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Abstract: Small unmanned aerial systems are heavily impacted by wind distur-
bances. Wind causes deviations from desired trajectories, potentially leading to
crashes. In this thesis, we consider two inherently related problems: predicting quad-
copter trajectory deviations due to wind disturbances and estimating wind velocity
based on quadcopter trajectory deviations. The former is addressed using linear dif-
ference equation identification as well as neural network (NN) modeling. Simulations
validate the use of linear difference equation identification as a tool to predict tra-
jectory deviations in crosswinds and machine learning (specifically, long short-term
memory (LSTM) NNs) as an approach to predict trajectory deviations in multidi-
mensional wind. We approach the wind estimation problem from a machine learning
perspective due to easier generalization of the NN to multidimensional winds. As in
the trajectory prediction case, we use LSTM NNs to identify a model. The trained NN
is deployed to estimate the turbulent winds as generated by the Dryden gust model
as well as a realistic large eddy simulation of a near-neutral atmospheric boundary
layer over flat terrain. The resulting NN predictions are compared to a wind triangle
approach that uses tilt angle as an approximation of airspeed. Results from this study
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CHAPTER I

INTRODUCTION

1. Motivation

Small unmanned aerial systems (sUAS) have become an increasingly significant topic

of discussion in control systems and air traffic management (ATM) over the past

decade. Advances in computing and control systems have resulted in cost reductions

and performance improvements that have lead to widespread interest in sUAS in

general, and multirotors in particular. Potential applications of sUAS for environ-

mental sensing and package delivery are currently being investigated, and they are

already used for filming, agricultural observation, and a number of other purposes.

However, many of the commercial sUAS use proprietary controllers and do not offer

specific performance guarantees for off-nominal conditions. This makes it difficult

to establish reasonable regulations concerning their operation near buildings, people,

and other aircraft. In order to understand the performance characteristics of these

commercial sUAS, effective modeling techniques that can predict their performance

based on flight data must be leveraged.

Furthermore, obtaining accurate wind velocity measurements is critical in a num-

ber of fields, such as Meteorology, Environmental Science, and Aviation. Such mea-

surements are critical for improving our understanding of micrometeorology; envi-

ronmental transport phenomena including pollutant and particulate dispersion. In

aviation applications, wind information is used to assess the flight environment, devise

bounds for safe operation and inform the controller for effective navigation.

This thesis considers two related problems: trajectory deviation prediction given
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wind velocities and wind estimation given trajectory deviations. We examine linear

and nonlinear modeling techniques in an effort to capture the relationship between

trajectory deviations and wind velocity.

Trajectory Prediction

Even though there is such widespread interest in sUAS applications, there are restric-

tions in place [3] that prevent some of their potential uses from being fully explored,

e.g., package delivery. These restrictions are currently necessary due in part to insuf-

ficiently detailed trajectory models for quadrotors. Since much of the commercially

used software uses proprietary controllers, an exact model is difficult to obtain. One

of the major modeling uncertainties is how well a quadrotor can follow a specified

trajectory in the presence of wind. A deviation of a few meters may be acceptable

in sparsely populated areas, but can be the difference between a successful flight and

a crash in urban centers. Therefore, a methodology needs to be developed to pre-

dict quadrotor responses to wind perturbations by analyzing the wind perturbation

response of a quadcopter. Knowing the response of a quadrotor to particular wind

conditions will allow the user to determine whether or not the current conditions are

safe for flight.

For sUAS operations, NASA has been developing UAS Traffic Management (UTM)

systems [4] that can provide infrastructure for low-altitude airspace management and

monitoring. UTM systems have the potential to enable safe, efficient operations of

sUAS and integration with manned aircraft at low altitudes. Future UTM systems

will also include the real-time conflict management capability that requires modeling

sUAS encounters and predicting sUAS trajectories. Research aimed at this capabil-

ity for large UAS has been extensive. For example, the MIT Lincoln Lab generated

the highest fidelity encounter model of large aircraft using radar data collected from

sites across the United States [5]. However, for sUAS, modeling realistic sUAS en-

2



counter trajectories, particularly in the presence of wind disturbances, remains an

open problem.

Wind Estimation

Wind turbulence is a significant factor in aerial flight, in particular for small un-

manned aerial systems (sUAS), which operate at much lower airspeeds than larger

aircraft [6]. Since the majority of sUAS flights are restricted to line-of-sight flight at

low altitudes, they are generally operating near people or obstacles, such as buildings,

power lines, trees, etc. While there is currently little data and understanding of the

causes of sUAS accidents [7], a 2010 FAA study [8] determined that wind played a

major role in a significant fraction of weather-related incidents for manned aircraft.

This fraction is expected to increase in the case of smaller unmanned aerial vehicles.

Therefore, it is imperative for sUAS to be aware of the local turbulent wind gust field

in order to mitigate these deleterious effects [9] and in turn limit property damage

and personal injury.

Turbulent winds, both in the mean and fluctuations (gusts), impact flight char-

acteristics in different ways. Gusts cause sudden deviations from the prescribed tra-

jectory while controllers in general begin correcting these deviations within a few

seconds. In the mean, one needs to consider crosswinds and/or headwinds. Depend-

ing on the type of controller, crosswinds can cause drift from the desired trajectory.

Likewise, headwinds impact the maximum flight speed, potentially causing unex-

pected delays along the trajectory. In addition to these trajectory deviations, one

encounters increased power draw and reduction in battery life when flying in winds

other than tailwinds.

In addition to its relevance in aviation applications, wind sensing is critical for me-

teorology. For environmental sensing, the problem is one of scale, as point sensors are

incapable of capturing the large-scale turbulent atmospheric eddies that characterize
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the wind field even at low-altitudes. Although there are currently a number of sensors

and approaches for measuring wind velocity, each of them has drawbacks preventing

its general applicability. A common strategy is to use ground-based sensors such

as a cup anemometer fitted to a meteorology mast. While these provide accurate

measurements at the location of the mast, they cannot measure wind over a large

area. Alternatives include SODARs and LiDAR, which are generally expensive (tens

to hundreds of thousands of dollars) but provide accurate [10] wind measurements

across extended spatial regions (i.e., vertical or horizontal planes or both). However,

they are limited in their measurement frequency [11].

In order to measure wind velocities at altitudes higher than those obtained using

ground based systems, mobile sensing platforms such as weather balloons, manned air-

craft, and UAS instrumented with wind sensors are used. Weather balloons drift with

the wind, but are useful for vertical profiling and measuring at very high stratospheric

altitudes. Manned aircraft and large UAS can measure over extended domains, but

are relatively expensive to operate while being most effective for high altitude sensing.

sUAS are an attractive alternative as they bridge the gap between ground-based and

larger aircraft-based platforms [12–14]. The downside is that the sUAS size limits

payload capacity and sensor placement choices [15], resulting in lower measurement

accuracy.

2. Literature Review

There are a number of works regarding sUAS navigation and estimation in windy

environments. For example, Kothari et al. [16] and Escareno et al. [17] design guidance

laws to mitigate the effects of wind and Waslander and Wang [18] develop a method of

estimating wind speeds based on accelerometer measurements. Additionally, there are

a number of works regarding system identification of quadcopters for use in trajectory

prediction. Two of the most relevant references are by Bisheban and Lee [19] and by
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Xue [20]. Bisheban and Lee identify system parameters in a quadrotor model with

a specific controller. Xue trains a neural network on trajectories of a quadcopter

model under constant wind disturbances using position, velocity, and wind inputs.

They both compare the outputs of their identified models with the true outputs of

their respective systems. Our goal is to develop an approach to predict trajectory

deviations in turbulent wind without any knowledge of the quadcopter parameters or

controller.

Concerning the wind estimation problem, there are a number of approaches that

can be used to measure wind velocity with sUAS. The most straightforward of these

is direct measurement of the wind velocity using sensors, such as the FT Technologies

FT205 or Trisonica Mini, mounted on the sUAS. In ideal conditions, these sensors can

measure wind speed to within 0.3 and 0.5 m/s, respectively. However, this approach

has a number of drawbacks. Turbulence generated by props and the sUAS’s body

effects the accuracy of wind measurements; Added weight and power draw reduce bat-

tery life; And, further, the cost of multidimensional wind sensors can be several times

the cost of the sUAS itself. These issues can be mitigated by using the sUAS them-

selves, with just their onboard sensors, to estimate the wind velocity. One of these

indirect approaches is system identification of a quadcopter’s dynamics parameters

using linear or nonlinear approaches [21–24]. Alternatively, an Euler angle approxi-

mation can be derived using the wind triangle (WT) and a constant velocity flight

assumption [1, 2]. A third option is to leverage recent advances in machine learning

architectures, such as a neural network (NN), as explored in our recent conference

article [25]. This machine learning approach allows for approximation of a nonlinear

wind estimation model that does not require any knowledge of the controller. Recur-

rent NNs (RNNs) are commonly used for sequential and dynamic systems modeling

due to their ability to incorporate data from previous time steps into their predic-

tions [26,27]. We seek to use RNNs’ ability to model nonlinear dynamical system to
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estimate wind velocity using measurements from the navigation sensors on sUAS.

3. Overview of the Proposed Approach

Trajectory Prediction

Our work on quadcopter trajectory deviation prediction is comprised of two main

pieces: linear and nonlinear modeling approaches. In Chapter III, we discuss the

discrete-time linear systems approach to system identification proposed in our con-

ference paper [28] that uses only wind velocity measurements as inputs. This is

shown to be accurate for trajectory deviations due to a crosswind. In Chapter IV, we

demonstrate that a neural network (NN) is capable of predicting quadcopter veloc-

ity deviations in 2-dimensional winds with high accuracy given wind velocity. These

velocity deviations can be integrated to obtain position deviations; However, these

position deviation estimates will drift over time due to accumulated integration er-

rors. In practice, the predictions for position deviations could be used to obtain the

gust response of the quadcopter while periodically correcting the position prediction

with GPS measurements. For the specific case of straight line flight, however, the

coordinate system can be designated such that there is zero mean deviation in one

of the horizontal coordinates. Then, a neural network can be trained such that it

captures the zero mean position deviation in that coordinate, which eliminates the

error accumulation in that direction.

Wind Estimation

There are a number of reasons that make a RNN approach an appealing solution to

sUAS wind estimation. First, Existing linear system ID approaches [21,22] work well

for quadcopters at relatively low air-speeds. However, as roll and pitch angles increase,

the nonlinearities in the dynamics become more prominent. Since NNs are effective

at function approximation even in the presence of nonlinearity, they are capable of
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accurately capturing the quadcopter’s behavior in aggressive flight. Second, Existing

nonlinear modeling techniques [23] require knowledge of the form of controller, thus,

limiting their usage on commercial sUAS with proprietary controls. Third, While the

Wind Triangle (WT) approach [1, 2] is only reliable for steady state measurements,

NNs can operate effectively with transient and steady data and, therefore, are more

effective for turbulent wind estimation. Motivated by the advantages offered by the

ML approach, we have chosen to use Long Short-Term Memory (LSTM) RNNs [29]

to demonstrate the effectiveness of the wind estimation algorithm presented in this

paper. Specifically, we use LSTM NNs to estimate horizontal, 2-dimensional wind

given time series of Euler angles and the inertial position of the quadcopter.

4. Contributions of Thesis

In this thesis, we present a linear trajectory deviation prediction approach as well

as machine learning (ML) aided trajectory deviation prediction methodology and

a wind estimation strategy that leverages sensor data on factory configured sUAS.

Linear system identification is a standard first step for any modeling problem and

NNs have been widely used for function approximation [30] and to model complex

nonlinear dynamic systems [31,32].

The main contribution of the portion of this work concerning trajectory devia-

tion prediction of sUAS in windy environments is development of a linear system

identification approach (Chapter III) as well as a machine learning based approach

to trajectory prediction(Chapter IV). We describe detailed fitting procedures for the

difference equation approach and training procedures for the NN modeling.

The main contribution of the wind estimation part of this work (Chapter V) is

to develop and demonstrate a machine learning framework for effective estimation

of wind velocity. To achieve this, we provide a theoretical basis for our approach,

describe training procedures for NNs, and demonstrate the viability of our approach
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using LSTM NNs. Our research is the first to leverage machine learning tools for

wind estimation using quadcopter trajectory deviations, and further, the first to use

only position and roll and pitch angles without their derivatives to estimate wind

velocity. Position data in particular are becoming increasingly more accurate due to

advances in navigation sensors, such as RTK-GPS units, allowing for higher accuracy

wind estimation. We examine the performance of our approach using wind data

generated from both the Dryden wind model and Atmospheric Boundary Layer (ABL)

Large Eddies Simulations (LES). Plots and error charts are used to illustrate that our

approach is effective in estimating constant and turbulent winds. The results from

the NN wind estimation are compared to results obtained by using a WT approach,

demonstrating that our approach results in smaller error variances and smaller mean

errors for wind velocity. Further, the NN wind estimation correctly captures the

correct correlation of north and east winds, whereas the WT approach does not.
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CHAPTER II

QUADCOPTER MODEL

1. Dynamics

A general quadcopter model is shown in Figure 1.. The quadcopter dynamics model

is made up of three pieces, described in detail in this chapter: the motor dynamics

model, rotor aerodynamics models, and quadcopter rigid body dynamics. There are

a number of possible controllers that can be used for this model, but the form of

controller is not necessary for our trajectory prediction or wind estimation.

Figure 1.: General quadcopter model structure.

We use a standard formulation for the quadcopter dynamics [33], with the addition
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of a nonlinear drag term,

p̈n

p̈e

p̈d

φ̈

θ̈

ψ̈


=



(− cosφ sin θ cosψ − sinφ sinψ) F
m

+
fd,n
m

(− cosφ sin θ sinψ + sinφ cosψ) F
m

+
fd,e
m

g − (cosφ cos θ) F
m

+
fd,d
m

Jy−Jz
Jx

θ̇ψ̇ + 1
Jx
τφ

Jz−Jx
Jy

φ̇ψ̇ + 1
Jy
τθ

Jx−Jy
Jz

φ̇θ̇ + 1
Jz
τψ


, (II.1)

where (pn, pe, pd) are the north, east, and down positions in the inertial frame, (φ, θ, ψ)

are the roll, pitch, and yaw, (F, τφ, τθ, τψ) are the force and the moments in the des-

ignated directions, and (fd,n, fd,e, fd,d) are the drag forces in the specified directions.

Since the drag is a function of the total airspeed of the quadcopter, i.e., the differ-

ence between the wind velocity and the groundspeed of the quadcopter, we adapt the

standard one-dimensional drag equation to

fd = Cd(Vw − ṗ)|Vw − ṗ|, (II.2)

where Vw is the wind velocity vector in the inertial frame and Cd is a diagonal drag

coefficient matrix [22, 34]. The matrix Cd was determined by fitting an exponential

to the calculated drag coefficient at different airspeeds of the 3DR Iris+ model in

Gazebo [35], resulting in Cd = diag(min(1.1, (0.2 + 0.9 exp(−0.6|Vw − ṗ| − 2)))).

2. Motor and Rotor Models

A motor model is typically given by a transfer function

H(s) =
b0

a3s3 + a2s2 + a1s+ a0
, (II.3)

where the b0 and an are motor-dependent positive coefficients. This transfer function

takes a pulse width modulation (PWM) input and outputs the rotor angular rate.
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We implement and tune a PID motor controller to ensure that the motor reaches

a desired angular rate as rapidly as possible while staying within the PWM lim-

its. The specific motor model that we are using has coefficients [a3, a2, a1, a0, b0]
T =

[1, 189.5, 13412, 142834, 2057342]T and achieves convergence to a desired angular rate

within 0.2 seconds. To convert the rotor speeds to force and torques on the quad-

copter, we use the mapping

F

τφ

τθ

τψ


=



k1 k1 k1 k1

0 −Lk1 0 Lk1

Lk1 0 −Lk1 0

−k2 k2 −k2 k2





ω2
1

ω2
2

ω2
3

ω2
4


, (II.4)

where k1 is the thrust coefficient, L is the quadcoptor arm length, and k2 is the motor

torque coefficient.

In addition to the quadcopter and motor dynamics given above, the rotors of the

quadcopter have a number of aerodynamic effects that can impact the performance

of the quadcopter. Our model incorporates two of the more significant aerodynamics

effects: air-relative velocity and blade flapping [36]. Air-relative velocity effects are

due to the flow of the air through the rotor. In the zero-airspeed case, the surrounding

air flows through the rotors at the expected rate, resulting in a thrust calculated as

T = k1ω
2, (II.5)

where T is the thrust of the rotor and ω is the angular rate of the rotor. However, if

there is a non-zero airspeed, the thrust of each rotor needs to be corrected to account

for the difference in the air flow. This corrected thrust can be calculated for each

rotor as

Tcorrected =
Tvi
vi + w

, (II.6)

vi =
v2h√

u2 + v2 + (vi + w)2
, (II.7)
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where vh is the induced velocity of the rotor while the quadcopter is hovering and

(u, v, w) are the air velocities in the body frame.

Blade flapping is a ‘tilting’ of the rotor due to unequal forces on the advancing

and retreating edges of the blade while in flight. The advancing edge of the blade

has a higher airspeed than the retreating edge of the blade. Since the higher airspeed

results in a higher thrust on the advancing edge, the rotor bends slightly more on the

advancing edge than the retreating edge, resulting in a shift in the thrust plane to be

away from the body frame. This necessitates defining the thrust from each rotor as

a vector in the body frame, given by

Tflapping =


u√

u2+v2
sinα

v√
u2+v2

sinα

cosα

T, (II.8)

α = Kf

√
u2 + v2, (II.9)

where α is the blade flapping angle and Kf is the flapping coefficient.

3. Controller

To control the quadcopter, we use a feedback linearized PD attitude controller and

a saturated PID waypoint navigation controller. This is a common controller for

quadcopters [37–39]. We hand-tune the gains to achieve a slightly under-damped

response with as rapid convergence as possible for the quadcopter model in Section 1..

However, the exact performance of the controller is of little relevance for the trajectory

prediction or wind estimation problems as it will be learned as part of the model in
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the following chapters. Our saturated PID controller is given by

φd

θd

ψd

p̈dd


=



sat(kpepe + kdėpe + ki
∫
epe , φmax)

sat(kpepn + kdėpn + ki
∫
epn , θmax)

ψ

kpepd + kdėpd + ki
∫
epd


, (II.10)

where the d superscript designates a desired value, kp, ki, and kd represent the pro-

portional, integral, and derivative control gains, φmax and θmax are the maximum

allowed roll and pitch angles, and ep = pd−p are the position errors in the designated

directions. We use the saturation function

sat(x, xmax) =


−xmax if x < −xmax

x if − xmax ≤ x ≤ xmax

xmax if x > xmax

, (II.11)

to ensure that the waypoint navigation controller does not request a roll or pitch angle

greater than φmax = θmax = 0.8 radians. The desired Euler angles and vertical

acceleration generated by (II.10) are then used in the attitude controller below to

generate desired force and moment commands

F

τφ

τθ

τψ


=



m(g+p̈dd)

cos(φ) cos(θ)

Jx(−K1φ̇− Jy−Jz
Jx

θ̇ψ̇) +Kp1e1 +Kd1ė1

Jy(−K2θ̇ − Jz−Jx
Jy

φ̇ψ̇) +Kp2e2 +Kd2ė2

Jz(−K3ψ̇ − Jx−Jy
Jz

φ̇θ̇) +Kp3e3 +Kd3ė3


, (II.12)

where 
e1

e2

e3

 =


φd − φ

θd − θ

ψd − ψ

 . (II.13)

Using this controller allows us to set desired positions for the quadcopter to reach

while applying wind disturbances to the system.
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4. Simulation Environment

Quadcopter Parameters

In order to simulate a quadcopter with the dynamics given in above, we need to

choose model parameters. The parameters that we use are based on the 3DR Iris+

and the controllers are hand tuned. Specific dynamics and controller parameters for

our simulations are given in Table 1.. This model is realized in Simulink with a fixed

time step of 0.001 seconds.

Dynamics parameters

g m Jx Jy Jz L k1, k2 Kf

9.81 1.5 0.0348 0.0459 0.0977 0.235 5× 10−5 0.003

Position control gains

kp kd ki

0.3 0.25 0.0002

Attitude control gains

K1, K2 K3 Kp1, Kp2 Kp3 Kd1, Kd2 Kd3

21.93 48 4.65 3.77 0.1872 0.1496

Table 1.: Quadcopter model parameters.

Dryden Stochastic Wind Gust Model

The popular approach to representing small scale atmospheric gusts in aviation ap-

plications, such as trajectory estimation, rely on stochastic formulations [40–43], and

its variants [44]. The Dryden turbulence model [42, 43, 45] is one such realization of

stochastic wind gusts and is commonly implemented through a filtering operation on
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a white noise signal (see MATLAB documentation for details) with transfer functions

as below:

Hu(s) = σu

√
2Va0
Lu

1

(s+ Va0
Lu

)
, Hv(s) = σv

√
3Va0
Lv

(s+ Va0√
3Lv

)

(s+ Va0
Lv

)2
, (II.14)

Hw(s) = σw

√
3Va0
Lw

(s+ Va0√
3Lw

)

(s+ Va0
Lw

)2
,

where s is the complex frequency (i.e. s = 0 + iω where i =
√
−1), σ = [σu, σv, σw]T

are the turbulence intensities, Va0 is an estimate of the quadcopter’s airspeed, and

L = [Lu, Lv, Lw]T are the turbulence lengths scales entering the model. Using this set

of equations to generate turbulence results in a wind field that varies spatially but

not temporally. This behavior is due to the reliance of the transfer functions on Va0

– i.e., if the mean airspeed is set to zero, then (II.14) will always equal zero. In our

simulations, we consider four different turbulence intensities for the Dryden model

based on standard values for turbulence intensity from literature [42, 43, 45]. Details

of the intensities used for our simulations are given in the relevant results sections.

LES of the ABL

The limitations of the Dryden stochastic wind gust models are well known. In par-

ticular, these are: (i) treatment of turbulence as a stochastic process dictated only

by the diagonal components of the spectral energy tensor and (ii) treatment inde-

pendent of scale. This is inconsistent with the huge body of literature on turbulent

coherent structures [46] and well-defined covariance statistical structure [47] in the at-

mospheric surface layer (ASL). In spite of these shortcomings and their impact on air

traffic management(ATM) [48], they are popular on account of their computational

efficiency for rapid estimation.

However, much more accurate models exist for modeling the behavior of wind

at low altitudes. One of these formulations is large eddy simulation (LES) of the

atmospheric boundary layer (ABL). In order to more accurately replicate the wind
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fields that a quadcopter would experience outdoors, we have incorporated wind data

generated using the framework developed by [46] into our simulations.
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CHAPTER III

TRAJECTORY PREDICTION USING LINEAR DIFFERENCE

EQUATIONS

In this chapter, we provide a preliminary investigation of modeling the trajectory of a

quadcopter under wind disturbances based on an input-output modeling approach. In

particular, we employ a linear time-invariant difference equation model that takes the

wind velocities as the input and outputs the trajectory deviation of the quadcopter

due to the wind. Because of the nonlinearity of the quadcopter dynamics and the

onboard controller, the linear model only serves as an approximation of the actual

quadcopter dynamics. Using simulation data from a quadcopter trajectory with a

constant crosswind, we identify the parameters in the model and make use of the

identified model to predict the quadcopter trajectory in different wind speeds. The

predicted trajectories are compared with the actual trajectories of the quadcopter

under the same wind conditions.

We validate our approach using simulation results from a PID position controller

and a PD attitude controller. Note that although the controllers are linear, the

closed-loop system is still nonlinear due to the nonlinear dynamics of the quadcopter.

Our results show that the obtained 4th order difference equation model is capable to

predict the quadcopter trajectory with a reasonable error (on the order of 10% of the

maximum east position overshoot). We also examine the prediction performance with

a stochastic wind model consisting of a constant wind and a random wind. Prediction

performance with similar errors is obtained. We further test the proposed approach

with a 3DR Iris+ simulator. Possibly due to the complexity of the controller and the
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inaccuracies due to sensor noise, we obtain a higher order model and larger prediction

errors. We are currently investigating nonlinear modeling techniques to reduce the

system order and the prediction errors.

1. Modeling the Quadcopter Response

Objective

Given a wind vw, the dynamic model (II.1) with the controller in (II.10)–(II.13)

generates a quadcopter trajectory, p(t; p0, fd, p
d). Our objective is to determine a

simple model that predicts the trajectory p(t; p0, fd, p
d) based on a specific wind

without knowing the exact form of the controller. In this paper, we focus on modeling

the trajectories due to a crosswind. Towards this end, we assume that the quadcopter

is intended to fly towards a waypoint in the north direction and an east crosswind is

injected on the path to the waypoint.

Difference Equation Modeling

In this section, we investigate a system identification method to model the response

of a quadcopter to the east crosswind. Due to the wind, the quadcopter deviates from

its intended path along the north direction towards the east. We model the deviation

at time k as the output of a n-th order difference equation (DE). The input to the DE

is the magnitude of the east crosswind. Specifically, we consider the following model

ye(k) +a1ye(k−1) + · · ·+anye(k−n) = b0vw,e(k) + b1vw,e(k−1) + · · ·+ bnvw,e(k−n),

(III.1)

where ye(k) is the position deviation in the east direction at time step k, vw,e(k) is

the wind magnitude at time step k, and ai’s, i = 1, · · · , n and bj’s, j = 0, · · · , n, are

constant coefficients to be identified. We assume that the wind is injected at k = 0.

Thus, vw,e(k) = 0 and ye(k) = 0 for k < 0. It follows from (III.1) that the discrete
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time transfer function from Vw,e(z) to Ye(z) is given by

G(z) =
Ye(z)

Vw,e(z)
=
b0 + b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
. (III.2)

Note that G(z) models the combined effects of the dynamics and the onboard

controller of the quadcopter. If prior knowledge of the controller is available, it can

be incorporated into G(z). For example, if the controller includes an integral term,

we may factor G(z) as (z−1)Ḡ(z), where the z−1 term represents the integral effect

in the controller and

Ḡ(z) =
b̄1z
−1 + · · ·+ b̄nz

−n

1 + a1z−1 + · · ·+ anz−n
, (III.3)

where b̄i’s are new coefficients after factoring z − 1 out from the numerator of G(z).

Identification of the Coefficients

Given a set of vw,e(k) and ye(k) data, we can identify ai’s and bj’s in (III.1) using

standard techniques in system identification [49, 50]. In this paper, we use least

square fit to identify the parameters. The obtained parameters are then used in (III.1)

or (III.2) to represent the relationship between the wind and the response. To predict

the response of the quadcopter to a new wind v̄w,e(k), k = 0, 1, 2, · · · , we replace

vw,e(k) in (III.1) with v̄w,e(k) and propagate ye(k) from ye(0) using the identified ai’s

and bj’s.

In the special case where the wind vw,e(k) = vw,e is a constant, (III.1) is reduced

to

ye(k) + a1ye(k − 1) + · · ·+ anye(k − n) =
n∑
j=0

bjvw,e, k ≥ n, (III.4)

which is used to identify ai’s and
∑n

j=0 bj given the data ye(k) and vw,e, k ≥ n. To

identify bj’s, we note vw,e(k) = 0 and ye(k) = 0 for k < 0, using (III.1) for 0 ≤ k < n

allows us to identify bj’s, j = 0, · · · , n− 1.

If an integral term is included in the control, we apply standard Z-transforms and
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obtain from (III.2)–(III.3)

Ye(z) = (z − 1)Ḡ(z)
vw,e

1− z−1
= vw,e

b̄1 + b̄2z
−1 · · ·+ b̄nz

−n+1

1 + a1z−1 + · · ·+ anz−n
. (III.5)

Converting Ye(z) to time domain yields

ye(k)+a1ye(k−1)+· · ·+anye(k−n) = vw,e
(
b̄1δ(k) + b̄2δ(k − 1) + · · ·+ b̄nδ(k − n+ 1)

)
,

(III.6)

where δ(k) is the standard dirac function, i.e., δ(0) = 1 and δ(k) = 0, ∀k 6= 0. After

ai’s and b̄i’s, i = 1, · · · , n, are identified, Ḡ(z) in (III.3) is obtained. We further use

G(z) = (z − 1)Ḡ(z) to obtain the coefficients in G(z).

2. Simulation Results

We develop a simulation model of the dynamics and the controller in Chapter II in

MATLAB Simulink. We use physical properties of the 3DR Iris+, as given by the

PX4 SITL [51] Iris+ simulator, for the dynamics in the Simulink model.

In the simulations, the desired waypoint is set at 150 meters in the north direction

in front of the quadcopter, resulting in a pitch saturation at the maximum allowed

pitch angle for most of the flight.The sampling frequency of the quadcopter trajectory

is 10 Hz.

Difference Equation Identification

To apply the discrete time system identification techniques discussed in Section 1.,

we apply a 4 m/s east crosswind in the simulation and collect the quadcopter tra-

jectory data in the east direction. Since our controller consists of an integral term,

we identify the ai’s and bi’s in (III.3) with the collected data. Fig. 2. compares the

fitted trajectories for different system orders (n = 2, 3, 4) with the true trajectory

and shows the corresponding fitting errors. We observe that the fitted trajectory for

n = 4 closely matches the true trajectory. Further increasing the system order only
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Figure 2.: Comparison of the true trajectory and the fitted trajectories of different

system orders (n = 2, 3, 4) for 4 m/s wind.

results in small error reductions and could lead to overfitting of the data. Therefore,

we choose n = 4 in the model. We also identify the coefficients for different wind

speeds (1, 4, and 7 m/s) to confirm that the identified coefficients are similar.

Figure 3.: Comparison of the trajectory obtained from the least square fit with the

true trajectory for 1 m/s wind.

Difference Equation Model Validation

To validate that the model parameters identified in the previous section can be used

to predict the behavior of the quadcopter, we compare the predicted trajectory and

the true trajectory for additional wind speeds. We use the coefficients from the 4

m/s wind case to predict the trajectories of the quadcopter for 1 to 7 m/s winds
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Figure 4.: Comparison of the trajectory obtained from the least square fit with the

true trajectory for 7 m/s wind.

and compare the predicted trajectories with the true trajectories of the quadcopter

for the same winds. Fig. 5. and 6. show the predicted trajectory and the actual

trajectory for 2 m/s and 6 m/s winds, respectively. The predicted trajectories are

within approximately 10% of the maximum east position overshoot for all of the test

cases, as shown in Fig. 7..

Figure 5.: Comparison of the predicted trajectory and the true trajectory for 2 m/s

wind.

PID Gain Variation

We change the PID gains, K = [kp, kd, ki], to K̄ = 1
2
K and re-identify the fourth

order system coefficients for the controller with K̄. The new control gains result in a
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Figure 6.: Comparison of the predicted trajectory and the true trajectory for 6 m/s

wind.

Figure 7.: RMSE and maximum prediction errors for various wind speeds.
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Figure 8.: Comparison of the identified system with the true trajectory for 4 m/s

wind with the new control gain K̄.

Figure 9.: Comparison of the predicted trajectory and the true trajectory for 2 m/s

wind with the new control gain K̄.

different system response for the 4 m/s crosswind. However, the trajectory generated

from the new coefficients still matches the true trajectory well, as shown in Fig. 8..

Similar to the previous section, we can predict the response for different wind speeds.

Fig. 9. shows one example where the predicted trajectory is compared with the true

trajectory for a 2 m/s wind. Fig. 10. shows the prediction errors across different wind

speeds. It should be noted that the maximum east deviation for the quadcopter using

the adjusted PID gains is over 3 meters for the 7 m/s wind case. Therefore, although

the magnitude of the error is significantly greater for this case than the case with the

original gains, the percentage error remains similar.
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Figure 10.: RMSE and maximum prediction errors for various wind speeds with the

new control gain K̄.

Prediction with the Dryden Wind Model

Previous simulation results demonstrate that identifying a difference equation allows

us to predict the trajectory deviation of a quadcopter disturbed by a constant wind.

We now consider predicting the trajectory deviation due to a non-constant wind. A

commonly used model for simulating wind turbulence is the Dryden model [12]. We

have integrated the Dryden model into our simulation as described in Chapter II.

Sample winds generated by this model are shown in Fig. 11..

Figure 11.: Sample winds generated using Dryden turbulence model.

We examine whether our identified model in (III.1) is able to predict the deviation

of a quadcopter in a time varying wind generated from the Dryden model. We employ
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Figure 12.: Comparison of the predicted trajectory and the true trajectory for a wind

generated by the Dryden wind model with a 2 m/s constant component.

the 4th order difference equation model identified in the 4 m/s wind case to predict

the quadcopter’s position given a time varying wind from the Dryden model. The

predicted trajectory is then compared with the true trajectory of the quadcopter in

the same turbulent wind. Fig. 12. and 13. show the comparison for the winds with

2 m/s and 6 m/s constant east wind, respectively. Since the Dryden wind model has

a stochastic component, we conduct Monte-Carlo simulations with different constant

wind speeds. Fig. 14. shows the RMSE and maximum errors averaged over the 50

simulations. As one can see, for the turbulent wind for each wind case, the errors

from the Dryden wind model are similar to their constant wind counterparts.

We also ran simulations with moderate turbulence. For the moderate turbulence

case, the turbulence scale lengths remained constant, but we increased the turbulence

intensities, σ, by a factor of two. We averaged the RMSE and maximum errors over

50 simulations as in the previous case. Using the increased turbulence results in

similar errors to the light turbulence model for wind speeds below 6 m/s, but there

is a significant increase in the errors for the 6 m/s and 7 m/s wind cases, as shown

in Fig. 15.. This increase in the errors for higher wind speeds occurs because the

controller cannot compensate for the increased turbulence at higher wind speeds.
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Figure 13.: Comparison of the predicted trajectory and the true trajectory for a wind

generated by the Dryden wind model with a 6 m/s constant component.

Figure 14.: RMSE and maximum prediction errors for various winds generated by

the Dryden wind model with different constant components.
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Figure 15.: RMSE and maximum prediction errors for various winds generated by

the Dryden wind model for moderate turbulence with different constant components.

Prediction Using Iris+ PX4 Model

Our simulation uses a simple PID controller for waypoint navigation. A number of

more sophisticated simulations of quadcopters are freely available. We use one of the

simulators designed for use in Gazebo due to the maturity of the sensor models and

physics engines and its close ties to ROS (Robot Operating System [52]). Since ROS

is used not only for simulations, but also for the control of a number of commonly

used quadcopters (3DR, DJI, AscTec, and others), using a Gazebo based simulation

allows for easier transition to a physical platform. RotorS was developed in ROS

and gazebo by Furrer, et al. [35] as a realistic multirotor simulator. Sensors and

motors have noise and inaccuracies added to give a more representative view of how a

quadcopter would actually behave. The PX4 [51] firmware developers have modeled a

3DR Iris+ using these simulated components along with a CAD model of the structure

of the Iris+. By combining the PX4 firmware developed for use on the actual Iris+

with this simulation model of the Iris+, an accurate simulation of the quadcopter has

been created by the PX4 developers (PX4 SITL). Using this simulator allows us to

test our modeling approach with a completely unknown controller.

The general system identification and validation procedures used in this section
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are the same as in the previous sections. quadcopter trajectory and wind velocity

data from Iris+ flight simulations are collected and a difference equation model is

identified from the data. For the PX4 simulations, we increase the system order n to

15 to obtain more accurate predictions. The identified model predicts the quadcopter

trajectory with less accuracy compared to the results in the previous sections. Fig. 16.

and 17. show the predicted trajectory compared with the true trajectory for 5 m/s

and 1 m/s constant wind, respectively. Fig. 18. shows the prediction errors of the

15th order model for various constant winds. Fig. 19. shows how the total prediction

error obtained from the five wind cases (vw,e = 1, · · · , 5) varies against the order of

the DE in (III.1).

Figure 16.: Comparison of the predicted trajectory and the true trajectory for 4 m/s

wind in the Iris+ simulator.

The less accurate prediction results obtained for the Iris+ simulation may be due

to the unknown and potentially complex controller used in the PX4 simulation. Addi-

tionally, the sensor noise in the measurements in the Iris+ simulator would contribute

to inaccuracies in the prediction.

Time Correlation

An approach that could potentially be used to improve the accuracy of these pre-

dictions is decorrelation analysis. Decorrelation is the measure of correlation across
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Figure 17.: Comparison of the predicted trajectory and the true trajectory for 2 m/s

wind in the Iris+ simulator.

Figure 18.: RMSE and maximum prediction errors for various constant winds using

a 15th order identified model and the Iris+ simulator.
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Figure 19.: Comparison of the total errors obtained from vw,e = 1, · · · , 5 m/s with

different orders of the DE in (III.1).

time that a signal has. Therefore, the decorrelation of a signal can be used to deter-

mine the optimal order for the difference equation identification. In Figure 20., the

decorrelation for the Simulink quadcopter in hover is shown for acceleration, velocity,

and position. The horizontal line drawn at five percent correlation demonstrates that

the position experiences decorrelation at a distance of roughly 25 time steps from the

current time when considering 10 Hz data.

Figure 20.: Decorrelation of the Simulink quadcopter in hover.
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3. Conclusions

We investigate trajectory modeling of quadcopters in the presence of a crosswind

disturbance. We model the trajectory deviation due to the wind using a linear dif-

ference equation approach. By identifying the coefficients of the difference equation,

we construct the trajectory model and use it to predict the trajectory deviation of a

quadcopter flying in both constant and time-varying winds. For the case of a PID

controller, we obtain a low order (4th order) model that predicts the trajectory with

errors on the order of 10% of the maximum east position overshoot for the controller

used and constant wind speeds of less than 7 m/s. We further validate the trajec-

tory model against time-varying winds consisting of a constant component and a

random component. We can also predict trajectory deviations of the 3DR Iris+ in

Gazebo, although the resulting model order is much higher and the prediction error is

larger. This implies that, for more complex controllers, this linear approach may not

be sufficient. Therefore, in the following chapter, we investigate nonlinear modeling

approaches.
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CHAPTER IV

TRAJECTORY PREDICTION USING A NEURAL NETWORK

1. Motivation for Nonlinear Modeling

As was seen in the previous chapter, linear difference equations (LDE) are effective

at predicting trajectory deviations of a quadcopter with relatively simple trajectories

and in pure crosswinds. However, in more complex scenarios, the linear approach has

reduced accuracy. Since the linear difference equation approach to sUAS gust response

modeling has reduced accuracy for the multidimensional wind case, the logical next

step is to consider nonlinear system modeling techniques. In this chapter, we present

an approach to trajectory deviation prediction that leverages the nonlinear modeling

capabilities of an LSTM NN.

2. Trajectory Prediction using a Neural Network

Derivation of Trajectory Prediction Formulation

To determine the states necessary for a NN to predict trajectory deviations given wind

velocity, we seek to convert the translational dynamics of the quadcopter in (II.1) into

the form p = f(·), where f(·) is a nonlinear function of the wind. To accomplish this,

we note from (II.1) that

p̈ = ge3 −
F

m
Re3 + Cd(Vw − ṗn)|Vw − ṗn|, (IV.1)
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where e3 = [0, 0, 1]T and R is the rotation matrix from the body frame to the inertial

frame. Using Euler discretization, we rewrite (IV.1) as

ṗ(k) ≈ ṗ(k − 1) + ∆tp̈(k − 1) (IV.2)

= ṗ(k − 1) + ∆t[ge3 −
F (k − 1)

m
R(k − 1)e3 + Cd(Vw(k − 1)... (IV.3)

− ṗ(k − 1))|Vw(k − 1)− ṗ(k − 1)|]. (IV.4)

Assuming a fixed trajectory, the control input and orientation can be learned, result-

ing in

ṗ(k) = f(Vw(k − 1), P ), (IV.5)

where P are constant parameters, including the drag coefficient, mass, and gravity. In

order to obtain position deviations, the velocity can be integrated over time. However,

integration errors will accumulate, resulting in drift from the actual values. In the

case that position in a direction is zero mean, the integration can be learned as part

of (IV.5), allowing

p(k) = f(Vw(k − 1), P ) (IV.6)

to be learned for that direction instead of (IV.5). This will eliminate the drift issue

associated with the integration, resulting in accurate position deviation predictions.

We focus on 2-D wind for our trajectory prediction approach. For each trajectory,

we train the RNN on 1,800 seconds of data sampled at 10 Hz. The specific inputs

used are north and east wind velocity with targets of north quadcopter velocity and

east quadcopter position.

LSTM Neural Network

LSTM NNs are a type of RNN frequently used for dynamic system modeling due to

their ability to learn information about long term dependencies in data [29]. One of

the distinguishing features of LSTM NNs is their gated self-loops. Since the weighting
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on the gates is trained, it allows for the retention of information over long sequences

of data. This mitigates the exploding/vanishing gradient problems experienced with

some other forms of RNNs.

LSTM NNs make predictions based on sequences of data. Each set of input

sequences with n time steps of the input is paired with a single time step of the target

vector. An LSTM NN is trained on the input sequences and target vector. After

training, it can be used to generate predictions when given a new input sequence.

The structure of a LSTM unit is shown in Figure 21.. LSTM units are composed

of three gates that serve different purposes, as well as a memory cell to store previous

inputs. In the following equations, variables specific to each gate are designated using

the superscripts i, f , and o for the input, forget, and output gates, respectively. Each

gate has a sigmoid activation function, resulting in a vector with values between zero

and one. Training with this activation function allows the gate to prioritize the data

most relevant to the target values. The input gate given by

iki = σ

(
bii +

∑
j

U i
i,jx

k
j +

∑
j

W i
i,jh

k−1
j

)
(IV.7)

acts on a combination of the kth input data point and n previous data points (stored

in the memory cell). The subscript i represents the ith unit of the NN, j designates

the input feature, and the superscript k represents the time step for the prediction.

The variable bii is the input gate’s bias for the ith unit of the NN, U i
i is the input

weight, W i
i is the recurrent weight, xk are the inputs to the LSTM unit at the kth

time step, and hk−1 are the internal states of the LSTM unit from the previous time

step for j input features. To determine which of the previous inputs remains stored

in the cell, the forget gate output given by

fki = σ

(
bfi +

∑
j

U f
i,jx

k
j +

∑
j

W f
i,jh

k−1
j

)
(IV.8)

is multiplied by the data in the memory cell at each time step. Thus, the internal
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Figure 21.: General form of a LSTM NN unit.

state of the LSTM cell is given by

cki = fki c
k−1
i + iki σ

(
bi +

∑
j

Ui,jx
k
j +

∑
j

Wi,jh
k−1
j

)
. (IV.9)

Once the new input and previous inputs have been appropriately scaled by the input

and forget gates, they are sent through a hyperbolic tangent function as

hki = tanh(cki )o
k
i , (IV.10)

and multiplied by the output of the output gate as

oki = σ

(
boi +

∑
j

U o
i,jx

k
j +

∑
j

W o
i,jh

k−1
j

)
, (IV.11)

to ensure that the output of the LSTM unit corresponds to the desired output.

3. Simulation Results

Data from the simulation environment described in Chapter II are used to train a

LSTM NN. The preliminary training case used 1,800 seconds of training data and

uniformly random winds between -7 and 7 m/s, each applied for a random amount

of time between 0 and 15 seconds. A sequence length of n = 20 that overlaps with 5

previous inputs of the previous training sequence is used. Ten percent of the sequences

36



are randomly chosen as the validation sequences for training purposes, and the NN

is trained for 30 epochs.

For the size of the NN, we choose to use two hyperbolic tangent hidden lay-

ers with 50 units each and 10 percent dropout based on hand-tuning. Since the

hyperbolic tangent function has a range of (−1, 1), the inputs and targets must

be scaled to this range. In order to accomplish this, we use the normalization

xnorm = x−mean(x)

max(abs(x−mean(x)))
. The specific numbers used for the normalization,

mean(x) and max(abs(x−mean(x))), are then saved and used to normalize the test

datasets to ensure proper scaling for the NN.

NN training results can vary significantly depending on the choice of loss function

and optimizer. Common loss function choices include mean square error (MSE),

mean absolute error, and mean squared error, and we chose to use MSE based on its

performance relative to the other choices. Regarding optimizers, there are a number

of common options, such as Stochastic Gradient Descent (SGD) variants, RMSPROP,

and Adaptive Moment Estimation (Adam) [53]. We tested RMSPROP and Adam

since they have been shown to have excellent convergence properties and are available

in Keras. Adam with a learning rate of 0.001 and a batch size of 10 resulted in the

smallest losses for our problem and thus is the optimizer that we use to train the NNs

for this paper.

Velocity Predictions

The training method described above is used to train a LSTM NN to predict quad-

copter velocities given wind velocity inputs, resulting in the losses shown in Figure 22..

In Figure 23., example predictions are shown for a 300 second segment of data with

a hovering quadcopter. Figure 24. shows the error histograms for 3000 seconds of

testing data with a hovering quadcopter.

After confirming that the velocity prediction works for a hovering quadcopter, we
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Figure 22.: Training loss for the trajectory prediction NN trained on 1,800 seconds

of data for the hover case.

Figure 23.: Comparison of the true quadcopter velocity and the NN estimated quad-

copter velocity using the test dataset for the hover case.

Figure 24.: Quadcopter velocity prediction error histograms for the test dataset for

the hover case.
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trained a NN on data from a quadcopter in straight line flight, resulting in losses

shown in Figure 25.. As we saw in the hover case, this results in accurate prediction

of the quadcopter’s velocity in both the north and east directions for a variety of

different wind speeds and directions (Figures 26.-27.).

Figure 25.: Training loss for the trajectory prediction NN trained on 1,800 seconds

of data for straight line flight.

Figure 26.: Comparison of the true quadcopter velocity and the NN estimated quad-

copter velocity using the test dataset for straight line flight.

Position Prediction for Zero Mean Deviations

As described in Section 2., there are two methods that can be used to obtain position

deviations given wind velocity inputs: integration of the velocity predictions, or, for

the case of zero mean deviation in a direction, the integration can be learned. In
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Figure 27.: Quadcopter velocity prediction error histograms for the test dataset for

straight line flight.

this section, we consider the latter case, which avoids accumulation of errors due to

integration. Figures 28.-29. show a comparison of the predicted and actual position

deviations and an error histogram for the hover case. Figures 30.-31. show the

predictions and actual values for the straight line case with the NN trained on north

velocity targets and east position targets.

Figure 28.: Comparison of the true quadcopter position and the NN estimated quad-

copter position using the test dataset for the hover case.

4. Conclusions

As shown in Section 3., the NN approach results in accurate predictions of quadcopter

trajectory deviations due to wind. Using the NN instead of the linear difference
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Figure 29.: Quadcopter position prediction error histograms for the test dataset for

the hover case.

Figure 30.: Comparison of the true quadcopter north velocity and east position and

the NN estimated quadcopter north velocity and east position using the test dataset

for straight line flight.

Figure 31.: Quadcopter north velocity and east position prediction error histograms

for the test dataset for straight line flight.
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equation approach (Chapter III) allows for predictions in winds from any direction

using a single model.
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CHAPTER V

WIND ESTIMATION USING NEURAL NETWORKS

In this chapter, we present a machine learning (NN) aided wind estimation strategy

that leverages sensor data on factory configured sUAS. NNs have been widely used for

function approximation [30] and to model complex nonlinear dynamic systems [31,

32]. Recurrent NNs (RNNs) are commonly used for sequential and dynamic systems

modeling due to their ability to incorporate data from previous time steps into their

predictions [26, 27]. There are a number of reasons that make the proposed NN

approach an appealing solution to sUAS wind estimation. Existing linear system ID

approaches [21, 22] work well for quadcopters at relatively low air-speeds. However,

as roll and pitch angles increase, the nonlinearities in the dynamics become more

prominent. Since NNs are effective at function approximation even in the presence

of nonlinearity, they are capable of accurately capturing the quadcopter’s behavior

in aggressive flight. Existing nonlinear modeling techniques [23] require knowledge of

the form of controller, thus, limiting their usage on commercial sUAS with proprietary

controls. While the Wind Triangle (WT) approach [1, 2] is only reliable for steady

state measurements, NNs can operate effectively with transient and steady data and,

therefore, are more effective for turbulent wind estimation. We have chosen to use

Long Short-Term Memory (LSTM) RNNs [29]. Specifically, we use LSTM NNs to

estimate horizontal, 2-dimensional wind given time series of Euler angles and the

inertial position of the quadcopter.
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1. The Wind Estimation Problem for a Quadcopter

To realize the machine learning wind estimation approach discussed above, we first

need a model of the quadcopter’s dynamics. Using these dynamics, we can reformulate

the wind estimation problem into a form conducive to machine learning approaches.

The specific dynamics that we use are given in Section 1. and a description of the

problem reformulated for machine learning is given in this section.

Wind Estimation Formulation

The quadcopter model (II.1) shows that the two primary forces impacting a quad-

copter’s translational motion are the drag force and the forces due to rotor thrust.

The drag force is dependent on the airspeed of the quadcopter and the rotor thrusts

are dependent on the Euler angles of the quadcopter. Thus, to estimate the wind ve-

locity with minimal time delay, approximations of the velocity and the Euler angles

are required, implying that the problem can be formulated as

Vw = f(ṗ, φ, θ, ψ). (V.1)

There are a number of approaches that could be used to approximate the formu-

lation in (V.1). The most straightforward approach is to attempt the approximation

using linear system identification. However, considering the nonlinearities in (II.1),

this would be limited to conditions relatively near hover. Thus, a more intuitive

approach would be to use nonlinear modeling approaches, such as neural networks.

2. Wind Estimation using a Neural Network

Derivation of Wind Estimation Formulation

To determine the states necessary for a NN to estimate wind velocity, we seek to

convert the translational dynamics of the quadcopter in (II.1) into the form Vw = f(·),

44



where f(·) is a nonlinear function of the states. To accomplish this, we note from (II.1)

that

p̈ = ge3 −
F

m
Re3 + Cd(Vw − ṗn)|Vw − ṗn|, (V.2)

where e3 = [0, 0, 1]T and R is the rotation matrix from the body frame to the inertial

frame. Using Euler discretization, we rewrite (V.2) as

ṗ(k) ≈ ṗ(k − 1) + ∆tp̈(k − 1) (V.3)

= ṗ(k − 1) + ∆t[ge3 −
F (k − 1)

m
R(k − 1)e3 + Cd(Vw(k − 1)...

− ṗ(k − 1))|Vw(k − 1)− ṗ(k − 1)|]. (V.4)

Rearranging (V.4) leads to

(Vw(k − 1)− ṗ(k − 1))|Vw(k − 1)− ṗ(k − 1)|

= C−1D

(
ṗ(k)− ṗ(k − 1)

∆t
+
F (k − 1)

m
R(k − 1)e3 − ge3

)
. (V.5)

We let Va(k) = Vw(k) − ṗ(k) be the airspeed of the quadcopter at time k∆t and

further simplify (V.5) as

Va(k − 1)|Va(k − 1)| = C−1d

(
ṗ(k)− ṗ(k − 1)

∆t
+
F (k − 1)

m
R(k − 1)e3 − ge3

)
(V.6)

= f(ṗ(k), ṗ(k − 1), F (k − 1), R(k − 1), P ), (V.7)

where P are constant parameters, including the drag coefficient, mass, and gravity.

From (V.7), we observe that Va(k− 1) is a function of the ground velocity ṗ at times

k and k− 1 as well as the rotor thrust, F , and the rotation matrix, R, at time k− 1.

Since F (k − 1) is calculated based on the controller and a constant desired way-

point, pd(k − 1), it can be learned given different pd(k − 1). Thus, F (k − 1) can be

considered a part of the parameters, P , for a distant waypoint. Because the wind ve-

locity is a difference between the ground velocity and the airspeed, the wind velocity

Vw(k − 1) can be learned as a nonlinear function of ṗ(k), ṗ(k − 1), R(k − 1), and P .
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For a RNN, e.g., a LSTM NN, ṗ can be approximated by using multiple time steps

of p. This results in our final formulation

Vw(k − 1) = f(p(k), p(k − 1), ..., p(k − n), R(k), R(k − 1), ..., R(k − n), P ) (V.8)

which illustrates that Vw(k−1) depends on sequence data of positions and orientation.

We focus on 2-D wind and two types of trajectories for our wind estimation ap-

proach – hover and straight line. For each trajectory, we train the RNN on 4,800

seconds of data sampled at 10 Hz. The specific inputs used are north and east quad-

copter positions and roll and pitch angles with north and east wind velocities as the

targets. These four inputs are sufficient for estimating wind velocity in the north and

east directions with zero yaw. Since we are not estimating vertical winds in this case,

the altitude of the quadcopter is not necessary. Furthermore, since yaw is assumed

to be constant, it will be learned as part of P , leaving us with

Vw(k − 1) = f(p(k), p(k − 1), ..., p(k − n), φ(k), φ(k − 1), ...,

φ(k − n), θ(k), θ(k − 1), ..., θ(k − n), P ). (V.9)

3. Simulation Results

Data from the simulation environment described above are used to train a LSTM

NN. The preliminary training case used 1,800 seconds of training data and uniformly

random winds between -7 and 7 m/s, each applied for a random amount of time

between 0 and 15 seconds. A sequence length of n = 10 that overlaps with 5 previous

inputs of the previous training sequence is used. Ten percent of the sequences are

randomly chosen as the validation sequences for training purposes.

For the size of the NN, we choose to use two hyperbolic tangent hidden lay-

ers with 100 units each and 10 percent dropout based on hand-tuning. Since the

hyperbolic tangent function has a range of (−1, 1), the inputs and targets must

be scaled to this range. In order to accomplish this, we use the normalization
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xnorm = x−mean(x)

max(abs(x−mean(x)))
. The specific numbers used for the normalization,

mean(x) and max(abs(x−mean(x))), are then saved and used to normalize the test

datasets to ensure proper scaling for the NN.

NN training results can vary significantly depending on the choice of loss function

and optimizer. Common loss function choices include mean square error (MSE),

mean absolute error, and mean squared error, and we chose to use MSE based on its

performance relative to the other choices. Regarding optimizers, there are a number

of common options, such as Stochastic Gradient Descent (SGD) variants, RMSPROP,

and Adaptive Moment Estimation (Adam) [53]. We tested RMSPROP and Adam

since they have been shown to have excellent convergence properties and are available

in Keras. Adam with a learning rate of 0.001 and a batch size of 10 resulted in the

smallest losses for our problem and thus is the optimizer that we use to train the NNs

for this approach.

Training and Testing Results for Constant Winds

A plot of the training and validation loss is shown in Figure 32.. In general, having a

significantly higher validation loss than training loss indicates that a NN is overfitting.

As can be seen from the loss, the validation loss is slightly lower than the training

loss, which indicates that the model is not overfitting. The reason that the validation

loss is lower than the training loss is due to the dropout layer. Keras applies dropout

to the training data but not the validation data, which can result in this behavior.

Wind estimation results from the test dataset are shown in Figure 33. and an error

histogram for this case is shown in Figure 34..

After validating the results using the randomly varying wind, we trained NNs on

4,800 seconds of data for two cases: First, a quadcopter in hover; Second, a quadcopter

in straight line flight. These two NNs were then used to estimate the wind velocity

for their respective cases on data obtained while simulating a quadcopter in turbulent
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Figure 32.: Training loss for the preliminary wind estimation NN trained on 1,800

seconds of data.

Figure 33.: Comparison of the true wind velocity and the NN estimated wind velocity

using the test dataset.

Figure 34.: Wind estimation error histograms for the test dataset. Note that wind

velocity errors greater than 4 m/s occurred near the large instantaneous jumps in

wind velocity but were not shown here.
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wind. The loss plot for the hover case is shown in Figure 35..

Figure 35.: Training loss for the wind estimation NN trained on 4800 seconds of data

generated with a quadcopter in hover.

Dryden Wind Results

Hover Case

We consider a quadcopter in hover. This is the simplest case for wind estimation and

provides an appropriate baseline for comparison. In order to generate wind estimation

results, we train a LSTM NN as described in Section 2. on data collected for a

hovering quadcopter. After training the NN on the wind velocity for constant winds

with random jumps, we used the same NN to estimate the wind velocity for a wind

with Dryden turbulence, using a range of turbulence intensities. An example segment

of this estimation with Dryden turbulence and a mean wind velocity of [1, 2, 0]T m/s

is shown in Figure 36.. Corresponding error histograms are shown in Figure 37. for

5,000 seconds of data.

To demonstrate the improved performance offered by the NN approach, we com-

pare with the WT approach described in Neumann and Bartholmai [1] and Palomaki

et al. [2]. In the WT approach, the Euler angles are known and assumed to correspond

directly to the airspeed of the quadcopter. Then, if the ground velocity is known from

a GPS, the difference between the airspeed vector and the ground velocity vector is
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a direct estimation of the wind velocity. Results are generated using this approach

with the same datasets used for the NN approach. Wind estimation plots and error

histograms using the WT are shown in Figures 38. and 39.. As can be seen from

the histograms in Figures 37. and 39., the NN approach has a narrower distribution

with a mean closer to zero than the WT approach. This indicates that the NN more

accurately estimates the wind velocities.

Figure 36.: Comparison of the true wind velocity and the NN predicted wind velocity

in Dryden wind with σu,v,w = [1.06, 1.06, .7]T for the waypoint navigation controller

in hover.

Figure 37.: Histograms of error divided by the standard deviation of the wind for

the NN predicted wind velocity in Dryden wind with σu,v,w = [1.06, 1.06, .7]T for the

waypoint navigation controller in hover.
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Figure 38.: Comparison of the true wind velocity and the WT predicted wind velocity

in Dryden wind with σu,v,w = [1.06, 1.06, .7]T for the waypoint navigation controller

in hover.

Figure 39.: Histograms of error divided by the standard deviation of the wind for

the wind velocity estimates produced by the WT approach in [1,2] using the Dryden

wind model with σu,v,w = [1.06, 1.06, .7]T for the waypoint navigation controller in

hover.
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Straight Line Flight

After ensuring that the wind estimation strategies worked for the hover case, we

applied the NN and WT approaches to data generated while a quadcopter is flying to

a waypoint directly north of its initial position. We see similar behavior for this case

as in the hover case, as can be seen by the NN error histogram, Figure 40., and the

WT error histogram, Figure 41., with the NN approach resulting in smaller errors.

Figure 40.: Histograms of error divided by the standard deviation of the wind for

the NN predicted wind velocity in Dryden wind with σu,v,w = [1.06, 1.06, .7]T for the

waypoint navigation controller in straight line flight.

Figure 41.: Histograms of error divided by the standard deviation of the wind for

the WT predicted wind velocity in Dryden wind with σu,v,w = [1.06, 1.06, .7]T for the

waypoint navigation controller in straight line flight.
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ABL Wind Estimation

Using wind and quadcopter data from a LES of the ABL gives results of a similar

level of accuracy as for Dryden winds. Figure 42. displays the error histogram for

the NN estimation of an ABL wind at 50m above ground level and Figure 43. shows

the WT estimation error histogram for the same dataset.

Figure 42.: Histograms of error divided by the standard deviation of the wind for

a LES of the ABL wind with at an altitude of 50m for the waypoint navigation

controller in hover

Figure 43.: Histograms of error divided by the standard deviation of the wind for the

WT predicted wind velocity for a LES of the ABL wind with at an altitude of 50m

for the waypoint navigation controller in hover
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Comparison with the WT Approach

In order to compare the accuracy of the two methods, we calculate the mean absolute

error (MAE) and the variance of the error of the estimates in the north and east

directions using the same training and test datasets for the NN and for the WT.

For the hover case (Tables 2. and 3.) and the straight line flight case (Table 4.)

in Dryden wind, we estimate the wind velocity for two different mean winds, Vw =

[1, 2, 0]T and Vw = [2,−1, 0]T , and four different turbulence intensities, each with 5,000

seconds of data. In almost all cases, the NN estimates have lower MAE and variance

than the WT. However, this difference becomes less pronounced as the turbulence

decreases, with the WT having slightly lower north variance in Table 2. for the lowest

turbulence case and slightly lower north MAE in Table 4. for the lowest turbulence

case. Since the WT assumes that the tilt angle of a quadcopter corresponds directly

to the airspeed of the quadcopter, errors primarily occur during the transient response

of the quadcopter to a gust. Thus, as the gust intensity becomes smaller and less

frequent, the WT becomes more accurate. Gust intensity affects the NN as well, but

since the NN uses position measurements to approximate velocities, there is less of

an impact on the wind estimation during the transient response.

Turbulence Intensities σ = [0.53, 0.53, 0.35] σ = [1.06, 1.06, 0.6] σ = [1.59, 1.59, 1.05] σ = [2.12, 2.12, 1.4]

NN WT NN WT NN WT NN WT

North MAE (m/s) 0.268 0.3203 0.2608 0.4351 0.4354 0.5587 0.7024 0.8724

East MAE (m/s) 0.2689 0.5254 0.3234 0.551 0.5188 0.647 0.76 0.8503

North Variance (m/s)2 0.128 0.0944 0.1231 0.3104 0.4 0.6304 1.175 1.7186

East Variance (m/s)2 0.1222 0.1841 0.1736 0.3989 0.4989 0.7203 1.3229 1.5418

Table 2.: Comparison of mean absolute errors and error variances for a [1, 2, 0]T m/s

mean Dryden wind with a quadcopter in hover.

In addition to the mean absolute errors and error variances for the Dryden wind,

we considered two other metrics: mean wind velocity error and the covariance error,
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Turbulence Intensities σ = [0.53, 0.53, 0.35] σ = [1.06, 1.06, 0.6] σ = [1.59, 1.59, 1.05] σ = [2.12, 2.12, 1.4]

NN WT NN WT NN WT NN WT

North MAE (m/s) 0.173 0.5884 0.3356 0.6162 0.5137 0.7074 0.7825 0.9963

East MAE (m/s) 0.145 0.2714 0.265 0.3776 0.4558 0.5626 0.6873 0.8222

North Variance (m/s)2 0.046 0.1572 0.1943 0.4422 0.5249 0.8752 1.354 2.0126

East Variance (m/s)2 0.0209 0.0646 0.1175 0.2455 0.4278 0.6391 1.2426 1.6187

Table 3.: Comparison of mean absolute errors and error variances for a [2,−1, 0]T

m/s mean Dryden wind with a quadcopter in hover.

Turbulence Intensities σ = [0.53, 0.53, 0.35] σ = [1.06, 1.06, 0.6] σ = [1.59, 1.59, 1.05] σ = [2.12, 2.12, 1.4]

NN WT NN WT NN WT NN WT

North MAE (m/s) 0.1228 0.0967 0.1613 0.184 0.2176 0.2603 0.2745 0.3675

East MAE (m/s) 0.1061 0.4706 0.1597 0.499 0.2236 0.537 0.296 0.6534

North Variance (m/s)2 0.0074 0.0116 0.0267 0.109 0.0564 0.0976 0.1236 0.1838

East Variance (m/s)2 0.008 0.0285 0.0323 0.0461 0.0708 0.228 0.1397 0.4443

Table 4.: Comparison of mean absolute errors and error variances for a [1, 2, 0]T m/s

mean Dryden wind with a quadcopter in straight line flight.
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as measured by the distance metric presented in [54],

d =
√

(
n∑
i=1

ln2 λi), (V.10)

where d is the measured distance, λi are eigenvalues from |λA − B| = 0, A is the

actual covariance matrix, and B is the estimated covariance matrix for north and

east wind velocities. Results for the Dryden wind case are shown in Table 5.. As

can be seen from this table, the mean errors are much lower for the NN than for the

WT. One interesting characteristic of the NN covariances was that the cross terms

consistently had the correct sign in our tests, whereas the WT estimates did not.

This is an important characteristic of turbulence to capture, and further indicates

than NNs are more effective in turbulent environments.

Turbulence Intensities σ = [0.53, 0.53, 0.35] σ = [1.06, 1.06, 0.6] σ = [1.59, 1.59, 1.05] σ = [2.12, 2.12, 1.4]

NN WT NN WT NN WT NN WT

North Mean Error (m/s) 0.0071 -0.2383 0.0112 -0.1881 0.0132 -0.1277 0.0146 -0.1422

East Mean Error (m/s) -0.0958 -0.3915 -0.1039 -0.3291 -0.0729 -0.2514 -0.0737 -0.1769

Covariance Distance 0.1605 1.1083 0.2255 0.732 0.1592 0.5141 0.2617 0.5746

Table 5.: Comparison of mean wind errors and covariance distances for a [1, 2, 0]T

m/s mean Dryden wind with a quadcopter in hover.

For our tests using data from the LES simulation of the ABL, the NN estimates

of the wind velocity were more accurate than the WT estimates of the wind velocity

for all of the tested cases (Table 6.). We used data from three altitudes in the ABL

– 50m, 100m, and 150m. As altitude increases, the mean wind velocity increases and

the turbulence deceases.

The NN approach results in better overall wind estimation accuracy than the

WT for the flight scenarios the NN is trained on. This is primarily due to the fact

that the WT relies on the assumption that tilt angle directly corresponds to the

airspeed of the quadcopter, which is only true in the steady state condition. Since
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Altitude 50m 100m 150m

NN WT NN WT NN WT

North MAE (m/s) 0.2897 0.3047 0.2539 0.2807 0.2278 0.3055

East MAE (m/s) 0.2567 0.3985 0.2212 0.5432 0.2044 0.6688

North Variance (m/s)2 0.1378 0.1795 0.1113 0.1276 0.0924 0.0985

East Variance (m/s)2 0.1224 0.1522 0.079 0.1357 0.0664 0.1131

Table 6.: Comparison of mean absolute errors and error variances for wind from a

LES simulation of the ABL at three altitudes with a quadcopter in hover.

this assumption causes a delay in the wind estimation proportional to the speed

with which the attitude controller responds to a wind gust, the difference between

the errors is more pronounced in higher turbulence. Therefore, the NN is more

effective at measuring higher frequency components of wind velocity and the errors

have significantly lower variance that the WT, albeit only on the specific trajectory

type the NN is trained on. Mean errors and covariance distances for the ABL winds

are shown in Table 7.. It should be noted that, although the covariance distances are

larger for the NN than the WT, the NN again correctly captures the sign of the cross

terms in the covariance matrices.

Altitude 50m 100m 150m

NN WT NN WT NN WT

North Mean Error (m/s) 0.0496 -0.047 0.542 0.1543 0.0559 0.2785

East Mean Error (m/s) -0.1094 -0.3111 -0.1029 -0.5318 -0.1009 -0.6804

Covariance Distance 0.7882 0.3248 0.6165 0.2548 0.5446 0.2952

Table 7.: Comparison of mean wind errors and covariance distances for wind from a

LES simulation of the ABL at three altitudes with a quadcopter in hover.

In addition to the mean absolute errors and error variances for the north and
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east ABL wind, we considered two other metrics: wind direction and magnitude

mean error and error variance. Again, we see that the NN approach results in

better overall approximation of the wind than the WT approach, as demonstrated

in Table 8.. Although the error variances are generally similar, the mean errors

are significantly higher for the WT than for the NN, indicating better overall es-

timation from the NN. In this table, the direction error is the value given by λ =

arccos(cos(arctan(Vw,n, Vw,e)actual−arctan(Vw,n, Vw,e)estimated)) to avoid quadrant-related

errors.

Altitude 50m 100m 150m

NN WT NN WT NN WT

Direction Error Variance (rad) 0.001544 0.002701 0.001315 0.001905 0.00102 0.001428

Direction Mean Error (rad) 0.0388 0.06539 0.03149 0.0715 0.02705 0.07854

Speed Error Variance (m/s)2 0.1732 0.1695 0.1196 0.1189 0.1016 0.0956

Speed Mean Error (m/s)2 0.1416 0.1149 0.1206 0.3701 0.1126 0.5284

Table 8.: Comparison of mean errors and error variances for the direction and nor-

malized speed of wind from a LES simulation of the ABL at three altitudes with a

quadcopter in hover.

4. Conclusions

In this chapter, we have shown a novel approach to wind estimation using quadcopter

trajectory measurements. Accurate wind sensing is critical in fields such as Aviation

and Meteorology, but there are gaps and inefficiencies in the current approaches –

e.g., limited range with ground based towers, high cost and limited low altitude

measurements when using manned aircraft, and low accuracy and limited use cases

with existing sUAS wind estimation approaches. Our machine learning approach

to wind estimation using state measurements seeks to mitigate these problems by
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providing an accurate, low cost approach to wind estimation using commercial sUAS

in their default configurations.

In order for our machine learning approach to improve on the existing approaches,

it must provide higher accuracy wind measurements than existing sUAS wind sensing

approaches without increasing the cost of measurements or requiring knowledge of

the control algorithm used. Since machine learning can provide an approximation of

arbitrary nonlinear functions, this approach should, in theory, provide more accurate

wind estimation than linear approaches. In particular, due to the highly nonlinear

dynamics of quadcopters in aggressive flight and in turbulent wind, the machine

learning approach can be expected to significantly outperform the linear approaches.

Our simulations confirmed that wind estimation using a LSTM NN outperforms

linear approaches, particularly in highly turbulent wind. As shown in Section 3., the

mean absolute errors and error variances for the NN were lower than those of the WT

on identical datasets. This behavior was consistent for multiple turbulence levels for

hover and straight line trajectories, although the difference was more marked in higher

turbulence. Furthermore, we have shown that the NN has more accurate results than

the WT in winds generated using both the Dryden (stochastic) wind model as well

as a realistic wind field generated using a LES of the ABL.
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CHAPTER VI

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis, we have considered two inherently related problems: quadcopter tra-

jectory deviation prediction given wind velocity inputs and wind velocity estimation

given quadcopter trajectory deviations. For the trajectory prediction problem, two

approaches are considered. We began with linear difference equation identification

and demonstrated its efficacy for a pure crosswind. However, the identified LDE’s

have reduced accuracy when predicting trajectory deviations for wind directions other

than the identification case. Therefore, to aid in generalization, we presented a ma-

chine learning approach – and, in particular, we use long short-term memory neural

networks for validation of the approach. Simulation results verify that the LSTM

NNs result in accurate trajectory predictions, with MAE of 0.1-0.25 m/s and error

variances of 0.05-0.15 (m/s)2.

For the wind estimation problem, we considered nonlinear approaches exclusively,

presenting a formulation of the problem suitable for general machine learning ap-

proaches, and validating the approach using LSTM NNs. Simulation results demon-

strate that we are able to obtain more accurate wind velocity estimates using our

approach than can be obtained using the wind triangle to estimate wind velocity.

The most immediately apparent direction for continuation of this research is ex-

perimental validation of the proposed approaches. Code for the LSTMs is written to

read data from a text file in a particular format, and thus the NNs could be readily

trained on properly formatted data with no required changes to the NN. A second

area of research would be to use wind velocity estimates from the NNs in a closed loop
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controller to minimize trajectory deviations. This could allow for almost immediate

trajectory corrections, resulting in very little deviation from the desired trajectory.
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