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Abstract:

A hardware algorithm for integer division proposed by Naofumi Takagi, Shunsuke
Kadowaki and Kazuyoshi Takagi is implemented using the hardware-descriptive lan-
guage called Verilog. The hardware algorithm is based on digit-recurrence non-
restoring division. Each partial remainder is represented as an SD2 integer as a
pair of its sign and absolute value. Quotient digit is obtained from the sign of every
partial remainder with the most significant digit first. Quotient is obtained as an
ordinary binary number and remainder as an SD2 integer. Remainder is converted
from SD2 to binary using the concept of a carry lookahead adder. Combinational
design for 4-bit and 8-bit integers that uses radix-2 signed-digit representation of
numbers is implemented. It is simulated and tested using Mentor Graphics Corpo-
ration (MGC)® ModelSim™. RTL synthesis is performed and parameters like area,
total cells, timing and power are calculated.
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CHAPTER I

INTRODUCTION

Fundamental arithmetic operations such as addition, subtraction, multiplication and

division play a vital role in computers, digital signal processors and application spe-

cific integrated circuits. Division in particular is used in many scientific and commer-

cial programs, however, many implementations fail to be implemented optimally [1].

Many algorithms have been proposed to implement specialized arithmetic circuits

to make certain specific problems be solved quickly. But most of them have been

hampered due to large chip area and clocking complexities. Hardware realization of

the algorithm involves challenges like meeting the minimal clock period, rapidly nor-

malising given data and controlling the operation of sequence of different modules [2]

such that no racing problem occurs [3]. To develop a hardware algorithm suitable for

VLSI implementation, the circuit should have a regular structure and also perform

high-speed computation [2]. This thesis concentrates on implementing a division al-

gorithm that addresses the above challenges.

Division in general, is often implemented with repeated subtraction. The quotient

is subsequently determined based on the number of subtractions. Integer division of

two numbers yields an integer quotient and an integer remainder [4]. Division algo-

rithms for hardware implementation can be classified into digit-recurrence, functional

iteration and table-based methods [5]. Digit recurrence is further classified into restor-

ing and non-restoring division algorithms [3].
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The algorithm implemented in this thesis is based on digit-recurrence non-restoring

division. Combinational implementation of this algorithm yields a regular struc-

ture [4]. Moreover, combinational circuits do not rely on clocks and do not consume

more power like that of sequential circuits. Also, the number representation plays

an important role in the computation speed of the algorithm. As division circuits

are built on subtractors, their execution time is very high. So, to simplify subtrac-

tion, Signed-Digit(SD) representation of numbers is used. It helps perform addition

and subtraction in a constant time independent of the word length of the operands [2].

This property of signed-digit numbers helps in achieving high-speed computation.

This thesis uses a combinational circuit with radix-2 signed-digit (SD2) representation

of numbers to implement a digit-recurrence non-restoring division algorithm. Every

partial remainder in the process is represented as a radix-2 signed-digit number [4]. A

quotient bit is obtained in every iteration based on the sign of the partial remainder.

The remainder is initially obtained as an SD2 integer which needs to be converted

to ordinary binary number. Unlike earlier division algorithms, this does not require

the normalisation step. Hence an area-consuming leading one(or zero) barrel shifter

is not required [4].

The algorithm presented in this thesis has been implemented for 4-bit and 8-

bit numbers in Verilog. It is simulated and tested using Mentor Graphics Cor-

poration (MGC)® ModelSim™ for all four variants possible in integer division i.e.

positive/positive, negative/positive, positive/negative and negative/negative. RTL

synthesis for both 4-bit and 8-bit implementations is performed. Area, total cells

required, computation time and power are calculated.

This thesis is organised as follows. Chapter 2 presents an outline of the number
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representation used in this thesis. Chapter 3 presents division algorithms and imple-

mentation. Chapter 4 presents the results. Chapter 5 presents the conclusion and

future work.
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CHAPTER II

NUMBER REPRESENTATION

Number representation plays an important role in deciding the speed of a hardware

algorithm. The algorithm implemented in this thesis uses the radix-2 signed-digit

representation.

2.1 Signed-Digit Representation

It is a numeral system that handles more than one representation for a number. It

uses a digit set D<r,a> = {−a, . . . ,−1, 0, 1, . . . , a}, where r is the radix and a is the

largest digit of the set [6]. A radix-2 representation uses the digit set {-1, 0, 1}

with an n-digit redundant binary number being A=[an−1an−2 . . . a0] bearing a value∑n−1
i=0 2i · ai [4]. It is a number system in which each digit has its own sign regardless

of the sign of the number represented. For example, number 2 can be represented as

[0010], [0010] and [1110] where 1 represents -1. Each signed-digit is represented as a

2-bit binary number in Verilog with MSB indicating the sign and LSB indicating the

value.

This number system is more advantageous for arithmetic operations than for log-

ical operations. It helps perform carry-free addition and borrow-free subtraction.

Adding or subtracting arbitrary long numbers is performed in a constant time [7].

Also, negative numbers are written in the same way as positive numbers without

2’s-complement representation which also makes negation simple [7]. In the case of

division, signed-digit representation helps simplify the choices for quotient by allow-

4



ing more digits to be used per iteration.

2.1.1 Borrow Propagation Free Subtraction

Signed-Digit numbers support carry/borrow free addition/subtraction. In the hard-

ware algorithm that is implemented, subtraction of an ordinary binary integer from

an SD2 integer results in an SD2 integer [4]. All of this happens in two different steps.

The first step produces a borrow bit and an intermediate bit and they belong to the

digit set {0, 1}. The final result is produced in the second step that belongs to the

digit set {-1, 0, 1}. The subtraction takes place as shown in the Tables 2.1 and 2.2

minuend digit
-1 0 1

subtrahend 0 1,1 0,0 0,1
bit 1 1,0 1,1 0,0

bi+1,ei

Table 2.1: First Stage of Subtraction

ei
0 1

bi 0 0 1
1 -1 0

Table 2.2: Second Stage of Subtraction

2.1.2 Radix-2 Signed-Digit to Binary Conversion

An n-digit signed number taken as A=[an−1an−2 . . . a0] where ai belongs to the digit

set {-1, 0, 1} can be converted into an equivalent binary number in the following

way [2]:

equivalent binary number = A− - A+

where A− is the n-bit unsigned number obtained from the negative digits of A having
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positives and zeros as 0 and negatives as 1 and A+ is the n-bit unsigned number

obtained from the positive digits of A having negatives and zeros as 0 and positives

as 1.

An SD2 integer [11 10] can be converted into equivalent binary as [1000]-[0110] =

[0010]. But for an unsigned SD2 integer, the equivalent binary is the number itself.

This process has been implemented using a carry-look-ahead adder in this thesis.

2.2 Sign and Absolute Value

Every partial remainder produced in the process of division is expressed as an SD2

integer. It is expressed as a pair of its sign and absolute value. The sign of the partial

remainder is used to calculate the quotient bit of that iteration and the absolute value

is used to calculate the next partial remainder.

2.2.1 Sign

The sign of the most significant non-zero digit is the sign of an SD2 integer [4]. It is

calculated as shown below.

for i = n− 1 downto 0 do . n bits of the partial remainder

if (sign of previous bit = 0 and the value of the current bit = -1) then

sign of partial remainder till the particular bit = -1

else if (sign of previous bit = 0 and the value of current bit = 1) then

sign of partial remainder till this particular bit = 1

else

sign of partial remainder till the particular bit = sign of previous bit

end if

end for
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2.2.2 Absolute Value

For a negative number, its negation gives the absolute value which is also an SD2

integer. In other cases when the number is positive or zero, it is the number itself. It

is calculated as shown below.

if (sign of partial remainder bit = -1 and value of partial remainder bit 6= 0) then

absolute value = negation of the partial remainder bit

else

absolute value = partial remainder bit itself

end if
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CHAPTER III

DIVISION ALGORITHM AND ITS IMPLEMENTATION

Division is about finding how many times a number can be subtracted from the other

without yielding a negative number. The divisor is subtracted from the dividend as

long as a negative remainder is not obtained. If obtained, the divisor is added back as

a correction factor. The quotient is calculated as #subtraction− 1 [8]. For dividend

x, divisor y, quotient q and remainder r x = q · y + r [5]. The example below shows

1347 divided by 2.

2))1347
673

1341
1306
1307
114
114
12

This is called digit recurrence method of division. It is further classified as restor-

ing and non-restoring. Digit recurrence algorithms generate a quotient bit in a step-

by-step process with the most significant digit first. Quotient bit is inferred from the

sign of the difference of dividend and divisor. Divided in each iteration is the partial

remainder that is obtained. Divisor in each iteration is quotient times times the ac-

tual divisor multiplied by its place value. A positive dividend and a positive divisor

result in a positive quotient and a positive remainder. A negative dividend and a

positive divisor result in a negative quotient and a negative remainder. A positive

dividend and negative divisor result in a negative quotient and a positive remainder.

A negative dividend and a negative divisor result in a positive quotient and a negative

remainder.
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3.1 Restoring Division

The conventional restoring division is performed as a series of shifts and subtrac-

tions [8]. Quotient is determined from the sign of the partial remainder. If the partial

remainder is negative, divisor is added back which is called restoring. The algorithm

is as follows[9]:

1: Initialize the registers i.e. Q=dividend, M=divisor, A=0, N= number of bits in

dividend.

2: Shift contents of A and Q by one unit.

3: Perform A=A-M.

4: If the result is positive, LSB of Q is set to 1. Else, LSB of Q is set to 0 and the

contents of register A are restored.

5: Decrement the value of N by one.

6: Repeat steps 2 through 5 until N=0.

7: Q = quotient and A = remainder

The following example is shown for two input operands Divisor=0010, Dividend=0101

N M A Q Comments

4 0010 0000 0101 initialize registers

4 0010 0000 101 shift left AQ

4 0010 -0010 101 subtract M from A

4 0010 1110 101 A is -ve, restore A in next step,Q[0]=0

3 0010 0000 1010 decrement n, restore and Q[0]

3 0010 0001 010 shift left AQ

3 0010 -0010 010 subtract M

3 0010 1111 010 A is -ve, restore and Q[0]=0 in next step

2 0010 0001 0100 decrement n, restore and Q[0]

2 0010 0010 100 shift left AQ

9



2 0010 -0010 100 subtract M

2 0010 0000 100 A is +ve, Q[0]=1 in next step

1 0010 0000 1001 decrement n, restore and Q[0]

1 0010 0001 001 shift AQ

1 0010 -0010 001 subtract M

1 0010 1111 001 A is -ve, restore A and Q[0]=0 in next step

0 0010 0001 0010 A=remainder, Q=quotient

3.2 Non-restoring Division

It is an improved division algorithm where restoring does not take place. The opera-

tion after shifting is either addition or subtraction depending on the partial remain-

der [8].The algorithm is as follows [10]:

1: Initialize the registers i.e. Q=dividend, M=divisor, A=0, N= number of bits in

the dividend.

2: Check the sign of contents in register A.

3: If positive, shift left AQ and perform A=A-M. If negative, shift left AQ and

perform A=A+M.

4: Check the sign of contents of register A.

5: If positive, LSB of Q is set to 1. If negative, LSB of Q is set to 0.

6: Decrement the value of N by one.

7: Repeat steps 2 through 6 until N = 0.

8: Check the sign of contents of A. If negative, perform A=A+M.

9: Q = quotient and A = remainder

10



The following example is shown for two input operands Divisor=0010, Dividend=0101:

N M A Q Comments

4 0010 0000 0101 A +ve

4 0010 0000 101 shift AQ

4 0010 -0010 101 A=A-M

3 0010 1110 1010 A -ve, Q[0] = 0, decrement N

3 0010 1101 010 shift AQ

3 0010 +0010 010 A = A+M

2 0010 1111 0100 A -ve, Q[0] = 0, decrement N

2 0010 1110 100 Shift AQ

2 0010 +0010 100 A = A+M

1 0010 0000 1001 A +ve, Q[0]= 1, decrement N,

1 0010 0001 001 A +ve, Shift AQ

1 0010 -0010 001 A = A - M

0 0010 1111 0010 A -ve, Q[0]= 0, decrement N

0 0010 +0010 0010 A -ve, A = A + M

0 0010 0001 0010 A = remainder, Q = quotient

Non-restoring method is quicker and better than the restoring method because it

takes only one decision per quotient and addition/subtraction per quotient bit [11].

Also, the sign of the partial remainder is allowed to be either positive/negative in non-

restoring. It can be expressed in terms of signed digit representation which facilitates

hardware implementation.

3.3 Radix-2 Signed-Digit Non-restoring Integer Division

The radix-2 signed-digit non-restoring division algorithm on which the original hard-

ware algorithm that is implemented is as shown below [4].
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Divisor: Y Dividend: X

Let D = |Y | and Rn = X

for j ← n− 1 downto 0 do

if Rj+1(partialremainder) = 0 then

Q(quotient) = [qn−1qn−2 . . . qj+10 . . . 0]

R = 0

if Y (divisor) < 0 then

Z(finalquotient) = −Q

else

Z = Q

end if

end if

if (Rj+1(partialremainder) < 0) then

qj = −1

else

qj = 1

end if

Rj = Rj+1 − qj · 2j ·D . calculating next partial remainder

end for

Q = [qn−1qn−2 . . . q0]

if (X(divisor) > 0 and R0(final partial remainder)< 0) then

R(remainder) = R0 + D

Q = Q− 1

else if (X < 0 and R0 > 0) then

R(remainder) = R0 −D

Q = Q + 1

12



else

R = R0

end if

3.4 Hardware Algorithm

It is the hardware algorithm implemented in this thesis. It is based on digit-recurrence

non-restoring division algorithm [4]. It uses radix-2 signed-digit representation to rep-

resent partial remainders. Each partial remainder is represented as a pair of its sign

and absolute value where the absolute value is an SD2 integer. Absolute value of the

partial remainder can be calculated simultaneously with sign detection. It can also

be started even before the sign detection of its preceding partial remainder. Quotient

digit in each iteration is obtained from the sign of the corresponding partial remain-

der [4]. It is obtained as an ordinary binary number. Remainder is obtained as an

SD2 integer. Conversion from SD2 to binary is required. Quotient adjustment and

remainder selection are done based on sign of the divisor and dividend.

To make the radix-2 signed-digit non-restoring algorithm suitable for hardware

implementation, a series of variables R̂js is introduced as partial remainder. R̂j is

calculated as

R̂j = sign(Rj+1).Rj

and its absolute value is given [4] by |R̂j| = |Rj|

Sign of R̂j and Rj are calculated [4] as

sign(R̂j) =


sign(Rj+1) · sign(Rj), if Rj 6= 0

+1, if Rj = 0

13



sign(Rj) =


sign(Rj+1) · sign(R̂j), if Rj 6= 0

+1, if Rj = 0

Partial remainder is calculated using R̂j = | ˆRj+1| − 2j · D [4].It is represented

as an n + j digit SD2 representation and a pseudo-overflow correction is applied to

the subtraction result [4]. Only the upper n digits of R̂j are calculated while the

least significant digits are taken from the corresponding bits of dividend with the sign

based on the sign(Rj). | ˆRj+1| is calculated from ˆRj+1 using the sign and absolute

value calculation algorithm presented in chapter 2. The computation is continued

till j = 0 even if Rj+1 = 0 to have a regular structure. So, the quotient adjustment

differs from what is considered in radix-2 non-restoring division algorithm [4]. In the

final iteration, R̂0
∗ is calculated as |R̂0

∗| − D, because all the dividend bits will be

used up by then.

The division algorithm implemented in this thesis for a 4-bit integer is as follows [4].

Divisor Y = [y3y2y1y0] Dividend X = [x3x2x1x0]

For an n-bit, Divisor Y = [yn−1 . . . y1y0] Dividend X = [xn−1 . . . x1x0] taking D = Y

and R̂n = X

Step 1: Divisor sign determination

if yn−1 = 0 then . divisor is positive

D = Y

else

D = Y + 1 . 2’s complement

end if

Step 2: Dividend sign determination

if xn−1 = 1 then . dividend is negative

sign(Rn) = −1

14



else

sign(Rn) = +1

end if

Step 3: Calculating partial remainder and its sign and then calculating quotient bit

for j ← n− 1 downto 0 do

Step 3.1: Partial remainder

R̂j = | ˆRj+1| - 2j ·D

R̂j = absolute(R̂j) . calculated using the algorithm presented in chapter 2

Step 3.2: Determining the sign of partial remainder

if sign(R̂j
‘) = -1 or ( sign(R̂j

‘) = 0 and sign(Rj+1)= -1 ) then

sign(Rj) = −sign(Rj+1)

else

sign(Rj) = sign(Rj+1)

end if

Step 3.3 : Determining the quotient bit

if sign(Rj+1) = -1 then

if yn−1 = 0 then

pj+1 = 0

else

pj+1 = 1

end if

else

if yn−1 = 0 then

pj+1 = 1

else

pj+1 = 0

end if

15



end if

end for

P (initial quotient) = [pn−1pn−2 . . . p11]

Step 4: Quotient adjustment and remainder selection

if xn−1 = 0 then

if sign(R0) = -1 then

R =|R̂0
∗|

if yn−1 = 0 then

Z = P − 1

else

Z = P + 1

end if

else

R = |R̂0|

Z = P

end if

else

if sign(R̂0
∗) = 0 then

R = - |R̂0
∗|

if yn−1 = 0 then

Z = P − 1

else

Z = P + 1

end if

else if (sign(R̂0)) 6= 0 and sign(R0) = +1) then

R = - |R̂0
∗|

if yn−1 = 0 then

16



Z = P + 1

else

Z = P − 1

end if

else

R = -|R̂0|

Z = P

end if

end if

3.5 Combinational Implementation

The combinational implementation of the above algorithm yields the following reg-

ularly structured design which is quite feasible for implementation on a VLSI chip.

The design has been shown for a 4-bit integer in Figure 3.1. It has 12 cells namely

SUB, NEG, MUX, CMP, ABS, OVF, DVDSGN, PORTSIZE, SGN, ADJ, PADJ and

NEGCONV. The blocks PORT SIZE and DVD SGN, not given the original reference

paper [4] have been added for a clear presentation of the design. The design shows

exactly what has been implemented in HDL. The function of each cell is as described

below.

SUB: It performs the first stage of subtraction as shown in Table 2.1. The minuend

is a signed number and the subtrahend is an ordinary binary producing an unsigned

borrow and intermediate difference.

ABS: It performs the second stage of subtraction as shown in Table 2.2 thereby

producing the partial remainder. It also calculates the absolute value of the partial

remainder based on sign of R̂j which is also calculated by ABS cell. It follows the

17



sign and absolute value calculation algorithm presented in Chapter 2.

OVF: It compensates the pseudo overflow correction. An overflow is generated

because the partial remainder bits are shifted to the left to accommodate the LSB

obtained from dividend. This cell receives 3 inputs from the previous OVF cell, ABS

cell and SUB cell that contribute to the next partial remainder. It calculates the

difference of the values of ABS and SUB cells and gives as input to its adjacent ABS

cell. The input from OVF cell is sent to next OVF cell.

SGN: It calculates the sign of Rj from sign of Rj+1 and sign of the partial remain-

der R̂j and determines the quotient bit.

NEG: It determines the sign of LSB (obtained from the dividend) of the minuend

for the next stage of subtraction, based on the sign of Rj calculated by the SGN cell.

CMP: It has two functions- One is to determine the sign the remaining bits of

the divisor based on its MSB. These divisor bits serve as subtrahend in each stage

of subtraction. Second function of CMP is to determine the sign of the quotient bit

based on MSB of the divisor. The quotient is obtained from SGN cell.

DVDSGN: This cell is not shown in the original design given in the base paper.

It is added to determine the sign of the dividend using its MSB and converting it

into SD2 number which is given to SGN cell to determine the sign of the first partial

remainder.

PORTSIZE: This cell is also not shown in base paper. It converts the MSB of the

divisor into an SD2 number to be given as LSB of the minuend to obtain the first

18



partial remainder.

ADJ: This cell generates control signals for quotient adjustment (given to PADJ)

and remainder selection (given to MUX).

PADJ: It produces the final quotient based on the control signal produced by ADJ.

NEGCONV: It converts an SD2 number to a 2’s complement binary number. The

conversion uses the concept of a carry lookahead adder[12].

MUX: It outputs remainder bits by choosing between R̂0 and R̂0
∗ based on the

control signal by the ADJ cell.
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Figure 3.1: Combinational Implementation
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CHAPTER IV

RESULTS

Realizing a design into real hardware involves two phases namely the front end and

the back end. Front end includes determining the design specifications, architectural

design, functional verification and power analysis, logic and test synthesis. The back

end phase involves floor planning and CTS, layout design, placement and routing,

physical verification and tapeout [13]. This summarizes VLSI design flow. This the-

sis realises the front end phase for the discussed division hardware algorithm.

The divider has been implemented in Verilog. Simulation and testing is performed

using MGC ® ModelSim™. The code is tested for various 4-bit and 8-bit inputs. The

entire process includes determining how the given algorithm works, understanding

and modifying the given design to make it suitable for designing HDL, implement

using a HDL, create a testbench with a couple of test vectors, simulate and finally

compare the simulated results with the known results.

A sample of the manual division for 4-bit is shown here considering dividend and

divisor as 5 and 2 respectively with all four variants: 5/2 (positive/positive) , -5/2

(negative/positive) , -5/-2 (negative/negative) and 5/-2 (positive/negative). Nega-

tive numbers are shown in 2s complement representation.
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Positive/Positive:
Dividend(X) = 5 Divisor(Y ) = 2 Remainder(R) = 1 Quotient(Z) = 2

X = [x3x2x1x0] Y = [y3y2y1y0]
X = [0101] Y= [0010]

D = [010] sign(R̂j
‘) sign(Rj) pj+1 . determine divisor

R̂4 0101 +1 . sign of dividend

|R̂4
‘| 0000 . load register with 0s, LSB = x3 ∗ sign(Rj)

−23 ·D -010 . subtract to calculate the next partial remainder
0010

-0100

R̂3
‘ 0110 −1 −1 0 . sign and quotient bit calculation

|R̂3
‘| 1101 . absolute value, shift left, LSB= x2 ∗ sign(Rj)from previous step

−22 ·D -010 . subtract to calculate the next partial remainder
1111

-1110

R̂2
‘ 0001 +1 −1 0 . sign and quotient bit calculation

|R̂2
‘| 0010 . absolute value, shift left, LSB= x1 ∗ sign(Rj)from previous step

−21 ·D -010 . subtract to calculate the next partial remainder
0000

-0000

R̂1
‘ 0000 0 +1 +1 . sign and quotient bit calculation

|R̂1
‘| 0001 . absolute value, shift left, LSB= x0 ∗ sign(Rj)from previous step

−20 ·D -010 . subtract to calculate the next partial remainder
0011

-0100
R̂0 0111 −1 −1 . sign calculation

|R̂0| 0111 . absolute value
−D -010 . subtract to calculate the next partial remainder

0101 Quotient Adjustment
-0110 P=[0011]

R̂0
∗ 0011 −1 X > 0 and Y > 0

therefore Z = P-1 = [0010]

|R̂0
∗| 0011 Remainder Selection

X > 0 and sign(R0) = -1

therefore R = |R̂0
∗| =[0001]
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Negative/Positive:
Dividend(X) = −5 Divisor(Y ) = 2 Remainder(R) = −1 Quotient(Z) = −2

X = [1011] Y= [0010]

D = [010] sign(R̂j
‘) signRj pj+1

R̂4 1011 −1

|R̂4
‘| 0001

−23 ·D -010
0011

-0100

R̂3
‘ 0111 −1 +1 +1

|R̂3
‘| 1110

−22 ·D -010
1100

-1100

R̂2
‘ 0000 0 +1 +1

|R̂2
‘| 0001

−21 ·D -010
0011

-0100

R̂1
‘ 0111 −1 −1 0 P=[1101]

X < 0 and Y > 0
|R̂1

‘| 1111 therefore Z = P+1 = [1110]
−20 ·D -010

1101 X < 0
-1110 sign(R̂0)6= 0 and sign(R0) = +1

R̂0 0011 −1 +1 therefore R = -|R̂0
∗| =[1111]

|R̂0| 0011
−D -010

0001
-0010

R̂0
∗ 0011 −1

|R̂0
∗| 0011
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Negative/Negative:
Dividend(X) = −5 Divisor(Y ) = −2 Remainder(R) = −1 Quotient(Z) = 2
X = [1011] Y= [1110]

D = [001]+1 sign(R̂j
‘) signRj pj+1

R̂4 1011 −1

|R̂4
‘| 0001

−23 ·D -001
0000

-0001

R̂3
‘ 0001 −1 +1 0

|R̂3
‘| 0010

−22 ·D -001
0011

-0011

R̂2
‘ 0000 0 +1 0

|R̂2
‘| 0001

−21 ·D -001
0000

-0001

R̂1
‘ 0001 −1 −1 +1 P=[0011]

X < 0 and Y < 0
|R̂1

‘| 0011 therefore Z = P-1 = [0010]
−20 ·D -001

0010 X < 0
-0011 sign(R̂0)6= 0 and sign(R0) = +1

R̂0 0001 −1 +1 therefore R = -|R̂0
∗| =[1111]

|R̂0| 0001
−D -001

0000
-0001

R̂0
∗ 0001 −1

|R̂0
∗| 0001
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Positive/Negative:
Dividend(X) = 5 Divisor(Y ) = −2 Remainder(R) = 1 Quotient(Z) = −2
X = [0101] Y= [1110]

D = [001]+1 sign(R̂j
‘) signRj pj+1

R̂4 0101 +1

|R̂4
‘| 0000

−23 ·D -001
0001

-0011

R̂3
‘ 0010 −1 −1 +1

|R̂3
‘| 0101

−22 ·D -001
0100

-0011

R̂2
‘ 0111 +1 −1 +1

|R̂2
‘| 1110

−21 ·D -001
1111

-1111

R̂1
‘ 0000 0 +1 0 P=[1101]

X > 0 and Y < 0
|R̂1

‘| 0001 therefore Z = P+1 = [1110]
−20 ·D -001

0000 X > 0
-0001 sign(R0) = -1

R̂0 0001 −1 −1 therefore R = |R̂0
∗| =[0001]

|R̂0| 0001
−D -001

0000
-0001

R̂0
∗ 0001 −1

|R̂0
∗| 0001
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Simulation results are shown in Figures 4.1 and 4.2 for 4-bit and 8-bit respectively.

The waveforms show division computed for 20 input vectors and the results tally with

the theoretical results. The signals shown in the waveform are divisor, dividend, quo-

tient and remainder along with few internal signals like sign of the divisor, control

signal for quotient and remainder, overflow in each iteration and so forth.

Figure 4.1: Waveform generated in MGC ® ModelSim™ for 4-bit implementation

Figure 4.2: Waveform generated in MGC ® ModelSim™ for 8-bit implementation

26



4.1 Synthesis

After the architectural design is obtained and digitally implemented using a HDL,

simulation and functional verification is done to test if the RTL design matches the

specifications, the design is expressed in the form of basic circuit elements likes gates

and transistors which is called gate level netlist. This is called synthesis. It is per-

formed using a synthesis tool. The tool uses a standard cell library, constraints and

the RTL code to produce the gate-level netlist. Parameters like the total cell area,

number of cells used, computation time and power are calculated for both 4-bit and

8-bit which are shown in Table 4.1. This thesis uses 0.5m Scalable CMOS (SCMOS)

standard-cells for synthesis.

4-bit 8-bit

AREA(mm2) 0.046134 0.439299
TOTAL CELLS 203 1,809

COMPUTATION TIME(ns) 9.957 10.694
POWER

Internal Power(mW) 2.303970 28.059448
Switching Power(mW) 3.016685 29.666616
Leakage Power(nW) 13.018942 128.886765
Total Power(mW) 5.320667 57.726223

Table 4.1: Synthesis results for 4-bit and 8-bit implementation targeted at 100MHz

Total power is the sum of internal, switching and leakage powers. Switching

power is dynamic while internal and leakage are static. The next step is to create a

layout using layout synthesis tools. It is created by converting each logic component

(cells, macros, gates, transistors) into a geometric representation (specific shapes

in multiple layers), which perform the intended logic function of the corresponding

component [14]. After the layout is verified it is sent for fabrication.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Combinational implementation of a hardware algorithm for integer division is pre-

sented in this thesis. A 4-bit and 8-bit implementation of the design has been per-

formed in Verilog HDL. It is simulated and tested using MGC ® ModelSim™. RTL

synthesis is performed and parameters like area, total cells, timing and power are

computed. Algorithm is based on digit-recurrence and non-restoring division that

uses radix-2 signed-digit representation. Each partial remainder is represented as an

SD2 integer with a sign and absolute value. Quotient is obtained from each partial

reminder as an ordinary binary integer. Remainder requires conversion from SD2 to

binary. Four variants of integer division i.e. positive/positive, negative/positive, neg-

ative/negative and positive/negative are shown. Results prove that division has been

carried out correctly. The advantage of this algorithm over many existing algorithms

is that it takes very less computation time which can be stated from the number

representation used. It also uses less power as it is a combinational implementation

and not sequential. Also, non-restoring algorithm produces a quicker output when

compared to the restoring algorithm because it skips the restoring step after subtrac-

tion.

Future work is to integrate the design into hardware i.e. perform the back end

phase of a VLSI design flow. Also, improving the logic of cells like NEG-CONV (SD2

to binary conversion) for faster computation is a prospect.
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