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Abstract: How to protect people’s privacy when our life are banded together with
smart devices online and offline? For offline systems like smartphones, we often have
a passcode to prevent others accessing to our personal data. Shoulder-surfing attacks
to predict the passcode by humans are shown to not be accurate. We thus propose
an automated algorithm to accurately predict the passcode entered by a victim on
her smartphone by recording the video. Our proposed algorithm is able to predict
over 92% of numbers entered in fewer than 75 seconds with training performed once.

For online systems like surfing on Internet, anonymous communications networks like
Tor can help encrypting the traffic data to reduce the possibility of losing our privacy.
Each Tor client telescopically builds a circuit by choosing three Tor relays and then
uses that circuit to connect to a server. The Tor relay selection algorithm makes
sure that no two relays with the same /16 IP address or Autonomous System (AS)
are chosen. Our objective is to determine the popularity of Tor relays when building
circuits. With over 44 vantage points and over 145,000 circuits built, we found that
some Tor relays are chosen more often than others. Although a completely balanced
selection algorithm is not possible, analysis of our dataset shows that some Tor relays
are over 3 times more likely to be chosen than others. An adversary could potentially
eavesdrop or correlate more Tor traffic.

Further more, the effectiveness of website fingerprinting (WF) has been shown to have
an accuracy of over 90% when using Tor as the anonymity network. The common
assumption in previous work is that a victim is visiting one website at a time and
has access to the complete network trace of that website. Our main concern about
website fingerprinting is its practicality. Victims could visit another website in the
middle of visiting one website (overlapping visits). Or an adversary may only get
an incomplete network traffic trace. When two website visits are overlapping, the
website fingerprinting accuracy falls dramatically. Using our proposed “sectioning”
algorithm, the accuracy for predicting the website in overlapping visits improves from
22.80% to 70%. When part of the network trace is missing (either the beginning or
the end), the accuracy when using our sectioning algorithm increases from 20% to
over 60%.
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CHAPTER I

Introduction

With wide spread use of smart devices and internet, there are tons of ways to get

information or private data related to a person. When you are offline, applications

on devices like smartphones store and collect your data when you are using them.

When it comes to online, anyone between you and the website your tries to connect

may access to your data. Thus, privacy leaking is becoming a challenge to almost

everyone. People do not want to expose their identity, information or interests to

others.

1.1 Privacy of Offline Systems: Smartphone Passcode Prediction

To protect their sensitive information on devices like smartphones, people generally

lock their phones to prevent unauthorized access to their phones. The authentication

methods for smartphones range from a four-digit number, a password, to a pattern

(for Android devices only). Fingerprint, face, and voice recognition are also available

but an alternative authentication such as a passcode is also required. For those

people who choose to lock their smartphones, a four-digit PIN or patterns are most

commonly used. Are they safe now? Let’s consider a common situation. A user

needs to access her smartphone in a public setting, such as on a subway or in the

park. There are several other users around her that are watching her. This leaves an

opportunity for them to shoulder-surf the user entering her passcode and attempt to

guess what the passcode entered is. These users can then steal the smartphone and

can thus have complete access to all the victim’s files and pictures. Further, there are
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lots of cameras like CCTV in a building or on the streets. These cameras are always

recording and can record users’ entering their passcode on their smartphone.

Therefore our research goal on offline is the design and implementation of an online

algorithm to accurately predict a smartphone’s four-digit passcode using a camera to

record the victim entering the passcode [1]. With the correct passcode, we can access

to victim’s personal data. Hence, users should be more careful or use other methods

like random keypads to protect their process of entering passcode.

1.2 Privacy of Online Systems: Tor

For privacy protection in the Internet , anonymous networks, like tor, is one way to

protect against a common form of Internet surveillance known as ”traffic analysis.” [2]

Traffic analysis can be used to infer who is talking to whom over a public network.

Knowing the source and destination of your Internet traffic allows others to track

your behavior and interests. This can impact your checkbook if, for example, an

e-commerce site uses price discrimination based on your country or institution of

origin. It can even threaten your job and physical safety by revealing who and where

you are. For example, if you’re travelling abroad and you connect to your employer’s

computers to check or send mail, you can inadvertently reveal your national origin

and professional affiliation to anyone observing the network, even if the connection is

encrypted.

1.2.1 Measuring Tor Relay Popularity

The Tor network is run by volunteer relays (over 6,000). Each Tor client telescopically

builds a circuit by choosing three Tor relays and then uses that circuit to connect to

a server. The Tor relay selection algorithm makes sure that no two relays with the

same /16 IP address or Autonomous System (AS) are chosen. We measure Tor at

large scale to explore the weak aspects of anonymous system and propose methods

2



to mitigate website fingerprinting attacks. By measuring Tor, we mean to collect

information about the route of a visiting to a website, such as source/destination

IPs, tor entry node record, middle node record, exit node record. Our objective is

to determine the popularity of Tor relays when building circuits [3]. We explore if

there are some relay nodes whichhave a higher chance to be selected in a circuit than

other relays.Namely, these relays are more popular. We also look into the /8,/16,

/24 subnets of all relay nodes to find out the popular subnets.We then look at the

relationship between the bandwidth of relaynodes and the popularity of relay nodes.

1.2.2 Anonymous Networks Website Fingerprinting

Most privacy-conscious users utilize HTTPS and an anonymity network such as Tor

to mask source and destination IP addresses. It has been shown that encrypted and

anonymized network traffic traces can still leak information through a type of attack

called a website fingerprinting (WF) attack. The adversary records the network traffic

and is only able to observe the number of incoming and outgoing messages, the size of

each message, and the time difference between messages. The effectiveness of website

fingerprinting has been shown to have an accuracy of over 90% when using Tor as

the anonymity network. The common assumption in previous work is that a victim

is visiting one website at a time and has access to the complete network trace of that

website. Our main concern about website fingerprinting is its practicality. Victims

could visit another website in the middle of visiting one website (overlapping visits).

Or an adversary may only get a incomplete network traffic trace. When two website

visits are overlapping or part of the network trace is missing (either the beginning or

the end), the website fingerprinting accuracy falls dramatically.

Our research focuses on analyzing more realistic traffic data to launch website

fingerprinting (WF) attacks [4]. We set up an automatic environment to collect Tor

traffic data. The traffic data includes the traffic data with a WF defense tool enabled,
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data of visiting two websites with a time overlap and so on. After that, we will apply

our proposed algorithm “sectioning” and other machine learning algorithms to find

patterns to predict websites.

The rest of this dissertation is organized as follows: Chapter II presents our anal-

ysis of predicting smartphone passcode. Chapter III shows the measurement of Tor

relay popularity. In Chapter IV, we review website fingerprint attacks with more re-

alistic data and our new algorithm. Finally, Chapter V concludes and provides some

avenue for future work.
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CHAPTER II

Smartphone Passcode Prediction

2.1 Introduction

As smartphones came to prominence several years ago, it has spread to many aspects

of people’s daily life. Instead of storing data in devices like laptops or desktops, people

now store most of their data, such as pictures, documents, music, personal diaries,

financial statements, contacts, etc... on their smartphones. Even if the documents are

stored in the cloud, such as on Google Drive and Apple iCloud, access to these services

are easily obtained without having to re-authenticate once access to the smartphone

is obtained. For this reason, some people decide to lock their smartphones. The

authentication methods for smartphones range from a four-digit number, a password,

to a pattern (for Android devices only). Fingerprint, face, and voice recognition are

also available but an alternative authentication such as a passcode is also required.

For those people who choose to lock their smartphones, a four-digit PIN or patterns

are most commonly used.

We focus on four-digit passcodes as they are available on all smartphones and not

just Android devices like for the pattern passcode.

Let’s consider a common situation. A user needs to access her smartphone in a

public setting, such as on a subway or in the park. There are several other users

around her that are watching her. This leaves an opportunity for them to shoulder-

surf the user entering her passcode and attempt to guess what the passcode entered

is. These users can then steal the smartphone and can thus have complete access

to all the victim’s files and pictures. Further, there are lots of cameras like CCTV
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in a building or on the streets. These cameras are always recording and can record

users’ entering their passcode on their smartphone. For this reason, we focus on video

recording to enable us to launch an online shoulder-surfing attack to predict users’

smartphone passcode.

In order to perform the shoulder-surfing attack, we record videos from both the

left and right side of the victim, simulating an attacker standing next to the victim in

a public environment such as a bus. Our passcode prediction algorithm extracts the

four frames where the victim is entering her four-digit passcode, rebuilds the grid of

the keypad, and determines the location of the victim’s fingertip. We can thus predict

what number the victim is “typing”. We evaluate our algorithm with 20 videos. We

correctly predict 74 out of the 80 digits, a success rate of 92.5%. Our algorithm

can also be deployed online, taking less than 75 seconds to make a prediction for a

number.

Our main contribution is the design and implementation of an online algorithm to

accurately predict a smartphone’s four-digit passcode using a camera to record the

victim entering the passcode. Our algorithm requires minimal training. It can also

identify the smart device and rebuild the virtual keypad automatically regardless of

the size and type of the device.

The rest of the paper is organized as follows. We review related work in Section 2.2.

Section 2.3 shows the design of our passcode prediction algorithm. The experimental

results are shown in Section 2.4. Improvements are discussed in Section 2.5. Finally,

Section 2.6 concludes.

2.2 Related Work

Previous work has shown side channels attacks are possible in guessing key strokes.

Timing attacks on SSH [5], reflections off windows or computer monitors [6, 7], and

keyboard acoustics [8] can reveal the keystrokes of a user on a keyboard. If an ad-
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versary has control over the mobile device, she can use the device’s accelerometer [9],

motion [10], or camera and microphone [11] to infer the user’s keystrokes such as PIN

or password. EyePassword [12] utilizes the user’s gaze during password entry in an

attempt to prevent shoulder surfing.

Shoulder surfing is a well-known problem [13–15]. Hoyle et al. found that

life-logging cameras, such as Google glass, automatically recorded information that

users preferred to keep private, including computer screens and bank card informa-

tion. [16]. De Luca et al. created an authentication mechanism designed to protect

against against shoulder surfing called XSide, which uses the front and back of smart-

phones [17]. This is a new authentication scheme and is not widely used. The most

common form of authentication for mobile devices is PIN passcode. Roth et al. de-

signed a PIN entry method to resist shoulder surfing [18]. Their scheme forces the

user to perform some cognitive functions before entering their PIN; this makes the

numbers entered for each authentication different each time assuming the attacker

does not know the cognitive work to be performed.

Schiff et al. created a program to automatically recognize people based on visual

markers [19]. Other research has looked at shoulder surfing vulnerabilities on a variety

of a different types of password entry screens, including keyboards [20], graphical

passwords [21, 22], and Android unlock screens [23, 24]. In their study of Android

unlock screens, [23] created video recording software to guess Android passwords

by tracking fingertip motions. In contrast, we look at PIN passcodes, which is a

harder task because the numbers touched by a user have to be retrieved rather than

a continuous pattern. Shukla et al. designed an attack to guess a user’s PIN based on

the movement of their hands as seen from behind a smartphone [25]. We attempt to

retrieve their PIN from a different visual angle, namely behind the user. Moreover,

we analyzed the smartphone screen together with the finger location instead of the

hands’ movement; we also achieved a higher accuracy.
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Yue et al. [26] proposed an approach to detect the types of device used and based

on the keypad arrangement of the device, predicts the PIN entered by analysing the

user’s hand. Compared to [26] which requires new training for new types of devices

and new reference images of the software keyboard of the devices, our algorithm

requires minimal training. Our algorithm can also identify the smart device and

rebuild the virtual keypad automatically regardless of the size and type of the device.

2.3 Passcode Prediction

Figure 2.1: Overview of our attack to detect PIN entered on an observed smartphone.
(a) Our attack starts with recording a video of a victim who is entering the passcode.
The video consists of multiple frames. (b) TLD is applied to identify the frames where
the victim is typing (clicking) on the screen. For a four-digit PIN, this will identify
four frames. (c) A classifier is used to identify the Region of Interest (ROI) in each
frame. (d) The Line Segments Detector outlines the edges (lines) of the smartphone.
(e) Rebuild the numbers of the keypad on the screen from the user’s point of view.
(f) Apply the skin detector algorithm to filter out the fingers inside the screen and
then predict the number the user touched on.

This section provides an overview of our passcode prediction scenario. An ad-

versary is able to observe a victim entering her passcode on her smartphone. The

observation could happen due to the ubiquity of people using smartphones and the

emergence of head-mounted devices such as Google Glass, Microsoft Hololens, and

Snapchat Spectacles. These devices can record videos without the knowledge of other

people nearby. Moreover, users typically use their smartphones in public. If they use

a passcode, such as a four-digit PIN passcode, then they have to enter that passcode

each time they want to use their smartphone. An adversary thus can observe a vic-

tim entering her passcode multiple times and can record that observation without the
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knowledge of the victim. Figure 2.1 outlines an overview of the processes involved

in our passcode prediction. Our proposed attack consists of five steps: recording the

videos, extracting the frames where the user is entering the PIN, identifying the re-

gion of interest (ROI) within each frame, detecting the contour of the smartphone in

the region of interest, rebuilding the keypad, and making the prediction. Each step

is described in more detail in the following subsections.

2.3.1 Video Recording

The first step, to perform passcode prediction, is to record a video of the victim

entering her PIN. The video can be recorded from different positions from the point

of view of the adversary. The different points of views are from the right side and

the left side of the victim. Recording videos could be done stealthily as people use

their smartphones all the time and could be recording at all times. Moreover, head-

mounted devices will become more common in the future. A common scenario where

this type of recording could take place is waiting at bus stations, when riding public

transportation, or while waiting to check out in a line. Moreover, surveillance cameras

such as CCTV can be recording the victim entering her passcode. The adversary has

to record the victim entering the whole passcode but usually that still results in short

videos of a few seconds. We note that most passcodes are four-digit numbers.

2.3.2 Extract Frames

Most smartphones can record videos at 30 frames per second. In a five-second video,

there are 30 × 5 = 150 frames. Out of these 150 frames, four frames have to be

extracted; these frames are the point when the user is touching one of the four numbers

in the passcode. Some videos can be recorded at 60 frames per second. Similar

to [23], we assume the following: 1) before and after unlocking, users often pause

for a few seconds and 2) four consecutive on-screen number-touching operations with
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short intervals because most people are used to unlocking their phones and are not

expected to take long or make mistakes. Based on these assumptions, we process the

video to reduce the number of frames that need to be analyzed by extracting only

the unlocking process. Then, with the implementation of the Tracking-Learning-

Detection (TLD) algorithm [27] in OpenCV [28], we can obtain the frames where the

victim is entering her passcode by tracking the moving path of the fingertip. Based

on the gradient (that is, analyzing a video in terms of frames) of frames in a video, a

user typically stays on the same number for several frames; this is the time to touch

the screen. By applying the second assumption to the result of the TLD algorithm,

we can extract the relevant frames. In our case, it is 4 frames (four-digit passcode,

one frame for each). TLD gives a tracking map of the fingertip movement over time;

the frames we want are the ones with more dots or dark areas. Since a passcode is

typically four numbers, the goal of this step is to extract the four frames associated

with the victim entering the four numbers. This step uses the TLD algorithm to

detect the typing moment and extract the frame. However, through experimental

process, we noticed that sometimes the frame extracted by the TLD algorithm is not

clear or the victim’s finger is not exactly on the number. We thus also analyze the

frame before and after. Figure 2.1(b) shows an extracted frame from a recorded video

where the victim is entering the passcode.

2.3.3 Identify Region of Interest

Once the four frames are extracted (in this case, it would be 12 frames since we

consider the frame before and after the extracted frame), the region of interest (ROI)

needs to be identified. In our case, the ROI is the smartphone so that the numbers

being pressed can be detected. We use the Cascade Classifier Training [29] provided

by OpenCV on our dataset. More specifically, object detection using the Haar feature-

based cascade classifier [30] is an effective object detection method proposed by Paul
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Viola and Michael Jones. It is a machine learning based approach where a cascade

function is trained from many positive images and negative images. Positive images

are images that contain the target object in the image while negative images are

images that do not contain the target object in the image. The target object, in our

case, is the smartphone. The classifier is then used to detect objects in our frames

(each frame is an image). Figure 2.1(c) shows the identified ROI from the extracted

frame.

2.3.4 Detect Contour

After the ROI is identified, the outline of the smartphone is then detected. This

step is important for the following step of rebuilding the keypad on the smartphone.

The position of the keypad depends on where the smartphone screen is. From Fig-

ure 2.1(c), the image must first be smoothed as shown in Figure 2.2(a). To achieve

smoothing, there are two morphological operations we can use. These are dilation

which adds pixels to the boundaries of the object in an image and erosion which does

the opposite. After applying smoothing, we get a new image which allows the long

edges of the smartphone screen to be extracted. The next step is to apply the Line

Segments Detector(LSD) [31]. LSD is an algorithm that can help us to extract the

edges of a smartphone from the ROI image. Figure 2.2(b) shows the edges of the

smartphone highlighted. It will produce a set of lines in the image. We then apply

the rules like line length and continuity to filter the noisy lines out. These rules are

defined as following: 1) Line length should be no shorter than 30% of the height in

the dimension of the ROI image; 2) Area of contour (continuous lines) should be no

smaller than 10% of the whole ROI image. We tested different percentages and found

that these give the best results for our experiments. Figure 2.2(b) shows the image

after applying the rules.
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(a) Smoothed ROI (b) Extracted Edges

Figure 2.2: Detecting the contour of the smartphone by extracting the edges from
the ROI image and filtering out noise.

2.3.5 Rebuild Keypad and Retrieve Finger Contour

The last step before performing the passcode prediction is to rebuild the keypad on

the smartphone. Based on the edges and the screen ratio which is 16 : 9 in this frame,

the distance of the numbers of the keypad from the edges can be calculated. We use

the Hue-Saturation-Value (HSV) values of the color of the person’s skin which we

want to filter out to remove the finger in the ROI. As shown in Figure 2.3, the skin of

the person is highlighted and it can be removed so that only the smartphone screen

is obtained. HSV color space is commonly used in computer vision due to its good

performance when comparing RGB color space in varying illumination levels. Often

thresholding and masking is done in HSV color space. So we apply the HSV values

of a person’s skin to get the outline of the person’s finger. After this, we can cut the

contour of the finger inside the phone screen out to predict the number being touched

on the smartphone screen.

We combine the result of the previous two steps to project the contour of the finger

to the key number grid to make a prediction of the current digit of the passcode. This

is shown in Figure 2.4, which is the final resulting image of our passcode prediction

algorithm. Our algorithm (see Section 2.3.6 for details) will do several passes to check

the contour points beyond each line formed by 123, 456, 789, 0, 147, 2580, 369; this
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Figure 2.3: Image of the ROI showing the person’s hand. The person’s skin color is
filtered out to obtain the contour of the finger.

Figure 2.4: Final image where the contour of the smartphone screen, the contour of
the finger, and the number keypad can be clearly seen.

is illustrated in Figure 2.5. For each pass, the probability of the number will be

increased inversely proportional to their distances to the center of the contour.

Figure 2.5: Pass line by line to locate the finger position.
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2.3.6 Prediction Algorithm

We now describe in more detail the algorithm used to predict the passcode. In

Section 2.3.5, we rebuilt the keypad on the smartphone screen and were able to

outline the finger contour of the victim. Essentially, the prediction algorithm is about

identifying the location of the fingertip of the victim’s finger on the keypad. If the

finger is not on an exact number, then the number closest is chosen. To determine

the position of the fingertip, we calculate the number of points (pixels) of the finger

contour “line by line.” Each line is the set of horizontal or vertical lines formed by

the keypad. For example, the four horizontal lines are formed by the set of numbers

123, 456, 789, and 0, and the three vertical lines are formed by the set of numbers

147, 2580, and 369 (see Figure 2.5). Algorithm 1 shows the process of first removing

the points/pixels of the finger contour that are not inside the phone screen.

Algorithm 1 Eliminate points of the finger contour outside phone screen

1: Function get inside points(FingerContour, ScreenEdges)
2: inside points← [ ]
3: for each point point in FingerContour do
4: if point is in ScreenEdges then
5: inside points.add( p)
6: end if
7: end for
8: Return inside points
9: EndFunction

The next step is to calculate the percentage of points “beyond” each of the hori-

zontal lines. “beyond” means the points that are under the line, that is, the line that

the points are associated with. For horizontal lines, this means, the points above the

numbers while for vertical lines, this means points to the left of the numbers. This

process cuts the finger contour into pieces by the lines 123, 456, 147, and so on and

then counts the points beyond or left of each line to get the location of the finger

contour. This is illustrated in Figure 2.6. For example, the percentage of points

beyond the horizontal line 123, P (123), is calculated as
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P (123) =
# of points beyond 123

total # of finger contour points
(2.1)

Based on the calculated percentages, we can tell if the fingertip contour is rightside

up or down. The percentages are also used as the weight to calculate the probability

for each number on the keypad. This is calculated as the average distance of each

point to each of the ten numbers on the keypad.Each number is represented by a

center point of a number round which is shown in keypad. So that, we can calculate

the distance to the number as the distance to the center point of it. This average

distance of all the points to the number 1 is calculated as

avg dist(1) =

∑n
i=1

√
(pointi.x− 1.x)2 + (pointi.y − 1.y)2

number of points beyond line 123
(2.2)

where pointi.x is the point i’s x-position and 1.x is the number 1′s x-position. Based

on all the percentages, we can calculate which number is closer to the points of the

finger contour. Algorithm 2 shows this process for all the numbers of the keypad.

For example, P (123) gives the percentage of all three numbers 1, 2, and 3 of being

selected and P (147) gives the percentage of all three numbers 1, 4, and 7 of being

selected. In this case, the number 1 appears twice and the probability of the number

1 being the correct number selected by the user can be calculated. The calculation

for the number 1 is as follows
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P (1) =

(
1− avg dist(1)

avg dist(1) + avg dist(2) + avg dist(3)

)
∗

P (123)

+(
1− avg dist(1)

avg dist(1) + avg dist(4) + avg dist(7)

)
∗

P (147)

(2.3)

Algorithm 2 Make prediction by calculating probability of each number

1: Function{make prediction}{FingerContour, PhoneNumber1to9}
. Horizontal lines

2: points beyond line123← FingerContour.points beyond(line123)
3: points beyond line456← FingerContour.points beyond(line456)
4: points beyond line789← FingerContour.points beyond(line789)
5: points beyond line0← FingerContour.points beyond(line0)

. Vertical lines
6: points beyond line147← FingerContour.points beyond(line147)
7: ... . Calculate percentage of points beyond each line
8: P (123)← # points beyond line123 / total # points
9: P (456)← # points beyond line456 / total # points
10: ...

. Calculate average distance of each point to each line
11: avg dist1 ← avgdist(points beyond line123, point num1))
12: avg dist2 ← avgdist(points beyond line123, point num2))
13: ...

. Calculate probability of each number
14: P (1) = (1 − avg dist(1)

avg dist(1)+avg dist(2)+avg dist(3)
) ∗ P (123) + (1 −

avg dist(1)
avg dist(1)+avg dist(4)+avg dist(7)

) ∗ P (147)
15: ...
16: 3 numbers with highest probabilities← max 3{P (0), P (1), ..., P (9)}
17: Return 3 numbers with highest probabilities
18: EndFunction

2.4 Results

We now go over the results of our passcode prediction.
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Figure 2.6: Illustration of our prediction algorithm.

2.4.1 Data Collection

We recorded 20 videos with ten videos from both angles: from the left side of the

“victim” and from the right side of the “victim” with a distance about 1.5 meters

(4.9 feet). This distance is common in daily life situation like at a bus station. In our

experiment, the victim’s smartphone was a white iPhone 6s. An OnePlus 3T Android

phone with resolution 1080× 1920 and frame rate of 30 frames per second was used

to record the videos. Figure 2.7 shows the duration and total number of frames of

each video. The average duration of a video is 3.53 seconds and the average frame

count of a video is 105.75.

2.4.2 Automated Passcode Prediction

Based on our passcode prediction design from Section 2.3, we now present the results

of our algorithm on the recorded videos. Table 2.2 shows the prediction for the

passcode (2459) of the video .Each column shows the predicted number from our

algorithm along with the confidence percentage associated with that number. It can

be seen from the table that the predicted numbers are physically close to each other
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Figure 2.7: Video Frames Count and Duration Distribution.

on the number keypad. In this particular case, the first prediction was correct. We

note that making three predictions is still practical since the algorithm provides a

confidence percentage for each predicted number.

Table 2.1 shows the number of correct number predictions. Recall that we recorded

ten videos from the left point of view of the victim and ten videos from the right point

of view of the victim, and that each passcode is a four-digit PIN. Thus, there are a

total of 80 numbers to be predicted. The table shows the breakdown from each point

of view. When allowing our algorithm to only make one prediction, that is, predicting

the most likely number, then it is able to correctly predict 26 out of the 40 numbers

from the right side and 16 out of 40 numbers from the left side. Although the success

rate is not high, if we increase the number of predictions to the top two most likely

numbers, then the algorithm is able to predict 34 out of 40 numbers from the right

side and 29 out of 40 numbers from the left side. When we increase the number of

prediction to 3, then our passcode prediction algorithm is able to correctly predict

92.5% of the numbers, or 37 out of the 40 numbers from either side.

The success rate of our algorithm in correctly predicting each of the ten possible
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numbers as shown in Table 2.3. It can be seen that most of the numbers on the

edges of the keypad can be perfectly predicted while the numbers in the “middle” are

harder to predict, like 4, 5, 7, and 9.

Table 2.1: Number of correct predictions of the passcode detection algorithm on
recorded videos from the left and right side of the victim.

Right Side Left Side
Total # of numbers 40 40

# of correct first predictions 26/40 16/40
# of correct second predictions 8/40 13/40
# of correct third predictions 3/40 8/40

# of correct predictions 37/40 37/40

Table 2.2: Example of one passcode 2459 and the predictions along with the confi-
dence of our algorithm.

User PIN First Prediction (confidence) Second Prediction (confidence) Third Prediction (confidence)
2 2 (38.5%) 3 (37.5%) 5 (23.9%)
4 4 (44.3%) 1 (29.5%) 5 (26.2%)
5 5 (45.0%) 8 (32.0%) 2 (23.1%)
9 0 (37.0%) 9 (33.0%) 6 (30.0%)

Table 2.3: Success rate for each number from both sides.

Number Success Rate
0 100.00%
1 100.00%
2 100.00%
3 100.00%
4 77.78%
5 92.86%
6 100.00%
7 80.00%
8 100.00%
9 71.43%

2.4.3 Analysis of Failed Predictions

Most of the failed guesses in predicting the passcode in our experiments are caused

by distorted images we obtained from the two aspects of image processing of our
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algorithm. The first aspect is identifying the Region of Interest (see Section 2.3.3).

The second aspect is to correctly rebuild the edges of the phone screen. We will

discuss these two aspects in more detail in the following section.

2.4.4 Algorithm Processing time

The training for the cascade classifier to identify the Region of Interest takes about

7 days to reach a positive rate of 95%. However, this training only needs to be done

once. Our prediction algorithm, using the OpenCV software, performs the prediction

process of one passcode (four numbers) in less than 30 seconds. The TLD algorithm

takes less than 5 minutes to analyze and output the target frames. Overall, the

prediction process takes about 5 minutes for the whole 4-digit passcode. Predicting

one number will thus take about 75 seconds which can be considered to be real-time.

2.5 Improvements and Discussions

We discuss improvements that can be made to the passcode prediction algorithm,

along with discussion of future work.

Four out of the six failed predictions were due to the failure of the algorithm to

detect the Region of Interest in the video frame. Since identifying the Region of

Interest depends largely on the Haar feature-based cascade classifier, more positive

and negative images with training at a higher positive rate will likely resolve this

issue. However, this will increase the training time for the classifier, but we note

that the training only needs to be performed once. The other failed predictions were

incorrect predictions. Upon examining the frames manually, it is hard to tell which

number the user was touching.

A possible improvement to our prediction algorithm is to use machine learning to

do the prediction. The training data will consist of images of users touching each of

the ten numbers from several angles. The first part of our algorithm still needs to be
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performed to identify the four frames. Afterwards, the machine learning algorithm

can take over to predict based on the image.

We used only one smartphone as the victim’s device. We plan on using different

types of smartphones in the future; we don’t expect this will affect our algorithm as

the screen edges can be identified regardless of the phone size and the number keypad

is built based on where the edges are. More videos taken at different angles such

as from the top and front of the victim can be recorded to generalize the algorithm

further. More videos will highlight the accuracy of the prediction algorithm. Different

angles will increase the complexity of the prediction; for example, for the top view, it is

hard to detect the movement of the fingertip while for the front view, the smartphone

blocks the fingertip.

Since we have shown that an online passcode prediction attack on smartphones

is possible and relatively fast (less than 75 seconds), the next step is to determine

mitigation mechanisms. One possibility is to use the other hand to hide the passcode

authentication process, similar to how ATM keypads are hidden while entering the

ATM PIN. Another possibility is for the user to move her finger randomly so as to

fool the algorithm in identifying the four frames. Randomizing the keypad number

is another possibility. The user could also hold her phone in one hand and use mul-

tiple fingers of the other hand to enter the passcode. All these mitigation techniques

decrease the convenience for the user which may lead the user to not have a pass-

code. We leave analysis of these mitigations as future works . We note that these

mechanisms provide a trade-off between security and convenience.

Our passcode prediction algorithm can also be extended to recognize passwords

entered instead of just PINs. The algorithm will have to be extended to rebuild the

keyboard rather than the number keypad and will also have to account for different

types of keyboards. We also emphasize that no special hardware is needed – we are

using a commodity smartphone to record the videos. A better quality camera will
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likely improve the accuracy of our algorithm.

2.6 Summary

In this paper, we design and develop an attack to accurately predict the passcode

entered by a victim on her smartphone. The attack relies on recording a video of

the victim using a common smartphone in a public environment. Our algorithm

achieves an overall accuracy of 92.5%. This result demonstrates that online shoulder-

surfing attacks on PIN-based authentication are possible. Also, these results show

that choosing a good random PIN cannot prevent this type of online attack as the

algorithm can still predict the PIN entered.
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CHAPTER III

Measuring Tor Relay Popularity

3.1 Introduction

Tor is one of the popular anonymous communication systems that can protect users

from leaking private information, such as the IP address, when users are browsing

the Internet and communicating with other users. Tor also allows users to circum-

vent censorship effectively to reach blocked websites or documents. Some compa-

nies (such as Facebook [32]) are even using Tor hidden services when they publish

their services or websites. Tor has more than 6, 000 volunteer-operated relay nodes

(servers/routers) [33]. Instead of connecting users directly to web servers or each

other, a Tor client makes the connections go through three of the 6, 000 relay nodes,

then to the destination. The Tor relay selection algorithm makes sure that no two

relays with the same /16 IP address are chosen. The three randomly selected relay

nodes form a Tor circuit. A circuit is re-used to transfer several TCP streams with a

maximum lifetime of 10 minutes [34].

As Tor becomes more popular, it becomes subject to a number of attacks and

respective countermeasures. The packet counting [35], end-to-end timing attack [36],

active and passive end-to-end confirmation attacks [36–38] are shown to be possible

in the Tor network. Tor aims to protect users against traffic analysis. If an adversary

has control or can eavesdrop over both entry and exit relay nodes, then a statistical

correlation attack can be performed by using the packets’ timing or packets’ size

information. Entry guards, which Tor client selects from a few relays at random as

the entry points, help against this kind of correlation attacks. Hence, our focus is on
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the middle and exit relays.

In this paper, we explore if there are some relay nodes which have a higher chance

to be selected in a circuit than other relays. Namely, these relays are more popular.

We also look into the /8, /16, /24 subnets and Autonomous System (AS) number

of all relay nodes to find out the popular subnets. We then look at the relationship

between the bandwidth of relay nodes and the popularity of relay nodes.

Our contributions are listed as follows:

• Popular middle and exit relays: Based on our dataset, we find there are

some middle and exit relays which are more popular than other relays. Some

Tor relays are 3 times more likely to be chosen than others, in building Tor

circuits. If Tor relays are randomly chosen, then some Tor relays have over 10

times higher chance of being selected.

• Popular /8, /16, /24 subnets: We analyze all relay nodes based on their /8,

/16, /24 subnets. Several subnets stand out as more popular than others. We

also see that correlation attacks are still possible on a small fraction of circuits

where an adversary controlling a /16 subnet could monitor network traffic of

both the client and the target website.

• Popular ASes: Some ASes are more popular than others, based on the number

of Tor relays belonging to those ASes. However, our results show that some of

these ASes have a much higher percentage of being selected, regardless of how

many Tor relays are in these ASes.

• Correlation attacks are still possible: We find that about 11% of circuits

built can be correlated, that is, both the client and server identified.
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3.2 Background

Tor [34] is a popular low-latency anonymity network built over TLS connections and

based on onion routing. Tor is used by over 2 million unique users [33]. The Tor

system is run mostly by volunteer relays, with over 6, 000 relays [33]. Each relay

reports its IP address, public key, bandwidth, and contact information for the owner

to the centralized directory servers. When a Tor user (client) wants to use the Tor

network to connect to a server, it first contacts the directory servers to obtain a

consensus document of all the Tor relays. It then selects three Tor relays based on a

relay selection algorithm, see Figure 3.1. Tor relays are also referred to as nodes or

Tor routers. They are responsible for receiving and forwarding Tor traffic. The three

Tor relays chosen by the client are contacted telescopically. The client establishes

a secure connection with the first relay. Then going through the first relay, the

client establishes a secure (and anonymous) connection with the second relay. Going

through the first and the second relays, the client finally establishes a connection

with the third relay. This process builds a circuit for the client to use to connect to

a server.

Tor traffic is sent in fixed-size cells where each cell is 512 bytes [39]. When the

user makes the request, the user/client builds a circuit consisting of three relays

(entry guard, middle node, and exit node) before connecting to the destination server.

The constructed circuit can be shared by many TCP streams. Tor clients construct

circuits preemptively and substitute previously used ones with newly built circuits.

Each circuit lifetime is 10 minutes. Figure 3.1 shows the data flow in the Tor network

where the request of a client will pass through three Tor relays before reaching the

web server. In the circuit, the entry guard knows that the client is communicating

with the middle relay, but not who the exit relay or the destination server are. The

middle relay knows the entry guard is communicating with the exit relay but not who

the client or the destination server are. Similarly, the exit relay knows the middle
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relay is communicating with the server, but not who the client is. The server only

knows that the exit relay is acting as the client, but does not know who the real client

is.

Early onion routing systems initially specified that clients should select relays

uniformly [40] at random. With the increasing number of Tor users and relays, it

became necessary to improve relay selection strategy to balance traffic load with the

available Tor relay bandwidth. The choice of relays is determined by a weighting

function that includes the bandwidth, status flags of the relays and multiple other

considerations [41]. To be chosen, a relay has to have the following flags: stable, run-

ning, and valid. A Tor relay is considered to be “Running” if it has been successfully

contacted within the last 45 minutes [41]. Tor does not take the locations of relays

relative to the clients into consideration [42]. It will reuse the same circuit for new

data streams for 10 minutes. An exit relay has extra considerations since it has to

have an open outgoing port to the server (e.g. port 80 for web servers); many Tor

relays do not allow outgoing traffic outside of the Tor network.

Figure 3.1: How Tor works. 3 nodes are selected from running Tor relays

To reduce the probability of disclosing the client information to attackers, Tor

users randomly select a few relays to use as entry guards, and use only those relays

for their first hop. The entry guard knows the identity of the client and the middle

node for each circuit. The same entry guard is kept for 2 months. The relay can

be considered as an entry guard only if it is fast, stable and has higher bandwidth
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than a specific threshold. More details of selecting entry guards can be found in [41].

The entry guard, middle relay, and exit relay are chosen from different /16 subnet IP

addresses.

3.3 Experiment Setup

This section provides an overview of the design of our experiments and how we collect

and analyze data.

3.3.1 Data Collection

We deployed our experiments on 44 different machines from different locations. The

machines are from Google cloud instances and the PlanetLab network [43]. PlanetLab

is a global research network that supports the development of new network services.

On each machine, we installed Tor and Stem [44] version 1.5.2, which is a Python

controller library for Tor.

We set up a script supported by Stem to automate visiting websites. We visited the

homepages of Alexa top 100 websites [45] sequentially through Tor for each of the 44

machines. During each visit to a website, we discard the TCP packets. Only metadata

information of Tor circuits are collected. This includes the following information.

1. Tor Relays. There are 3 Tor relays during a visit to a website: entry guard,

middle relay and exit relay. The IP address and port, fingerprint, nickname,

locale, and advertised bandwidth are collected. We also converted the IP ad-

dress to a geolocation (city and country) and to an AS number. The advertised

bandwidth is the volume of traffic, both incoming and outgoing, that a relay is

willing to sustain, as configured by the operator and as observed from recent

data transfers.

2. Source. The IP address and the port number of the Tor client. This will be one

of the 44 machines used.
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3. Target. The IP address and the port number of the target destination. This

will be one of the 100 top Alexa websites.

The experiments were run for 5 months, from November 2017 to March 2018.

Our dataset consists of 145, 918 entries. Each entry contains the information above:

source IP address, target IP address, the three Tor relays’ IP address, fingerprint,

nickname, locale, AS number, and bandwidth. The list of the top 100 Alexa websites

was downloaded on October 15, 2017.

We used our own clients to visit known websites. Other than the Tor relays

information such as IP address and bandwidth, which are already public information,

we do not collect any private data. Our automated experiments are also spaced

out such that the extra 44 clients would not affect the normal operation of the Tor

network.

3.3.2 Data Analysis

We next describe the type of analysis performed on our dataset. Since Tor sets the

entry guard to be the same for an extended period of time, we mainly focus our

analysis on the middle relay and exit relay. More specifically, our goal is to determine

if some relays are chosen more often than others meaning some Tor relays are more

popular. This could lead to privacy issues as an attacker can utilize that knowledge

to target the anonymity of users.

• “By Source”: we first analyze the dataset from the point of view of the 44 client

machines. We look mostly at the popularity of Tor relays, that is, how often

they are selected for circuits and how often they are in the top k relays for each

machine. We set k = 30 for our analysis. Next, we group the Tor relays by

subnets; we analyze /8, /16, and /24 subnets. If two Tor relays are in the same

/16 or /24 subnets, then they are likely in the same AS or controlled/observable

by the same entity.
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• “By Target”: we perform the same analysis, but this time considering the point

of view of the 100 target websites. The goal here is to determine whether

some Tor relays are more popular based on the website visited. This could

mean some websites are more targeted or could increase the likelihood of an

adversarial entity (such as an ISP) being able to determine the target website.

• Overall: we then perform a holistic view of our dataset to identify who the most

popular relays are.

3.4 Experimental Results

This section presents the results from our experiments and the analysis based on

the results for the middle and exit relays. For each approach as described in the

previous section (“by source”, “by target”, and overall), the analysis is based on the

IP address, /24 subnet IP address, /16 subnet IP address, /8 subnet IP address, and

AS number for the Tor relays. Due to space restrictions, we show the results for the

/16 subnet as a representative result. The results and conclusions drawn from the /8

and /24 subnets are similar. We also show the result by AS number.

3.4.1 Dataset Overview

Our 44 machines visited 145, 918 sites in total. On average, each machine visited

3, 316 websites. This means that each of the top 100 Alexa websites received 33 visits

on average from each machine. During each website visit, we collected the IP address

for the client, the entry guard, the middle relay, the exit relay, and the target website.

Figure 3.2 shows a graph from the Tor metrics website [33]. It contains the number of

running relays that have flags “Running” and “Stable” assigned by the Tor directory

authorities. Over the 5 months, from November 2017 to March 2018, there are about

4, 800 stable relays and about 6, 000 running relays. As can be seen from the figure,

new relays join the network and old relays leave the network due to churn. During
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Figure 3.2: This graph shows the number of running relays that have the flags “Run-
ning” and “Stable” assigned by the Tor directory authorities. The graph shows the
range from November 2017 to March 2018 which is the duration of our experiments.

our experiments, our machines connected to 8, 523 unique relays.

The number of unique IP addresses, /24, /16, and /8 subnet IP addresses of

the relays used during our experiments are listed in Table 3.1. 8, 523 unique relay

nodes are used in the experiments. These relay nodes are almost all the running

nodes during the time period of our experiments. Since there are around 6, 000 relay

nodes at any time, on average, each relay node will be used in 24 circuits or website

visits. Out of 145, 918 total circuits created, this comes up to 24/145918 = 0.02%.

Each of our 44 source machines connected to 2, 061 relay nodes (or 2, 055 unique

relays because some relays can be used as either middle or exit relay) on average (for

the 3, 316 circuits built). Breaking it down to different types of relays: on average,

this comes up to 3 entry guards, 1, 550 middle relays, and 508 exit relays for each

machine. Each middle relay would then be used, on average, 3316/1550 = 2.14 times
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in total. This means that out of the 3, 316 circuits, a Tor relay has a chance of

2.14/3316 = 0.065% chance of being selected as a middle relay. Each exit relay is

used, on average, 3316/508 = 6.52 times in total. This means that a Tor relay has

a 6.52/3316 = 0.20% chance of being selected as an exit relay. All the relays found

belonged to 1, 096 ASes, which means there were on average 466 relays per AS.

Table 3.1: # of Tor relays, in terms of unique IP addresses, /24 subnet, /16 subnet, /8
subnet and AS number used when collecting data in our experiments over 5 months.

# of relays Avg # relays Avg # entry guards Avg # middle relays Avg # exit relays
per machine per machine per machine per machine

IP addresses 8,523 2,054.93 3.02 1,550.39 508.47
/24 subnets 6,949 1,695.11 3.02 1,392.18 355.77
/16 subnets 2,885 851.91 2.95 725.82 237.16
/8 subnets 184 129.43 2.82 119.84 82.07

AS 1,096 466.52 2.73 384.18 157.91

3.4.2 Metrics Used

We use the following metrics to determine the popularity of Tor relays.

1. Relay percentage: this is the percentage of visits that include the relay node

in the circuit. In “by source”, this means the percentage out of 3, 316 visits for

each machine. In from all sources, it is the percentage out of all 145, 918 visits.

This will likely be a low number but the goal is to determine if some relays are

used more often in circuits than others.

2. Repeated percentage: this is the percentage of relay nodes that appear in

the top 30 most-used relays of one source machine and also appear in the top

30 most-used relays for the other 43 machines. For example, relay node A is in

the top 30 most-used nodes for machine S. This means that out of the 3, 316

circuits/visits for machine S, the relay A is in the list of 30 most-used relays for

these 3, 316 circuits. To continue the example, let’s say that A also appears in

the top 30 most-used relays for 32 other machines (out of 44 machines in total).

Then the repeated percentage for relay A is (32+1)/44, which is 75%.
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Figure 3.3: Point of view of all machines. The percentage of times a relay has been
used as a middle relay for all circuits. This shows the top 30 most-used relays.

3. Relay bandwidth: this is the advertised bandwidth from [33]. It is the volume

of traffic, both incoming and outgoing, that a relay is willing to sustain, as

configured by the operator, and observed from recent data transfers.

4. Relay popularity: if a relay is popular, the relay node will get more traf-

fic/visits/selections than other nodes. In our analysis, a factor for popularity

is the percentage of visits a node has. Previously, we showed the average relay

percentage is 0.02% (of total 145, 918 visits). In terms of one source machine,

each middle node gets a relay percentage of 0.065% (of 3316 visits) and each

exit node gets a relay percentage of 0.20% (of 3316 visits) on average.

3.4.3 Analysis of Middle Relays

We first analyze the popularity of relays chosen as middle relays in all the circuits

created by the 44 machines.

1) By source IP address: We first look at the popularity of middle relays

from the point of view of the source machines (clients). Figure 3.3, Figure 3.4,
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Figure 3.4: Point of view of all machines. The percentage of times a relay is selected
as the middle relay in a circuit and that relay’s corresponding bandwidth.

Figure 3.5: Point of view of all machines. The repeated percentage for each relay is
chosen as a middle relay. This shows the top 30 most-used relays.
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and Figure 3.5 are the analysis results when considering all our source machines

together, that is analyzing all circuits from all source machines together. Figure 3.3

shows the 30 most-used middle relays and the number of times as a percentage that

they have been selected as Tor middle relays for all circuits. From Figure 3.3, the

relay named DipulseIT1 with IP address 62.210.82.83 has the highest probability

of being selected, at around 0.63%. That is about 10 times higher than the average

0.065% we mentioned in Section 3.4.1. In Figure 3.4, we have the % of a middle

relay being selected as a middle relay in circuits to websites and the bandwidth

of that relay. There is no obvious relationship between the percentage of a relay

being selected and its bandwidth in the middle relay selection. Figure 3.5 shows

the percentage of the top 30 most-often-selected relays that are also in the top 30

most-often-selected relays when considering machine by machine separately. As an

example, let’s consider the relay named CryoBBNx with IP address 51.254.45.43, the

relay named TotorBE1 with IP address 5.39.33.176, and the relay named TotorBE2

with IP address 5.39.33.178. They all have a repeated percentage of about 70%.

That means, they are also in the top 30 most-used relays of 70% of all machines.

This further confirms their popularity. Over all the relays, we can see from the

figures that some relays have a much higher chance of being selected as a middle

relay in Tor circuits than others, regardless of their bandwidth. These relays are not

only popular for one client machine, but also for other client machines, regardless of

the source IP address.

2) By source /16 subnet: Instead of considering each middle relay by their

IP address, we now group the middle relays’ IP address in /16 subnets. Figure 3.6

shows the top 30 most-selected /16 subnet IP addresses for middle relays, along with

their percentage of being selected from all source machines. Figure 3.6 shows that

the relays in the subnet 51.15.*.* and 163.172.*.* have higher percentages being

selected during Tor circuit building. These two /16 subnets are in the top 30 most
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Figure 3.6: Point of view of all source machines. The percentage of selection of the
top 30 most-selected /16 subnet IP addresses for middle relays.

Figure 3.7: Percentage of # of middle relays in a /16 subnet.
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often selected middle relays of each source machine as well. The subnet 163.172.*.*

have the highest percentage near 2.5%. This shows that certain subnets are more

popular than others. This could mean that these subnets contain more Tor relays. It

could also mean that an adversary in these subnets will have a higher chance of being

selected as a middle relay than others. When analyzing /8 and /24 subnets, we see a

similar result.

It could be argued that subnets with more relays will obviously have a higher

chance of being selected. Figure 3.7 shows the number of middle relays under each

/16 prefix subnet (only the top 30 subnets are shown). In the figure, 163.172.*.*

has less than 2.0% middle relays in it when compared to the 2.5% chance of being

selected in circuits. However, 62.210.*.* has nearly 0.6% middle relays and it has a

2.1% chance of being selected. This indicates that the chance of a /16 subnet being

selected is not proportional to the number of relays it contains.

Figure 3.8: Point of view of one target destination IP address 151.101.128.81. The %
of selection of the 30 most often selected Tor relays as the middle relays in circuits.

3) By target IP address: Looking at all Tor relay routes from the perspective

of the target websites (the web servers), we perform a similar analysis as earlier.
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Figure 3.9: Point of view of one target destination IP address 151.101.128.81. The
percentage of selection of the top 30 most often selected Tor relays as the middle
relays in circuits and these relays’ corresponding bandwidth.

Figure 3.10: Point of view of target IP address 151.101.128.81. The % of the 30 most
often used relays being selected as middle relays, grouped by /16 subnets.
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Figure 3.8 shows the percentage of each relay being selected as the middle relay when

the target IP address is 151.101.128.81. The figure includes the top 30 most often

selected relays. The relay named DipulseIT2 with IP address 62.210.82.83 is the most

often selected relay with a percentage of 0.385%. Figure 3.9 shows the percentage of

being selected and the bandwidth of these top 30 middle relays. From the figure, there

is a slight trend of the relay node with more bandwidth having a higher percentage

of being selected as a middle relay. This is different from our analysis by source

machines.

4) By target /16 subnet: Here, we analyze middle relays based on their /16

subnet prefix and the target websites’ IP addresses. Figure 3.10 shows the top 30

subnets with their percentage of being selected. It is similar to previous analysis in

that we have relays in subnets 163.172.*.*, 62.210.*.*, and 5.9.*.* having a higher

chance of being selected than others. Subnet 163.172.*.* has the highest percentage

at 0.91%. This means that some subnets are more popular than others regardless of

the client IP address or the target IP address.

5) By AS: We further look into middle relays at the AS level. Figure 3.11 shows

the top 30 ASes that have the highest percentage of number of middle relays that are

in that AS. Figure 3.12 shows the top 30 ASes being selected in all circuits. AS16276

has the highest percentage of 16% being selected with only less than 8% of middle

relays in it. On the contrary, AS3320 contains nearly 7% middle relays with less than

0.9% chance being selected. Some ASes in Figure 3.11 are not even in Figure 3.12.

Hence, this shows that some ASes are more popular than others not because they

have more middle relays in them.

3.4.4 Analysis of Exit Relays

In this section, we analyze the popularity of relays chosen as exit relays in all the

circuits created by the 44 machines.
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Figure 3.11: Percentage of # of middle relays that is in an AS.

Figure 3.12: Percentage of an AS shown as Middle relay of all circuits.
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Figure 3.13: Point of view of all machines. The percentage of times a relay has been
used as an exit relay for all circuits. This shows the top 30 most-used relays.

Figure 3.14: Point of view of all machines. The percentage of times a relay is selected
as the exit relay in a circuit and that relay’s corresponding bandwidth.
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Figure 3.15: Point of view of all machines. The repeated percentage for each relay is
chosen as an exit relay. This shows the top 30 most-used relays.

Figure 3.16: Point of view of all source machines. The percentage of selection of the
top 30 most-selected /16 subnet IP addresses for exit relays.
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1) By source IP address: We first look at the popularity of exit relays

from the point of view of the source machines (clients). Figure 3.13, Figure 3.14,

and Figure 3.15 are the analysis results when considering all our source machines

together. From Figure 3.13, we can see the 30 most often used exit relays and the

percentage that they have been selected during all the visits. In the figure, the relay

named IPredator with IP address 197.231.221.211 has the highest percentage, 2.67%,

of being used as an exit relay among all the relays. That is about 14 times higher than

the average percentage 0.20% which we mentioned in Section 3.4.1. In the results of

top relays in the Tor circuits when considering only one single source machine, there

are relays being selected as exit relays more often than other relays. Also these source

machines share several exit relays in their own top 30 exit relays list among all Tor

circuits, as shown in Figure 3.15, such as novatorrelay with IP address 93.174.93.71

and hviv104 with IP address 192.42.116.16. These exit relay nodes appear in more

than 90% of the top 30 exit relays lists from all source machines. This means that,

over all the relays, some of the relays have a higher chance to be selected when Tor

builds a circuit. This further confirms their popularity. Figure 3.14 shows the % of a

relay selected as exit nodes during all the visits of one machine to websites and the

bandwidth of the relays. From the figure, it can be seen that a relay node with more

bandwidth has a better chance to be selected as an exit node during circuit building.

2) By source /16 subnet: Instead of analyzing each exit relay by their IP

address, we now group the exit relays’ IP address in /16 subnets. Figure 3.16 shows

the 30 most-often-used exit relays with same /16 subnet prefix and the percentage of

circuits which have that relay as an exit relay. The relay nodes with subnet 51.15.*.*

and 185.220.*.* stand out in the figure. 51.15.*.* has a percentage of 6.32% and

163.172.*.* has a percentage of 5.44%. 185.220.*.* is the most popular one with a

percentage of 9.13%. Also, 176.1.*.* and 163.172.*.* have the higher percentage.

Hence, with results from all these figures, there are several /16 subnet prefixes that
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Figure 3.17: Percentage of # of exit relays in a /16 subnet.

have a better chance to be chosen as exit nodes. When analyzing /8 and /24 subnets,

we see a similar result. In Figure 3.17, we show the percentage of number of exit

relays under a /16 subnet. For example, 51.15.*.* has 5.5% of all exit relays in

it. However, comparing Figure 3.17 with Figure 3.16, we can see that a /16 subnet

may not have a higher chance to be selected even though it has a high percentage

of number exit relays in it. From Figure 3.17, 199.249.*.* subnet contains 4.5% exit

relay. However it only has less than 1.5% chance to be selected.

3) By target IP address: We now analyze the popularity of relays from the

point of view of the target websites. Figure 3.18 lists the top 30 most often selected

exit relays’ names from all source machines to the website 151.101.130.167. The relay

IPredator with IP address 197.231.221.211 is the one with the largest percentage of

being selected at 1.02%. Figure 3.19 shows the percentages of a relay being used as

an exit node and its bandwidth during our experiments. IPredator has a bandwidth

of 175.13 MiB/s with the highest percentage of 1.02%. The relay named marylou1b

with IP address 89.234.157.254 has a bandwidth of 41.65 MiB/s with the second

highest percentage of 0.56%. From that figure, it can be seen that a relay with higher
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Figure 3.18: Point of view of one target destination IP address 151.101.130.167. The
% of selection of the 30 most often selected Tor relays as the exit relays in circuits.

Figure 3.19: Point of view of one target destination IP address 151.101.130.167. The
percentage of selection of the top 30 most often selected Tor relays as the exit relays
in circuits and these relays’ corresponding bandwidth.
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Figure 3.20: Point of view of target IP address 151.101.130.167. The percentage of the
top 30 most often used relays being selected as exit relays, grouped by /16 subnets.

bandwidth has a higher chance of being selected.

4) By target /16 subnet: Figure 3.20 shows the top 30 subnets with /16

prefix along with the percentage of being selected as an exit relay that is within the

subnet. From Figure 3.20, we see that 185.220.*.* has the highest percentage at

3.69%. 185.220.*.* is also in the list of top 30 exit relays from all source machines

in Figure 3.16. 51.15.*.* is also one of the subnets that appeared in both figures. It

has a percentage of 2.08% in Figure 3.20. This result again shows that some subnets

have a higher percentage of being selected than other subnets.

5) By AS: We analyze exit relays in AS level now. Figure 3.21 and Figure 3.22

show the top 30 AS that have the highest percentage of number of exit relays that is

in an AS and the top 30 AS being selected in all circuits respectively. In Figure 3.22,

we can see AS like AS12876, AS200052 are more popular than other AS. AS12876

has the highest percentage of more than 12% being selected even though only 8%

of exit relays are in that AS. Some ASes in Figure 3.21, such as AS63949, are not

even in Figure 3.22. This leads us to the conclusion that there are certain ASes that

are more popular than other ASes and this is not proportional to the number of exit
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Figure 3.21: Percentage of # of exit relays that is under an AS.

Figure 3.22: Percentage of exit relays in an AS amongst all circuits.
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Table 3.2: Results of comparing Tor relay nodes’ IP address and target websites’ IP
address in the same circuit to determine if they are in the same subnet prefix or AS
number. The total number of circuits is 145, 918.

Entry vs Target Entry vs Middle Entry vs Exit Middle vs Target Middle vs Exit Exit vs Target
/24 subnet prefix 0 0 0 2 0 1
/16 subnet prefix 104 0 0 8 0 10
/8 subnet prefix 3,906 6,750 10,456 2,769 8,598 3,792

AS 150 24,439 16,866 287 11,308 36

relays in them.

3.4.5 Overall

We now provide a more holistic view of our dataset. We compare the Tor entry guard,

middle relay and exit relay in a circuit to see if they are in the same subnet prefix

(/24, /16, and /8) and same AS. We also compare the relays and the target website IP

address. This comparison is done for each circuit built. Table 3.2 shows the results of

our comparison: there is not much overlap at the /24 subnet, but at the /16 subnet,

104 pairs of entry guard IP address and target IP address are in the same /16 subnet.

This could lead to correlation attacks launched to determine who the user is. At a /8

subnet prefix and AS level, there are more pairs that match. This is expected, but

could be an issue if an adversary controls a large swath of IP address space. Looking

at the AS numbers, about 11% of all circuits could be compromised as these circuits

have the client or entry relay and the target or exit relay in the same AS. This is a

significant number and shows that ASes can correlate clients and targets. This does

not include Internet Exchange Points, and we expect this is worse when these are

considered.

3.5 Related Work

Tor was introduced and began operating in 2003 [39], providing service that enabled

users to access the Internet anonymously [37]. When communicating with others,

Tor clients choose a three-hop circuit from the set of available volunteer relays in the

47



network. Tor allows researchers to the Tor network data such as relay bandwidth,

the number of active Tor relays, etc, through the Tor Metrics Portal [33]. Although

Tor provides anonymous service, Tor users are vulnerable to an adversary that can

observe some parts of the Tor relays [46]. Tor can also be blocked since all the Tor

relays are public information [47, 48]. We used 44 independent machines located in

different areas of the world to connect to popular websites through Tor.

Adversaries can exploit the nature of Internet routing by performing network

traffic analysis [36, 49, 50] to increase the chance of observing users’ communications

traffic. They gain the visibility of Tor traffic either by compromising Tor relays, or by

invading and manipulating underlying network communication like the Autonomous

Systems (ASes) [46,51–53]. If an attacker can observe the traffic from both the client

to the entry guard and the exit relay to the server, then the leaked information,

including the packet timing and sizes, is enough for attackers to infer the identities of

the clients and servers from timing analysis [54]. This is a correlation attack [46,55].

Our results show that some relays are much more popular than others. Moreover,

correlation attacks could be performed as some Tor entry guards and exit relays/target

websites are in the same /8 or /16 subnets.

Tor’s path selection algorithm uses the estimated bandwidth of the nodes as a cen-

tral feature. To mitigate the threat of AS-level adversaries, AS-aware path selection

algorithms were proposed that consider the bandwidth and IP address when choos-

ing relays while creating Tor circuits [56,57]. They attempted to infer AS path from

incomplete knowledge of the Internet topology and tried to avoid picking entry-exit

pairs routing through the same AS or that may be subject to correlation attacks. This

minimizes the amount of information gained by the adversary. Our work provided

the list of popular relays that will benefit selection algorithm design by comparing

theoretical analysis with our results.

48



3.6 Conclusion

We provide a comprehensive analysis of the popularity of Tor relays. Our dataset

consists of Tor relay nodes, collected by visiting the Alexa top 100 websites through

the Tor network for 5 months, by using 44 different source machines. Our dataset

records the information of each Tor relay in circuits: the relay node IP address,

fingerprint, geolocation, and advertised bandwidth. Our dataset also contains the

IP address of the source machine used and the target website. Then we analyze the

dataset from many different perspectives: by source machine, by target IP address,

by IP address, by /8 subnet, by /16 subnet, by /24 subnet and by AS.

The results show that some Tor relays and some subnets (either /8, /16, or /24)

are more popular when being selected as middle relays or exit relays. From analysis

of middle relays, the Tor relay named TotorBE1 with IP address 5.39.33.176, is 3

times more likely to be chosen than other relays and 10 times more likely to be chosen

than an average relay. Our data also show that the bandwidth of a relay does not

affect its chance of being selected as a middle relay node when a Tor client builds a

circuit. When grouping Tor relays’ IP addresses into /16 subnets, some subnets, such

as 51.15.*.* and 163.172.*.*, are more popular than other subnets. Additionally, our

analysis indicates that the chance of a /16 subnet being selected is not proportional

to the number of relays it contains. For example, 62.210.*.* has nearly 0.6% middle

relays however it has a 2.1% chance of being selected in circuits. When it comes to

AS level, AS16276 stand out. It has less than 8% of middle relays in it while it has

a chance of 16% being selected.

From analysis of exit relays, the Tor relay named IPredator with IP address

197.231.221.211 and the Tor relay named dreamatorium with IP address 89.31.57.58

are 6 times more likely to be chosen as an exit relay, compared with other relays.

There also seems to be a correlation between a relay’s bandwidth and its popularity

as an exit relay. Similarly, in /8, /16, and /24 subnets, we found that some subnets
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like 185.220.*.* and 51.15.*.* are 6 times more likely to be selected as exit relays

than other subnets. From the results, we can see that a /16 subnet may have a higher

chance to be selected even though it has a lower percentage of number exit relays in

it. Like 185.220.*.*, it has 3.15% exit relays and it has a percentage of 9.13% of

being selected. At the AS level, we can see ASes like AS12876, AS200052 are more

popular than other AS. AS12876 has more than 12% chance of being selected even

though only 8% of exit relays are in the AS.

For future work, we plan to explore more aspects of Tor relays in terms of popular-

ity at the geolocation level. We will further explore the correlation between bandwidth

and popularity as a middle relay or exit relay. Based on this result, we will also find

ways to perform correlation attacks on Tor and learn how to make the relay selection

algorithm more balanced.
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CHAPTER IV

Anonymous Networks Website Fingerprinting

4.1 Introduction

Anonymous communication’s goal is to hide the relationship and communication con-

tents among different parties. Once two parties establish an anonymous communi-

cation between them, the contents are encrypted and routing information is hidden,

thus masking the source and destination IP addresses from third parties. Tor [58,59]

is one of the most popular low-latency anonymity-providing network. It is used by

millions of people daily [33]. Tor protects users’ privacy through a telescoping three-

hop circuit and encrypting the network traffic using onion routing. Although Tor

and many other privacy-enhancing technologies such as HTTPS proxy hide the com-

munication contents and network layer contents, the network traffic itself may leak

information such as packet size, inter-packet timing information, and direction of the

packets (from server to client or other way around).

A website fingerprinting (WF) attack is one where an attacker identifies a user’s

web browsing information by merely observing that user’s network traffic. The at-

tacker is not attempting to break the encryption algorithm or the anonymity protocol.

The only information available to the attacker is the metadata information such as

packet size, the timing information between packets, and the direction of the packet.

The success of this attack is measured by the number of websites correctly identified.

The accuracy has been shown to be around 90%, thus violating any privacy offered

by HTTPS and anonymity services like Tor.

It has been more than 15 years since the first website fingerprinting attack was
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proposed [60]. A number of studies on this topic have been released since then [61–63],

showing high accuracy in predicting websites in both the open and closed world

models.

All previous work rely on certain assumptions. The goal of this research is to

revisit some of these assumptions, namely: 1) the adversary can record the whole

network traffic trace for a website 1, 2) the victim visits one website at a time; here,

we focus on the situation the victim visits a second page before the first one finishes

loading (overlapping visits). When two website visits are overlapping or part of the

network trace is missing (either the beginning or the end), the website fingerprint-

ing accuracy falls dramatically. Hence, we propose a new algorithm “sectioning”

algorithm to deal with these overlapping traces and partial traces.

The contributions of this paper are summarized as follows.

• A “sectioning” algorithm to identify overlapping network traces. We

propose a new algorithm to section the trace into multiple sections and treat

each section independently to perform the website prediction. The hypothesis

is that if two traces overlap, the beginning of the first trace and the end of

the second trace would be unaffected. Sectioning then still allows for correct

identification of the two websites. When considering overlapping traces, the

accuracy of current techniques for website fingerprinting decreases to 20%−30%.

Our sectioning algorithm improves the accuracy to around 70%.

• Applying “sectioning” algorithm on partial traces. By applying “sec-

tioning” on partial traces, the accuracy (62.66%) is higher compared to previous

methods (20.76%) on predicting websites with the beginning parts of the trace

missing. When predicting websites with the last parts of the trace missing, the

accuracy is comparable. Hence, with sectioning algorithm, we can reduce the

impact of missing packets in a network trace.

1Note that we used trace, network trace, website, and webpage interchangeably
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This paper is structured as follows: in Section 4.2, we give the related background

and terminology of this paper. We propose a new “sectioning” algorithm to improve

the accuracy in overlapping traces in Section 4.3 and in partial traces in Section 4.4.

We conclude and provide avenues for future work in Section 4.5.

4.2 Background

• Definitions. We first define some terms we use throughout the paper.

– Trace. A trace is a time series of recorded network packets for a visit

to a webpage. Usually, tcpdump is used to record the network traffic. A

trace contains no background noise, only the network traffic to/from that

webpage.

– Overlapping Trace. When a trace consists of two pages, and the second

page starts before the first page ends, we call it an overlapping trace. It has

the same meaning as when the two pages are separated with negative-time.

– Partial Trace. A network traffic trace with part of it is missing (either the

beginning or the end).

• Threat Model. In website fingerprinting attacks, the adversary records net-

work traffic data of his own visits to a list of websites first through the Tor

network. Then the adversary can eavesdrop on the link between the victim

and the entry node. Figure 4.1 depicts where the adversary is. We assume the

attacker to be a passive observer which means it does not modify transmissions

and is not able to decrypt packets. An example of the adversary is Internet

Service Providers (ISP), and state-level agencies.

• WF Attack Procedures. Website fingerprinting has been shown to be a

serious threat against privacy mechanisms for anonymous web browsing. Re-

searchers have proposed different scenarios for website fingerprinting. The at-
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Figure 4.1: Threat Model.

tack and resulting experiment vary from each other; however, they all follow

similar steps. A website fingerprinting attack and analysis can be divided into

six steps: 1) collect data, 2) extract features from data, 3) select algorithm, 4)

build model based on 1) to 3), 5) evaluate real network traffic trace, and 6)

evaluate results. Figure 4.2 shows an illustration of all the steps of a website

fingerprinting attack. The last right-most block contains the measurements to

evaluate the effectiveness of an attack.

Figure 4.2: Steps of launching and evaluating a website fingerprinting attack.

When setting up an experiment for a website fingerprinting attack, the first step

is to perform data collection. A network traffic recording tool such as wireshark

or tcpdump is used. Before running any scripts to automatically collect data,

the configuration of the browser should be set to match the assumptions, such

as disabling all plug-ins to avoid background noise and clearing the browser

cache. The automated script will then visit websites in a certain order. The

time taken to collect data depends on the number of instances recorded for each

website and the size of the website list. Features extracted from the recorded

network traffic traces will be used for training. Each network trace is composed
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of a list of features. The features can be treated as attributes in a machine

learning context. A classification algorithm is applied to these features to build

the attack model. Different websites correspond to different classes. Different

network traffic traces are then collected to evaluate the performance of the

model. A 10-fold cross validation is often employed to reduce the bias in the

evaluation process.

In an open world model, a website being fingerprinted can be either from the list

or not in the list. The attacker keeps track of a small list of monitored websites.

Once a website fingerprint is obtained, the attacker attempts to determine if that

website is part of the list of monitored websites or not. More recent research

work [61, 63–72] deployed their website fingerprinting experiments under the

open world model and identified whether a website is from the list of monitored

sites.

• Dataset. Based on the foreground dataset of RND-WWW from [61], our ex-

periments in Section 4.3, and Section 4.4 randomly pick 100 website records

which contain 40 instances for each website from the original dataset. Each

instance is a trace containing the timestamped incoming and outgoing packets’

size in chronological sequence. Incoming packets are marked with a positive

sign, while outgoing packets are marked with a negative sign.

4.3 Analysis of Overlapping Traces

4.3.1 Motivation

This section provides an overview of the design of our experiments and a description of

our website fingerprinting attack when considering the situations of two overlapping

traces (webpages that are negative-time separated). This means that a victim visits

a second webpage while the first webpage is still loading. It’s not realistic to assume
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that a user visits only one webpage at a time. However, only one previous paper [63]

has looked at overlapping website visits. Figure 4.3 illustrates two overlapping traces.

Trace A belongs to website A and Trace B is from website B. The size of the overlap

can vary. We focus on predicting both website A and website B. In previous work,

the prediction accuracy of classifying websites based on features like packet sizes

and number of packets is high at around 90%. Figure 4.4 shows the accuracy of

the k-NN algorithm when predicting traces with overlapped packets. It can be seen

that the accuracy decreases significantly from 89.89% to 22.80% with 5% overlapped

packets and to 19.29% with 10% overlapped packets. Thus, overlapping traces have

a big impact on prediction accuracy. In fact, visiting a webpage at the same time as

another webpage can be used as a defense to mitigate website fingerprinting attacks

because it generates “noise”. We, thus, propose a new “sectioning” algorithm that

can still accurately perform website fingerprinting attack on overlapped website visits.

Figure 4.3: Two website traces A and B overlap.

4.3.2 Sectioning Algorithm

We now present the design of our proposed “sectioning” algorithm. Instead of treating

a traffic trace as a whole, we split the trace into a certain number of sections and

perform website prediction on each section. The intuition behind why sectioning will
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Figure 4.4: Prediction accuracy as more packets overlap in the two traces.

help improve accuracy is that the overlapped parts will only appear in some sections

of the trace and other sections will not be disturbed. We also hypothesize that most

sections of the trace will not be disturbed. This allows us to perform a majority

voting on all the sections to decide which website is being visited.

Figure 4.5 shows the key parts of our sectioning algorithm: partitioning and ma-

jority voting.

1) Partitioning an instance into n sections: Partitioning each instance into

sections is the most important part of our algorithm. Each trace, whether for training

set or testing set, will be partitioned into n sections. If n = 1 section, this means

there is one section and this is what previous work has looked at; this is the base

case. Each section will be evenly split by two methods: a) number of packets; b) time

duration of a trace.

1a) sectioning by number of packets: If a trace has 1, 000 packets and will

be partitioned into 10 sections, then each section will contain 100 packets.

1b) sectioning by time duration: If the duration of a trace is 10 seconds,
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Figure 4.5: Outline of sectioning algorithm.
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when partitioning it into 10 sections, then interval of each section will be 1 second.

The sections with overlapping traces will clearly have more packets, but the number

of sections stays the same with regards to the training set.

2) Perform majority voting: As Figure 4.5 shows, the last step of our al-

gorithm is to perform majority voting. The purpose of sectioning is to reduce the

interference in prediction caused by the overlapped packets, that is, any incorrect pre-

dictions made due to overlapped packets will be ignored if the majority of the trace

(or sections) is not affected (overlapped). We already have the predictions for each

section of each trace. To predict the website for a trace, majority voting is performed

on the n sections of that trace to determine the predicted website. If there is no clear

majority, any of the highest number of predictions is chosen. For example, like the

overlapped trace B in Figure 4.3, a trace of website B is partitioned into 5 sections.

Suppose first 2 out of these 5 sections contain overlapped packets from another trace

of website A. The prediction for the first section is website A while the prediction

for the second section is website B. Since the remaining 3 sections are unaffected,

the predictions are website B. In this case, website B received 4 predictions while

website A received 1 prediction. Using majority voting, this trace will be classified

as website B.

4.3.3 Experiment Setup

Figure 4.6 shows our sectioning algorithm. The steps are as follows: 1) split dataset

into training and testing sets (Figure 4.6(a)); 2) Insert certain amount of packets ran-

domly from another website into the trace of each instance of testing sets – this forms

the overlapped traces (Figure 4.6(a)); 3) Partition into n sections for both training

and testing sets accordingly (Figure 4.6(b)); 4) Apply machine learning classifier (for

example, k-NN) to each section ((Figure 4.6(c)); 5) A majority vote will be performed

for the predictions from the different sections (Figure 4.6(d)); 6) Repeat to do 10-fold
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Figure 4.6: Overview of the sectioning algorithm.

cross validation.

We detail each step next.

1) Dataset: As mentioned before, we randomly chose n = 100 websites and

k = 40 instances per website from the RND-WWW dataset and CUMUL features

from [61]. Our first step is to split instances of each website into training and testing

set under a 10-fold cross validation. 10% of instances are in testing set, the rest are

in the training set. This means that 36 of 40 instances will be treated as training

set data for each website. We repeat each experiment 10 times, each time choosing a

random 36 instances for training.

2) Overlapped traces simulation: An overlapping visit means visiting one

website while visiting another website, so that it is hard to tell which website the

packet trace belongs to. As Figure 4.3 shows, website B has an overlap at the be-

ginning with website A and website A has an overlap at the end with website B. We

attempt to predict both websites using the sectioning algorithm. Wang’s work [63]

showed that it’s possible to find the split point which is the end of website A and the

start of website B in overlapped traces. We will outline our improved algorithm in

Section 4.3.5. Figure 4.7 shows that for our simulation, we insert-merge packets to

the beginning of a website trace when predicting website B, and insert-merge pack-

ets to the end of a website trace when predicting website A. To simulate overlapped

traffic traces, we add packets from one traffic trace (instance) of another website A
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to the beginning of website B or vice versa. This is not a prepend method, but in-

stead a merging is performed. Each instance contains packets’ sizes along with the

time stamp for each packet. We take the last few packets of website A and reset the

timestamp of that first packet to be zero so that the last few packets of website A

are merged into the beginning of website B. We also simulated different overlapping

fractions from 5% to 20%; this means we obtained the last 5% of packets from website

A’s network trace and merged with the beginning of the trace for website B. Also, we

do the same procedure to the end of the trace for website A.

As an example of inserting A to the beginning of B, all packets are of the format

< time >:< packetsize >. Let’s say the last two packets of website A are 2045 : 1040

and 2100 : 500 and the first two packets of website B are 50 : 412 and 70 : 250.

Resetting the timestamp of the first packet from website A to zero, the packets are

then 0 : 1040 and 55 : 500. Merging both set of packets together produces a new

network trace with packets 0 : 1040, 50 : 412, 55 : 500, and 70 : 250.

Figure 4.7: Simulate overlapping: add packets to the beginning of trace.

3) Sectioning: We emphasize that the training sets are the original traces.

Only the testing datasets are “overlapped”. We cross-validated the training set to

obtain a reasonable model. Every trace, in both training and testing sets, will be

partitioned into n sections, where n = 1, 4, 5, 8, 10. Each section is then parsed using

the CUMUL features, similar to [61].

4) Run training/testing: After we have each trace split into n sections,

90% of instances with same section number will be used as the training set. We

test the trained classifier on the remaining 10% of instances with the same section
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number. For classifier algorithm, we use the k-nearest neighbor (k-NN) algorithm.

Since each section is trained and tested independently of other sections, the result

is n predictions for the n sections. The n predictions can be the same website or

different websites. Figure 4.5 shows this procedure; in the figure, n = 5 sections, thus

there are 5 prediction sets accordingly.

5) Perform majority voting: Finally, we perform a majority voting on pre-

dictions obtained from different sections, to get a final prediction of which website

the trace belongs to.

4.3.4 Results

a) Sectioning by number of packets: Figure 4.8 and Figure 4.9 show the

accuracy result in correctly predicting websites A and B, when using sectioning by

number of packets. The % of overlapping packets and the number of sections are also

varied in the figures. Figure 4.8 shows the prediction accuracy for website A. With

the base case (1 section), the accuracy is comparable with the no overlap case (89%).

Sectioning by number of packets has a slightly decrease from 87.61% to 77.13% when

the number of sections is 4 and 5% overlap. From Figure 4.9, it can be seen that even

with 5% overlapping packets, the prediction accuracy for website B with 1 section is

22.80%. When the number of sections increases to 4, the accuracy also increases to

64.95%. This indicates that sectioning helps in mitigating the impact of the overlap.

Increasing the number of sections further from 4 to 10 slightly increases the prediction

accuracy and peaks at 67.92% with 8 sections. As the % of overlap increases from 5%

to 20%, the accuracy decreases as expected. When there is 20% overlapping packets,

the accuracy for 1 section decreases further to 15.85%. As the number of sections

is increased to 4, the accuracy is 39.06%. With 10 sections, the accuracy is 48.47%.

This is expected as the overlapping part becomes bigger, it affects more sections,

which makes prediction of the whole website harder. As shown in [73] and later in
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Figure 4.8: Prediction accuracy of website A with varying number of sections and
overlap %, using a) sectioning by number of packets.

Section 4.4, the difference in prediction accuracy in predicting websites A and B is

because the beginning of a trace is more important than the end when predicting a

website.

b) Sectioning by time duration: Figure 4.10 and Figure 4.11 show the accuracy

result in correctly predicting websites A and B when using sectioning by time dura-

tion. Figure 4.10 shows that the accuracy decreases from 83.35% with 1 section to

75.70% with 5 sections with 5% overlap. However, as the % of overlap increases to

over 10%, the accuracy with 5 sections is higher than with 1 section. For example,

when the % of overlap is 20%, the accuracy for 1 section decreases to 57.67%, and

the accuracy for 10 sections is 71.44%. This shows that unlike sectioning by number

of packets, the sectioning algorithm improves the accuracy when predicting website

A. From Figure 4.11, it can be seen that with 5% overlapping packets, the prediction

accuracy with 1 section is 26.09%. When the number of sections increases to 4, the

accuracy also increases to 68.25%. This indicates that sectioning helps in mitigat-

ing the impact of the overlap. Increasing the number of sections further from 4 to
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Figure 4.9: Prediction accuracy of website B with varying number of sections and
overlap %, using b) sectioning by number of packets.

Figure 4.10: Prediction accuracy of website A with varying number of sections and
overlap %, using b) sectioning by time duration.
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Figure 4.11: Prediction accuracy of website B with varying number of sections and
overlap %, using b) sectioning by time duration.

10 slightly increases the prediction accuracy and peaks at 70.11% with 10 sections.

As the % of overlap increases from 5% to 20%, the accuracy decreases as expected.

When there are 20% overlapping packets, the accuracy for 1 section decreases fur-

ther to 17.47%. As the number of sections is increased to 4, the accuracy is 48.58%.

With 10 sections, the accuracy is 62.59%. This result shows that sectioning by time

duration is slightly better than sectioning by number of packets, but the shape of the

graphs is similar.

Sectioning by number of packets means the number of packets is the same for

each section while sectioning by time duration means the time interval is the same but

number of packets could be different for each section. The results show that sectioning

by time duration is better than sectioning by number of packets for predicting both

websites A and B (first and second websites).
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4.3.5 Predicting Overlapping Point

Previous work [63] showed that the accuracy to find the split point in overlapped

trace is 32%. In this section, we attempt to improve the prediction accuracy on the

start and end of where the two webpages overlap.

Our method works as follows. To determine if there is an overlap, we hypothesize

that the number of packets during an overlap will be higher than when there is no

overlap, since there will be the network traffic from two webpages instead of one.

We divided the time into bins, so that we have discrete bins. For each bin, we then

counted the number of packets. If the number of packets in a bin is higher than a

threshold, we consider this as an overlap part. In all our overlapped traces, we know

the ground truth, so we can calculate the accuracy of our prediction.

We vary the size of the bin from 1 millisecond to 10 seconds. Figure 4.12 shows

the prediction accuracy for the overlap and non-overlap part when the bin size was

500 milliseconds. The accuracy is around 60% when predicting either the overlap

or no-overlap part. Increasing the bin size shifts the graph to the right. We also

considered the size of all the packets in each bin as a predictor and we obtained a

similar result.

4.3.6 Summary

We proposed a “sectioning” algorithm that can achieve better accuracy (around 70%

when predicting either the first or second website) than previous methods (57% when

predicting first website and 26% when predicting second website) when there is some

overlap of two websites. We also showed that the exact point where the overlap

starts and stops can be reasonably predicted. The overlap part can thus be effectively

ignored and an effective website fingerprinting attack performed.
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Figure 4.12: Prediction accuracy of the overlapping parts and non-overlapping parts.

4.4 Analysis of Partial Traces

4.4.1 Motivation

This section shows the impact of the possibility of partial traces (only part of the

website traffic have been captured) on website fingerprinting attacks. This could

happen when a victim visits one website and close the browser before the download

is complete or the adversary was only able to record part of the trace (either the

beginning or the end).

We assume there is only one website in the traffic trace. However, the adversary is

only able to record a fraction n of the traffic trace. When n = 100%, then this is the

assumption taken from previous work that an attacker is able to capture entire traces

for all websites. We vary n from 80% to 100% of the traffic trace from either the

beginning or the end. The adversary can observe the first n% of a website’s traffic

trace before some interference occurs, or the last n% of a website’s traffic trace.

Figure 4.13 shows the result of our experiments. When the whole trace is recorded,

67



the accuracy is at 89.9%. When 10% of the packets are missed at the end of the

trace, then the accuracy goes down to 64.1%. However, when 10% of the packets are

missed at the beginning of the trace, then the accuracy goes down to 15.05%. It can

be seen that capturing the first n% of a website’s trace is more important than the

last n%. This could be due to more outgoing requests from the client to the server

which makes fingerprinting easier and more identifiable. This result confirms that

of [73]. The figure also shows that as the percentage of the trace available decreases,

the accuracy decreases significantly.

Figure 4.13: Accuracy of website fingerprinting when observing different percentages
of network traffic traces.

4.4.2 Sectioning Algorithm on Partial Traces

Since we have shown that our sectioning algorithm can still provide a high prediction

accuracy for overlapped traces, we now apply the same algorithm to partial traces.

The hypothesis is the same: some sections will be missing, but this should not affect

the other sections. We used the sectioning algorithm by time duration as this has

68



been shown to provide a better prediction accuracy. We also used the same dataset

as before. The training datasets consist of the whole network traces. The testing

datasets consist of the remaining instances with missing packets either at the begin-

ning or at the end. For each testing dataset, we remove the first n% of packets either

from the beginning or from the end.

4.4.3 Results

Figure 4.14 and Figure 4.15 show the accuracy in correctly predicting websites based

on partial traces, when varying the % of missing packets and the number of sections.

The base case is with 1 section, which means no sectioning algorithm applied. From

Figure 4.14, it can be seen that with 5% missing packets from the beginning of a

trace, the prediction accuracy with 1 section is 20.76%. When the number of sections

increases to 4, the accuracy increases to 57.34%. This indicates that sectioning helps

in mitigating the impact of the missing packets. Increasing the number of sections

further from 4 to 10 slightly increases the prediction accuracy and peaks at 62.66%

with 8 sections. As the % of missing packets increases from 5% to 20%, the accuracy

decreases. This is expected since with more missing packets, it affects more sec-

tions, which makes prediction of the whole website harder. By using our sectioning

algorithm, the accuracy improves significantly from the base case.

Figure 4.15 shows the accuracy of correctly predicting websites based on partial

traces with packets missing from the end. When missing 5% and 10% packets from

the end of a trace, the prediction accuracy with 1 section is 79.02% and 58.80%

respectively. With 10 section, the accuracy is 64.78% and 53.92% respectively. It is

slightly lower than the base case. However, when the % of missing increases to 15%

and 20%, the accuracy with 10 sections is 42.35% and 30.61% compared to the base

case 35.92% and 19.49%.
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Figure 4.14: Prediction accuracy when varying the number of sections and the % of
missing packets from the beginning.

Figure 4.15: Prediction accuracy when varying the number of sections and the % of
missing packets from the end.
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4.4.4 Summary

We show that our “sectioning” algorithm can also be used for partial traces. It has a

better accuracy (62.66%) comparing to previous methods (20.76%) on predicting web-

sites with missing packets at the beginning. Our algorithm achieves similar accuracy

with packets missing at the end. In general, this shows that our proposed sectioning

algorithm provides a higher or similar prediction accuracy as current algorithms.

4.5 Summary

In this paper, our goal is to address the impracticalities of website fingerprinting

attacks and propose solutions to several limitations:

1. We propose a “sectioning” algorithm to improve the accuracy in website pre-

diction of two overlapping traces from 22.80% to 67.9% and partial traces from

20.76% to 62.66%.

For the future work, we will test our algorithm in the open world setting and

will consider the scenario when more than two pages are overlap. Moreover, we have

showed some promising results in predicting exactly where two webpages overlap;

we plan to investigate this further. We will also run more experiments with a more

diverse dataset.
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CHAPTER V

Conclusion and Future Work

In this dissertation, we analyze the privacy of online and offline systems by focusing on

Tor networks and smartphones. First of all, for privact analysis of the offline systems,

we design and develop an attack to accurately predict the passcode entered by a

victim on her smartphone. The attack relies on recording a video of the victim using

a common smartphone in a public environment. Our algorithm achieves an overall

accuracy of 92.5%. This result demonstrates that online shoulder-surfing attacks

on PIN-based authentication are possible. Also, these results show that choosing a

good random PIN cannot prevent this type of online attack as the algorithm can still

predict the PIN entered.

Then, we look at Tor systems and try to find its relay popularity. Our results show

that some Tor relays, subnets (either /8, /16, or /24) and ASes are more popular when

being selected as middle relays or exit relays. Our data also show that the bandwidth

of a relay does not affect its chance of being selected as a middle relay node when

a Tor client builds a circuit. However, there seems to be a correlation between a

relay’s bandwidth and its popularity as an exit relay. For future work, we plan to

explore more aspects of Tor relays in terms of popularity at the geolocation level. We

will further explore the correlation between bandwidth and popularity as a middle

relay or exit relay. Based on this result, we will also find ways to perform correlation

attacks on Tor and learn how to make the relay selection algorithm more balanced.

Finally, for website fingerprinting on anonymous networks like Tor, We propose

a “sectioning” algorithm to improve the accuracy in website prediction of two over-
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lapping traces from 22.80% to 67.9% and partial traces from 20.76% to 62.66%. As

the future work, we will test our algorithm in the open world setting and will con-

sider the scenario when more than two pages are overlap. Moreover, we have showed

some promising results in predicting exactly where two webpages overlap; we plan to

investigate this further.
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