to produce antibodies against Chlamydia. The activation of B 

cells by helper T cells to induce T-cell dependent antibody responses occurs when both 

cell types interact with the same antigen. This is referred to as linked recognition in 

which a CD4 T cell specific for a pathogen must be activated to produce armed helper T 

cells before B cell activation can take place. After this occurs, B cells will produce 

antibodies against the specific pathogen. Even though the infection can be cleared and 

protective immunity is established, recurring and persisting infections in combination 

with a shift from Th1 to Th2 immunity appear to result in tissue damage, scarring of the 

reproductive tissue, and infertility (Vasilevsky et al., 2014).  

During the innate immune response, neutrophils are the first to be recruited to the 

site of an infection, are implicated in the initial control of chlamydial infections, and are a 

main source of tissue damaging cytokines (Vasilevsky et al., 2014). Because they are 

short-lived in comparison to other leukocytes (Salamone et al., 2001), they are believed 
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to be responsible for the reduction of infectious progeny as well as the limitation of 

dissemination.  Evidence has indicated that infection with C. trachomatis may delay 

apoptosis of neutrophils (Salamone et al., 2001), and this prolongation of neutrophil life-

span contributes to infertility and fibrosis during chlamydial infection (Lee et al., 2010). 

Along with their tissue-damaging properties during infection, studies have demonstrated 

that human neutrophils inactivate C. trachomatis in vitro via the oxygen-dependent 

microbicidal systems of human neutrophils (Yong et al., 1982; Register et al., 1986).   

Macrophages are a major component of the innate immune response that play an 

important role in the activation of the adaptive immune response via the presentation of 

antigen to T cells. In vivo studies have revealed that macrophages exhibit multiple roles 

during a chlamydial infection: production of proinflammatory cytokines (Bas et al., 

2008), phagocytosing of bacteria (Beagley et al., 2009), and migration to chlamydial 

infection sites (Morrison and Morrison, 2000). It has also been documented that these 

immune cells not only provide a hostile environment for engulfed Chlamydia, but C. 

trachomatis destruction inside macrophages induces host cell autophagy (Al-Zeer et al., 

2013). This induced autophagy enhances antigen presentation to T cells, which in turn 

initiates a humoral response in naïve mice (Vasilevsky et al., 2008).  

In vivo and in vitro studies have revealed that dendritic cells (DCs), which are 

essential APCs, are known to secrete many cytokines which direct T cell responses 

during MHC class I and II antigen presentation, and aid in the mediation of the Th1/Th2 

balance (Morrison et al., 1995; Su et al., 1998; Matyszak et al., 2002).  Immature DCs 

internalize and phagocytize pathogens, break down their components, and mature to 

express MHC molecules and co-stimulatory molecules. Mature DCs will then migrate to 
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local lymph nodes and present antigen. This presentation allows T cells to activate and to 

initiate a cell-mediated as well as a humoral immune response. In an early study 

involving a nasal challenge of mice with bone marrow-derived DCs that were incubated 

along with heat-killed C. trachomatis, a protective response was established (Lu and 

Zhong, 1999). This response was Th1 mediated which further revealed a correlation 

between Th1-skewed immunity and protection against infection. For the mice that 

received DCs pulsed with recombinant MOMP, a Th2-associated IgG1 response was 

elicited instead, and this has correlated with what has been visualized in other studies (Su 

et al., 1998; Shaw et al., 2001; Shaw et al., 2002). There was an additional study that was 

performed that provided additional support in the mediation of the Th1 and Th2 balance 

controlled by DCs. For this study, mice were injected with Chlamydia-pulsed IL-

10KO DC and this led to an increase in the frequency of Th1 cells (He et al., 

2005). The mediation of this balance, the types of cytokines produced, and the 

antigens that are processed by DCs make them a critical tool for the development 

of vaccines. 

Macrophages and DCs are critical in that both APC types activate T cells, which 

will migrate to the site of infection. In order for T cell activation to occur, a series of 

events have to take place. First, pathogen-associated molecular patterns (PAMPs) are 

detected by pattern recognition receptors (PPRs). This recognition causes many events to 

occur that include phagocytosis/uptake and entry of engulfed material into the endocytic 

pathway (Vyas et al., 2008; Underhill and Goodridge, 2012). For presentation via MHC 

class II molecules, this material is broken down in the phagolysosome, attached to MHC 

molecules, and trafficked to the surface of APCs for presentation to CD4 T cells (Vyas et 
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al., 2008). For presentation via MHC class I molecules, peptides derived from cytosolic 

proteins are degraded by the proteasome. The transporter associated with antigen 

processing (TAP) will translocate the peptides from the cytosol into the endoplasmic 

reticulum, where loading onto MHC molecules occur. Finally, these complexes will be 

transported to cellular surfaces for display to CD8 T cells (Vyas et al., 2008). T cell 

involvement was shown to occur over 30 years ago when it was observed that a wild type 

strain of mice was able to clear a genital C. muridarum infection after 20 days post 

infection, while immunodeficient athymic nude mice established chronic infection (Rank 

et al., 1985). Over the years, both T cell subsets have been revealed to recognize different 

C. trachomatis antigens: major outer membrane protein (MOMP) (Holland et al., 1997; 

Ortiz et al., 2000; Shaw et al., 2002), chlamydial protease activating factor (CPAF) (Li et 

al., 2011), polymorphic outer membrane protein D (POMP-D) (Goodall et al., 2001b), 

outer membrane protein 2 (Omp2) (Goodall et al., 2001a), heat shock protein 60 (hsp60) 

(Deane et al., 1997), RpIF, PmpF, and PmpG (Olive et al., 2011; Johnson et al., 2012). 

Although there is copious evidence that support the role of CD4 T cells in the resolution 

of both C. trachomatis and C. muridarum (Jayarapu et al., 2010; Gondek et al., 2012; 

Labuda and McSorley, 2018), evidence for the function of CD8 T cells has been lacking. 

Much of the research that has been performed in mice has supported the role of CD8 cells 

in immunopathology and not in protection (Vlcek et al., 2016). However, there have been 

stipulations to these phenomena including the correlation between the identification of 

CD8 epitopes with resolution of infection in humans (Picard et al., 2015) and the 

established evidence for protection by CD8 cells with a trachoma vaccine in nonhuman 

primates (Olivares-Zavaleta et al., 2014). CD8 T cells are also known to destroy host 
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cells that are infected with Chlamydia, but they are not essential in the clearance of C. 

trachomatis (Su and Caldwell, 1995; Morrison and Morrison, 2000). However, they do 

produce IFN-y that, in turn, regulates other immune cells, such as macrophages. Due to 

the lack of research that either supports or rejects the role of CD8 cells in protection 

versus pathophysiology during infection, CD4 cells and their responses have been 

accepted as the more reliable protective arm of the adaptive immune response (de la 

Maza et al., 2017). 

In order to examine the concentrations of different immune cells during any kind 

of infection, flow cytometry can be employed. This is a tool that illuminates particles or 

cells that individually flow across a source of light. Signals, which are mainly detected as 

antibody-antigen bound complexes from the cells/particles, are the result of the 

illumination. The signals are interpreted and presented in such a way that individual 

populations of cells/ particles can be visualized using a flow cytometry-based program. 

This tool has been utilized for both chlamydial in vitro and in vivo studies (Waldman et 

al., 1987; Olivares-Zavaleta et al., 2014; Naglak et al., 2016), but it has yet to be for a 

genital C. trachomatis murine infection model that will involve infection with a mutant 

that has a known function in vitro. For this study, a flow cytometry protocol similar to the 

protocol in Naglak et al. 2016 was utilized to examine the concentrations of different 

immune cells during genital L2-wild type and L2-ΔCT228 infection.  

 

Hypothesis and predictions 

We hypothesize that, based upon the findings in support of the previous 

hypothesis and the data published in Shaw et al. 2018, there will be additional 
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immunological differences between a L2-wild type infection and L2-ΔCT228 infection. 

To test this hypothesis, we will compare the recruitment of different immune cell 

populations to the reproductive tracts of the mice. Since infection with L2-ΔCT228 was 

shown to produce lower antibody titers and result in a longer duration in infected mice, 

we theorize that there will be a decrease in the number of different immune cell types 

recruited to the tracts when compared to a L2-wild type infection. To investigate this 

phenomenon, the goal is to harvest and digest whole, L2-wild type infected and L2-

ΔCT228 infected murine reproductive tracts and analyze the concentrations of different 

immune cell types via flow cytometry. 

Methods 

Intravaginal infection of mice 

Inbred, female C3H/Hej mice used for this experiment were obtained from Jackson 

Laboratories (Bar Harbor, Maine) at 8-10 weeks old and all were acclimated for 1 week 

(7 days) prior to experimentation. At -7 and -3 days before chlamydial infection, estrus 

was synchronized via subcutaneous injection with depo formulation of 2.5mg of 

medroxyprogesterone acetate (Upjohn, Kalamazoo, MI). All mice were subsequently 

intravaginally infected with either 1 million C. trachomatis L2-wild type EBs or L2-

ΔCT228 EBs in 5ul SPG.  

 

Obtaining Recoverable IFUs from the Cervicovaginal Tract 

Cervicovaginal tracts were swabbed (Puritan Diagnostics, HydraFlock 6” 15 cm swabs; 

Guilford, ME) at day 3 and day 7 p.i. to validate infection with either L2-wild type or L2-

ΔCT228. Each swab was added to microcentrifuge tubes containing both 600ul of SPG 
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and one glass bead the placed on ice. Each swab was vortexed to liberate EBs and serially 

diluted before the inoculation of confluent HeLa cell monolayers in 96 well plates 

(CellTreat Scientific, Pepperell MA). Entry of EBs was promoted via centrifugation for 1 

hr. at 700xg. For 30min at 37°C, cells were incubated before undergoing washes to 

remove any extracellular EBs. For 24 hrs. at 37°C with 5% CO2, these cells were 

incubate in media consisting of RPMI 1640 + 5% FBS + gentamycin (10ug/mL).The 

cells were fixed with methanol, stained with anti-MOMP (courtesy of Dr. Harland 

Caldwell), before staining with anti-mouse DyLight 488 (Jackson ImmunoResearch). 

Twenty fields of view were counted using a Leica MI6000B fluorescent microscope with 

a 20x objective to obtain the total recoverable IFUs per mouse.  

 

Digestion and Flow Cytometry Preparation of Whole Murine Reproductive Tracts 

At day 7 and day 21 p.i., three whole murine reproductive tracts (n = 9 per group) were 

excised, pooled, and minced with sterile scissors into RPMI medium that has been 

supplemented with fetal bovine serum (FBS) and with 5 mg/ml collagenase IV 

(Worthington Biochemical Company). All contents were transferred to 50 ml conical 

tubes and placed into a 37°C water bath for 20-25min. to allow activation and consistent 

enzymatic activity of collagenase to occur. Contents were then transferred to a digestor 

bag and homogenized via the Stomacher
TM

 400 (Seward) then transferred back to a 37°C 

water bath for 10-15 min. After incubation, the contents were transferred to a new 

digestor bag and homogenized using via the same digestor (as listed) once more. Samples 

were then rinsed through a 70-um cell strainer and centrifuged to pellet all cells. 

Fluorescence-activated cell sorter (FACS) buffer (phosphate-buffered saline (PBS) with 
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2% FBS) was used to rinse the pellet and Lysis buffer was used to lyse red blood cells for 

2 min. while on ice.  Cells were resuspended in 1 ml of FACS buffer, 100ul of cells were 

counted in Trypan Blue using a hemocytometer, and concentrations containing 1 million 

cells/mL were prepped for blocking and antibody staining. For five minutes at room 

temperature, Fc Block (ThermoFisher) was added to each suspension of cells before 

staining with the following antibodies in FACS buffer for 30min at 4°C: CD11b 

Monoclonal Antibody (M1/70) (ThermoFisher) Alexa Fluor 488 (ThermoFisher), CD11c 

Monoclonal Antibody (N418) Alexa Fluor 700 (ThermoFisher), Ly-6G(Gr-1) 

Monoclonal Antibody (RB6-8C5) eFluor 450 (ThermoFisher), F4/80 Monoclonal 

Antibody (BM8) PE-eFluor 610 (ThermoFisher), PE-Cy™7 Rat Anti-Mouse CD45  

Clone  30-F11  (RUO) (BD Biosciences), CD8a Monoclonal Antibody (53-6.7) PerCP-

eFluor 710 (ThermoFisher), CD4 Monoclonal Antibody (GK1.5) eFluor 660 

(ThermoFisher), and Brilliant Violet 785™ anti-mouse CD3 Antibody (Biolegends). To 

examine live/dead cell populations, SYTOX Orange (ThermoFisher) was used per 

instruction of the manufacturer. Cells were washed with FACS buffer and fixed in 1 ml 

filter-sterilized 2% Formaldehyde in FACS buffer. Analyses of samples were completed 

using a NovoCyte 4000
TM

 flow cytometer and NovoExpress
TM

 software. The gating was 

determined using Compensation controls and the degree of nonspecific staining was 

determined by Isotype controls. 
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Statistics 

Differences in the concentration of different immune cell types between L2-wild type and 

L2-ΔCT228 infected mice were determined using one-way analysis of variance 

(ANOVA) with the Tukey posttest. Log IFU data were analyzed at the individual time 

points following infection using unpaired two-tailed student t test. Statistical calculations 

were completed using Prism 7.0. 

 

Results 

 In comparison to genital infection with L2-wild type, genital infection with L2-

ΔCT228 revealed a significant difference in IFU concentration during infection at day 3 

and had similar concentrations of immune cells recruited to the murine reproductive tract. 

Quantified, recoverable log IFUs, as shown in Figure 6A., revealed a significant decrease 

in IFU concentration (***p = 0.0005) in the mutant infected mice in comparison to the 

wild-type infected mice that was not observed at day 7 p.i. (Figure 3B). This correlated 

with what was observed in Shaw et al., 2018. Despite mutant infection having 

significantly lower IFU concentrations at day 28 p.i. and systemic antibody titers (Shaw 

et al. 2018), the concentrations of immune cells recruited to the murine reproductive tract 

were similar to what was observed during L2-wild type infection (Figure 7A-E). 
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Figure 6. Significant decrease of recoverable IFUs shed by mice infected with C. 

trachomatis L2-ΔCT228 at day 3 p.i. 1 × 106 EBs of either L2-wild type or L2-ΔCT228 

was administered to female C3H/HeJ mice intravaginally. Vaginal tracts were swabbed 

for recoverable IFUs, which were enumerated on HeLa cell monolayers. Recoverable 

IFU concentrations from either L2-wild type or L2-ΔCT228 infection are expressed (A) 

at day 3 p.i. (n = 31) and (B) at day 7 p.i. (n = 10). The data revealed a significant 

decrease in IFU concentrations (***p = 0.0005) at day 3 p.i. from the L2-ΔCT228 
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infected mice than what was observed from the L2-wild type infected mice.  Triangles 

and squares represent individual mice, bars represent mean of group for each time point. 
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Figure 7.  Recruitment of immune cells to murine, genital tracts during primary, 

intra-vaginal L2-wild type and L2-ΔCT228 infection. 1 × 106 EBs of either L2-wild 

type or L2-ΔCT228 was administered to female C3H/HeJ mice intravaginally. Three 

whole genital tracts (n = 9 mice/group) were harvested and pooled at day 7 and day 21 

p.i. from L2-wild type and L2-∆CT228 infected mice. Cells were isolated for flow 

cytometry and stained with antibodies for detection of respective immune cell 

populations: neutrophils (A), macrophages (B), dendritic cells (C), CD4 T cells (D), 

and CD8 T cells (E). The black bars represent the average mean of uninfected mice (n = 

3 mice/group, 1 trial total), while the green and red bars represent the average mean of 

infected mice (n = 9 mice/group, 3 trials total). The error bars represent mean + SEM.  

 

Discussion 

From what was observed in Shaw et al., 2018, there was a significant 

effect of time on the L2-wild type infected mice at day 28 p.i. Most of the wild 

type infected mice cleared the infection in comparison to the mutant infected mice 

at this time point. From this result, it is speculated that more EBs were able to be 

cloaked from components of the immune response within the increased numbers 

of extrusions. However, there was no focus on events that may be taking place 

during the early stages of murine infection (~ day 3), and this prompted the 
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enumeration of IFUs at day 3. What was observed, as visualized in Fig. 6A and B, 

was the significant decrease in the number of mutant IFUs at day 3 in comparison 

to the wild type, while at day 7 p.i., there was no difference. In combination with 

the focus on the possibility of immune response evasion, chlamydial infectivity 

and internalization need to be examined further. 

Chlamydial internalization has been studied extensively over the years, 

and this has given rise to many supported and refuted mechanisms, including 

clathrin-mediated endocytosis (Hodinka et al., 1988; Boleti et al., 1999) and 

caveola-mediated entry (Gabel et al., 2004; Webley et al., 2004) . The invasion of 

host cells is due to either generalized pinocytosis or directed phagocytosis, and 

the facilitation of internalization is due to a number of regulatory factors that may 

or not be critical for entry. Some of these examples include the small GTPases, 

Rac1 and Arf6, that have important roles (Carabeo et al., 2004; Balana et al., 

2005) and the small GTPases, RhoA and Cdc42, that do not have important roles 

(Carabeo et al., 2004). The polymerization and rearrangement of actin also plays a 

role in entry as well as recruitment of the inclusion towards the MTOC (Clifton et 

al., 2004). Intracellular calmodulin, calcium, and calcium-activated annexins are 

host cellular components that have been identified to be involved in chlamydial 

infectivity (Murray and Ward, 1984; Majeed et al., 1994). Despite all that has 

been revealed, many of the cellular processes that mediate chlamydial entry and 

infectivity have yet to be elucidated, and this is mainly a result of the lack of 

hypothetical protein elucidation across chlamydial species. One important family 

of proteins consists of inclusion membrane proteins (Incs) that may function in 



 

36 

 

the communication between the bacteria and the host cell (Morrison et al., 2011; 

Elwell et al., 2016). 

CT228 has been revealed to interact with MYPT1, a subunit of myosin 

phosphatase, and this role was examined in the context of host cell exit in vitro 

(Lutter et al., 2013). However, at this point, there is no understanding as to what 

may be occurring during the initial stages of infection in vivo that may be due to 

inactivation of this protein. We have yet to know which host cell components are 

being utilized or which signaling pathways may be affected. In the harsh 

environment of an in vivo model, there is an overall lack of research that has been 

published documenting what has been visualized in vitro in terms of chlamydial 

entry and host cell manipulation. In order to be able to understand what may be 

occurring in vivo, more needs to be done in vitro for the elucidation of unknown 

proteins, such as most of the Incs, as well as their interactions with other Incs and 

with host cell components.  

 In combination with what was observed during the growth curves and 

enumerated IFU concentrations, mutant infection also revealed a significant 

decrease in systemic anti-Chlamydia IgG2a antibody titers (Shaw et. al. 2018). 

This led to the speculation that the difference in EB release, either via lysis or 

extrusion, could alter the degree of recognition by dendritic cells and 

macrophages, and this phenomenon could have led to the alteration of host 

immune response clearance mechanisms. To examine this further, immune cells 

recruited to the reproductive tracts of mice were enumerated and characterized. 

From the data presented in Fig. 7A-E, it was observed that there were no 
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statistical differences amongst the total immune cell populations per reproductive 

tract between L2-wild type and L2-CT228 infected mice. Although whole 

populations were examined, it is important to note the existence of multiple cell 

types that have many different roles that have yet to be characterized during 

infection with this mutant strain: these include M1 and M2 macrophages 

(Mohammadi et al., 2019), iTreg, Th1 cells, Th2 cells, Th17 cells (Hirahara and 

Nakayama, 2016), plasmatocytoid DCs (pDCs), myeloid DCs (mDCs), CD14+ 

DCs, etc (Mildner and Jung, 2014).  

 Most of the in vivo research, in regards to the immune response to genital 

chlamydial infections, has involved infection of murine models with Chlamydia 

muridarum (Vasilevsky et al., 2014).  Despite the limitations, these models have 

provided researchers with a basis for understanding what is involved during 

genital infection. It has been well established that chlamydial infection produces a 

robust Th1 immune response that is characterized by the secretion of IFN-y, IL-

12, and TNF-α, which will lead to the activation of macrophages and CD8 T cells, 

as well as the production of IgG2a (Constant and Bottomly, 1997) The overall 

function of these components is to resolve infection, which is critical in C. 

muridarum murine infection models. When these mice are depleted of CD4 T 

cells that produce Th1-type cytokines, resolution does not occur. However, when 

these CD4 T cells are depleted in a C. trachomatis murine infection model, there 

are no effects on clearance or the development of protective immunity (Morrison 

et al., 2011).  In contrast to what is known about chlamydial Th1 responses, Th2 

responses are understudied. This response involves the secretion of IL-3, IL-4, IL-
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5, IL-10, and these cytokines are important in the activation of B cells, 

eosinophils, and mast cells. They can also the block the production of IgG2a 

(Constant and Bottomly, 1997). The overall function of this response involves the 

maturation and differentiation of B cells. However, due to the lack of research in 

regards to this response, the importance in either a C. trachomatis or C. 

muridarum genital infection is unknown. Cytokine production in relation to 

immune responses has not been well characterized in a C. trachomatis murine 

infection model, and despite not observing differences in the concentrations of 

immune cells, the enumeration of cytokines is an essential future direction that 

will provide researchers information in regards to the different subtypes of 

immune cells that may be recruited. 

 Even if resolution does not occur, protective immunity is still established 

via the secretion of some cytokines as well as the presentation of antigen to T 

cells and B cells (Morrison et al., 2011). A primary infection was examined for 

this study, and during primary infection, minimal antibody and B cell 

concentrations are produced. In order to gain more of an understanding, multiple 

rounds of wild type and mutant infection would need to take place.  

 For this study, serovar L2 was used for murine infection since this is the 

only serovar in which an inactivated CT228 mutant has been generated. Another 

future direction includes the generation of CT228 mutants in other genital 

serovars that more closely mimic the histopathology that is observed during and 

after human infection. Unlike other genital serovars and C. muridarum, infection 

with serovar L2 has been documented to produce less histopathology in mice due 
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to many reasons: infection resolves faster, fewer IFUs are shed, higher IFUs are 

needed for robust infection, and no ascension into the upper genital tract occurs 

unless if the bacteria are injected trancervically (Morrison et al., 2011; Vasilevsky 

et al., 2014)  

 Overall, there is still much to be done in regards to the study of this mutant 

in a murine infection model. The main foci include the examination of the effects 

of decreased antigen presentation within extrusions, the enumeration and 

characterization of cytokines and different immune cell subtypes, the examination 

of host signaling pathways as infection is occurring, the establishment of 

protective responses, and the generation of an inactivated CT228 mutant in other 

serovars that more closely mimic the histopathology observed in human infection. 

The in vitro and in vivo characterization of more hypothetical genes will advance 

the understanding of Chlamydia as well as provide additional vaccine candidates 

that are, to date, desired.  
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