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Chapter 1

Introduction

The Catalan numbers Cn given by Cn = 1
n+1

(
2n
n

)
for n ≥ 0 are pervasive in the field

of enumerative combinatorics and can be used to count the elements of many sets. In [1],

Stanley devotes a chapter to an exercise asking the reader to show that the elements of 214

different sets are counted by Cn. The Catalan numbers can be defined by the above formula,

by the quadratic recursion Cn+1 =
∑n

j=0CjCn−j, or by constructing the following triangular

array.

Definition 1.0.1. Catalan’s triangle is the triangular array {Cn,k} defined where 0 ≤ k ≤ n

given by

Cn,k =


1 ; k = 0

Cn−1,k + Cn,k−1 ; 0 < k < n

Cn,k−1 ; k = n

Rows zero through four of Catalan’s triangle are given below.

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

The right boundary of Catalan’s triangle gives the classic Catalan numbers; that is to say,

Cn = Cn,n.
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Remark 1.0.2. Note that the nth Catalan number Cn is the sum of the entries in the

previous row of Catalan’s triangle. That is, Cn = Cn,n =
∑n−1

k=0 Cn−1,k.

In this way, each row of Catalan’s triangle can be seen as a specific partition of the

subsequent Catalan number. Using this notion, then for many sets for which it is known how

they are counted by the Catalan numbers, we can identify some additional parameter which

we will use to further classify these sets into subsets whose elements are counted by each row

of Catalan’s triangle.

Example 1.0.3. For example, it is known that there are C4 = 14 different ways to triangulate

a regular hexagon. We can further classify this using Catalan’s triangle by seeing 1 of these

triangulations has 3 diagonals connected to a fixed vertex, 3 of these triangulations have

exactly 2 diagonal connected to the same fixed vertex, 5 of these triangulations have exactly

1 diagonal connected to the same fixed vertex, and 5 of these triangulations have 0 diagonals

connected to the same fixed vertex.

Figure 1.1: The 14 triangulations of a regular hexagon, arranged by the number of diagonals
connected to the leftmost vertex
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Definition 1.0.4. We construct a corresponding array {fn,k}, known as Borel’s triangle, by

applying binomial coefficients to rows of Catalan’s triangle in the following way:

fn,k =
n∑

s=0

(
s

k

)
Cn,k

Rows zero through four of Borel’s triangle are given below.

1

2 1

5 6 2

14 28 20 5

42 120 135 70 14

In [2], Francisco, et al. give four interpretations of Borel’s triangle and discuss sets counted

by it including certain marked binary trees, pseudotriangulations, and Betti numbers of

certain monomial ideals. It is then left as an open-ended problem to find and identify other

set of objects counted by Borel’s triangle. Here, we will discuss several of these sets counted

by Borel’s triangle and introduce a strategy utilizing the structure of Catalan’s triangle to

identify more of these sets.

As fn,k is defined in terms of the rows of Catalan’s triangle, then for many sets whose

elements are counted by the rows of Catalan’s triangle, we can identify similar sets whose

elements are counted by the rows of Borel’s triangle. In particular, the entries in Borel’s

triangle are defined by applying certain binomial coefficients to the row’s of Catalan’s triangle,

so the elements of sets counted by Borel’s triangle can be constructed by “choosing” or

“marking” a fixed number of a certain property of elements of sets counted by Catalan’s triangle.

Using this notion of “marking”, we introduce the following strategy for finding classes

of objects counted by Borel’s triangle. First, we begin with a set of objects which are counted

by the classic Catalan numbers. Then, we attempt to identify an additional parameter or

property which allows us to further classify this into subsets counted by the rows of Catalan’s

triangle. Next, we “mark” a certain fixed number of this property to create new sets whose

elements are counted by Borel’s triangle. Lastly, we aim to recontextualize these “markings”
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to find other sets which are counted by Borel’s triangle. In [3], Cai and Yan have done

similar work simultaneously and independently from ours, in which they discuss other marked

Catalan structures and sets counted by Borel’s triangle.

In Chapter 2, we will proceed to discuss several sets whose elements are counted by the

Catalan numbers and their classification into subsets whose elements are counted by the rows

of Catalan’s triangle.

In Chapter 3, we will discuss several sets whose elements are counted by the rows of Borel’s

triangle, many of which are closely related to sets discussed in Chapter 2 whose elements

now have some marked property.
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Chapter 2

Structures Counted by Catalan’s Triangle

2.1 Dyck Paths and Ballot Sequences

Definition 2.1.1. A Dyck Path of length 2n is a sequence of n up steps (labeled U) and n

down steps (labeled D) for which each initial segment of the sequence has at least as many

up steps as down steps.

A Dyck path can be visually represented as a “mountain range” with n upstrokes and

n down strokes which never dips below the horizon. In this way, we refer to a peak as the

point between an up step and a down step which immediately follows it, and the height of

that peak is the number of down steps needed in order for the path to return to its original

height.

Proposition 2.1.2. The entry Cn,k in Catalan’s Triangle counts the number of Dyck paths

of length 2(n+ 1) in which the height of the first peak is n− k + 1.

Proof. Let Xn,k denote the number of Dyck paths of length 2(n+1) in which the height of the

first peak is n−k+1. In order to show Cn,k counts Xn,k, we will show Xn,k = Xn,k−1 +Xn−1,k

and X0,0 = 1.

First, note that there is exactly one path of length 2 where the height of the first peak is 1

(namely, the path given by one up step followed by one down step), so X0,0 = 1.
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Figure 2.1: A Dyck path of length 12 and with a first peak of height 3 and ia final peak of
height 1

Now, let A be a Dyck path of length 2(n+1) where the height of the first peak is n−k+1 = h.

We can write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each ai is

either U (denoting an up step) or D (denoting a down step). As the height of the first peak

of A is h, then the first down step in A comes after h up steps. That is, ah+1 = D and for

i ≤ h, ai = U . Consider the two cases where ah+2 = U and ah+2 = D.

Case 1 (ah+2 = U):Since ah+2 = U , then the first down step in A is immediately fol-

lowed by an up step. Consider transforming A by swapping ah+1 and ah+2. This gives us a

sequence of the same length in which the first down step comes after h+ 1 up steps. In this

way, we can uniquely associate A with a Dyck path of length 2(n+ 1) where the height of

the first peak is n− (k − 1) + 1.

Case 2 (ah+2 = D): Since ah+2 = D, then the first down step in A is immediately fol-

lowed by another down step. Consider transforming A by removing ah and ah+1. This gives

us a sequence of length 2n where the first down step comes after h− 1 up steps. In this way,

we can uniquely associate A with a Dyck path of length 2n where the height of the first peak

is n− k + 1.

Since each Dyck path of length 2(n+ 1) in which the height of the first peak is n− k + 1 can

be made uniquely by modifying either a Dyck path of length 2(n+ 1) in which the height of
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the first peak is n− (k − 1) + 1 or a Dyck path of length 2n in which the height of the first

peak is n− k + 1, then Xn,k = Xn,k−1 +Xn−1,k. Therefore, Cn,k counts Xn,k.

Proposition 2.1.3. The number of Dyck paths of length 2(n+ 1) in which the height of the

first peak is n− k + 1 is in natural bijection with the number of Dyck paths of length 2(n+ 1)

in which the height of the final peak is n− k + 1.

Figure 2.2: A Dyck path of length 12 and with a first peak of height 3 and its corresponding
path of length 12 with a final peak of height 3

Proof. Let A be a Dyck path of length 2(n+ 1) where the height of the first peak is n− k+ 1.

As before, write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each

ai is either U or D. Define a new sequence B = b1, b2, . . . , b2n+2 by bi = −a2n+2−i+1 where

negation in this sense changes an up step to a down step and vice versa.

This creates a new sequence of the same length by reversing and negating our original

sequence; however, this is visually represented by a horizontal reflection of the diagram given

by the original sequence. Hence, the height of the final peak in our new sequence B is the

same as the height of the first peak in our original sequence A.

Proposition 2.1.4. The number of Dyck paths of length 2(n+ 1) in which the height of the

first peak is n− k + 1 is in natural bijection with the number of ballot sequences of elections

between two parties each receiving n+ 1 votes in which the first party to receive a vote receives
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exactly k votes after the second party’s first vote, and the second party never holds a majority

of the votes at any stage in the count.

Proof. Let A be a Dyck path of length 2(n+ 1) where the height of the first peak is n− k+ 1.

As before, write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each

ai is either U or D. We can view this sequence as a ballot sequence of an election between

two parties in which each up step is a vote for PartyX and each down step is a vote for Party Y .

As A has length 2(n+1) with an equal number of up and down steps, then each party receives

exactly n + 1 votes, and since the height of the first peak of A is n− k + 1, then the first

n− k + 1 steps are all up steps, so the first n− k + 1 votes are all for Party X with Party

Y receiving the (n− k)th vote. Party X then receives exactly k more votes after Party Y

receives its first vote. As A is a valid Dyck path, then at no point in the sequence are there

more down steps than up steps (i.e. the path never dips below the height on which it began),

so at no stage in the count are there more votes for Party Y than for Party X. This gives us

our ballot sequence with the desired properties.

2.2 Pattern Avoiding Permutations

Definition 2.2.1. Consider a permutation σ. We say σ has a 321 pattern if there exist

l < m < n such that σ(n) < σ(m) < σ(l). Further, we say this pattern is consecutive if

m = l+ 1 and n = l+ 2. We similarly define a 231 pattern if there exist l < m < n such that

σ(n) < σ(l) < σ(m). We say a permutation is 321-avoiding if it contains no 321 patterns

Proposition 2.2.2. The number of Dyck paths of length 2(n+ 1) in which the height of the

first peak is n− k + 1 is in natural bijection with the number of 321-avoiding, fixed-point-free

involutions, σ, on [2(n+ 1)] where σ(1) = n− k + 2.

Proof. Let A be a Dyck path of length 2(n+1) where the height of the first peak is n−k+1 = h,

and write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each ai is

either U or D. As the height of the first peak of A is h, then ah+1 is the first down step

in the sequence. We will define a permutation σ by transposing the ith instance of an up

step in the sequence with the ith instance of down step in the sequence. That is, if ar the
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Figure 2.3: A Dyck path of length 12 and with a first peak of height 3 and its corresponding
321-avoiding fixed-point-free involution on [12] containing the transposition (1 4)

ith instance of an up step, and as is the ith instance of a down step, then σ contains the

transposition (r s). Clearly, this defines σ as a product of n+ 1 disjoint transpositions (i.e.

a fixed-point-free involution on [2(n+ 1)]), so we need to show that σ avoids the pattern 321.

Suppose for contradiction that σ contains a 321 pattern (that is, there exist x < y < z such

that σ(x) > σ(y) > σ(z)). As x < y and σ(x) > σ(y), it must be true that ax is an up step

while ay is a down step (if ax and ay were both up steps or both down steps, then this would

require σ(x) < σ(y)). In the same way, as y < z and σ(y) > σ(z), then it must be true that

ay is an up step while az is a down step. However, this requires that ay be both an up step

and a down step, and this is a contradiction.

To see that this is invertible, let σ be a 321-avoiding fixed-point-free involution on [2(n+ 1)]

containing the transposition (1 h+ 1). As σ is the product of n+ 1 disjoint transpositions,

we can uniquely construct a Dyck path A = a1, a2, . . . , a2n+2 in the following way: If (i j)

is a transposition in σ where i < j, then define ai = U and aj = D. As each down step

is paired with an up step preceding it, then this gives a valid Dyck path in that there are

never more down steps than up steps at any stage in the sequence, and as σ contains the

transposition (1 h+ 1), then ah+1 is the first down step in the sequence, and the height of

the first peak of A is h.
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2.3 Triangulations, Parenthesizations, and Full Binary Trees

Proposition 2.3.1. The number of Dyck paths of length 2(n+ 1) in which the height of the

final peak is n− k + 1 is in natural bijection with the number of triangulations of a regular

polygon with n+ 3 sides where k of the diagonals do not contain a given fixed vertex.

Figure 2.4: A Dyck path of length 12 and its corresponding triangulation of a regular
octagon

Proof. Let A be a Dyck path of length 2(n+ 1) where the height of the final peak is n−k+ 1.

Note that since the length of the path is 2(n+ 1), then there are n+ 1 total down steps, so

there are k down steps which are not included in the final descent. We will show a method of

mapping A to a triangulation of a regular (n+ 2)-sided polygon.

First, we want to pair together certain up and down steps of A in the following way:

we label the up steps in increasing order, then starting with the first down step, we will

pair each down step, with the most recent unpaired up step. For example, the sequence

UDUUUDDUUDDD becomes the paired sequence U1D1U2U3U4D4D3U5U6D6D5D2 where

each Ui is paired with Di.

Now, we want to divide this paired sequence into (n+ 2) segments in the following way: the

first segment will simply be U1 and each subsequent segment will be the sequence of steps
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beginning immediately after the end of the last segment and ending with the next up step

(except for the final segment, in which case the final (n − k + 1) down steps comprise the

final segment). For example, the paired sequence U1D1U2U3U4D4D3U5U6D6D5D2 becomes

the segmented sequence U1 −D1U2 − U3 − U4 −D4D3U5 − U6 −D6D5D2.

Now, we will assign this segmented sequence to the vertices of an (n+3) sided polygon, and use

that assignment to construct a triangulation. First, label one vertex of the polygon as v0, and

continue clockwise around the polygon labeling the vertices v1, v2, . . . , vn+2. Next, we assign

the first segment of our segmented sequence to v1, the second segment of our sequence to v2,

and so on. Now, to triangulate the polygon, we draw diagonals in the following way: treating

each down step in the order in which they occur in the original sequence, draw a diagonal from

the vertex assigned to Di to the lowest-numbered vertex connected to the vertex assigned to Ui.

In our example, we connect v2 to v0 as v0 is the lowest numbered vertex connected to

v1. Then, we connect v5 to v3 as v3 is the lowest numbered vertex connected to v4 and connect

v5 to v2 as v2 is the lowest numbered vertex connected to v2. Finally, we connect v7 to v5

as v5 is the lowest numbered vertex connected to v6 and connect v7 to v2 as v2 is the lowest

numbered vertex connected to v5 (note that the last down step, D2 would have us connect

v7, to v0, since v2 is connected to v0, but as this is the final down step, v7 and v0 are already

connected by a side of the polygon).

Note that since there were k down steps which were not included in the final descent,

there were k down steps which were not included in the final sequence, so there are k

diagonals in the triangulation of the polygon which are not connected to the final vertex

vn+2. Since we can uniquely define a paired sequence from a Dyck path, can uniquely define

a segmented sequence from a paired sequence, and can uniquely define a triangulation of

an (n + 3)-sided polygon from a segmented sequence, then we can uniquely define such a

triangulation from a Dyck path.

To show this invertible, we will show how to uniquely define a Dyck path from a trian-

gulation of a (n+ 3)-sided polygon. Begin with a triangulation of a (n+ 3)-sided polygon
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in which k of the vertices are not connected to a given vertex vn+2 and label the vertices

v0, v1, . . . , vn+2 in a clockwise manner as before. This triangulation divides the polygon into

n+ 1 triangles, so we will create a segmented sequence in the following manner: for each of

these n+ 1 triangles, and the three vertices vi, vj, vl comprising it (with i < j < l), add an

up step to the jth segment and a down step to the lth segment of the segmented sequence.

As each vertex can only be the second-highest-numbered vertex for at most one trian-

gle (and for exactly one triangle for all vertices except v0 and vn+2), then each of the first n+1

segments contains exactly one up step, so make the up step the last step in each segment.

This gives us n+ 2 segments, the first n+ 1 of which end in an up step. By concatenating

these segments together, this gives us a new sequence which precisely defines a Dyck path.

Further, as k of the diagonals are not connected to vn+2, then then the final segment of the

segmented sequence contains (n+ 1− k) down steps, so the height of the final peak of the

Dyck path is (n+ 1− k).

Proposition 2.3.2. The number of triangulations of a regular polygon with n+ 3 sides where

k of the diagonals do not contain a given fixed vertex is in natural bijection with the number

of parenthesizations of n+ 2 elements where k sets of the parentheses do not contain a right

parenthesis on the far right of all of the elements.

Proof. Consider a regular (n+ 3)-sided polygon whose vertices are labaled in clockwise order

around it v0, v1, v2, . . . , vn+2. Now consider some triangulation that polygon where k of the

diagonals are not connected to the vertex vn+2.

Now consider the currently unparenthesized product x1 · x2 · . . . · xn+1. We will add

parentheses to the product in the following way: if vi is connected to vj by a diagonal where

i < j, add a set of parentheses to the product with the left parenthesis between the elements

xi and xi+1 (or on the far left of the product if i = 0) and a right parenthesis between the

elements xj and xj+1 (or on the far right of the product if j = n + 2). To ensure this is a

valid parenthesization, then in each space between two adjacent elements, place the right

parentheses to the left of all left parentheses within that space.
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Figure 2.5: A triangulation of a regular octagon and its corresponding parenthesization of
the product of 7 elements

This gives us a valid parenthesization of the product; as no two diagonals cross each other in

the triangulation, this leads to a well-defined notion of pairs of parentheses in our product.

Further, as there are k diagonals which are not connected to vn+2, then there are k right

parentheses in the parenthesized product which are not immediately to the right of xn+2.

That is, there are k right parentheses which are not at the far right of all elements in the

product.

To show this is invertible, consider a parenthesization of the product of n + 2 elements

x1 · x2 · . . . · xn+2 where k sets of these parentheses do not contain a right parenthesis on the

far right of the product. We can uniquely define a triangulation of a (n+ 3)-sided polygon

by first pairing up each set of parentheses in the parenthesization in the natural way. Then,

for each pair of parentheses in which the left parenthesis occurs between elements xi and

xi+1 (or on the far left of the product if i = 0) and the right parenthesis occurs between the

elements xj and xj+1 (or on the far right of the product if j = n+ 2), then we will connect

the vertices vi and vj in the triangulation.

As we paired the parentheses in the natural way, none of these constructed diagonals
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will cross each other, and as k of these right parentheses did not occur to the right of xn+2,

then k of these diagonals are not connected to vn+2.

Let T be a binary tree. Recall that T has a unique vertex known as the root vertex,

vr. For two vertices v1 and v2, if there is an edge between v1 and v2 and the path from

vr to v2 passes through v1, then we say v2 is a child of v1, and v1 is the parent of v2. If

the edge connecting a parent and child has a positive slope, we say that the child is a left

child of the parent and that the edge is a left edge. Alternatively if the edge has a neg-

ative slope, we say that the child is a right child of the parent and that the edge is a right edge.

A leaf vertex (or leaf node) is a vertex with no children. A branching vertex (or branching

node) is a vertex with exactly two children. Note that the root vertex is the unique vertex

which does not have a parent. A full binary tree is a binary tree in which every vertex is

either a branching vertex or a leaf vertex.

Definition 2.3.3. Let T be a full binary tree. The rightmost leaf of T is the leaf found

by starting at the root vertex and taking only right edges until reaching a leaf node. The

rightmost branch is the path from the root vertex to the rightmost leaf.

Remark 2.3.4. Note that for a full binary tree T , T must have an odd number of vertices

and must have one more leaf vertex than branching vertices. That is, T has 2n+ 1 vertices

for some positive whole number n; n of these vertices must be branching vertices, and the

other n+ 1 must be leaf vertices.

This fact may be shown inductively; a full binary tree with 1 vertex is simply a single

leaf vertex. The only way to add vertices to the tree while maintaining its fullness is to

add 2 children to a leaf vertex, turning that leaf vertex into a branch vertex and adding 2

additional leaf vertices. Hence this increases both the number of leaf vertices and the number

of branching vertices by 1.

Proposition 2.3.5. The number of parenthesizations of n+ 2 elements where k sets of the

parentheses do not contain a right parenthesis on the far right of all of the elements is in

natural bijection with the number of full binary trees with 2n+ 3 vertices with k branching

vertices not contained in the rightmost branch.
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Figure 2.6: A parenthesization of the product of 7 elements and its corresponding full binary
tree with 13 vertices

Proof. Consider a parenthesization of a product of n + 2 elements x1 · x2 · . . . · xn+2 in

which there are k right parentheses not on the far right of the product. Note that our

parenthesization has n pairs of parentheses, leading to n + 1 instances of multiplication.

We will construct a binary tree of n + 1 branching vertices and n + 2 leaf vertices where

each instance of multiplication corresponds to a branching vertex and the left and right

factors of that instance of multiplication correspond to the left and right children of that vertex.

First, assign the parenthesized product to the root vertex of the tree. By convention,

the parenthesized product does not have a pair of parentheses surrounding it, so the product

is of the form A · B where both A and B are either a single element or are themselves a

parenthesized product. We create a right and left child vertex from the root node, assign A

to the left child and B to the right child.

We continue the above process for all other instances of multiplication of the form (A · B)

where (A ·B) is assigned to a branching vertex, A is assigned to the left child of that vertex

and B is assigned to the right child of that vertex. If at any point in the process a single
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element is assigned to a vertex, then that vertex is a leaf vertex.

As our parenthesization contained n + 1 instances of multiplication, then there are n + 1

branching vertices in the newly constructed tree, and as our product contained n+2 elements,

then there are n + 2 leaf vertices in the tree. Further, as the parenthesization contains k

right parentheses which are not at the far right of the product, then there are k instances

of multiplication which do not involve the element xn+2 and hence, there are k branching

vertices which are not contained in the rightmost path.

To see this is invertible, begin with a full binary tree T which has 2n+ 3 vertices where k of

the branching vertices are not included in the rightmost branch. As we can see from Remark

2.3.4, T has n+ 2 leaf vertices and n+ 1 branching vertices. We will assign parenthesized

products to each vertex in the following way. First, for each leaf vertex, assign the element x

to that vertex. Then, for each branching vertex, aside from the root vertex, where A is the

parenthesized product assigned to its left child and B is the parenthesized product assigned

to its right child, assign the product (A ·B) to that vertex. Finally, for the root vertex, assign

the product A ·B where A is the product assigned to the left child of the root vertex and B

is the product assigned to the right child of the root vertex.

As each branching vertex corresponds to an instance of multiplication and each leaf vertex

corresponds to an identical copy of the element x, then the parenthesized product corre-

sponding to the root vertex includes n + 1 instances of multiplication and n + 2 copies of

the element x. We can then number these elements from left to right x1, . . . , xn+2. As k of

the branching vertices are not contained in the rightmost branch, then k of the instances of

multiplication do not involve the element xn+2, so there are k right parentheses which are

not on the far right of the product.

Thus, the parenthesized product corresponding to the root node of the tree is exactly

a parenthesization of a product of n+ 2 identical elements where k of the right parentheses

are not on the far right of the product.

Theorem 2.3.6. Let n ≥ 1 and k ≤ n− 1. Then the entry in Catalan’s triangle Cn,k counts
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each of the following sets, and there exist natural bijections between them:

(i) The number of Dyck paths of length 2(n + 1) in which the height of the first peak is

n− k + 1.

(ii) The number of Dyck paths of length 2(n + 1) in which the height of the final peak is

n− k + 1.

(iii) The number of ballot sequences of elections between two parties each receiving n + 1

votes in which the first party to receive a vote receives exactly k votes after the second

party’s first vote, and the second party never holds a majority of the votes at any stage

in the count.

(iv) The number of 321-avoiding, fixed-point-free involutions, σ, on [2(n+ 1)] where σ(1) =

n− k + 2

(v) The number of triangulations of a regular polygon with n + 3 sides where k of the

diagonals do not contain a given fixed vertex.

(vi) The number of parenthesizations of n+ 2 elements where k sets of the parentheses do

not contain a right parenthesis on the far right of all of the elements.

(vii) The number of full binary trees with 2n + 3 vertices with k branching vertices not

contained in the rightmost branch.

Proof. By Proposition 2.1.2, item (i) is counted by Cn,k. By Proposition 2.1.3, items (i)

and (ii) are in bijection with each other, and by Proposition 2.1.4, items (i) and (iii) are

in bijection with each other. By Proposition 2.2.2, items (ii) and (iv) are in bijection, and

Propositions 2.3.1, 2.3.2, and ?? show that items (ii), (v), (vi), and (vii) are all in bijection.

Therefore, all of the listed items are in bijection with each other and are all counted by the

entry in Catalan’s triangle Cn,k.
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Chapter 3

Structures Counted by Borel’s Triangle

3.1 Marked Dyck Paths and Three-Party Ballot Sequences

Proposition 3.1.1. The entry in Borel’s triangle fn,k counts the number of marked Dyck

paths of length 2(n+ 1) with k marked non-initial up steps.

Proof. Let A be a Dyck path of length 2(n+ 1) with s non-initial up steps, k of which are

marked. As shown in Proposition 2.1.2, the total number of possible Dyck paths of length

2(n + 1) with s non-initial up steps is Cn,s, and the number of possible ways to mark k of

these s non-initial up steps is
(
s
k

)
. Therefore, the total number of possible ways to mark k

non-initial up steps in a Dyck path of length 2(n+ 1) is the sum over all possible s,

n∑
s=0

(
s

k

)
Cn,k

which is exactly our definition of fn,k.

Proposition 3.1.2. The number of marked Dyck paths of length 2(n + 1) with k marked

non-initial up steps is in natural bijection with the number of marked Dyck paths of length

2(n+ 1) with k marked non-terminal down steps.

Proof. Let A be a Dyck path of length 2(n+ 1) with k marked non-initial up steps. Write

A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each ai is either an

unmarked up step, U , a marked up step, U∗, or an unmarked down step, D. Following the
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Figure 3.1: A Dyck path of length 12 with 2 marked non-initial up steps and its corresponding
path of length 12 with 2 marked non-terminal down steps

reasoning of the proof of Proposition 2.1.3, we define a new sequence B = b1, b2, . . . , b2n+2 by

bi = −a2n+2−i+1 where negation in this sense changes an unmarked up step to an unmarked

down step, a marked up step to a marked down step, and a down step to an up step.

As before, this creates a new sequence of the same length. As none of the marked up

steps of A were part of the first peak, none of the marked down steps of B are part of the

last peak, so B is a sequence of the same length as A with k marked non-terminal down

steps.

Proposition 3.1.3. The number of marked Dyck paths of length 2(n + 1) with k marked

non-initial up steps is in natural bijection with the number of marked Dyck paths of length

2(n+ k + 1) with k marked non-initial up− up− down patterns.

Proof. Let A be a Dyck path of length 2(n+ 1) with k marked non-initial up steps. As before,

write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each ai is either

an up step, U or a down step, D and a marked up step or marked down step is denoted by

U∗ or D∗ respectively. Define a new sequence B by inserting a marked up step and a marked

down step immediately following each marked up step of A.

This increases the length of the sequence by 2 for each marked up step in A, so our new

sequence B is a sequence of length 2(n+ k + 1), and since A has k non-initial up steps, then

B has k marked up− up− down patterns following the first peak.
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Figure 3.2: A Dyck path of length 12 with 2 marked non-initial up steps and its corresponding
path of length 16 with 2 marked non-initial up− up− down patterns

To show this is invertible, let B be a Dyck path of length 2(n + k + 1) with k marked

up− up− down patterns following the first peak. By removing the second up step and the

down step in each of these patterns, we decrease the length of the sequence by 2k and are

left with a sequence of length 2(n+ 1) with k marked up steps following the first peak.

Proposition 3.1.4. The number of marked Dyck paths of length 2(n + 1) with k marked

non-initial up steps is in natural bijection with the number of ballot sequences of elections

between three parties in which the total number of votes cast is 2(n+ 1), the second party to

receive a vote receives exactly half the votes, the third party to receive a vote receives k votes,

and the second party never holds a majority of the votes at any stage in the count.

Proof. Let A be a Dyck path of length 2(n+ 1) with k marked non-initial up steps. As before,

write A = a1, a2, . . . , a2n+2 as a sequence of up steps and down steps where each ai is either

an unmarked up step, U , a marked up step, U∗, or an unmarked down step, D. We can view

this sequence as a ballot sequence between three parties in which each unmarked up step is a

vote for Party X, each down step is a vote for Party Y , and each marked up step is a vote

for Party Z.

As A has length 2(n + 1), and has an equal number of up and down steps, then Party

Y receives exactly (n+ 1) votes, and since A has exactly k marked up steps, then Party Z

receives exactly k votes and party X receives the remaining (n− k + 1) votes. As the first
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step must be an unmarked up step and the first marked up step must come after the first

down step, then Party X must be the first party to receive a vote and Party Y must be the

second party to receive a vote. As A is a valid Dyck path, then at no point in the sequence

are there more down steps than up steps (i.e. the path never dips below the height on which

it began), so at no stage in the count does Party Y obtain a majority of the votes. This gives

us our ballot sequence with the desired properties.

3.2 Marked Triangulations, Parenthesizations, and Full Binary Trees

Proposition 3.2.1. The number of marked Dyck paths of length 2(n + 1) with k marked

non-terminal down steps is in natural bijection with the number of triangulations of a regular

polygon with n+ 3 sides with k marked diagonals, each not containing a given fixed vertex.

Figure 3.3: A Dyck path of length 12 with 2 marked non-terminal down steps and its
corresponding triangulation of a regular octagon with 2 marked diagonals not connected to a
given vertex

Proof. Let A be a Dyck path of length 2(n + 1) with k marked non-terminal down steps.

Following the methods outlined in the proof of Proposition 2.3.1, we want to create a seg-

mented paired sequence from A which contains n+ 2 segments where each segment but the

final segment ends in an up step.
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Again as before, we assign this segmented to the vertices of a (n + 3)-sided polygon by

labeling one vertex as v0, labeling the remaining vertices v1, v2, . . . , vn+2 in clockwise order,

and assigning the ith segment of the sequence to the vertex labeled vi.

Now, to triangulate the polygon, we draw diagonals using the same process as before:

treating each down step in the order in which they occur in the original sequence, draw a

diagonal from the vertex assigned to Di to the lowest-numbered vertex connected to the

vertex assigned to Ui; however, in this case we add the further stipulation that if Di is a

marked step, then the diagonal drawn from the vertex assigned to Di to the lowest-numbered

vertex connected to the vertex assigned to Ui is a marked diagonal.

Note that since none of the marked down steps of A were part of the final descent, then none

of the marked down steps are assigned to the vertex vn+2, so none of the marked diagonals

in the triangulation are connected to the vertex vn+2. In this way, we’ve constructed a

triangulation of a (n+3)-sided polygon with k marked diagonals, none of which are connected

to the vertex vn+2.

To show this invertible, begin with a triangulation of a (n + 3)-sided polygon contain-

ing k marked diagonals each not connected to a vertex vn+2. We use the methods outlined

in the proof of Proposition 2.3.1 to uniquely define a Dyck path from a triangulation of a

(n + 3)-sided polygon. Then, for each down step in the path corresponding to a marked

diagonal in the triangulation, we will mark that down step. Since the triangulation had k

marked diagonals, this path will have k marked down steps, and as each marked diagonal

is not connected to the vertex vn+2, then each marked down step is not part of the final

descent.

Proposition 3.2.2. The number of triangulations of a regular polygon with n+ 3 sides with

k marked diagonals, each not containing a given fixed vertex, is in natural bijection with the

number of parenthesizations of n + 2 elements with k marked sets of parentheses, none of

which contain a right parenthesis on the far right of all of the elements.

Proof. Consider some triangulation of a regular (n+ 3)-sided polygon containing k marked
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Figure 3.4: A triangulation of a regular octagon with 2 marked diagonals not connected to
a given vertex and its corresponding parenthesization of the product of 7 elements with 2
marked pairs of parentheses

diagonals which are not connected to some vertex vn+2. First, label one vertex of the poly-

gon as v0, and continue clockwise around the polygon labeling the vertices v1, v2, . . . , vn+1.

Without loss of generality, suppose vn+2 is the given vertex where the marked diagonals in

the triangulation are not connected to vn+2.

As in the proof of Proposition 2.3.2, consider the currently unparenthesized product x1 · x2 ·
. . . · xn+1. We will add parentheses to the product in the following way: if vi is connected to

vj by a diagonal where i < j, add a set of parentheses to the product with the left parenthesis

between the elements xi and xi+1 (or on the far left of the product if i = 0) and a right

parenthesis between the elements xj and xj+1 (or on the far right of the product if j = n+ 2).

To ensure this is a valid parenthesization, then in each space between two adjacent elements,

place the right parentheses to the left of all left parentheses within that space. Further, if

the diagonal connecting vi and vj is marked, then the corresponding pair of parentheses is a

marked pair of parentheses (here denoted as a pair of square brackets).

Again, this gives us a valid parenthesization of the product with a well-defined notion

of pairs of parentheses. Further, as the triangulation contains k marked diagonals—none of
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which are connected to vn+2—the parenthesization of the product contains k marked pairs of

parentheses—none of which contain a parenthesis immediately to the right of xn+2.

To see this is invertible, begin with a parenthesization of the product of n+2 elements in which

k pairs of these parentheses are marked, and none of the marked pairs of parentheses include a

right parenthesis on the far right of the product. We construct a triangulation of a (n+3)-sided

polygon using the methods outlined in the proof of Proposition 2.3.2; however, we further stip-

ulate that if a pair of parentheses is marked, then its corresponding diagonal is marked as well.

Since this parenthesization had k pairs of marked parentheses, the corresponding trian-

gulation has k marked diagonals, and as none of the pairs of marked parentheses contain a

right parenthesis at the far right of the product, none of the marked diagonals are connected

to the vertex vn+2.

Proposition 3.2.3. The number of parenthesizations of n+2 elements with k marked sets of

parentheses, none of which contain a right parenthesis on the far right of all of the elements,

is in natural bijection with the number of binary trees with 2n+ 3 unmarked vertices, k of

which are marked vertices not contained in the rightmost branch.

Proof. Consider a parenthesization of a product of n+ 2 elements x1 · x2 · . . . · xn+2 with

k pairs of marked parentheses—none of which contain a right parenthesis at the far right

of the product. Note that our parenthesization has n pairs of parentheses, leading to n+ 1

instances of multiplication. Following the methods outlined in the proof of Proposition 2.3.5

we will construct a binary tree of n+ 1 branching vertices and n+ 2 leaf vertices where each

instance of multiplication corresponds to a branching vertex and the left and right factors of

that instance of multiplication correspond to the left and right children of that vertex, now

with the added condition that any vertex constructed by an instance of multiplication with a

marked pair of parentheses will be a marked vertex.

First, assign the parenthesized product to the root vertex of the tree. By convention,

the parenthesized product does not have a pair of parentheses surrounding it, so the product

is of the form A · B where both A and B are either a single element or are themselves a
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Figure 3.5: A parenthesization of the product of 7 elements with 2 marked pairs of
parentheses and its corresponding full binary tree with 13 vertices and 2 marked branching
vertices

parenthesized product. We create a right and left child vertex from the root node, assign A to

the left child and B to the right child. Note that if either A or B is a product surrounded by

a marked pair of parentheses, then the created vertex to which it is assigned is a marked vertex.

We continue the above process for all other instances of multiplication of the form (A · B)

where (A ·B) is assigned to a branching vertex, A is assigned to the left child of that vertex

and B is assigned to the right child of that vertex. If at any point in the process a single

element is assigned to a vertex, then that vertex is a leaf vertex. Similarly, for all instances

of multiplication of the form [A ·B] where [A ·B] is assigned to a marked branching vertex,

A and B are assigned to the right and left children of that vertex, respectively.

As our parenthesization contained n + 1 instances of multiplication, then there are n + 1

branching vertices in the newly constructed tree, and as our product contained n+2 elements,

then there are n + 2 leaf vertices in the tree. Further, as the parenthesization contains k

marked pairs of parentheses—none of which contain a right parenthesis which are not at the
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far right of the product—then there are k instances of multiplication surrounded by marked

parentheses which do not involve the element xn+2 and hence, there are k marked branching

vertices which are not contained in the rightmost path.

To see this is invertible, begin with a full binary tree T which has 2n + 3 vertices, k

of which are marked branching vertices not contained in the rightmost branch. As before, and

highlighted in Remark 2.3.4, T has n+ 2 leaf vertices and n+ 1 branching vertices. Again,

we will assign parenthesized products to each vertex using the methods outlined in the proof

of Preposition 2.3.5, now with the added condition that products assigned to marked vertices

will now be surrounded by a marked pair of parentheses.

First, for each leaf vertex, assign the element x to that vertex. Then for each unmarked

branching vertex, aside from the root vertex, where A is the parenthesized product assigned to

its left child and B is the parenthesized product assigned to its right child, assign the product

(A ·B) to that vertex, and for each marked branching vertex where A is the parenthesized

product assigned to its left child and B is the parenthesized product assigned to its right

child, assign the product [A ·B] to that vertex. Finally, for the root vertex, assign the product

A ·B where A is the product assigned to the left child of the root vertex and B is the product

assigned to the right child of the root vertex.

As each branching vertex corresponds to an instance of multiplication and each leaf vertex

corresponds to an identical copy of the element x, then the parenthesized product corre-

sponding to the root vertex includes n+ 1 instances of multiplication and n+ 2 copies of the

element x. We can then number these elements from left to right x1, . . . , xn+2. As the tree

has k marked branching vertices, each not contained in the rightmost branch, then k of the

instances of multiplication are given by a marked pair of parentheses. Further, none of the

instances of multiplication given by a marked pair of parentheses involve the element xn+2,

so none of the marked pairs of parentheses contain a right parenthesis on the far right of the

product.

Thus, the parenthesized product corresponding to the root node of the tree is exactly
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a parenthesization of a product of n + 2 identical elements including k marked pairs of

parentheses, none of which contain a right parenthesis on the far right of the product.

3.3 More Permutations

Lemma 3.3.1. For any Dyck path and corresponding 321-avoiding fixed-point-free involution,

an up− up− down pattern in the Dyck path corresponds to a consecutive 231 pattern in the

corresponding permutation.

Proof. Let A = a1, a2, . . . , a2n+2 be a Dyck path of length 2(n+ 1) and σ be its corresponding

321-avoiding fixed-point-free involution. Further, let ax, ax+1, ax+2 be an up − up − down
pattern (that is, ax = ax+1 = U and ax+2 = D). As ax and ax+1 are both up steps, then by

our bijection relating Dyck paths to permutations, σ(x) > x and σ(x+ 1) > x+ 1, and since

ax+2 is a down step, then σ(x+ 2) < x+ 2.

Further, as ax is an up step which precedes ax+1 then ax is paired with a down step which

precedes the down step paired with ax+1, therefore σ(x) < σ(x+ 1). As A is a valid Dyck

path, we know ax+1 is not paired with ax+2 (if these two steps were paired, then ax must

be paired with some down step ay where y < x meaning at some stage in the path, namely

the first y steps of the path, there are more down steps than up steps), so σ(x+ 2) < x+ 1.

Additionally, ax is not paired with ax+1 as they are both up steps, so σ(x) > x+ 1. Therefore,

σ(x+ 2) < σ(x) < σ(x+ 1) which is exactly a consecutive 231 pattern.

Remark 3.3.2. Consider permutations σ on [2(n+ k + 1)] with the following properties:

(a) σ = τρ1ρ2 · · · ρk where τ is the product of n+ 1−k disjoint transpositions, one of which

is (1 a).

(b) For each i ∈ {1, . . . , k}, ρi = (xi ci xi + 1 bi) with a < xi < xi + 1 < bi < ci.

(c) For each i ∈ {1, . . . , k}, σ(xi + 2) < xi + 2.

(d) If we define ρ′i = (xi bi)(xi + 1 ci), then σ′ = τρ′1ρ
′
2 . . . ρ

′
k is a 321-avoiding fixed-point-

free involution.

We will show first that such permutations with the described properties have exactly

k consecutive 321 patterns. Then, we will show that these permutations are counted by
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Borel’s triangle by demonstrating a bijection between them and Dyck paths with marked

up− up− down patterns.

Claim 3.3.3. The permutations described in Remark 3.3.2 have exactly k consecutive 321

patterns.

Proof. Let σ = τρ1ρ2 . . . ρk be a permutation described in Remark 3.3.2 and consider each

ρi = (xi ci xi + 1 bi) for i ∈ {1, . . . , k}. By property (b), we have that σ(1) < xi < xi + 1 <

bi < ci, therefore, bi is at least xi + 2. By property (c), we have that σ(xi + 2) < xi + 2,

therefore σ(xi + 2) < xi + 2 ≤ bi. In any case, we have σ(xi + 2) < σ(xi + 1) < σ(xi) which

is exactly a consecutive 321 pattern.

To show that there are exactly k of these patterns, suppose for contradiction that there is an

additional consecutive 321 pattern where σ(m+ 2) < σ(m+ 1) < σ(m) and m 6= xi for all i.

If this 321 pattern intersects one of the k aforementioned 321 patterns, then this means σ

actually contains a consecutive 4321 pattern. Further, if this 321 pattern does not intersect

any of the k previously counted 321 patterns, then σ(m) = σ′(m), σ(m + 1) = σ′(m + 1),

and σ(m + 2) = σ′(m + 2). In either case, this contradicts that σ′ is 321-avoiding, so the

only consecutive 321 patterns in σ are exactly the ones corresponding to each ρi.

Proposition 3.3.4. The number of marked Dyck paths of length 2(n+ k + 1) with k marked

non-initial up− up− down patterns is in natural bijection with the number of permutations

σ with the properties described in Remark 3.3.2.

Proof. Let A = a1, a2, . . . , a2n+2k+2 be a marked Dyck path of length 2(n + k + 1) with k

marked non-initial up−up−down patterns. Suppose the height of the first peak is a−1. Then,

following the proof of Proposition 2.2.2, A has a corresponding 321-avoiding fixed-point-free

involution σ′ on [2(n+ k + 1)] where σ′ contains the transposition (1 a). Further, by Lemma

3.3.1, as A has k marked up − up − down patterns, then σ′ has k marked consecutive 231

patterns. As these up − up − down patterns in A are non-initial, then the corresponding

consecutive 231 patterns σ′(x), σ′(x+ 1), σ′(x+ 2) occur where x > a.
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Figure 3.6: A Dyck path of length 16 with with 2 marked non-initial up − up − down
patterns and its corresponding permutation on [16] with 2 consecutive 321 patterns

Now for each of these marked consecutive 231 patterns, we will transpose the “2” and

“3” in the pattern, creating a consecutive 321 pattern (that is to say, if the 231 pattern occurs

in the positions xi, (xi + 1), (xi + 2) we will transpose the elements σ′(xi) and σ′(xi + 1)).

Therefore, we can define a new permutation σ in the following way. First, suppose the

k marked consecutive 231 patterns of σ′ occur in the positions xi, (xi + 1), (xi + 2) for

i ∈ {1, . . . , k}. Then, define σ(xi) = σ′(xi + 1), σ(xi + 1) = σ′(xi), for all such xi, and

σ(m) = σ′(m) for all m which are not equal to any xi or xi + 1. This means that if σ′

contains the transpositions (xi bi) and (xi+1 ci) then σ contains the 4-cycle (xi ci xi+1 bi).

We claim that σ has the properties described in Remark 3.3.2. As σ′ is a 321-avoiding

fixed-point-free involution on [2(n+ k+ 1)], then it is the product of n+ k+ 1 transpositions.

For each of the k consecutive 231 patterns, the pattern in the positions xi, (xi + 1), (xi + 2)

29



corresponds to σ′ containing the transpositions (xi bi) and (xi +1 ci) and by our construction

of σ, σ contains the 4-cycle ρi = (xi ci xi + 1 bi) with xi < xi + 1 < bi < ci. Therefore for

each of the k consecutive 231 patterns, our construction of σ takes two transpositions of σ′ and

combines them into a 4-cycle. Thus, σ is the product of k 4-cycles and n+k+1−2k = n−k+1

transpositions. Lastly, each of the 231 patterns of σ′ occur in positions where xi > σ(1).

Hence, σ has the desired properties.

To see this is invertible, begin with a permutation σ with the properties described in Remark

3.3.2. We know the corresponding σ′ is a 321-avoiding fixed-point-free involution, so we claim

that the Dyck path A = a1, a2, . . . , a2n+2k+2 corresponding to σ′ has k marked non-initial

up−up−down patterns occurring in the positions xi, xi+1, and xi+2 for each i ∈ {1, . . . , k}.

For each xi, we are given that xi < xi + 1 < bi < ci, so as bi < ci, we have σ′(xi) < σ′(xi + 1).

It remains to show that σ′(xi + 2) < σ′(xi) = bi. The only elements for which σ′(m) 6= σ(m)

are where m = xj or m = xj + 1 for some j. However, we know xi + 2 cannot be either xj

or xj + 1 as σ(xi + 2) < xi + 2. Therefore, σ′(xi + 2) = σ(xi + 2) < xi + 2 ≤ bi. Hence,

σ′(xi + 2) < σ′(xi) < σ′(xi + 1).

Therefore, as σ′(xi + 2) < σ′(xi) < σ′(xi + 1), then σ′ contains a consecutive 231-pattern in

positions xi, (xi + 1), (xi + 2) and by Lemma 3.3.1, then the corresponding Dyck path has

a marked up− up− down pattern in the same positions, and we will mark this pattern (in

particular, axi
, axi+1, axi+2 = UUD. Since σ′ has k such marked 231 patterns, A has k such

marked up− up− down patterns.

Theorem 3.3.5. Let n ≥ 1 and k ≤ n− 1. Then the entry in Borel’s triangle fn,k counts

each of the following sets, and there exist natural bijections between them:

(i) The number of marked Dyck paths of length 2(n+ 1) with k marked non-initial up steps.

(ii) The number of marked Dyck paths of length 2(n+ 1) with k marked non-terminal down

steps.

(iii) The number of marked Dyck paths of length 2(n + k + 1) with k marked non-initial

up− up− down patterns.
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(iv) The number of ballot sequences of elections between three parties in which the total

number of votes cast is 2(n+ 1), the second party to receive a vote receives exactly half

the votes, the third party to receive a vote receives k votes, and the second party never

holds a majority of the votes at any stage in the count.

(v) The number of triangulations of a regular polygon with n + 2 sides with k marked

diagonals, each not containing a given fixed vertex.

(vi) The number of parenthesizations of n+ 1 elements with k marked sets of parentheses,

none of which contain a right parenthesis on the far right of all of the elements.

(vii) The number of full binary trees with 2n + 3 − k unmarked vertices and k marked

branching vertices not contained in the rightmost branch.

(viii) Permutations σ on [2(n+ k + 1)] with the properties described in Remark 3.3.2

Proof. By Proposition 3.1.1, item (i) is counted by fn,k. By Proposition 3.1.2, items (i) and

(ii) are in bijection with each other, by Proposition 3.1.3 items (i) and (iii) are in bijection

with each other, and by Proposition 3.1.4, items (i) and (iv) are in bijection with each other.

Propositions 3.2.1, 3.2.2, and 3.2.3 show that items (ii), (v), (vi), and (vii) are all in bijection.

Lastly, Proposition 3.3.4 shows that items (iii) and (viii) are in bijection with each other.

Therefore, all of the listed items are in bijection with each other and are all counted by the

entry in Borel’s triangle fn,k.
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