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Abstract: Corn yields in developing countries are lower than in developed countries partly 

due to planting methods that involve hand dropping of multiple seeds per hill. Researchers 

from Oklahoma State University (OSU) recently developed the Greenseeder Hand Planter 

(GHP) to replace such methods. The first essay determines economic breakeven levels of 

seed and labor savings, increases in corn yield, and reduced loss of N through reduced 

ammonia volatilization. Results suggest a $50 GHP used to plant 3 hectares per year would 

need to increase corn yields on average by about 1.12%, use 12.19% fewer seeds, or reduce 

labor man-days by 38.66% to equal expected net returns from traditional methods. 

 In the second essay, I conduct Monte Carlo experiments to measure bias in the 

conditional logit (CL) and independent availability logit (IAL) when there is no choice set 

formation and when choice sets are stochastically formed. I also compare the performance 

of the two models using empirical data on paddlefish angler preferences collected in 

Oklahoma. Both the CL and IAL work well when their own assumptions hold, but not 

under the alternative’s assumptions. However, the IAL produces unbiased and less efficient 

parameter estimates when individuals actually choose from the full set of alternatives. 

Empirical results suggest the IAL is able to predict the attribute-cutoff. 

 To avoid limitations from small-scale agronomic trials, there has been a movement 

toward large-scale, on-farm field trials but questions remain as how best to conduct them 

and when it is most profitable to quit them. The third essay addresses these questions by 

using a fully Bayesian decision-theoretic approach. Data are from Monte Carlo simulations 

assuming a corn-input stochastic plateau production function. Results suggest the best way 

to conduct such experiments is to allocate to each of the 10% of the plots, 0 lb. of N, half 

of N*, and 150% of N* under a 30-plot experimental design. Results further indicate that 

it optimal to quit such trials in year 2. Sensitivity analysis confirms the optimal quit period 

but suggests such experiments are most profitable by allocating unalike N levels to all of 

the 30% of experimental plots.  
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CHAPTER I 

 

Citation: Ng’ombe, J. N., Brorsen, B. W., Raun, W. R., & Dhillon, J. S. (2019). Economics of the 

Greenseeder Hand Planter. Agrosystems, Geosciences & Environment, 2(1). 

ECONOMICS OF THE GREENSEEDER HAND PLANTER 

 

Abstract 

Corn (Zea mays L.) yields in developing countries are lower than in developed countries in 

part due to planting methods that involve hand dropping of multiple seeds per hill. The 

Greenseeder Hand Planter (GHP) was developed to reduce seeding rates and long-term health 

risks from using bare hands to drop pesticide-treated seeds. When used to apply fertilizer, it 

can prevent loss of nitrogen (N) from ammonia volatilization. This research determines 

economic breakeven levels of seed and labor savings, increases in corn yield, and reduced loss 

of N through reduced ammonia volatilization. A GHP used to plant 3 hectares per year that 

costs $50 would need to increase corn yields on average by about 1.12%, use 12.19% fewer 

seeds, or reduce labor man-days by 38.66% to equal expected net returns from traditional 

methods. Using the GHP to apply fertilizer would on average increase corn yields up to 10.82% 

per hectare due to reduced N loss from ammonia volatilization and thus fertilization alone 

could be enough to pay for the planter.  

Key Words: Corn, Greenseeder Hand Planter, planting by hand, linear mixed effects, partial 

budgeting.  

JEL Codes: Q13, Q1 
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Introduction 

Corn (Zea mays L.) is one of the most cultivated crops in the world. Corn originated from 

Mesoamerica and its production has spread throughout the world. Corn can be grown over a 

wide range of altitudes and latitudes (Shiferaw et al., 2011). Plant breeders have developed 

varieties that grow well under different biophysical environments. Thus, global corn 

production has increased over the years. Between 1961 and 2010, area allocated to corn 

production increased by more than 50% with about 73% of this growth in developing 

countries (Shiferaw et al., 2011). In 2010, corn was planted on about 73%, 44%, and 46% of 

the cultivated land in Africa, Latin America, and South Asia, respectively (Shiferaw et al., 

2011) and on 35 million U.S.A. hectares (USDA, 2016). 

While demand for corn in developing countries remains high (Borlaug, 2007; 

Shiferaw et al., 2011), its yields in developing countries are lower than in developed 

countries (Cairns et al., 2013; Chim et al., 2014). For example, since 1961 corn yields in the 

top five corn producing countries in the world (U.S.A., China, Brazil, Mexico, and 

Indonesia) have increased three-fold (from 1.84 Mg ha-1 to more than 6.10 Mg ha-1) while in 

developing regions of Africa, Asia, and Latin America, corn yields have stagnated at less 

than 2 Mg ha-1 (FAO, 2011; Cairns et al., 2013). These yield differences are attributed to a 

number of factors including access to and use of localized seed genetics, fertilizer, pest 

management, inefficient irrigation systems, and differences in seeding practices (Adjei et al., 

2003; FAO, 2007; Aikins et al., 2010; Masasi and Ng’ombe 2019). In developed countries, 

mechanized planters that deliver and cover single seeds per drop at relatively precise depths 

and precise within row spacing, enhances yield potential (Omara et al., 2016; Mukembo et 

al., 2016). But, about 60% of corn area (29 million hectares) in developing countries is 
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planted with multiple seeds per hill by hand (Mukembo et al., 2016; Chim et al., 2014; 

Fisher, 2016; Dhillon et al., 2017).  

Planting by hand usually involves using a heavy Stick Seeder Planter (SSP) and/or 

hand-hoe. Workers use the SSP to open a shallow hole about 5 cm deep; drop two to three 

seeds in the hole; cover the seeds with soil forming a small hill; and step on the hill 

enhancing soil to seed contact (Adjei et al., 2003). The typical SSP is composed of a wooden 

shaft and a pointed metal tip that can be used to penetrate the soil and open a slot for seed 

placement (FAO, 2010). Aikins et al. (2010) explain that the whole process is labor intensive 

and results in non-uniform plant stands often with multiple plants emerging from each hill 

and competing for nutrients. For equivalent seeding rates, non-uniform spacing of seeds, has 

been found to result in lower yields than uniform spacing (Epplin et al., 1996; Rutto et al., 

2014). Whereas several hand planters have in the past been developed for corn farmers in 

developing countries, few of them drop one corn seed with a single strike (singulation) 

(Aikins, Plange, and Baffour 2010; Dhillon et al., 2017, 2018). Researchers at Oklahoma 

State University (OSU) developed a singulating corn Greenseeder Hand Planter (GHP) 

hypothesized to reduce optimal seeding rates (Omara et al., 2016). Theoretically, use of a 

GHP relative to a SSP could result in equivalent or greater yields from fewer seeds purchased 

and planted per hectare.  

The GHP includes a seed box that eliminates the need for the operator to handle each 

seed (see Figure 1). Prior to planting, corn seeds are commonly coated with one or more 

pesticides such as imidacloprid (trade name Gaucho), permethrin (trade name Kernel Guard 

Supreme or Profound), thiamethoxam (trade name Cruiser), as well as with biological agents 

(Paulsrud et al., 2001). Careless handling of coated seeds may result in deleterious health 
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consequences. Thus, the GHP can reduce long term health risks because it reduces operator 

exposure to treated seeds (Fisher, 2016; Dhillon et al., 2017). By changing the GHP’s 

internal drum, the GHP can serve as a mid-season fertilizer applicator where the operator 

places fertilizer underneath the soil surface (Dhillon et al., 2017; Dhillon et al., 2018). The 

GHP is hypothesized to prevent loss of N from ammonia volatilization from urea fertilizers 

because it allows the operator to place fertilizer beneath the soil surface which reduces urea’s 

exposure to direct heat from the atmosphere (Dhillon et al., 2017). Developing countries 

experience higher loss of nitrogen (N) via ammonia volatilization than industrialized 

countries due to high temperatures and widespread use of urea and ammonium bicarbonate 

(Bouwman and Boumans, 2002).  

The GHP is designed to release a single seed per location, which is intended to 

improve homogeneity of plant growth, decrease inter-plant nutrient competition, improve 

yield potential, and reduce seed cost per hectare (Chim et al., 2014; Fisher, 2016). To keep 

manufacturing costs low, the GHP does not yet meet this target. However, the most recent 

design comes closer than the version used in the experiments reported here.  

This study seeks to determine the labor savings, seed savings, and the quantity of corn 

yield increase required for the GHP to be an economically viable alternative to the SSP. This 

study also determines the quantity of corn yield increase that would be realized due to 

reduced loss of N from ammonia volatilization if the GHP was used to apply urea fertilizer. 

In addition to these main objectives, we also determine the effect of using the GHP on corn 

yield per hectare relative to an ideal standard of near perfect seed singulation. Evaluation of 

the GHP technology could show whether the GHP would pay or not, which would be an 

important finding for farmers producing a vitally important food crop. These objectives are 
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achieved by employing partial budgeting techniques and estimating a linear mixed effects 

model to data from designed field trials in Stillwater, Oklahoma, U.S.A. 

Methodology 

Theory 

Farmers are expected to choose the planting method that maximizes expected net 

returns and improves their welfare. Biermacher et al. (2009) suggest that the expected profit 

maximizing framework is suitable to model behavioral decision and choice of farmers before 

the onset of the planting season. Assume that one of the farmer’s objectives is to adopt a 

planting method that maximizes expected profit 𝜋 by comparing profit that is yielded by m 

alternative methods. The farmer chooses a planting method j over any alternative package m 

such that  

(1)                                                           . , jmmj    

The adoption decision 
*D and the optimal expected profit *

j  from choosing a given 

planting method would be: 

(2)   





 
 

otherwise 0

for  0,or    ))((max  ))((max iff 1
 

i1

*

jm

*

*
jmEEEE

D
mj 

   

where  0)) -(max( **

jm



mjj E  (Bourguignon et al., 2007; Biermacher et al., 2009).  By 

eqn. (2), a farmer whose objective is to maximize expected profit is expected to adopt a 

planting method whose expected profit is greater than all alternatives. The GHP considered 

here is attempting to drop a single seed per planting station as opposed to an SSP in which 

two or more seeds are dropped per hill. Thus, if the same number of seeds are planted per 
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hectare, the theoretical expected yield would be greater for the GHP given the expected 

agronomic benefits of uniform plant spacing. Alternatively, if fewer seeds are planted per 

hectare with the GHP, total seed costs would be lower. Ignoring the potential value of farmer 

health benefits from using a GHP relative to a SSP, the farmer’s optimization problem is 

mathematically 

(3)                          max𝐷 𝐸(𝜋𝑖|𝒙) = ((𝐷)(𝑝𝐸(𝑦𝐺𝐻𝑃|𝒙) − 𝑐𝐺𝐻𝑃) + ((1 − 𝐷)(𝑝𝐸(𝑦𝑆𝑆𝑃|𝒙) −
𝑐𝑆𝑆𝑃)) 

subject to 

𝑦𝑘 = 𝑓(𝒙), 𝑘 = {𝐺𝐻𝑃, 𝑆𝑆𝑃},     𝐷 ∈ {1,0}, 

where 𝑝 is the price of corn, 𝐸(𝜋𝑖)is expected profit ($) per hectare, 𝐷 is the discrete choice 

variable that equals 1 if the farmer uses GHP, 0 otherwise, 𝑦𝐺𝐻𝑃 is corn yield from plots 

where the GHP was used, 𝑦𝑆𝑆𝑃  is corn yield from plots where the SSP was used, 𝑐𝐺𝐻𝑃 is cost 

of production from plots where the GHP was used, 𝑐𝑆𝑆𝑃 is cost of production from plots 

where the SSP was used, 𝑦𝑘is corn production function and 𝒙 denotes a vector of inputs used 

in corn production. 

Data and Procedures 

Agronomic data 

Plot-level agronomic data were generated from experiments conducted at the Efaw, 

Lake Carl Blackwell, and Stillwater Agronomy Research Stations in Payne County, 

Oklahoma, USA. Efaw has an Ashport silty clay loam soil. The Lake Carl Blackwell plots 

have Pulaski fine-sandy loam soils. Stillwater Agronomy Research Station has mostly 

Kirkland silt loam soils (Omara et al., 2016). These experiments were designed as 

randomized complete blocks. Each experiment comprised three replications and four plots 
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per replication in each site year. The experiments were conducted at the Stillwater site in 

2014, at Efaw in 2014 through 2016 and at Lake Carl Blackwell in 2015 and 2016. 

Treatments consisted of planting methods: GHP, SSP, and a tractor-drawn John 

Deere Planter (JDP). The GHP has an internal drum that can hold up to 1 kg of seed. It was 

designed to deliver a single seed per hill at a planting depth of about 5cm (Omara et al., 

2016). The SSP has a metal tip like those typically used in Central and South America. Its 

only function is to open a planting hole into which seeds are dropped and covered by foot 

(Chim et al., 2014). The SSP used in these field experiments managed 100% singulation 

(planter delivers a single seed with every strike) which implies that the SSP in this 

experiment did not simulate its actual applications in developing countries. Despite this 

severe limitation, the experimental dataset is used because it still provides helpful 

information. 

Hybrid corn variety Pioneer P1498HR was planted on all plots with plant population 

of 74,000 seeds per hectare. Inter-row spacing at all the stations was 76 cm while plant 

spacing was uniform at 18 cm. Plot size varied ranging from 1.5 m by 6 m to 3 m by 6 m. 

Summary statistics of corn yield from each research station are shown in table 1. 

In addition, summary statistics from the research stations according to planter type are shown 

in table 2. Other details of the field trials are in Dhillon et al. (2017). 

Economic analysis 

Partial budgeting was used to determine the economics of the GHP. Adopting a GHP 

would result in incremental changes at the farm and a partial budget is a useful tool for a 

farmer when such a situation arises (Nuthall, 2011). Partial budgeting computes the overall 
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impact by netting out the negative effects from positive effects. Positive effects include the 

monetary value of activities that would increase revenue and/or decrease costs while negative 

effects are those that would decrease revenue and/or increase costs. In our partial budget, the 

added returns were the additional revenue that would result from using the GHP and reduced 

costs included seed and labor costs for SSP. The added costs included the GHP’s annual 

operating costs whose computation relied on depreciation, interest on average value, repairs, 

taxes, and insurance (also called the DIRTI-5 by Lessley and Holik, 1987). Reduced 

revenues were zero.   

The following assumptions were used in our partial budget. The market price of the GHP is 

assumed to range between $40 and $100 per unit. The $100 is about what it costs now and 

the $40 is what we hope it will cost under mass production. Omara et al. (2016) posit that if 

the market price of the GHP was $40 per unit, it would be more marketable among 

smallholder farmers in the developing world. 

We assume a useful life of 3 years and that the GHP would be used to plant corn seed 

on up to 5 hectares per year. Following Haggblade and Tembo (2003), Ng’ombe et al. 

(2017), and Ng’ombe (2017), peasant farmers in Zambia and across sub-Saharan Africa 

(SSA) plant up to 5 hectares of land annually – the typical holding size of land for farming by 

most farmers. An annual market interest rate of 6% was assumed while the repairs, taxes, and 

insurance for the GHP are assumed to be zero. Price of corn is assumed to be $175 per Mg 

while labor cost was set at $2.5 per man-day. A farmer is assumed to plant a hectare of corn 

in 5 days while 25 kg of corn seed is assumed to be planted on one hectare of land. These 

assumptions and variable values were pulled from the standard nationally representative 

smallholder corn enterprise budget from Zambia. The corn enterprise budget was prepared by 
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the Zambia National Farmers’ Union (ZNFU) based on production practices by 

representative Zambian smallholder corn farmers in 2015 (ZNFU, 2015). Zambia is a 

developing country in SSA where planting by hand is common (Haggblade and Tembo, 

2003). In addition, Zambia is one of the countries where the GHP has been distributed (see 

Figure 2). 

Bouwman and Boumans (2002) find that N loss from ammonia volatilization of urea 

fertilizers on average amounts to 18% and 7% in developing countries and industrialized 

countries, respectively. Funderburg (2009) reports a 20% N loss from ammonia volatilization 

to be common when urea fertilizers are applied on the soil surface. Jama et al. (2017) 

determine corn yield response to nitrogen use from  940 on-farm trials and demonstration 

sites consisting of at least 3,220 site-year treatment combinations in southern Africa. Jama et 

al. (2017) classified the applied N rates as “half N”, and “full N” based on recommended 

rates for each site. The “half N” and “full N” rates imply applying fertilizer containing N less 

than or equal to 50% and more than 50% of the recommended N rates, respectively (see Jama 

et al., 2017 for more details). Though Jama et al. (2017) did not estimate the traditional linear 

response stochastic plateau (Tembo et al., 2008; Boyer et al., 2013), their results corroborate 

the idea of the linear response stochastic plateau. They find that without N, farmers would on 

average realize 1.6 Mg of corn per hectare while the expected corn plateau is 4 Mg per 

hectare and that marginal physical productivity for corn is 0.025 Mg per kg.   

Considering that agricultural producers are financially constrained and so the quantity 

of urea is limited, studies by Bouwman and Boumans (2002) and Jama et al. (2017) allow us 

to estimate the corn yield increase that would be realized due to reduced loss of N from 

ammonia volatilization if the farmer used the GHP to apply fertilizer. In our budget, the GHP 
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potentially increases the amount of N by up to 18% (because it places fertilizer underneath 

the soil) and the amount of urea that a producer has is assumed to be constrained. Following 

Bouwman and Boumans (2002) and Jama et al. (2017), the percentage that the GHP would 

increase corn yield due to reduced N loss from ammonia volatilization y* is: 

(4)                                 𝑦∗ = [4 − (1.60 + 0.0259 ∗ 𝑁𝑟𝑒𝑚)]/4 

where Nrem is amount of N available after 18% loss from ammonia volatilization: Nrem = 

(Nplat – Nplat*0.18), Nplat is the amount of N required to produce corn at its plateau. Based 

on averages of Table 2 in Jama et al. (2017), Nrem is 75.95kg of N per hectare while Nplat is 

92.66 kg of N per hectare. 

Statistical analysis 

The effect of using GHP on corn yield was estimated using the plot-level agronomic data. 

Dhillon et al. (2017) conducted the experiment for other experimental objectives. For this 

study, it would have been preferred to compare the GHP with actual farmer practices rather 

than an ideal situation under which the SSP was used. The data are used here because they 

are the only experimental data available and they do show how well the GHP compares 

versus ideal planting methods. The data are cross-sectional time series and therefore could be 

prone to problems of non-spherical errors across seasons. Thus, the R-package lme4 (Bates et 

al., 2015) is used to estimate the linear mixed effects model. The R-package lme4 uses 

restricted maximum likelihood estimation (REML). For estimation of linear mixed effects 

models, REML is preferred to maximum likelihood estimation (MLE) because it yields 

unbiased covariance parameters by accounting for the loss of degrees of freedom that results 

from parameter estimation of fixed effects (West et al., 2007). To determine the statistical 
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significance of treatment main effects, we used the R-package lsmeans developed by Lenth 

(2015). Our linear mixed effects model’s data generating process is 

(5)                                                              𝑦𝑖𝑡𝑘 = 𝜇 + 𝜏𝑖 + 𝑠𝑡 + 𝜀𝑖𝑡𝑘  

where 𝑦𝑖𝑡𝑘  is corn yield with the the 𝑖th planting method, from year 𝑡, and site 𝑘, 𝜇 is the 

overall mean, 𝜏𝑖is the effect of the 𝑖th planting method, 𝑠𝑡~𝑁(0, 𝜎𝑠
2) is the site-year random 

effect, 𝜀𝑖𝑡𝑘~𝑁(0, 𝜎𝜀
2) is a random error, and 𝜎𝑠

2 and 𝜎𝜀 
2are mutually independent.  

Results 

Statistical analysis 

Several diagnostics were conducted to determine the plausibility of the linear mixed 

effects model selected. Based on the Shapiro-Wilk test, the null hypothesis of normality of 

the distribution of corn yield was not rejected at a 10% significance level (P = 0.200). Based 

on results from the Levene test, the null hypothesis of equal error variances across the 

treatments was not rejected (P = 0.567). The likelihood ratio test was used to determine 

significance of the fixed effects (based on the ANOVA function in R software) in the model. 

The null hypothesis of no fixed effects was rejected (P < 0.001). Parametric bootstrap of the 

p-value based on 1000 replications was used to determine statistical significance of site-year 

random effects. There was strong evidence to support the inclusion of site-year random 

effects in the model (P < 0.001). The estimated linear mixed effects regression model is 

shown in table 3. The linear mixed effects model with seed size fixed effects was also 

estimated, but the results differed little from those reported above and therefore they are 

omitted.  
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Furthermore, actual mean differences among treatments were determined by 

conducting a post-hoc analysis and results are reported in table 4. The SSP is the base 

treatment. Results in table 4 indicate the GHP had significantly lower corn yield than the 

SSP. We find no statistically significant differences between mean corn yields from using the 

SSP and JDP. These findings corroborate with descriptive statistics in table 1 for years 2014 

and 2015, although in 2016 the GHP resulted in higher average corn yield than the JDP. 

Dhillon et al. (2018) document efforts to refine use of the hand planter and the improved 

performance in 2016 may partly result from learning in prior years.  

The idealized SSP would result in about 0.742 Mg more corn yield per hectare than 

the GHP. The estimated JDP advantage over GHP of 0.611 Mg per hectare is not statistically 

different from zero. 

Economic Analysis 

Using the partial budgeting approach, breakeven values for corn yield, labor costs, the 

price of corn seed, and the purchased price of the GHP are discussed next. Results suggest 

that for a GHP priced at $50 to be an economically viable alternative to the SSP, it should be 

able to increase corn yields by about 1.12% (equivalent to 28 kg) per hectare. If the GHP can 

achieve the 20% yield increase projected by Omara et al. (2016) then it would 

unambiguously pay to adopt the hand planter. In terms of seed savings, results indicate that 

such a GHP would be an economically viable planting method if it reduced seeds by about 

12.19% per hectare. This finding also implies that for the GHP that costs $50 to result in 

equivalent net returns as the SSP, it should enable the smallholder farmer to save corn seeds 

valued at about $5.0 per hectare (assuming seeds are valued as $1.5/kg).  
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In terms of labor savings, results suggest that for the GHP valued at $50 to generate 

equal net returns as the SSP, it is required to reduce labor man-days for planting by 38.66%. 

Stated differently, this implies that for the GHP to enable a farmer to break-even, it should 

reduce the amount of labor required for planting by at least about 39%. Since planting is 

done in one motion with the GHP, it does have some potential for labor saving. Our 

experience, however, is that there is little or no labor saving and certainly nothing close to 

38.66%, so labor saving does not appear to be a sufficient motivation for adopting the GHP. 

In addition, the main part of the GHP is metal and contains the seeds so that it weighs more 

than the SSP, which makes it being a labor saving technology even more unlikely. 

Since the value of the GHP depends on its production and transactions costs, its 

market price would perhaps be different from the one assumed above, which would 

ultimately alter our partial budgeting results. Considering such potential disparity and 

holding other factors fixed, breakeven values of corn yield, labor, and seed at varying market 

prices of the GHP are presented in table 5. As mentioned before, it is assumed that the GHP’s 

market price would range between $40 and $100 per unit. If the price of the GHP was $95 

per unit, for it to produce the same net returns as the SSP, the GHP would need to increase 

corn yields by about 2.08% per hectare or result in seed savings of 23.16% per hectare, 

ceteris paribus. 

Similarly, it would have to reduce labor man-days required for planting corn by about 74%. 

Whereas if the market price of the GHP was $40 per unit, the breakeven values for seeds, 

labor and corn yields would be 9.75% less seeds per hectare, about 30.94% less man-days per 

hectare, and 0.88% more corn yield per hectare.  
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The smallholder farmer is assumed to be cash constrained and thus only able to 

purchase and apply a fixed amount of fertilizer per hectare. In terms of added corn yields due 

to 18% reduced N loss from ammonia volatilization, our findings show that a farmer would 

realize about 10.82% of additional corn per hectare (about 0.432 Mg per hectare) if the GHP 

was used to apply fertilizer. Thus using the GHP to apply fertilizer would provide about 

$75.74 per hectare, assuming fertilizer is limited. Thus, using it to apply fertilizer on only 

one hectare is sufficient to pay for the full cost of the GHP priced anywhere between $40 and 

$70 per unit.  

Clearly from the linear mixed effects regression model, the GHP resulted in lower 

corn yields per hectare than the SSP, a plausible reason for its lower corn yields could be due 

to the way it was designed. The GHP like the SSP is not designed to ensure or enhance seed 

to soil contact (see video https://www.youtube.com/watch?v=VisKBsqcCWA). The SSP’s 

operator used his/her foot to enhance soil to seed contact whereas this was not done with the 

GHP. Another limitation of the experiment is that unlike conventional practice in developing 

countries, only one seed was dropped per hill with the SSP. A third limitation is that within 

row spacing was uniform for all treatments. Thus, the seeding rate was held constant and 

findings from the experiment cannot be used to address the potential for seed savings with 

the GHP relative to the SSP. 

Following Martin et al. (2005) and  Rutto et al. (2014), lack of attention to seed to soil 

contact when the GHP plots were seeded or failure by the GHP to drop the seed may have 

contributed to lower emergence rates for GHP relative to SSP and JDP and the resultant 

lower crop yield on the GHP plots. As shown in table 6, the GHP had the lowest corn 

emergence rates among the three treatments in all the years and possibly it did not always 
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place a seed. As Dhillon et al. (2018) note, these findings have already been used to modify 

both the design and use of the hand planter. 

Conclusion 

The GHP has the potential to improve yields and reduce costs for planting corn in 

developing countries. In terms of seed savings, a GHP valued at $50 would be a breakeven 

investment if it increased corn yields by 1.12% per hectare or saved about 12.19% of seeds 

per hectare. If labor reduction was its only benefit, a reduction of labor man-days by 38.66% 

would be required for it to be economically as viable as the SSP.  Since the GHP’s market 

price would vary, if the GHP sold at $95, breakeven would require a 2.08% increase in yield, 

a 23.16% seed savings, or a 74% reduction in labor.  In terms of added corn yields due to 

reduced loss of N from ammonia volatilization, the GHP seems to be a profitable venture as 

it would result in about 10.82% increase of corn per hectare which is a staggering $75.74 

additional corn returns per hectare. With about $74 more added revenue, the farmer would be 

able to pay for the GHP from using on a single hectare. This result suggests that the 

economics of the GHP are more favorable for using it to apply fertilizer than for planting 

corn. 

The GHP was compared to two ideal planting techniques. The GHP had lower corn 

yields than an SSP with perfect seed singulation. The GHP had lower corn emergence which 

may be due to the GHP failing to drop a seed or incomplete seed and soil contact. The SSP 

was used in an ideal situation (up to 100% seed singulation), which is different from how 

farmers use it. Further research is needed to evaluate the GHP versus actual farmer practice. 

Given the potential for the GHP to reduce seed costs, increase corn yield due to reduced loss 
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of N from ammonia volatilization, and reduce potential health risk relative to the SSP, it is 

recommended that additional field trials be conducted with the following changes. First, 

either the GHP should be modified to enhance seed to soil contact when seeding, or the GHP 

operator should cover and step on the soil above each placed seed. Second, within row 

distance between seed drops should be doubled in the SSP plots relative to within row 

distance between seed drops in the GHP plots to more nearly simulate farmer practice. Third, 

two seeds should be dropped at each location in the SSP plots relative to one seed in GHP 

plots.  

One limitation of our study is that consequences of physical contact between treated 

seed and SSP and GHP laborers were not determined. The GHP may reduce the negative 

consequences to operator health resulting from handling treated seed. Additional research 

would be required to quantify this potential benefit from using a GHP rather than SSP. 

Furthermore, due to uncertainty, producers may require a higher rate of return in order to 

adopt. Micro-dosing of fertilizer looks promising, but as Jama et al. (2017) argue, research is 

needed to demonstrate results in actual farmers’ fields rather than only on field trials.  
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Table 1.1: Descriptive Statistics of Corn Yield (Mg ha
-1

) According to Planter Type Obtained in 

2014, 2015, and 2016 
 2014  2015  2016 

Planter 
Type 

Mean SD  Mean SD Mean SD 

SSP 6.683 0.511  4.506 2.140 5.462 2.320 
GHP 5.583 0.909  3.421 2.313 5.326 2.291 
JDP 6.433 1.357  4.488 1.845 5.221 2.268 
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Table 1.2: Descriptive Statistics of Corn Yield (Mg ha
-1

) by Planter Type from Efaw, Lake Carl 

Blackwell and Stillwater Agronomy Research Stations 
 Efaw  Lake Carl Blackwell  Stillwater 

Planter Type Mean SD  Mean SD  Mean SD 

SSP 6.313 2.268  4.067 1.511  4.050 0.750 
GHP 5.582 2.200  3.106 2.173  3.577 0.985 
JDP  5.940 1.677  3.706 2.029  5.233 0.451 
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Table 1.3: Linear Mixed Effects Regression Results of Corn Yield (Mg ha
-1

) Response to Planter 

Type 

Variable name        Coefficient  Std. Error 

Intercept  5.262**  0.776 

GHP  -0.742**  0.346 

JDP  -0.130  0.456 

Site-year random effect  2.536**  1.262 

Error variance  3.388**  1.357 

Log likelihood ratio  -408.344     

Number of observations    193 

**Statistically significant at 1%,  
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Table 1.4: Least Squares (LS) Means (Mg ha
-1

) of Corn Yield by Planter Type 

Planter I vs Planter j   Difference in Least Squares Means 

(Mg ha-1)  

SSP vs JDP   0.130 

SSP vs GHP   0.742** 

JDP vs GHP   0.611 

**Statistically significant at 1% 
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Table 1.5: Breakeven Corn Yield (Mg/ha), Corn Seed (kg/ha) and Labor Savings (man-days) 

Price of GHP 

($/unit) 

Breakeven Corn Yield 

(Mg/ha) 

Breakeven Amount of 

Seed (kg/ha) 

Breakeven Amount of Labor 

(man-days/ha) 

40 0.022 2.578 1.547 

45 0.025 2.900 1.740 

50 0.028 3.222 1.933 

55 0.030 3.544 2.127 

60 0.033 3.867 2.320 

65 0.036 4.189 2.513 

70 0.039 4.511 2.706 

75 0.041 4.833 2.900 

80 0.044 5.156 3.093 

85 0.047 5.478 3.287 

90 0.050 5.800 3.480 

95 0.052 6.122 3.673 

100 0.055 6.444 3.867 
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Table 1.6. Average Emergence Rates (%) According to Planter Type Obtained in 2014, 2015, and 

2016 

 2014  2015  2016 

Planter 

Type 

Mean SD  Mean SD Mean SD 

SSP 89.333 17.282  96.565 5.010 91.167 5.734 
GHP 82.056 21.421  80.372 14.372 86.020 9.411 

JDP 87.333 14.224  92.288 10.461 95.583 4.641 
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Figure 1.1: The Greenseeder Hand Planter 

Source: Oklahoma State University’s Nitrogen Use Efficiency website (www.nue.okstate.edu) 

http://www.nue.okstate.edu/
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Note: Countries marked in red had some farmers that received a GHP in previous by 2016. 

 

Figure 1.2: Distribution of the GHP across the World by 2016.  

Source: Oklahoma State University’s Nitrogen Use Efficiency website (www.nue.okstate.edu) 

http://www.nue.okstate.edu/
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CHAPTER II 

 

THE EFFECT OF INCLUDING IRRELEVANT ALTERNATIVES IN DISCRETE CHOICE 

MODELS OF RECREATION DEMAND 

Abstract 

I extend research into choice set formation in random utility maximization (RUM) models by 

conducting Monte Carlo experiments to compare the performance of two plausible choice set 

specifications. I measure bias in the conditional logit (CL) and independent availability logit 

(IAL) models when there is no choice set formation and individuals choose from the full set of 

alternatives, and when choice sets are stochastically formed and individuals choose from a subset 

of all alternatives. I also compare the performance of the two models using empirical data on 

paddlefish angler preferences and catch-and-release regulations in Oklahoma. Both the CL and 

IAL work well when their own assumptions hold, but not under the alternative’s assumptions. 

The CL produces biased parameters when the researcher ignores choice set formation and 

includes irrelevant alternatives in the choice set. However, the IAL produces unbiased and 

considerably less efficient parameter estimates when individuals actually choose from the full set 

of alternatives while empirical results show that the IAL predicts a distance cutoff that is closer 

to the true one. Since neither the IAL nor CL is universally preferred, researchers must choose 

between them based on knowledge about the probability of irrelevant alternatives considered.



31 
 

Keywords: Choice set specification, conditional logit, independent availability logit, Monte 

Carlo experiments, distance cutoffs. 

JEL: C25, C51, C52, Q5 

Introduction 

Choice set misspecification is an important problem in discrete choice models. Choice set 

misspecification occurs when irrelevant alternatives are mistakenly placed into the choice set, 

rather than being discarded by the researcher. Decision makers may naturally exclude certain 

alternatives because they are unaware of them or because one of the attributes generates 

substantial disutility. In practice, it is well known that parameter and welfare estimates are 

sensitive to choice set definitions (Peters and Adamowicz 1995; Swait and Ben-Akiva 1987). 

Parameter sensitivity is especially of concern in applications with a huge number of feasible 

alternatives, which includes models of location choice in applications to real estate and 

recreation demand, because the researcher may be compelled to make a subjective judgement 

about the composition of the true choice set (McFadden 1978; Guevara and Ben-Akiva 2013; 

von Haefen and Domanski 2018). 

The literature on choice set misspecification offers several approaches for identifying and 

dealing with irrelevant alternatives. One practice common in recreation demand applications is to 

exclude alternatives that exceed a certain distance or price (determined by the researcher) from 

each decision-makers’ home. Prior work shows including distant sites affects parameter 

estimates, although this influence may diminish past some threshold (Parsons and Hauber 1998; 

Whitehead and Haab 1999). Several papers examine parameter sensitivity to the inclusion of 

various substitute site/activity combinations in discrete choice models of recreation demand 

(Haab and Hicks 1997; Jones and Lupi 1999; Parsons, Plantinga and Boyle 2000; Pramono and 
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Oppewal 2012). These papers treat choice set definitions as exogenous—i.e. the decision 

maker’s choice set is assumed to be known deterministically. However, there is also a growing 

number of papers that treat choice set definition endogenously by modeling choice set formation 

in one stage and the selection of an alternative in a second stage (Manski 1977; Swait and Ben-

Akiva 1987; Haab and Hicks 1997; Li, Adamowicz and Swait 2015; Thiene, Swait and Scarpa 

2017). These papers conclude that ignoring choice set formation leads to biased parameters and 

welfare estimates.  

This article extends research into choice set formation in discrete choice models by 

measuring the bias from two plausible forms of choice set specification. My motivation comes 

from the practice of excluding recreational sites that the researcher thinks are too far for a 

decision-maker to reasonably access (for example, day-trip sites more than 200 one-way miles 

from an individual’s home) or due to the difficulty in assessing travel costs for long distances. 

Specifically, unlike previous research, I examine two types of choice set formation: (1) every 

choice set includes the full set of alternatives and (2) each choice set is formed from a stochastic 

selection process that is partly a function of a choice attribute level, thereby rendering choice set 

formation endogenous. The two cases are used to assess the properties of two estimators of 

discrete choice models, one of which accounts for stochastic choice set formation. Thus, I 

measure the bias from including irrelevant alternatives in discrete choice models when choice set 

formation follows a stochastic process and when the choice set formation process is not 

followed. 

The primary objective is to measure the bias when an observable attribute (e.g. distance 

to recreation site) affects the probability that an alternative appears in the choice set. In doing so, 

I estimate two models: 1) the independent availability logit (IAL) model that incorporates choice 
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set formation as a stochastic process and probabilistically imputes all possible choice sets and 2) 

the conditional logit (CL) model which assumes the choice set includes all alternatives. The 

approach used is illustrated in figure 2.1.  

While actual data is often used to measure potential bias in recreation demand models, I 

conduct Monte Carlo experiments that generate artificial data based on a known data generation 

process as well as empirical analyses using real data. The experiment simulates a random utility 

maximization (RUM) problem in which individuals choose from many recreational sites with 

varying attributes. Monte Carlo analysis allows us to measure the true bias when irrelevant 

alternatives are included in the choice set while considering stochastic choice set formation, and 

test how well recreational choice set definition heuristics can do in minimizing this bias. Monte 

Carlo-based methods are desirable in this study because (i) the two data generating mechanisms 

to which I compare the parameter estimates would be known, and (ii) a greater number of 

replications allows one to evaluate the robustness of the results. Monte Carlo experiments build 

on previous research by comparing the performance of the IAL to recreational choice set 

definition heuristics. My empirical analyses mainly compare parameter estimates of the two 

models using real data without any known parameter estimates.  

Competing Models  

In this section, a description of the models estimated using both simulated and actual data. In the 

traditional RUM setting, choices among discrete alternatives are studied to model choice 

problems such as those in recreation, transportation, marketing, and agriculture. A researcher 

chooses the alternatives to include in the model, typically using a list of all possible alternatives, 

a list of the alternatives chosen by decision makers, observed levels of the attributes, or some 

combination of the above. However, this process has been criticized as naïve; particularly in the 



34 
 

marketing literature where it has been argued that individuals have unique choice sets that are 

formed as part of a multistage choice process (Manski 1977; Horowitz and Louviere 1995). Haab 

and Hicks (1997) provide evidence that choices in recreation demand are made in a two-stage, 

consider-then-choose discrete choice process.  

In typical discrete choice models, typically, the random utility of the nth individual for 

choosing the ith alternative is  

(1)                                                         𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜀𝑛𝑖 

where 𝑉𝑛𝑖is the deterministic utility component (i.e., systematic utility influenced by observable 

covariates), and 𝜀𝑛𝑖  is an independent and identically distributed stochastic component reflecting 

unobservable, individual specific heterogeneity. An nth individual would choose an ith alternative 

if and only if it provides the highest utility among all the feasible alternatives, A. Formally, 

utility maximization implies that the probability that the nth individual chooses the ith alternative 

is  

(2)                                      𝑃𝑛(𝑖) = 𝑃𝑟𝑜𝑏(𝑉𝑛𝑖 + 𝜀𝑛𝑖 ≥ 𝑉𝑛𝑘 + 𝜀𝑛𝑘, ∀𝑘 ∈ 𝐶). 

Where  𝑉𝑛𝑘  is the deterministic utility component from the kth alternative, 𝜀𝑛𝑘 is an independent 

and identically distributed stochastic component reflecting unobservable individual and specific 

heterogeneity for choosing every kth alternative in set C, and 𝑉𝑛𝑖  and 𝜀𝑛𝑖 are as defined in 

equation (1).  

The Conditional Logit Model    

Assuming 𝜀𝑛𝑖 is an independent and identically distributed as a Gumbel distribution, yields the 

standard CL (Greene 2003). Given these assumptions, the probability 𝑃𝑛(𝑖) in equation (2) can 

be written as  

(3)                                                     𝑃𝑛𝑖 =
exp (𝑉𝑛𝑖)

∑ exp (𝑉𝑛𝑘)𝑘∈𝐶
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Equation (3) is crucial in discrete choice modeling and the deterministic part of utility 𝑉𝑛𝑖  is 

assumed to be a linear function of I attributes known to the researcher. Formally, 𝑉𝑛𝑖 = 𝒙𝑛𝑖
′ 𝛽, 

where 𝑥𝑛𝑖 is the vector of attributes of the ith alternative for the nth individual (e.g., distance d, 

and perceived site quality, q) and 𝛽 a parameter vector. Through parameter estimates of 𝛽, 

probability of selection and marginal effects for each alternative can be easily obtained by 

maximum likelihood estimation. If the choice set C is incorrectly specified, parameter estimates 

would be biased (Manski 1977).  

 

The Independent Availability Logit Model 

Applications of the CL assume the set of alternatives in the choice set is known by the analyst. 

Individual-specific choice sets are allowed, but the composition of these choice sets must still be 

known with certainty. In some cases, however, this assumption may be inappropriate, and the 

choice set developed by the analyst may either include alternatives that were never considered by 

the decision-maker or may exclude those considered by the decision-maker but overlooked by 

the analyst, rendering C with either too many alternatives or too few alternatives. Both cases 

would render misspecification of the likelihood function and could lead the CL to estimate 

biased parameters (Swait and Ben-Akiva 1987; Li, Adamowicz and Swait 2015). When choice 

sets are endogenously determined it can be very difficult for the analyst to determine the exact 

choice set, because endogenous behavior is not typically observed. Although it may be possible 

to collect data about the relevant alternatives through survey methods, it has also been argued 

that choice set formation warrants probabilistic modeling of the choice set formation process 

(Wichmann, Chen and Adamowicz 2016) that prompted Manski (1977) to extend the CL model 

to a two-stage consider-then-choose model.  
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Building on the seminal work of Manski (1977), Swait and Ben-Akiva (1987) developed 

the IAL that models choice set formation as a two-stage process. In the first stage, a population 

of N individuals faces a set B with I alternative sites, the nth individual forms a non-empty choice 

set 𝐵 ∈ 𝐶 and then chooses an alternative that maximizes utility in the second stage. Following 

Wichmann, Chen and Adamowicz (2016), the random utility function is defined on a feasible set 

B and the unconditional probability that the nth individual chooses an ith alternative is  

(4)                                      𝑃𝑛(𝑖) = ∑ 𝑃𝑛(𝑖|𝐵)𝑄𝑛(𝐵)𝑖∈𝐵,𝐵∈𝐶  

where 𝑃𝑛(𝑖|𝐵) is the conditional probability that alternative I is chosen given that choice set B is 

the nth individual’s true choice set, 𝑄𝑛(𝐵) is the probability that B is in nth individual’s true 

choice set, I is an alternative in B, and C is a set of all possible non-empty choice sets. In the IAL 

model, 𝑄𝑛(𝐵) is 

(3)               𝑄𝑛(𝐵) =
∏ 𝐴𝑛(ℎ)∏ [1−𝐴𝑛(𝑘)]𝑘∈(𝐶−𝐵)ℎ∈𝐵

1−∏ [1−𝐴𝑛(𝑖)]𝑖∈𝐶
 

where h, I, and k index alternatives belonging to different choice sets, An(.) is the probability that 

an alternative is included in the choice set. It is assumed that inclusion or exclusion of 

alternatives is independent of inclusion or exclusion of another alternative. For the nth individual, 

𝐴𝑛(𝑖) denotes availability of the ith alternative. It is assumed that an alternative’s availability is 

determined by a threshold for one variable (e.g. price or distance) such that 

(6)                      𝐴𝑛(𝑖) = 𝑃𝑟𝑜𝑏(𝑑𝑛𝑖 < 𝜏 + 𝜗𝑛𝑖) =
1

1+exp (𝜇(𝑑𝑛𝑖−𝜏))
     

where 𝑑𝑛𝑖 is a choice attribute, 𝜏 is the threshold parameter for this attributes, and 𝜗𝑛𝑖is an 

identically and independently logistic distributed random variable with a location of zero and a 

scale of 𝜇. In the context of recreation demand, equation (6) can be interpreted as the probability 

that the distance 𝑑𝑛𝑖 to reach alternative I exceeds the threshold 𝜏 + 𝜗𝑛𝑖 used by individual n to 
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determine which alternatives they will compare in making their final choice. In this case, the 

threshold is akin to the maximum distance an individual is willing to travel to access a recreation 

site, beyond which the site is not part of the choice set.  

In the IAL model, the conditional probability that alternative I is chosen given that B is 

the nth individual’s true choice set (included in equation (4)) is defined as 

(7)                                 𝑃𝑛(𝑖|𝐵) = {

exp (𝑉𝑛𝑖)

∑ exp (𝑉𝑛𝑘)𝑘∈𝐵
 if 𝑖 ∈ B

0                      if  𝑖 B  
 

where 𝑉𝑛𝑖is the systematic component of random utility 𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜀𝑛𝑖where 𝑉𝑛𝑖 = 𝑥𝑛𝑖
′ 𝛽 ( 

defined in equation (3)), where 𝜀𝑛𝑖is identically and independently distributed Gumbel with scale 

fixed at unity and independent of the distance cutoff error 𝜗𝑛𝑖 (Swait and Ben-Akiva 1987).  

Equations (4)-(7) define the IAL model and its parameter estimates are usually obtained 

by maximum likelihood estimation. The model has been applied in several disciplines in both 

methodological and applied work. For example, Wichmann, Chen and Adamowicz (2016) used 

it to measure the importance of social networks on choice set formation, Haab and Hicks (1997) 

used it to measure the value of outdoor recreation sites, and Li, Adamowicz and Swait (2015) 

used it to examine the effects of choice set misspecification on RUM welfare measures.  

Studies by Li, Adamowicz and Swait (2015) and Wichman, Cheng and Adamowicz 

(2016) used Monte Carlo simulations in their settings. Though flexible and often insightful, 

Monte Carlo studies are subject to between-simulation variability called Monte Carlo error 

(Koehler, Brown and Haneuse 2009). But most simulation-based studies ignore Monte Carlo 

error, which informs the analyst the amount of uncertainty in their finite simulation samples 

(Koehler, Brown and Haneuse 2009). This approach is partly motivated by considering this 
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uncertainty in simulation based results, and I report the Monte Carlo error in the mean parameter 

estimates.  

Unlike previous studies, I also consider the performance of the CL and IAL for two 

scenarios shown in figure 1. In the first scenario, I estimate both the CL and IAL models from 

data simulated under a stochastic choice set formation (IAL model) by varying distance cutoffs 

to accommodate irrelevant alternatives in choice sets. In the second scenario, I estimate both 

models from data simulated based on the assumption that the choice set includes the full set of 

alternatives (CL model). I measure the bias and efficiency of parameter estimates from two 

discrete choice models commonly used in the literature when either choice sets are stochastically 

formed or when there is no choice set formation and individuals choose from the full set of 

alternatives. Using real databases, I vary the distances and estimate the CL model at all distance 

cutoffs but the IAL model is estimated once since its results are not expected to change.  

Data and Procedures 

In this section, I describe the data generating processes when no actual data were used. I also 

describe the actual data used. Specifically, I describe the Monte Carlo experiments employed 

besides summaries of variables from actual data set used.  

Monte Carlo Experiments 

Table 1 presents the basic setting of the data generation process. In both cases, there are 200 data 

sets (or replications, R = 250), 3,000 choice tasks (or observations, O =3,000), and 10 

alternatives in each choice set (J = 10). The alternatives are described by two attributes (K = 2) 

that reflect distance (d) to the site and a measure of perceived quality (q). The choice for R=200 

and 3,000 choice tasks in both models was driven by time constraints imposed by the 

computational burden of estimating the IAL model rendering us not to vary the number of 
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observations. The two situations correspond to discrete choice recreation demand models where 

either each individual is assumed to face the same set of all recreation sites in a global choice set 

or different individuals consider different choice sets and may not automatically choose all 

options because of bounded rationality (Eliaz and Spiegler 2011).  

Suppose that the two attributes are, in fact, distance (d) to access the alternative and the 

perceived environmental quality (q) of the alternative. One of the reasons alternatives may 

become irrelevant in a recreational site choice problem is when some people lack knowledge 

about the sites far from their homes and may thus, consider these sites as irrelevant. Since 

distance and quality vary across alternatives, the two variables are randomly and independently 

drawn from a uniform distribution between 0 and 1 for 𝑛 = 1, … , 3,000, and 𝑖 = 1, … ,10.  

As earlier mentioned, the IAL model has a two-stage choice set formation built on work 

by Manski (1977). How I accomplish this process is summarized below. In the first stage, I draw 

independent errors, 𝜗𝑛𝑖  (see equation (6)) from a logistic distribution with mean zero and scale 

parameter 𝜇 = 10 in each replication. All alternatives or their combinations that satisfy equation 

(6) are included in the nth individual’s choice set, where 𝜏 = 0.5. The number of alternatives and 

their combinations is determined by 2𝑗 − 1 where j represents the number of alternatives in each 

choice set. In the current study, j = 10 to represent the ten categories. Thus, I considered 1023 

non-empty choice sets where the universal choice set ranges from {1}, {2}, {3}, {4}, {5}, {6}, 

{7}, {8}, {9}, {10}, {1, 2}, {1, 3}, … , and so on. 

In the second stage, individuals compare the utility level from each alternative in their 

choice sets (as described in first stage) and select the alternative with the largest utility. I draw 

the random portion of utility 𝜀𝑛𝑖 from a Gumbel distribution G(0, 1). For the sake of brevity, I 

assume a linear and additive form of 𝑉𝑛𝑖 = 𝑥𝑛𝑖
′ 𝛽 where x includes a vector of alternative specific 
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constants for alternative 1 (ASC1) through alternative 9 (ASC9) where ASC10 is the base 

category. The two attributes, distance and site quality, are included as regressors in both models.  

Next, I estimate the CL and IAL models for 250 simulations, and I vary the distance 

cutoffs after each set of simulations: first 0.2, then 0.4, then 0.6, and 0.8. The IAL model is 

estimated when the cutoff is 0.2 while the CL is estimated at all distance cutoffs. Finally, I 

simulate the data without considering a stochastic choice set (i.e., the CL being the true model) 

as follows. Given the true vector of parameter estimates and an array of uniformly distributed 

distance and site’s quality, I generate the 𝑋𝛽 matrix and compute probabilities for each 

alternative based on equation (1). I then draw a Gumbel distributed random G(0,1) variable 

added to the deterministic portion of utility (equation 1). The choice is made based on random 

utility maximization from which individuals choose the recreation site with highest utility. I then 

estimate both CL and IAL models once for 250 simulated datasets. The CL framework does not 

assume distance cutoffs – its underlying assumption is that people would consider all recreation 

sites presented to them unlike in the IAL. Thus, I estimate seven models altogether: 1) IAL at 

distance cutoff of 0.2, 2) CL at distance cutoff of 0.2, 3) CL at distance cutoff of 0.4, 4) CL at 

distance cutoff of 0.6, 5) CL at distance cutoff of 0.8, 6) CL, and 7) IAL when the choice set 

formation is not considered and individuals choose from the full set of alternatives. 

What follows next for the first scenario (i.e., IAL is true model) is a comparison of mean 

parameter estimates from CL and IAL with the true parameter vector is 1.50, 5.00, 3.00, 2.50, 

2.00, 0.75, 1.25, 2.70, 4.00, 4.50, -3.50, 0.50, and 10.00 for ASC1, ASC2, ASC3, ASC4, ASC5, 

ASC6, ASC7, ASC8, ASC9, site quality, distance,  , and μ, respectively. Notice that  and μ 

affect decision making via equation (6).  
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Empirical Data 

Empirical data used in the current study are part of the revealed preference (RP) data used in Cha 

and Melstrom (2018). The study by Cha and Melstrom (2018) focus on paddlefish angler 

preferences and catch-and-release regulations in Oklahoma and used choice experiment data that 

this study benefits from. Thus, a more detailed description of the data can be found in Cha and 

Melstrom (2018). Table 2 shows descriptive statistics of the empirical data used. These summary 

statistics show that about 2% of the anglers decided to go fishing for paddlefish while about 20% 

of them preferred to go fishing to at least 2 fishing sites. The average number of paddlefish 

anglers were able to catch was about 3 fish per day while the maximum number was about 9 fish. 

Furthermore, table 1 shows that about 60% of anglers preferred to fish from the river bank to 

other alternatives. In terms of distance to the fishing site, the average distance was about 134 

miles while the maximum distance anglers could travel was 2073 miles. While there are other 

variables in the data, this study only uses the described variables for brevity. Similar to Monte 

Carlo simulations, the following are distance cutoffs in miles that were employed for empirical 

data: 100, 200, 300, and 400. The CL is estimated at all these cutoffs while the IAL is estimated 

at distance cutoff of only 100 miles.   

Evaluating Parameter Estimates 

To assess the efficiency of the estimates, I measure the average differences between the 

parameter estimates 𝛽̂ from values 𝛽. This is achieved by computing the square of the 

differences between the parameter estimates and their true values and taking their mean values. 

Thus, specifically, I compute the mean square error (MSE) as 

(6)                       𝑀𝑆𝐸(𝛽̂) =
1

𝑅
∑ √[𝛽̂𝑟 − 𝛽]2
𝑅
𝑟=1  
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where r=1,…,R, R denotes replications, R=250 is the number of replications in each experiment, 

and 𝛽̂ denotes an estimate of 𝛽. The MSE is a measure of how accurate and precise the estimate 

is and can thus also be decomposed as (Wackerly, Mendenhall, and Scheaffer 2014) 

𝑀𝑆𝐸(𝛽̂) = 𝐵𝑖𝑎𝑠2(𝛽̂) + 𝑉𝑎𝑟(𝛽̂) 

 

where square of bias measures the accuracy of the estimate while variance measures its 

precision.  

As earlier mentioned, I also determine bias of mean parameter estimates. Thus, for each 

parameter 𝛽, the average value 𝛽̅ and the standard error 𝜎 over 250 replications are computed 

and a hypothesis test to determine the significance of the difference between the two is 

conducted. I also report the Monte Carlo error of mean parameter estimates to measure the level 

of inter-simulation variability for all models. More details about the computation of the Monte 

Carlo errors can be found in Koehler, Brown and Haneuse (2009), White (2010), and Meaney 

and Moineddin (2014).  

As mentioned before, I varied distance cutoffs at 0.2, 0.4, 0.6, and 0.8 for Monte Carlo 

simulations. Varying distance cutoff allows us to determine the bias when the analyst potentially 

misjudges the deterministic portion of the cutoff. Broadly, it represents varying maximum 

distances that individuals may face when choosing recreation sites, they tend to visit. For 

example, a distance cutoff equal to 0.40 would imply that recreation sites located less or equal to 

40 miles away would be considered relevant to be accessible by individuals, otherwise, they 

would not. Thus, without loss of generality, increasing the cutoff to .80 could mean that 

recreation sites located up to 80 miles away are included in the choice sets. Empirical analyses 

make this clearer. A distance cutoff of 300 miles implies that recreational sites located more than 

https://scholar.google.com/citations?user=o6XBBb0AAAAJ&hl=en&oi=sra
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300 miles away from an individual would not be relevant in their consideration sets. The same 

implication holds for other empirical distance cutoffs used. 

I used R Statistical Software version 3.5.0 (R Core Team 2018) for simulation of data and 

estimation of all the models. The optim function in R utilizing numerical optimization based on 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used to maximize the likelihood 

function for the IAL model. The BFGS algorithm was preferred because it nearly always works 

better than alternative algorithms (Train 2009). Additionally, the survival package in R 

(Therneau 2015) was used to estimate the CL model at the same time as the IAL model. 

Results 

In this section, first I present mean parameter estimates of the CL and IAL models obtained from 

the Monte Carlo experiments. I also present tests of parameter bias as well as the mean 

proportional root mean square errors. This is followed by empirical results. 

Monte Carlo Simulation Results 

 

Table 2.3 presents mean parameter estimates for CL and IAL models estimated from data 

simulated from a stochastic choice set formation process. The CL model is estimated on the 

complete set of alternatives, which therefore includes irrelevant alternatives in this set up. 

Column 2 shows the true parameter vector of the underlying data generating process while 

columns 3 and 4 present mean parameter estimates for IAL and their bias, respectively. The 

columns that follow present mean parameter estimates and respective bias of the CL model 

estimated at the three different distance cutoffs (i.e., at distance cutoffs of 0.4, 0.6, and 0.8) 

Based on the t-statistics (𝛽̅ − 𝛽𝑡𝑟𝑢𝑒)/𝑠𝑒(𝛽̅) and 𝛽̅, where 𝑠𝑒(𝛽̅) is the standard error 

of 𝛽̅, I test whether the mean parameter estimates are statistically different from their true ones. 
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The t-statistics comparing the true and model values are in parentheses of table 2.3. The null 

hypothesis is that the estimated value is equal to the true value.  

Results in table 2.3 indicate that when choice set formation is stochastic, on average the 

IAL model recovers the true parameter estimates since the bias between the true parameters and 

mean parameter estimates is significantly different from zero. This is not surprising because the 

IAL model describes the real data generation process underlying these results. This is the reason 

I do not present results for IAL at other distance cutoffs because such results are expected. 

However, mean parameter estimates from the CL model are not free from significant bias at 

every distance cutoff. At the distance cutoff of 0.2, most parameter estimates under the CL are 

significantly biased. When the distance cutoff is raised to 0.4, 0.6, and 0.8, on average, mean 

parameter estimates from the CL are more negatively biased. Specifically, the mean parameter 

estimate for the coefficient of the variable distance is less negatively biased as the distance cutoff 

is increased – as more fishing sites are included in the choice sets. I attribute this bias to the 

endogenously determined distance cutoff which seems to have a significant impact on mean 

parameter estimate of the coefficient for the variable distance. However, a much closer look at 

the distance coefficient in the CL model suggests that changing the distance cutoff has little 

effect on the parameter estimates, at least over the range of cutoffs considered here. This 

suggests there is little evidence that performance of the CL model improves as the effect of the 

distance cutoff is quite less on choice set formation. 

I present mean parameter estimates for the CL and IAL models estimated from choice 

data in which the decision makers consider the full set of recreation sites in table 2.4. The true 

model is shown in column 2 while the following columns, as before, present mean parameter 
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estimates and their bias for both CL and IAL models. Model performance statistics are presented 

in the lower panel.   

The mean parameter estimates of the CL are very similar to the true parameter estimates. 

The mean parameter estimate of the coefficient of distance is -3.519 which is close to the true 

value of -3.500. Based on the reported t-statistics, I fail to reject the null hypothesis of no 

difference between the true value and mean parameter estimates. Similarly, the IAL model 

produces significantly unbiased parameter estimates of the CL. The results in table 4 indicate 

that when individual choice sets include the full set of alternatives (i.e. when the CL is the true 

model), the IAL model still successfully recovers the true parameter estimates.   

A researcher modeling choice set specification problems would also be interested in 

knowing the proportional deviation of estimates from their true parameters, or the efficiency of 

the CL and IAL parameter estimates under the two scenarios I examined. As earlier mentioned, I 

evaluate efficiency based on the MSEs of the mean parameter estimates. Table 2.5 reports MSEs, 

proportion of MSEs by bias, and proportion of MSEs by variance of the estimates, of the CL and 

IAL models for the estimation results in table 2.3. 

Focusing first on the MSE benchmark, for which lower values are preferred, I find that 

the IAL model has, on average lower MSEs (i.e., 0.582) than the CL model (i.e., 2.415). Thus, in 

addition to the CL failing to successfully recover true parameter estimates, its parameter 

estimates are less efficient than the IAL’s. At the distance cutoff of 0.2, a comparison of the IAL 

with the CL indicates that that CL’s distance parameter estimate deviates from its true value by 

more than 100% (indicated by the MSE). In terms of average MSEs across all distance cutoffs 

(shown in the third row from the last row of table 2.5), results indicate that mean parameter 

estimates from the CL lose more efficiency as distance cutoff increases. I attribute this result 
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from the fact that the CL does not have availability terms that are in the IAL which could hamper 

the former’s performance. Additionally, a decomposition of MSE into variance and bias when 

the IAL is the true model shows that 95.8% of MSEs of IAL’s mean parameter estimates 

emanates from variance of its estimates while 4.2% is from bias. As for the CL (assuming IAL is 

the true model), about 16% of its MSEs are from variance of its estimates while about 84% of 

the MSEs emanates from bias component. This is reasonable especially that under this scenario, 

IAL’s mean parameter estimates are free from significant bias while majority of the mean 

parameter estimates from the CL are significantly inaccurate. 

The MSEs for model parameters under CL and IAL when choice sets include the full set 

of alternatives are presented in table 2.6. Like in previous results, it turns out that the model that 

underlies the data generating process is characterized by more efficient mean parameter 

estimates than otherwise. On average, mean parameter estimates from the CL have MSE of 

0.082 while those from the IAL model have on average MSE of 5.406. This suggests that the CL 

produces parameter estimates that are more than 100% more efficient than the IAL when there is 

no choice set formation and individuals choose from the full set of alternatives. Thus, even if the 

IAL model successfully recovers true parameter estimates of the CL model, it comes with the 

loss of efficiency rendering us not to recommend it for data characterized by deterministic choice 

sets if the alternative procedure, CL model can be easily implemented. After decomposing MSE 

into variance and square of bias, results suggest that variance of mean parameter estimates from 

the CL and IAL contribute 99.4% and 86.7% to their MSEs, respectively, the rest proportion of 

MSEs emanating from square of bias. This is unlike when the IAL is the true model. The reason 

for this could be that because both CL and IAL successfully recover the true parameter estimates 

when the CL is the true data generating mechanism.  
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Our finding that the model of interest produces mean parameter estimates that are clearly 

close to the true model if the data generation process is characterized by that model’s 

assumptions are consistent with Li, Adamowicz and Swait (2015), and Wichamn, Chen and 

Adamowicz (2016) despite their respective studies being totally different from the current study. 

Additionally, thr finding that the CL model fails to successfully recover true parameters when 

individual decisions are made following stochastic choice set formation parallels the results of 

Li, Adamowicz and Swait (2015). Again, this similarity is in spite of the two studies focusing on 

divergent research questions—specifically, Li, Adamowicz and Swait (2015) study the effect of 

ignoring or misspecifying choice set formation on welfare measures in random utility models 

which is quite different from this study’s focus. 

Empirical Results 

Estimation results of the CL and IAL models when the distance cutoff is varied empirically are 

shown in table 2.7. The variables access to sites, catch and distance to site are significantly 

different from zero at 1% significance level in the IAL model. At the distance cutoff of 100 

miles, the IAL model attempts to estimate the true value using 𝜏 (distance threshold’s estimate) 

in its availability function (in equation 6). As shown in table 2.7, the IAL model’s distance 

threshold is significantly different from zero and close to the true value of 100. This implies that 

the IAL correctly predicts the empirical distance cutoff that is set by the researcher. These results 

corroborate Monte Carlo simulation results obtained in table 2.3. By magnitude, coefficients of 

the CL are close to those in IAL at the empirical distance cutoff of 100 miles except that the 

distance coefficient that is larger.  

When the distance cutoff is increased to 200 miles, on average, results from the CL 

model change profoundly. Specifically, the coefficient of distance to site drops rapidly and 



48 
 

continues to do so as the distance cutoff increases to 400 miles. However, the difference between 

coefficients of distance to site is only marginal when the distance cutoff is 300 miles and when it 

is 400 miles. This might be because a substantial number of fishing sites were in most paddlefish 

anglers’ choice sets rendering any changes of the distance cutoffs to have inconsiderable effects 

on the magnitude of distance to site. These results are consistent with simulation results in table 

2.3 where the coefficient of the variable distance were seemingly closer by magnitude at higher 

distance cutoffs. In terms of model selection, the IAL records the lowest Akaike Information 

Criterion (AIC) which suggests that it remains a better fit for RUM models when the researcher 

has some idea about the supposed attribute cutoffs. However, the IAL model’s advantage over 

the CL model could be structural because the IAL model has the availability terms which are 

absent in the CL even though the two models are non-nested.  

Conclusion 

Choice set misspecification is an important problem in random utility maximization (RUM) 

models of recreation demand and several papers conclude that ignoring choice set formation 

leads to biased parameters and welfare estimates. In this article, I extended research into 

distance-based choice set formation by measuring the bias from two RUM models. Unlike 

previous studies, I examined two possibilities: first, a subset of alternatives appeared in the 

choice set based on a stochastic process and, second, the choice set included the full set of 

alternatives. This is novel in that I simulate choice sets with ten alternatives, and using the two 

plausible discrete choice models functionally increases the choice beyond a binary decision, even 

when irrelevant alternatives are endogenously excluded. I achieved this by carrying out Monte 

Carlo experiments and estimated the conditional logit (CL) and the independent availability logit 

(IAL) models from simulated data. I also estimated the two models using real world 
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experimental data on paddlefish angler preferences and catch-and-release regulations in 

Oklahoma, to compare parameter estimates of the two models without any known parameter 

estimates.  

The IAL model recovered true parameter estimates when a subset of the alternatives 

formed individual choice sets. I also showed that under the same conditions, the CL model failed 

to recover the true parameter values. Additionally, and most importantly, I found that under the 

CL model, the bias changed as one of the variables affecting choice set formation changed—

specifically, as the distance cutoff was raised. I also found less efficient mean parameter 

estimates from the CL than the IAL when the underlying data generation process involved 

stochastic choice set formation. Thus, I recommend stochastic-choice-set-based methods such as 

the IAL when the analyst believes that individual choice sets do not include the full set of 

alternatives.  

In the second scenario and as expected, I showed that the CL successfully recovers true 

parameter estimates when individual choice sets do include the full set of alternatives. 

Importantly, in this case the IAL model is also able to successfully recover the true parameter 

estimates. Despite relatively low Monte Carlo error, the IAL model produced considerably less 

efficient mean parameters than the CL. In both cases, a decomposition of the mean square error 

(MSE) into bias and variance components showed that biasedness of the mean parameter 

estimates from the CL contributed the most to their MSEs than the IAL’s when the latter was the 

data generating process. Contrary, when the CL was the true data generating process, variance of 

the estimates under the IAL contributed more to MSEs since the IAL was able to the true 

parameter estimates of the CL. Thus. It is naturally better to use the CL model when there is no 

evidence of choice set formation and individuals choose from the full set of alternatives. 
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Nevertheless, relying on a stochastic choice set formation process under IAL and allowing for 

the possibility of a two-stage stochastic choice set formation is conceptually appealing. It’s 

realistic that an individual’s true consideration sets may not always be known with certainty and 

that the IAL assumes choice sets are latent is attractive. And based on empirical results, the IAL 

can predict the true distance cutoff while the magnitude of the CL model’s results change 

meaningfully as the distance cutoff is increased. Although the researcher should be cautious in 

pursuing such an approach because they should be concerned about the precision of the estimate, 

results suggest that, in practice, the IAL model will on average recover the true parameters 

whether or not individual choice sets are formed stochastically.  

This study considered a situation in which an alternative such as a recreation site is 

considered irrelevant partly based on one observable attribute, distance to the site. This problem 

naturally does not generalize to all contexts. There could be other attributes that affect the 

probability that an alternative appears in an individual’s choice set, including environmental 

quality and the presence of built amenities. While I recognize that the absence of the availability 

terms in CL model could have contributed to its poor performance vs the IAL (in some cases), 

employing non-nested hypothesis tests of the two models represents an important challenge for 

future research.  
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Table 2.1: The Basic Setting of the Data Generation Condition 

 Notation  Value 

Number of data sets (replications) R  250 

Number of choice sets (observations) O  3,000 

Number of alternatives in each choice set J  10 

Number of attributes K  2 
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Table 2.2: Descriptive Statistics of Empirical Data 
Variable name Variable Description Mean Std. Dev Minimum Maximum 

Choice Angler decides to fish for paddlefish, =1 if yes, 0 otherwise 0.019 0.139 0.000 1.000 

Access to sites Access to 2 or more fishing sites, = 1 if yes, 0 otherwise 0.200 0.400 0.000 1.000 

Catch (daily) Catch rate (number of fish caught per day) 3.349 2.150 1.400 9.210 

River Fishing site is river, =1 if yes, 0 otherwise) 0.600 0.489 0.000 1.000 

Distance to site (miles) Distance to river in miles 132.669 153.344 0.000 2073.100 

Number of observations used     70,600 
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Table 2.3: Mean Parameter Estimates of CL and IAL Models when the IAL Model is true  
  IAL  CL  CL  CL  CL  

Dist. Cutoffs True 
model  

0.2  0.4  0.6  0.8  
Utility   Bias  Bias  Bias  Bias  Bias 

ASC1 1.500 1.530 0.030 1.009 -0.491 1.042 -0.458 1.040 -0.460 1.045 -0.455 

  (0.050)  (-1.281)  (-1.310)  (-1.346)  (-1.338)  

ASC2 5.000 5.251 0.251 3.683* -1.317 3.527* -1.473 -2.540* -2.460 -4.127* -9.127 

  (0.255)  (-3.931)  (-3.161)  (-1.497)  (-3.538)  

ASC3 3.000 3.136 0.136 2.196* -0.804 2.149* -0.851 2.136* -0.864 2.141* -0.859 

  (0.222)  (-2.935)  (-3.194)  (-3.231)  (-3.193)  

ASC4 2.500 2.605 0.105 1.858* -0.642 1.824* -0.676 1.794* -0.706 1.800* -0.700 

  (0.181)  (-2.056)  (-2.186)  (-2.474)  (-2.448)  

ASC5 2.000 2.067 0.067 1.545 -0.455 1.498 -0. 502 1.501 -0. 499 1.499 -0.501 

  (0.113)  (-1.331)  (-1.658)  (-1.625)  (-1.627)  

ASC6 0.750 0.778 0.028 0.579 -0.171 0.570 -0.180 0.559 -0.191 0.561 -0. 189 
  (0.048)  (-0.380)  (-0.458)  (-0.497)  (-0.497)  

ASC7 1.250 1.448 0.198 0.183* -0.167 0.114* -1. 136 0.082* -1.168 0.077* -1.173 

  (0.314)  (-10.042)  (-11.703)  (-12.198)  (-12.347)  

ASC8 2.700 2.898 0.199 1.633* -0.168 1.564 -1.136 1.532* -1.169 1.527* -1.174 

  (0.315)  (10.420)  (-11.704)  (-12.199)  (-12.348)  

ASC9 4.000 4.198 0.198 2.933* -0.167 2.864* -1.136 2.832* -1.168 2.827* -1.173 

  (0.314)  (-10.042)  (-11.703)  (-12.198)  (-12.347)  

Quality 4.500 4.730 0.230 2.299* -2.201 2.323* -2.177 2.346* -2.154 2.355* -2.145 

  (0.245)  (-7.536)  (-8.015)  (-7.659)  (-7.553)  

Distance -3.500 -3.652 -0.152 -7.233* -3.733 -7.039* -3.539 -6.942* -3.442 -6.933* -3.433 

  (-0.151)  (-7.701)  (-7.711)  (-7.763)  (-7.680)  

𝜏 0.500 0.502 0.02         

  (0.016)          

μ 10.000 10.246 0.246         

  (0.207)          

Average bias  0.118  -1.183  -1.206  -1.298  -1.532 

Monte Carlo error 0.043  0.018  0.019  0.024  0.030  

Loglikelihood value -258.8  293.9  -312.1  -305.3  -308.4  

AIC  543.6  609.8  646.2  632.6  638.8  

Notes: t-statistics comparing the true and model values are in parentheses. 

            *biased mean parameter estimate at 5% significance level 
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Table 2.4: Mean Parameter Estimates of CL and IAL Models when CL Model is true  

    CL  IAL 
Utility function  True model   Bias   Bias 

ASC1  1.500  1.477 -0.023  1.883 0.383 

    (-0.071)   (0.152)  

ASC2  5.000  5.015 0.015  5.219 0.219 

    (0.054)   (0.087)  

ASC3  3.000  2.993 -0.007  3.198 0.198 

    (-0.026)   (0.079)  

ASC4  2.500  2.480 -0.020  2.693 0.193 

    (-0.076)   (0.077)  

ASC5  2.000  2.023 0.023  2.217 0.217 

    (0.090)   (0.086)  

ASC6  0.750  0.723 -0.027  1.025 0.275 
    (-0.100)   (0.100)  

ASC7  1.250  1.256 0.006  1.620 0.370 

    (-0.019)   (0.145)  

ASC8  2.700  2.687 -0.013  3.078 0.378 

    (-0.045)   (0.151)  

ASC9  4.000  4.002 0.002  4.227 0.227 

    (0.008)   (0.090)  

Quality  4.500  4.519 0.019  4.066 -0.434 

    (0.066)   (-1.328)  

Distance  -3.500  -3.519 -0.019  -3.023 0.477 

    (0.068)   (1.563)  
Tau       26.143  

       (12.795)1  

Mu       9.300  

       (-9.284)1  

Monte Carlo error   0.027   0.294  

Average bias   -0.004   0.228 

Loglikelihood value  -339.1   -454.6  

AIC  700.2   935.2  

Notes: t-statistics comparing the true and model values are in parentheses. 

            *biased mean parameter estimate at 5% significance level 

 

 

                                                             
1 These are standard errors for respective parameters and not t-statistics. Their respective parameters 𝜏 and 𝜇 are not part of the true model. 
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Table 2.5: Mean Square Error (MSE), and Proportion of MSE by Bias and Variance of Mean Parameter Estimates for CL 

and IAL Models when the IAL Model is true  
                 IAL                CL  CL  CL   CL 

Distance cutoffs                                   0.2  0.40  0.60   0.80 
ASC1 MSE 0.358 0.388  0.332  0.327   0.322 
 Variance/MSE 0.997 0.378  0.367  0.355   0.357 

Bias square/MSE 0.003 0.622  0.633  0.645   0.643 
ASC2 MSE 1.033 1.847  2.386  8.744   89.939 
 Variance/MSE 0.939 0.061  0.091  0.308   0.074 

              Bias square/MSE 0.061 0.939  0.909  0.692   0.926 
ASC3 MSE 0.395 0.721  0.795  0.817   0.810 
 Variance/MSE 0.953 0.104  0.089  0.087   0.089 

              Bias square/MSE 0.047 0.896  0.911  0.913   0.911 
ASC4 MSE 0.343 0.509  0.552  0.580   0.571 
 Variance/MSE 0.968 0.191  0.173  0.140   0.142 

              Bias square/MSE 0.032 0.809  0.827  0.860   0.858 
ASC5 MSE 0.349 0.323  0.343  0.342   0.345 
 Variance/MSE 0.987 0.360  0.266  0.274   0.273 

              Bias square/MSE 0.013 0.640  0.734  0.726   0.727 
ASC6 MSE 0.355 0.230  0.186  0.184   0.180 
 Variance/MSE 0.998 0.873  0.826  0.801   0.802 

              Bias square/MSE 0.002 0.127  0.174  0.199   0.198 
ASC7 MSE 0.438 1.150  1.299  1.374   1.385 
 Variance/MSE 0.910 0.010  0.007  0.007   0.007 

                  Bias square/MSE 0.090 0.990  0.993  0.993   0.993 
ASC8 MSE 0.439 1.151  1.299  1.375   1.385 

 Variance/MSE 0.910 0.010  0.007  0.007   0.007 
              Bias square/MSE 0.090 0.990  0.993  0.994   0.993 

A MSE 0.438 1.150  1.299  1.374   1.385 
 Variance/MSE 0.910 0.010  0.007  0.007   0.007 

              Bias square/MSE 0.090 0.990  0.993  0.993   0.993 
Quality of site MSE 0.925 4.931  4.813  4.717   4.681 

 Variance/MSE 0.943 0.017  0.015  0.017   0.017 
              Bias square/MSE 0.057 0.983  0.985  0.983   0.983 

           
Distance to site MSE 1.033 14.168  12.733  12.042   11.985 

 Variance/MSE 0.978 0.017  0.016  0.016   0.017 
              Bias square/MSE 0.022 0.893  0.984  0.984   0.983 
Tau MSE 0.001         

 Variance/MSE 1.000         
Bias square/MSE 0.000         

                  Continued… 
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Table 2.5. Continued  
  IAL CL  CL  CL  CL 

Distance cutoffs                                   0.2  0.40  0.60  0.80 
Mu MSE 1.463        
 Variance/MSE 0.959        

                              Bias square/MSE 0.041        
 Average MSE 0.582 2.415  2.367  2.898  10.271 

Average variance/MSE 0.958 0.185  0.169  0.184  0.163 

Average bias square/MSE 0.042 0.815  0.831  0.816  0.837 
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Table 2.6: Mean Square Error (MSE), and Proportion of MSE by Bias and Variance of Mean Parameter Estimates for CL 

and IAL Models when the CL Model is true  
   CL  IAL 

ASC1 MSE  0.116  6.463 
 Variance/MSE   0.995  0.977 

 Bias square/MSE   0.005  0.023 
ASC2 MSE  0.064  6.300 
 Variance/MSE  0.996  0.992 
     Bias square/MSE  0.004  0.008 
ASC3 MSE  0.056  6.344 
 Variance/MSE  0.999  0.994 
     Bias square/MSE  0.001  0.006 
ASC4 MSE  0.079  6.358 
 Variance/MSE  0.995  0.994 

     Bias square/MSE  0.005  0.006 
ASC5 MSE  0.069  6.438 
 Variance/MSE  0.993  0.993 
     Bias square/MSE  0.007  0.007 
ASC6 MSE  0.069  7.595 
 Variance/MSE  0.989  0.990 
     Bias square/MSE  0.011  0.010 
ASC7 MSE  0.124  6.631 

 Variance/MSE  1.000  0.979 
     Bias square/MSE  0.000  0.021 
ASC8 MSE  0.082  6.402 
 Variance/MSE  0.998  0.978 
     Bias square/MSE  0.002  0.022 
ASC9 MSE  0.085  6.325 
 Variance/MSE  1.000  0.992 
 Bias square/MSE  0.000  0.008 

Quality MSE  0.082  0.295 
 Variance/MSE  0.996  0.360 

Bias square/MSE  0.004  0.640 
Distance MSE  0.080  0.320 
 Variance/MSE  0.996  0.290 
 Bias square/MSE  0.004  0.710 

Average MSE  0.082  5.406 
Average variance per MSE  0.996  0.867 

Average bias square per MSE  0.004  0.133 
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Table 2.7: Empirical Parameter Estimates of CL and IAL Models 
  IAL CL  CL  CL  CL 

Distance cutoff (miles)                           100  200  300  400 

Utility function          

Access to sites  1.029*** 0.987***  1.412***  1.615***  1.636*** 

  (0.116) (0.105)  (0.103)  (0.09)  (0.106) 

Catch (daily)  0.102*** 0.133***  0.072***  0.037***  0.037*** 

  (0.018) (0.015)  (0.015)  (0.013)  (0.015) 

River  0.074 0.020  -0.055  0.096  1.176*** 

  (0.102) (0.143)  (0.096)  (0.091)  (0.147) 

Distance to site  (miles/100)  -32.960*** -36.477***  -28.288***  -22.551***  -22.030*** 

  (1.737) (1.054)  (1.270)  (0.995)  (1.038) 

𝜏  123.400***        

  (37.816)        

μ  10.028        

  (294.18)        

Model performance          

Loglikelihood value  -1697.1 -1860.6  -2499.5  -2890.9  -3023.6 

AIC  3406.2       3729.2  5007.0  5789.8  6055.2 

Notes: standard errors are in parentheses. 

*** Statistically significant at 1% level 
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Figure 2.1: Modeling Strategy 
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CHAPTER III 
 

 

BAYESIAN OPTIMAL DYNAMIC SAMPLING PROCEDURE FOR ON-FARM FIELD 

EXPERIMENTS 

Abstract 

For many decades, researchers have relied on small-scale agronomic experiment stations to 

provide input management recommendations to agricultural producers. But such experiments have 

most often provided production functions with large standard errors in addition to the uncertainty 

about how well the estimates apply to different fields. To avoid such limitations, there has been a 

movement toward large-scale, on-farm field experiments. But questions remain as how best to 

conduct large-scale, on-farm field experiments and when it is most profitable to quit them. This 

research addresses these questions by using a fully Bayesian decision-theoretic approach. Data are 

from Monte Carlo simulations assuming a corn-input stochastic plateau production function from 

one field. When corn and N prices are $2.95/bu. And 0.45/lb., respectively, results suggest the best 

way to conduct such experiments is to use a 30-plot experimental design by allocating to each of 

the 10% of the plots, 0 lb. of N, half of N*, and 150% of N*. Results further indicate that it is most 

profitable to quit such trials in year 2. Sensitivity analysis confirms the optimal quit period under 

similar designs but suggests such experiments are most profitable by allocating unalike N levels 

to all 30% of the experimental plots. Findings suggest designs used in large-scale, on-farm field 

trials should have N levels reduced in successive years as more information is gained. 
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Keywords: On-farm field experiments, Bayesian decision-theory, Monte Carlo simulation, Monte 
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Introduction 

On-farm agronomic experiments are a source of input management recommendations to 

agricultural producers. For many years, researchers have relied on experiments conducted on 

experiment stations in search of generally appropriate crop-input response functions (Bullock 

and Mieno 2017). The technology has been available in the U.S. and other countries to conduct 

on-farm field experiments. However, agronomic, economic, and statistical research on how to 

apply on-farm trial data is limited. In the past, and since the 1950s when Earl Heady conducted 

numerous field trials, the tendency has been to conduct agronomic experiments on small plots 

without taking advantage of using large-scale farm machinery. Conducting experiments on small 

plots is not only labor intensive, but also generates data not adequate for “big data statistical 

analyses” that would assure more statistical confidence. Such agronomic experiments have most 

often provided crop-yield response functions with large standard errors in addition to the 

uncertainty about how well the estimates apply to different fields and possibly different 

agricultural production methods (Rodriguez 2014; Bullock and Mieno 2017). Thus, despite a 

long history of surveys and scientific research, there is still substantial variation of the amount of 

nitrogen (N) recommended to agricultural producers to apply to their crops (Hossain et al. 2004).  

To achieve a scenario where limitations from small-scale agronomic trials are avoided, 

there has been a movement toward large-scale, on-farm field trials – where a whole field is 

turned into an experiment. On-farm experiment research has gained popularity because it allows 

agricultural producers to test a variety of agronomic questions using their equipment and 
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management practices on their own farm fields (Kyveryga, Mueller, and Mueller 2018). Whole-

farm experiments are expected to generate huge amounts of data whose analyses and results 

could in the long run improve input management recommendations that farmers receive from 

small-scale field trials. Since the 1990s, large-scale, on-farm field trials have been conducted in 

the U.S. and Latin America to gather large amounts of data for analyses expected to improve 

scientific input recommendations to farmers. While using precision agricultural technology to 

run large-scale, on-farm field trials drops the cost of turning a whole field into a trial, the best 

way to conduct such experiments is not known. Bullock and Mieno (2017) report that a group of 

researchers conducting these trials in the U.S. and Latin America often vary N rates little for fear 

of lost yields while farmers are (or seem to be) reluctant to use check plots and replications. On 

the other hand, promoters of maximum return to N from Midwestern U.S. universities run strip 

trials for all of their whole-farm field experiments where they have zero yields (with zero inputs) 

but only experiment with a portion of the field (Bullock and Mieno 2017). Another way to 

conduct strip trials is where experimenters apply N along some strips but do not apply it on other 

strips. Thus, a simple but awkwardly difficult question that remains is – which way of 

conducting large-scale, on-farm field trials is most profitable moving forward?  

Bullock and Mieno (2017) assess the value of information of conducting on-farm field 

trials. Their results suggest a potential profit boost exists by varying N rates little for large-scale, 

on-farm field trials relative to strip trials. But in their approach, Bullock and Mieno (2017) do not 

consider yearly random effects though they incorporate rainfall effects in Bullock and Mieno 

(2019). Including random effects could perhaps provide more realistic profit expectations for 

agricultural producers because such effects account for unknown events such as hail, weather, 

weed pressure and others (Tembo et al. 2008). The work by Bullock and Mieno (2017) is based 
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on a single experimental design and neither does it clearly establish the better one nor determine 

the best way these experiments should be conducted to provide relevant findings.  

Additionally, questions remain as what aspects of large-scale, on-farm field experiments 

an experimenter should change as more information is gained in subsequent years. Simply put, 

there is no consensus as to how the optimal experimental design of on-farm field trials should 

change as more information is added from preceding trials. The objective of this article is to 

determine if conducting large-scale, on-farm experiments is cost-effective, and if so, to 

determine the tradeoff between gaining information from using levels of N far from the optimum 

and the lost yield or wasted N from using nonoptimal levels of N across years. Specifically, I 

determine optimal profits using corn-input response functions from on-farm field trials where N 

rates are varied across four levels in different consecutive years. The four levels include: zero N 

rates on few plots for fear of lost yields, half optimal N rates are applied (optimal is based on 

current recommendations for continuous corn: see; Boyer et al. 2013), optimal N rates are 

allocated to plots, and N rates above the optimal levels are allocated to fewer portions of the 

field. 

The choice of the functional form of the crop yield response function is key for modeling 

production decisions when N rates are varied in large-scale, on-farm field trials. It is reasonable 

that different functional forms of crop yield response would give dissimilar estimates in the case 

of variable N rates. Additionally, scientific research has yet to reach a consensus about a 

universal crop-input response function. While Bullock and Mieno (2013) assume a quadratic 

functional form of corn yield response function, a considerable share of literature supports the 

plateau-type plant yield response to N (e.g., Ackello-Ogutu, Paris, and Williams 1985; Cerrato 

and Blackmer 1990; Paris 1992; Llewelyn and Featherstone 1997; Babcock and Pautsch 1998). 
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With the unrelenting criticisms by agronomists that crop yield potential is random, the univariate 

stochastic plateau model by Tembo et al. (2008) frequents the plateau-type literature and has 

therefore garnered wide applications in agricultural economics research measuring yield 

response to N (e.g., Tumusiime et al. 2011; Brorsen and Richter 2012; Boyer et al. 2013; 

Ouédraogo and Brorsen 2018; McFadden, Brorsen and Raun 2018; Dhaka et al. 2019). Thus, 

building on previous work by Bullock and Mieno (2013), the present study considers the 

stochastic plateau model by Tembo et al. (2008) as the underlying functional form.  

Using simulated data, this study employs a fully Bayesian decision-theoretic approach to 

information gained from preceding trials. A fully Bayesian decision-theoretic approach is one in 

which the decision criterion is completely a function of the posterior distribution (Ryan et al. 

2016). It is different than the classical framework where the decision is arrived at by averaging 

some classical criteria over the space that parameters occupy (Pronzato and Walter 1985; Ryan et 

al. 2016; Drovandi and Tran 2018). This article differs from Griffin et al. (2005), Bullock and 

Mieno (2017) and Bullock and Mieno (2019) because I model a stochastic plateau production 

with two random effects that typically characterize empirical agricultural production, in a fully 

Bayesian decision framework. This way, I am able to capture the value of field experimentation 

by using prior N recommendations in a given specific field, and update them as data from 

subsequent trials conducted from the same field are received. The approach used here is 

practically attractive because two single design years can be used to update the prior distribution 

and still arrive at valid inference.  

A general framework of Bayesian decision theory is presented though the first step is to 

attempt to solve the problem analytically. But an analytical solution is not possible because of 

analytically intractable quantities from which I only derive first-order conditions. Thus, the 
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solution must be found numerically. Several simplifying assumptions are made about the 

experimental plots, on which different levels of N are allocated, thereby providing more general 

results. Sensitivity analysis is conducted as a robustness check to different and plausible 

alternative experimental designs. 

Theoretical Model 

Conducting agronomic experiments is costly and time consuming. Thus, knowing the 

best way to conduct them could be crucial to providing value from such experiments. 

Determining optimal ways of conducting experiments is a decision problem for which previous 

research has attempted to find solutions using classical and Bayesian methodologies. Bayesian 

decision methodologies have dominated the literature (e.g., Han and Chaloner 2004; Muller et al. 

2006; Ryan et al. 2014; Zhang et al. 2015) because establishing an optimal experiment is more 

often associated with nonlinear models for which classical approaches are not well suited (Ryan 

et al. 2016).  

Following Lindley (1972), determining an optimal experiment involves defining a 

decision criterion 𝑈(𝒅, 𝜽, 𝒚) that captures the worth of deciding to conduct such an experiment 

that lies in a decision space D for a set of designed sampling locations 𝒅, yielding data 𝒚 with 

model parameters 𝜽. In short, the solution to finding an optimal experiment can be found by 

maximizing the posterior expected utility over the decision space D with respect to future data 𝒚 

and model parameters shown below  

1)                                         argmax𝐝∈𝐃𝐸[𝑈(𝒅, 𝜽, 𝒚)] 

But the form of the utility function in equation (1) is mainly determined by the aims of 

the experiment. Thus, equation (1) incorporates a cost function (Overstall and Woods 2017). 
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Because the aims of on-farm field trials are more inclined to producer theory, the framework 

above can be extended to production economic theory by making it an expected profit 

maximization problem. However, large-scale, on-farm field trials are conducted over a planning 

horizon T, which suggests that determining the best way to conduct them would have to 

encompass a time dimension. Usually, the aims of large-scale, on-farm field trials are to 

determine optimal input levels – input levels that would maximize profits for agricultural 

producers. But large-scale, on-farm field experiments can be conducted over a given planning 

horizon, T. This way, the objective function is no longer maximization of expected profit. The 

goal is finding optimal net present values (NPVs) of conducting experiments over T. This is 

because there would now be a flow of expected profit in successive years in which experiments 

are conducted. The overall objective for an experimenter would thus be a selection of optimal 

NPVs higher than others. Assuming the experimenter is risk-neutral, such a decision can be 

arrived using equation (2) 

2)                         argmax𝐝∈𝐃𝑁𝑃𝑉 = argmax𝐝∈𝐃∑ 𝑁𝑃𝑉𝑘
𝐾
𝑘=1  

where 𝒅 is the number of plots on which nonoptimal levels of inputs are applied, NPV is the kth 

NPV obtained from a series of NPVs, from which select only optimal NPVs are selected. 

Individual NPVs of experiments can be computed by considering a flow of expected profits for 

every replication. Thus, a given NPV can be computed using equation (3) 

3)                        𝑁𝑃𝑉 = ∑ 𝛿𝑡[
𝑇
𝑡=1 𝑃𝑡 × 𝐸(𝒚𝑖𝑡|𝒙𝑖𝑡 , 𝒅) − 𝑟𝑡𝒙𝑖𝑡] 

such that: 𝒚𝑖𝑡|𝒙𝑖𝑡 , 𝒅 = 𝑔(𝒙𝒊𝑡; 𝜽𝑡) + 𝜺𝑖𝑡, 𝒙𝑖𝑡 ≥ 0 
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where 𝒚𝑖𝑡|𝒙𝑖𝑡, 𝒅 = 𝑔(𝒙𝒊𝑡; 𝜽𝑡) + 𝜺𝑖𝑡 is the production function estimated for a specific field, 

𝒚𝑖𝑡  denotes yield amounts from the ith plot obtained in year t,  𝒙𝑖𝑡 are input levels from the ith 

plot used in year t, 𝜽𝑡  are parameters, 𝛿𝑡 = (1 + 𝑟)−1 is the discount factor where r is the interest 

rate representing the agricultural producer’s opportunity cost of time, and 𝜺𝑖𝑡  is a random error.  

First-order conditions from equation (3) are shown in equation (4). For each period from 1 

through t: 

4)                                    

{
 
 
 
 

 
 
 
 
𝜕𝑁𝑃𝑉

𝜕𝑥𝑖1
=

[𝑃1𝜕𝐸(𝒚𝑖1|𝒙𝑖1, 𝒅)]
𝜕𝑥𝑖1

− 𝑟1 = 0,

𝜕𝑁𝑃𝑉

𝜕𝑥𝑖2
=

[𝑃2𝜕𝐸(𝒚𝑖2|𝒙𝑖2, 𝒅)]
𝜕𝑥𝑖2

− 𝑟2 = 0,
.
.
.

𝜕𝑁𝑃𝑉

𝜕𝑥𝑖𝑡
=

[𝑃𝑡𝜕𝐸(𝒚𝑖𝑡|𝒙𝑖𝑡 , 𝒅)]
𝜕𝑥𝑖𝑡

− 𝑟𝑡 = 0 }
 
 
 
 

 
 
 
 

 

which imply that in each year, the value of the posterior marginal product be equivalent to the 

cost of the input. Value of posterior marginal product is the value of marginal product evaluated 

using posterior samples of the parameters. 

Brorsen and Richter (2011) have shown that three different N levels are sufficient to 

identify a plateau. Here I select one of these points to be the current estimate of the optimal 

amount of inputs which should be determined. In order to maximize the value of information for 

conducting large-scale, on-farm field experiments – whose goal is to provide more and sufficient 

recommendations to agricultural producers, I use Bayesian decision theory techniques to recover 

a series profits in a given year. It is such profits that flow in a given year and contribute to 

individual NPVs. This implies that individual components of NPVs are computed by finding a 

solution to the following expected profit maximization problem  
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5)                  argmax𝐱it≥0 ∫ 𝜋𝑡[𝑅𝑡(𝒙𝑖𝑡| 𝜽𝒕)]𝑝(𝜽𝒕|𝒙𝑖𝑡)Θ
𝑑𝜽𝒕 

where 𝜋𝑡[𝑅𝑡(𝒙𝑖𝑡 |𝜽𝒕)] is the profit function, 𝑅𝑡 is the agricultural producers’ expected revenue or 

wealth, 𝜽𝒕 is a vector of relevant parameters, and 𝑝(𝜽𝒕|𝒙𝑖𝑡) is the posterior distribution of 𝜽𝒕. 

The expected profit maximization problem in equation (5) has its first-order conditions. They are 

shown in equation (6) as 

6)                   ∫ 𝜋𝑡
′

Θ
[𝑅𝑡(𝒙𝑖𝑡| 𝜽𝒕)]𝑅𝑡

′(𝒙𝑖𝑡| 𝜽𝒕)]𝑝(𝜽𝒕|𝒙𝑖𝑡)𝑑𝜽𝒕 = 0 

where 𝜋𝑡
′[𝑅𝑡(𝒙𝑖𝑡|𝜽𝒕)] is by the chain-rule the first derivative of the expected profit function, 

𝑅𝑡
′(𝒙𝑖𝑡| 𝜽𝒕)] is the first derivative of the actual profit function. Equation (6) is behavioral because 

it dictates optimal choices as a function of 𝜋𝑡(. ), 𝑅𝑡(. ), and 𝑝(𝜽𝒕|𝒙𝑡) reflecting the agricultural 

producers’ expected, actual wealth or revenue motives, and associated risks, respectively. 

Equation (5) is at the heart of expected profit maximization problems but it faces a major hurdle: 

analytical solutions are quite difficult to derive especially for empirical estimation (Lindley 

1972; Berger 2013; Ryan et al. 2016; Wu and Guan 2018). The posterior distributions in 

equations (5) and (6) are computed using Bayes’ theorem as 

7)                                           𝑝(𝜽𝒕|𝒙𝑡)  =
𝑝(𝒙𝑡|𝜽𝒕)𝑝(𝜽𝒕)

𝑝(𝒙𝑡)
  

where 𝑝(𝜽𝒕) is the prior distribution about parameters 𝜽𝒕 before collecting new data, 𝑝(𝒙𝑡|𝜽𝒕) is 

the likelihood, and 𝑝(𝒙𝑡) is the marginal distribution or the evidence and can be regarded as a 

normalizing constant. In practice, due to the difficulty in computing the marginal distribution in 

equation (7), the posterior distribution is computed as 
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8)                                           𝑝(𝜽𝒕|𝒙𝑡)  ∝ 𝑝(𝒙𝑡|𝜽𝒕)p(𝜽𝒕) 

where all components in equation (8) are as previously defined. Because of the reasons put 

forward for equation (5), alternative practical approaches exist that involve solving equation (4) 

directly. They involve numerical integration of quantities such as in equation (4). These methods 

include Gaussian or Gauss-Hermite quadrature, use of Simpson’s rule, and Monte Carlo 

integration (Berger 2013). Under Bayesian decision theory, the solution to equation (4) can be 

found by evaluating the mean of the profit function evaluated at posterior draws of random 

parameters in the profit function. Suppose I generate an identically and independent distributed 

sequence of random variables {𝜃1, 𝜃2, 𝜃3, … }, with a common posterior density ℎ(𝜽𝒕) on 𝚯. 

Then 

9)                𝐸 [
𝝅𝒕(𝒙𝒊𝒕| 𝜽𝒕)]𝑝(𝜽𝒕|𝒙𝒊𝒕)

𝒉(𝜽𝒕)
] = ∫ 𝐸[𝜋𝑡(𝒙𝑖𝑡| 𝜽𝒕)]𝑝(𝜽𝒕|𝒙𝑖𝑡)Θ

𝑑𝜽𝒕 

By the strong law of large numbers and under mild conditions (Berger 2013; Wackerly, 

Mendenhall, and Scheaffer 2014), it follows that  

10) lim
𝑛→∞

1

𝑛
∑ [

𝝅𝒕(𝒙𝒊𝒕| 𝜽𝒊𝒕)]𝑝(𝜽𝒊𝒕|𝒙𝒊𝒕)
𝒉(𝜽𝒊𝒕)

]𝑁
𝑖=1  = ∫ 𝐸[𝜋𝑡(𝒙𝑖𝑡| 𝜽𝒕)]𝑝(𝜽𝒕|𝒙𝑖𝑡)Θ

𝑑𝜽𝒕 

which can be used to approximate equation (4) as follows 

11)                  ≅ ∑ 𝐸𝑁
𝑖=1 𝜋𝑡(𝒙𝑖𝑡| 𝜽𝒊𝒕) 

where 𝜽𝒊𝒕 is a vector of posterior estimates from an ith draw. 

Data and Procedures 
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Data used for this study are simulated to represent different ways in which large-scale, on-farm 

field experiments are conducted at a typical farmer’s field. Because of the complexity of the 

problem and lack of actual data, there is no actual field data available for this study. This 

approach only allows four levels of nitrogen (N) to a corn (y) field. The four levels are (i) the 

optimal based on the current recommendations and distribution – 156 lb./acre (Boyer et al. 

2013), (ii) half the optimal – 78 lb./acre, and (iii) zero N level, and (iv) a level substantially 

above the optimum – 256 lb./acre.  

Boyer et al. (2013) compare the stochastic plateau production functions with their 

deterministic counterparts to determine the most appropriate response function for continuous 

corn and rotation of corn with other crops. They find the stochastic response function the more 

appropriate response function than its deterministic counterparts in all cases. Since our study’s 

focus is on continuous corn, and assumes the stochastic plateau function as the appropriate 

functional form, I use N rates found in Boyer et al. (2013) to guide the design of my 

experiments. For the sake of brevity, the total number of plots assumed are 100. Thus, the choice 

variable is how many plots use levels (ii), (iii), and (iv) described above. For simplicity, I assume 

that levels (ii), (iii), and (iv) are equal – each is equal to 10 plots while level (i) is 70. The 

response variable for corn is generated by Monte Carlo simulations using the stochastic plateau 

as the underlying data generating process for each round of replication. The procedure is 

illustrated in figure 1.  

{Figure 3.1} 
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As mentioned before, posterior samples are used to determine the expected optimal N 

levels in the continuing period. The stochastic plateau crop response function (Tembo et al. 

2008) is   

12)                          𝑦𝑖𝑡 = min (𝛽0 + 𝛽1𝑁𝑖𝑡 , 𝑃𝑡 + 𝑢𝑡) + 𝑠𝑡 + 𝜀𝑖𝑡 

where 𝑦𝑖𝑡  is corn yield from the ith plot in year t, 𝛽0 and 𝛽1 are model parameters to be 

estimated, 𝑁𝑖𝑡 is the amount of N applied on ith plot in year t, 𝑃𝑡 is the plateau yield, 

𝑠𝑡~𝑁(0, 𝜎𝑢
2) is the plateau year random effect, 𝑠𝑡~𝑁(0, 𝜎𝑢

2) is the intercept year random effect, 

𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2) is the random error term assumed to be independent from the plateau year random 

effect, and intercept year random effect. Thus, equation (11) is the assumed functional form for 

the production presented in equation (3). This implies that a vector of parameters of interest is 

actually: 𝜽 = (𝛽𝟎, 𝛽𝟏, 𝝈𝒖
𝟐 , 𝝈𝒔

𝟐, 𝝈𝜺
𝟐)′. Following (Ouedraogo and Brorsen 2018), the Bayesian 

approach to providing the solution to equation (4) involves a maximization of equation (13) 

13)                    𝐸(𝜋𝑡|𝑁𝑖𝑡) = 𝑝[(1 − 𝛷)(𝜃0 + 𝜃1𝑁𝑖𝑡) + Φ(𝑃𝑡 −
𝜎𝑢𝜑

Φ
)] − 𝑟𝑁𝑖𝑡 

where p is corn price, r is price of 𝑁𝑖𝑡, 𝜑 = [𝜑𝜃0 + 𝜃𝟏𝑁𝑖𝑡 − 𝑃𝑡)/𝜎𝑢] is the standard normal 

probability density function, and Φ= Φ[(𝜃0 + 𝜃1𝑁𝑖𝑡 − 𝑃𝑡)/𝜎𝑢 is the standard normal 

cumulative distribution. Thus, under Bayesian decision theory, equation (4) is evaluated as an 

optimization problem using Monte Carlo integration whereby using posterior samples in the 

preceding Bayesian estimation, the resulting value is obtained as the average (as illustrated in 

equation (10)). Once the optimal value of N is known in a given period, I use levels of N as well 

as prior information about the distribution of parameters in the Monte Carlo simulations to 
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generate the values of corn, 𝑦𝑖𝑡  to be used in the current period’s Bayesian estimation. For 

brevity, the assumption of no spatial correlation between errors is retained. The true model 

assumed in all Monte Carlo simulations to generate corn levels is 

14)              𝑦𝑖𝑡~ min(39.84 + 0.86𝑁𝑖𝑡, 157.93 + 𝑢𝑡) + 𝑠𝑡 + 𝜀𝑖𝑡 

where 𝑦𝑖𝑡 , 𝑁𝑖𝑡, and everything else is as defined in equation (11). Assuming corn price of 

2.95/bu. And N price of $0.45/lb., the true expected profit function is  

15)                            𝐸(𝜋𝑡|𝑁𝑖𝑡) = 2.95 × 𝐸(𝑦𝑖𝑡) − 0.45𝑁𝑖𝑡 

such that:  𝑦𝑖𝑡~ min(39.84 + 0.86𝑁𝑖𝑡, 157.93 + 𝑢𝑡) + 𝑠𝑡 + 𝜀𝑖𝑡 , 𝑁𝑖𝑡 ≥ 0 

Once corn levels are generated, I estimate posterior means of the parameter vector 𝜽 =

(𝜽𝟎, 𝜽𝟏, 𝝈𝒖
𝟐 , 𝝈𝒔

𝟐, 𝝈𝜺
𝟐)′ following Bayes’ theorem by using Markov chain Monte Carlo (MCMC) 

methods. Because the distribution of 𝑦𝑖𝑡  is conditional on both plateau year and intercept random 

effects, equation (8) is estimated in a Bayesian hierarchical framework. All simulations of data 

are conducted in R software while all Bayesian estimations are carried out using runjags, an R 

software package that utilizes JAGS – Just Another Gibbs Sampler (Denwood 2016; R Core 

Team 2018). The following informative priors were imposed in all the model estimations. The 

assumption is that these priors are not accurate or else there would not be any value in 

experimenting  

16)                                    𝑦𝑖𝑡~ min (𝛽0 + 𝛽1𝑁𝑖𝑡, 𝑃𝑡 + 𝑢𝑡) + 𝑠𝑡 + 𝜀𝑖𝑡   

17)                                    𝛽0~𝑁(40, 6.25),   𝛽1~𝑁(1, 0.0625),          

18)                 𝜎𝑢
2~𝐺(0.0025, 2.500), 𝜎𝑠

2~𝐺(0.0025, 2.500),𝜎𝜀
2~𝐺(0.00375,2)  
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In each Bayesian estimation phase, the MCMC techniques that I employed involved two 

chains with a burn-in phase of 5,000 to enable the chains forget their initial regions, with the 

remaining iterations set at 20,000 per chain. I specifically use Gibbs Sampler because it is more 

efficient than Metropolis-Hastings especially that the latter generates potentially correlated 

sequences (Ntzoufras 2009; Ng’ombe and Boyer 2019). Autocorrelation and trace plots, and the 

Gelman-Rubin test of the remaining parts of each parameter’s MCMC chains were used to check 

whether the chains converged successfully (Gelman and Rubin 1992; Gelman et al. 2013). 

Autocorrelation plots display the level of correlation between MCMC sequences while trace 

plots assess mixing of the chains. Additionally, the Gelman-Rubin test checks convergence of a 

parameter’s Markov chain to its posterior distribution. In other words, the Gelman-Rubin test 

statistic checks whether parameter estimates are stationary, by comparing the within- and 

between-chain variation using equation (19) 

19)                       𝑅̂ = √
𝑊+

1

𝑛
(𝐵−𝑊)

𝑊
 

where 𝑅̂ is the Gelman-Rubin test statistic – also known as the scale reduction statistic, W is 

within-chain variance, B is the variance between chains, and n is the size of the post-burn-in 

MCMC samples. Gelman and Rubin’s idea is that if 𝐵 → 𝑊, then 𝑅 ̂ → 1, which would be 

strong evidence that the Markov chains converged. In practice, 𝑅 ̂ should be estimated across all 

parameters until all their respective 𝑅 ̂′s satisfy 𝑅 ̂ < 1.10 (Gelman and Rubin 1992, Gelman et 

al. 2013; Lambert 2018; Plastina and Lence 2019).  

When to Quit Experimenting 
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Following a Monte Carlo integration in which expected optimal N levels are determined, 

10 plots are allocated zero of optimal N (expected profit maximizing level of N, labelled N*), 

while half of N* are allocated to 10 other plots, and 1.5×N* are allocated to other 10 plots while 

N* is allocated to 70 plots. Based on this, corn levels are generated in a Monte Carlo simulation 

discussed above. A trivial example below illustrates this point. Consider a field trial conducted in 

year k from which, a Monte Carlo integration using posterior samples from a preceding year’s 

Bayesian estimation generates N* to be 194.50 lb./acre. This implies that: 

20)                         0 lb./acre of N∗ would be allocated to 10 plots, 

21)                         half of N∗ = 97.25 lb./acre would be allocated to other 10 plots, 

22)                         1.5×N*= 291.75 lb./acre would be allocated to other 10 plots, and 

23)                             N∗= 194.50 lb./acre would be allocated to the remaining 70 plots. 

As discussed above, corn levels would then be generated in a Monte Carlo simulation 

using the stochastic plateau function as the true data generating mechanism from which another 

Bayesian estimation to recover the true parameter vector is conducted. In this approach, a 

Bayesian estimation is conducted on a cumulative sample in every upcoming year so as to 

account for yearly random effects. For example, a Bayesian estimation for year 2 has 300 

observations generated by appending each 100 observations from year 0, 1, and 2. This practice 

was maintained up to year 10. However, once corn levels are generated, actual profit is computed 

using 100 observations using corn and N levels from that particular year. It is assumed that corn 

and N prices are $2.95 per bushel (bu.) and 0.45 per pound (lb.), respectively. The actual cash 

flows for each year are discounted to year 1 and then used to compute the actual NPV for that 

year.  
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But there is another corn that is vital at determining when to quit experimenting – called 

“corn-quit”. Corn-quit is the expected yield at a given year’s optimal N∗. If the experiment is quit 

in year k, corn-quit is the amount of corn simulated based on N𝑘
∗  in year k+1 through year 10. 

Using the previous example of year k’s N∗ being 194.5 lb./acre, it means that corn-quit for years 

k+1 through 10 would be corn simulated at N𝑘
∗   = 194.5 by considering only plateau’s random 

effects. This is plausible because once the experiment is quit in year k, the recommendation 

would be that agricultural producers use N𝑘
∗  in future years. Using corn-quit, another cash flow is 

computed named “quit-profit”. Since it would be a series of profit flows from the year the 

experiment is quit to year 10, quit-profit is used to compute another component of NPV, I called 

“quit-NPValue”.  

All these procedures for each year are conducted 250 times. Thus, to determine the 

optimal period to quit experimenting, another quantity I called “Mean Quit-NPV” (MQNPV) is 

computed using equation (24) 

24)                    𝑀𝑄𝑁𝑃𝑉𝑘 = 𝑀𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑃𝑉𝑘 + (𝑀𝑒𝑎𝑛 𝑄𝑢𝑖𝑡 − 𝑁𝑃𝑉𝑎𝑙𝑢𝑒𝑘) 

where 𝑀𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑃𝑉𝑘  is the average actual NPV for year k from 250 replications, and 

𝑀𝑒𝑎𝑛 𝑄𝑢𝑖𝑡 − 𝑁𝑃𝑉𝑎𝑙𝑢𝑒𝑘 is the average NPV from 250 replications if the experiment is quit in 

year k. 𝑀𝑒𝑎𝑛 𝑄𝑢𝑖𝑡 − 𝑁𝑃𝑉𝑎𝑙𝑢𝑒𝑘 is computed based on quit profit alone. I also compute the cost 

of experimentation to determine the additional average cost of an experiment. The kth year’s cost 

of experimentation is computed using equation (25) 

25) 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑘 = 𝑀𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑃𝑉𝑘 − (𝑀𝑒𝑎𝑛 𝑄𝑢𝑖𝑡 − 𝑁𝑃𝑉𝑎𝑙𝑢𝑒𝑘−1) 
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where 𝑀𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑃𝑉𝑘  is the average actual NPV for year k from 250 replications, and 

𝑀𝑒𝑎𝑛 𝑄𝑢𝑖𝑡 − 𝑁𝑃𝑉𝑎𝑙𝑢𝑒𝑘−1 is the average NPV from 250 replications if the experiment is quit in 

the immediate year preceding the kth year. An interest rate of 6% is assumed in all NPV 

computations. A summary of scenarios considered in the sensitivity analysis is shown in table 

3.1.  

{Table 3.1} 

Results 

Diagnostics and Model Results  

Because I estimated stochastic plateau functions for 250 times for each year, a snapshot 

of model results for the ninth year (out of preference) are presented in table 3.2.  

{Table 3.2} 

The last column in table 3.2, presents Gelman-Rubin test statistics for each parameter in the 

production function. The Gelman-Rubin test statistics for all parameters are smaller than 1.1, 

providing strong evidence that my chains converged successfully. A check on the 250th 

estimation results for the slope parameter using trace and autocorrelation plots shown in figure 

3.2 also suggests MCMC sequences mixed well, which is in agreement with the Gelman-Rubin 

test statistics. I only show autocorrelation and trace plots for the slope’s posterior mean to 

conserve space.  

{Figure 3.2} 

The posterior medians in table 3.2 show that the posterior median estimate for the 

intercept term is 40.815 bu./acre, which is close to the true value of 39.84 bu./acre. The posterior 



79 

 

median for the slope is 0.916 which is also close to the true value of 0.860. The slope value 

implies that an additional pound of nitrogen would result in 0.916 bushels per acre with 95% 

probability, when other factors are held fixed. The expected posterior plateau yield is 167.313 

bushels of corn per acre, a value which is also close to the true one. Variance terms of the plateau 

year random effect, intercept random effects, and error terms are also on average close to their 

true values. All of these estimates are statistically significant since the credible intervals do not 

span zero.  I also report Monte Carlo standard errors for the 250th estimation for all parameter 

estimates for year 9. They are presented in table 3.3. Results in table 3.3 indicate relatively low 

error from Monte Carlo methods employed because the average Monte Carlo standard error is 

around 0.018% which is less than 5%, the standard rate at which one would have to get 

concerned (Denwood 2016). 

{Table 3.3} 

Optimal Rates  

Based on the main experimental design with 30 plots with each of the 10 plots allocated zero N, 

half of N*, and 1.5×N*, figure 3 shows average optimal N levels from years 0 through 10. As 

can be seen, both year 0 and 1 have the same expected optimal level of N (i.e., 208.741 lb./acre). 

I use the same level of N* in both years since I do not have any posterior samples yet to 

determine the new N*. However, this changes in year 1 when I have 200 observations with 

varying random effects associated with year 0 and 1. Thus, after a Bayesian estimation in year 1, 

new N* is generated for year 2 using posterior samples from year 1. From year 2 onwards, 

average optimal N levels decline substantially to 169.991 lb./acre and 167.256 lb./acre in years 9 

and 10, respectively. In terms of variability, the 95% confidence interval of average N estimates 

are narrower as more information is gained over time. Average optimal N rates decline further. 
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In short, the estimates become more precise. This suggests that as experiments are conducted 

successively over the years, the expected optimal levels of N become less variable. In particular, 

the experimental design also changes because lower levels of N* are attained which then changes 

allocations to other 30 plots in subsequent years.   

{Figure 3.3} 

Notice that the original experimental design keeps on being updated and therefore 

changes each year. For example, each year has a different level of N* and other N levels depend 

on N* in that specific year. That is in year 10, the final experimental design would be 10 plots 

with 0 lb./acre allocated, 10 plots with 83.627 lb./acre, 10 plots with 250.883 lb./acre and 70 

plots with 167.256 lb./acre. A clearer illustration of the changes in N* besides figure 3 is shown 

in table 3.4. Table 3.4 presents the expected profit maximizing N, corn-quit, quit-profit, actual 

profit and the expected cost of experimenting across years. The average corn-quit is around 156 

bu./acre across the years while the average quit-profit is between $369.70 and $385.96/acre.  

{Table 3.4} 

Average actual profit realized for every field trial would be around $340/acre while the 

average cost of experimentation would be the lowest in year 2. After year 2, the average cost of 

experimentation would be higher across the years suggesting that the optimal year to quit 

experimentation would be year 2. This finding corroborates the results in figure 3.4. Figure 3.4 

shows a plot of MQNPV across time. As shown in figure 3.4, the optimal time to quit conducting 

on-farm field trials is year 2 – the year with the highest MQNPV of $2,703.99/acre relative to 

other years. This value implies that, other things held fixed, the value of returns in the next 8 

years if conducting field experiments for continuous corn is quit in year 2 would be 

$2,703.99/acre. This is the most that would be realized relative to quitting experimentation in 
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other years. Thus, for a rational experimenter, it would be most profitable to quit on-farm field 

trials in year 2. After year 2, MQNPVs decline, which suggests that quitting experiments in later 

years would be less profitable, ceteris paribus. 

{Figure 3.4} 

The MQNPV findings indicate that the best sampling procedure to conduct on-farm field 

trials is one that involves varying different levels of N on 30% of the plots by equally 

distributing the number of plots without N, half N*, and 1.5×N*. While these results are 

plausible in the given context, checking how robust they are, is of utmost importance for relevant 

practical implications. This is because these results may largely depend on their basic parameter 

values and assumptions. Thus, as explained before, a sensitivity analysis over a wider range of 

potential scenarios was conducted. 

Sensitivity Analysis 

Moving away from the context discussed above, next I discuss results from sensitivity 

analysis. Since I have twelve experimental designs presented in table 3.1, throughout the next 

discussion, I have named them based on the total number of experimental plots allocated with 

varying N levels out of a total of 100. An illustration makes this clearer: Results presented above 

focus on the design with 10 plots, each allocated with 0 of N*, half of N*, and 1.5×N*2 while 70 

plots were allocated with N*. From now onwards in the present study, without loss of generality, 

such a design is called a 30-plot design, the same classification is extended to other procedures.  

Table 3.5 presents sensitivity analysis results for 24-plot (8 plots each with 0N, 0.5N*, and 

1.5N*), 18-plot (6 plots each with 0N, 0.5N*, and 1.5N*), 12-plot (4 plots each with 0N, 0.5N*, 

                                                             
2 I will drop the multiplication sign from now onwards for simplicity. Thus, instead of 1.5×N*, I will use 
1.5N*. 
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and 1.5N*), 6-plot (2 plots each with 0N, 0.5N*, and 1.5N*), 10-plot-new (10 plots each with 

0.5N*, 0.75N*, and 1.25N*), and 12-plot-new (4 plots each with 0.5N*, 0.75N*, and 1.25N*) 

designs. Results show that despite the change in the number of plots allocated to experiments, 

average profit maximizing N and corn-quit levels do not differ considerably from results 

associated with a 30-plot experimental design. Even over the years, profit maximizing mean N 

levels converge to 167 lb./acre while their standard errors become smaller and smaller, as 

indicated by narrower confidence intervals.  

{Table 3.5} 

While even average actual and quit-profit behave likewise, the average cost of 

experimentation declines as the number of plots allocated to experiments declines. Based on 

table 3.5 and among all designs that are based on 0N, half of N*, and 1.5N*, a 6-plot 

experimental design would have least costs of experimentation (about $1.97/acre). This occurs in 

year 3. For a 6-plot experimental design, unlike other designs, the optimal year to quit 

experimenting would be year 6 because it is associated with the highest MQNPV (i.e., 

$2,757.2/acre). MQNPVs for these designs are shown in figure 3.5. Consistent with the 30-plot-

new experimental design, MQNPV and average costs of experimentation results from the 12-

plot, 18-plot, and 24-plot experimental designs suggest that the optimal quit period for 

experimentation is year 2, a finding that is consistent with the 30-plot sampling procedure.  

{Figure 3.5} 

In general, assuming corn and N prices of $2.95/bu. And $0.45/lb., the best experimental 

design is a 12-plot-new experimental design because it is associated with a higher MQNPV (i.e., 

$2,781.5/acre) than the rest. When I include 30-plot-new and 12-plot-new experimental designs 

into analysis, a 12-plot-new would be the most profitable sampling procedure with MQNPV of 
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$2,782.9/acre. This is closely followed by a 30-plot-new design whose MQNPV value is 

$2,781.5/acre. As defined before, in a 30-plot-new or 12-plot-new design, not even a single plot 

is allocated with zero N, but rather N levels are varied substantially, that is 0.5N*, 0.75N*, and 

1.25N*. This means that there are no corn plants or seedlings subjected to zero N in a field under 

these experimental designs, when other factors are held fixed. Even excess N levels that are 

applied (1.25N*) are less than the excess N (1.5N*) in other procedures. That is, plot-new 

designs involve 16.67% lower excess N than the other designs considered here. I attribute these 

reasons to why both the 30-plot-new and 12-plot-new designs would be more profitable than 

other designs. Consistent with each other, but fundamentally different from other designs, their 

most profitable quit period is year 6.  

Random changes in economic conditions affect both corn and input prices. I therefore 

consider such stochastic economic behavior by adjusting corn and N prices as part of sensitivity 

analysis. I consider 30-plot and 12-plot experimental designs under three scenarios: when both 

corn and N prices double, when corn price alone doubles, and when N price alone doubles. Table 

3.6 shows sensitivity analysis results for respective designs when corn and N prices double (i.e., 

corn price is $5.90/bu. And N price is $0.90/lb.).  

{Table 3.6} 

Results in table 3.6 suggest expected profit maximizing N and average corn-quit do not 

deviate from the main results presented for a 30-plot design at initial corn and N prices. Only 

monetary variables such as average quit-profit, actual profit, and cost of experimentation 

increase by 100%. This implies that both corn-quit supply and N demand functions are consistent 

with economic theory of being homogenous of degree zero in output and input prices. Similarly, 

the profit functions are homogenous of degree 1 in input and output prices (Jehle and Reny 2001, 
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Mas-Colell, Whinston, and Green 1995) since doubling corn-quit and N prices results in average 

optimal quit-profit, actual profit, and cost of experimentation to double as well. Average corn-

quit is around 156 bu./acre across the years while the average quit-profit is between $739.41 and 

$773.64/acre. In both cases, the average cost of experimentation is the lowest in year 2 while it is 

higher in later years, which agrees with MQNPVs (shown in figure 3.6) for both experimental 

designs.  

{Figure 3.6} 

A closer look at figure 3.6 suggests that if prices of both corn and N double (i.e., $5.90/bu. And 

0.90/lb., respectively), a 12-plot experimental design would be more profitable than a 30-plot 

design because it would have a higher MQNPV ($5,483.90/acre) than the latter ($5,407.30/acre). 

This is possibly because the 12-plot design would result in lower yield losses from the 4 plots 

without N. Also, smaller N levels would be used excessively under a 12-plot design because only 

1.25N* is allocated to 4 plots while 10 plots are allocated 1.5N* (16.67% more of excess N) 

under the 30-plot design. These results are consistent with the 30-plot experimental design by 

quit period and not by magnitude of their MQNPVs because of different price regimes in which 

they are considered. Table 3.7 shows sensitivity analysis results when the price of either corn or 

N doubles, holding the other’s constant.  

{Table 3.7} 

As expected, average-corn-quit levels do not substantially differ from the main 30-plot 

experimental design. However, when corn price doubles holding N price constant, profit 

maximizing levels of N, average corn-quit levels increase by less than 100%. The average cost of 

experimentation is generally lower under a 12-plot experimental design than a 30-plot design 
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perhaps because of the fewer experimental units under the 12-plot design. The MQNPVs for 

both designs are shown in figure 3.7.  

{Figure 3.7} 

Results suggest that a 12-plot experimental design would be more profitable (with MQNPV of 

$6,053.40/acre) than a 30-plot experimental design whose MQNPV is $5,972.70/acre. Results 

also indicate that under both designs, it would be more profitable to quit experimentation in year 

2, a finding which is consistent with the 30-plot sampling procedure.  

When only the price of N is doubled (shown in the last panel of table 3.7), average profit 

maximizing N levels substantially decline from 175.50 per lb. in year 1 to around 150lb./acre. 

Additionally, corn-quit levels for both 30-plot and 12-plot designs average around 154bu./acre 

while average actual and quit-profit decline by less than 100%, which is consistent with 

economic theory that the profit function is decreasing in input prices. As before, under other 

designs considered previously, the average cost of experimentation is lower under a 12-plot 

design than under a 30-plot design. In terms of their MQNPVs (shown in figure 3.8), I find that a 

12-plot experimental design would be a better procedure than a 30-plot design since it has a 

higher MQNPV (i.e., $2,250.70/acre) than that of a 30-plot experimental design whose MQNPV 

is $2,217.9/acre. In terms of the optimal quit period, results still suggest both designs would be 

most profitable if they are quit in year 2, a result that is also consistent with those found when a 

30-plot experimental design was investigated at initial prices.  

{Figure 3.8} 

Conclusion 

Agronomic experiments have been a source of input management recommendations to both 

researchers and agricultural producers for many years. While such technology has been present in 
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in the U.S. and other countries across the world, agronomic experiments have largely been 

conducted on small plots without taking advantage of using large-scale farm machinery. 

Consequently, this has led to among other things, continuous search for appropriate crop input 

response functions, some of which are associated with large standard errors and uncertainty 

(Rodriguez 2014; Bullock and Mieno 2017). To avoid these drawbacks, a movement toward 

conducting large-scale, on-farm field experiments is underway. Such experiments are expected to 

be adequate for ‘big data statistical analyses” which could lead to improved input management 

recommendations for agricultural producers in the long-run. But the best way to conduct such 

experiments is yet to be known. This article attempts to address this gap.  

Assuming a stochastic plateau production function from one field, this article employs a 

fully Bayesian decision-theoretic approach to determine an optimal experimental design for large-

scale, on-farm field trials. Data are from Monte Carlo simulations. The analysis spans over 10 

years of experimentation with 250 replications. The main experimental design assumed is a 30-

plot experimental design with each 10 plots allocated zero N, half optimal N (N*=156 lb./acre), 

150% of N*, and the 70 plots are allocated with N*, which is computed sequentially. This 

procedure differs from previous related research (e.g., Bullock and Mieno 2013) that focus on 

determining the value of information from large-scale, on-farm experiments without explicitly 

accounting for the effect of year random and corn plateau random effects. My approach is 

theoretically sound and can be easily extended to other theoretical and applied economics settings.  

Results indicate that when corn price is $2.95/bu. And N costs $0.45/lb., the best 

experimental design for conducting large-scale, on-farm field experiments for continuous corn is 

varying 30% of the plots, by equally distributing the number of plots with zero N, 96.882 lb./acre, 
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and with 290.64 lb./acre with the rest of the plots allocated the optimal level of N = 193.76 lb./acre. 

These results would be obtained by beginning in year 1 to conduct such experiments with a 30-

plot experimental design consisting of 10 plots without N, 10 plots with half N* of 156lb./acre, 10 

plots with 1.5×N* (i.e., 234 lb./acre), and the rest 70 plots allocated with 156 lb./acre. I find that 

the best way to quit these trials would be in year 2 – when the Mean Quit-Net Present Value 

(MQNPV) of conducting these experiments is maximum.  But these results may change as shown 

in sensitivity analysis. 

Sensitivity analyses indicate that the profitability of an experimental design for large-scale, 

on-farm field experiments depends on how many plots receive variable N. Experimental designs 

with less than 30 plots upon which N is varied would be more profitable than the main 30-plot 

experimental design considered here. For example, other factors held constant, I find a 6-plot 

experimental design to be the best design among those that consider zero N levels, half of N*, and 

1.5N* to be allocated equally to experimental plots. On average, the optimal quit period for such 

designs was found to be year 2 though a 6-plot experimental design would be best quit in year 6 – 

the only finding different than those from a 30-plot experimental design. The reason put forward 

is that plots under a 6-plot experimental design would be subjected to lower loss of both yield and 

N than those with more than 6 plots subjected to experimentation in similar conditions.  

But results discussed above are amenable to change once I consider designs that do not 

allocate zero N to field plots. For example, sensitivity analysis further shows that a 12-plot-new 

experimental design would be most profitable among all the sampling procedures considered in 

this article. A 12-plot-new design is the only design that allows allocation of 0.5N* to 4 plots, 

0.75N* to 4 plots, and 1.25N* to other 4 plots – which is different than the rest of the designs 
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discussed above. Plausibly, a 12-plot-new sampling procedure performed better than other 

procedures because it would avoid substantial loss of both N and yield since each plot is allocated 

non-zero N compared to other previously discussed designs. Even the optimal quit period under 

the 12-plot-new design changes to 6 years, which is different from the optimal quit period 

associated with other designs with the exception of the 30-plot-new experimental design.  Thus, 

the optimal period to quit experimenting basically depends on the experimental design chosen. 

Doubling both corn and N prices showed that between a 12-plot and 30-plot experimental 

designs, a 12-plot design would be more profitable and that both corn-quit supply and N demand 

functions are homogenous of degree zero in corn and N prices. A 100% increase in either corn or 

N price still suggests a 12-plot experimental design would be more profitable than a 30-plot design. 

This provides further evidence that conducting field experiments on fewer plots is more profitable 

than otherwise. The idea holds true even when either the input or output prices change. In terms 

of when it is most profitable to quit experimenting, both the 12-plot and 30-plot designs would be 

most profitably quit in year 2 even when either corn or N price or both prices change. This implies 

that possible changes in input and output prices barely affect the optimal quit period of 

experimenting while the question as to when it is most profitable to quit experimenting depends 

on the design of the experiment one chooses 

The finding that the optimal period to quit experimentation does not depend on the number 

of plots does not agree with Bullock and Mieno (2013) who find that the optimal length of on-

farm experiments decreases with field size. This could be because Bullock and Mieno (2013) and 

the present study employ completely divergent assumptions and methods. Findings from both main 

and sensitivity analyses have consistently shown that large-scale, on-farm field trials are best 

conducted by varying N, but only over a small number of plots. That is, they are more profitable 
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when conducted using experimental designs with fewer number of plots upon which N levels are 

varied than otherwise. One other important finding consistent in the estimations is that the profit 

maximizing N levels decline in subsequent years while optimal profits remain afloat. This suggests 

that as more information is gained in successive years of experimentation, experimenters would 

have to reduce N levels in subsequent years while still being able to realize similar profit levels as 

before.  

While I recognize the caveat in assuming the same stochastic plateau production function 

without considering spatial correlation between errors, this study makes a novel contribution by 

being the first to employ these rigorous techniques that have received little attention in agricultural 

economics research. Employing spatial correlation between errors in these methods is a significant 

challenge for future research.  
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Table 3.1: Experimental Designs Used in Sensitivity Analyses 
Design Price of corn $/bu. Price of N $/lb. Levels of N (lb./acre) 

1 5.90 0.90 10 plots with zero of N* 10 plots with half N* 10 plots with 1.5×N* 70 plots with N* 

2 5.90 0.90 4 plots with zero of N* 4 plots with half N* 4 plots with 1.50×N* 88 plots with N* 

3 2.95 0.45 8 plots with zero of N* 8 plots with half N* 8 plots with 1.5×N* 76 plots with N* 
4 2.95 0.45 6 plots with zero of N* 6 plots with half N* 6 plots with 1.5×N* 82 plots with N* 

5 2.95 0.45 4 plots with zero of N* 4 plots with half N* 4 plots with 1.5×N* 88 plots with N* 

6 2.95 0.45 2 plots with zero of N* 2 plots with half N* 2 plots with 1.5×N* 94 plots with N* 

7 2.95 0.45 10 plots with 0.75 of N* 10 plots with half N* 10 plots with 1.25×N* 70 plots with N* 

8 2.95 0.45 4 plots with 0.75 of N* 4 plots with half N* 4 plots with 1.25×N* 88 plots with N* 

9 2.95 0.90 10 plots with zero of N* 10 plots with half N* 10 plots with 1.5×N* 70 plots with N* 

10 2.95 0.90 4 plots with zero of N* 4 plots with half N* 4 plots with 1.50×N* 88 plots with N* 

11 5.90 0.45 10 plots with zero of N* 10 plots with half N* 10 plots with 1.5×N* 70 plots with N* 

12 5.90 0.45 4 plots with zero of N* 4 plots with half N* 4 plots with 1.50×N* 88 plots with N* 
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Table 3.2: Bayesian Parameter Estimates of the Stochastic Plateau Corn Yield Response 

 True Median SD 95% Credible Interval Gelman-Rubin Test Statistic 

Intercept 39.84 40.815 1.686 37.563 44.137 1.000 
Slope 0.86 0.916 0.020 0.876 0.954 1.001 

Plateau 157.93 167.313 8.062 150.501 182.399 1.002 

Variance of plateau 625 526.315 934.579 236.6136 2714.072 1.002 
Variance of year random effect 100 25.641 14.084 6.613 300.080 1.000 

Variance of the error term 289 300.947 6678.028 276.176 329.435 1.001 
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Table 3.3: Monte Carlo Standard Errors 

 MCSE MCSE/SD (%) 

Intercept 0.027 1.600 

Slope 0.000 1.600 
Plateau 0.080 10.000 

Variance of plateau 0.000 2.000 

Variance of the year random effect 0.001 1.700 

Variance of the error term 0.000 0.700 
Average 0.018 2.933 
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Table 3.4: Expected Profit Maximizing N, Corn-Quit, Quit and Actual Profit, and Mean Cost of Experimenting Across Years 
Variable Year 

 0 1 2 3 4 5 6 7 8 9 10 
Expected profit maximizing N (lb./acre) 208.74 208.74 193.76 182.37 178.64 173.80 172.08 169.69 169.18 167.99 167.25 
Mean corn-quit (bu./acre) 157.20 157.51 157.34 156.07 155.89 155.29 157.06 156.28 156.33 155.50  
Mean quit-profit ($/acre) 369.70 370.74 376.98 378.36 379.48 379.89 385.89 384.67 385.96 383.15  
Mean actual profit ($/acre) 335.14 335.38 340.25 345.95 340.30 343.15 342.73 344.40 349.48 342.76 346.85 

Mean cost of experimenting ($/acre)  -34.32 -30.48 -31.02 -38.05 -36.32 -37.16 -41.49 -35.19 -42.29 -36.30 

 

 

 



94 

 

Table 3.5: Sensitivity Analysis Results for Different Experimental Designs When Corn Price is $2.95/bu. And N Price is 0.45/lb. 
Experimental Design Variable Year 
  0 1 2 3 4 5 6 7 8 9 10 

24-plot experimental design Profit maximizing N (lb./acre) 208.74 208.74 193.67 183.11 178.54 173.53 172.18 170.08 169.18 168.10 167.33 
 Mean corn-quit (bu./acre) 157.16 157.51 157.26 155.92 155.78 155,24 157.04 156.24 156.38 155.44  

 Mean quit-profit ($/acre) 369.70 370.74 376.76 377.56 379.21 379.87 385.78 384.37 385.20 382.92  
 Mean actual profit $/acre) 341.87 341.90 346.92 352.87 348.14 350.40 350.40 352.31 357.18 350.46 354.53 
 Mean CE ($/acre)  -27.80 -23.82 -23.89 -29.41 -28.29 -29.46 -33.47 -27.19 -34.74 -28.39 
18-plot experimental design  Profit maximizing N (lb./acre) 208.74 208.74 193.19 182.56 178.41 173.20 172.02 169.70 168.92 167.59 166.94 
 Mean corn-quit (bu./acre) 157.16 157.51 157.18 155.99 155.84 155.13 157.02 156.14 156.25 155.29  
 Mean quit-profit ($/acre) 369.70 370.74 376.74 378.04 379.45 379.71 385.81 384.26 384.94 382.70  
 Mean actual profit ($/acre) 348.59 348.42 353.97 360.64 355.54 358.23 357.91 360.24 365.59 358.02 362.55 
 Mean CE ($/acre)  -21.28 -16.77 -16.10 -22.49 -21.21 21.79 -25.57 -18.66 -26.92 -26.92 

12-plot experimental design Profit maximizing N (lb./acre) 208.74 208.74 191.39 181.95 177.51 172.36 171.58 169.53 168.70 167.52 166.98 
 Mean corn-quit (bu./acre) 157.16 157.51 156.92 156.03 155.70 154.94 156.80 156.04 156.08 155.13  
 Mean quit-profit ($/acre) 369.70 370.74 376.81 378.42 379.43 379.52 385.37 384.04 384.52 382.25  
 Mean actual profit ($/acre) 355.32 354.95 361.67 368.76 362.61 366.24 365.05 367.48 373.70 365.83 370.17 
 Mean CE ($/acre)  -14.75 -9.07 -8.04 -15.80 -13.19 -14.47 -17.88 -10.33 -18.69 -12.08 
6-plot experimental design Profit maximizing N (lb./acre) 208.74 208.74 193.73 182.05 179.10 173.78 172.27 169.80 168.86 167.51 166.55 
 Mean corn-quit (bu./acre) 157.16 157.51 157.08 155.96 155.68 155.03 156.79 156.10 156.01 155.32  
 Mean quit-profit ($/acre) 369.70 370.74 376.22 378.16 378.68 379.16 385.03 384.09 384.25 382.81  

 Mean actual profit ($/acre) 362.04 361.47 367.49 374.25 370.26 372.77 371.96 375.90 381.29 373.69 377.96 
 Mean CE ($/acre)  -8.23 -3.24 -1.97 -7.90 -5.90 -7.19 -9.13 -2.80 -10.55 -4.85 
30-plot-new experimental  
design 

Profit maximizing N (lb./acre) 208.74 208.74 189.48 182.61 179.09 174.14 172.70 170.30 169.45 168.56 167.64 
Mean corn-quit (bu./acre) 157.16 157.51 157.10 156.00 155.87 155.37 157.10 156.30 156.38 155.63  

 Mean quit-profit ($/acre) 369.70 370.74 378.17 378.04 379.22 379.99 385.73 384.45 385.09 383.26  
 Mean actual profit ($/acre) 364.52 364.39 368.92 373.36 367.05 370.15 369.19 371.45 376.29 368.98 373.45 
 Mean CE ($/acre)  -5.31 -1.81 -4.81 -10.99 -9.07 -10.80 -14.27 -8.15 -16.11 -9.81 
12-plot-new experimental 

design 

Profit maximizing N (lb./acre) 208.74 208.74 185.67 180.06 177.65 174.20 171.86 169.50 169.08 168.13 167.54 

Mean corn-quit (bu./acre)  157.51 156.77 155.66 155.74 155.11 156.81 156.13 155.99 155.42  
 Mean quit-profit ($/acre) 369.70 370.74 378.93 378.17 379.50 379.18 385.24 384.31 384.09 382.84  
 Mean actual profit ($/acre) 367.07 366.55 374.57 379.20 373.70 376.96 375.70 378.26 384.16 376.06 380.88 
 Mean CE ($/acre)  -3.15 3.83 0.27 -4.46 -2.54 -3.48 -6.98 -0.15 -8.03 -1.96 
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Table 3.6: Sensitivity Analysis Results for Experimental Designs When Corn and N Prices Double 
Experimental Design  

Variable 
 

Year  

  0 1 2 3 4 5 6 7 8 9 10 
30-plot experimental  

design 

Profit maximizing N (lb./acre) 208.74 208.74 194.77 182.02 178.31 173.91 171.69 170.25 169.23 168.20 167.68 

Mean corn-quit (bu./acre) 155.84 157.51 157.57 156.10 155.87 155.28 157.07 156.32 156.31 155.54  
 Mean quit-profit ($/acre) 739.41 741.48 754.42 757.29 759.18 760.00 771.95 769.55 770.16 766.31  
 Mean actual profit ($/acre) 670.29 670.76 680.73 692.17 680.53 686.24 685.31 688.92 698.81 685.64 693.79 
 Mean CE ($/acre)  -68.65 -60.74 -62.25 -76.75 -72.93 -74.69 -83.03 -70.73 -84.51 -72.88 
12-plot experimental  
design 

Profit maximizing N (lb./acre) 208.74 208.74 191.05 182.43 177.77 172.91 171.94 169.275 168.67 167.66 166.79 
Mean corn-quit (bu./acre) 157.17 157.47 155.98 156.96 156.37 155.98 157.35 156.92 155.28 155.86  

 Mean quit-profit ($/acre) 739.41 741.24 748.35 761.91 762.62 764.66 773.64 773.48 764.35 768.72  
 Mean actual profit ($/acre) 710.64 709.90 723.887 736.37 726.11 732.27 730.07 735.39 747.52 731.53 740.68 

 Mean CE ($/acre)  -29.51 -17.36 -11.97 -35.80 -30.35 -34.59 -38.24 -25.95 -32.81 -28.04 
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Table 3.7: Sensitivity Analysis Results for Different Experimental Designs When Either Corn Price or N Price Doubles 
Experimental Design Variable Year 
  0 1 2 3 4 5 6 7 8 9 10 

Corn price doubles (5.90/bu.) but N price remains constant ($0.45/lb.)          

30-plot-new experimental  
design 

Profit maximizing N (lb./acre) 243.47 243.47 225.20 206.98 198.50 191.58 188.52 185.14 183.37 182.10 181.00 

Mean corn-quit (bu./acre)  157.54 157.95 156.86 156.46 156.17 158.04 157.17 157.21 156.57  
 Mean quit-profit ($/acre) 820.38 819.94 830.58 832.37 833.79 835.20 847.60 843.98 845.03 841.86  
 Mean actual profit $/acre) 749.98 750.32 754.93 765.01 752.86 757.13 755.92 759.34 769.55 757.12 762.74 
 Mean CE ($/acre)  -70.06 -65.00 -65.56 -79.51 -76.66 -79.27 -88.25 -74.43 -87.91 -79.12 
12-plot-new experimental  Profit maximizing N (lb./acre) 243.47 243.47 224.12 206.47 197.27 190.58 188.84 185.11 183.56 181.82 181.01 
design Mean corn-quit (bu./acre) 157.61 157.54 157.96 156.78 156.49 156.00 157.81 157.11 157.10 156.27  

 Mean quit-profit ($/acre) 820.38 819.94 831.14 832.09 834.50 834.67 846.13 843.64 844.30 840.20  
 Mean actual profit ($/acre) 791.12 790.24 799.46 811.84 800.42 806.50 803.16 808.41 821.64 805.68 812.41 
 Mean CE ($/acre)  -30.14 -20.48 -19.29 -31.67 -27.99 -31.51 -37.72 -22.00 -38.61 -27.78 
Corn price is constant (2.95/bu.) but N price doubles ($0.90/lb.)          

30-plot-new experimental  
design 

Profit maximizing N (lb./acre) 175.50 175.50 163.63 158.69 157.54 154.93 154.22 152.74 152.53 151.83 151.23 

Mean corn-quit (bu./acre)  156.79 154.96 153.85 153.74 152.93 154.63 153.71 153.91 152.76  
 Mean quit-profit ($/acre) 303.43 304.59 309.87 311.03 311.75 311.71 317.37 316.00 316.78 314.01  

 Mean actual profit ($/acre) 271.50 272.21 277.86 283.04 277.97 280.37 279.89 281.37 286.21 280.18 284.91 
 Mean CE ($/acre)  -31.21 -26.73 -26.83 -33.06 -31.37 -31.82 -35.99 -29.78 -36.59 -29.09 
12-plot-new experimental  
design 

Profit maximizing N (lb./acre) 175.50 175.50 162.20 158.34 156.06 153.90 153.42 151.89 151.39 151.18 150.79 

Mean corn-quit (bu./acre) 156.40 156.79 154.50 153.55 153.28 152.50 154.16 153.26 153.45 152.28  
 Mean quit-profit ($/acre) 303.43 304.59 309.80 310.45 311.72 311.37 316.70 315.41 316.43 313.18  
 Mean actual profit ($/acre) 289.95 290.16 296.44 302.95 296.73 299.32 298.68 300.05 306.28 2.99.04 304.70 
 Mean CE ($/acre)  -6.13 -8.15 -6.85 -13.72 -12.39 -12.69 -16.65 -9.12 -17.39 -8.47 

 



97 

 

 

 

 

 

 

 

 

Figure 3.1: Flowchart summarizing the approach used 

 

 

 

 

 

 

 

Step 1: Previous/prior trial’s optimal 

nitrogen level 

Step 3: By Monte Carlo simulation, to 
generate corn yield data. The stochastic 

crop response function is the data 

generating process assumed. 

Step 2: Monte Carlo Integration to 

determine expected optimal N 

levels 

Step 4: Using data generated in 

previous step, recover true posterior 
medians and standard deviations by 

Bayesian estimation 
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Figure 3.2: The trace and autocorrelation graphs for 𝜷𝟏. 
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Figure 3.3: A Plot of Expected Profit Maximizing Levels of N in lb./acre in Each Year of Experimentation 
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Figure 3.4: A Plot of Mean Quit NPV against Year of Experimentation 
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Figure 3.5: A Plot of Mean Quit NPV against Year of Experimentation for 2, 4, 6, 8 Plots, and 4 and 10 Plots with 0.5 N*, 0.75N*, 

and 1.25 N*.  

 

 

 

 

1500

1700

1900

2100

2300

2500

2700

2900

0 1 2 3 4 5 6 7 8 9 10 11

M
ea

n
 Q

u
it

 N
P

V
 ($

/a
cr

e)

Year of Experimentation

MQNPV for 4 plots

MQNPV for 6 plots

MQNPV for 8 plots

MQNPV for 2 plots

MQNPV for 10 new

MQNPV for 4 new

Key



102 

 

 

Figure 3.6: A Plot of Mean Quit NPV against Year of Experimentation for 10 and 4 Plot Designs When Corn and N Prices 

Double.  
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Figure 3.7: A Plot of Mean Quit NPV against Year of Experimentation for 12-Plot and 30-Plot Designs When Only Corn Price 

Doubles.  
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Figure 3.8: A Plot of Mean Quit NPV against Year of Experimentation for 12-Plot and 30-Plot Designs When Only N Price 

Doubles.  
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