
DEVELOPING CLINICAL DECISION SUPPORT SYSTEMS FOR SEPSIS
PREDICTION USING TEMPORAL AND NON-TEMPORAL MACHINE

LEARNING METHODS

By

Akash Gupta

Bachelor of Technology in Computer Engineering
Uttar Pradesh Technical University

Lucknow, India
2009

Master of Technology in Control Systems
Indian Institute of Technology (BHU)

Varanasi, India
2012

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

Doctor of Philosophy
July 2019



DEVELOPING CLINICAL DECISION SUPPORT SYSTEMS FOR SEPSIS
PREDICTION USING TEMPORAL AND NON-TEMPORAL MACHINE

LEARNING METHODS

Dissertation Approved:

Dr. Tieming Liu

Dissertation Adviser

Dr. Christopher Crick

Dr. Dursun Delen

Dr. Sunderesh Heragu

Dr. Farzad Yousefian

ii



ACKNOWLEDGEMENTS

I am in gratitude to all the people who inspired and supported me during the process to
pursue Ph.D.. First and foremost, I thank my parents for their blessings and shaping me to
fight against the odds. I thank my siblings who do not spare a single opportunity to brag
about me.
I thank my dissertation advisor, Dr. Tieming Liu, for introducing me to the field of
medical informatics. He guided me to formulate and redefine the research questions. This
dissertation is a product of his continued support and mentorship. My committee members,
Drs. Christopher Crick, Dursun Delen, Sunderesh Heragu, and Farzad Yousefian provided
me insights on a variety of subjects including data mining and machine learning. I appreciate
their time and efforts. I especially like to thank Dr. Crick for amplifying my curiosity in the
area of probabilistic graphical modeling. Dr. Debjit Roy planted and nourished the seed of
research to flourish my academic success. During my formative years in the realm of research,
he encouraged me to test my limits and was patient with my mistakes.
The School of Industrial Engineering & Management and the Center for Health Systems
Innovation (CHSI) supported this research financially during different phases of my Ph.D.
program. Dr. William Paiva fueled me with a passion for helping rural communities. I
thank him and his generous staff at CHSI. In my efforts to bridge the gap between medicine
and engineering, Dr. Scott Shepherd advised me on the clinical aspect of the problem and
directed me to find the relevant problem statement. I thank him for setting the foundation
of the work.
My friends, Ana, Ashwin, Ashwin Raman, Babak, Harry, Ishahaq, Kelly, Ruby, Saeed, Sagnik
and Shelly helped me to sail through many storms throughout my graduate program. Thanks
to all the fun and beers!
Finally, I thank everyone who directly or indirectly supported me to culminate this research.

GO POKES !!!

Acknowledgements reflect the views of the author and are not endorsed by committee members or

Oklahoma State University.

iii



Name: Akash Gupta

Date of Degree: July 2019

Title of Study: DEVELOPING CLINICAL DECISION SUPPORT SYSTEMS FOR

SEPSIS PREDICTION USING TEMPORAL AND NON-TEMPORAL MACHINE

LEARNING METHODS

Major Field: Industrial Engineering & Management

Abstract:

In healthcare, diagnostic errors represent the biggest challenge to synthesize accurate treat-
ments. In the United States, patient deaths due to misdiagnoses are estimated at 40,000 to
80,000 per year. It was also found that 30% of the annual healthcare spending was consumed
on unnecessary services and other inefficiencies. The diagnostic errors could be reduced, and
public health can be improved by applying machine learning and artificial intelligence in
healthcare problems. This dissertation is an attempt to formulate clinical decision support
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This dissertation aims at developing clinical decision support systems to diagnose sepsis in
the early stages. The key feature of our work is that we captured the dynamics among body
organs using Bayesian networks. The richness of the proposed model is measured not only by
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Chapter I

INTRODUCTION

An ounce of prevention is better than a pound of cure

-Benjamin Franklin

This phrase sums the thrust of this dissertation: early identification of the onset of

disease and timely treatment is the best modus operandi to improve public health. This

dissertation is an attempt to help both doctors and patients by integrating engineering and

medicine.

1 Healthcare in the United States

The United States spent about 3.5 trillion dollars (or $10,000 per person) in 2017

on healthcare, which accounted for 18% of Gross Domestic Product (GDP) [1]. Figure 1.1

illustrates per capita healthcare expenditures across all the states. The states with light blue

color have low per capita healthcare expenditures, whereas states with dark blue color have

high per capita healthcare expenditures. With per capita healthcare expenditures of $7,627,

the total healthcare budget of Oklahoma is about $24 billion dollars [2].

Of the total healthcare expenditures in the United States, 30% is consumed due to

inefficiencies caused by an error in diagnosis and delay in treatment. These inefficiencies could
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Figure 1.1: Healthcare expenditures per capita across states in the United States (data
source: Centers for Medicare and Medicaid Services)

be minimized by using a Clinical Decision Support System (CDSS). A CDSS is a software

program that evaluates multiple clinical signs, translating this information into meaningful

insights that can be utilized by the physicians to make informative decisions.

The benefits of CDSSs to rural areas are enormous. In the United States, 20% of the

population is living in rural areas [3]. According to the Oklahoma Department of Commerce,

67 of all 77 (or 87%) Oklahoma counties are rural. The concern to sustain the health and

economy of these counties is immense. The population living in these counties is aging, lacks

adequate transportation, and has limited financial resources. These factors alone demand

technological advancements in healthcare. To make the problem more severe, these rural

counties are struggling to attract young physicians due to lack of facilities and amenities.
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Hence, the shortage of doctors in rural counties is imminent. For example, in Alabama, seven

rural hospitals closed their operations in the last eight years [4] resulting to 48 hospitals

[5]. To manage the shortage of physicians, Blue Cross Blue Shield in collaboration with the

medical college of the University of Alabama announced a $3.6 million scholarship program

for medical students to promote medical practices in rural areas [6].

Financial incentives are one of the possible ways to deal with the impending scarcity of

doctors, but the multitude of doctors cannot be trained promptly. Therefore, the challenge of

lack of doctors necessitates an alternative solution. The utility of CDSS provides an alternate

solution to manage the lack of properly-trained physicians. These tools could be used by

primary care providers or nurses, in the absence of experts, to assess the risk of disease and

to deploy limited hospital resources efficiently.

CDSSs facilitate early diagnosis for some diseases and this early identification may be

the difference between life and death. For example, delaying sepsis treatment each hour results

increase in mortality by 7.6% [7]. Early diagnosis not only prevents untimely deaths but

also saves trillions of dollars for healthcare providers. For example, in 2018, the Alzheimer’s

Association estimated a $7 trillion savings from early Alzheimer detection [8]. In addition, the

early detection can be recognized with understanding the dynamics of physiological variables,

thus the development of effective CDSSs stems from quality of medical data.

The advent of technology has led to a robust expansion of medical data. Hospitals store

both structured (numeric) and unstructured (images) data. Electronic Health Record (EHR)

includes information about vital signs, lab results, medications, procedures, demographics

and so on. The generated health data from different sources embed this wealth of information.

However, the hidden patterns are cryptic and more complex than can be deciphered by a

human brain. Therefore, the use of statistical and machine learning methods has been favored

to transform health data into knowledge.

Machine learning solves problems like humans, by learning patterns from historical
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data (or past experiences). It selects a combination of variables that reliably predicts

outcomes. Specifically, in medicine, machine learning is helpful in many clinical aspects:

prognosis, diagnosis, prescription and radiology. The terms prognosis and diagnosis are often

used interchangeably. However, there exists a slight difference – prognosis refers to “future

prediction” while diagnosis refers to “identification of a condition”.

The traditional prognostic models such as Sepsis-related Organ Failure Assessment

(SOFA) [9] rely on manual calculations, while the machine learning based models draw

variables directly from EHR and assess the risk with more granularity and accuracy. One

of the critical areas where machine learning can contribute significantly is curtailing errors

in prognosis. By continuously monitoring physiological data from EHR and triggering a

timely alarm to alert physicians for close inspections, the applications of machine learning

approaches in healthcare hold great promises. In this dissertation, we explore both temporal

( HMM, [10], Dynamic Bayesian Networks (DBN) [11], etc.) and non-temporal (support

vector machine, decision tree and so on) statistical and machine learning methods to develop

clinical prognostic (or predictive) models.

2 Sepsis at a Glance

Sepsis, traditionally known as the systemic response to infection, is a life-threatening

organ dysfunction caused by a dysregulated host response to an infection [12]. The incidences

of sepsis are growing rapidly in the United States. According to the Centers for Disease

Control and Prevention, the number of admissions to Intesive Care Units (ICU) due to sepsis

increased about 84% from 621,000 in 2000 to 1,141,000 in 2008 [13]. A worldwide study

showed that the incidence of sepsis and severe sepsis were 437 and 270, respectively, per

100,000 people per year for 2003-2015 in high-income countries [14]. Nearly two-thirds of

septic patients enter in hospitals through Emergency Departments (ED). The high influx

of septic patients makes it the most expensive disease to treat with an annual cost of $24
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Figure 1.2: Sepsis statistics (adapted from https://www.beckmancoulter.com)

billion [15]. Patients with sepsis are at considerable risk for severe complications and death.

It is the third leading cause of death, after heart disease and cancer, with mortality rates

ranging from about 25-30% depending on sepsis severity [16]. Liu et al. (2014) found that

the admission to hospitals due to sepsis consisted only 11% of total admissions to hospitals,

but the in-hospital mortality among the sepsis patients was considerable, ranging from 37%

to 55% [17]. Figure 1.2 summarizes the statistics of sepsis.

Understanding the needs of rural communities, this dissertation is a progression against

the waste of medical resources (time and money due to diagnostic errors) and an impending

shortage of doctors and attempts to achieve the following objectives:

1. Developing a CDSS using Bayesian networks to effectively diagnose sepsis

2. Engineering a framework to develop mortality monitoring systems for early diagnosis

3. Proposing an initialization method for the learning algorithm of HMM parameters

5
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4. Comparing prognostic accuracy of two popular sepsis diagnosis criteria

3 Brief Overview of Analytics

The analytics is divided into three dimensions: descriptive, predictive, and prescriptive.

Usually, predictive analytics follows descriptive, and prescriptive analytics follows predictive.

Descriptive analytics focuses on preparing summary tables, performs hypothesis testing

(chi-square test statistics, etc.) to understand the structure and relations among variables.

The purpose of descriptive analytics is to present the data graphically and to devise possible

hypotheses. The predictive analytics is the next level of analytics, where we use statistical or

machine learning techniques to learn inherited patterns in data. The learning could be two

types: supervised learning and unsupervised learning. In supervised learning, the outcome is

known, and we maximize/minimize the prediction accuracy/error. However, in unsupervised

learning, the outcome variable is not accessible. The data points are clustered based on the

similarity. The predictive analytics aims to determine the possible future outcome. Once we

know the probable future outcome, prescriptive analytics helps to derive the control actions

to avoid the adverse event.

This dissertation primarily focuses on descriptive and predictive analytics. In terms

of descriptive analysis, we initially visualized the data to investigate the trends among

variables. For example, using bar chart we noticed that patients who did not survive during

the hospital stays showed the low value of the Glasgow Coma Scale compared to patients

who survived (Figure 3.9). We also used table to explore the difference in discharge type

based on gender, census region etc. (Table 6.2). However, results based on visualization could

lead to the wrong conclusion. Therefore, we required to perform statistical tests (chi-square,

etc.) to prove the statistically significant difference. In the predictive side, we used logistic

regression, decision tree, Bayesian networks and support vector machine to predict the future

outcome. Specifically, we used temporal and non-temporal data to predict (or prognosis)

6



sepsis (Chapters IV, V and VI).

4 Problem Statements

4.1 Developing a CDSS for Sepsis

The physiological mechanism of sepsis is a complicated process due to stochastic

behavior of individual variable. A proper understanding of dynamics among variables is

important to interpret the reasoning for the state of the disease. There exists a few diagnostic

criteria to diagnose sepsis but each has its limitations: SIRS criteria are known to have poor

specificity [18], qSOFA have low sensitivity [19], Modified Early Warning Score (MEWS)

have limited accuracy [20], and SOFA is complex. It requires knowledge of four laboratory

results, ventilation support and administration of antibiotics.

Additionally, all the aforementioned diagnostic criteria assume that each clinical

variable is independent. However, this assumption does not hold true in reality. It is possible

that the state of one organ affects the state of other organs. For example, pneumonia causes

lung infection but it is possible that the impacted lung may cause dysfunction in other

respiratory system organs, distress to the kidneys, and cognitive dysfunction due to fever.

Therefore, the interconnection among body organs necessitates the development of models

that can capture interrelation among organs. As such, the first problem statement is “how

to develop an easy-to-use CDSS for sepsis that facilitates balanced sensitivity

and specificity and captures organ interrelation ?”

4.2 A Framework to Develop Mortality Progression Models

Mortality progression monitoring is instrumental to early diagnosis and to composing

efficient treatment strategies. Mortality progression models assess the risk of mortality

throughout a patient’s hospital stay using longitudinally/temporally observed clinical signs
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such as heart rate, blood pressure etc. The risk of mortality varies over time; therefore,

mortality progression provides relevant temporal insights such as time of change in patients’

health and time duration for a disease being in a specific state. The current state of the art

mortality prediction models uses aggregated (mean, median or peak) clinical measurements

[21, 22]. Goldstein et al. (2017) showed in their comprehensive review paper on risk prediction

models using EHR that 93% of studies do not leverage longitudinal information present

in EHR data [23]. These longitudinal data capture important variations in clinical signs

and can be used to develop mortality progression models. From 2009 to 2014, the number

of hospitals utilizing a basic EHR system increased from 12% to 76% [24], but EHR data

also present its challenges: sparsity of lab measurements, missing clinical measurements and

unrecorded intermittent severity of disease during the hospital stay. Therefore, designing a

framework to develop mortality progression models using EHR is essential. Hence, the second

problem statement is “how to develop a framework to design mortality progression

models using real-world medical records ?”

4.3 Initialization of the Learning Algorithm of HMM

In Section 4.2, we emphasize the importance of developing mortality progression

models using temporal data. There exist several methods to analyze temporal data such

as HMMs and recurrent neural networks. Although HMMs are primarily used to solve

speech recognition problems, these methods hold a great promise to solve problems of other

applications as well. A salient feature of HMMs is that they facilitate interpretation. However,

the learning of HMM is computationally expensive. Due to a high volume of data, the training

of HMM is the biggest impediment to its usability. The speed of the learning algorithms

is dictated by the initial values. The problem of initialization becomes prominent as the

number of variables grows. For a large data set, the algorithm converges slowly and gets

stuck at a local solution. Therefore, the third problem statement is “how to address the
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issue of slow convergence and local solution of HMM learning algorithm ?”

4.4 Early Bedside Sepsis Scoring Criteria

Identifying sufficient early bedside sepsis scoring criteria is paramount to timely treat-

ment. To detect the disease in early stages, many early diagnostic criteria were proposed

[12, 25, 9, 26]. The two early diagnostic criteria, SIRS and qSOFA (Table 1.1), are predomi-

nantly used in clinics to assess the criticality of disease. The foundation of SIRS relies on

inflammatory response to infection while the basis of qSOFA relies on the organ failures. The

presence of a criterion at the designated threshold yields a score of 1, otherwise 0. SIRS

scores range from 0 to 4, with scores of 2 indicative of SIRS and, subsequently, an increased

likelihood of mortality. qSOFA scores range from 0 to 3, with scores of 2 indicative of high

risk for mortality. Of the seven indicators between the two assessments, only respiratory rate

is common to both, with the threshold slightly higher in qSOFA.

Table 1.1: SIRS and qSOFA criteria.

Criterion
Threshold

SIRS qSOFA
Body temperature < 36◦C or > 38◦C
Heart rate > 90 beats/min
While blood cell count < 4K/µ L or >12K/µ L
Respiratory rate > 20 breaths/min ≥ 22 breaths/min
Systolic blood,pressure ≤ 100 mmHg
Glasgow Coma Scale ≤ 13

Singer et al. (2016) proposed a paradigm shift by moving the focus of sepsis diagnoses

from inflammatory response to organ failures [12]. The new definitions tied the risk of

mortality in suspected infection patients with risk of sepsis. The performance of proposed

qSOFA criteria was compared against SIRS. The authors argued for using qSOFA in clinics

because of its high specificity. However, several practitioners and researchers argued against

accepting qSOFA because of its low sensitivity that could lead to many patients undiagnosed.
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Given the necessity of early sepsis detection and divided opinion among researchers, a detailed

comparison of SIRS and qSOFA can establish a clarity in a practitioner’s mind for the use

of more accurate diagnostic criteria. Therefore, the fourth problem statement is “which

scoring system between SIRS and qSOFA is better ?”

In summary, this dissertation addresses the following problems:

1. How to develop an easy-to-use CDSS for sepsis that facilitates balanced sensitivity and

specificity and captures organ interrelation ?

2. How to develop a framework to design mortality progression models using real-world

medical records ?

3. How to address the problem of slow convergence and local solution of HMM learning

algorithm ?

4. Which scoring system between SIRS and qSOFA is better ?

5 Contributions

As mentioned above, this dissertation is a compendium of four studies. Here, we

summarize the contributions of each study:

Study 1 contributions:

• Develop a sepsis predictive model with high sensitivity and high specificity by utilizing

new definitions of sepsis

• Identify relevant biomarkers that enable quick and easy diagnosis

• Capture probabilistic interrelations among biomarkers rather than considering them

independent to better evaluate the risk of mortality
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• Propose an imputation method that is suitable for electronic medical records where the

majority percentage of data is missing

Study 2 contributions:

• Propose an HMM framework to develop mortality progression using EHR data

• Underline the advantages of using temporal methods over non-temporal techniques

• Extract relevant time information to compose better treatment strategies and efficiently

utilize hospital resources

• Integrate the principals of multinomial regression to speed up the learning of HMM

Study 3 contribution:

• Propose an initialization method for the HMM learning algorithm

• Employing additional information available in data to efficiently design a multi-stage

disease progression model

• Provide a time-efficient approach to initialize HMM learning for the data size grows

Study 4 contributions:

• Determine the early bedside diagnostic criteria using machine learning and statistical

approaches

• Identify the most important predictor for sepsis

The remainder of this dissertation is organized as follows. Chapter II discusses the literature

review to explore the existing tools and methods. Chapter III implements a CDSS for

sepsis using Bayesian networks (Problems 1). This chapter also includes the comparison of

the proposed model with alternate clinically acceptable models. Chapter IV describes the
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framework to develop mortality progression models using HMM and EHR data (Problem 2).

Chapter V explains the proposed initialization method for the HMM (Problem 3). Finally,

Chapter VI uses statistical and machine learning methods to compare the prognostic accuracy

of SIRS and qSOFA (Problem 4).
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Chapter II

LITERATURE REVIEW

If I have seen further, it is by standing on the shoulders of giants

-Issac Newton

1 Statistical and Machine Learning Methods

Statistical and machine learning methods can be categorized into two classes: non-

temporal and temporal. The applications of both types of methods in healthcare are explored

and discussed below.

1.1 Non-temporal Methods

The use of non-temporal machine learning and statistical methods in combination with

aggregated value (mean, median, or peak) of clinical signs is growing. Matheny et al. (2010)

used peak or mean value (depending on the type of lab) to architect a risk stratification model

for hospital-acquired acute kidney injury using logistic regression [21]. Saltzman et al. (2011)

developed an in-hospital mortality prediction model using decision trees [27]. The authors

used clinical measurements recorded at the time of admission into an emergency department.

Ramchandran et al. (2013) proposed a mortality prediction model for cancer patients using
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logistic regression [28]. To implement the model, the authors used measurements recorded

within the first 24 hours of the admission. Instead of developing a specific disease mortality

model, Tabak et al. (2013) developed a generic mortality prediction model using 23 lab

results and 2 demographic measurements [22]. The authors developed the logistic model using

the first measurement of hospital visits. All of these proposed models use either aggregated

values or a specific measurement (first or last observation during hospital visit) for model

implementation. Due to the use of a single value, these models do not capture the dynamic

behavior of the diseases.

Bayesian Networks (BN) are also popularly applied in healthcare; these approaches

are equipped to manage linear, non-linear, stochastic and combinatorial relations among

variables in order to capture the complex mechanism of medical problems. Therefore, we

investigate these models in detail. Aronsky and Haug (2000) developed a diagnostic system

to identify patients likely to have community-acquired pneumonia using Bayesian Network

(BN)s [29]. Burnside et al. (2000) devised a probabilistic graphical model to differentiate

benign and malignant cancer tumors [30]. Stojadinovic et al. (2009) applied BNs to predict

malignant thyroid nodules and achieved high discrimination capabilities with AUROC [31] of

0.88 using clinical variables acquired through non-invasive methods [32].

Nissan et al. (2010) developed a model using BNs to predict the growth of tumors in

the sentinel lymph node, which is a challenging task for oncologists even with the support of

radiologic mapping [33]. Identification of thyroid nodules is a difficult problem as it requires

unnecessary diagnostic surgery and among them only 5% of patients have malignant thyroid

nodules. Pang et al. (2004) used the tongue images to diagnose common diseases [34]. The

proposed computerized model, designed using BN, extracts two kinds of features from these

images - chromatic and textural from tongue images, and these features are used to predict

diseases. The authors employed the proposed model to interpret data from 455 patients and

13 classes of disease. The results showed that the model performed with a moderate accuracy
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of about 75%.

Kahn et al. (1997) developed a clinical diagnosis model (MammoNet) to estimate

the probability of tumor malignancy [35]. MammoNet requires 5 patient’s demographic

information, 2 physical signs and 15 features extracted from images of mammography. The

proposed model performed well with an accuracy of 0.88. BNs are also applied in the dental

domain and in detecting lung cancers. Sesen et al. (2013) used BN to generate insights about

lung cancer care, including information about the survival probabilities and treatment selection

recommendations [36]. The authors used both expert based approaches and algorithmic

approaches to learn the structure of BN. The structure elicited from algorithmic approach

(AUROC = 0.81) performed better than the structure obtained from the experts’ opinion

(AUROC= 0.75).

Mago et al. (2008) developed BNs for the dentist to diagnose dental caries and decide

the course of treatment [37]. There is another similar study on identifying the presence

or absence of dental caries using BNs [38]. The main feature of this study is that it also

incorporates the spatial behavior of caries. BNs were not only applied for diagnostic purposes

but they were also used for the management of hospital resources. Marshall et al. (2001)

developed a BN model to predict the duration of stay and destination of discharge to

manage the resources of geriatric hospitals [39]. Acid et al. (2004) developed BNs with the

combination of different structure learning algorithms to understand the interaction among

variables that influence the patients’ management [40]. The non-temporal methods work well

and provide informative insights about the future outcome. However, the performance of

models can be improved, and additional insights on the progression of the disease can be

drawn by utilizing the temporal information available in the EHR
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1.2 Temporal Methods

Temporal methods are applied to understand the dynamic behavior of diseases. Henry

et al. (2015) used Cox proportional hazard modeling techniques to develop the septic shock

progression model. This study developed a targeted real-time warning score (TREW) to

predict septic shock in the early stages [7]. Although authors utilized longitudinal data

using the proportional hazards model, this modeling technique does not incorporate past

information when estimating the mortality risk. The principal of a proportional hazards

model lies in the number of subjects that survive over the study time window. There are

only a few studies focusing on developing mortality progression, but several studies have been

proposed to model disease risk progression using time series techniques. Peelen et al. (2010)

investigated the sequence of organ failure in ICU patients using DBN [41]. Cai et al. (2015)

developed the non-disease-specific progression model using DBN [42].

A derivative of probabilistic graphical models, HMM enable modeling the longitudinal

behavior of disease. A few researchers have applied HMM to model the progression of diseases.

Liu et al. (2013) proposed a 2D-continuous time HMM to model glaucoma progression using

longitudinal data [43]. Sukkar et al. (2012) developed a slowly progressing disease risk model

using HMM [44]. This work set the foundation of one of our works (Chapter IV) where

we propose a mortality progression model rather than disease progression using EHR data.

The primary difference is that Sukkar et al. (2012) did not test the proposed framework on

EHR data. The study collected data from brain images. With the rapid growth of EHR

data, developing the framework to establish a mortality progression model using EHR is

instrumental. The secondary difference is that the author did not comment on the significance

of using an HMM model over non-temporal techniques. In Chapter IV, we bridge this gap by

proposing a framework that can model mortality progression and can be easily replicated for

any disease. The alternate approach to exploit longitudinal data available in EHR is deep
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learning.

Deep learning methods stem from neural networks. In recent days, the application of

deep learning in healthcare received special attention. Garske (2018) adapted deep learning

to predict diabetes from EHR data [45]. Che et al. (2015) applied deep learning to determine

the physiologic patterns associated with the clinical phenotypes [46]. Esteva et al. (2019)

summaries the multiple healthcare domains where deep learning can make a significant

difference [47]. They pointed out that the medical imaging analysis, unstructured data

analysis using natural language processing and reinforcement learning for robot-assisted

surgery.

Kam and Kim (2017) developed sepsis detection models with deep learning and

compared the performance of the new deep learning method with regression. The authors

applied temporal deep learning architecture (long short-term memory (LSTM) and showed

that LSTM improved the performance compared to regression models. The results indicate

the potential of improving the performance of sepsis prediction models by exploiting the

longitudinal data available in EHR. This study used open-source EHR data from MIMIC-III

[48].

Deep learning methods are capable of handling time series data. Hammerela et

al. (2015) used time-series data obtained from wearable sensors to predict the severity of

Parkinson’s disease [49]. Lipton et al. (2015) employed the derivative of deep learning known

as LSTM to determine the multi-label diagnosis using ICU time-series data [50]. Choi et

al. (2017) utilized time-stamped EHR data to diagnose heart failure in the early stages.

Although deep learning methods are powerful tools to unearth the hidden patterns, the lack

of interpretation is a hurdle to their real-world implementation.

In this dissertation, we focus on employing HMM to exploit longitudinal data available

in EHR. The applications of HMM in healthcare hold a great promise because it can model

the stochastic nature of the diseases and equips healthcare providers with interoperability.
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Therefore, we studied HMM in details. HMM was introduced in 1966 by Baum and Petie

[51]. It was first successfully applied to model the real world problem of speech recognition.

In 1972, Baum devised a forward-backward recursion to estimate the parameters of a HMM

[52]. This algorithm is also widely known as a Baum-Welch algorithm in honor of Lloyd

Welch. The study on automatic speech recognition using HMM by Rabiner popularized the

use of HMM in other applications as well [10]. A detailed introduction of HMM can be found

in work done by Ephraim and Marhav [53].

Vairavan et al. (2012) proposed a model using HMM and logistic regression to predict

the mortality in ICU [54]. In the proposed method, the output of HMM used as one of the

features of logistic regression. This study used supervised HMM with two hidden states and

estimated the HMM parameters using maximum likelihood method.

Using a combination of Temporal Boot-strap method and HMM, Li et al. (2013)

developed disease progression model with cross-sectional data [55]. For estimating HMM

parameters, the study used iterative Expectation-Maximization method. Chen and Pham

(2013) developed a dementia detection tool using HMM framework [56]. In this work, the

MRI images were used to extract the sequence of observations. The procedure to develop a

clinical support system can be summarized as follows. First, identify gray matter from MRI

images. Later, generate time series data by the distance measured from subsequent outer

boundary points to the centroid of gray matter. Now, use the obtained sequence of distance to

estimate the parameters using the Baum-Welch algorithm. The proposed framework was able

to identify mild Alzheimer’s disease in the early stage with a detection rate of 0.90. Nicola

et al. (2011) modeled the progression of liver cirrhosis using HMM [57]. Stanculescu et al.

(2014) used Autoregressive HMM to detect the neonatal sepsis without the need for lab tests

[58]. In this study, using clinical experts, the unsupervised HMM problem was translated into

supervised HMM to employ the maximum likelihood for estimation of transition matrix and

emission matrix. Khorasani and Daliri (2014) developed a classifier model for Parkinson’s
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disease using HMM [59].

Smyth (1997) suggested the idea of controlled initialization to improve the performance

of Forward-Backward algorithm [60]. The authors utilized K-means clustering for initialization

of parameters. This approach works well for a small set of sequence of observations but

could be computationally expensive for a large set of sequence of observations. Liu et al.

(2014) [17] proposed a Segmentation and Clustering (SnC) approach for initialization of

Baum-Welch algorithm. The authors devised four steps initialization procedure. Step 1

includes segmentation of data sequence based on similarity of observations. In Step 2, the

segments obtained from Step 1 are clustered using k−mean clustering. Step 3 is an extension

of Step 2. In this step, we estimate the optimal number of clusters to explain the data.

In Step 4, the identified clusters serve as hidden states and are used to estimated initial

parameters using maximum likelihood method.

The current procedures for the initialization of HMM learning algorithm rely on

heuristic approaches. There exists a need to establish a computationally efficient method

for initialization of HMM learning algorithm. We proposed an initialization framework in

Chapter V.

In summary, given the successful applications of probabilistic graphical modeling

in medical domain and benefit of interpretability, we aim to contribute in two aspects of

probabilistic graphical modeling: Application and Methodology. In the application aspect, we

develop CDSS using graphical modeling techniques to improve on existing tools by capturing

the interactions among physiological signs. Other classification methods such as logistic

regression and decision tree fail to capture the dynamics of variables that are predominantly

present in the clinical domain. In the methodological aspect, we devise a framework to

improve the parameter learning of graphical models. The current HMM learning algorithms

suffer the deficiencies of local maxima and slow convergence.
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2 Sepsis Diagnostic Criteria

Sepsis develops into septic shock when body organs start behaving abnormally. Ac-

cording to the new definition proposed in 2016, the organ dysfunction is identified using the

increment of 2 or more in the SOFA score. Due to technological advancements in pathobiology

and epidemiology of sepsis, sepsis definition and diagnostic procedures have been revised to

control the high mortality and growing incidence. The physiological mechanism of sepsis is

a complicated process. The complication involves the effect of individual clinical variables

as well as the random variations. In addition, symptoms of sepsis are similar to other

conditions, therefore, the diagnosis of sepsis in the early stage is a challenging problem for

practitioners. Research has shown that every hour delay in antibiotic therapy is associated

with an increased risk of mortality by 5-10% [61]. Therefore, early identification is critical

for the management of sepsis patients. Early identification requires a proper understanding

of dynamics among variables to reason the state of a disease. However, the multivariate

stochasticity and non-linear behavior of body response to sepsis make sepsis’ physiology

difficult to understand by the human.

In 1991, Sepsis was first formally defined by the consensus conference on sepsis and

organ failure [25]. Participants attempted to overcome the problems of multiple definitions

and meanings by addressing critical questions, such as whether sepsis was the appropriate term

for a condition unaccompanied by infection and if organ failure was an accurate description of

dysfunctions that may not necessarily be complete failure [62]. Rather than formally defining

sepsis, the conference resulted in a reinterpretation of sepsis and related disorders as SIRS, a

term describing the widespread inflammation or response associated with a range of disorders,

including infection, ischemia, and hemorrhagic shock.

Sepsis as a diagnostic term was to be reserved only for patients with infection, making

sepsis a subcategory of SIRS rather than SIRS being indicative of sepsis. SIRS scores range
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from 0 to 4, with scores of 2 indicative of SIRS and, subsequently, an increased likelihood

of mortality. The intent of the SIRS definition was to broaden the thinking about the

inflammatory response, including its etiology and measurement. However, several researchers

have shown that the SIRS criteria fail to adequately differentiate patients by the level of

mortality risk due to high sensitivity and low specificity, making the assessment a poor

indicator of illness severity [18, 63, 64]. Such imprecise measurement has led to numerous

obstacles for clinical trials [64, 65, 66, 67].

With advances in medicines understanding of the pathophysiology of sepsis coupled

with systemic inflammatory response occurring in both the presence and absence of infection

[68], sepsis definitions were evaluated in 2016 by the Third International Consensus Definitions

for Sepsis and Septic Shock (Sepsis-3) task force. The committee proposed a paradigm shift

in the definition of sepsis by moving away from the emphasis on systemic inflammation to

life-threatening organ dysfunction caused by a dysregulated host response to infection [12].

The new qSOFA criteria were designed to be a predictor of mortality used with patients with

suspected infection. qSOFA scores range from 0 to 3, with scores of 2 indicative of high risk

for mortality. Of the seven indicators between the two assessments, only respiratory rate is

common to both (SIRS and qSOFA), with the threshold slightly higher in qSOFA.

Further investigations found that although qSOFA has a stronger association with

mortality than SIRS for predicting in-hospital mortality among Emergency Department

(ED) patients, it had lower sensitivity [69]. Due to the poor sensitivity of qSOFA, patients

with sepsis might remain undiagnosed. This misdiagnosis in the early stage could lead to

life-threatening outcomes as timely treatment is critical [70]. However, the high sensitivity of

SIRS could lead to unnecessary burdening of ICUs due to improper referrals. Researchers

differ in their preference between sensitivity and specificity while selecting diagnostic criteria.

Freund et al. (2017) argued that the high specificity of qSOFA criteria make it suitable to

replace SIRS for efficient stratification of sepsis patients in the ED [71]. On the other hand,
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Akim et al. (2017) preferred sensitivity and presented results against the use of qSOFA [72].

From the above discussion, it is evident that there exists a dilemma about the selection

of best early bedside sepsis scoring criteria. In Chapter VI, we elicit evidence using statistical

and machine learning approaches to bring clarity about the selection of best diagnostic

criteria.

3 CDSS for Sepsis

Many studies have been dedicated to the development of decision support systems for

sepsis identification to aid practitioners in diagnosis. Mathe et al. (2009) developed a sepsis

surveillance system that monitors specific lab and vital signs in real time and visualizes them

on a screen [73]. The system notifies health care providers in case of observed abnormalities.

However, this tool does not analyze the information recorded and provide any suggestion

about the future outcome. Brandt et al. (2015) derived a flow chart for sepsis diagnosis and

developed an electronic sepsis surveillance system. The major drawback of the system was

that it had low specificity [74]. Amland and Hahn-Cover (2016) designed a computerized

early warning tool for sepsis diagnosis [75]. This tool generates two kinds of alerts: SIRS

alert and sepsis alert. The results showed that the system was able to alert physicians with a

median of 8.6 hours earlier than the time of suspicion of infection noted by doctors. The

limitation of this tool was that it triggered many false positive alarms. Only 25% of patients

that were alerted required the physician’s attention.

Lukeaszewski et al. (2008) used Reverse Transcription Polymerase Chain Reaction

(RT-PCR) in combination with neural networks to predict the onset of sepsis [76]. RT-PCR

is a commonly used test to determine genetic diseases. The study was able to predict sepsis

with 95% accuracy. However, extracting input information to employ such models is not

feasible in healthcare practice. The input information requires blood sampling and expensive

gene sequencing reading. Henry et al. (2015) proposed a Target Real-time Early Warning
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(TREW) score to predict septic shock using the Cox-proportional hazard model [7]. This

support system triggers a warning of septic shock based on the change in clinical variables

over time. The proposed model achieved the discrimination ability of 0.83. The limitation of

this analysis is that it does not capture the effect of the previous condition of disease and

also does not comment about the mortality risk. Most expert systems for sepsis consider

clinical variables independently. However, it is highly unlikely that physiological variables

are independent.

A few attempts have been made to apply Bayesian networks to understand the

dynamics of sepsis. Mani et al. (2014) developed a predictive model using non-invasive

clinical observations for sepsis prediction among neonates (infants during the first month)

[77]. The authors compared the performance of nine machine learning algorithms and found

that naive Bayes, with Area under Receiver Operating Characteristic (AUROC) curve of

0.79, outperformed other learning techniques. Gultepe et al. (2014) applied the Bayesian

network structure learning algorithm (hill-climbing) to unearth the interaction among clinical

variables used for sepsis diagnosis [78]. Along with developing the Bayesian network structure

to understand the dependencies among variables, the authors also proposed a model for

mortality prediction using naive Bayes and Support Vector Machine (SVM). With AUROC of

0.73, SVM based model performed better than naive Bayes. The possible reason for the poor

performance of naive Bayes model was that the dataset was small (number of patients was 741

where only 151 had sepsis and others were of the control group). Nemzek et al. (2015) applied

Bayesian networks to the protein and cellular components of sepsis-related organ failure and

elucidated the intricate relationships among the variables that cause lung dysfunction [79].

Although this study provided detailed insights for the development of sepsis-related lung

dysfunction, it used the protein and cellular components that are not directly accessible and

required laboratory analysis.

Some studies use the variant of Bayesian networks known as DBN to improve the
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performance of sepsis diagnostic system. Peelen et al. (2010) proposed a clinical support

system for medical practitioners to predict organ failures in intensive care units (ICUs) [41].

They developed three different models of the problem, and each model is an advancement of

the previous. Model 1 takes into account the number of organ failures, Model 2 considers

the transition of one organ failure to other, and Model 3 incorporates the dependency of

one organ failure to other organs, i.e, independent assumption was relaxed. The authors

captured the dynamic nature of patients’ recovery in ICU using a Markov chain. The states

in the Markov chain denote various conditions of patient’s stay in the ICUs. The transition

probabilities are calculated using logistic regression. The limitation of the study is that the

authors used data only from ICU admissions; therefore, it was not clear to what extent the

findings could be generalized to non-ICU admissions. Another study by Sandri et al. (2014)

developed a model to predict the sequence of organ failure in a patient using DBN [80]. The

main limitation of this study was that the organ dysfunctional time was not known, therefore,

authors used orders of organ failure based on physicians’ recommendations.

In Chapter III, we capture important interactions among biomarkers to develop a

model for predict sepsis. The inclusion of dynamics among biomarkers differentiates our

model from existing models. In addition, the existing sepsis diagnostic models lack in

providing the balance between sensitivity and specificity [18, 19]. Due to unbalanced nature

between sensitivity and specificity, both qSOFA and SIRS were criticized and considered

unhelpful. Therefore, practitioners require a more sophisticated diagnostic system. MEWS

provides a better alternative, but its sensitivity, specificity, and AUROC are not strong.

Although SOFA provides high performance accuracy, its complexity is the biggest challenge

in resource constrained environments [81]. In the next chapter, we develop an easy-to-use

expert system using Bayesian network classifier that captures the interaction among clinical

variables and facilitates a balance between sensitivity and specificity by selecting the optimal

set of biomarkers.
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Chapter III

SEPSIS MORTALITY PREDICTION USING BAYESIAN NETWORKS

This chapter explains the development of a CDSS for sepsis using Bayesian networks.

The novelty of this work is that we attempt to capture the physiological interactions among

organs. Designing of a CDSS is a multi-step process. The procedure can be summarized

using Figure 3.1. We used the following steps to build a predictive model: 1) data extraction,

2) data preprocessing (imputation, feature selection, and discretization), and 3) building

Bayesian network. An optimal set of variables was identified using feature extraction, and

then these variables were used for further construction of the model. Using the combination

of elastic net and recursive partitioning, irrelevant or redundant variables were eliminated.

After pruning the search space, the selected biomarkers were discretized using Hartemink

method, suitable for using with Bayesian classifiers [82]. Following the discretization, the

interactions among selected biomarkers were captured by utilizing a specific class of Bayesian

classifiers.
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Figure 3.1: Model development procedure

1 Method

1.1 Data Extraction

This study used de-identified data from Cerner Corporations HIPAA-compliant Health

Facts database. The database comprises EHR for 379 million patient visits, about 63 million

patients, from 480 affiliated hospitals across the United States. These comprehensive clinical

records for individual patient visits include demographic, vital signs, laboratory results,

medication, diagnosis codes (both ICD-9 and ICD-10), pharmacy, procedures performed, and

date- and time-stamped information on admission and discharge. This dataset is one of the

largest EHR in the United States [83].

The population of suspected infection was selected using the gold standard explained

in Sepsis-3 [84]. The gold standard includes a combination of culture drawn (Event 1) and
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antibiotics administration (Event 2) within a defined time interval. There are two scenarios

illustrated in Figure 3.2: 1) Event 1 occurs first, then Event 2 occurs within 72 hours, 2)

Event 2 occurs first, then Event 1 occurs within 24 hours. The study cohort includes patient

visits that satisfy either of two aforementioned scenarios. The time of infection is the time

of occurrence of the first event. The selection of culture and antibiotic was based on the

consultation with practitioners. In the final dataset, we had 16,909 patient visits. The

outcome variable was discharge type (expired or non-expired).

Event 1 Event 2

Event 2 Event 1

72 hours

24 hours

Scenario 1

Scenario 2

Figure 3.2: Data selection scenarios

1.2 Imputation

This section explains the proposed left-center-right imputation method and compares

it to alternate imputation approaches. Imputation is a critical step to develop an effective

clinical model using EHR data. EHR data are collected for the billing purpose rather than

performing analytics, therefore, the data has a lot of missing clinical measurements. Also,

variables that are easy to measure such as routine vital signs are frequently present while

others, such as lab tests, are sparsely available. Since we wanted to capture the interactions

among variables, it was important to use values recorded in the same time intervals instead

of taking the aggregate values such as mean or median over the hospital stay of the patient.
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Considering measurements at the same time interval is especially important for sepsis as it

progresses aggressively, therefore aggregate measurements are clinically less meaningful.

In the proposed imputation method, we utilized observed biomarker measurements

to impute unobserved biomarkers of individual patient’s visit. For this study, we divided

the patient’s length of stay after the first suspicion of infection into 24-hour (or one day)

windows. We selected 24-hour windows because the popular existing criteria such as SOFA

uses the worst value recorded in 24 hours [9]. The imputation procedure is easy to explain

with the example shown in Figure 3.3. In Figure 3.3, t = 0 is the time at which patient is

suspected to have infection. The subsequent hospital stay is divided into 24-hour intervals

until the discharge of the patient (i.e., t = 8). For a specific variable in a patient visit,

suppose we know the observation for t = 2, 5 and 7 (X1, X2 and X3). To impute the values

in remaining intervals, we use carry-forward (right in Figure 3.3) and carry-backward (left

in Figure 3.3) methods along with the mean in intermittent intervals (center in Figure 3.3).

In the carry-forward and carry-backward methods, the most recent value is carried forward

or backward, respectively, to fill empty intervals. We referred to this imputation method as

left-center-right for convenience. Using observed data at t = 2, 5 and 7 (shown in black), the

other time intervals were imputed (shown in blue).

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

X1 X2

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

X1 X2
X1+X2

2
X1+X2

2X1X1
X2+X3

2 X3 X3

RightLeft Center

X3

Center

Figure 3.3: Left-center-right imputation. t = 0, time of suspicion of infection; t = 8, time
of discharge

We compared the imputed data generated from the proposed imputation method to
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the mean and the median imputation. This comparison was established for each individual

variable. For illustration purposes, let us consider bilirubin. The same population data

(explained in Section 1.1) were used for this comparison purpose. We expect that good

imputed data should follow the density plot of data without imputation. Figure 3.4 shows

the density plot of three imputation techniques along with density plot of data without

imputation. The density plot for the left-center-right method closely aligns with the data

without imputation as desired. The density plots obtained from other imputation techniques

changed the shape of distribution and showed peaks at different points than the original

mean. The reason for peaks at different points is attributed to the sparsity of EHR data.

Therefore, we avoided the use of mean or median imputation for our analysis.

1.3 Variable Selection

Variable selection is the most critical part of the analysis because most clinical results

have lead time and cost associated with it. Also, Capan et al. (2018) has shown that not all

organ failures are equally associated with sepsis mortality [85]. Therefore, to keep our model

simple, and at the same time maintain high performance, we need to establish the best subset

of variables. Table 3.1 includes the names and types of the variables initially selected in this

study. The primary selection of biomarkers was based on the literature and discussion with

practitioners. Later, the best subset of biomarkers among the primarily selected biomarkers

was obtained using the machine learning techniques.

We used both elastic net [86] and recursive partitioning [87] for variable selection.

The two methods stand on different principals. The elastic net pulls the coefficients of

unimportant variables towards zero by minimizing the sum of square errors and regularization

term. We used the elastic net rather than the stepwise selection because it facilitates shrinkage

and avoids over-fitting by using the regularizing factor. The shrinkage implies reducing the

complexity of the model by dragging the weights of unimportant biomarkers to zero. Shrinkage
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Mean imputation

Median imputation

Without imputation

Left-center-right imputation

Figure 3.4: Density plots for different imputation techniques

is an important characteristic for clinical applications because each biomarker (lab test or vital

signs) is associated with a significant cost. The recursive partitioning focuses on minimizing

the impurity present in the data by partitioning. For the final model, a conservative approach

was applied and only variables that were suggested by both variable selection methods were

used.

Zou and Hastie (2005) proposed elastic net regression that utilized both L1 norm

and L2 norm [86] The objective function (or prediction error) for the elastic net is given by

Equation (III.1). The variable of interest is the weight vector at which objective function is

minimum.
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Table 3.1: Clinical variables

Description Associated organ dysfunction indicator Type
Body temperature General Vital
Mean arterial pressure General Vital
Systolic blood pressure Cardiovascular Vital
Glasgow Coma Scale Nervous Vital
Respiratory rate Respiratory Vital
Glucose General Lab
Platelet count Coagulation Lab
Prothrombin time (PT) Coagulation Lab
White blood cell count Inflammatory Lab
Bilirubin Liver Lab
Creatinine Renal Lab
Age NA Demographic
Gender NA Demographic

ŵ = arg min
w

{ N∑
n=1

(Y n − wTXn)2 + λα‖w‖1 +
λ(1− α)

2
‖w‖2

}
(III.1)

Here Y n is the observed output (discharge type) of nth data point, Xn is the input

vector of length p (number of biomarkers; p = 13) of nth data point, n is the index for

admission visit (n ∈ {1, 2, . . . , N}). N is the number of admission visits (N = 16,909). α is a

tuning parameter, w is a estimated weight vector, and ‖w‖1, ‖w‖2 are L1 norm and L2 norm,

and equal to
∑p

j=1 |wj| and
√∑p

j=1w
2
j , respectively. For a specific α, we search for best λ

that provides the least cross-validation error (CV-E) with the minimum set of biomarkers.

To obtain an optimal set of variables, we searched for different α (0 ≤ α ≤ 1) and λ.

Figure 3.5 shows the plot between CV-E and log(λ) on different α. 5-fold cross-validation was

used to avoid the bias due to selection of sample. Each dot (in red) and bar (in gray) in the

graph represents the CV-E and one standard deviation from mean, respectively corresponding

to a specific log(λ). Two vertical lines in each plot represent λ at which CV-E is minimum

and λ above which CV-E is greater than one standard deviation of the minimum CV-E. To
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compute the optimal number of variables, we used λ above which CV-E is greater than one

standard deviation of the minimum CV-E instead of using λ at which CV-E is minimum.

This selection of λ enables significant reduction in the size of optimal set of variables with

the minimal increase in error. For example, at α = 1, minimum CV-E was achieved at log λ

= - 7.32 with 12 variables (shown in the top of each plot) and maximum CV-E that is within

one standard deviation of minimum CV-E is at log λ = - 5.27 with 9 variables. Therefore, we

selected 9 as an optimal set of variables for α = 1. We expected as α decreases, sparsity of

the model decreases due the nature of Equation (III.1). It is evident from Figure 3.5 that the

optimal number of variables increases as α decreases from 1 to 0. The size of optimal set of

variables for α = 0.33 and α = 0 were 10 and 13, respectively (bottom two plots of Figure

3.5). Figure 3.5 depicts number of selected variables on the top of each plot. This number of

selected variables is identified using variables with non-zero weights. The clinical variables

with zero weights for α = 0.66 and log(λ) = -4.3 are struck out in Table 3.2.

In recursive partitioning, the data are recursively partitioned to reduce the impurity

present in the data. Each step of the recursive partitioning includes the splitting of data

into two subgroups. The split is determined by the variable that reduces the impurity most.

There are two methods to measure the impurity: Gini index and Information index [88].

Gini index is defined as:

Gini index =
2∑
i=1

pi(1− pi)

Information index is defined as:

Information index =−
2∑
i=1

pilog(pi)

Where pi is the probability of outcome class i. We have two classes in outcome variable

(1 = non-expired, 2 = expired).
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Number of selected variables

Optimal number
of selected variables

min{CV-E} min{CV-E} + σ

Figure 3.5: CV-E vs. log(λ) on α = 1, 0.66, 0.33, 0

The recursive partitioning can be summarized as follows:

1. Select variable that provides highest information gain (or reduction in impurity). The

information gain is calculated using the following expression:

Information Gain = Impurity (before split) - Impurity (after split)

2. Split data using the selected variable

3. Repeat 1 and 2 until information gain is greater than a pre-defined threshold

33



Table 3.2: Selected variables for α = 0.66 and log(λ) = -4.3; strike out indicates variable
having zero weight

Variable Variable
Body temperature Prothrombin time (PT)
Mean arterial pressure White blood cell count
Systolic blood pressure Bilirubin
Glasgow Coma Scale Creatinine
Respiratory rate Age
Glucose Gender
Platelet count

For our data, recursive partitioning using both splitting criteria resulted in the same

classification accuracies (0.96). Since we had the same classification accuracies and the

research has shown that both criteria disagree only in 2% cases [89], we selected information

index for further explanation of the results.

The variable importance of each biomarker obtained by recursive partitioning using

information index is shown in Figure 3.6. Figure 3.6 illustrates a significant drop in variable

importance from respiratory rate to mean arterial pressure. Therefore, we performed a

sensitivity analysis to inspect the change in accuracy for two scenarios: considering only

first five important variables (dotted variables in Figure 3.6), considering all variables with

non-zero variable importance. The classification accuracy of the model (0.96) with 5 variables

(dotted variables in Figure 3.6) was the same as the classification accuracy of the model (0.96)

with 9 variables (both dotted and shaded variables in Figure 3.6). Therefore, we considered

only five biomarkers from recursive partitioning: Glasgow Coma Scale, creatinine, blood

pressure, white blood cell and respiratory rate.

We summarized the variables selection using elastic net (α = 0, 0.33, 0.66, 1) and

recursive partitioning in Table 3.3. Although for our experiments, the variables, selected by

recursive partitioning, are the subset of variables selected by the elastic net (α = 1), it is not

always the case. The variables used for further analysis are shown in bold font in Table 3.3.
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Figure 3.6: Variable importance from recursive partitioning (GCS: Glasgow Coma Scale,
SBP: systolic blood pressure, WBC: white blood cell, RR: respiratory rate, MAP: mean
arterial pressure and PT: prothrombin time)

1.4 Discretization

Many methods have been developed to discretize continuous variables, and the perfor-

mance of these methods depends on the shape and the nature of the data. Some approaches

such as quantile and equal intervals utilize variables in isolation, while others such as

Hartemink [82] consider relationship among variables to decide the cutoffs.

For our data, the correlation analysis uncovers significant dependencies among biomark-

ers. Figure 3.7 illustrates correlations among biomarkers. The size of the circle represents the

strength of the correlation between biomarkers. The cross signs show that the correlation was

non-significant. Therefore, a relationship among biomarkers should be utilized for discretiza-

tion to avoid the loss of information. Hence, we selected Hartemink method to efficiently

compute the discrete levels of biomarkers. Another reason why we chose it is that research

has shown that Hartemink discretization performs better with Bayesian classifiers [82].
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Table 3.3: Final set of selected variables (check mark indicates that variable is selected by
individual procedure, bold fonts means finally selected)

Variable α = 0 α= 0.33 α = 0.66 α = 1 Recursive partitioning
Body temperature X
Mean arterial pressure X X X X
Systolic blood pressure X X X X X
Glasgow Coma Scale X X X X X
Respiratory rate X X X X X
Glucose X
Platelet count X X X X
Prothrombin time (PT) X X X X
White blood cell count X X X X X
Bilirubin X X
Creatinine X X X X X
Age X X X X
Gender X

Hartemink Discretization assumed that the continuous variables are normal by distri-

bution. Therefore, we inspected the density plot of each variable. Using the Box-Cox method

[90], the transformed variables were obtained when original variables were deviating from

normal, except for the Glasgow Coma Scale sore. For example, the original distribution of

platelet count and its transformed distribution are shown in Figure 3.8. The Glasgow Coma

Scale score was heavily left skewed, therefore, no better distribution was found using the

Box-Cox method. Hence, the cutoffs (≤ 6, (6, 10], (10, 13], > 13) defined in the literature were

applied for Glasgow Coma Scale [9].

In the Hartemink method, each continuous variable initially is segregated into a large

number of levels using any of the traditional methods such as equal intervals. This large

number of levels reduces to a specific number, defined by the users, by coalescing selected

neighboring pair to a single level. The mutual information between the selected variable and

other variables is calculated. The levels that result in a minimum loss of information with any

of the other variables is coalesced with neighboring level. For our experiments, we first divided

each variable into 10 levels and then coalescing was done with the Hartemink procedure
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Figure 3.7: Correlation analysis among biomarkers (size of the circle represents the strength
of correlation, the cross signs show non-significant correlation)

Figure 3.8: Platelet (before and after variable transformation)
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until each variable reached three levels. Based on physicians’ opinion, three discrete levels

facilitate simplicity and meaningful clinical interpretation. Some biomarkers are considered

as normal at mid-range value and as abnormal at either extreme end. The three discrete

levels are able to discover the mid-range boundaries.

The computed discrete levels of the selected variables provide important insights. The

patterns of mortality over different discrete levels of biomarkers (shown in Figure 3.9) are

supported by practitioner’s knowledge. For example, practitioners suggested that both low

and high respiratory rates are associated with increased mortality. The discrete levels obtained

from our analysis also showed the same pattern. However, there exists slight differences in

the standard cutoffs and cutoffs obtained from discretization. The standard respiratory rate

for a normal patient is 12 to 20 breaths per minute. However, we obtained least mortality for

respiratory rate between 16 to 22 breaths per minute. It is possible that generated cutoffs

work well for sepsis specifically because the upper cutoff is supported by the recent Sepsis-3

study, where respiratory rate greater than 22 was proposed as the cut-off for increased risk of

mortality.

Figure 3.9: Discrete levels of selected biomarkers and corresponding mortality rate
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1.5 Model Development

Bayesian network is a probabilistic model with directed acyclic graph. Combination

of nodes and arcs is used for the graphical representation. Each node represents a random

variable, and each arc implies conditional dependencies between variables. Bayesian networks

are popularly used in medical research because they capture the uncertainties and non-

linearities presented in data using graphical representation that is easy to understand [11].

There are two popular Bayesian classifiers: Naive Bayesian and TAN Bayesian. The

Naive Bayes classifiers are simple and assume conditional independence between variables

given the outcome variable. TAN improves Naive Bayes classifier to capture important

interactions among variables and at the same time maintains the mathematical simplicity.

In TAN, the outcome variable (mortality risk) has no parent, and each predictor can have

at most two parents: class variable and any other biomarker. The procedure to learn the

structure of the proposed model is explained as follows [91].

• Step 1: Calculate the mutual information (MI) between each pair of biomarkers using

Equation III.2

MI(Xi, Xj|Y ) =

CXi∑
k=1

CXj∑
l=1

CY∑
m=1

P (k, l,m) log
P (k, l|m)

P (k|m)P (l|m)
(III.2)

where CXi
, CXj

and CY are the number of levels in variable Xi, Xj and Y , respectively.

i, j ∈ {Glasgow Coma Scale (GCS), Systolic Blood Pressure (SBP), Respiratory Rate

(RR), White Blood Cell (WBC), Creatinine}

• Step 2: Build a complete undirected graph with the mutual information as the weight

of edges

• Step 3: Find the maximum weighted spanning tree
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• Step 4: Transform the undirected tree obtained from Step 3 to a directed one by choosing

a root variable either arbitrarily or by expert’s opinion, and setting the direction of all

edges to be outward from it. In this study, the selection of root node was performed

using an expert’s opinion such that the selection does not violate any domain knowledge.

The establishment of direction does not change the data likelihood because MI(Xi, Xj)

= MI(Xj, Xi)

• Step 5: Include new node (mortality risk) and connect it with the rest of the graph

obtained in Step 4

The steps to construct TAN Bayesian network for the current sepsis model are shown

in Figure 3.10.

GCS RR WBC CreatSBP

(a) Step 1

GCS SBP RR WBC Creat

(b) Step 2

GCS RR WBC CreatSBP

(c) Step 3

GCS RR WBC CreatSBP

(d) Step 4

GCS RR WBC Creat

Mortality

risk

SBP

(e) Step 5

Figure 3.10: Structure learning of the TAN Bayesian network model (GCS: Glasgow Coma
Scale; SBP: systolic blood pressure; RR: respiratory rate; WBC: white blood cell count;
Creat: creatinine)

40



After learning the TAN structure, the conditional probabilities are calculated by using

Equation (III.3).

P (Xi|Xpa(i)) =
P (Xi, Xpa(i))

P (Xpa(i))
∀i ∈ {GCS, SBP,RR,WBC,Creat}. (III.3)

Xpa(i) are the parents of Xi. For example, in Figure 3.10, the parents of respiratory

rate are Glasgow Coma Scale and mortality risk. Therefore,

P (XRR|XGCS, Y ) =
P (XRR, XGCS, Y )

P (XGCS, Y )

The estimated conditional probabilities were used for the inference. For our model,

the inference can be derived by using Bayes’ theorem as follows.

P (Y |XGCS, XSBP , XRR, XWBC , XCreat)

=
1

Z
P (XGCS|Y )P (XSBP |Y,XWBC)P (XRR|Y,XGCS)P (XWBC |Y,XCreat)P (XCreat|Y,XGCS)P (Y )

(III.4)

Z is a scaling factor and equal to P (XGCS, XSBP , XRR, XWBC , XCreat).

The inclusion of interactions among biomarkers differentiates our model from others.

Most relationships discovered by TAN Bayesian network were supported by practitioner

knowledge except the relationship between WBC and blood pressure. Based on expert’s

opinions, the Glasgow Coma Scale is most likely to relate with respiratory rate and creatinine,

and creatinine possibly affects WBC; but the relationship between WBC and blood pressure

is not so apparent. Our results show eliminating the arc between WBC and blood pressure

will marginally lower the overall performance of the model. Furthermore, we inspected the
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correlation coefficient between WBC and blood pressure and observed statistically significant

negative correlation (ρ = -0.12). The negative correlation coefficient implies that as WBC

increases, blood pressure decreases and vice-versa. The magnitude of correlation coefficient

represents the strength of association. Our findings suggest there might exist a relationship

between WBC and blood pressure, and it warrants further investigation.

2 Results and Discussion

In this section, we compare the performance of the proposed model with SIRS [25],

qSOFA [12], MEWS [92] and SOFA [9]. It is worth noting that MEWS and SOFA are not

designed to predict mortality. MEWS is used to detect criticality of ill patients, and SOFA is

used to understand the health of body organs. However, these criteria are commonly used in

medical settings and provide a good benchmark to evaluate the performance of a model [93].

The metrics to evaluate the performance of a classifier are AUROC, sensitivity,

specificity, and geometric mean (G-Mean). The AUROC is most commonly used in medical

literature to evaluate the diagnostic capability of a classifier as its discriminative threshold

is varied. The AUROC of 1 corresponds to an ideal model while 0.5 corresponds to the

worst. Sensitivity is the true positive rate, and specificity is the true negative rate. G-Mean

is the geometric mean of sensitivity and specificity (Equation III.5). G-mean is often used to

inspect the balance between sensitivity and specificity [94].

G−Mean =
√
sensitivity × specificity (III.5)

Our model estimates the risk of mortality. The estimated probabilities were translated

into categorical outcome by using a cut-off point. This cut-off point governs the trade-off

between sensitivity and specificity, therefore, the selection of cut-off point was given special

attention. Instead of using default decision threshold (0.5), we explored previous studies to
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understand the best approaches to find the optimal cut-off point without considering the

misclassification cost and prevalence. There exist two popular methods to find the optimal

cut-off point: 1) point in receiver operating characteristic curve closer to (0, 1); first index

represents false positive rate and second represents true positive rate, and 2) Youden index

[95, 96] Youden index determines the cut-off at which (sensitivity + specificity -1) is maximum.

Perkins and Schisterman (2006) compared these two methods and identified advantages and

disadvantages of selecting one over the other. The ideal model passes through the point (0, 1)

[95]. Therefore, any point in receiver operating characteristic curve closer to (0, 1) is visually

more meaningful [95]. Hence, cut-off point corresponding to the point closer to (0, 1) was

considered as an optimal cut-off point and was used to estimate sensitivity and specificity.

The model validation was performed using 5-fold cross-validation. Figure 3.11 illus-

trates the validation procedure. We divided the data into five equal folds. One fold was used

for the validation and the remaining were used to train the model. This procedure was carried

out iteratively to consider each fold for validation. The final performance measures (AUROC,

sensitivity, specificity and G-mean) were estimated by taking the average of performance

measures obtained from five mutually exclusive data folds.

We compared the AUROC of the proposed model against the alternate models (SIRS,

qSOFA, MEWS and SOFA) over different time instances prior to discharge. Figure 3.12

illustrates the AUROC of our model and competing models preceding the discharge time.

The result indicates that our model performed better than competing models over all time

instances before the discharge. The percentage differences in AUROC between our model and

the alternate models (SIRS, qSOFA, MEWS, and SOFA) ranged from 30-50%, 22-32%, 8-11%,

3-5%, respectively. This longitudinal analysis presents results in favor of the robustness of

our model.

We also compared the time-average performance of our model to alternate models

(SIRS, qSOFA, MEWS and SOFA). The sensitivity, specificity, G-Mean, and AUROC of our
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Figure 3.11: Model validation approach

model and competing models are shown in Figure 3.13. With AUROC of 0.84, our model

outperformed other criteria (SIRS = 0.59, qSOFA = 0.65, MEWS = 0.75, SOFA = 0.80). In

addition, our model provides the best balance between sensitivity and specificity, and this

can be seen evidently by using G-Mean. The G-Mean of our model (0.75) is greater than

SIRS (0.55), qSOFA (0.58), MEWS (0.70), and SOFA (0.73).

Many clinical applications of a model necessitate high sensitivity. Therefore, for the

same AUROC (0.84), Table 3.4 reports specificity on varying values of sensitivity. The

results show that at very high sensitivity (0.99), the model loses the specificity significantly.

Depending on the requirement on sensitivity, we can increase the specificity.

Table 3.4: Specificity on varying values of sensitivity

Sensitivity 0.99 0.95 0.90 0.85 0.80 0.85
Specificity 0.10 0.35 0.54 0.68 0.72 0.76

The primary reason for the better performance using TAN Bayesian network is the

presence of correlations among biomarkers. TAN considers correlations, while other modeling

techniques treat all variables as independent. TAN Bayesian network usually performs better
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Figure 3.12: AUROC over the different time before the discharge

when variables are correlated [97]. The physiological variables more often than not show

correlation among biomarkers. For example, in our EHR data, the correlation between WBC

and blood pressure is -0.12. Therefore, the performance gain of our model could be attributed

to the existence of correlation among biomarkers.

Table 4.1 summarizes selected biomarkers and the performance characteristics of

each model. Although our model uses more variables than SIRS and qSOFA, it performs

significantly better than these models. SOFA score requires the knowledge of four laboratory

results. Our model with only two laboratory results performs marginally better than SOFA.

The use of fewer laboratory results enables practitioners to predict the risk of sepsis easily

and quickly.
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Figure 3.13: Comparison of performance of different diagnostic criteria

Table 3.5: Biomarkers and the performance characteristics of the proposed model

SIRS qSOFA MEWS SOFA Our model
Biomarkers Systolic blood pressure X X X X

Glasgow Coma Scale X X X X
Respiratory rate X X X X
White blood cell X X
Creatinine X X
PaO2/F iO2 X
Platelet count X
Mean arterial pressure X
Bilirubin X
Blood pressure support X
Body temperature X X
Hourly urine X
Heart rate X X
No. of biomarkers 4 3 6 8 5

Performance AUROC 0.59 0.65 0.75 0.80 0.84
G-Mean 0.55 0.58 0.70 0.73 0.75
Sensitivity 0.83 0.36 0.77 0.71 0.71
Specificity 0.36 0.95 0.63 0.75 0.80
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3 Conclusions

In this work, we developed a predictive model using Bayesian networks that inherently

captures the important interactions among biomarkers and compared the performance of

our model with SIRS, qSOFA, MEWS and SOFA. The proposed model was trained with

the population selected using the new sepsis definitions. The model development process

includes the following main steps: data extraction, data preprocessing, learning of Bayesian

network, and model evaluation. The variable selection identifies biomarkers meaningful to

predict sepsis. Out of a set of 13 variables, 5 variables were selected (systolic blood pressure,

Glasgow Coma Scale, respiratory rate, white blood cell count, and creatinine) to develop the

model.

The structure of the Bayesian network facilitates visual interpretation of the interac-

tions among biomarkers. The model identified relations that were in align with practitioners’

knowledge. The comparative analysis showed that our model outperformed alternate models.

The results underline the robustness of our model by comparing the AUROC of various

models over different time instances prior to discharge. The proposed model eliminates the

existing problem of unbalanced sensitivity (SIRS = 0.83, qSOFA = 0.36) and specificity

(SIRS = 0.36, qSOFA = 0.95) and delivers balanced sensitivity (0.71) and specificity (0.80).

The key characteristic of our model is that it outperformed MEWS and SOFA and uses

fewer variables than them. The use of fewer lab results enables quick prognosis of sepsis. In

comparison with SIRS, qSOFA, MEWS and SOFA, our model provides the best alternative

and can easily be integrated in EHR environment and autonomously identify the patient at

high risk of sepsis.

The limitation of this study is that the data come only from hospitals using Cerners

EHR system. So, there could be potential sources of bias in the data. Although we included

data from hospitals located in all four U.S. census regions, we cannot generalize the results
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to all U.S. hospitals as there could be distinct differences between hospitals using the Cerner

system and other hospitals. The possible reason of difference is that the Cerner’s EHR is

mainly used in big hospitals because it is expensive to implement. We did not consider the

effect of intervention by assuming that each patient was subjected to a similar intervention.

In this chapter, we developed a predictive model that uses the observations obtained

at a particular time interval. However, when a patient visits hospitals, the physicians do not

only examine the current symptoms but also browse through the previous records. In the

next chapter, we propose a framework to capture such phenomena where a model uses both

current and past information to assess the risk of the disease.
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Chapter IV

MORTALITY PROGRESSION MODEL

In Chapter III, we applied non-temporal methods to develop a clinical decision support

system for sepsis diagnosis. In Chapter IV and V, we introduce a temporal method (HMM) to

elaborate on utilizing the longitudinal EHR data. This chapter demonstrates the application

of HMM to model the mortality progression, while the next chapter unearths the limitation

of the current HMM learning algorithm and proposes a method to efficiently compute the

HMM parameters.

The proposed framework to develop a mortality monitoring system using an HMM is

shown in Figure 4.1. A brief explanation of HMM and their training is provided in Sections

1.2 and 1.3, respectively. The proposed framework computes mortality risk in combination

with present observations and past trends of clinical signs. This modeling approach is closely

aligned with the real-world phenomenon where physicians use historical data in addition

to current vital signs to assess the health of patients. The proposed framework includes

three steps: data preprocessing, training HMM parameters and inference. EHR data are

stored in long form where each clinical measurement of a patient’s hospital stay is stored in

separate rows. The proposed framework requires data to be in wide form where longitudinal

measurements are stored in one row. The data preprocessing steps are explained in detail
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in Section 1.1 using sepsis case data. The preprocessed data is used to learn the 2-state

HMM parameters using the Baum-Welch algorithm. The two states represent stable and

critical patient status. The learned model combined with newly observed longitudinal clinical

measurements is used for generating the inference for mortality progression using the forward

algorithm (explained in Section 1.4).

Var 1 Var 2 Var 1 Var 2

E1

E2

E3

t = 1 t = 2

Preprocessing EHR data Train 2 state HMM Inference

(Baum-Welch algorithm) (Forward algorithm)

Mortality progressionData table

Step 1: Step 2: Step 3:

. . .

. . .

Hidden Markov model

Figure 4.1: Proposed hidden Markov model framework. E1 stands for Encounter 1. Similarly
E2, E3 etc.

1 Method

1.1 EHR Data Extraction and Preprocessing

This section explains the data extraction and preprocessing steps for EHR data. The

procedure is generic and could be applied to any EHR dataset. The study data was collected

from Cerner Corporation’s Health Facts warehouse, one of the largest de-identified and

HIPAA compliant health care data repositories in the United States. The data included

longitudinal date- and time-stamped information on admission and discharge, laboratory

results, diagnosis code, patient demographics, and additional clinical and billing information.

We demonstrate the performance of the proposed framework on sepsis data. As mentioned in
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Chapter I, progresses rate of sepsis is high, and the likelihood of survival reduces with delay

in treatment. Therefore, developing a mortality progression model to monitor the criticality

of sepsis is meaningful.

The selection of population was derived following the Sepsis-3 study [84]. The emphasis

of the study is not to develop a new predictive model but to underline the benefits of applying

the proposed temporal framework over traditional non-temporal methods. Therefore, we

borrowed the set of three clinically useful variables (blood pressure, Glasgow Coma Scale

score and respiratory rate) identified by the Sepsis-3 study [84] to detect sepsis.

The data extraction steps are illustrated in Figure 4.2 (left). Although HMM parame-

ters can be trained for varying length of time series data, we keep our analysis to sequences of

the same time length to eliminate the additional computational complexity for training the

parameters. In this study, we considered encounter visits that resulted in discharge on the

eleventh day. For such encounters we only used the data till tenth day for training the model.

Figure 4.2 (right) shows the preprocessing steps of data preparation. The Sepsis-3

study had shown, with comprehensive experiments, that blood pressure, respiratory rate and

Glasgow Coma Scale score are the most critical identifiers of sepsis mortality [84]. Therefore,

we limited our study to only these routinely available vital signs because such clinical variables

are frequently recorded in EHR and present fewer missing longitudinal data. The EHR data

may suffer many challenges. For example, clinical variables are stored with multiple names

and varying units, and some measurements of clinical signs are meaningless. To ameliorate

the inconsistencies, we preprocessed the data. The pruning of a variable includes considering

outliers or meaningless measurements as unrecorded. For example, a respiratory rate of 250

is infeasible, therefore, we considered it as unknown measurement.

After pruning variables, time abstraction was performed. Time abstraction is the

process of aggregating the clinical measurements over time into time windows. Figure 4.3

graphically represents the time abstraction. In EHR data, a few clinical signs were recorded
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Figure 4.2: Data extraction (left) and data preprocessing (right). BP:blood pressure, RR:
respiratory rate, GCS: Glasgow Coma Scale score

in intervals of fifteen minutes, and some were a couple of hours apart. We aggregated the

data into two hour blocks to maintain the original variations in clinical signs and at the same

time to reduce the volume of missing records. As shown in Figure 4.3, if more than one result

is present in a two hour interval, the mean of all results was used for analysis.

Following time abstraction, imputation was carried out. Imputation is a process of

finding the best fit measurement for missing values. The left-center-right technique was

employed that was discussed in Section 1.2 (Chapter III). The preprocessed data was split into

training (70%) and testing (30%) for model building and testing the performance, respectively.
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Admission time Discharge time

(in hour)

(in hour)
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(2 hour)

Figure 4.3: Time abstraction (ta: admission time, td: discharge time)

The statistical summary of selected three variables after preprocessing is shown in

Table 4.1.

Table 4.1: Statistical summary of three selected clinical variables

Clinical variable Minimum Maximum Mean Median
Blood pressure (mmHg) 36 243 123.2 122
Glasgow Coma Scale score 2 15 14.26 15
Respiratory rate (breaths/min) 8 40 18.85 18

1.2 Hidden Markov Model

X1
1 X1

2 X1
N

. . .

S1

X2
1 X2

2 X2
N

. . . XT
1 XT

2 XT
N

. . .

STS2 . . .

. . .

Hidden state

Observable features

P (s2|s1)

P (x1
1|s1)

P (x1
2|s2)

P (x1
N |s1)

Figure 4.4: Hidden Markov model

HMMs are popularly known for successfully modeling time series problems of speech

recognition. HMMs consist of observed states and hidden (unknown) states. Unlike Markov

models, in HMMs, the state of interest is unobservable. Therefore, we refer such modeling
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methods hidden. The aim of HMMs is to infer about the hidden state of the system using the

observable time series data. The HMM can be explained easily with an example. Consider I

record how many ice cream I eat every day. Given my consumption of ice cream reflects the

the state of my mind (happy or sad), Pistol Pete can infer about my mood (hidden state)

from the number of ice cream I have.

The basic framework of an HMM is shown in Figure 4.4. The shaded circles represent

the observable variables and un-shaded circles represent hidden variables. The arcs represent

conditional probabilities. The conditional probabilities are divided into two classes:

1. Transition probabilities

The transition probabilities reflect the probability of transition from one state to another

state in one time step:

P (st|st−1)

2. Emission probabilities

The emission probabilities represent the probability of emitting an observation given

the state.

P (xti|st)

We assume that the parameters are time-invariant. Therefore, P (x1i |s1) = P (x2i |s2) =

P (xti|st) = P (xi|s) and P (s2|s1) = P (s3|s2) = P (sT |sT−1)

x1i , x
2
i , . . . , x

T
i represent the sequence of observed measurements for Xi (i ∈ {1, 2, . . . ,

N}), where T is the number of time steps and N is the number of observed variables. We

assume that given the state at time t, the observed variables are independent from each

other. This assumption is in-align with the basic principal of non-temporal methods such as

logistic regression and naive Bayes. Let X t
1, X

t
2, . . . , X

t
N be random variables representing

each clinical variable at time t. For simplicity let X t be [X t
1, X

t
2, . . . , X

t
N ]
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P (X t|st) =
N∏
i=1

P (xti|st) (IV.1)

As mentioned earlier, each sequence could be of a different length but to maintain the

simplicity, we considered sequences of the same length. st denotes the state of the disease (1

= non-critical or 2 = critical) at time t (t ∈ {1, 2, . . . , T}).

1.3 Learning HMM Parameters

The HMM parameters (emission and transition probabilities) are estimated using the

maximum likelihood method. The objective is to maximize the likelihood of sequences of

observations given parameter as shown in Equation (IV.2)

logL =
M∑
i=1

logP (~Zi|λ) (IV.2)

where Zi is ith sequence of observations, ~Zi = {X1, X2, . . . , XT}i. λ is the collection of

HMM parameters both transition and emission probabilities. Each sequence of observation

is obtained from an independent hospital stay. M is the number of independent observed

sequences corresponding to the number of patient visits (or widely known as encounters) in

the dataset. We used Baum-Welch algorithm to estimate the HMM parameters such that

the log-likelihood of observed data could be maximized [10]. A mathematical description of

how to maximize log-likelihood is included in Appendix A.

1.4 HMM Inference

HMM inference includes computation of the most probable sequence of states. The

most probable sequence of state is derived by estimating the probability of being in state s
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at time t, given the observed data until t and HMM parameters (P t(s|X1,X2, . . . ,Xt, λ)).

The inference is computed using a recursive procedure partially adapted from Rabiner

[10]. Following naive Bayes principle, the recursive procedure is modified to accommodate

multiple features instead of considering only one feature at a time. We used multiplication

of conditional probabilities (
∏N

i=1 P (xti|st)) to account for the effect of N variables in state

probabilities.

Let αt(s) be the forward variable and is defined as joint probability of partial observed

sequence until time t (X1,X2, . . . ,Xt) and system being in state s, given HMM parameters.

αt(s) = P t(X1,X2, . . . ,Xt, St = s|λ)

The recursive procedure to compute αt(s) is explained as follows:

1. Initialization: Initialize the joint probability of initial observation X1 and state s

α1(s) = α0(s)
N∏
i=1

P (x1i |S1 = s, λ) for s ∈ {1, 2}

where α0(s) is the initial probability of system being in state s when no observation

was observed.

2. Induction: for t = 2 to T-1

αt(s) =
[ ∑
i∈{1,2}

αt−1(i)P (St = s|St−1 = i)
] N∏
i=1

P (X t
i |St = s) for s ∈ {1, 2}

This step shows how a patient’s health transitions to one of two states at time t

from previous state at time t− 1. αt−1(i)P (St = s|St−1 = i) is joint probability that

X1,X2, . . . ,Xt−1 are observed and the state s is reached via state i. Summing this

product over all possible states results in all paths reaching s at time t. Since, now we
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know the state distribution at time t, it is easy to compute αt(s) by incorporating the

observed data.

After computing αt(s), we normalize the probability to compute the conditional proba-

bility distribution:

P t(s|X1,X2, . . . ,Xt, λ) =
αt(s)

αt(1) + αt(2)
for s ∈ {1, 2}

2 Results and Discussion

2.1 Performance Comparison between Proposed Temporal Framework and Non-

temporal Modeling Techniques

The AUROC, explained in Chapter III, was used to compare the performance of

temporal and non-temporal methods to model mortality progression using EHR data. The

AUROC is a popular performance measure to evaluate the discrimination power of classifiers.

The classification accuracy could be an alternate performance measure. However, due to high

proportion of negative cases in our data (negative cases; 93%, positive cases: 7%), the choice

of classification accuracy is not optimal. Non-temporal models include decision trees, logistic

regression, naive Bayes, random forests and support vector machines. In typical scenarios

with non-temporal methods, we compute one class probability for an individual patient’s

visit using aggregated measurements and compare it against the actual outcome to evaluate

the AUROC. The HMM computes class probability at each time interval using current and

past measurements. Therefore, for comparison, we computed the class probabilities for

non-temporal models at each time interval using the measurement recorded in that time

interval only. The parameters of non-temporal models were estimated using the data observed

in that time series window. Figure 4.5 illustrates the procedure to compute the AUROC at

each time interval. Each model predicts the severity of disease for each time interval, and the
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predicted risk for each time interval is compared against actual discharge type to compute

the AUROC.

t = 2 t = 4 t = 6 t = 8 t = 10 td

Admission time Discharge time
(in hour)

Prediction Prediction Prediction Prediction Prediction Prediction

Discharge type

AUROC AUROC AUROC AUROC AUROC AUROC

Figure 4.5: Procedure to compute AUROC at each time step

The data used to perform numerical experiments are explained in Section 1.1. Figure

4.6 shows the AUROC obtained at different time steps prior to discharge time for HMM

and non-temporal models on sepsis data. It is clearly evident from Figure 4.6 that the

AUROC of HMM model is significantly better than non-temporal models. In addition to

high performance, HMM model presents a robust increase in the AUROC. The non-temporal

models showed high variation in AUROC over time. The primary reason of such behavior is

that the non-temporal models estimate the mortality risk by considering only the present

measurements of clinical signs but do not incorporate the previous status of the patients.

Therefore, the non-temporal models are sensitive to rapid changes in clinical signs.

The difference of AUROC between temporal and non-temporal methods reduces as

prediction time moves closer to discharge time. This characteristic indicates that when

compared to non-temporal methods, the use of the proposed framework has better prediction

advantage in the early stages than the later stages of patient hospital stay. The early

identification of a possible bad outcome is an additional novelty of the proposed temporal

framework.

We performed the trend analysis to clearly inspect the AUROC gap between the

proposed temporal framework and the non-temporal methods. Figure 4.7 includes five plots
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Figure 4.6: Comparison of area under operating characteristic curve prior to discharge time
between HMM and non-temporal methods (LR: logistic regression, SVM: support vector
machine, DT: decision tree, RF: random forest, HMM: hidden Markov model)

each comparing an individual non-temporal method to the proposed framework. The X-axis

represents time prior to discharge and Y-axis shows difference of AUROC between the

proposed framework and individual methods. In each plot, at the beginning, the AUROC

gap is small because the proposed framework takes time to reach steady state from initial

state. It is evident from trend lines that the AUROC gap decreases with prediction time

moving closer to discharge time. This characteristic emphasizes that the proposed framework

is effective for early prediction, which is an important advantage for healthcare applications.
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The early prediction enables clinicians to inject timely intervention and to efficiently manage

hospital resources.

(a) Decision tree (b) Support vector machine

(c) Logistic regression (d) Naive Bayes

(e) Random forest

Figure 4.7: Trend of AUROC difference between proposed framework and non-temporal
methods. The dotted line represents the trend line.

Table 4.2 summarizes the mean of AUROC obtained by both temporal and non-
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temporal methods. The mean is calculated by taking the average of all AUROC obtained at

different time intervals. The mean AUROC of HMM is 9-12% greater than non-temporal

methods. The better performance of HMM is attributed to its strength in leveraging

longitudinal clinical data.

Table 4.2: Mean of AUROC for both temporal and non-temporal models

Type Model Mean AUROC
Non-temporal Decision tree 0.78

Naive Bayes 0.79
SVM 0.79
Logistic regression 0.80
Random forest 0.80

Temporal HMM 0.87

2.2 Mortality Progression for Sepsis

In this section, we aim to elaborate on another characteristic of the proposed frame-

work that is tracking the mortality progression. We developed a real-time sepsis mortality

progression model by combining the time series data of three clinical variables mentioned in

Table 4.1.

Figure 4.8 shows the trajectory of three variables (blood pressure, respiratory rate

and Glasgow Coma Scale score) along with computed inference (procedure explained in

Section 1.4) for the disease severity (or mortality) risk. The inference (red) represents the

dynamic behavior of the disease criticality. The region within the dashed rectangle includes

the detection point of change in criticality of the patient’s condition. This change in state

of condition can probably be explained using the drop in blood pressure, continuous low

respiration and low Glasgow Coma Scale score. We also noticed in inference that there

are further changes in the disease states along the time. The probable reason is the active

treatment. The inference using HMM provides critical time information about the change in

state and duration of a state. This knowledge can enable practitioners to effectively decide
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treatment strategies.

discharge
time

Transition
time

Figure 4.8: Example encounter features and mortality trajectory. BP: blood pressure, RR:
respiratory rate, and GCS: Glasgow Coma Scale score
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For practical usage of clinical tools, the sensitivity and specificity are important

measures. Therefore, we computed these performance measures as well. Sensitivity is defined

as correctly classifying positive cases, and specificity is correctly classifying negative cases.

We examined the performance of our model five days prior to discharge time because it

provides enough time for intervention. Figure 4.9 shows the receiver operating characteristic

curve for both temporal and non-temporal models. The sensitivity of our model (0.80) is

greater than the sensitivity of all non-temporal models (DT: 0.78, LR: 0.74, Naive: 0.73, RF:

0.74 and SVM: 0.60), which is an important characteristic for diagnosis. But the specificity

of our models (0.76) is marginally lower than most of the non-temporal models (DT: 0.78,

LR: 0.78, Naive: 0.78, RF: 0.79 and SVM: 0.90). For predictive tools, the sensitivity is an

important performance parameter because neglecting the patient who has disease is more

detrimental than treating patients that are actually not at high risk.

2.3 Discussion

Sukkar et al. (2012) developed an HMM based disease risk progression model for slow

progressing disease [44]. The author employed six state HMM to model Alzheimer’s disease.

However, the multi-state model possesses its own challenges such as learning complexity.

This learning problem becomes significant especially for EHR where high volumes of data

are missing. This study describes a step by step process to build a time series model from

EHR data. This study directs future clinical researchers to consider time variations in

variables instead of merely using aggregated values (mean/median). The proposed approach

also provides time related insights that enable practitioners to understand the trajectory of

disease.

The mortality prediction model designed using traditional non-temporal approaches

(decision tree, logistic regression, naive Bayes, random forest and support vector machine) are

very sensitive to short-time intervention effects. The non-temporal models compute mortality
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Naive Bayes (0.77)

SVM (0.72)

Our model (0.86)

Decision tree (0.78)

Logistic regression (0.80)
Random forest (0.80)

Figure 4.9: Receiver operating characteristic curve. Prediction time is five days prior to
discharge. SVM: support vector machine

risk using only the latest measurements. Therefore, temporary change in clinical signs due to

intervention can significantly affect the prediction of mortality risk. Such predictions could

be misleading and can lead to poor treatment decisions. Instead of relying only on current

clinical observations, the more robust mortality risk could be obtained by combining the

previous health of patients and chances of transitioning patient’s health from one state to

others. Consequently, the change in mortality risk does not depend on instant clinical signs,

rather, it depends on the continuous trend of clinical signs. Using the proposed temporal

framework, the more robust mortality prediction can be achieved by combining the trends of

individual clinical signs.
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The proposed framework provides continuous update on the health of a patient. The

status of the patient’s health gets updated periodically with a newly observed set of clinical

observations. This real time information facilitates early detection of acute events, discharge

planning and managing limited resources of hospitals. Although sepsis case study data in

this paper only includes vital signs due to their dense availability in EHRs, the lab results

could also be incorporated. The periodic update on the mortality risk requires knowledge

of all clinical signs at each time period. In case any clinical variable is not available, the

possible alternative is to use the last available measurement to infer about mortality risk.

The sepsis mortality progression model, developed as a part of this study, showed

high sensitivity and specificity. The developed model provides an alternative to existing

criteria. Most existing sepsis diagnostic criteria suffer deficiencies: SIRS is known to have

poor specificity [18, 31], MEWS have limited accuracy [20], and SOFA is highly complex and

requires knowledge of four laboratory results that can be difficult to measure in a resource

constrained environment [81]. Our model only uses three easy-to-measure non-invasive clinical

measurements to infer about mortality progression. This model equips physicians with early

diagnosis in order to provide timely treatment.

3 Conclusions

In this paper, we propose a two state hidden Markov model framework for real-time

mortality prediction using EHR data. This study bridges a significant research gap in that

the majority of studies on disease risk models do not leverage longitudinal data of EHR

[23]. By using a two state HMM, we combine time series clinical data from EHR and show

that the proposed framework performs better than non-temporal models. The modeling

foundation of this work is to capture the trend of clinical variables in such a way that is

clinically meaningful as well as easy to replicate for aggressively progressing diseases.

This study has a few limitations. We assumed that HMM parameters are stationary or
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do not vary over time. This is a legitimate assumption for fast progressing diseases. Another

assumption of this study is that hidden states follow Markovian property. The Markovian

property implies that given the previous state, the current state is independent of other states.

The intuition behind that assumption is that the previous state provides a summary of what

had happened one step prior to current time.

Also, due to computational complexity, this study considers only two hidden states. In

the next chapter, we propose a procedure to improve the performance of the HMM algorithm

to incorporate multiple states.
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Chapter V

MULTINOMIAL REGRESSION BASED INITIALIZATION OF BAUM-WELCH

ALGORITHM

This chapter explains the proposed initialization method for the HMM training

algorithm. Figure 5.1 graphically depicts the standard procedure for estimate the parameters

of HMM. The performance of the HMM learning algorithm (Baum-Welch [51]) is sensitive

to initialization. In this chapter, we propose a guided initialization method to improve the

performance of the Baum-Welch algorithm.

Baum-Welch Estimated
parametersalgorithm

Initial

parameters

Figure 5.1: The standard approach of learning HMMs

1 Method

HMMs are used to model system phenomena that evolve through a finite number of

states. The structure and the learning of HMMs are described in Chapter IV. As explained,

HMMs are characterized using two parameters: transition probabilities P (st|st−1) and emission

probabilities P (xt|st). The transition probabilities are the likelihood of moving from one state
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to another in one time step, whereas the emission probabilities are the chances of emitting

an observations given the hidden state. The parameters are assumed to be time-invariant as

in Chapter IV.

The parameters of HMMs are estimated using the Baum-Welch algorithm. In this

algorithm, the initial distributions of transition and emission probabilities are randomly

selected; then, the probability distributions are updated iteratively to maximize the log-

likelihood of the data. This algorithm is sensitive to initial probability distributions. If the

initial parameters are far away from true value, then the convergence might be slow, or the

solution might get stuck in a local optimum. Therefore, it is critical to intelligently select

initial parameters. In this section, we explain a time efficient initialization procedure for

Baum-Welch algorithm.

1.1 Proposed Method

This initialization procedure relaxes the time dependency of an observed sequence. In

other terms, we assume that the data observed for a subject in different time intervals are

independent. The time independence is assumed only to compute initial values; later, time

dependencies will be captured by using HMM modeling approach.

In the proposed method, we first concentrate on the final time interval. For the final

time interval, the input variables and outcome variable are known; therefore, the problem

translates into supervised learning and the weights can be estimated using the maximum

log-likelihood method. For the remaining time intervals, although the true states of the system

are not known, the observed variables are recorded. Hence, using the combination of estimated

weights and observed variables, we infer probable state of the system. Subsequently, from the

estimated sequence of states, we are able to compute approximate transition probabilities.

Finally, the sequence of states and the observed data is used to compute emission probabilities.

The proposed method is a mix of supervised learning and the prediction. Our approach can
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be summarized as follows:

1. Retrieving data of the final time interval and estimating weights for each variable

(supervised learning)

2. Employing estimated weights to compute probable states in the remaining time step

(prediction)

3. Computing transition and emission probabilities using probable states computed in

Step 2

To elaborate, we also explain the proposed method using an example of healthcare

area. Figures 5.2 to 5.6 illustrate a step by step procedure to compute initial transition

probabilities. Figure 5.2 shows a sample of the data organization. Let us assume for each

patient’s visit, we monitor three clinical signs at a constant frequency (shown below as one

day). Each clinical sign indicates the health of a specific organ (brain, lung and kidney). Each

row in the table represents each individual visit by a single patient. For illustrative purpose,

we show each visit constitutes the same length of stay, i.e. T . Each visit, however, can have

varying length of stay. In EHR, along with recording clinical signs such as respiratory rate and

heart rate, the type of discharge (expired, transfer to special nursing facility and so on) is also

reported. The discharge type is an indicator of the patient’s true state. For example, if the

patient is discharged as expired, then the patient’s true state is critical. On the other hand,

if the patient is discharged to home, then the patient’s true state is healthy. In Figure 5.3, ST

is a random variable designating the true state of the patient at time T . The combination

of observed clinical variables and known true states at time T is used to estimate weights

associated with each clinical variable by using maximum likelihood (Figure 5.4). Now, for the

remaining time intervals of {1, 2, . . . , T − 1}, the true states are inferred using the estimated

weights and the observed data (Figure 5.5). The true states are derived by computing the
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posterior probabilities of classes of the patient’s state of health. The class with the highest

class probability is assigned to that time interval. In Figure 5.6, S1, S2, . . . , ST−1 are the

random variables designating the true states of the patient’s health status from time intervals

1 to T − 1.

Figure 5.2: Temporal data from EHR

Figure 5.3: At final time interval, the known observation and true states translate into
supervised learning
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Figure 5.4: Weight estimation using maximum likelihood method

Figure 5.5: State prediction using estimated weights
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Figure 5.6: States are used to compute transition probabilities

To explain the proposed method mathematically, let φ(xtm) be

φ(xtm) = [1, xtm1, x
t
m2, . . . , x

t
mN ]

Where m ∈ {1, 2, 3, . . . ,M}, t ∈ {1, 2, 3, . . . , T}.

• Retrieving training data observed at the final time interval

φ(xTm) = [1, xTm1, x
T
m2, . . . , x

T
mN ]

• Deriving cost function to estimate parameters

f(w) =
1

2
wτw −

M∑
m=1

 C∑
k=1

tmkw
τ
kφ(xTm)− log

C∑
k=1

exp(wτkφ(xTm))

 (V.1)

τ represents transpose. tmk is a binary variable that signifies that kth output state is

observed for mth data sequence.
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• Estimate parameters

ŵ = min
w
f(w)

• Compute state probabilities for remaining time intervals {1, 2, 3, . . . , T-1}

stml =
exp(ŵlφ(xtm))∑C
k=1 exp(ŵkφ(xtm))

∀ l ∈ {1, 2, . . . , C} (V.2)

Stm = argmax{stm1, s
t
m2, . . . , s

t
mC}

For the purpose of notation, the capital letters (S) indicate random variables, and

the lower-case letters (s) indicate observed value. Now, using assigned states, transition and

emission probabilities can be estimated using following expression:

P (St = st−1|St−1 = st) =
Expected number of transitions from st to st−1

Expected number of transistion from state st

P (X = x|S = s) =
Expected number of times system in state s and observation is x

Expected number of times system in state s

1.2 Time Complexity of the Proposed Method

In this section, we derive the time complexity per iteration of the proposed approach

in terms of big O notation. As explained earlier in Section 1.1, our method is the combination

of two phases: supervised learning and prediction; hence, we show the complexity of each
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step separately. For simplicity, we calculate an approximate number of operations rather

than the actual number of operations.

Supervised learning:

In this step, we first compute the cost function and then update weights to optimize the

cost function. For the calculation of the cost function, we need to evaluate Equation V.1,

that is the linear combination of three parts. Part 1 requires (N + 1) multiplications (+1 for

bias) and N summations. Part 2 requires about 2 ∗M ∗ C ∗ (N + 1) operations and Part 3

requires approximately 2 ∗M ∗ C ∗N operations. In all, the computation of Equation V.1 is

the order of O(M ∗ C ∗N). Newton - Conjugate Gradient is employed to update weights.

The time complexity per iteration for Newton - Conjugate Gradient is O(M ∗N) [98]. Hence,

the overall complexity of the learning phase is O(M ∗ C ∗N).

Prediction:

The prediction phase requires the weighted sum of the observed data. The state probabilities

can be computed using O(M ∗N ∗ C) operations (Equation V.2). The state with maximum

probability can be found in O(C). The aggregated number of operations per iteration from

both phases is bounded by O(M ∗ C ∗ N). Therefore, overall complexity of the proposed

method is O(M ∗ C ∗N).

K-means is an alternate approach to initialize the Baum-Welch algorithm [60]. There-

fore, we wanted to investigate the complexity of our approach against K-means. K-Means is

an NP-hard problem [99]. However, a few popular heuristic methods provide approximate

solution [100, 101]. The complexity of K-means is very well established; therefore, we briefly

explain the concept. Each iteration of K-means consists of three primarily steps: calculation

of distance, data point assignment and re-estimation of the centroid. The time complexity

per iteration is bounded by O(M ∗K ∗N) operations, where K is the number of centroids.

We notice that the time complexity per iteration for both approaches is linear in terms

of data size (given M >> N,K). The missing part of time complexity analysis is the number
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of iterations to converge. Therefore, we compare both methods empirically.

1.3 Modified Baum-Welch Algorithm

In this section, we present an overview of the Baum-Welch algorithm with multiple

features observed. In this algorithm, the likelihood of the observed set of sequences is

maximized. Although theory to estimate parameters for HMMs with one variable observed is

readily available, the details for HMM with multiple variables observed is not easily found.

Therefore, in this section, we present a modified Baum-Welch algorithm to accommodate

multiple features.

The estimation of transition and emission probabilities requires computation of forward

(αt(s)) and backward (βt(s)) variables [10]. The forward variable is defined as joint probability

of partial observed sequence (X1,X2, . . . ,Xt) until time t and system being in state s given

HMM parameters (λ).

αt(s) = P t(X1,X2, . . . ,Xt, St = s|λ)

where Xt = {xt1, xt2, . . . , xtN}

We assume that features observed at time t are independent of each other. The

modified procedure to compute forward probabilities is explained as follows.

1. Initialization: Initialize the joint probability of initial observation

α1(s) = α0(s)
N∏
i=1

P (x1i |S1 = s, λ) for s ∈ {1, 2, . . . , S}

where α0(s) is the initial probability of the system being in state s when no observation

was observed.
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2. Induction: for t = 2 to T-1

αt(s) =

 S∑
i=1

αt−1(i)P (St = s|St−1 = i)

 N∏
n=1

P (xtn|St = s) for s ∈ {1, 2, . . . , S}

(V.3)

The backward variable (βt(s)) is defined as a probability of partial observation from t+ 1 to

the end T (Xt+1,Xt+2, . . . ,XT) given system state at time t and the HMM parameters.

βt+1(s) = P t(Xt+1,Xt+2, . . . ,XT|St = s, λ)

The modified procedure to compute backward probabilities is explained as follows.

1. Initialization: This terms arbitrarily defines backward variable at time T as 1.

βT (s) = 1 for s ∈ {1, 2, . . . , S}

2. Induction: for t = T-1 to 1

βt(s) =
S∑
i=1

P (St+1 = i|St = s)

 N∏
n=1

P (xt+1
n |St+1 = i)

 βt+1(i)

 for s ∈ {1, 2, . . . , S}

(V.4)

The modified forward and backward procedures are explained in Algorithm 1 and

2, respectively. Algorithm 3 uses modified forward and backward algorithm to learn HMM

parameters. Let Zi be ith sequence of observations, ~Zi = {X1,X2, . . . ,XT}i.
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Algorithm 1 Forward algorithm

function Forward( ~Zm, α
0, P (St−1|St),

[
P (X1|S), P (X2|S), . . . , P (XN |S)

]
)

Bj(X
1)←

∏N
n=1 P (x1n|st = j) . ∀j ∈ {1, 2, . . . , S}

α1
j ← α0

jBj(X
1)

for t ∈ {1, 2, . . . , T − 1} do
for j ∈ {1, 2, . . . , S} do

Bj(X
t+1) =

∏N
n=1 P (xt+1

n |St+1 = j)

αt+1
j =

[∑S
i=1 α

t
iP (St+1 = j|St = i)

]
Bj(X

t+1)
end for

end for
P ( ~Zm|λ) =

∑S
i=1 α

T
i . λ is a collection of parameters

return α, P ( ~Zm|λ)
end function

Algorithm 2 Backward algorithm

function Backward( ~Zm, α
0, P (St−1|St),

[
P (X1|S), P (X2|S), . . . , P (XN |S)

]
)

βTj ← 1 . ∀j ∈ {1, 2, . . . , S}
for t = {T − 1, T − 2, . . . , 1} do

for i = {1, 2, . . . , S} do
sum← 0
for j = {1, 2, . . . , S} do

Bj(X
t+1)←

∏N
n=1 P (xt+1

n |St+1 = j)
sum← P (St+1 = j|St = i)Bj(X

t+1)βt+1
j + sum

end for
βti ← sum

end for
end for
return β

end function

We also include Python implementation for the readers in Appendix B. This code is

an extension of the script written by [102].

2 Results and Discussion

The performance of the proposed method is measured in three dimensions:

1. Speed
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Algorithm 3 Parameter learning

procedure Learning (~Z, α0, P (St−1|St),
[
P (X1|S), P (X2|S), . . . , P (XN |S)

]
)

for m ∈ {1, 2, . . . ,M} do

α, P ( ~Zm|λ)← Forward( ~Zm, α
0, P (St−1|St),

[
P (X1|S), P (X2|S), . . . , P (XN |S)

]
)

β ← Backward( ~Zm, α
0, P (St−1|St),

[
P (X1|S), P (X2|S), . . . , P (XN |S)

]
)

. α and β are matrices

γti ←
αt
iβ

t
i

P ( ~Zm|λ)
. ∀i ∈ {1, 2, . . . , S},∀t ∈ {1, 2, . . . , T}

for t ∈ {1, 2, . . . , T − 1} do
Bj(X

t+1)←
∏N

n=1 P (xt+1
n |St+1 = j) . ∀j ∈ {1, 2, . . . , S}

ζt(i, j)← αt
iP (St+1=j|St=i)Bj(X

t+1)βt+1
j

P ( ~Zm|λ)
. ∀i, j ∈ {1, 2, . . . , S}

end for
Pm(i, j)←

∑T−1
t=1 ζ

t(i, j) . ∀i, j ∈ {1, 2, . . . , S}
Qm
i ←

∑T−1
t=1 γ

t
i . ∀i ∈ {1, 2, . . . , S}

Rm(i, xn)←
∑T

t=1;Xn=xn
γti

Smi ←
∑T

t=1 γ
t
i

end for
P (St+1 = j|St = i)←

∑M
m=1 P

m(i,j)∑M
m=1Q

m
i

P (xn|S = i)←
∑M

m=1R
m(i,xn)∑M

m=1 S
m
i

end procedure

2. Proximity

3. Integration

In speed, we investigate the time to compute the initial values. In proximity, we determine

the deviation between the true parameters and the estimated initialization. In integration, we

aim to probe the performance of the Baum-Welch algorithm after integrating the proposed

initialization.

2.1 Speed

In Section 1.2, we determined the time complexity per iteration for the proposed

method to be O(M ∗C ∗N). Theoretically, for a large data (M >> N), the time complexity

is linear in time. We also have the knowledge that the time complexity per iteration for
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initialization using K-means is O(M ∗K ∗N) which is also linear in time for the large data

(M >> N). For this work, the number of centroid K is dictated by the number of classes in

the output variable. Therefore, we compare the overall time complexity of both initialization

methods empirically.

The experiments are performed using the simulated data. For the given HMM

parameters (transition and emission probabilities), multiple sequences of states were generated.

The parameters were selected following the principals explained in [60]. Figure 5.7 presents a

flow chart to systematically illustrate the procedure used to generate state sequences. Let us

assume that we are interested in simulating M independent observation sequences. Here, we

explain the procedure used to generate one sequence of observations, with each observation

of length N (number of features). M sequences can be generated by replicating the same

procedure. To obtain a sequence of observations, first, we need to generate a sequence of

states, then, by integrating known states and emission probabilities, the observations of

multiple features in each time interval were probabilistically determined. Note that each

feature has its emission probabilities that reflect the chances of appearing an observation

given the state.

For simulating a sequence of length T , first a vector of size T was generated with

elements having a uniform distribution between 0 and 1 (Figure 5.7). Using each element

of this vector, a state is determined following the Roulette-Wheel algorithm [103]. The

Roulette-Wheel algorithm uses the uniform random number in combination with a probability

distribution vector to determine the outcome. For our application, this algorithm can be

explained as follows and is embedded in Figure 5.7.

1. Generate a uniform random value u in the range (0, 1]

2. Using binary search, find the index i of the smallest element in the state transition

probability vector larger than u
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Figure 5.7: Flow chart for generating the simulated data
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Following the data simulation, we compare the time taken by both K-means and our

approach to compute initial values. In Figure 5.8, X-axis represents the sample size (in 1000s)

and Y-axis represents the computation time (in seconds) for initial values. As expected the

computation time grows linearly in both cases. However, as the sample size increases, the

difference in the computation time grows. With a 10 fold increase in the sample size, the

computation time difference grows to 50%. This implies that the scale factor associated with

the time complexity of our approach is smaller than the scale factor associated with the time

complexity of K-means approach. We also performed similar experiments with the three

numbers of classes in the output variable (Figure 5.9).

50%
less time

Figure 5.8: Computation time to determine initialization (number of features (N): 4,
number of classes in output variable (C) = 4, time length for each sequence (T ) = 50)

2.2 Proximity

The objective of measuring the proximity is to explore the goodness of the estimated

initial values. A low deviation implies that the estimated initial probability distribution is

81



Figure 5.9: Computation time to determine initialization (number of features (N) = 4,
number of classes in output variable (C) = 3, time length for each sequence (T ): 50)

closer to the true structure of the data and exists a possibility of early convergence of the

Baum-Welch algorithm. The proximity is measured using Kullback-Leibler (KL) Divergence

and log-likelihood.

Kullback-Leibler (KL) Divergence: It measures the difference between two probability

distributions using Equation V.5.

DKL(p ‖ q) =
S∑

st=1

S∑
st−1=1

P (st|st−1)lnP (st|st−1)
Q(st|st−1)

(V.5)

where p and q are the estimated and true state (or referenced) state transition distributions.

The smaller the KL-Divergence the better the proximity.

Log-likelihood: It measures the fitness of the observed data on the given parameters, and

can be expressed using Equation V.6.
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l =
M∑
m

logP (Z̃m|λ) (V.6)

The greater the log-likelihood the better the proximity. In our experiments, the log-likelihood

obtained from true parameters is compared to the log-likelihood obtained from both the

random and the proposed initialization methods. The results enable us to understand the

performance differences of both initialization approaches.

Table 5.1 shows computed KL-Divergence and log-likelihood on the different instances

of the simulated data. In the table, the notation Data S N I incorporates three numeric

values representing the number of hidden states (S), the number of features (N) and the

index for data obtained using varying parameters. The transition and emission probabilities

were randomly selected to obtain multiple instances of the data. We followed the structure,

explained in [60], to determine the transition probabilities for generating the data. The

number of hidden states varies from 3 to 5 with an increment of 1.

We were not able to compare the proposed method to the K-means method in terms of

KL-Divergence and log-likelihood because K-means does not facilitate the annotation of states.

Therefore, we investigate the strengths of our method by comparing the performance with the

alternative approach usually used in literature to initialize the Baum-Welch algorithm. In the

absence of prior knowledge, a uniform distribution is considered for transition probabilities.

The emission probabilities are assumed to be randomly distributed. We avoided the use of

uniform distribution for emission probabilities because a fix distribution causes the loss in

degree of freedoms. Due to the randomness in the observation probabilities, 50 trials were

executed to calculate the average performances (KL-Divergence and log-likelihood). The KL-

Divergence between the true transition probabilities and the transition probabilities obtained

from the uniform distribution is recoded in Column KL-Divergence - Uniform distribution
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(avg.)). Column KL-Divergence - Our approach shows the KL-Divergence between the true

parameters and the guided initial value of parameters. The log-likelihood was also computed

for the random and the guided initialization following the same procedure. We also list the

initial value computation time to understand the time expense in gaining the benefit from

the proposed method.

From Table 5.1, we observed that the proximity of the true parameter distribution

from the guided initial values, in terms of KL-Divergence, is closer than the uniform values.

These results indicate that the probability distribution obtained from our approach is similar

to the true distribution. In terms of log-likelihood, the parameters which fit the data well

show high log-likelihood. In Table 5.1, our approach shows greater log-likelihood than the

uniform initialization. An average difference between maximum achievable log-likelihood and

both the guided and the uniform distribution is 1% and 29%, respectively.

The reason for the improved performance can be attributed to careful assignment

of hidden states from the known observation. In our approach, the assignment of initial

hidden states is determined by the combination of the observed data and estimated weights

corresponding to each feature. However, in random initialization, the initial state assignment

is independent of the observations.
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Table 5.1: KL-Divergence and log-likelihood on the simulated data. M = 500, T = 50, N = 4, Number of random trial =
50

KL-Divergence Log-likelihood

Data
Hidden

states

Uniform
distribution

(avg)

Our
approach

Uniform
distribution

(U)

Our
approach

(G)

True
parameters

(T)
(T-U)/T (T-G)/T

Time to compute
initialization

(in sec)
Data 3 4 1 3 3.03 0.35 -65757.42 -47082.83 -46180.06 42% 2% 0.29
Data 3 4 2 3 0.94 0.07 -65382.26 -49851.02 -49559.64 32% 1% 0.44
Data 3 4 3 3 0.94 0.17 -65561.65 -53983.34 -53503.29 23% 1% 0.46
Data 3 4 4 3 0.77 0.12 -65824.18 -49642.97 -49192.34 34% 1% 0.36
Data 3 4 5 3 3.98 0.61 -65533.40 -45577.65 -44615.24 47% 2% 0.26
Data 4 4 1 4 2.91 1.08 -63936.83 -47024.44 -46238.89 38% 2% 0.60
Data 4 4 2 4 1.90 0.46 -62847.99 -50235.23 -49822.92 26% 1% 0.44
Data 4 4 3 4 1.81 0.49 -63975.96 -47460.53 -46845.34 37% 1% 0.38
Data 4 4 4 4 1.73 0.44 -62888.75 -50319.54 -49677.48 27% 1% 0.36
Data 4 4 5 4 0.72 0.16 -63630.40 -50019.66 -49619.05 28% 1% 0.48
Data 5 4 1 5 3.37 2.05 -62279.74 -52093.18 -51096.76 22% 2% 0.34
Data 5 4 2 5 1.07 0.78 -62207.62 -52524.08 -51764.65 20% 1% 0.40
Data 5 4 3 5 2.27 1.17 -62068.68 -52871.01 -52106.73 19% 1% 0.38
Data 5 4 4 5 1.19 1.19 -62538.71 -51259.13 -50523.04 24% 1% 0.38
Data 5 4 5 5 0.94 0.56 -61783.81 -56458.79 -55697.96 11% 1% 0.32

Mean log-likelihood difference from the true log-likelihood 29% 1%
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2.3 Integration

The objective of the integration is to probe how well our approach works with the

Baum-Welch algorithm. To establish the advantage of our method, two scenarios were

considered. Each scenario is different by the type of initialization employed to start the

Baum-Welch algorithm. Figure 5.10 shows the experimental settings; the setting is divided

into four steps: data generation, initialization, learning, and evaluation. Each phase is

explained as follows.

Figure 5.10: Experimental design using synthetic data

1. Generate data: The synthetic data was generated from referenced parameters (tran-

sition and emission probabilities). For the experiment in this section, the transition

probabilities are adapted from [104] and explained in Table 5.2. From known param-

eters, pseudo-sequences of states were generated. Then, each state probabilistically

generates observations guided by the emission probabilities. A detailed description of

the generation of the simulated data is provided in Section 2.1.
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2. Initialization: The learning of HMM parameters requires an initial set of parameters

to begin. Two initialization approaches (uniform and guided) were used to initialize

the Baum-Welch algorithm. The guided initialization procedure (our approach) is

explained in Section 1.1.

3. Learning: After initialization, the learning was performed using the Baum-Welch

algorithm. In each iteration, the algorithm updates parameters to maximize the

log-likelihood.

4. Evaluation: To understand the integration of the proposed method with Baum-Welch

algorithm, we capture the trajectory of parameter updates. For each iteration, we

computed log-likelihood to illustrate the learning path.

For simulating the data, as mentioned earlier, the referenced parameters are adapted

from [104]. Table 5.2 shows the transition probabilities. In this table, the different states of

the health (Excellent, Very Good, Good, Fair and Poor) represent five hidden states. Jung

(2006) does not facilitate the emission probabilities [104]; therefore, random distributions are

selected to generate data.

Table 5.2: Transition probabilities adapted from Jung (2006)

Health
Health Excellent Very Good Good Fair Poor
Excellent 0.514 0.332 0.117 0.029 0.009
Very Good 0.136 0.512 0.274 0.063 0.015
Good 0.040 0.222 0.504 0.192 0.043
Fair 0.015 0.070 0.255 0.491 0.169
Poor 0.006 0.023 0.089 0.304 0.578

The simulated data from the referenced parameters were used to train the HMM. The

Baum-Welch algorithm was initialized using both initialization methods (uniform distribution

and our approach). The numeric experiments are performed considering the number of

sequences be 200 (M), with each sequence of length 50 (T).
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Figures 5.11 and 5.12 shows the benefit of good initial values for the Baum-Welch

algorithm by comparing the log-likelihood trajectory. In the figure, X-axis represents the

number of iterations, and Y-axis represents the log-likelihood. The blue color shows the

trajectory of the uniform initialization and the red color shows the trajectory of the guided

initialization. In the case of uniform initialization of transition probabilities, the emission

probabilities are selected randomly. Therefore, we performed 50 trials to compute the mean

performance with 95% confidence interval. The solid blue line shows the mean and the

filled blue region shows the 95% confidence interval. The black dotted line indicates the

maximum achievable log-likelihood obtained from true parameters. The experiments were

performed considering the different number of features (N). It is evident that the better

initial values lead to faster performance of the Baum-Welch algorithm. Out of four, three

cases reach greater maximum log-likelihood using our guided initialization than the maximum

log-likelihood obtained from the uniform initialization. These experiments present evidence

that our initialization approach can help the Baum-Welch alogrithm to converge in a local

optimum.

3 Conclusions

In this study, we developed an initialization procedure following the principal of

multinomial logistic regression. This procedure generates a pseudo-sequence of hidden states

based off observed data. Using pseudo-hidden states, the initial values of the HMM parameter

are derived. We evaluated the performance of the proposed method in three dimensions: speed,

proximity and integration. The results showed that the proposed initialization methodology is

significantly better than the alternate initialization methods, and yields distribution which is

closer to the true distribution. This method can be applied to build a multi-stage progression

model using EHR data to monitor the trajectory of the disease. The main limitation of this

study is that data need to have known true state at the final time interval.
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Guided initialization

Uniform initialization

Maximum log-likelihood

(a) N = 4

(b) N = 5

Figure 5.11: Log-likelihood trajectory of Baum-Welch algorithm with random (blue) and
guided initialization (red). M = 200, T = 50
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(a) N = 6

(b) N = 7

Figure 5.12: Log-likelihood trajectory of Baum-Welch algorithm with random (blue) and
guided initialization (red). M = 200, T = 50
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Chapter VI

PROGNOSTIC ACCURACY OF SIRS AND qSOFA

In this chapter, the performance characteristics of SIRS and qSOFA are evaluated. The

association of SIRS ≥ 2 and qSOFA ≥ 2 with mortality was compared using OR approach.

We divided the patient visits at the ED into ten classes to investigate the trend of OR

of SIRS ≥ 2 and qSOFA ≥ 2 across varying initial risk. The results obtained from OR

analysis provided unbalanced combination of sensitivity and specificity of SIRS and qSOFA.

Therefore, instead of considering SIRS or qSOFA score, we used SIRS and qSOFA variables

to estimate the probability of risk using modeling approaches. Adopting the approach from

[95] for finding the threshold to translate predicted probabilities into labels, the modeling

approaches provided a balance between sensitivity and specificity. This study has great

clinical implications as it provides evidence in favor of effective screening criteria that enables

healthcare providers to effectively manage limited resources of ED.

1 Method

1.1 Study Setting and Population

Similar to the study explained in Chapter III, this study also used data from the Cerner

Corporations HIPAA-compliant Health Facts database. All visits for patients admitted to
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the ED between January 1, 2009 to December 31, 2015 with primary or secondary diagnoses

of sepsis (ICD-9-CM code 995.91), severe sepsis (ICD-9-CM code 995.92), septic shock

(ICD-9-CM code 785.52), and unspecified sepsis (ICD-9-CM 038.xx) were included in the

initial data extraction. Extracted data included age, gender, U.S. Census region (Midwest,

Northeast, South, and West), hospital location (urban/rural), SIRS/qSOFA clinical variables

and discharge type. The outcome of interest was 28-day all-cause mortality. The study

included patients 18 years of age and older with length of stay less than or equal to 28 days.

Of the 230,451 extracted encounters, 97,747 encounters were excluded (20,639 under 18 years

old; 12,276 with length of stay (LOS) greater than 28 days; and 64,832 with non-emergency

admission). Our analytical sample consisted of 132,704 encounters occurring in the ED

(Figure 6.1).

Figure 6.1: Encounter flow chart
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1.2 Data Analysis

Data preparation and statistical analysis were performed using R (Version 3.2.5). The

two approaches, OR and modeling methods (Logistic Regression (LR), Decision Tree (DT)

and Nave Bayes (NB)), were used to compare the associations of SIRS and qSOFA with

28-day in-hospital mortality. The OR is a statistical parameter used to determine the strength

of association between two categorical variables. Note that the association is statistically

significant if the range of 95% Confidence Interval (CI) of OR does not contain the value 1.

To investigate the robustness of two diagnostic criteria, the patient cohort was divided

into ten classes of varying baseline risk [105]. The baseline risk was estimated using patient

demographic and hospital characteristic including age, sex, hospital location, and U.S. census

region. The OR was computed to compare the association of mortality with SIRS (≥ 2 vs.

≤ 2) and qSOFA (≥ 2 vs. ≤ 2) across each decile.

For further investigation, the modeling approaches (LR, DT [106] and NB [107]) were

employed on SIRS and qSOFA variables. Following the literature, the performance matrices

of SIRS and qSOFA were evaluated above the baseline risk [95, 108]. The set of variables

used for modeling purpose are summarized as follows:

• Baseline variables: Age, sex, hospital location (urban/rural), and U.S. census region.

• Base + SIRS variables: Baseline variables plus SIRS clinical variables.

• Base + qSOFA variables: Baseline variables plus qSOFA clinical variables.

We assessed the discriminatory power of each model using the AUROC curve. Other

performance parameters such as sensitivity, specificity, positive predictive value and negative

predictive value were also used. Table 6.1 represents the confusion matrix. Equations 1-6 are

the expressions of performance metrics derived from Table 6.1. The threshold to determine

the predicted class from estimated probability was decided using the roc plot. The cutoff
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that resulted a point in the roc plot closest to (0, 1) was selected as threshold [95]. In (0, 1),

the first index represents false positive rate and second represents true positive rate.

Table 6.1: Confusion matrix

Actual value
Yes No

Predicted
value

Yes TP FP
No TN TF

OR =
TP × TN
FP × FN

(VI.1)

Sensitivity =
TP

TP + FN
(VI.2)

Specificity =
TN

TN + FP
(VI.3)

Positive predictive value =
TP

TP + FP
(VI.4)

Negative predictive value =
TN

TN + FN
(VI.5)

Accuracy =
TN + TP

TN + FP + FN + TN
(VI.6)

2 Results and Discussion

2.1 Population Characteristics

Table 6.2 compares demographic, geographic, and clinical characteristics of non-expired

and expired encounters. The mortality rate for ED encounters was 14%, with a median age

of 75 years (Inter-quartile Range (IQR)= 60 to 83 years) and 50.4% male. In comparison,

the non-expired group had a median age of 65 years (IQR = 52 to 78 years) and was 48.7%

male. The Moods median test [108] showed a significant difference in median age between

the groups, with age increasing mortality risk. Using 95% CI of OR, we found that gender,

hospital location, and census region were significantly associated with mortality. The results
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showed that males were at higher risk than females (OR = 1.07, 95% CI = 1.01 to 1.10),

and encounters at urban hospitals had lower levels of risk than rural hospitals (OR = 0.77,

95% CI = 0.75, 0.80). Similarly, we compared the association of mortality with hospital

census region and found encounters in the Midwest and West to have lower risk for mortality,

while those in the Northeast and South had higher risk. Table 6.2 also shows the association

of individual variables of qSOFA and SIRS with mortality. For the qSOFA, each criterion

showed a positive association with mortality: blood pressure (OR = 2.00; 95% CI = 1.94 to

2.08), Glasgow Coma Scale (OR = 2.96; 95% CI = 2.87 to 3.06), and respiratory rate (OR =

1.66; 95% CI = 1.61 to 1.72). Whereas, for SIRS, heart rate (OR = 1.09; 95% CI = 1.05 to

1.12), respiratory rate (OR = 1.67; 95% CI = 1.62 to 1.72), and white blood cell (OR = 1.04;

95% CI = 1.01 to 1.07) were associated with a higher risk of mortality. While respiratory

rate had the smallest association with mortality among qSOFA criteria, it had the largest

association among SIRS criteria. The association of the SIRS criterion of body temperature

(< 36◦C or > 38◦C) with mortality (OR = 0.84; 95% CI = 0.80 to 0.87) was counterintuitive

as it suggests that high or low body temperature reduces the risk of mortality.

Figure 6.2 shows the distribution of encounters by qSOFA and SIRS scores. There

were 23,260 (17.5%) encounters that met the qSOFA criteria for mortality risk (qSOFA ≥

2), whereas 80,015 (39.7%) encounters met the definition of (SIRS ≥ 2). Figure 6.3 shows

the distribution of mortality for the qSOFA and SIRS scores, with rates markedly increasing

across qSOFA scores compared to the relatively uniform distribution of SIRS scores. For

qSOFA scores, mortality rates were 40.1% for the highest possible score of 3 and 8% for a

score of 0. In contrast, for SIRS scores, mortality rates were 18.9% for the highest possible

score of 4 and 11.3% with a score of 0.
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Table 6.2: Population characteristic.

Variables
Non-expired
(n = 114,030)

Expired
(n = 18,674)

OR 95% CI

Demographics
Age, median (IQR), year 65 (52-78) 75 (60-83)
Male, n (%) 55,554 (48.7) 9,424 (50.4) 1.07 1.01, 1.10
Hospital location, n (%)

Urban 118,193 (81.8) 22,028 (77.7) 0.77 0.75, 0.80
Census region, n (%)

Midwest 21,857 (19.2) 2,691 (14.4) 0.71 0.68, 0.74
Northeast 35,862 (31.5) 6,357 (34.0) 1.13 1.09, 1.16
South 40,820 (35.8) 7,410 (39.7) 1.18 1.14, 1.22
West 15,491 (13.6) 2,216 (11.9) 0.86 0.82, 0.90

qSOFA criteria met, n (%)
Systolic BP ≤ 100 mmHg 23,451(20.6) 6,387 (34.2) 2.00 1.94, 2.08
Glasgow Coma Scale ≤ 13 20,745 (18.2) 7,417 (39.7) 2.96 2.87, 3.06
Respiratory rate ≥ 22 breaths/min 35,667 (31.3) 8,046 (43.1) 1.66 1.61, 1.72

SIRS criteria met, n (%)
Temperature < 36◦C or > 38◦C 27,676(24.3) 3,950(21.2) 0.84 0.80, 0.87
Heart rate > 90 beats/min 69,712 (61.1) 11,791(63.1) 1.09 1.05, 1.12
Respiratory rate > 20 breaths/min 37,253 (32.7) 8,356 (44.8) 1.67 1.62, 1.72
WBC count < 4 or > 12 K/µL 67,509 (59.2) 11,218 (60.0) 1.04 1.01, 1.07

2.2 Comparison of Prognostic Accuracy of qSOFA and SIRS Scores using OR

Confusion matrices for both SIRS and qSOFA are shown in Table 6.3 and 6.4,

respectively. Both SIRS and qSOFA were significantly associated with mortality. The

association was considerably stronger for qSOFA ≥ 2 (OR = 3.06; 95% CI = 2.96 to 3.17)

than for SIRS ≥ 2 (OR = 1.22; 95% CI = 1.18 to 1.26). The classification accuracy, sensitivity,

and specificity for qSOFA were 0.78, 0.35, and 0.85, respectively. The same performance

parameters for SIRS were 0.44, 0.64, and 0.40, respectively. Using the cutoff of ≥ 2 for both

measures, the qSOFA outperformed SIRS on accuracy and specificity, but demonstrated

lower sensitivity.

Figure 6.4 compares the association of qSOFA and SIRS with mortality over deciles of

baseline risk. The deciles of patients were derived by feeding baseline variables to multivariable
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Figure 6.2: Distribution of encounters across qSOFA and SIRS scores.

Table 6.3: Confusion matrix for SIRS.

Actual value
Yes No

Predicted
value

Yes 12021 67994
No 6653 46036

Table 6.4: Confusion matrix for qSOFA.

Actual value
Yes No

Predicted
value

Yes 6464 16796
No 12210 97234

logistic regression. For each decile, the OR for qSOFA score (≥ 2 vs. <2) was greater than

for SIRS score (≥ 2 vs. <2). The OR of qSOFA ranged from 4.3 among those in the lowest

baseline risk decile to 2.4 among those in the highest decile, while ORs for SIRS across deciles

were more or less constant.
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Figure 6.3: Distribution of mortality across qSOFA and SIRS scores

2.3 Comparison of Prognostic Accuracy of qSOFA and SIRS using Modeling

Approach

Table 6.5 shows the performance measures of different modeling techniques on two

set of variables: baseline + SIRS variables and baseline + qSOFA variables. Considering

either sensitivity or specificity a model selecting criteria is a debatable subject in the medical

domain. Based on sensitivity, logistic regression and nave Bayes performed well. Based on

specificity, decision tree showed the best result. Figure 6.5 shows the receiver operating

characteristic curve using logistic regression for baseline risk, baseline + qSOFA, and baseline

+ SIRS. The qSOFA criteria demonstrate better discrimination power than SIRS (baseline

(AUROC = 0.63; 95% CI = 0.61, 0.63), baseline + SIRS (AUROC = 0.64; 95% CI = 0.64 to
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Figure 6.4: OR for in-hospital mortality for each decile of baseline risk.

0.65), and baseline + qSOFA (AUROC = 0.70; 95% CI = 0.69, 0.70)).

Table 6.5: Performance measures of SIRS and qSOFA (10 fold cross validation)

Performance Baseline + SIRS Baseline + qSOFA
metrics DT LR NB DT LR NB
AUROC 0.622 0.643 0.653 0.612 0.696 0.696
95% CI (0.615 0.630) (0.637 0.652) (0.635 0.650) (0.605 0.618) (0.689 0.703) (0.688 0.703)
Sensitivity 0.459 0.617 0.623 0.394 0.642 0.616
Specificity 0.703 0.585 0.580 0.819 0.634 0.664
Positive Predictive value 0.203 0.196 0.195 0.263 0.223 0.230
Negative predictive value 0.891 0.903 0.903 0.892 0.915 0.914
Accuracy 0.669 0.590 0.586 0.759 0.631 0.657

This study compared the prognostic power of SIRS and qSOFA. The results obtained

using OR and modeling approaches indicated that qSOFA was more accurate than SIRS for

assessing the risk of mortality among patients at the ED. In addition, the results showed that
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Figure 6.5: Receiver operating characteristic curve (using logistic regression).

qSOFA criteria provide better balance between sensitivity and specificity.

The individual variable analysis of SIRS and qSOFA revealed interesting results (Table

6.2). We found that body temperature was not directly associated with 28-day in-hospital

mortality. This may explain the poor performance of SIRS criteria and slight dip in mortality

between scores of 3 and 4 on the SIRS. A close inspection of individual SIRS criteria showed

that all variables except respiratory rate were weakly associated with in-hospital mortality.

However, among qSOFA criteria, all variables were strongly associated with in-hospital

mortality, with the Glasgow Coma Scale having the strongest association. The trends of

mortality showed a steep increase in mortality with qSOFA scores, while steady change

in mortality with SIRS score. The increase of each unit of qSOFA score provides more
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information about the mortality risk than the unit change in SIRS score. We also investigated

the possibility of either qSOFA or SIRS performing well to a group with population of specific

characteristics. The investigation revealed that the association of qSOFA with mortality is

greater than association of mortality with SIRS across all groups of different initial risk of

mortality.

Further investigation found that although qSOFA ≥ 2 has stronger association with

mortality than SIRS ≥ 2 for predicting in-hospital mortality among ED patients, it had

lower sensitivity. Due to the poor sensitivity of qSOFA, patients with sepsis might remain

undiagnosed. This misdiagnosis in the early stage could lead to life-threatening outcomes

as timely treatment is critical [70]. However, the high sensitivity of SIRS could lead to

unnecessary burdening of ICUs due to improper referrals. Researchers differ in their preference

between sensitivity and specificity while selecting diagnostic criteria. Freund et al. (2017)

argued that the high specificity of qSOFA criteria make it suitable to replace SIRS for efficient

stratification of sepsis patients in the ED [71]. On the other hand, Akim et al. (2017)

preferred sensitivity and presented results against the use of qSOFA [72]. Apart from the

contradictory nature of qSOFA and SIRS about sensitivity and specificity, other performance

characteristics such as positive and negative likelihood ratios showed evidence in favor of

qSOFA. Later, we explain how carefully selection of threshold to determine labels from

predicted probabilities, obtained from modeling approaches, can facilitate balance between

sensitivity and specificity and make qSOFA more suitable for clinical use.

All three modeling approaches presented results in favor of qSOFA criteria. The

area under receiver operating characteristic was greater, in most cases, for qSOFA than

SIRS. The findings are aligned with work that established the foundation of qSOFA criteria

[84]. Since most patients with sepsis are initially assessed in the ED [109], several other

studies compared the performance of qSOFA and SIRS. Freund et al. (2017) noted the

AUROC curve for predicting in-hospital mortality among ED patients was 0.80 for qSOFA
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and 0.65 for SIRS [71]. One of the reasons for the difference in results between this study

and ours is the use of different baseline risk variables. Churpek et al. (2017) found that

for non-ICU patients, the AUROC was 0.69 for qSOFA and 0.65 for SIRS, which is closely

aligned with our results obtained using logistic regression [110]. The sensitivity and specificity

obtained from modeling approach is more balanced for both qSOFA and SIRS than obtained

directly considering qSOFA ≥ 2 and SIRS ≥ 2 (Table 6.3, 6.4). The reason for this is careful

selection of threshold, instead of considering default 0.5, to determine the predicted labels

from predicted probabilities. Adapting [95], we computed threshold that resulted in a point

in roc plot nearest to (0, 1). From Table 6.5, it is clear that sensitivity and specificity are

greater for qSOFA than SIRS for most of the modeling approaches.

Our findings support the conclusions of other studies that qSOFA criteria can better

differentiate low- and high-risk patients in the ED across varying levels of baseline risk.

We know that early diagnosis of sepsis is the most effective way to reduce mortality [111].

Therefore, since qSOFA does not require any laboratory results, the use of qSOFA criteria in

the ED could lead to early identification of critically ill patients and, consequently, improved

outcomes.

2.4 Limitations

This study has some limitations that should be considered when interpreting the

results. We selected encounters using ICD-9 codes. However, these codes have been criticized

in the literature due to lack of clear definitions [112, 113]. Future studies are needed that

overcome this limitation by using more precise methods of identifying patients at risk for

sepsis. For example, in their assessment of clinical criteria for sepsis, Seymour et al. (2016)

used a combination of antibiotics and body fluid cultures occurring within a specific timeframe

to define suspected infection [84].
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3 Conclusions

Our findings suggest that the discrimination power for qSOFA is greater than SIRS.

The baseline risk analysis showed the robustness of qSOFA. Given the continued use of SIRS

to assess mortality risk, the negative association of body temperature with mortality is of

particular concern as this suggests normal body temperatures could increase risk of mortality.

These findings contribute to our understanding of the prognostic power of qSOFA as a rapid

bedside assessment requiring no laboratory data. This study also identified the Glasgow

Coma Scale as the most important variable within the qSOFA clinical variables. We also

found that careful selection of threshold to translate the predicted probabilities to labels can

facilitate better balance between sensitivity and specificity. These findings have important

implications for the implementation and use of sepsis-related clinical scoring systems.
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Chapter VII

CONCLUSIONS

In this dissertation, we applied temporal and non-temporal machine learning methods

to solve clinical problems. The proposed CDSS can be easily integrated with the existing

data architecture of hospitals and have the potential to reduce waste of medical resources.

The additional significance of this research is that the models developed in this work can

be implemented in the form of software applications, and can be easily utilized by primary

care. These clinical softwares equip rural healthcare providers to manage the shortage of

doctors. This research also adds knowledge to the scientific community by making python

codes publicly available for future researchers to develop disease progression models for a

variety of diseases. We provide synopsis of each study as follows:

Study 1: The diagnosis of sepsis is a challenging problem due to its complex physiology and

symptoms similar to other diseases. Early and accurate diagnosis enables practitioners to

take timely preventive actions. The current diagnostic criteria suffer from deficiencies, such as

triggering false alarms or leaving conditions undiagnosed. This study aims to develop an expert

system to predict the risk of sepsis using BN by identifying the optimal set of biomarkers.

Using the gold standards explained in Sepsis-3 study [84], the population of suspected

infection was selected from the retrospective data obtained from Cerner’s Corporations. We
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present a four-stage framework for the predictive model: 1) feature selection: the combination

of elastic net and recursive partitioning was used to determine the best set of biomarkers,

2) discretization: Hartemink method was employed, 3) building Bayesian network, and 4)

evaluation.

The key difference between our approach and the existing predictive model of sepsis

diagnosis in literature is that we captured the dynamics among biomarkers. We also propose

left center right imputation method suitable for EHR that intrinsically include high percentage

of missing data. The sensitivity, specificity, AUROC, and G-mean were used to compare the

performance of the proposed model to SIRS, qSOFA, MEWS and SOFA. We inspected the

robustness of our model by comparing its performance with competing models over different

time intervals.

Using data of 16,909 patient visits, we identified blood pressure, respiratory rate,

Glasgow Coma Scale score, white blood cell and creatinine as the most important biomarkers

to evaluate the risk of sepsis. The most important biomarker Glasgow Coma Scale score also

influences the creatinine level and respiratory rate. With an AUROC of 0.84, the proposed

model outperformed the competing diagnostic criteria (SIRS = 0.59, qSOFA = 0.65, MEWS

= 0.75, SOFA = 0.80). G-mean of our model was 0.75 better than SIRS = 0.55, qSOFA =

0.58 and SOFA = 0.73. The longitudinal analysis showed that the AUROC of our model is

always 4-5% greater than alternative criteria over all time intervals.

We proposed an easy-to-use predictive model to asses the risk of sepsis using the impor-

tant biomarkers. The richness of our proposed model is measured not only by achieving high

accuracy but also by utilizing the least number of biomarkers. This model can easily be in-

tegrated into an EHR environment and autonomously identify the patient at high risk of sepsis.

Study 2: Continuous mortality monitoring is instrumental to manage a patient’s care

and to efficiently utilize the limited hospital resources. Due to incompleteness and irregu-
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larities of EHR, developing mortality progression using EHR data is a challenge. In this

dissertation, we propose a two state hidden Markov model framework (temporal technique)

to continuously monitor mortality risk by considering both the previous state of patient’s

health and the current value of clinical signs.

In comparison to existing non-temporal techniques to predict mortality, the proposed

framework leverages the longitudinal data available in EHR. We demonstrate the performance

of the proposed framework by applying it to real-world sepsis data. On the sepsis data,

the AUROC of the proposed temporal framework is 9-12% greater than the non-temporal

methods. The proposed framework also provides information related to the time of change of

the patient’s health that helps practitioners to plan early and develop effective treatment

strategies.

Study 3: Disease progression models are increasingly gaining popularity in healthcare.

These models can directly be integrated with the EHR and can help physicians to make

informative decisions by generating insights about the status of the patient’s health. One of

the popular methods to develop such models is HMM. However, the time complexity to learn

parameters of HMM grows with the number of stages of diseases. In this study, we propose

an initialization method to learn HMM parameters efficiently. By comparing our approach

to alternative methods in three dimensions (speed, proximity and integration), we were able

to show that our approach significantly improves the performance of HMM learning algorithm.

Study 4: There exist two popular bedside sepsis diagnostic criteria: SIRS and qSOFA. It is

critical to understand the pros and cons of both. In this study, we compare the performance

of these two sepsis diagnostic criteria using statistical and machine learning approaches. This

study examined patient visits in ED with sepsis related diagnosis. SIRS and qSOFA scores

106



were derived from values for individual indicators for each assessment based on the first

observation for each encounter. The outcome was 28-day all-cause mortality.

Using OR and modeling methods (decision tree, logistic regression and nave Bayes),

the relationships between diagnostic criteria and mortality were examined. Of 132,704 eligible

patient visits, 14% died within 28 days of ED admission. The association of qSOFA≥ 2 with

mortality (OR = 3.06; 95% CI = 2.96 to 3.17) greater than the association of SIRS ≥ 2

with mortality (OR = 1.22; 95% CI = 1.18 to 1.26). The AUROC for qSOFA (AUROC =

0.70) was significantly greater than for SIRS (AUROC = 0.63). The sensitivity (0.64) and

specificity (0.63) for qSOFA was greater than the sensitivity (0.62) and specificity (0.59) for

SIRS.

The evidences suggest that qSOFA is a better diagnostic criteria than SIRS. The low

sensitivity of qSOFA can be improved by carefully selecting the threshold to translate the

predicted probabilities into labels. These findings can guide healthcare providers in selecting

risk-stratification measures for patients presenting to an ED with sepsis.
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Appendix A

Appendix

Let ~Zm be the mth sequence of observation

~Zm = [X1,X2, . . . ,Xt, . . .XT ]

where Xt is a vector of observed features at time t, i.e., Xt = [xt1, x
t
2, . . . , x

t
N ]

The objective is to estimate parameters by maximizing the log-likelihood of the

observed sequences. The likelihood function is given by Equation A.1

logL =
M∑
m=1

logP ( ~Zm|λ) (A.1)

where λ is a set of HMM parameters (transition and emission probabilities). The

estimation of P (~Zm|λ) is computationally expensive and requires enumeration of all possible

sequence of states i.e. O(ST ) operations, where S is the number of hidden states and T is

the number of time intervals. However, there exists an alternate method where instead of

computing P ( ~Zm|λ), we use P ( ~Zm, ~s|λ) that is tractable using Baum-Welch algorithm. ~s is

a sequence of hidden states.
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Using Bayesian formula, Equation A.1 can be written as:

logP ( ~Zm|λ) =log
P ( ~Zm, ~s|λ)

P (~s| ~Zmλ)

=log
P ( ~Zm, ~s|λ)

Q(~s)
− logP (~s| ~Zm, λ)

Q(~s)
(A.2)

Q(~s) is a probability mass function. Later, we explain how to define this distribution.

Q(~s)logP ( ~Zm|λ) =Q(~s)log
P ( ~Zm, ~s|λ)

Q(~s)
−Q(~s)log

P (~s| ~Zm, λ)

Q(~s)∑
~s

Q(~s)logP ( ~Zm|λ) =
∑
~s

Q(~s)log
P ( ~Zm, ~s|λ)

Q(~s)
−
∑
~s

Q(~s)log
P (~s| ~Zm, λ)

Q(~s)

Since Q(~s) is a mass function, therefore,
∑

~sQ(~s) = 1

logP ( ~Zm|λ) =
∑
~s

Q(~s)log
P ( ~Zm, ~s|λ)

Q(~s)
−
∑
~s

Q(~s)log
P (~s| ~Zm, λ)

Q(~s)

The term −
∑

~sQ(~s)log P (~s| ~Zm,λ)
Q(~s)

is always greater than zero. Therefore,

logP ( ~Zm|λ) ≥
∑
~s

Q(~s)log
P ( ~Zm, ~s|λ)

Q(~s)

Hence, instead of maximizing logP ( ~Zm|λ), the lower bound of logP ( ~Zm, ~s|λ) is maxi-

mized to estimate HMM parameters. To provide the tighter bound, we select Q(~s) such that

log P (~s| ~Zm,λ)
Q(~s)

becomes zero (i.e., Q(~s) = P (~s| ~Zm, λ)).
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Appendix B

Appendix

import j s on

import os

import sys

import numpy as np

# d e f i n i n g a c l a s s to i n i t i a l i z e HMM with m u l t i p l e f e a t u r e s

class hmm msmv( object ) :

def i n i t ( s e l f , fname , nVar ) :

i f fname == None :

print ” Fatal Error : You should prov ide the model f i l e name”

sys . e x i t ( )

s e l f . nVar = nVar #number o f f e a t u r e s

s e l f . parameters = j son . l oads (open( fname ) . read ( ) )

# reading parameter f i l e wi th i n i t i a l parameters ;

# the f i l e i n c l u d e s t r a n s i t i o n matrix , o b s e r v a t i o n matrix and \

p r i o r hidde s t a t e d i s t r i b u t i o n

s e l f .A = s e l f . parameters [ ”A” ] # t r a n s i s t i o n matrix
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s e l f . s t a t e s = s e l f .A. keys ( ) # g e t the l i s t o f s t a t e s

s e l f . nStates = len ( s e l f . s t a t e s ) # number o f s t a t e s o f the model

s e l f .B = [ ] #s e t emiss ion matrix

s e l f . LevelsVar = [ ]

s e l f . nLevelsVar = [ ]

for i in range ( s e l f . nVar ) :

s e l f .B. append ( s e l f . parameters [ ”B” + str ( i ) ] )

#each f e a t u r e s are s t o r e d in parameter f i l e as B1 , B2 , so on

s e l f . LevelsVar . append ( s e l f .B[ i ] . va lue s ( ) [ 0 ] . keys ( ) )

s e l f . nLevelsVar . append ( len ( s e l f .B[ i ] . va lue s ( ) [ 0 ] . keys ( ) ) )

s e l f . p i = s e l f . parameters [ ” p i ” ] # p r i o r d i s t r i b u t i o n

def forward ( s e l f , obs ) :

# t h i s par t implements Algorithm 1

s e l f . fwd = [ { } ]

for y in s e l f . s t a t e s :

s e l f . fwd [ 0 ] [ y ] = s e l f . p i [ y ]

for nVar i in range ( s e l f . nVar ) :

s e l f . fwd [ 0 ] [ y ] = s e l f . fwd [ 0 ] [ y ] ∗ \

s e l f .B[ nVar i ] [ y ] [ obs [ 0 ] [ nVar i ] ]

for t in range (1 , len ( obs ) ) :

s e l f . fwd . append ({} )

for y in s e l f . s t a t e s :

temp = 1

for nVar i in range ( s e l f . nVar ) :

temp = s e l f .B[ nVar i ] [ y ] [ obs [ t ] [ nVar i ] ] ∗ temp
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s e l f . fwd [ t ] [ y ] = sum( ( s e l f . fwd [ t −1] [ y0 ] ∗ s e l f .A[ y0 ] [ y ] \

∗ temp ) for y0 in s e l f . s t a t e s )

# r e f e r to parameter l e a r n i n g s e c t i o n o f t h i s chapter \

( forward v a r i a b l e )

prob = sum( ( s e l f . fwd [ len ( obs ) − 1 ] [ s ] ) for s in s e l f . s t a t e s )

# return p r o b a b i l i t y o f o b s e r v i n g the sequence

return prob

def backward ( s e l f , obs ) :

# t h i s par t implements Algorithm 2

s e l f . bwk = [{} for t in range ( len ( obs ) ) ]

T = len ( obs )

for y in s e l f . s t a t e s :

s e l f . bwk [T − 1 ] [ y ] = 1

for t in reversed ( range (T − 1 ) ) :

for y0 in s e l f . s t a t e s :

sum = 0

for y1 in s e l f . s t a t e s :

temp = 1

for nVar i in range ( s e l f . nVar ) :

temp = s e l f .B[ nVar i ] [ y1 ] [ obs [ t + 1 ] [ nVar i ] ] ∗ temp

sum = s e l f . bwk [ t + 1 ] [ y1 ]∗ s e l f .A[ y0 ] [ y1 ]∗ temp + sum

s e l f . bwk [ t ] [ y0 ] = sum

prob = sum( ( s e l f . p i [ y ] ∗ s e l f .B[ y ] [ obs [ 0 ] ] ∗ s e l f . bwk [ 0 ] [ y ] ) \

for y in s e l f . s t a t e s )

return prob
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def parameterLearning ( s e l f , obsSeqMultiSub ) :

#t h i s par t implements Alogrithm 3

gamma = [{} for t in range ( len ( obsSeqMultiSub [ 0 ] ) ) ]

z i = [{} for t in range ( len ( obsSeqMultiSub [ 0 ] ) ) ]

for t in range ( len ( obsSeqMultiSub [ 0 ] ) − 1 ) :

for s in s e l f . s t a t e s :

z i [ t ] [ s ] = {}

for s1 in s e l f . s t a t e s :

z i [ t ] [ s ] [ s1 ] = 0

for t in range ( len ( obsSeqMultiSub [ 0 ] ) ) :

for s in s e l f . s t a t e s :

gamma[ t ] [ s ] = 0

num = [{} for i in range ( len ( obsSeqMultiSub ) ) ]

denom = [{} for i in range ( len ( obsSeqMultiSub ) ) ]

numGamma = [ [ { } for nVar i in range ( s e l f . nVar ) ] \

for i in range ( len ( obsSeqMultiSub ) ) ]

denomGamma = [ [ { } for nVar i in range ( s e l f . nVar ) ] \

for i in range ( len ( obsSeqMultiSub ) ) ]

for j in range ( len ( obsSeqMultiSub ) ) : # number o f data p o i n t s

p obs = s e l f . forward ( obsSeqMultiSub [ j ] )

s e l f . backward ( obsSeqMultiSub [ j ] )
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for t in range ( len ( obsSeqMultiSub [ 0 ] ) ) :

for y in s e l f . s t a t e s :

gamma[ t ] [ y ] = ( s e l f . fwd [ t ] [ y ] ∗ s e l f . bwk [ t ] [ y ] ) / p obs

i f t == 0 :

s e l f . p i [ y ] = gamma[ t ] [ y ]

i f t == len ( obsSeqMultiSub [ j ] ) − 1 :

continue

for y1 in s e l f . s t a t e s :

temp = 1

for nVar i in range ( s e l f . nVar ) :

temp = s e l f .B[ nVar i ] [ y1 ] [ obsSeqMultiSub [ j ] [ t + 1 ]\

[ nVar i ] ] ∗ temp

z i [ t ] [ y ] [ y1 ] = ( s e l f . fwd [ t ] [ y ] ∗ s e l f .A[ y ] [ y1 ] ∗ \

temp ∗ s e l f . bwk [ t + 1 ] [ y1 ] ) / p obs

for y in s e l f . s t a t e s :

num[ j ] [ y ] = {}

denom [ j ] [ y ] = {}

for y1 in s e l f . s t a t e s :

num[ j ] [ y ] [ y1 ] = sum( [ z i [ t ] [ y ] [ y1 ] \

for t in range ( len ( obsSeqMultiSub [ 0 ] ) − 1 ) ] )

denom [ j ] [ y ] [ y1 ] = sum( [ gamma[ t ] [ y ] \

for t in range ( len ( obsSeqMultiSub [ 0 ] ) − 1 ) ] )

for nVar i in range ( s e l f . nVar ) :
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for s in s e l f . s t a t e s :

numGamma[ j ] [ nVar i ] [ s ] = {}

denomGamma[ j ] [ nVar i ] [ s ] = {}

for i v a r L e v e l in s e l f . LevelsVar [ nVar i ] :

numGamma[ j ] [ nVar i ] [ s ] [ i v a r L e v e l ] = 0 .0

for t in range ( len ( obsSeqMultiSub [ 0 ] ) ) :

i f obsSeqMultiSub [ j ] [ t ] [ nVar i ] == i v a r L e v e l :

numGamma[ j ] [ nVar i ] [ s ] [ i v a r L e v e l ] += \

gamma[ t ] [ s ]

denomGamma[ j ] [ nVar i ] [ s ] [ i v a r L e v e l ] =\

sum( [ gamma[ t ] [ s ] for t in range (\

len ( obsSeqMultiSub [ 0 ] ) ) ] )

for s in s e l f . s t a t e s :

for s1 in s e l f . s t a t e s :

va l = sum( [ num[ k ] [ s ] [ s1 ] \

for k in range ( len ( obsSeqMultiSub ) ) ] )

va l /= sum( [ denom [ k ] [ s ] [ s1 ] \

for k in range ( len ( obsSeqMultiSub ) ) ] )

s e l f .A[ s ] [ s1 ] = va l

for nVar i in range ( s e l f . nVar ) :

for s in s e l f . s t a t e s :

for i v a r L e v e l in s e l f . LevelsVar [ nVar i ] :

va l = sum( [numGamma[ k ] [ nVar i ] [ s ] [ i v a r L e v e l ] \

for k in range ( len ( obsSeqMultiSub ) ) ] )

va l /= sum( [ denomGamma[ k ] [ nVar i ] [ s ] [ i v a r L e v e l ] \

for k in range ( len ( obsSeqMultiSub ) ) ] )
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s e l f .B[ nVar i ] [ s ] [ i v a r L e v e l ] = va l
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