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CHAPTER I 
 

 

ROBUSTNESS OF THE IMPACT OF CLIMATE CHANGE ON U.S. CORN YIELDS 

Abstract 

In evaluating plans to mitigate climate change, policy makers require estimates of the cost of 

climate change. One potential cost of climate change is the negative effect that an increase in 

temperature would have on agricultural yields. We begin with a model suggested by Schlenker 

and Roberts (2009) and we are largely successful in replicating their results. We then modify the 

model to determine its robustness as we change assumption. These changes include (i) using 

long-term average data for temperature and precipitation variables instead of yearly data, (ii) 

temperature and precipitation data from different periods of the growing season, with an emphasis 

on critical corn growth periods, (iii) using a different method for estimating temperature exposure 

times, (iv) using two-knot time trends instead of quadratic time trends, (v) adding Corn Belt 

dummy variables, and (vi) removing data from the 1950s and 1960s. We make predictions of the 

impact of climate change under two warming scenarios (RCP4.5 and RCP8.5) of three General 

Circulation Models, and in each we make predictions with and without adaptation. The 

assumption change to which yield change predictions are most sensitive is the use of long-term 

average data instead of yearly data; predicted yield decreases based on models that use long-term 

average data are smaller by 18.0 percentage points compared to predictions based on models that 

use yearly data. Using a model that changes all six assumptions, including the use of July-August 

long-term average data, and assuming adaptation, the average prediction under the three 
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circulation models is a 14.1 percent corn yield decrease under the RCP4.5 scenario and a 26.4 

percent yield decrease under the RCP8.5 scenario. 

Keywords: corn yield, temperature, climate change, adaptation, Corn Belt, RCP4.5, RCP8.5, 

CCSM4, GFDL-ESM2G, GFDL-ESM2M 

1. Introduction 

Most climate scientists predict increasing carbon dioxide and other greenhouse gas emissions will 

cause temperatures to increase. In evaluating plans to mitigate climate change, world leaders and 

policy makers need estimates of the cost of climate change. One potential cost of climate change 

is the effect of increased temperature on agricultural yields. Corn is a major source of calories for 

much of the world, and the United States is the leading producer and exporter of corn. The impact 

of climate change on U.S. corn yields is a good measure of the impact on corn production and a 

good proxy for the impact on food security. Climate change will also have an adverse impact on 

coastal areas (due to sea level rise), human health, other vulnerable market sectors (e.g., changes 

in energy use), and human settlements and ecosystems (Federal Interagency Working Group 

2010, USGCRP 2018).  

As Hendricks and Peterson (2014) explain, higher temperatures reduce crop yields 

through heat stress. Schlenker and Roberts (2009) analyze the yields of corn, soybeans, and 

cotton, and find that for all three crops the yields increase with temperature up to an optimal level 

(29°C for corn) and that after this temperature yields decrease sharply. Previous research predicts 

the impact of climate change on agriculture. However, there is no consensus about the magnitude 

of this impact. World food security would be threatened by dramatic drops in yield predicted by 

estimates such as Schlenker and Roberts (2009). They predict that by the end of the twenty-first 

century average corn, soybeans, and cotton yields will drop by 30-46% under the slowest 

warming scenario (B1) of the Hadley III climate model (Hadley Centre Coupled Model, version 
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3) and by 63-82% under the most rapid scenario (A1F1). Peng et al. (2004) find that for each 1°C 

increase in minimum temperature (which is generally at night), rice yields decrease by 10%; 

interestingly, they do not find a significant relationship between yield and maximum temperature. 

Other studies such as Deschênes and Greenstone (2007), Brown and Rosenberg (1999) 

and Mendelsohn, Nordhaus, and Shaw (1994) find less severe effects of climate change on 

agricultural yields. Deschênes and Greenstone (2007) predict that agricultural profits will increase 

under climate change. They also argue that although an increase in temperature has a negative 

effect on crop yields, the predicted increase in precipitation has a positive effect on yields, which 

results in an overall small negative effect of climate change on the main crops in the U.S., such as 

corn and soybeans. Deschênes and Greenstone (2007) also find considerable heterogeneity in the 

predicted impact across states. Spatial heterogeneity is corroborated by other studies such as 

Thornton et al. (2009). Kaiser et al. (1993) report that with a 2.5℃ temperature increase, corn 

yields will decrease by less than 5%. They also find that adapting to climate change is feasible.  

Studies have used different approaches to predict the effects of climate change on the 

agricultural sector. These approaches can be classified into (i) agronomic research characterized 

by process-based models and (ii) empirical approaches using regression-based analysis. The 

agronomic approach emphasizes plant growth physiology. Studies that follow this approach 

include those based on experiments (e.g., Houghton et al. 2001, Long et al. 2004, Long et al. 

2006), and studies based on simulations. Examples of simulation models are the Erosion 

Productivity Impact Calculator (EPIC) used by Brown and Rosenberg (1999), the Agricultural 

Production Systems Simulator (APSIM) used by Lobell et al. (2013), the CERES-Maize model 

(e.g., Thornton et al. 2009), and the Agricultural Policy/Environmental eXtender Model (APEX) 

model (e.g., Williams and Izaurralde 2000, Osei and Jafri 2017). In these studies, models simulate 

yields based on inputs such as daily weather, initial soil characteristics, and fertilizer applications. 

An advantage of agronomic studies is the simulation of realistic conditions under which plants are 
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expected to grow. Carbon fertilization, for example, can be simulated in these studies. Agronomic 

field experiments or trials are costly and can only be conducted at a small scale in greenhouses or 

other controlled environments; generalizations beyond agronomic experiments are therefore 

difficult. The disadvantage of agronomic simulations is their complexity. In addition, this 

simulation approach does not account for farmer decision making and only focuses on plant 

growth physiology. 

There is currently no consensus on the extent of carbon fertilization. Brown and 

Rosenberg (1999) attribute to CO2 fertilization the alleviation of the decline in yields under 

climate change. They use three General Circulation Models (GCMs) to measure the impact of 

climate change on the potential production of dryland winter wheat and corn for primary U.S. 

regions that grow each crop, with global mean temperature changes of 1.0, 2.5 and 5°C and levels 

of atmospheric CO2 concentration of 365 (no CO2fertilization), 560, and 750 ppm. The least 

impact in this study is that of a reduction in potential production by 6% for corn and by 7% for 

wheat with a global mean temperature of 2.5°C and no CO2 fertilization. Other studies claim that 

higher CO2 levels will improve wheat yield and predict yield gains under most climate change 

scenarios. However, according to Long et al. (2006), this positive effect of CO2 levels on crop 

yields is not large enough to offset the negative effect of expected higher temperature. Long et al. 

(2006) claim that studies overestimating the effect of CO2 fertilization were based on 

experiments conducted in enclosed areas. Their study uses free-air concentration (FACE) 

technology to conduct experiments on the effect of CO2 in open-air fields. The increase in crop 

yields due to CO2 fertilization is 50% lower than previously predicted by enclosure studies. 

Recently, the Agricultural Model Intercomparison and Improvement Project (AgMIP) 

was established, assembling researchers from various disciplines to compare yield responses to 

changes in temperature and CO2 concentration in 23 different models. The objective of the 

AgMIP study was not to make large-scale predictions about the impact of climate change on corn 



5 
 

yields but, instead, it was to compare yield responses at the site level. Sites chosen for this 

intercomparison were Ames (Iowa, USA), Lusignan (France), Rio Verde (Brazil), and Morogoro 

(Tanzania). Bassu et al. (2014) report considerable differences in yield simulation and the ability 

of an ensemble of models to accurately simulate yields at the four sites. 

Empirical approaches typically use a regression framework. The hedonic —or 

Ricardian— approach uses reduced-form linear regression models to measure directly the effect 

of climate on land values. In such studies, land values are regressed against weather or climate 

variables. Studies that have used this approach include Mendelsohn, Nordhaus, and Shaw (1994), 

Schlenker, Hanemann, and Fisher (2006), and Hendricks and Peterson (2014).The underlying 

assumption of the hedonic approach is that land prices are the discounted infinite sum of land 

rents. One advantage of this approach is that it accounts for adaptation. Another advantage of the 

hedonic approach is that it studies the effect of climate on the agricultural sector as a whole 

instead of singling out one crop. The hedonic approach uses long-term average data collected 

over several years instead of using yearly data. Deschênes and Greenstone (2007) modify the 

hedonic approach by associating land values to year-to-year weather variations and by using 

county fixed-effects. Deschênes and Greenstone (2007) predict increases in agricultural profits 

and land values under climate change. 

Our study is empirical and follows the approach outlined by Schlenker and Roberts 

(2009). It uses a panel of yields and weather variables. This approach combines strengths from 

various approaches. Similar to the hedonic approach, it takes advantage of the flexibility of 

regression models. But like the simulation approach, our approach also uses daily weather 

information. A disadvantage of our approach is the difficulty of incorporating farmers’ adaptation 

to climate. 
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In reaching a rational decision about mitigation policies, it is important to provide 

accurate estimates of the effect of increased temperatures on crop yields. It is also important to 

have estimates for different warming scenarios and to test the sensitivity of such estimates to 

certain assumptions. The objective of this study is to conduct a fragility test of Schlenker and 

Roberts (2009). Their results have received much attention, evidenced by the 1733 citations 

recorded by Google Scholar as of June 2019. They also estimate a much higher cost of climate 

change than other methods. Before using their results to guide policy, it is important to carefully 

evaluate the sensitivity of their results to changes of assumptions. This study’s approach is to 

begin with Schlenker and Roberts’ (2009) model and to modify it to see how their conclusions 

hold up or fall apart as certain assumptions are changed. The changes include: (i) using a varying 

time trend as is common in the crop insurance literature; (ii) using data from different periods of 

the growing season with an emphasis on critical corn growth periods; (iii) using long-term data 

for temperature and precipitation variables instead of yearly data; (iv) including dummy variables 

for the Corn Belt region, (v) changing the type of sinusoidal function used to estimate daily 

temperature distributions; (vi) removing data from the 1950s and 1960s; (vii) allowing 

adaptation; and (ix) using different GCMs. This study considers two different Representative 

Concentration Pathways (RCP); these are greenhouse gas concentration scenarios. 

The climate change literature is recent relative to the crop insurance literature; research 

on climate change could borrow models—or features of models—developed in the crop insurance 

literature. The crop insurance literature has documented time trend variables that influence crop 

yields (e.g., Harri et al. 2011). Another major difference with current climate change literature 

and previous yield models is the inclusion of weather or climate variables spanning the entire 

growing season. Yield prediction models typically use weather or climate measurements at crops’ 

specific growth stages. In the case of corn, yield is sensitive to weather conditions during the 
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pollination and grain-filling stages. Weather in this growth stage is expected to be a better 

predictor of yield than conditions over the entire growing season. 

Predictions have been made based on various climate change scenarios. A simplistic 

scenario would be a uniform temperature increase by, say, 2°C or 4°C. However, climatologists 

compute more realistic scenarios based on several climate models. In this study we use 

projections from the CCSM4 model1, the GFDL-ESM2G model2, and the GFDL-ESM2M 

model3. For each of the three climate models, we consider two warming scenarios. 

The three aforementioned climate models are some of the atmospheric General 

Circulation Models (GCMs) created in the last decade. Schlenker and Roberts (2009) use four 

scenarios of the Hadley III climate model. Other GCMs used in previous research include the 

Goddard Institute for Space Studies (GISS) model (e.g., Brown and Rosenberg 1999, Kittel et al. 

1995) and different GFDL models (e.g., Kittel et al. 1995). Kaiser et al. (1993) simulate yields 

based on four scenarios for Southern Minnesota: (i) a base scenario with no climate change, (ii) a 

scenario with 2.5℃ increase in temperature and a 10% increase in precipitation in the year 2060, 

(iii) a scenario with 2.5℃ temperature increase but with a 10% reduction in precipitation in the 

year 2060, and (iv) a scenario with 4.2℃ temperature increase and a 20% decrease in 2060. 

The rest of the paper proceeds as follows. In section 2 we describe how data were 

obtained and transformed (subsection 2.1), explain the base model (subsection 2.2) and the 

different components of our sensitivity analysis. Subsection 2.3 describes the sensitivity analysis 

of assumptions made in the estimation of regression models, while subsection 2.4 explains the 

                                                           
1 CCSM4: the fourth version of the Community Climate System Model 
2 GFDL-ESM2G: Earth System Model (ESM) that uses Generalized Ocean Layer Dynamics; constructed 

by the Geophysical Fluid Dynamics Laboratory 
3 GFDL-ESM2M: Earth System Model (ESM) that uses the Modular Ocean Model version 4.1; constructed 

by the Geophysical Fluid Dynamics Laboratory 
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sensitivity analysis of assumptions made in estimating expected yield changes. In section 3 we 

present and discuss the results. Finally in section 4 we conclude. 

2. Materials and Methods 

2.1. Data 

We analyze the relationship between weather variables and corn yield in the United States. 

Following Schlenker and Roberts (2009), we use counties east of the 100° meridian because 

western states have considerable irrigation. Counties in Florida are also excluded. We use yearly 

corn yield data by county from the National Agricultural Statistics Service (NASS) of the United 

States Department of Agriculture (USDA) for the period 1950-2016. The yield is calculated as 

the total production in the county divided by the total number of harvested acres. The natural 

logarithm of the yield is also computed. 

Daily weather was obtained for 1950-2016 from Schlenker (2016). The data contains 

estimates for daily precipitation, daily maximum temperature, and daily minimum temperature 

for 4km x 4km grid cells of the contiguous United States. Schlenker and Roberts (2009) made 

these estimates based on monthly estimates for the 4km x 4km grid cells provided by the PRISM4 

Climate Group at Oregon State University. Schlenker and Roberts also make available a meta-file 

that links each grid cell to a county. Similar to their work, in each county we only select cells 

containing cropland. We assume that land used for farming has not changed much over the last 

few decades. 

From the minimum and maximum temperatures, we estimate the distribution of 

temperature throughout the day like Schlenker and Roberts (2009), using a sinusoidal curve 

suggested by Baskerville and Emin (1969) and later used by Snyder (1985). This curve allows 

                                                           
4 PRISM: Parameter-elevation Regressions on Independent Slopes Model 
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estimating the time in each day spent within each one-degree interval for each grid cell. These 

exposure times are then averaged for each county and aggregated for the growing season. Other 

temperature-related variables discussed later in the text are derived from these exposure times; 

the details of these derivations are in the appendix. Similarly, precipitation is averaged in each 

county and aggregated for the desired period of the growing season. We obtain soil characteristics 

data, including water holding capacity and soil slope, from Yun and Gramig (2017). The data is 

available for years 1992, 2001, 2006, and 2011. Soil characteristics data for other years are 

computed by linear interpolation. 

In addition to these yearly temperature and precipitation variables, corresponding long-

term averages for the years 1950-20116 are also computed. The calculation of the long-term 

average precipitation for each county is a simple average of the precipitations recorded in all 

years. Average temperature exposure times in each county are first calculated before the 

derivation of subsequent temperature variables. 

Data for climate projections were obtained from the University of Idaho’s Northwest 

Knowledge Network (2018), who computed the data using the second version of Multivariate 

Adaptive Constructed Analogs (MACA), a statistical downscaling method that facilitates the 

removal of biases from global climate models. We use 4-km gridded data for the years 2070-2099 

from three GCMs: CCSM4, GFDL-ESM2G, and GFDL-ESM2M. The estimation of temperature 

times and the aggregation of exposure times and precipitation are performed in a similar fashion 

as for the historical data. To aid in the visualization of the temperature changes from current 

future conditions, Figures I-4 and I-5 are maps of the average total time spend above 32°C under 

the current climate and the RCP4.5 scenario of the CCSM4 circulation model, respectively. 

Variables are first computed at the grid level before being averaged over each county, aggregated 

over each year, and averaged over the 30-year period; additionally, different climate models and 

scenarios are considered, and two different methods of computing temperature variables are used. 
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These computations were performed on the Pistol Pete supercomputer housed in the High 

Performance Computing Center (HPCC) at Oklahoma State University. 

2.2. Base Model 

The concern of this study is to determine how the expected temperature increase under climate 

change will influence yields. Although corn is adaptable and grows in a variety of climates, 

extended periods of higher temperature are harmful to corn growth, and extreme temperatures can 

directly damage plant cells (Lobell and Gourdji 2012; Hendricks and Peterson 2014). 

Corn yields are harmed by temperatures above a threshold. This threshold is commonly 

regarded in the agronomy literature to be 30℃ (e.g., McMaster, Gregory and Wilhelm 1997), but 

Schlenker and Roberts (2009) suggested a threshold of 29℃. The base model for our study 

follows Schlenker and Roberts (2009). The model assumes temperature effects on yields are 

cumulative over the growing season (March-August for corn). In this model, the natural 

logarithm of yield for county i in year t is 

(1)             𝑦𝑖𝑡  = ∫ 𝑔(ℎ)𝜑𝑖𝑡(ℎ)𝑑ℎ
ℎ

ℎ
 + 𝛽1𝑃𝑖𝑡 + 𝛽2𝑃𝑖𝑡

2 + 𝜏𝑖1𝑡 + 𝜏𝑖2𝑡2 + 𝐶𝑖 + 휀𝑖𝑡, 

where 𝑦𝑖𝑡  is the natural logarithm of corn yield for county i in year t, h represents the 

temperature, ℎ and ℎ are the highest and lowest observed temperatures, g(h) is a nonlinear plant 

growth function, 𝜑𝑖𝑡(ℎ) is the time distribution of heat over the growing season, 𝑃𝑖𝑡 is the season 

total precipitation for county i in year t, 𝐶𝑖 is the fixed effect for county i, the terms 𝜏𝑖1𝑡 and 𝜏𝑖2𝑡2 

are state-specific time trends, and 휀𝑖𝑡 ~ N(0, 𝜎2) is a random error term. We do not make the error 

term spatially autocorrelated; changes we make in the sensitivity analysis would substantially 

increase the estimation time if the spatial autocorrelation of the error term was included. The 

specification of the covariance matrix only affects the standard errors, estimates remain unbiased 
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and consistent. Since this paper’s main goal is forecasting, the omission of spatial autocorrelation 

does not affect our work. 

Schlenker and Roberts (2009) use three specifications for the function g(h) that lead to 

similar results in their study. In this study, we only use a piecewise linear function. County fixed 

effects control for heterogeneous characteristics of counties, such as soil quality. The time trends 

capture yield improvements resulting from better production technology such as planting earlier 

and improvements in genetics; perhaps these time trends also capture yield increases resulting 

from increases in CO2, reductions in ozone, and could be net of reductions due to any global 

warming that has already taken place.  

The integral in equation (1) is approximated numerically and equation (1) becomes 

(2)    𝑦𝑖𝑡  = ∑ 𝑔(ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]49
−5 + 𝛽1𝑃𝑖𝑡 + 𝛽2𝑃𝑖𝑡

2 + 𝜏𝑖1𝑡 +  𝜏𝑖2𝑡2 + 𝐶𝑖 +  휀𝑖𝑡 

where 𝛷𝑖𝑡(ℎ) is the cumulative distribution function of heat in county i and year t. 

The piecewise linear function g(h) has a break point at 29℃. The shape of the function is 

similar to that in Figure I-1. This function has two slopes. In light of the impact of higher 

temperatures, we are interested in the magnitude of the second slope, i.e., the slope associated 

with an accumulation of temperatures above 29℃. The appendix details the calculation of 

temperature exposure times, based on daily maximum and minimum temperatures. Because 

temperatures below zero or above 39℃ are rare during the growing season, the exposure times for 

all negative temperatures are grouped into the [-1, 0] interval, while the exposure times for all 

temperatures above 39℃ are grouped into the [39, 40] interval. The appendix also provides an 

expansion of the first term of the right-hand side of equation (2) and the derivation of two key 

temperature variables: a weighted accumulation of temperatures below the 29℃ threshold and a 

weighted accumulation of temperatures above the threshold. These two variables, hereafter 
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referred to as Temperature Sum 1 and Temperature Sum 2, respectively, are directly used in the 

estimation of equation (2).  

The impact of climate change on corn yields is computed as follows. First, each county’s 

expected yield under future conditions is predicted using the parameters estimated in equation (2) 

and the county’s projected average temperature and precipitation variables for the years 2070-

2099. The averages are computed in a similar manner as the long-term averages for historical data 

mentioned above. The county’s expected yield under current conditions is predicted using the 

same parameters and the county’s long-term historical (1950-2016) temperature and precipitation 

variables. In the prediction of yields under both current and future conditions, time trend effects 

are assumed to end in the year 2016. For each county, a percentage change in yield from current 

to future conditions is calculated. An average yield change for the Eastern United States is then 

calculated, weighted by average acres planted in the last 10 years of the study. Instead of using 

2016 temperature and precipitation variables in the prediction of current yields, long-term 

historical averages were used because 2016 weather is only a random occurrence. A fortiori, 

observed yields in 2016 should not be used in the comparison. 

Our regression assumes that the natural logarithm 𝑦 of yield follows a normal 

distribution, i.e., the yield 𝑋 follows a lognormal distribution. The mean of the logarithm of yield 

is computed using the predictors and their corresponding coefficients in equation (2) or its 

modifications. If 𝑋1 is the yield under current conditions and 𝑋2 is the yield under a future 

climate, then  

log(𝑋1) ~𝑁 (𝜇1, 𝜎1
2), 

log(𝑋2) ~𝑁 (𝜇2, 𝜎2
2), 

𝐸[𝑋1] = exp [𝜇1 +
1

2
𝜎1

2] 
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𝐸[𝑋2] = exp [𝜇2 +
1

2
𝜎2

2] 

The expected value of  
𝑋2

𝑋1
 is 𝐸 [

𝑋2

𝑋1
] = exp [𝜇2 − 𝜇1 +

1

2
(𝜎2

2 − 𝜎1
2)]. 

The expected change in yield is 𝐸 [
𝑋2

𝑋1
− 1] = exp [𝜇2 − 𝜇1 +

1

2
(𝜎2

2 − 𝜎1
2)] − 1 

In addition, our model assumes that the errors are the same for the prediction of both 

current and future yields. This implies that the variance of the logarithm of yield is the same 

under the current climate and under future conditions, that is, 𝜎1
2 = 𝜎2

2. Therefore, the expected 

change in yield is 

𝐸 [
𝑋2

𝑋1
− 1] = exp[𝜇2 − 𝜇1] − 1. 

2.3. Sensitivity Analysis of Model Estimation 

We now explain the changes that constitute this robustness study of the base model. Our approach 

is to first replicate Schlenker and Roberts’ (2009) model described previously as the base model 

and then see how results change as the assumptions change. The base model is replicated using 

data from the same period Schlenker and Roberts (2009) used, i.e., from 1950-2005. We then add 

more recent data (2006-2016) and see how results change. This addition of recent data is 

maintained throughout the sensitivity analysis. For the assumption changes described below, we 

build models corresponding to their implied specifications. Assumptions are changed according 

to the following categories: (i) the type of data used (weather vs. climate); (ii) the period of the 

growing season included; (iii) the method of calculating temperature exposure times; (iv) the type 

of time trend utilized; (v) the inclusion or exclusion of Corn Belt dummy variables; and (vi) the 

inclusion or exclusion of data from the 1950s and 1960s. We refer to the following characteristics 

as the assumptions of the base model: the base model uses March-August yearly data, estimates 
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temperature exposure times in a similar manner as Schlenker and Roberts (2009), uses quadratic 

time trends, does not have Corn Belt dummy variables, and does not exclude data from the 1950s 

and 1960s. 

The first change to the base model is the use of long-term average for temperature and 

precipitation variables, rather than yearly data. Our study includes the use of long-term average 

data because: (i) the end goal is to predict average yields over a period of several years, not a 

particular year, and (ii) using long-term averages partially considers potential adaptations. Even 

currently, farmers in the South have adapted to different temperature patterns by planting earlier 

than farmers in the North and by growing different varieties. Schlenker and Roberts (2009) 

implicitly use unexpected annual deviations rather than long-term averages. By including county 

fixed effects in the models that use annual temperature and precipitation data, one is adjusting for 

long-term averages and only obtains the effects of annual fluctuations; furthermore, this practice 

does not consider the variation of temperature and precipitation across space. 

 It is important to restate here that long-term averages are calculated by computing simple 

averages of weather variables. Specifically, the temperature exposures in each degree interval for 

all years of the study period are averaged; yearly precipitations in the study period are averaged 

for each county. In the resulting equation, the yield and time variables of a county change each 

year, but the long-term average temperature and precipitation variables remain the same 

throughout the study period. Equation (2) is then transformed to: 

 (3)    𝑦𝑖𝑡 = ∑ 𝑔(ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]49
−5 + 𝛽1𝑃𝑖𝑡 + 𝛽2𝑃𝑖𝑡

2 + 𝜏𝑖1𝑡 + 𝜏𝑖2𝑡2 + 𝑺𝑖𝑡 + 𝐺𝑖 +

 휀𝑖𝑡, 

where 𝑺𝑖𝑡 represents the county’s soil characteristics, and 𝐺𝑖 is the logarithm of the average 

number of acres planted in the county in the 1950s. 
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Due to collinearity, when long-term average data are used, county fixed effects would not 

be appropriate. In their stead, soil characteristics, such as water holding capacity and soil slope, 

and the average corn acreage in the 1950s are used. The latter variable is a proxy for the level of 

corn farming technology in the county. We expect these characteristics to have a positive effect 

on corn yield. There are therefore two changes in equation (3) compared to equation (2): the 

different type of data used and the replacement of county fixed effects. To ensure that the full 

difference between equations (2) and (3) is not wrongly attributed to the different data used, 

another equation with annual temperature and precipitation but without county fixed effects is 

estimated: 

 (4)    𝑦𝑖𝑡 = ∑ 𝑔(ℎ + 0.5)[𝛷𝑖(ℎ + 1) − 𝛷𝑖(ℎ)]49
−5 + 𝛽1𝑃𝑖 + 𝛽2𝑃𝑖

2 + 𝜏𝑖1𝑡 +  𝜏𝑖2𝑡2 + 𝑺𝑖𝑡 + 𝐺𝑖 +

 휀𝑖𝑡. 

The results of equations (4) and (2) are similar, thus in the rest of the text only equations (2) and 

(3) will be compared. 

The second assumption whose robustness is included in our study is the period of the 

growing season included in the data. Planting and harvesting dates for corn vary across the 

country (NASS, USDA 1997), but most planting takes place in March and April and most corn is 

harvested in October. However, corn yields are particularly sensitive to weather conditions during 

the pollination stage (Nielson 2002). It is at this stage that pollen grains are transferred by wind or 

gravity from the tassel (male flower) to the silks of the corn ear (female flower). Another period 

where corn yield is sensitive to weather conditions, though less so, is the grain-filling stage, hence 

the addition of September and October data in some of the models. We use weather or long-term 

average data from the following subsets of the growing season: March through August, March 

through September, March through October, July through August, July through September, and 

July through October. 
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The third element of our sensitivity analysis is the use of two methods for the estimation 

of temperature exposure. The first method is to use the curve directly, in a similar way it is used 

in the calculation of growing degree days (GDD). The sinusoid has a domain of [0, 2π], a period 

of 2π representing one day, and an amplitude equal to half of the difference between the 

maximum and minimum temperatures. The second method, used by Schlenker and Roberts 

(2009) and Yun and Gramig (2017) in estimating time exposures to 1-degree intervals, transforms 

the sinusoid to have a period of 2π but only a domain of [0, π]; one day is represented by a time 

equal to π. The appendix provides details about the two methods, and Figure I-3 provides a 

graphical comparison of the two methods. 

The difference in the two methods lies in the concavity of the functions used to estimate 

the exposure time. Compared to the first method, the second method estimates a higher exposure 

time near the maximum temperature. Compared to the second method, the first method estimates 

a higher exposure time near the minimum temperature. In a hypothetical day with a maximum 

temperature of 20.3°C and a minimum temperature of 9.6°C, the first method estimates that 2.57 

hours are spent in the 20°C -21°C interval and 2.97 hours are spent in the 9°C -10°C interval, 

while the second method estimates that 3.63 hours are spent in the 20°C -21°C interval and 0.57 

hours are spent in the 9°C -10°C interval. 

The specification of time trends in corn yields constitutes the fourth element of the 

sensitivity analysis. The base model uses state-specific quadratic time trends. The alternative 

specification is the use of two-knot time trends instead of quadratic trends. This assumption is 

borrowed from the crop insurance literature, which has been in existence longer than the climate 

change literature (e.g., Harri et al. 2011; Skees and Reed 1986). With a two-knot time trend, 

equations (2) becomes: 



17 
 

(5)    𝑦𝑖𝑡  = ∑ 𝑔(ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]49
−5 + 𝛽1𝑃𝑖𝑡 + 𝛽2𝑃𝑖𝑡

2 + 𝛾𝑖1 min(𝑡, 𝑘𝑛𝑜𝑡1) +

𝛾𝑖2𝑑1[min(𝑡, 𝑘𝑛𝑜𝑡2) − 𝑘𝑛𝑜𝑡1] + 𝛾𝑖3𝑑2(𝑡 −  𝑘𝑛𝑜𝑡2) + 𝐶𝑖 +  휀𝑖𝑡 . 

In equation (5), 𝑘𝑛𝑜𝑡1 and 𝑘𝑛𝑜𝑡2 are the time trend knots, 𝑑1 is 1 if 𝑡 ≥ 𝑘𝑛𝑜𝑡1 and 0 

otherwise, and 𝑑2 is 1 if 𝑡 ≥ 𝑘𝑛𝑜𝑡2 and 0 otherwise. The knots are the years when the time trend 

takes a new slope. 𝑘𝑛𝑜𝑡1 and 𝑘𝑛𝑜𝑡2 are therefore discrete variables, and they are selected by 

estimating the equations with several different knots and selecting the knot combination that 

yields the highest log likelihood. It is because of this number of times the model is estimated here 

that we opted not to include spatial autocorrelation of the error term. The standard errors from 

these models and the resulting statistical inference are therefore conditional. However, this does 

not pose an issue since prediction is this paper’s main purpose.  

Corn Belt dummy variables are the subject of the fifth part of the sensitivity analysis. 

Corn is grown in a variety of climates within the U.S. and in warmer climates such as Mexico. 

However, the Corn Belt is a key production region for corn in the United States. By including 

Corn Belt dummy variables, we avoid using data from other regions to predict corn yields in the 

Corn Belt. We include both intercept dummies and dummies for the coefficients of temperature 

and precipitation variables. The Corn Belt has had a comparative advantage in growing corn, in 

part due to fertile soils and favorable climate. A different response may be due to soil 

characteristics or to other climatological properties not reflected in temperature and precipitation 

measurements. The Corn Belt states are Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, 

Missouri, Nebraska, Ohio, and Wisconsin. In this study Corn Belt counties are those in Corn Belt 

states where at least 20% of the land area is planted with corn. These counties are highlighted in 

Figure I-2. 
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The sixth part of the sensitivity analysis is the inclusion or exclusion of data from the 1950s 

and 1960s. Some of these years were marked by severe droughts and with technological change 

they may not be representative of corn yields today. 

2.4. Sensitivity Analysis of Prediction 

The next components of this sensitivity are on the assumptions about future conditions and 

predicted corn yields under these conditions. We use three different climate models: the CCSM4 

model, the GFDL-ESM2G model, and the GDDL-ESM2M model. Although it is generally 

recommended to use more climate models, for the scope of the current work, these three were 

selected because they were developed in area. For each of these climate models, we consider two 

warming scenarios, known as Representative Concentration Pathways (RCPs). The milder 

scenario, RCP4.5, assumes that at the end of the twenty-first century radiative forcing5 will be 4.5 

watts per meter squared (W/m2) higher than radiative forcing before industrialization. The more 

severe scenario, RCP8.5, now considered more likely, assumes a radiative forcing higher by 8.5 

W/m2 at the end of the twenty-first century relative to before industrialization. The two scenarios 

are from three different climate models. The sensitivity regarding climate scenarios is common 

among climate change impact studies.  

The last element of the sensitivity analysis is adaptation. Most projections of the impacts 

of climate change do not consider farmer’s ability to adapt to the new climate, due to the 

difficulty of incorporating such an assumption. Adapting to climate change will reduce the 

potential losses caused by higher temperatures. Kaiser et al. (1993) suggest that adaptation is 

feasible by changing planting and harvesting dates, and by making other farm-level decisions. In 

                                                           
5 Radiative forcing is the difference between energy absorbed by the Earth and energy radiated back to 

space. Greenhouse gases contribute to the absorption of energy. 
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this study we examine how shifting the planting date to a month earlier affects the predicted 

impacts of climate change on corn yields. For example, when using a model estimated using July 

and August data, we make predictions based on future weather conditions in June and July. The 

point of this exercise is for avoid the hottest month of the year, August. 

For each of the 192 models resulting from different combinations of model assumptions 

we perform 6 predictions of the impact of climate change. We consider two warming scenarios 

(RCP4.5 and RCP8.5) of three climate models (CCSM4, GDFL-ESM2G, and GFDL-ESM2M). 

An additional 6 predictions are performed assuming adaptation, when July-August data is used. 

This results in 1344 different predictions of the percentage yield change from current to future 

conditions. We summarize the results and conduct a sensitivity analysis using linear regression, 

where the dependent variable is the predicted percentage yield change corresponding to each 

combination of assumptions and climate scenarios, while the explanatory variables are categorical 

variables indicating the assumptions made in the prediction. The reference categories are the 

absence of adaptation, the RCP4.5 scenario, the CCSM4 climate model, and the assumptions 

corresponding to the base model. The first regression equation we estimated is: 

(6) 𝑌𝑖𝑒𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑗 = 𝛼0 + 𝛼1𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎𝑗 + 𝛼2𝑀𝑎𝑟𝑆𝑒𝑝𝑡𝑗 + 𝛼3𝑀𝑎𝑟𝑂𝑐𝑡𝑗 +

𝛼4𝐽𝑢𝑙𝐴𝑢𝑔𝑗 + 𝛼5𝐽𝑢𝑙𝐴𝑢𝑔_𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛼6𝐽𝑢𝑙𝑆𝑒𝑝𝑡𝑗 + 𝛼7𝐽𝑢𝑙𝑂𝑐𝑡𝑗 +

𝛼8𝐶ℎ𝑎𝑛𝑔𝑒𝑇𝑒𝑚𝑝𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑗 + 𝛼9𝑇𝑤𝑜𝐾𝑛𝑜𝑡𝑇𝑟𝑒𝑛𝑑𝑗 + 𝛼10𝐶𝑜𝑟𝑛𝐵𝑒𝑙𝑡𝐷𝑢𝑚𝑚𝑖𝑒𝑠𝑗 +

𝛼11𝑅𝑒𝑚𝑜𝑣𝑒1950𝑠𝐴𝑛𝑑1960𝑠𝑗 + 𝛼12𝐸𝑆𝑀2𝐺𝑗 + 𝛼13𝐸𝑆𝑀2𝑀𝑗 + 𝛼14𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑗 +

𝛼15𝑅𝐶𝑃85𝑗 + 𝑒𝑗, 

where 𝑌𝑖𝑒𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒𝑗 is the jth prediction of the percentage change in yield from current to future 

conditions; 𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝐷𝑎𝑡𝑎𝑗 is 1 if the jth prediction is based on a model that uses long-term 

average data and 0 if it is based on a model that uses yearly data; 𝑀𝑎𝑟𝑆𝑒𝑝𝑡𝑗, 𝑀𝑎𝑟𝑂𝑐𝑡𝑗, 𝐽𝑢𝑙𝐴𝑢𝑔𝑗, 

𝐽𝑢𝑙𝑆𝑒𝑝𝑡𝑗, and 𝐽𝑢𝑙𝑂𝑐𝑡𝑗 are dummy variables that take the value of 1 if the jth prediction is based 
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on a model that uses March-September data, March-October data, July-August data, July-

September data, and July-October data, respectively; 𝐽𝑢𝑙𝐴𝑢𝑔_𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑗 is 1 if the jth 

prediction uses July-August data and assumes adaptation, (i.e., the model is estimated using July-

August data, but the prediction is performed using a June-July under future conditions); 

𝐶ℎ𝑎𝑛𝑔𝑒𝑇𝑒𝑚𝑝𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑗 is 1 if the jth prediction is based on a model that uses a 

different sinusoidal function than the base model to estimate temperature exposure times; 

𝑇𝑤𝑜𝐾𝑛𝑜𝑡𝑇𝑟𝑒𝑛𝑑𝑗 is 1 if the jth prediction is based on a model that uses two-knot time trends and 

0 if it is based on a model that uses quadratic time trends; 𝐶𝑜𝑟𝑛𝐵𝑒𝑙𝑡𝐷𝑢𝑚𝑚𝑖𝑒𝑠𝑗 is 1 if the jth 

prediction is based on a model that includes Corn Belt dummy variables and 0 otherwise; 

𝑅𝑒𝑚𝑜𝑣𝑒1950𝑠𝐴𝑛𝑑1960𝑠𝑗 is 1 if the jth prediction is based on a model that removes data from 

the 1950s and 1960s and 0 otherwise; 𝐸𝑆𝑀2𝐺𝑗 and 𝐸𝑆𝑀2𝑀𝑗 are dummy variables that take the 

value of 1 if the jth prediction uses the GFDL-ESM2G and GFDL-ESM2M climate models, 

respectively; 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑗 is 1 if the jth prediction assumes adaptation and 0 otherwise; and 

𝑅𝐶𝑃85𝑗 is 1 if the jth prediction assumes the RCP8.5 warming scenario and 0 if it assumes the 

RCP4.5 scenario. 

3. Results and Discussion 

3.1. Regression Results. 

We first replicate the Schlenker and Roberts (2009) model, using 1950-2005 data. Table I-A1 in 

the appendix partially presents the model’s regression results and Figure I-1 is a graph of the g(h) 

function corresponding to this replication. The replication is successful. Schlenker and Roberts do 

not explicitly reveal their estimated coefficients, but the shape of the relationship between 

temperature and the logarithm of corn yield is consistent with their findings. The success of the 

replication is discussed again later, with respect to predictions of the impact of climate on yields. 

The downward slope of -0.00471 representing the decrease in log yield due to temperatures above 
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the 29°C threshold is much steeper than the upward slope of 0.000224 depicting the effect of a 

temperature increase from suboptimal levels. In this model and all models, we scale the 

precipitation variable by dividing it by 100 to simplify the interpretability of results. In this and 

subsequent tables, results for time trends will only be presented for Illinois and Iowa, the top two 

crop-producing states. County fixed effects results will only be presented for Adams County in 

Iowa. The reference county is Wood County in Iowa. 

The results of the replication of the base model that includes recent data are partially 

presented in Table I-A2. The results are largely the same as those obtained without including 

recent data. The coefficients of all parameters are of the same signs and of comparable 

magnitudes. In particular, the upward slope of the piecewise function representing the 

relationship between temperature and log yield is 0.00019, while the downward slope is -0.0046. 

In both models the amount of precipitation throughout the growing season positively influences 

corn yields. This effect is demonstrated by a quadratic where the coefficient of the linear term in 

precipitation is positive and the coefficient of the quadratic term is negative, signifying that the 

marginal effect of precipitation on corn yield diminishes as precipitation increases. The 

magnitude of the coefficient of the quadratic term is smaller than the coefficient of the linear term 

by a factor of approximately 7, so the diminution of the positive effect of precipitation is slow. 

Quadratic state-specific time trends are similar in shape to the effect of precipitation; the 

coefficients for time are positive while the coefficients for the square of time are negative. In the 

rest of the paper, this replication that is estimated 1950-2016 data is referred to as the base model. 

We now present models that contain only one change of assumption relative to the base 

model. Regression results for the model that uses the exposure calculation method with a domain 

of [0, 2π] are partially presented in Table I-A3. While the upward temperature slope does not 

change, the downward temperature slope of -0.00632 is 34 percent steeper than in the base model. 

However, the intercept is greater in the model where temperature exposure calculation is 
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changed. Table I-A4 presents regression results for the model that excludes data from the 1950s 

but keeps all other assumptions of the base model. The downward slope representing the harmful 

effect of higher temperatures on corn yields is similar to that estimated in the base model. The 

upward slope representing the positive effect of temperature increases below 29°C is shallower 

than that estimated in the base model by 21 percent; however, the intercept of the new model is 

10 percent greater than in the base model. The regression results for the model that includes Corn 

Belt dummy variables but keeps all other assumptions of the base model are presented in Table I-

A5. The relationship between temperature and log yield for non-Corn Belt counties, represented 

by an upward slope of 0.00019 and a downward slope of -0.0045, is comparable to that estimated 

in the base model. However, the slopes are steeper in Corn Belt counties by 21 percent and 13 

percent, respectively. These findings suggest that the yields are more sensitive to temperature 

changes in the Corn Belt than in other regions. 

Table I-A6 shows regression results from the model that uses a two-knot time trend but 

keeps all other assumptions of the base model. The two slopes representing the effect of 

temperature are similar to those estimated in the base model. Both coefficients representing the 

effect of precipitation are shallower in this new model compared to the base model. The years 

1971 and 1990 are identified as the time trend knots. In both Iowa and Illinois, corn yields grew 

faster in the period from 1950 to 1971 compared to later years. Although the time trend slopes are 

state-specific, the knots are forced to be the same to allow timely estimation of the model. In 

Illinois the yearly increases in the 1971-1990 period were on average similar to the yearly yield 

increases in the 1990-2016 period; but in Iowa the average yearly yield increased faster in the 

1990-2016 period than in the 1971-1990 period. Table I-A7 displays the knots for all the models 

that use two-knot time trends. Partial regression results for a model that uses July-August data but 

keeps the other assumptions of the base model are partially displayed in Table I-A8.  
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The temperature coefficients in models that use different subsets of the growing season 

should not be compared directly because the corresponding temperature variables are not of 

similar dimensions. For example, the temperature variables in a model that uses March-August 

data are larger than temperature variables in a model that uses July-August data, because there are 

184 days in March-August and only 62 days in July-August. For a similar temperature effect, the 

coefficients in the model that uses July-August data but maintains the base model’s assumptions 

should be smaller in magnitude. Since the temperature coefficients in the new model are of 

similar magnitude as in the base model, the estimated effects of temperature are larger in the new 

model. Similarly, the estimated effects of precipitation are larger. These results suggest that corn 

yields are more sensitive to temperature in the months of July and August compared to the rest of 

the growing season. A caveat here is that the temperature variables are not directly proportional to 

the number of days included, because of the nonlinear computation of these variables and the fact 

that months do not have identical distributions of temperature. Details of the computation of these 

variables are provided in the appendix. 

To see how the results change when assumptions are changed simultaneously, we present 

in Table I-A9 the results of a model that uses yearly data, but changes the other five assumptions 

of the base model. The model in Table I-A9 uses a different method of calculating temperature 

exposure times, a different specification for time trends, includes Corn Belt dummy variables, 

removes data from the 1950s and 1960s, and uses only data from the months of July and August. 

For Corn Belt counties, the upward temperature slope is similar to that estimated in the base 

model, but for other counties this slope is insignificant. The downward temperature slope is 

steeper for Corn Belt counties than for non-Corn Belt counties. In all counties, downward 

temperature slope is steeper than the slope estimated in the base model. The results also indicate 

an additional sensitivity of corn yields to precipitation in the Corn Belt relative to other parts of 

the Eastern United States. However, the intercept in the new model is larger than in the base 
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model, and the number of the days in the considered period of the year, so the relative magnitudes 

are not directly interpretable. 

Table I-A10 partially shows the regression results of the model that uses long-term 

average data but maintains all other assumptions of the base model. The change in assumption 

alters the regression results considerably. Compared to the coefficient in the base model, the 

second temperature slope is 70 percent shallower. Interestingly, the first temperature slope is 

negative, albeit with a magnitude equal to only half of the magnitude of the first temperature 

slope in the base model. The first-degree coefficients of the quadratic time trends for both Illinois 

and Iowa are around 66 percent greater than in the base model, while the second-degree 

coefficients are twice greater than in the base model. County fixed effects are not included in 

models that use long-term average data. Water holding capacity, soil type, and average corn 

acreage in the 1950s are the county-specific characteristics that remain relatively constant through 

the study period. The coefficients for water holding capacity and soil type are positive, as 

expected. Surprisingly, the coefficient on the logarithm of average corn acreage in the 1950s is 

negative, which may reflect technological improvements being greater in marginal corn 

producing areas. 

3.2. Impact of Climate Change 

We compute the average percentage corn yield change between current yield levels and predicted 

yields in the last thirty years of the twenty-first century. We first calculate for each county the 

expected percentage change from predicted corn yield under current climate to predicted corn 

yield under future climate. An average is then computed for the Eastern United States, weighted 

by the average acres of corn planted in the years 2007-2016 in the counties. 

Our replication of Schlenker and Roberts (2009) using 1950-2005 data in the regression 

estimation predicts that a 2°C uniform temperature increase would decrease yields by 15.89 
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percent on average, while a 4°C uniform temperature increase would decrease yields by 37.42 

percent. These projected changes are comparable to those estimated by Schlenker and Roberts 

under these two scenarios: a 14.87 percent yield reduction for a 2°C temperature increase and a 

35.30 percent reduction for a 4°C temperature increase. The impact does not change when we 

predict using the replication of Schlenker and Roberts (2009) that includes recent data in the 

regression estimation. This replication predicts a 16.28 percent average yield decrease under a 

2°C uniform temperature increase and a 37.84 percent average yield decrease under a 4°C 

uniform temperature increase.  

The results presented hereafter are based on more realistic climate scenarios rather than 

uniform temperature increases. Table I-1 presents the impacts of climate change on corn yield 

predicted by the base model (first row) and by models where only one assumption of the base 

model is changed. For example, under the RCP4.5 scenario of the CCSM4 climate model, the 

base model predicts a 44.6 percent yield decrease relative to current yields. 

Table I-1. Predictions of the Impact of Climate Change on Corn Yields Using the Base 

Model and Its Modifications. 

 Scenario 

Model CCSM4 

RCP4.5 

GFDL-

ESM2G 

RCP4.5 

GFDL-

ESM2M 

RCP4.5 

CCSM4 

RCP8.5 

GFDL-

ESM2G 

RCP8.5 

GFDL-

ESM2M 

RCP8.5 

Base model -44.6% -27.8% -23.3% -63.8% -46.0% -44.9% 

Use of two-knot time trends -44.9% -28.2% -23.6% -64.1% -46.4% -45.3% 

Use of July-August data -40.8% -24.7% -17.7% -56.0% -41.0% -39.5% 

Use of long-term average data -22.2% -14.9% -13.3% -33.7% -25.4% -24.0% 

Addition of Corn Belt dummy 

variables 

-47.8% -31.6% -27.7% -67.0% -50.2% -49.3% 

Change the temperature exposure 

time estimation method 

-44.9% -28.0% -23.6% -64.6% -46.4% -45.4% 

Exclusion of data from the 1950s 

and 1960s 

-45.5% -28.6% -24.1% -64.6% -47.1% -45.8% 

Assume adaptation (with July-

August data) 

-32.5% -17.0% -12.8% -50.2% -32.0% -29.8% 
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This predicted yield decrease only changes slightly if one of the following model 

assumption changes is made: the replacement of quadratic time trends by two-knot time trends, 

the addition of Corn Belt dummy variables, the estimation of temperature exposure times using a 

sinusoid with a domain [0, 2π] in lieu of the sinusoid with a domain of [0, π], and the exclusion of 

data from the 1950s and 1960s. The use of July-August data instead of March-August data leads 

to a smaller yield decrease of 40.8% under the RCP4.5 scenario of the CCSM4 climate model. 

When July-August data are used and adaptation is assumed, a 32.5% yield decrease is predicted. 

The model that uses long-term average temperature and precipitation data instead of yearly data 

predicts a 22.2 percent yield decrease under the same scenario. This assumption change leads to 

the largest change in the prediction of the effect of climate change on corn yields. 

The details of the predictions from the models corresponding to all combinations of 

assumptions are presented in Tables I-A17 through I-A24 in the appendix. The linear regression 

presented in equation (6) is used to summarize these predictions and conduct a sensitivity analysis 

to determine how changes in assumptions affect the predictions. Coefficients obtained by 

estimating equation (6) indicate that the prediction of the impact of climate change on corn yields 

is most sensitive to whether yearly temperature and precipitation data or long-term data are used. 

On average the yield decrease is 18.0 percentage points smaller when long-term average data are 

used than when yearly data are used. The source of this considerable difference is in the 

regression coefficients. The second temperature slope is less steep in models that use long-term 

average data compared to models that use yearly data; thus predicted yields are less sensitive to 

an increased prevalence of high temperatures. Additionally, a look at the residuals from the 

regressions show that residuals are larger when long-term average data are used; for example, the 

base model has a r-square of 0.854, while the r-square for the model that uses long-term average 

data but keeps all other assumptions of the base model is 0.641. 
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We modify equation (6) to include interactions between the indicator variables, where the 

most pronounced are interactions involving 𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎. For simplicity these are 

the only interactions we keep in the final results. For a better visualization, however, the results 

are presented as two separate regressions: one for predictions based on models that use yearly 

data, and another for predictions based on models that use long-term average data. 

Table I-2 presents the sensitivity analysis of the predicted yield change based on models 

that use yearly data. The table shows that the assumption to which the yield decrease prediction is 

most sensitive is the warming scenario.  

Table I-2. Predicted Percentage Yield change as a Function of Model and Prediction 

Assumptions: Models That Use Yearly Data 

 Estimate Standard Error 

Intercept -43.28* 0.28 

Period of season   

March-September -0.93* 0.28 

March-October -2.36* 0.28 

July-August 6.93* 0.28 

July-August (with Adaptation) 15.15* 0.28 

July-September 7.40* 0.28 

July-October 7.70* 0.28 

Change Temperature exposure method -0.43* 0.15 

Two-knot trend -0.29 0.15 

Corn Belt Dummies -4.01* 0.15 

Remove 1950s and 1960s data -1.29* 0.15 

Climate model   

GFDL-ESM2G 15.42* 0.18 

GFDL-ESM2M 18.44* 0.18 

Warming scenario   

RCP8.5 -19.38* 0.15 

*: significant at the .01 level, N=672 𝑅2= 0.987  

On average the predicted yield decrease is larger by 19.3 percentage points when the 

RCP8.5 scenario is assumed compared to when the RCP4.5 scenario is assumed. The direction of 

this effect is expected due to the higher prevalence of hot days under RCP8.5. The next most 

important assumption in the prediction of yield change is the climate model. Relative the CCSM4 

climate model, using the GFDL-ESM2G and GFDL-ESM2M climate models leads to yield 
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decreases that are smaller by 15.42 and 18.44 percentage points, respectively. This is caused by 

lower temperature levels under the two GFDL climate models. 

The period of the growing season used is also important in the prediction of corn yield 

changes. Including the latter months of the corn growing season leads to more slightly pessimistic 

predictions. Relative to predictions based on models that use March-August data, yield decreases 

predicted based on models that use March-September and March-October data are larger by 0.93 

and 2.36 percentage points, respectively. In contrast, restricting data only to the periods 

corresponding to the most sensitive phases of corn growth generally leads to more optimistic 

yield predictions. Relative to predictions based on models that use March-August data, yield 

decreases predicted based on models that use July-August data, July-September data, and July-

October data are smaller by 6.93, 7.40, and 7.70 percentage points, respectively. When July-

August data are used and adaptation is assumed, predicted yield decreases are smaller by 15.15 

percentage points compared to when March-August data are used. 

Yield decreases predicted based on models that include Corn Belt dummy variables are 

larger by 4.01 percentage points compared to predictions based on models that do not include the 

dummies. The use of a different sinusoid in the estimation of temperature exposure times, the 

replacement of quadratic time trends with two-knot trends, and the removal of data from the 

1950s and 1960s only have small effects on the prediction of the impact of climate change on 

corn yields, on average. 

Table I-3 presents the sensitivity analysis of the predicted yield change based on models 

that use long-term average data. The assumption change with the greatest effect on the predicted 

impact of climate change on corn yield is the inclusion of Corn Belt dummy variables. Predicted 

yield decreases based on models that include Corn Belt dummy variables are greater by 16.82 

percentage points compared to predictions based on models that do not include such dummy 
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variables. This is in contrast to the modest change in prediction resulting from the inclusion of 

Corn Belt dummy variables in models that use yearly data.  

Table I-3. Predicted Percentage Yield change as a Function of Model and Prediction 

Assumptions: Models that Use Long-Term Data 

 Estimate Standard Error 

Intercept -21.49* 0.53 

Period of season   

March-September -1.67* 0.53 

March-October -3.26* 0.53 

July-August 4.60* 0.53 

July-August (with Adaptation) 9.64* 0.53 

July-September 5.20* 0.53 

July-October 4.82* 0.53 

Change Temperature exposure method -0.19 0.28 

Two-knot trend 2.05* 0.28 

Corn Belt Dummies -16.82* 0.28 

Remove 1950s and 1960s data 6.24* 0.28 

Climate model   

GFDL-ESM2G 8.68* 0.34 

GFDL-ESM2M 10.19* 0.34 

Warming scenario   

RCP8.5 -11.20* 0.28 

*: significant at the .01 level, N=672 𝑅2= 0.946 

 

The other assumption changes whose effects are more perceptible in models that use 

climate change are the exclusion of data from the 1950s and 1960s and the use of two-knot time 

trends. Predicted yield decreases are smaller by 6.24 percentage points when data from the 1950s 

and 1960s are not included in the model estimation compared to when these data are included. 

Predicted yield decreases are larger by 2.05 percentage points when two-knot time trends are used 

compared to when quadratic time trends are used. Similarly to models that use yearly data, yield 

decrease predictions do not change significantly when a different method of estimating 

temperature exposure times is used. 

 

The rest of the effects of assumption changes on yield change predictions among models 

that use long-term data are of the same directions and of comparable magnitudes as those 
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observed among models that use yearly data. Relative to predictions based on models that use 

March-August data, predicted yield decreases based on models that use March-September data 

and March-October data are larger by 1.67 and 3.26 percentage points, respectively, while yield 

decreases based on July-August data, July-September, and July-October data are smaller by 4.60, 

5.20, and 4.82 percentage points, respectively. When July-August data are used and adaptation is 

assumed, predicted yield decreases are smaller by 9.64 percentage points compared to when 

March-August data is used and adaptation is not considered. Predicted yield decreases are larger 

by 11.20 percentage points when the RCP8.5 scenario is assumed compared to when the RCP4.5 

scenario is assumed. In addition, yield decreases under the GFDL-ESM2G and GFDL-ESM2M 

climate models are smaller by 8.68 and 10.19 percentage points, respectively, compared to yield 

decreases under the CCSM4 climate model. 

 In some models, all six assumptions of the base model are changed. One such model 

uses long-term average July-August data, estimates temperature exposure times using a sinusoid 

of domain [0,2π], uses state-specific two-knot time trends, includes Corn Belt dummy variables, 

and does not exclude data from the 1950s and the 1960s. Under the RCP4.5 scenario and 

assuming adaptation, the average predicted yield change using the three circulation models is a 

14.1 percent decrease. Under the RCP8.5 scenario, the average prediction is a 26.4 yield decrease. 

All predicted impacts of climate change presented thus far are weighted averages of all 

counties in the study. The impacts, however, are not uniform throughout the counties. Figures I-6 

through I-14 present maps of predictions by different models under different climate scenarios. 

The maps were created with the same color coding, with red representing the largest yield 

reductions and green representing the largest yield increases. A recurring observation is that 

effects of climate change are predicted to be less severe in northern counties compared to 

southern counties. This heterogeneity in predicted yield changes is a consequence of the manner 

in which temperatures are expected to change. Northern counties are cooler than southern 

counties under the current climate. This disparity is expected to increase under future climates. 
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Figure I-4 is a map the average time spent above 32°C in each county in the months of July and 

August under the current climate. This time is not the average count of the days in which a 

temperature above 32°C was experienced; it is rather an average the accumulation of shorter 

times where the temperature is above 32°C. In figure I-5 the same measure is mapped for the 

RCP4.5 scenario of the CCSM4 model. The higher occurrence of warm temperatures in southern 

counties lead to larger yield decreases. Understanding the heterogeneity of the impact of climate 

on corn yields is useful for policy. For example, policy makers can create incentives for 

increasing farmland in the North and reducing it in the South. Results show that the effect of 

adaptation is also heterogeneous. As a consequence, the decision to change farming practices is 

expected to vary by region. For example, contrasting Figures I-9 and I-10 shows that counties in 

the south would gain more from adaptation than northern counties. 

4. Summary and Conclusions 

The results of this study show that the expected temperature increases will lead to yield decreases, 

on average, in the Eastern United States. Positive effects from expected precipitation increases 

are too small to offset the deleterious effects of temperature increases. We conduct a sensitivity 

analysis of the predicted impact of climate change on corn yields in United States. This 

robustness study consists in determining how predictions of the impact of climate change are 

affected by changes in assumptions of the estimation of the relationship between corn yields and 

weather variables and by changes in assumption. The base model is a replication of the Schlenker 

and Roberts (2009) model. The six changes of model assumptions that we consider are the use of 

long-term average temperature and precipitation data instead of yearly data, the use of different 

periods of the growing season, the use of a different method of estimating temperature exposure 

times, the modeling of time trends as two-knot functions instead of quadratic functions, the 

inclusion of Corn Belt dummy variables, and the exclusion of data from the 1950s and 1960s. 
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The assumption change to which yield change predictions are most sensitive is the use of 

long-term average data instead of yearly data. On average, predicted yield decreases based on 

models estimated using long-term average data are greater by 18 percentage points compared to 

predictions based on models that use yearly data. This means that roughly half of the predicted 

yield losses go away when long-term average data are used. The addition of Corn Belt dummy 

variables leads to larger predicted yield decreases, while the restriction of data only to months in 

the growing season corresponding to the most sensitive phases of corn growth generally leads to 

smaller yield decreases. The Schlenker and Roberts (2009) findings are not fragile from using 

two-knot time trends instead of quadratic trends, the use of a different method of estimating 

temperature exposure times, and the exclusion of data from the 1950s and 1960s. However, 

among models that use long-term average data, the removal of 1950s and 1950s data leads to 

smaller yield decreases. 

 The yield change predictions are sensitive to assumptions made about future conditions: 

the General Circulation Model (GCM) and the warming scenario. Predictions made using the 

GFDL-ESM2G and GFDL-ESM2M circulation models are more optimistic than those that use 

the CCSM4 circulation model. As expected, predictions that use the more severe warming 

scenario (RCP8.5) are more pessimistic compared to predictions that use the milder scenario 

(RCP4.5). Changes in weather patterns will likely compel farmers to alter their farming practices. 

One possible form of adaptation is to change planting dates so as to allow plants to grow under 

optimal conditions (Bassu et al. 2014). The present study implements this strategy by shifting 

planting data, and hence all the stages of the growing season, to one month earlier. The critical 

period for corn growth that currently occurs around July-August would then take place around 

June-July under future conditions. Predicted yield decreases are smaller when adaptation is 

assumed compared to when adaptation is not assumed. Farmers could also adapt by irrigating to 

compensate for evapotranspiration and by altering how they use fertilizer. It is worth noting that 

there is spatial heterogeneity in the predictions of the impact of climate change on corn yields. 
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Yield losses are expected to be larger in southern counties than in northern counties. This 

suggests increasing corn acreage in the North and reducing it in the South as a collective form of 

adaptation to expected future conditions. 

Using a model that changes all model assumptions, including the use of July-August 

long-term average data, and assuming adaptation, the average prediction under the three 

circulation models is a 14.1 percent corn yield decrease under the RCP4.5 scenario and a 26.4 

percent yield decrease under the RCP8.5. The yield loss predictions from all models in this study 

are larger than they would be if the effects of time trends were assumed to continue. These 

conservative predictions ignore the possibility of innovations such as heat-resistant corn varieties 

or varieties with shorter growing cycles. For perspective, average corn yields in Iowa increased 

by roughly 50% between the early 1980s and the early 2010s. When time trends are allowed to 

continue, large yield increases are predicted. In particular, models that use long-term average data 

have steeper time trends, and allowing the trends to continue for a few decades would not be 

appropriate. Policy makers need estimates such as those presented in the current study. Given the 

importance of U.S.-produced corn as a source of calories in the world and yield decreases 

predicted in this study, especially under the RCP8.5 scenario, policy makers need to regulate the 

emission of greenhouse gases. Furthermore, research aiming at the invention of new varieties of 

corn needs to be undertaken.  

 The predicted yield changes are spatially heterogeneous. But the predicted average 

change is computed as a weighted average, where the weights are the average acres of corn 

planted in the 2007-2016 period. In addition, the regression models assume temperature and 

precipitation responses are similar in all regions. The results are therefore disproportionately 

influenced by counties with marginal corn acreage. The inclusion of Corn Belt dummy variables 

partially resolves this concern. Other possible approaches for estimating different responses for 

different regions are the geographically weighted regression (Brunsdon et al. 2004) and Bayesian 

Kriging (Niyibizi et al. 2018).  
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The long-term averages directly measure climate differences whereas Schlenker and Roberts 

measure unexpected deviations in weather. So the long-term averages capture the adaption that 

already exists with respect to climate differences. While the results largely confirm Schlenker and 

Roberts (2009), they do show that the yield losses are not likely to be as catastrophic as predicted 

by Schlenker and Roberts. 
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CHAPTER II 
 

 

USING BAYESIAN KRIGING FOR SPATIAL SMOOTHING OF TRENDS IN THE MEANS 

AND VARIANCES OF CROP YIELD DENSITIES 

Abstract 

Crop yield forecasts are useful for several purposes such as rating crop insurance and government 

budget predictions, and allocation of barges and railcars. We use Bayesian Kriging for spatial 

smoothing of yield density parameters, including time trends. There is a paucity of useful 

historical yield data for counties, but properly using other counties’ information in the estimation 

of a county’s yield density alleviates the problem of not having enough observations. Yield 

density parameters are assumed to be spatially correlated, through a Gaussian spatial process. We 

spatially smooth multiple parameters, including time trends. The Bayesian Kriging model can 

handle unbalanced panel data. Using corn yield data from Illinois and Iowa, we find that the yield 

mean has increased faster in northern counties, but that the yield variance has increased faster in 

southern counties. The forecast accuracy of our model is similar to that of Bayesian Model 

Averaging (BMA) that assumes a normal distribution, but our approach is the only one that 

provides the spatial smoothing desired by the Risk Management Agency. 

Key words: Spatial econometrics, Bayesian Kriging, Bayesian hierarchical modelling, Bayesian 

spatial smoothing, yield density, corn yield, density forecasting. 

1. Introduction  
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Crop yield forecasts are useful for several purposes. Farmers can use yield forecasts in making 

decisions such as entering commodity contracts, buying crop insurance, or determining land 

values. The Risk Management Agency (RMA) of the USDA calculates area yield crop insurance 

premiums based on forecasted county yields. With the emergence of the need for risk 

management, density forecasts have become attractive rather than point forecasts. There is 

uncertainty in forecasting, and relative to point forecasts, density forecasts provide more 

information. In crop insurance, accurate rating of an insurance program is crucial. For the RMA, 

inaccurate rates could lead to substantial losses that would result from insurance indemnities 

considerably exceeding collected premiums. As Harri et al. (2011) remark, if an insurance policy 

is not actuarially fair, producers with high knowledge of yield risk may arbitrage the program or 

select against it. 

Yield density forecasts are generally made before the beginning of a crop’s growing 

season and therefore cannot use yield-determining information observed during the season such 

as weather or production inputs. In addition, the yield forecast for a county is traditionally based 

largely on a density estimated from that county’s past yield observations. However, the time 

series of county yields are usually short. In addition, there is a concern that structural changes in 

crop genetics, weather patterns, and farming practices may imply that current yield observations 

are from very different distributions than observations from several decades ago, making yield 

time series even shorter.  

To surmount this problem, spatial data can be useful in estimating crop yield densities. 

Due to similarities in climate, soil type, and shared information, the assumption that there are 

similarities in densities of neighboring counties is plausible. In spatial econometrics, the 

traditional spatial error model of Cliff and Ord (1972), popularized by Anselin (1988) treats 

spatial correlation as being in the error term and restricts all locations to have the same model 

parameters.  
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However, there have been efforts to incorporate spatial data at the parameter level. For 

example, Harri et al. (2011) estimate parameters of yield densities at the county level but the 

parameters have restrictions determined at the district level. Ker, Tolhurst, and Liu (2016) 

estimate the yield density of a county by first estimating a posterior density using the county’s 

own data and then finding a weighted average of posterior densities from all counties, based on 

the Bayesian Information Criterion (BIC). 

 Ker, Tolhurst, and Liu (2016) assume yield density similarities, but they make no 

assumptions about the source of the similarities. The time trend used in these models is likely the 

most important parameter in making density forecasts. Yet, their time trend is smoothed in the 

same way as the other distribution parameters. Park et al. (2016, 2018) and Harri et al. (2011) 

used two-step methods where the trend was estimated separately from the other parameters. 

The objective of this study is to develop a general Bayesian Kriging approach for spatial 

smoothing of yield density parameters. The similarity in yields is assumed to come from the 

correlation between parameters that define yield densities. This technique allows the smoothing 

of parameters and gives the ability to estimate yield densities even for counties with missing 

observations. Previous applications of Bayesian Kriging in the agricultural economics literature 

(e.g., Ozaki et al. 2008) perform spatial smoothing of the intercept, while Park et al. (2016, 2018) 

use it for spatial smoothing of two distributional parameters. This paper contribute to the spatial 

econometrics literature by extending Bayesian Kriging to the general heteroscedastic error 

regression problem. This work is the second paper, after Reich (2012), to extend Bayesian 

Kriging to the slope parameters in the linear regression problem rather than just the intercept as in 

Ozaki et al. (2008). While the paper assume that yields are normally distributed, its general 

approach can be extended to nonnormal distributions. 
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Forecasts of expected yield densities are based on past yield observations. But there are 

counties that lack yield records for certain years. Ker, Tolhurst, and Liu’s (2016) approach can 

only accommodate balanced data. Using interpolation techniques, the Bayesian Kriging approach 

makes it possible to include counties without a full yield history during estimation and for making 

predictions. 

2. Methods 

Suppose there are N counties for which yield densities have to be estimated in year t 

(t=1,…,T). In this study, each county’s yield is assumed to have a normal density. It is common 

practice in yield forecasts to assume time trends in the yield densities. Examples of what time 

trends capture include advances in production technology and improvements in seed genetics. 

Unlike previous research, we assume a linear time trend rather than a spline because a short time 

period (1984-2015) is included in the study; there is no need to assume a change in the trend 

during that period. We assume that there are time trends in both the mean and variance. The yield 

𝑌𝑖𝑡 in year t for county i is: 

(1)  𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑡 + 휀𝑖𝑡 , 𝑖 = 1,2, … ,201, 𝑡 =  1,2, … ,31  

where 𝛼𝑖 and 𝛽𝑖 are the parameters that determine the mean of the yield, and 휀𝑖𝑡 is a random error 

term with mean zero and variance 𝜎𝑖𝑡
2 . As noted above, we assume heteroskedasticity through a 

time trend in the variance equation. The yield variance 𝜎𝑖𝑡
2  is: 

(2) 𝜎𝑖𝑡
2 = 𝛾𝑖 + 𝛿𝑖𝑡 + 𝜈𝑖𝑡 ,  

where 𝛾𝑖 is the intercept, 𝛿𝑖 is the slope or time trend, and 𝜈𝑖𝑡is a random error term with mean 

zero. This assumption is different from assumptions made in previous research such as Harri et al. 

(2011), where the variance is assumed to be proportional to a power of predicted yields. 
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 Note that there are four parameters that define the mean and variance equations 

for county i’s yield densities. For convenience of notation we will sometimes collectively refer to 

the parameters as 𝜽𝒊, that is, 𝜽𝒊 = (𝛼𝑖 , 𝛽𝑖, 𝛾𝑖 , 𝛿𝑖). Equation (1) is then written as: 

(3) 𝑌𝑖𝑡~𝑝1(𝑌𝑖𝑡|𝜽𝒊). 

Equation (3) can further be written in matrix form as: 

(4) 𝒀~𝑝1(𝒀|𝜽), 

where 𝒀 is the N×T matrix of yields from all counties and all years and 𝜽 is the N×4 matrix of 

yield density parameters for all counties. In the remainder of the paper, a mention of parameters 

without more details refers to 𝜽. 

The Bayesian approach to inference assumes that model parameters are random variables. 

This is in contrast to the frequentist approach that assumes that the observed data are random but 

that the model parameters are fixed. The parameters 𝜽 follow a density 

(5) 𝜽~𝑝2(𝜽|𝝀).  

The prior distributions of parameters represent prior beliefs about the parameters before 

observing the data. The parameters of the prior distributions are called hyperparameters (𝝀 in this 

case). The hyperparameters comprise the parameters that determine the parameters 𝜽, including 

the Kriging parameters (sill and range) that define the spatial similarities among parameters of 

counties’ yield densities based on distance. The prior distribution for the Kriging approach is a 

Gaussian spatial process. Bayesian inference is based on the posterior distribution of the 

parameters. The posterior is proportional to the product of the likelihood 𝑝1(𝒀|𝜽) and the 

prior 𝑝2(𝜽|𝝀). 
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 Our Kriging approach uses Bayesian hierarchical modelling, where hyperparameters have 

prior distributions of their own, called hyperpriors: 

(6) 𝝀~𝑝3(𝝀).  

In the Bayesian hierarchical modelling for this paper, the determination of yield densities 

is based on the posterior distribution of the parameters. The joint posterior distribution of the 

parameters is proportional to the product of: (i) the likelihood, (ii) the prior, and (iii) the 

hyperprior, 

(7) 𝑝(𝜽, 𝝀|𝒀) ∝  𝑝1(𝒀|𝜽, 𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀), 

and is expressed mathematically as: 

(8) 𝑝(𝜽, 𝝀|𝒀) =  
𝑝1(𝒀|𝜽,𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀)

∬ 𝑝1(𝒀|𝜽,𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀)
  .  

Note that the likelihood notations 𝑝1(𝒀|𝜽, 𝝀) in equations (7) and (8) and 𝑝1(𝒀|𝜽) in equation (4) 

are equivalent, as the likelihood of 𝒀 depends on 𝝀 only through 𝜽. 

As mentioned above, we assume that yields are normally distributed. The likelihood function for 

our data is 

(9) 𝑝1(𝒀|𝜽, 𝝀) = ∏ ∏
1

√2𝜋(𝛾𝑖 + 𝛿𝑖𝑡)
exp {−

[𝑌𝑖𝑡 − (𝛼𝑖 + 𝛽𝑖𝑡)]2

2(𝛾𝑖 + 𝛿𝑖𝑡)
}

𝑇

𝑡=1

𝑁

𝑖=1

. 

Perhaps the most important aspect of our Bayesian hierarchical modelling is the Gaussian 

spatial process. It is at this stage that we model the spatial processes of each parameter. The 

spatial processes of each parameter are assumed to be independent. For brevity, here we only 

present the spatial process of the intercept of the mean equation. 

(10) 
𝜶 = 𝑀𝑉𝐺𝑃(𝝁, 𝛴𝜶), 
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𝛼𝑖 = 𝜇𝑖 + 𝑢𝑖 , 

𝑢𝑖~𝑀𝑉𝑁(0, 𝛬), 

𝛴𝜶 = 𝜓(𝑑𝑖𝑗, 𝜌𝜶, 𝛷𝜶), 

where 𝜶 = 𝛼1, … , 𝛼𝑁 is the vector of intercept parameters for all counties, and is assumed to 

follow a multivariate Gaussian process (MVGP), 𝝁 is the deterministic part of the Gaussian 

process, 𝛴𝜶 is the covariance matrix of the Gaussian process, 𝑑𝑖𝑗 is the distance between counties 

i and j measured from longitude and latitude coordinates, 𝜌𝜶 is the sill parameter, and 𝛷𝜶 is the 

range parameter. Note that the spatial correlation is captured in the stochastic parameters of the 

MVGP. The approach assumes that there is no spatial correlation in the error term.  

The covariance between two counties is a function of the distance separating them and 

the Kriging parameters (sill and range). There are different possible specifications for this 

function; we use the exponential: 

(11) 𝜓(𝑑𝑖𝑗 , 𝜌𝜶, 𝛷𝜶) = 𝜌𝜶𝑒
−

𝑑𝑖𝑗

𝛷𝜶 .  

As noted before, the hyperprior is the prior for the vector of hyperparameters. We assume that 

each hyperprior is independent from the others. 

3. Data 

Historical county corn yields from 1984 to 2015 are obtained from the National Agricultural 

Statistics Service (NASS). Only yields from the states of Illinois and Iowa are used. County with 

incomplete yield histories are not excluded. When comparing the predictive performance of the 

Bayesian Kriging approach that the Bayesian Model Averaging (BMA) approach, all counties are 

used for the Bayesian Kriging approach but only counties with full yield histories are used for 
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BMA. Illinois and Iowa are the two leading producers of corn in the country. Due to the 

computational needs of the algorithm used in this study, only data from these two states are used. 

The distance between counties is measured using the longitude and latitude coordinates of the 

county centroids. 

4. Procedures 

Our approach estimates the mean and variance of yield densities together. Yield densities have 

usually been estimated in two stages. The first stage is to regress a county’s historical yield 

against a trend. The second stage—the determination of the variance of the yield densities— uses 

the estimated residuals from the first stage. There are different functional forms used by 

researchers for the mean yield. The trend is usually deterministic. The common approaches are a 

simple linear trend and a trend modeled through a spline with knots (e.g. Harri et al. 2011). This 

paper uses a simple linear trend. One slope suffices because we use a limited time period. 

Similarly, in the crop insurance literature, different assumptions have been made about 

the structure of the variance of yield. Some researchers have assumed a constant coefficient of 

variation, with changes in the yield standard deviation proportional to the yield mean (e.g. Ker, 

Tolhurst, and Liu 2016; Deng, Barnett, and Vedenov 2007; Ker and Coble 2003; Miranda and 

Glauber 1997; Skees, Black and Barnett 1997). Other researchers have assumed homoskedasticity 

(Coble, Heifner, and Zuniga 2000; Mahul 1999; Miranda 1991). Our model assumes a linear 

trend in the variance equation.  

There have been different specifications for yield densities. This study uses the normal 

density. In addition to the normal, other specifications that have been used are the gamma 

(Gallagher 1987), the logistic (e.g., Atwood, Shaik, and Watts 2003), the mixture of normals (e.g. 

Ker, Tolhurst, and Liu 2016), and the lognormal (e.g., Sherrick et al. 2004), among others. 
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Ker, Tolhurst, and Liu (2016) use BMA, a technique where a weighted average of a set of 

models is computed. They first estimate each county’s conditional yield density using its own 

historical yield data. To obtain the BMA estimate for county i, they compute the Bayesian 

Information Criterion (BIC) of each estimated model using county i’s yield data. County i’s BMA 

estimate is the weighted average of all models, where the weights are derived from the BIC of 

each model given the data in county i. Like the BMA approach, our approach improves 

estimation efficiency by using data from all counties in the estimation of each county’s yield 

density. Unlike the BMA approach, our Bayesian Kriging approach assumes that the similarity in 

yield density results from proximity in space. 

The computation of integrals such as the one in equation (8) generally does not have 

closed-form solutions. To obtain the marginal posterior distributions of the parameters 𝜽, Markov 

Chain Monte Carlo (MCMC) simulations are used. Specifically, the Metropolis-Hastings 

algorithm is used within a Gibbs sampler. Metropolis-Hastings algorithm, random parameter 

values are drawn from a candidate density and then accepted or rejected; the accepted values are 

included in the posterior density. 

We impose hyperpriors as follows. For the hyperparameters corresponding to prior means 

of the parameters 𝜽, we impose normal hyperprior distributions derived from maximum 

likelihood estimates of the following pooled model, estimated using 1950-1983 data with year 

random effects 

(12) 𝑌𝑖𝑡 = 𝑎 + 𝑏𝑡 + +𝜉𝑡+𝑒𝑖𝑡 , 𝑡 = 0,1,2, … 33 

The hyperprior means for trend parameters 𝛽𝑖 and 𝛿𝑖 are as estimated in equation (12). The 

hyperprior means for intercept parameters 𝛼𝑖 and 𝛾𝑖 are the values predicted by equation (12) for 

the year 1983. The hyperprior variances of parameters 𝜽 computed by multiplying the 
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corresponding variances in equation (12) by the total number of counties. This serves to weaken 

the priors and to account for the fact that standard errors are smaller when pooled data. 

The posterior distributions obtained from the MCMC are given as samples of values from 

the posterior distributions. The samples are generated by a Markov Chain whose stationary 

distribution is the same as the posterior. We assume that the marginal distributions of the 

simulated values are close to the target distributions of the parameters.  

The MCMC is used to sample from the posterior distribution. The total number of 

iterations is 30,000, but the first 10,000 are discarded (i.e., the burn-in is 10,000). Discarding the 

early iterations diminishes the influence of the starting values. To perform a diagnosis of the 

convergence of the MCM simulations, we the Gelman-Rubin test is conducted. The procedure for 

this test follows the outline in Gelman et al. (2014). Two sequences are simulated, each with 

10,000 iterations after burn-in. Then each of the sequences is split into two sequences of length 

5,000, and we end up with m=4 sequences of n=5000 iterations each. Convergence is judged 

based on the following scale reduction factor: 

(11) �̂� = √
𝑛 − 1

𝑛
+

1

𝑛

𝐵

𝑊
  

where B and W are the between-and within-sequence variances. The MCMC is said to converge if 

the value of  �̂� is close to 1.  

 We compare the predictive performance of our approach to that of the BMA model (Ker, 

Tolhurst, and Liu 2016), using the root mean squared error of prediction (RMSEP). For a 

reasonable comparison, however, we use the BMA approach under normality rather than the 

mixture of normal distributions. We first estimate posterior densities using 1984-2008 data and 

predict 2009 yield means. We then estimate posterior densities using 1984-2009 data to predict 
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2010 yield means. The same process is repeated until we use 1984-2014 data to predict 2015 

yields. All these predictions are compared to actual observed yields, and the RMSEP is 

computed. 

5. Results 

Parameters of corn yield densities are estimated using Bayesian Kriging. The MCMC provides 

four parameters for each of the 201 counties in Illinois and Iowa. Because there are many 

counties in this study, we present the posterior means using maps (Figures II-1 through II-6). All 

results presented in these maps are from the estimation that uses 1984-2014 data. Figures II-1 

through II-4 contain results from the Bayesian Kriging approach, while figures II-5 and II-6 have 

results from the BMA model.  

Figure II-1 is a map of the intercept parameter of the mean of yield density. The posterior 

mean of the intercept is highest in central Illinois and in northern Iowa. The map in Figure II-2 

shows the posterior mean of the trend parameter of the mean of yield density. The map shows that 

yields have grown faster in northern counties for both states. An explanation is perhaps that due 

to the cooler climate in the north, improvements in production technology have resulted in larger 

yield increases in the north. Tannura et al. (2008) argue that increased yields are a result of earlier 

planting and this earlier planting may be more important in northern areas.  

Figure II-3 shows the posterior mean of the intercept of the variance of yield density, and 

figure II-4 shows the posterior mean of the trend of the variance of yield density. As seen in these 

figures, the variance intercept is highest and in the counties of eastern Illinois, while the variance 

trends is highest in northwest Iowa. These results are interesting since the variance did not 

increase faster in the counties where the mean increased faster. However, a close look at the 

legend in both figures show that the variance only varied little across space. 
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Figure II-5 shows the posterior mean of the intercept of the mean of yield density, 

computed using BMA. Figure I-6 is a map of the posterior mean of the trend of the mean of yield 

density. In contrasting figures II-5 and II-6 with figures II-1 and II-2, respectively, two key 

differences are observed. First, the blanks in figures II-5 and II-6 reflect the inability of BMA to 

estimate yield densities for counties without a complete yield history. Second, the transition from 

clusters with higher values to clusters with lower values is smoother in figures II-1 and II-2.  

To test the convergence of the MCMC chains, the Gelman-Rubin diagnostic is used. In 

this test, values close to 1 are desired for the scale reduction factor. Overall, the test was not 

satisfied. Of the 201 counties for which four parameters were estimated, the Gelman-Rubin test 

was satisfied in 26 counties for the intercept of the mean equation, in 35 counties for the trend of 

the mean equation, and in 19 counties for trend of the variance of the mean equation. This lack of 

convergence is due to the high number of parameters to sample, and significantly increasing the 

number of iterations could improve convergence. However, future research needs to improve the 

sampling strategy. 

We now compare the predictive performance of our approach to that of BMA. Although 

we make this comparison, we note that the BMA model only uses counties with a full yield 

history, while our model uses all 201 counties. Because Bayesian Kriging is an interpolation 

technique, it has the advantage of handling missing values. A major similarity between the BMA 

approach and our approach is that data from all counties are candidates for use in the estimation 

of each county’s yield density. 

The RMSEP for our Bayesian Kriging model is 29.70 bushels/acre, while the RMSEP of 

BMA is 30.07 bushels/acre. These values are similar, but our model is the only one that has 

predictions for all counties and provides the spatial smoothing desired by the Risk Management 

Agency. Both RMSEP values are high, because both models’ predictions of 2012 corn yields 
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were poor. Corn yields were atypically low in 2012, due to the 100-year flood that took place. We 

compute separate RMSEP’s to evaluate how the models performed in each individual year. Our 

model outperforms BMA in 2010, 2013, 2014, and 2015, while BMA outperforms our model in 

2009, 2011, and 2012. These results are summarized in table II-1. 

Table II-1. Root Mean Squared Error of Prediction (bu/acre) Comparison between BMA 

and Bayesian Kriging Models 

 BMA  Bayesian Kriging 

2009 13.51 14.10 

2010 26.35 25.53 

2011 16.61 18.08 

2012 60.88 61.79 

2013 18.78 16.15 

2014 28.91 14.64 

2015 16.85 15.50 

2009-2015 30.07 29.70 

 

6. Conclusion 

Forecasts of yield densities are important for crop insurance rating. The RMA needs accurate 

forecasts to make actuarially fair premiums for insurance policies. Producers and agricultural 

businesses also need accurate yield forecasts for land valuation and for their own planning. We 

introduce a new approach for the estimation of yield densities. We use Bayesian Kriging for 

spatial smoothing of all parameters of counties’ yield densities. The intercept and trend 

parameters are spatially smoothed in both the mean equation and the variance equation. Our 

Bayesian Kriging approach assumes that the stochastic parameters are spatially correlated. The 

spatial autocorrelation in the data is captured by the spatial correlation in parameters rather than 

spatial correlation in error. A county’s estimated yield density is derived not only from its own 

historical yield observations, but also from other counties. 
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This paper extends Bayesian Kriging to the general heteroskedastic error regression 

model. The approach can be used even when yields are not assumed to be normally distributed, 

but that increases computational time considerably. This paper has two main contributions to the 

crop insurance literature. The first is the ability to spatially smooth multiple parameters of yield 

densities, including trend parameters. The second is the ability to use unbalanced data in the 

estimation. There are counties whose yield is not recorded in all years; previous approaches that 

only use balanced data cannot be used directly in forecasting yield densities for such counties. A 

drawback of the Bayesian Kriging approach is that it is computationally expensive. It takes 

approximately 3.5 days to estimate one model on a regular office computer. However, with 

increases in computers’ performance, this problem is expected to lessen. Also, we are using the R 

software package, which is notorious for being computationally burdensome. Convergence is 

currently not fully satisfied. The Gelman-Rubin convergence test is satisfied for 26 of 201 

intercept parameters of yield mean equations in Illinois and Iowa counties, 35 of 201 trend 

parameters of yield mean equations, and 19 of 201 trend parameters of yield variance equations. 

A possible future improvement to this work is to sample the posterior distribution using 

Hamiltonian Monte Carlo.
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APPENDICES 
 

APPENDIX FOR CHAPTER I 

1. Estimating Temperature Exposure Time 

Following Snyder (1985) and D'Agostino and Schlenker (2016), we approximate the temperature 

distribution by the following sinusoidal: 

(A1)       ℎ =
ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛

2
−

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛

2
cos (𝑠) 

where h is the temperature and  s ∈ [0,2π] is the time. This distribution is graphed in the left panel 

of figure I-3. 

For each temperature level h, the corresponding s values on the time axis are: 

𝑠 = acos (
ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛−ℎ

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛
) and 𝑠 = 2π − acos (

ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛−ℎ

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛
) 

The time spent between two temperatures ℎ1 and  ℎ2 , where ℎ2 > ℎ1 can be estimated as: 

𝑡𝑖𝑚𝑒 =
1

2π
∗ {[acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ2

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
) − acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ1

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)]

+ [[2π − acos (
ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ1

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)] − [2π − acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ2

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)]]} 

       = 2 ∗
1

2π
∗ [acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ2

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
) − acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ1

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)]. 

Specifically, the time spent within a 1C temperature interval [h, h+1] is 

𝑡𝑖𝑚𝑒 = 2 ∗
1

2π
∗ [acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2(ℎ + 1)

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
) − acos (

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛 − 2ℎ

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)].
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The multiplication by 
1

2π
 serves to convert the unit of time to days. When calculating the exposure 

time for an interval with a lower bound below the minimum temperature, the term 

acos (
ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛−2ℎ1

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛
) is replaced by 0. Similarly, when calculating the exposure time for an 

interval whose upper bound exceeds the maximum temperature, the term acos (
ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛−2ℎ2

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛
) is 

replaced by π. 

The alternative method of estimating the temperature exposure time is to use the following 

sinusoidal function, used by Schlenker and Roberts (2009) and Yun and Gramig (2017): 

ℎ = ℎ𝑚𝑖𝑛 + (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛)sin (𝑠) 

where s ∈ [0,π] is the time representing one day. 

The time spent within two temperatures ℎ1 and  ℎ2 , where ℎ2 > ℎ1 is estimated as: 

𝑡𝑖𝑚𝑒 = 2 ∗
1

π
∗ [asin (

ℎ2 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
) − asin (

ℎ1 − ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
)]. 

This method of computing temperature exposure times is graphed in the right panel of Figure I-3. 

2. Computing Temperature variables 

Assuming a piecewise linear corn growth function 

𝑔(ℎ) =  {
𝑎 + 𝑏ℎ,                               ℎ ≤  29
𝑎 + 𝑏ℎ + 𝑐(ℎ − 29),      ℎ > 29,

 

the first term of the right-hand side of equation (2), after grouping all negative temperatures into 

the [-1,0] interval and all temperatures above 39℃ into the [39,40] interval ,is computed as 

follows. 



57 
 

∑ 𝑔(ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]

39

−1

= 𝑔(−0.5)[𝛷𝑖𝑡(0) − 𝛷𝑖𝑡(−1)] + 𝑔(0.5)[𝛷𝑖𝑡(1) − 𝛷𝑖𝑡(0)] + ⋯

+ 𝑔(28.5)[𝛷𝑖𝑡(29) − 𝛷𝑖𝑡(28)] + 𝑔(29.05)[𝛷𝑖𝑡(30) − 𝛷𝑖𝑡(29)] + ⋯

+ 𝑔(39.5)[𝛷𝑖𝑡(40) − 𝛷𝑖𝑡(39)] 

= [𝑎 + 𝑏(−0.5)][𝛷𝑖𝑡(1) − 𝛷𝑖𝑡(0)] + [𝑎 + 𝑏(0.5)][𝛷𝑖𝑡(1) − 𝛷𝑖𝑡(0)] + ⋯

+ [𝑎 + 𝑏(28.5)][𝛷𝑖𝑡(29) − 𝛷𝑖𝑡(28)]

+ [𝑎 + 𝑏(29) + 𝑐(0.5)][𝛷𝑖𝑡(30) − 𝛷𝑖𝑡(29)] + ⋯

+ [𝑎 + 𝑏(29) + 𝑐(10.5)][𝛷𝑖𝑡(40) − 𝛷𝑖𝑡(39)] 

= 𝑎 ∑[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]

39

−1

+ 𝑏 [∑(ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]

28

−1

+ 29 ∑[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]

39

29

]

+ 𝑐 ∑(ℎ + 0.5 − 29)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]

39

29

. 

The sum ∑ [𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]39
0  is the same for all counties and is simply the total number of 

days in the period of the growing season included in the estimation (e.g., 184 days for March-

August). We do not estimate the coefficient a; we instead keep it as part of the overall intercept. 

In the text Temperature Sum 1 refers to the sum [∑ (ℎ + 0.5)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]28
−1 +

29 ∑ [𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]39
29 ], while Temperature Sum 2 is the sum ∑ (ℎ + 0.5 −39

29

29)[𝛷𝑖𝑡(ℎ + 1) − 𝛷𝑖𝑡(ℎ)]. Their corresponding coefficients, b and c, are referred to as the 

upward temperature slope and the downward temperature slope, respectively. 
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3. Tables for Chapter I 

Table I-A1. Regression of Log Yield Using the Base Model and 1950-2005 Data 

 Estimate Standard Error 

Intercept 3.14358* 0.03602 

Temperature Sum 1 0.00022* 6.5E-06 

Temperature Sum 2 -0.0047* 2.4E-05 

Precipitation [100mm] 0.06435* 0.00285 

Squared precipitation[10000mm2] -0.0087* 0.0003 

Illinois time [year] 0.03021* 0.0007 

Illinois time2[years2] -0.0002* 1.2E-05 

Iowa time[year] 0.0317* 0.00071 

Iowa time2[years2]  -0.0002* 1.3E-05 

Adams County, Illinois (17001) 0.17972* 0.04319 

*: significant at the .01 level 
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Table I-A2. Regression of Log Yield Using the Base Model and 1950-2016 Data 

 Estimate Standard Error 

Intercept 3.23805* 0.03291 

Temperature Sum 1 0.00019* 5.8E-06 

Temperature Sum 2 -0.0046* 2.3E-05 

Precipitation 0.06199* 0.00266 

Squared Precipitation -0.0081* 0.00028 

Illinois time 0.02757* 0.00054 

Illinois time2 -0.0002* 8E-06 

Iowa time 0.02894* 0.00055 

Iowa time2 -0.0002* 8.1E-06 

Adams County, Illinois (17001) 0.1878* 0.03973 

*: significant at the .01 level, N=122378 𝑅2= 0.0.854 

  



60 
 

Table I-A3. Regression of Log Yield: Model with a Different Method of Calculating 

Temperature Exposure Times  

 Estimate Standard Error 

Intercept 3.28187* 0.03233 

Temperature Sum 1 0.0002* 6E-06 

Temperature Sum 2 -0.00632* 3.1E-05 

Precipitation[100mm] 0.05947* 0.00265 

Squared Precipitation[100mm2] -0.00798* 0.00028 

Illinois time[years] 0.02761* 0.00054 

Illinois time2[years2] -0.00016* 8E-06 

Iowa time[years] 0.02898* 0.00055 

Iowa time2[years2] -0.00017* 8.1E-06 

Adams County, Illinois (17001) 0.17821* 0.03977 

*: significant at the .01 level 
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Table I-A4. Regression of Log Yield: Model that Removes Data from the 1950s and 1960s 

 Estimate Standard Error 

Intercept 3.55649* 0.05606 

Temperature Sum 1 0.00015* 6.6E-06 

Temperature Sum 2 -0.0046* 2.7E-05 

Precipitation[100mm] 0.0545* 0.003 

Squared Precipitation[100mm2] -0.0073* 0.00031 

Illinois time[years] 0.02476* 0.00168 

Illinois time2[years2] -0.0001* 1.9E-05 

Iowa time[years] 0.00761* 0.00168 

Iowa time2[years2] 7.2E-05* 1.9E-05 

Adams County, Illinois (17001) 0.05453 0.06996 

*: significant at the .01 level 
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Table I-A5. Regression of Log Yield: Model that Includes Corn Belt Dummies  

 Estimate Standard Error 

Intercept 3.22622* 0.034575 

Temperature Sum 1 0.00019* 6.82E-06 

Corn Belt * Temperature Sum 1 4.2E-05* 1.29E-05 

Temperature Sum 2 -0.0045* 2.42E-05 

Corn Belt * Temperature Sum 2 -0.0007* 7.08E-05 

Precipitation [100mm] 0.07232* 0.002975 

Corn Belt * Precipitation 0.02176* 0.00797 

Squared Precipitation -0.0087* 0.000304 

Corn Belt * Squared Precipitation -0.0065* 0.000959 

Illinois time [year] 0.02719* 0.000545 

Illinois time2[years2] -0.0002 8.03E-06 

Iowa time[year] 0.02859* 0.00055 

Iowa time2[years2]  -0.0002* 8.07E-06 

Adams County, Illinois (17001) 0.09966 0.059639 

*: significant at the .01 level 
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Table I-A6. Regression of Corn Log Yield: Model that Uses Two- Knot Time Trends 

 Estimate Standard Error 

Intercept 3.25237* 0.032789 

Temperature Sum 1 0.00018* 5.71E-06 

Temperature Sum 2 -0.00461* 2.28E-05 

Precipitation 0.05702* 0.002632 

Squared Precipitation -0.00772* 0.000277 

Illinois time trend 1 0.02738* 0.000586 

Illinois time trend 2 0.01401* 0.000528 

Illinois time trend 3 0.013* 0.000453 

Iowa time trend 1 0.03315* 0.000595 

Iowa time trend 2 0.00961* 0.000534 

Iowa time trend 3 0.01627* 0.00045 

Adams County, Illinois (17001) 0.20073* 0.039622 

*: significant at the .01 level 

Time trend knots: 1971 and 1990 
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Table I-A7. Knots for Models that Use Two-Knot Time Trends 

Model Knot 1 Year Knot 2 Year 

5 1971 1990 

6 1982 1999 

7 1971 1990 

8 1982 1999 

13 1971 1990 

14 1982 1999 

15 1971 1990 

16 1982 1999 

21 1971 1990 

22 1982 1999 

23 1963 1980 

24 1982 1999 

29 1971 1990 

30 1982 1999 

31 1971 1990 

32 1982 1999 

37 1971 1990 

38 1982 1999 

39 1971 1990 

40 1982 1999 

45 1971 1990 

46 1982 1999 

47 1971 1990 

48 1982 1999 

53 1971 1990 

54 1982 1999 

55 1971 1990 

56 1982 1999 

61 1971 1990 

62 1982 1999 

63 1971 1990 

64 1982 1999 

69 1971 1990 

70 1982 2000 

71 1971 1990 

72 1982 1999 

77 1971 1990 

78 1982 2000 

79 1971 1990 
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Table I-A7 (continued). 

80 1982 1999 

85 1971 1990 

86 1982 2000 

87 1971 1990 

88 1982 1999 

93 1971 1990 

94 1982 2000 

95 1971 1990 

96 1982 1999 

101 1966 1990 

102 1980 1998 

103 1966 1990 

104 1980 1998 

109 1966 1990 

110 1980 1998 

111 1966 1990 

112 1980 1998 

117 1966 1990 

118 1980 1998 

119 1966 1990 

120 1980 1998 

125 1966 1990 

126 1980 1998 

127 1966 1990 

128 1980 1998 

133 1966 1990 

134 1980 1998 

135 1966 1990 

136 1980 1998 

141 1966 1990 

142 1980 1998 

143 1966 1990 

144 1980 1998 

149 1966 1990 

150 1980 1998 

151 1966 1990 

152 1980 1998 

157 1966 1990 

158 1980 1998 

159 1966 1990 

160 1980 1998 

165 1966 1990 
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Table I-A7 (continued). 

166 1980 1998 

167 1966 1990 

168 1980 1998 

173 1966 1990 

174 1980 1998 

175 1966 1990 

176 1980 1998 

181 1966 1990 

182 1980 1998 

183 1966 1990 

184 1980 1998 

189 1966 1990 

190 1980 1998 

191 1966 1990 

192 1980 1998 
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Table I-A8. Regression of Corn Log Yield: Using July-August Data instead of March-

August Data 

 Estimate Standard Error 

Intercept 3.46495* 0.037997 

Temperature Sum 1 0.0002* 1.85E-05 

Temperature Sum 2 -0.00503* 3.62E-05 

Precipitation 0.11095* 0.003622 

Squared Precipitation -0.02048* 0.000716 

Illinois time 0.02976* 0.000556 

Illinois time2 -0.00019* 8.2E-06 

Iowa time 0.03032* 0.000561 

Iowa time2 -0.00019* 8.22E-06 

Adams County, Illinois (17001) 0.22886* 0.040484 

*: significant at the .01 level 
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Table I-A9. Regression of Corn Log Yield: Using July-August Yearly Data and Changing 

Other Assumptions of the Base Model 

 Estimate Standard Error 

Intercept 3.85175* 0.06171 

Temperature Sum 1 3.9E-05 2.5E-05 

Corn Belt * Temperature Sum 1 0.00022* 4.7E-05 

Temperature Sum 2 -0.0067* 6.4E-05 

Corn Belt * Temperature Sum 2 -0.0014* 0.00018 

Precipitation 0.06051* 0.00473 

Corn Belt * Precipitation 0.17987* 0.01005 

Squared Precipitation -0.0105* 0.00092 

Corn Belt * Squared Precipitation -0.0387* 0.00201 

Illinois time trend 1 0.02742* 0.00126 

Illinois time trend 2 0.00966* 0.00071 

Illinois time trend 3 0.01494* 0.00082 

Iowa time trend 1 0.01399* 0.00128 

Iowa time trend 2 0.01229* 0.00072 

Iowa time trend 3 0.01691* 0.00081 

Adams County, Illinois (17001) -0.4059* 0.09573 

*: significant at the .01 level 

Time trend knots: 1982 and 1999 
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Table I-A10. Regression Corn Log Yield: Using Long-Term Average Data and Keeping 

Other Assumptions of the Base Model 

 Estimate Standard Error 

Intercept 3.42544* 0.01631 

Temperature Sum 1 -4.7E-05* 4.5E-06 

Temperature Sum 2 -0.00139* 2.5E-05 

Precipitation 0.00961* 0.00337 

Squared Precipitation -0.00292* 0.00035 

Water holding capacity 0.01324* 0.00022 

Soil slope 0.00066* 3.8E-05 

Log of average corn acres in the 1950s -0.00834* 0.00051 

Illinois time 0.04576* 0.00049 

Illinois time2 -0.00037* 8.7E-06 

Iowa time 0.04877* 0.00053 

Iowa time2 -0.0004* 9.1E-06 

*: significant at the .01 level, N=152558 𝑅2= 0.641 

  



70 
 

Table I-A11. Regression of Corn Log Yield: Changing All Six Assumptions of the Base 

Model (July-August Data) 

 Estimate Standard Error 

Intercept 3.29549* 0.0306 

Corn Belt -0.6466* 0.06897 

Temperature Sum 1 -0.0002* 2.1E-05 

Corn Belt * Temperature Sum 1 0.00053* 5.2E-05 

Temperature Sum 2 -0.0005* 6.3E-05 

Corn Belt * Temperature Sum 2 -0.0071* 0.00024 

Precipitation 0.05548* 0.00525 

Corn Belt * Precipitation 0.17394* 0.01412 

Squared Precipitation -0.0094* 0.001 

Corn Belt * Squared Precipitation -0.037* 0.00283 

Water holding capacity 0.01252* 0.00026 

Soil slope 0.00088* 4.3E-05 

Log of average corn acres in the 1950s 0.04235* 0.00104 

Illinois time trend 1 0.03952* 0.00062 

Illinois time trend 2 0.00852* 0.00087 

Illinois time trend 3 0.01529* 0.00104 

Iowa time trend 1 0.02078* 0.00067 

Iowa time trend 2 0.01102* 0.00088 

Iowa time trend 3 0.01747* 0.00105 

*: significant at the .01 level 

Time trend knots: 1980 and 1998 
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Table I-A12. Regression of Corn Log Yield: Using March-September Data instead of 

March-August Data 

 Estimate Standard Error 

Intercept 3.12885* 0.03405 

Temperature Sum 1 0.00019* 5.4E-06 

Temperature Sum 2 -0.00397* 2E-05 

Precipitation 0.07443* 0.00268 

Squared Precipitation -0.00885* 0.00028 

Illinois time 0.02711* 0.00055 

Illinois time^2 -0.00016* 8.1E-06 

Iowa time 0.02879* 0.00055 

Iowa time^2 -0.00017* 8.1E-06 

Adams County, Illinois (17001) 0.15697* 0.04015 

*: significant at the .01 level 
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Table I-A13. Regression of Corn Log Yield: Using March-October Data instead of March-

August Data 

 Estimate Standard Error 

Intercept 3.01581* 0.03412 

Temperature Sum 1 0.0002* 4.9E-06 

Temperature Sum 2 -0.0039* 2E-05 

Precipitation 0.07562* 0.00267 

Squared Precipitation -0.009* 0.00028 

Illinois time 0.02757* 0.00055 

Illinois time^2 -0.0002* 8.1E-06 

Iowa time 0.02926* 0.00055 

Iowa time^2 -0.0002* 8.1E-06 

Adams County, Illinois (17001) 0.11855* 0.04016 

*: significant at the .01 level 
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Table I-A14. Regression of Corn Log Yield: Using July-September Data instead of March-

August Data 

 Estimate Standard Error 

Intercept 3.26116* 0.037522 

Temperature Sum 1 0.00026* 1.3E-05 

Temperature Sum 2 -0.00429* 3.07E-05 

Precipitation 0.10839* 0.003676 

Squared Precipitation -0.01965* 0.000725 

Illinois time 0.02892* 0.000561 

Illinois time^2 -0.00018* 8.28E-06 

Iowa time 0.02992* 0.000566 

Iowa time^2 -0.00018* 8.29E-06 

Adams County, Illinois (17001) 0.18397* 0.04091 

*: significant at the .01 level 
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Table I-A15. Regression of Corn Log Yield: Using July-October Data instead of March-

August Data 

 Estimate Standard Error 

Intercept 3.16737* 0.035163 

Temperature Sum 1 0.00026* 8.99E-06 

Temperature Sum 2 -0.00418* 2.72E-05 

Precipitation 0.10925* 0.00367 

Squared Precipitation -0.01967* 0.000724 

Illinois time 0.02949* 0.000562 

Illinois time^2 -0.00018* 8.28E-06 

Iowa time 0.03058* 0.000566 

Iowa time^2 -0.00019* 8.29E-06 

Adams County, Illinois (17001) 0.14799* 0.040886 

*: significant at the .01 level 
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Table I-A16. Regression of Corn Log Yield: Changing All Six Assumptions of the Base 

Model (July-October Data) 

 Estimate Standard Error 

Intercept 2.94685* 0.02578 

Corn Belt -0.5586* 0.04695 

Temperature Sum 1 7.3E-06* 9.3E-06 

Corn Belt * Temperature Sum 1 0.0003* 2.1E-05 

Temperature Sum 2 -0.0005* 4.9E-05 

Corn Belt * Temperature Sum 2 -0.0066* 0.00018 

Precipitation 0.06048* 0.00531 

Corn Belt * Precipitation 0.15092* 0.01428 

Squared Precipitation -0.0102* 0.001 

Corn Belt * Squared Precipitation -0.0332* 0.00286 

Water holding capacity 0.01187* 0.00026 

Soil slope 0.00084* 4.3E-05 

Log of average corn acres in the 1950s 0.0397* 0.00104 

Illinois time trend 1 0.03898* 0.00063 

Illinois time trend 2 0.00876* 0.00087 

Illinois time trend 3 0.01487* 0.00104 

Iowa time trend 1 0.02235* 0.00068 

Iowa time trend 2 0.01105* 0.00088 

Iowa time trend 3 0.01686* 0.00105 

*: significant at the .01 level 

Time trend knots: 1980 and 1998 
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Table I-A17. Impact of Climate Change under the RCP4.5 Scenario Based on Models that 

Use Yearly Data 

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method6 

Type 

of 

Time 

Tren

d7 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

1 -44.9% -28.0% -23.6% March-August 1 1 No No 

2 -45.6% -28.8% -24.3% March-August 1 1 No Yes 

3 -48.2% -32.0% -28.1% March-August 1 1 Yes No 

4 -49.9% -33.0% -28.7% March-August 1 1 Yes Yes 

5 -45.1% -28.3% -23.9% March-August 1 2 No No 

6 -46.8% -29.7% -25.1% March-August 1 2 No Yes 

7 -48.2% -32.0% -28.1% March-August 1 2 Yes No 

8 -50.7% -33.6% -29.3% March-August 1 2 Yes Yes 

9 -44.6% -27.8% -23.3% March-August 2 1 No No 

10 -45.5% -28.6% -24.1% March-August 2 1 No Yes 

11 -47.8% -31.6% -27.7% March-August 2 1 Yes No 

12 -49.5% -32.6% -28.3% March-August 2 1 Yes Yes 

13 -44.9% -28.2% -23.6% March-August 2 2 No No 

14 -46.6% -29.5% -24.9% March-August 2 2 No Yes 

15 -47.7% -31.6% -27.7% March-August 2 2 Yes No 

16 -50.2% -33.2% -28.9% March-August 2 2 Yes Yes 

17 -43.3% -27.9% -24.2% March-September 1 1 No No 

18 -43.7% -28.2% -24.4% March-September 1 1 No Yes 

19 -49.1% -34.4% -31.5% March-September 1 1 Yes No 

20 -50.4% -34.7% -31.2% March-September 1 1 Yes Yes 

21 -43.6% -28.2% -24.5% March-September 1 2 No No 

22 -44.7% -29.0% -25.1% March-September 1 2 No Yes 

23 -48.9% -34.3% -31.4% March-September 1 2 Yes No 

24 -51.1% -35.2% -31.6% March-September 1 2 Yes Yes 

25 -43.0% -27.6% -23.8% March-September 2 1 No No 

26 -43.6% -28.0% -24.2% March-September 2 1 No Yes 

27 -48.7% -34.0% -31.1% March-September 2 1 Yes No 

28 -50.1% -34.4% -30.9% March-September 2 1 Yes Yes 

29 -43.3% -27.9% -24.2% March-September 2 2 No No 

30 -44.6% -28.9% -24.9% March-September 2 2 No Yes 

31 -48.6% -34.0% -31.0% March-September 2 2 Yes No 

32 -50.7% -34.9% -31.3% March-September 2 2 Yes Yes 

33 -43.6% -29.4% -26.1% March-October 1 1 No No 

34 -44.3% -29.8% -26.4% March-October 1 1 No Yes 

35 -50.4% -37.4% -35.0% March-October 1 1 Yes No 

36 -51.6% -37.3% -34.1% March-October 1 1 Yes Yes 

37 -43.9% -29.7% -26.4% March-October 1 2 No No 

                                                           
6 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
7 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A17 (continued). 

38 -45.3% -30.6% -27.0% March-October 1 2 No Yes 

39 -50.3% -37.3% -34.8% March-October 1 2 Yes No 

40 -52.2% -37.7% -34.4% March-October 1 2 Yes Yes 

41 -43.3% -29.1% -25.7% March-October 2 1 No No 

42 -44.1% -29.7% -26.1% March-October 2 1 No Yes 

43 -50.1% -37.0% -34.6% March-October 2 1 Yes No 

44 -51.3% -37.0% -33.8% March-October 2 1 Yes Yes 

45 -43.6% -29.4% -26.0% March-October 2 2 No No 

46 -45.1% -30.4% -26.7% March-October 2 2 No Yes 

47 -50.0% -36.9% -34.4% March-October 2 2 Yes No 

48 -51.9% -37.4% -34.1% March-October 2 2 Yes Yes 

49 -41.0% -24.8% -17.9% July-August 1 1 No No 

50 -41.3% -25.1% -18.1% July-August 1 1 No Yes 

51 -42.5% -25.4% -18.2% July-August 1 1 Yes No 

52 -43.5% -26.1% -18.7% July-August 1 1 Yes Yes 

53 -40.6% -24.4% -17.6% July-August 1 2 No No 

54 -42.3% -25.9% -18.7% July-August 1 2 No Yes 

55 -41.8% -24.8% -17.7% July-August 1 2 Yes No 

56 -44.5% -26.9% -19.4% July-August 1 2 Yes Yes 

57 -40.8% -24.7% -17.7% July-August 2 1 No No 

58 -41.1% -25.0% -17.9% July-August 2 1 No Yes 

59 -42.3% -25.2% -18.0% July-August 2 1 Yes No 

60 -43.2% -25.9% -18.4% July-August 2 1 Yes Yes 

61 -40.4% -24.3% -17.3% July-August 2 2 No No 

62 -42.2% -25.8% -18.5% July-August 2 2 No Yes 

63 -41.6% -24.6% -17.4% July-August 2 2 Yes No 

64 -44.3% -26.7% -19.1% July-August 2 2 Yes Yes 

65 -37.6% -22.5% -16.4% July-September 1 1 No No 

66 -37.7% -22.6% -16.4% July-September 1 1 No Yes 

67 -41.4% -25.3% -19.0% July-September 1 1 Yes No 

68 -42.6% -26.0% -19.4% July-September 1 1 Yes Yes 

69 -37.1% -22.0% -15.9% July-September 1 2 No No 

70 -38.8% -23.4% -17.2% July-September 1 2 No Yes 

71 -40.4% -24.3% -18.1% July-September 1 2 Yes No 

72 -43.7% -26.9% -20.3% July-September 1 2 Yes Yes 

73 -37.4% -22.3% -16.2% July-September 2 1 No No 

74 -37.6% -22.5% -16.2% July-September 2 1 No Yes 

75 -41.2% -25.0% -18.7% July-September 2 1 Yes No 

76 -42.4% -25.7% -19.1% July-September 2 1 Yes Yes 

77 -36.9% -21.8% -15.6% July-September 2 2 No No 

78 -38.7% -23.3% -17.0% July-September 2 2 No Yes 

79 -40.2% -24.0% -17.8% July-September 2 2 Yes No 

80 -43.5% -26.6% -20.0% July-September 2 2 Yes Yes 

81 -36.4% -22.4% -17.0% July-October 1 1 No No 

82 -36.6% -22.5% -16.9% July-October 1 1 No Yes 

83 -40.4% -26.0% -20.9% July-October 1 1 Yes No 
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Table I-A17 (continued). 

84 -41.5% -26.5% -21.0% July-October 1 1 Yes Yes 

85 -35.9% -21.9% -16.5% July-October 1 2 No No 

86 -37.8% -23.5% -17.8% July-October 1 2 No Yes 

87 -39.3% -25.0% -19.9% July-October 1 2 Yes No 

88 -42.7% -27.5% -21.9% July-October 1 2 Yes Yes 

89 -36.1% -22.1% -16.6% July-October 2 1 No No 

90 -36.5% -22.4% -16.6% July-October 2 1 No Yes 

91 -39.9% -25.6% -20.4% July-October 2 1 Yes No 

92 -41.1% -26.1% -20.6% July-October 2 1 Yes Yes 

93 -35.6% -21.6% -16.1% July-October 2 2 No No 

94 -37.7% -23.4% -17.6% July-October 2 2 No Yes 

95 -38.8% -24.5% -19.5% July-October 2 2 Yes No 

96 -42.3% -27.1% -21.5% July-October 2 2 Yes Yes 
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Table I-A18. Impact of Climate Change with Adaptation under the RCP4.5 Scenario Based 

on Models that Use Yearly Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method8 

Type 

of 

Time 

Tren

d9 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

49 -32.5% -17.0% -12.8% July-August 1 1 No No 

50 -32.7% -17.1% -12.8% July-August 1 1 No Yes 

51 -33.6% -17.2% -12.8% July-August 1 1 Yes No 

52 -34.5% -17.6% -13.0% July-August 1 1 Yes Yes 

53 -32.0% -16.6% -12.4% July-August 1 2 No No 

54 -33.7% -17.7% -13.3% July-August 1 2 No Yes 

55 -32.9% -16.6% -12.3% July-August 1 2 Yes No 

56 -35.4% -18.3% -13.6% July-August 1 2 Yes Yes 

57 -32.3% -16.8% -12.5% July-August 2 1 No No 

58 -32.6% -17.0% -12.5% July-August 2 1 No Yes 

59 -33.4% -17.0% -12.6% July-August 2 1 Yes No 

60 -34.2% -17.4% -12.7% July-August 2 1 Yes Yes 

61 -31.9% -16.5% -12.2% July-August 2 2 No No 

62 -33.5% -17.6% -13.1% July-August 2 2 No Yes 

63 -32.6% -16.4% -12.0% July-August 2 2 Yes No 

64 -35.1% -18.0% -13.3% July-August 2 2 Yes Yes 

 

  

                                                           
8 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
9 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A19. Impact of Climate Change under the RCP8.5 Scenario Based on Models that 

Use Yearly Data 

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
10 

Type 

of 

Time 

Tren

d11 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

1 -64.6% -46.4% -45.4% March-August 1 1 No No 

2 -65.2% -47.5% -46.2% March-August 1 1 No Yes 

3 -67.9% -50.8% -49.9% March-August 1 1 Yes No 

4 -69.5% -52.3% -51.2% March-August 1 1 Yes Yes 

5 -64.8% -46.8% -45.7% March-August 1 2 No No 

6 -66.4% -48.7% -47.4% March-August 1 2 No Yes 

7 -67.8% -50.8% -49.8% March-August 1 2 Yes No 

8 -70.2% -53.1% -51.9% March-August 1 2 Yes Yes 

9 -63.8% -46.0% -44.9% March-August 2 1 No No 

10 -64.6% -47.1% -45.8% March-August 2 1 No Yes 

11 -67.0% -50.2% -49.3% March-August 2 1 Yes No 

12 -68.6% -51.7% -50.6% March-August 2 1 Yes Yes 

13 -64.1% -46.4% -45.3% March-August 2 2 No No 

14 -65.8% -48.3% -47.0% March-August 2 2 No Yes 

15 -66.9% -50.2% -49.3% March-August 2 2 Yes No 

16 -69.4% -52.5% -51.3% March-August 2 2 Yes Yes 

17 -63.0% -47.4% -46.6% March-September 1 1 No No 

18 -63.4% -48.1% -47.1% March-September 1 1 No Yes 

19 -68.6% -54.2% -53.6% March-September 1 1 Yes No 

20 -69.9% -55.2% -54.4% March-September 1 1 Yes Yes 

21 -63.3% -47.8% -46.9% March-September 1 2 No No 

22 -64.5% -49.1% -48.1% March-September 1 2 No Yes 

23 -68.4% -54.1% -53.4% March-September 1 2 Yes No 

24 -70.6% -55.8% -55.0% March-September 1 2 Yes Yes 

25 -62.4% -47.0% -46.2% March-September 2 1 No No 

26 -62.9% -47.9% -46.8% March-September 2 1 No Yes 

27 -67.9% -53.7% -53.1% March-September 2 1 Yes No 

28 -69.2% -54.8% -54.0% March-September 2 1 Yes Yes 

29 -62.7% -47.4% -46.6% March-September 2 2 No No 

30 -64.0% -48.9% -47.8% March-September 2 2 No Yes 

31 -67.7% -53.6% -53.0% March-September 2 2 Yes No 

32 -69.9% -55.4% -54.6% March-September 2 2 Yes Yes 

33 -63.1% -47.8% -47.7% March-October 1 1 No No 

34 -63.8% -48.9% -48.4% March-October 1 1 No Yes 

35 -69.3% -55.6% -55.7% March-October 1 1 Yes No 

36 -70.7% -56.6% -56.3% March-October 1 1 Yes Yes 

37 -63.4% -48.3% -48.0% March-October 1 2 No No 

                                                           
10 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
11 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A19 (continued). 

38 -64.8% -49.8% -49.3% March-October 1 2 No Yes 

39 -69.2% -55.6% -55.6% March-October 1 2 Yes No 

40 -71.3% -57.1% -56.8% March-October 1 2 Yes Yes 

41 -62.4% -47.4% -47.2% March-October 2 1 No No 

42 -63.2% -48.6% -48.1% March-October 2 1 No Yes 

43 -68.7% -55.1% -55.3% March-October 2 1 Yes No 

44 -70.0% -56.2% -55.9% March-October 2 1 Yes Yes 

45 -62.7% -47.8% -47.6% March-October 2 2 No No 

46 -64.3% -49.6% -49.1% March-October 2 2 No Yes 

47 -68.5% -55.1% -55.1% March-October 2 2 Yes No 

48 -70.6% -56.7% -56.4% March-October 2 2 Yes Yes 

49 -56.9% -41.5% -40.1% July-August 1 1 No No 

50 -56.9% -42.1% -40.6% July-August 1 1 No Yes 

51 -58.6% -42.7% -41.4% July-August 1 1 Yes No 

52 -59.6% -43.9% -42.5% July-August 1 1 Yes Yes 

53 -56.4% -41.0% -39.6% July-August 1 2 No No 

54 -58.2% -43.2% -41.6% July-August 1 2 No Yes 

55 -57.8% -41.9% -40.6% July-August 1 2 Yes No 

56 -60.8% -44.9% -43.5% July-August 1 2 Yes Yes 

57 -56.0% -41.0% -39.5% July-August 2 1 No No 

58 -56.0% -41.6% -40.0% July-August 2 1 No Yes 

59 -57.8% -42.1% -40.7% July-August 2 1 Yes No 

60 -58.6% -43.2% -41.7% July-August 2 1 Yes Yes 

61 -55.5% -40.5% -39.1% July-August 2 2 No No 

62 -57.4% -42.7% -41.1% July-August 2 2 No Yes 

63 -56.9% -41.3% -39.9% July-August 2 2 Yes No 

64 -59.8% -44.2% -42.8% July-August 2 2 Yes Yes 

65 -54.5% -41.2% -39.9% July-September 1 1 No No 

66 -54.3% -41.5% -40.2% July-September 1 1 No Yes 

67 -59.1% -45.0% -43.9% July-September 1 1 Yes No 

68 -60.4% -46.4% -45.2% July-September 1 1 Yes Yes 

69 -53.8% -40.6% -39.3% July-September 1 2 No No 

70 -55.7% -42.6% -41.3% July-September 1 2 No Yes 

71 -58.0% -43.9% -42.8% July-September 1 2 Yes No 

72 -61.6% -47.5% -46.3% July-September 1 2 Yes Yes 

73 -53.7% -40.6% -39.4% July-September 2 1 No No 

74 -53.7% -41.2% -39.8% July-September 2 1 No Yes 

75 -58.4% -44.5% -43.3% July-September 2 1 Yes No 

76 -59.6% -45.9% -44.6% July-September 2 1 Yes Yes 

77 -53.1% -40.0% -38.8% July-September 2 2 No No 

78 -55.0% -42.2% -40.9% July-September 2 2 No Yes 

79 -57.3% -43.4% -42.2% July-September 2 2 Yes No 

80 -60.9% -47.0% -45.7% July-September 2 2 Yes Yes 

81 -53.2% -40.3% -39.4% July-October 1 1 No No 

82 -53.4% -40.9% -39.9% July-October 1 1 No Yes 

83 -57.9% -44.7% -44.0% July-October 1 1 Yes No 
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Table I-A19 (continued). 

84 -59.2% -46.0% -45.2% July-October 1 1 Yes Yes 

85 -52.7% -39.8% -39.0% July-October 1 2 No No 

86 -54.8% -42.0% -41.1% July-October 1 2 No Yes 

87 -56.8% -43.6% -42.9% July-October 1 2 Yes No 

88 -60.5% -47.1% -46.4% July-October 1 2 Yes Yes 

89 -52.4% -39.6% -38.8% July-October 2 1 No No 

90 -52.8% -40.4% -39.4% July-October 2 1 No Yes 

91 -56.9% -43.9% -43.2% July-October 2 1 Yes No 

92 -58.3% -45.3% -44.5% July-October 2 1 Yes Yes 

93 -51.8% -39.1% -38.3% July-October 2 2 No No 

94 -54.2% -41.6% -40.6% July-October 2 2 No Yes 

95 -55.8% -42.8% -42.0% July-October 2 2 Yes No 

96 -59.6% -46.4% -45.7% July-October 2 2 Yes Yes 
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Table I-A20. Impact of Climate Change with Adaptation under the RCP8.5 Scenario Based 

on Models that Use Yearly Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
12 

Type 

of 

Time 

Tren

d13 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

49 -50.2% -32.0% -29.8% July-August 1 1 No No 

50 -50.2% -32.6% -30.3% July-August 1 1 No Yes 

51 -51.9% -32.9% -30.6% July-August 1 1 Yes No 

52 -52.8% -33.9% -31.6% July-August 1 1 Yes Yes 

53 -49.7% -31.5% -29.3% July-August 1 2 No No 

54 -51.5% -33.6% -31.3% July-August 1 2 No Yes 

55 -51.0% -32.1% -29.9% July-August 1 2 Yes No 

56 -54.0% -34.8% -32.5% July-August 1 2 Yes Yes 

57 -49.4% -31.5% -29.4% July-August 2 1 No No 

58 -49.4% -32.1% -29.9% July-August 2 1 No Yes 

59 -51.1% -32.3% -30.1% July-August 2 1 Yes No 

60 -51.9% -33.2% -31.0% July-August 2 1 Yes Yes 

61 -48.9% -31.0% -29.0% July-August 2 2 No No 

62 -50.7% -33.1% -30.9% July-August 2 2 No Yes 

63 -50.2% -31.5% -29.4% July-August 2 2 Yes No 

64 -53.1% -34.2% -31.9% July-August 2 2 Yes Yes 

 

 

  

                                                           
12 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
13 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A21. Impact of Climate Change under the RCP4.5 Scenario Based on Models that 

Use Long-Term Average Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
14 

Type 

of 

Time 

Tren

d15 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

97 -22.3% -14.9% -13.3% March-August 1 1 No No 

98 -12.3% -8.5% -7.7% March-August 1 1 No Yes 

99 -38.1% -25.7% -23.6% March-August 1 1 Yes No 

100 -34.6% -22.3% -19.9% March-August 1 1 Yes Yes 

101 -18.7% -12.4% -11.0% March-August 1 2 No No 

102 -10.9% -7.4% -6.6% March-August 1 2 No Yes 

103 -35.5% -23.7% -21.7% March-August 1 2 Yes No 

104 -34.2% -21.7% -19.2% March-August 1 2 Yes Yes 

105 -22.2% -14.9% -13.3% March-August 2 1 No No 

106 -12.5% -8.6% -7.9% March-August 2 1 No Yes 

107 -37.7% -25.4% -23.3% March-August 2 1 Yes No 

108 -34.3% -22.0% -19.6% March-August 2 1 Yes Yes 

109 -18.6% -12.4% -11.0% March-August 2 2 No No 

110 -11.1% -7.5% -6.8% March-August 2 2 No Yes 

111 -35.1% -23.4% -21.3% March-August 2 2 Yes No 

112 -33.8% -21.4% -18.9% March-August 2 2 Yes Yes 

113 -22.5% -15.7% -14.7% March-September 1 1 No No 

114 -12.1% -8.8% -8.5% March-September 1 1 No Yes 

115 -40.1% -29.4% -28.1% March-September 1 1 Yes No 

116 -36.1% -24.9% -23.1% March-September 1 1 Yes Yes 

117 -18.7% -13.1% -12.2% March-September 1 2 No No 

118 -10.4% -7.4% -7.1% March-September 1 2 No Yes 

119 -37.4% -27.1% -25.9% March-September 1 2 Yes No 

120 -35.4% -24.0% -21.9% March-September 1 2 Yes Yes 

121 -22.4% -15.7% -14.7% March-September 2 1 No No 

122 -12.2% -9.0% -8.7% March-September 2 1 No Yes 

123 -39.8% -29.1% -27.8% March-September 2 1 Yes No 

124 -35.8% -24.6% -22.8% March-September 2 1 Yes Yes 

125 -18.7% -13.1% -12.2% March-September 2 2 No No 

126 -10.6% -7.6% -7.2% March-September 2 2 No Yes 

127 -37.1% -26.8% -25.6% March-September 2 2 Yes No 

128 -35.1% -23.7% -21.5% March-September 2 2 Yes Yes 

129 -23.7% -17.3% -16.2% March-October 1 1 No No 

130 -12.7% -9.8% -9.5% March-October 1 1 No Yes 

131 -42.5% -32.9% -32.0% March-October 1 1 Yes No 

132 -37.4% -27.3% -25.7% March-October 1 1 Yes Yes 

133 -19.8% -14.4% -13.6% March-October 1 2 No No 

                                                           
14 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
15 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A21 (continued). 

134 -10.8% -8.1% -7.8% March-October 1 2 No Yes 

135 -39.5% -30.4% -29.6% March-October 1 2 Yes No 

136 -36.4% -25.9% -24.1% March-October 1 2 Yes Yes 

137 -23.7% -17.3% -16.2% March-October 2 1 No No 

138 -12.9% -9.9% -9.6% March-October 2 1 No Yes 

139 -42.3% -32.7% -31.7% March-October 2 1 Yes No 

140 -37.2% -27.0% -25.4% March-October 2 1 Yes Yes 

141 -19.8% -14.4% -13.6% March-October 2 2 No No 

142 -10.9% -8.2% -7.8% March-October 2 2 No Yes 

143 -39.3% -30.2% -29.3% March-October 2 2 Yes No 

144 -36.1% -25.7% -23.7% March-October 2 2 Yes Yes 

145 -21.3% -12.4% -8.5% July-August 1 1 No No 

146 -11.5% -6.2% -3.5% July-August 1 1 No Yes 

147 -34.1% -19.4% -13.8% July-August 1 1 Yes No 

148 -29.9% -16.5% -11.4% July-August 1 1 Yes Yes 

149 -17.5% -9.8% -6.4% July-August 1 2 No No 

150 -10.9% -5.8% -3.3% July-August 1 2 No Yes 

151 -31.6% -17.6% -12.3% July-August 1 2 Yes No 

152 -30.4% -16.8% -11.8% July-August 1 2 Yes Yes 

153 -21.3% -12.4% -8.4% July-August 2 1 No No 

154 -11.6% -6.2% -3.5% July-August 2 1 No Yes 

155 -34.1% -19.4% -13.7% July-August 2 1 Yes No 

156 -29.8% -16.4% -11.3% July-August 2 1 Yes Yes 

157 -17.5% -9.8% -6.3% July-August 2 2 No No 

158 -11.0% -5.9% -3.2% July-August 2 2 No Yes 

159 -31.4% -17.4% -12.1% July-August 2 2 Yes No 

160 -30.2% -16.7% -11.6% July-August 2 2 Yes Yes 

161 -19.4% -11.4% -8.5% July-September 1 1 No No 

162 -7.5% -3.3% -1.8% July-September 1 1 No Yes 

163 -33.7% -20.1% -15.4% July-September 1 1 Yes No 

164 -29.1% -16.4% -12.2% July-September 1 1 Yes Yes 

165 -14.7% -8.0% -5.6% July-September 1 2 No No 

166 -6.8% -2.8% -1.5% July-September 1 2 No Yes 

167 -30.2% -17.3% -13.0% July-September 1 2 Yes No 

168 -29.6% -16.9% -12.7% July-September 1 2 Yes Yes 

169 -19.4% -11.4% -8.4% July-September 2 1 No No 

170 -7.7% -3.4% -1.9% July-September 2 1 No Yes 

171 -33.7% -20.0% -15.3% July-September 2 1 Yes No 

172 -29.1% -16.3% -12.1% July-September 2 1 Yes Yes 

173 -14.8% -8.1% -5.6% July-September 2 2 No No 

174 -7.0% -3.0% -1.6% July-September 2 2 No Yes 

175 -30.3% -17.3% -12.9% July-September 2 2 Yes No 

176 -29.5% -16.7% -12.5% July-September 2 2 Yes Yes 

177 -19.8% -12.4% -9.8% July-October 1 1 No No 

178 -6.9% -3.4% -2.6% July-October 1 1 No Yes 

179 -34.0% -21.8% -18.1% July-October 1 1 Yes No 
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Table I-A21 (continued). 

180 -28.3% -17.0% -13.9% July-October 1 1 Yes Yes 

181 -14.7% -8.6% -6.6% July-October 1 2 No No 

182 -6.1% -2.9% -2.2% July-October 1 2 No Yes 

183 -30.0% -18.6% -15.3% July-October 1 2 Yes No 

184 -28.9% -17.7% -14.6% July-October 1 2 Yes Yes 

185 -19.9% -12.4% -9.8% July-October 2 1 No No 

186 -7.1% -3.5% -2.6% July-October 2 1 No Yes 

187 -33.8% -21.6% -17.8% July-October 2 1 Yes No 

188 -28.1% -16.9% -13.7% July-October 2 1 Yes Yes 

189 -14.8% -8.6% -6.6% July-October 2 2 No No 

190 -6.3% -3.0% -2.3% July-October 2 2 No Yes 

191 -29.9% -18.4% -15.1% July-October 2 2 Yes No 

192 -28.7% -17.4% -14.3% July-October 2 2 Yes Yes 
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Table I-A22. Impact of Climate Change with Adaptation under the RCP4.5 Scenario Based 

on Models that Use Long-Term Average Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
16 

Type 

of 

Time 

Tren

d17 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

145 -16.2% -8.0% -5.8% July-August 1 1 No No 

146 -8.0% -3.2% -1.7% July-August 1 1 No Yes 

147 -26.8% -12.8% -9.3% July-August 1 1 Yes No 

148 -23.3% -10.4% -7.3% July-August 1 1 Yes Yes 

149 -12.9% -6.0% -4.1% July-August 1 2 No No 

150 -7.5% -2.9% -1.5% July-August 1 2 No Yes 

151 -24.6% -11.3% -8.1% July-August 1 2 Yes No 

152 -23.9% -10.8% -7.7% July-August 1 2 Yes Yes 

153 -16.2% -7.9% -5.6% July-August 2 1 No No 

154 -8.1% -3.2% -1.6% July-August 2 1 No Yes 

155 -26.8% -12.7% -9.2% July-August 2 1 Yes No 

156 -23.2% -10.3% -7.1% July-August 2 1 Yes Yes 

157 -12.9% -6.0% -4.0% July-August 2 2 No No 

158 -7.7% -2.9% -1.4% July-August 2 2 No Yes 

159 -24.5% -11.2% -7.9% July-August 2 2 Yes No 

160 -23.7% -10.7% -7.4% July-August 2 2 Yes Yes 

 

 

  

                                                           
16 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
17 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A23. Impact of Climate Change under the RCP8.5 Scenario Based on Models that 

Use Long-Term Average Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
18 

Type 

of 

Time 

Tren

d19 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

97 -34.2% -25.7% -24.3% March-August 1 1 No No 

98 -19.6% -14.5% -13.9% March-August 1 1 No Yes 

99 -54.0% -41.3% -40.6% March-August 1 1 Yes No 

100 -48.6% -36.0% -35.7% March-August 1 1 Yes Yes 

101 -29.2% -21.5% -20.4% March-August 1 2 No No 

102 -17.5% -12.7% -12.2% March-August 1 2 No Yes 

103 -50.8% -38.4% -37.8% March-August 1 2 Yes No 

104 -47.8% -35.1% -34.9% March-August 1 2 Yes Yes 

105 -33.7% -25.4% -24.0% March-August 2 1 No No 

106 -19.5% -14.7% -14.0% March-August 2 1 No Yes 

107 -53.2% -40.8% -40.0% March-August 2 1 Yes No 

108 -47.9% -35.5% -35.2% March-August 2 1 Yes Yes 

109 -28.8% -21.4% -20.2% March-August 2 2 No No 

110 -17.4% -12.9% -12.3% March-August 2 2 No Yes 

111 -50.0% -37.9% -37.2% March-August 2 2 Yes No 

112 -47.1% -34.7% -34.4% March-August 2 2 Yes Yes 

113 -34.2% -27.1% -25.9% March-September 1 1 No No 

114 -18.8% -14.9% -14.3% March-September 1 1 No Yes 

115 -55.7% -45.6% -45.1% March-September 1 1 Yes No 

116 -49.8% -39.4% -39.3% March-September 1 1 Yes Yes 

117 -29.0% -22.7% -21.7% March-September 1 2 No No 

118 -16.4% -12.8% -12.3% March-September 1 2 No Yes 

119 -52.4% -42.5% -42.1% March-September 1 2 Yes No 

120 -48.8% -38.3% -38.2% March-September 1 2 Yes Yes 

121 -33.8% -26.9% -25.6% March-September 2 1 No No 

122 -18.8% -15.1% -14.5% March-September 2 1 No Yes 

123 -55.1% -45.2% -44.6% March-September 2 1 Yes No 

124 -49.2% -39.1% -38.9% March-September 2 1 Yes Yes 

125 -28.7% -22.6% -21.6% March-September 2 2 No No 

126 -16.5% -13.0% -12.4% March-September 2 2 No Yes 

127 -51.7% -42.1% -41.6% March-September 2 2 Yes No 

128 -48.2% -37.9% -37.8% March-September 2 2 Yes Yes 

129 -35.5% -28.5% -27.5% March-October 1 1 No No 

130 -19.5% -15.4% -15.2% March-October 1 1 No Yes 

131 -57.6% -48.1% -48.2% March-October 1 1 Yes No 

132 -50.7% -40.9% -41.2% March-October 1 1 Yes Yes 

133 -30.2% -23.9% -23.2% March-October 1 2 No No 

                                                           
18 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
19 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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Table I-A23 (continued). 

134 -16.7% -12.9% -12.8% March-October 1 2 No Yes 

135 -54.1% -44.8% -45.0% March-October 1 2 Yes No 

136 -49.4% -39.4% -39.8% March-October 1 2 Yes Yes 

137 -35.1% -28.3% -27.3% March-October 2 1 No No 

138 -19.5% -15.6% -15.3% March-October 2 1 No Yes 

139 -57.1% -47.7% -47.8% March-October 2 1 Yes No 

140 -50.3% -40.6% -40.9% March-October 2 1 Yes Yes 

141 -29.8% -23.8% -23.0% March-October 2 2 No No 

142 -16.7% -13.1% -12.9% March-October 2 2 No Yes 

143 -53.6% -44.4% -44.6% March-October 2 2 Yes No 

144 -48.9% -39.1% -39.4% March-October 2 2 Yes Yes 

145 -31.2% -22.5% -21.3% July-August 1 1 No No 

146 -16.5% -12.0% -11.1% July-August 1 1 No Yes 

147 -47.2% -33.8% -32.9% July-August 1 1 Yes No 

148 -40.8% -28.9% -28.2% July-August 1 1 Yes Yes 

149 -25.7% -18.2% -17.2% July-August 1 2 No No 

150 -15.6% -11.3% -10.5% July-August 1 2 No Yes 

151 -43.8% -30.9% -30.1% July-August 1 2 Yes No 

152 -41.3% -29.3% -28.7% July-August 1 2 Yes Yes 

153 -30.6% -22.2% -21.0% July-August 2 1 No No 

154 -16.3% -11.9% -11.0% July-August 2 1 No Yes 

155 -46.6% -33.4% -32.4% July-August 2 1 Yes No 

156 -40.2% -28.4% -27.7% July-August 2 1 Yes Yes 

157 -25.2% -18.0% -16.9% July-August 2 2 No No 

158 -15.4% -11.3% -10.5% July-August 2 2 No Yes 

159 -43.1% -30.4% -29.6% July-August 2 2 Yes No 

160 -40.6% -28.8% -28.2% July-August 2 2 Yes Yes 

161 -29.6% -22.5% -21.4% July-September 1 1 No No 

162 -12.4% -8.9% -8.3% July-September 1 1 No Yes 

163 -48.2% -36.7% -35.8% July-September 1 1 Yes No 

164 -41.4% -30.8% -30.4% July-September 1 1 Yes Yes 

165 -23.2% -17.1% -16.2% July-September 1 2 No No 

166 -11.3% -8.1% -7.5% July-September 1 2 No Yes 

167 -43.8% -32.7% -32.0% July-September 1 2 Yes No 

168 -41.7% -31.2% -30.8% July-September 1 2 Yes Yes 

169 -29.2% -22.3% -21.1% July-September 2 1 No No 

170 -12.4% -9.1% -8.4% July-September 2 1 No Yes 

171 -47.8% -36.4% -35.5% July-September 2 1 Yes No 

172 -41.0% -30.6% -30.1% July-September 2 1 Yes Yes 

173 -22.9% -17.0% -16.0% July-September 2 2 No No 

174 -11.4% -8.3% -7.6% July-September 2 2 No Yes 

175 -43.4% -32.5% -31.7% July-September 2 2 Yes No 

176 -41.3% -30.9% -30.5% July-September 2 2 Yes Yes 

177 -30.4% -23.4% -22.4% July-October 1 1 No No 

178 -12.1% -8.4% -8.0% July-October 1 1 No Yes 

179 -48.5% -37.6% -37.1% July-October 1 1 Yes No 
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Table I-A23 (continued). 

180 -40.7% -30.6% -30.5% July-October 1 1 Yes Yes 

181 -23.5% -17.5% -16.7% July-October 1 2 No No 

182 -10.9% -7.4% -7.1% July-October 1 2 No Yes 

183 -43.7% -33.3% -32.9% July-October 1 2 Yes No 

184 -41.0% -31.0% -31.0% July-October 1 2 Yes Yes 

185 -30.0% -23.2% -22.2% July-October 2 1 No No 

186 -12.1% -8.5% -8.1% July-October 2 1 No Yes 

187 -47.9% -37.1% -36.6% July-October 2 1 Yes No 

188 -40.1% -30.2% -30.1% July-October 2 1 Yes Yes 

189 -23.2% -17.4% -16.6% July-October 2 2 No No 

190 -10.9% -7.5% -7.1% July-October 2 2 No Yes 

191 -43.1% -32.8% -32.4% July-October 2 2 Yes No 

192 -40.5% -30.6% -30.6% July-October 2 2 Yes Yes 
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Table I-A24. Impact of Climate Change with Adaptation under the RCP8.5 Scenario Based 

on Models that Use Long-Term Average Data  

Mo

del 

num

ber 

CCSM

4 

 

GFDL-

ESM2G  

 

GFDL-

ESM2

M  

 

Period of Season Temper

ature 

Exposur

e 

Method
20 

Type 

of 

Time 

Tren

d21 

Corn 

Belt 

Dum

mies 

Remo

ve 

1950s 

and 

1960s 

145 -26.6% -16.9% -15.6% July-August 1 1 No No 

146 -13.6% -8.3% -7.5% July-August 1 1 No Yes 

147 -41.6% -25.7% -23.9% July-August 1 1 Yes No 

148 -36.1% -21.6% -20.0% July-August 1 1 Yes Yes 

149 -21.6% -13.3% -12.2% July-August 1 2 No No 

150 -12.8% -7.9% -7.1% July-August 1 2 No Yes 

151 -38.5% -23.1% -21.5% July-August 1 2 Yes No 

152 -36.6% -22.1% -20.5% July-August 1 2 Yes Yes 

153 -26.2% -16.7% -15.4% July-August 2 1 No No 

154 -13.4% -8.3% -7.5% July-August 2 1 No Yes 

155 -41.2% -25.3% -23.6% July-August 2 1 Yes No 

156 -35.5% -21.3% -19.7% July-August 2 1 Yes Yes 

157 -21.3% -13.1% -12.0% July-August 2 2 No No 

158 -12.7% -7.8% -7.0% July-August 2 2 No Yes 

159 -37.9% -22.7% -21.1% July-August 2 2 Yes No 

160 -36.0% -21.7% -20.1% July-August 2 2 Yes Yes 

 

  

                                                           
20 Method 1 uses a sinusoid with a domain of [0, 2π], and method 2 uses a sinusoid with a domain of [0, π]. 
21 Type 1 is the quadratic time trend; type 2 is the two-knot time trend. 
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4. Figures for Chapter I 

 

 

Figure I-1. Effect of Temperature on Log Yield in the Base Model (using 1950-2005 

Data) 
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Figure I-2. Corn Belt Region in the United States 
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Left:    ℎ =
ℎ𝑚𝑎𝑥+ℎ𝑚𝑖𝑛

2
−

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛

2
cos (𝑠) 

Right:   ℎ = ℎ𝑚𝑖𝑛 + (ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛)sin (𝑠) 

 

 

 

Figure I-3. Two Methods of Calculating Temperature Exposure Times 
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Figure I-4. Average Time with Temperature above 32°C in July-August under the Current 

Climate 
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Figure I-5. Average Time with Temperature above 32°C in July-August under the RCP4.5 

Scenario of the CCSM4 Climate Model 
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Figure I-6. Using the Base Model to Predict Corn Yield Changes under the RCP4.5 

Scenario of the CCSM4 Climate Model 
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Figure I-7. Using the Base Model to Predict Corn Yield Changes under the RCP4.5 

Scenario of the GFDL-ESM2G Climate Model 
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Figure I-8. Using the Base Model to Predict Corn Yield Changes under the RCP8.5 

Scenario of the CCSM4 Climate Model 
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Figure I-9. Using the Model that Uses July-August Data to Predict Corn Yield Changes 

under the RCP4.5 Scenario of the CCSM4 Climate Model 
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Figure I-10. Using the Model that Uses July-August Data to Predict Corn Yield Changes 

under the RCP4.5 Scenario of the CCSM4 Climate Model Assuming Adaptation 
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Figure I-11. Corn Yield Changes under the RCP4.5 Scenario of the CCSM4 Climate Model: 

Predictions from the Model that Uses Long-Term Average Data 
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Figure I-12. Corn Yield Changes under the RCP4.5 Scenario of the CCSM4 Climate Model: 

Predictions from the Model that Uses Long-Term Average Data and Includes Corn Belt 

Dummies 
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Figure I-13. Corn Yield Changes under the RCP4.5 Scenario of the CCSM4 Climate Model: 

Predictions from the Model that Uses Long-Term Average Data and Excludes Data from 

the 1950s and 1960s 
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Figure I-14. Corn Yield Changes under the RCP4.5 Scenario of the CCSM4 Climate Model: 

Predictions from the Model that Uses July-August Long-Term Average Data and Changes 

All Assumption of the Base Model 
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APPENDIX FOR CHAPTER II 

1. Figures 
 

 

 

Figure II-1. Intercept of Mean Equation for County Yield Density (Bayesian Kriging) 
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Figure II-2. Trend of Mean Equation for County Yield Density (Bayesian Kriging) 
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Figure II-3. Intercept of Variance Equation for County Yield Density (Bayesian Kriging) 
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Figure II-4. Trend of Variance Equation for County Yield Density 
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Figure II-5. Intercept of Mean Equation for County Yield Density (BMA) 
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Figure II-6. Trend of Mean Equation for County Yield Density (BMA)  
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