INDIRECT EFFECT OF ENTREPRENEURS' MOTIVES AND SELF-SET GOALS ON NEW VENTURE PERFORMANCE

By

JONATHON E. BUTTON

Bachelor of Science in Business Management University of Hawaii Manoa, Hawaii 2009

Master of Science in Entrepreneurship Oklahoma State University Stillwater, Oklahoma 2014

> Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2019

INDIRECT EFFECT OF ENTREPRENEURS' MOTIVES AND SELF-SET GOALS ON NEW VENTURE PERFORMANCE

Dissertation Approved:
Dr. Robert A. Baron
Dissertation Advisor
Dr. Curt Moore
Dr. Bryan Edwards
Dr. Craig Watters

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Robert A. Baron for leading me throughout this process. He is an incredible scholar and a caring individual that I will continue to admire. Thank you for your patience and dedication with helping me achieve my self-set goals. I would also like to thank my wonderful wife Quinn Elise Button. I couldn't have completed this journey without her love and support as we pursued through this journey together, hand in hand. I look forward to beginning the next phase of our adventure together.

Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University.

Name: JONATHON EDWARD BUTTON

Date of Degree: JULY, 2019

Title of Study: INDIRECT EFFECT OF ENTREPRNEURS' MOTIVES AND SELF-SET

GOALS ON NEW VENTURE PERFORMANCE

Major Field: BUSINESS ADMINISTRATION

Abstract: There are numerous reasons why individuals choose to start their own company; and these motives vary in strength depending on the entrepreneur. These entrepreneurial motives influence the decision making and behavior of entrepreneurs. I draw upon extant research to examine the relationship of entrepreneurs' motives and self-set goals and their influence on the new venture performance. Specifically, we examine how the strength of entrepreneurs motives positively influences the frequency with which they evaluate goal progress relevant to these motives. Furthermore, I investigate the influence that entrepreneurs' evaluation of goal progress has on their positive state affect and authentic pride, and how these individual-level variables are related to new venture performance. Results support these relationships—that is, entrepreneurial motives are positively related to evaluations of goal progress, and perceived goal progress positively influences both positive affect and authentic pride. Furthermore, authentic pride was found to be positively related to new venture performance. This study helps us understand the relationships between important individual-level variables, such as goal setting and firm level performance. Such relationships are not direct and the present research helps identify some of the mediating variables. Given the substantial volume of research that underscores the importance of self-set goals in a wide range of situations, this study helps link goal setting theory more closely to entrepreneurship research.

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
Contributions	2
II. LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT	4
Motives	4
Entrepreneurial Motives	4
Goal Setting Theory	6
Goal Hierarchy Model	7
Evaluation of Progress and Positive Affect	12
Evaluation of Progress and Authentic Pride	14
Positive Affect and Venture Performance	15
Authentic Pride and Venture Performance	16
III. METHODOLOGY	19
Participants	19
Measures	21
Motive strength	21
Evaluations of self-set goal progress.	21

Positive state affect.	22
Authentic state pride.	22
Venture performance.	23
Control variables.	23
IV. RESULTS	25
V. DISCUSSION AND CONCLUSIONS	29
Contributions to Entrepreneurship Theory	30
Contributions to Practice	32
Limitations	34
Opportunities for Future Research	35
Conclusion	37
REFERENCES	39
APPENDICES	54

LIST OF TABLES

Table	Page
Table 1. Regression Results for Entrepreneurial Motives and Self-Set Goals	61
Table 2. Summary of Hypothesized Relationships	69
Table 3. Regression Results for Hypotheses 1-3	72
Table 4. Structural Equation Modeling Results for Hypothesis 1	74
Table 5. Regression Results for for Hypothesis 1 Using Listwise Deletion	79
Table 6. Regression Results with One Missing Value for Financial Success and Roles	82
Table 7. Regression Results for Hypothesis 2 by Motive Category on Positive Affect	84
Table 8. Regression Results for Hypothesis 2 by Specific Goal on Positive Affect	88
Table 9. Regression Results for Hypothesis 3 by Motive Category and Authentic Pride	96
Table 10. Regression Results for Hypothesis 3 by Specific Goal on Authentic Pride	100
Table 11. Regression Results for Hypothesis 4 and Hypothesis 5	108
Table 12. Descriptive Statistics and Variable Correlations	112

LIST OF FIGURES

Figure	Page
Fig. 1. A Hierarchy of Goals Model	8
Fig. 2. Goal Hierarchal Structure for an Entrepreneur with Independence as the Motive	9
Fig. 3. Illustration of Conceptual Model.	18

CHAPTER I

INTRODUCTION

There is a heightened focus among researchers on entrepreneurial motives, the reasons why individuals choose to launch a business (Carsrud & Brännback, 2011; Segal, Borgia, & Schoenfeld, 2005; Carter, Gartner, Shaver, & Gatewood, 2003). Conventionally, the reasons for starting a business have been considered to be economic (Schumpeter, 1934; Baumol, 1991). Though wealth has often been emphasized as a key or central motive, for entrepreneurs, there is much diversity when it comes to what motivates individuals to pursue entrepreneurship (Miller, Grimes, McMullen, & Vogus, 2012). The desires to gain recognition from others, self fulfillment, and independence have been identified in business management and entrepreneurship as potential motives (Mueller & Thomas, 2001; Stewart & Roth, 2007). Additionally, entrepreneurs may have chosen to launch their business to develop an innovative solution to a common problem, find meaningful work, or pursue a newly recognized opportunity. Taking into consideration that there are various reasons in which individuals pursue entrepreneurship, researchers have investigated how and what entrepreneurial motives influence.

Researchers have demonstrated the importance of investigating entrepreneurs' motivation in order to understand aspects of their decision making (i.e., their cognitive processes) and their ability to achieve crucial tasks, such as acquiring human and financial resources (Arias & Pena,

2010; Segal, Borgia, & Schoenfeld, 2005). Moreover, it has been argued that without addressing entrepreneurs' motivation, individual level theories are incomplete (McMullen & Shepherd, 2006) because entrepreneurial motivation influences entrepreneurs' behavior (Carsrud & Brannback, 2011; Bird, 1988). In essence, entrepreneurial motives play a major role in influencing entrepreneurs' behavior and decision making. However, there is a lack of consensus by researchers on how entrepreneurs' motives affect firm level outcomes. In particular, there is a scarcity of research connecting individual motivations to firm performance (Kuratko, Hornsby & Naffziger, 1997). More interestingly we have little understanding of the mechanisms by which entrepreneurs' motives influences firm performance. Conclusions on this topic have varied, as a divergent range of findings suggest the effects of various entrepreneurial motives influence firm performance differently.

Contributions

The purpose of this research is to bridge this gap and shed new light on the relationship between motives and firm performance through the process of goal setting. I suggest that a specific motive is not the variable directly influencing the performance of an entrepreneur's business. Rather, there are specific individual level factors that mediate between entrepreneurial motives to firm level performance. Entrepreneurs' evaluation of their progress towards the relevant goals is influenced by their motives. Additionally, entrepreneurs' self-evaluation of goal performance relative to their expectations may have an influence on their affect, the way in which they experience emotions and feelings (Weiss & Cropanzano, 1996).

Positive affect has been found to be beneficial to entrepreneurs' performance (Baron, 2008). Furthermore, entrepreneurs' evaluation of their goal progress may induce pride which is an emotional reaction to one self (Singer & Salovey, 1999). Specifically, pride that is authentic,

resulting from goal attainment or accomplishments is advantageous to future achievements (Tracy & Robins, 2007). Therefore, positive affect and authentic pride may facilitate the influence of the entrepreneurs' motives to their firms' performance. In summary, this research is designed to increase knowledge and understanding of the indirect link between entrepreneurs' motivations and self-set goals to firm performance, which is mediated by self evaluations of goal progress and positive affect and authentic pride.

This investigation is the first study to examine empirically the relationship and influence of these specific variables. Goal setting theory provides a valuable framework to examine how entrepreneurs' motives influence their goals and how progress toward them is assessed. The theory argues that the process of setting goals is linked to task performance (Locke & Bryan, 1969). Furthermore, through investigating how entrepreneurs' self-evaluation of goal progress influences new ventures performance through both positive affect and authentic pride, this study aims to answer questions regarding the role in which entrepreneurial motives and self-set goals play within the entrepreneurial process.

Generally speaking, this investigation attempts to contribute to the understanding of this process by empirically examining (1) the relationship of entrepreneurs' motives to their self-set goals; (2) the relationships between self-set goals, specifically, entrepreneurs' self-evaluation of progress toward goal attainment, and their positive affect and authentic pride; (3) the relationship between these variables and new venture performance.

CHAPTER II

LITERATURE REVIEW AND HYPOTHESIS DEVELOPMENT

Motives

Motives are an internal process that energizes and guide behavior, generate persistence and influences cognitive processes (De Charms, 2013; Kleinginna & Kleinginna, 1981). In essence, they are the reasons in which an individual chooses to take action. Often, individuals cognitively process and evaluate possible actions to achieve their motives. By utilizing prior knowledge, reflecting on their own capabilities and assessing the actions designed to satisfy them, individuals can decide if the pursuit is worth the potential effort and reward. When individuals choose to become an entrepreneur, they too, seek to fulfill their motives. In the following discussion, I will describe the primary motives expressed by entrepreneurs in order to provide an overview of the reasons why individuals choose to participate in entrepreneurship.

Entrepreneurial Motives

The list of primary motives has been comprised from numerous studies that investigated the various reasons why individuals pursue entrepreneurship. The principal motives entrepreneurs describe include financial success, independence, roles (i.e. role following), innovation, self-realization, recognition, and prosocial (Carter et al., 2003). The first motive,

financial success, emphasized by Schumpeter (1934) and Kirzner (1973) implies that entrepreneurs primarily seek profits and wealth creation. As such, entrepreneurs can often be categorized by their financial motivations, desiring to create profitable operations resulting in private gains; in short, they are motived by financial success (Austin, Stevenson, & Wei-Skillern, 2006). But, as noted above this is only the first of many potential motive described by entrepreneurs.

Empirical evidence has shown that another prominent motive for entrepreneurs is independence or a sense of autonomy, the pursuit of feeling in control of one's decisions (Parker, 2014; Rindova, Barry, & Ketchen, 2009; Van Gelderen, Shiokova, Shchegolev, & Beliaeva, 2017). Research indicates that a large majority of founders prefer their own time and decide on specific strategies for building their companies (Van Gelderen & Jansen, 2006). Additionally, independence is associated with the typology of lifestyle entrepreneurs. This is defined as individuals that choose to utilize entrepreneurship as the mechanism for them to attain the freedom to pursue their desired lifestyle (Ateljevic & Doorne, 2000).

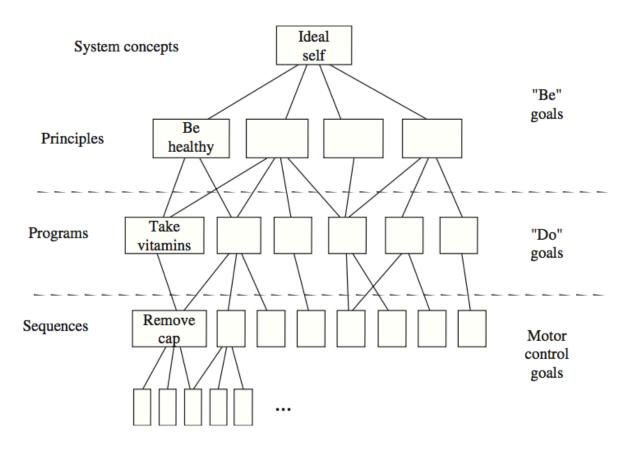
Another primary motive for entrepreneurs is to fulfill a specific role (Bosma, Hessels, Schutjens, Van Praag, & Verheul, 2012). The motive category of roles (role playing) may include a desire to imitate the actions of a person they admire or carry on a family business tradition. Previous research indicates that individuals often choose to engage in entrepreneurial activity to meet the expectations of family members (Aldrich & Cliff, 2003; Memili, Eddleston, Kellermanns, Zellweger, & Barnett, 2010). The entrepreneurial motive of innovation refers to entrepreneurs' intent to develop something new. Often entrepreneurship is pursued to develop an innovative idea (Drucker, 2014; Schumpeter, 2017). Alternatively, some entrepreneurs may have

launched their business in pursuit of self realization. This motive is associated with the desire for self-fulfillment (Kolvereid & Isaksen, 2006).

Another primary motive for entrepreneurs is recognition. The desire to gain approval, status and public recognition from those in the community including friends and family is the foundation for this motive (Carter et al., 2003). Lastly, the entrepreneurial motive prosocial refers to entrepreneurs that are motivated by a desire to help others by solving important social problems through their entrepreneurial activities (Austin et al., 2006). Entrepreneurs that are primarily prosocial, motivated to help others and create opportunities for the less fortunate, are classified as social entrepreneurs. Social entrepreneurs seek to create, provide and sustain social value for the public good by stimulating social change or fulfilling social needs (Mair & Marti, 2006; Dees, 1998). Like all individuals, entrepreneurs' motives range in strength from low to high. The higher the strength of the motive the higher likelihood that the individual will be energized and or guided to align their behavior with that motive. This alignment is often bridged through the process of setting goals (Bagozzi, Bergami, & Leone, 2003).

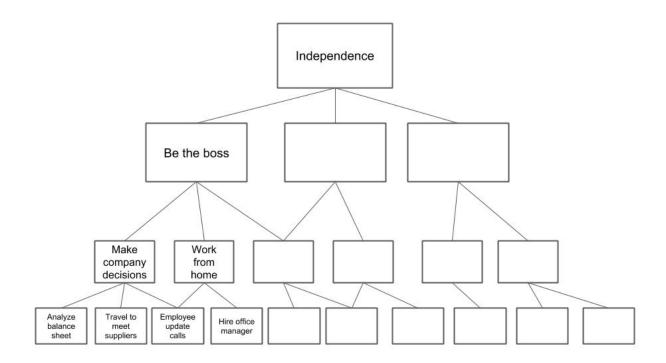
Goal Setting Theory

Goals are mental representations of the desired future (Perwin, 2003). Goal setting theory provides a lens to further understand how individuals set goals in pursuit of their motive. Goal setting theory was originally developed to investigate the influence of motivation in organizational settings (Locke & Latham, 2002). Several fields including strategic management, organizational behavior, human resource management and industrial organizational psychology tested the validity of goal setting in hundreds of studies (Hansen & Wernerfelt, 1989; Locke & Latham, 2002; Tubbs & Ekeberg, 1991). Findings have indicated that individual performance is positively influenced by setting specific and difficult goals (Locke & Latham, 1990).


Goal setting theory has since been expanded to many areas, including the field of entrepreneurship. Entrepreneurship has drawn on goal setting theory because numerous studies indicated that setting goals do enhance performance, at least under certain conditions, and it was reasoned that these effects would occur among entrepreneurs. Research on such effects has focused on how the characteristics of a goal influence performance (Baron, Mueller, & Wolfe, 2016; Baum, Locke, & Smith, 2001; Baum & Locke, 2004). Goal setting is an especially important area for research in the field of entrepreneurship, since entrepreneurs set their own goals. Unlike assigned goals, self-set goals are established in pursuit of individuals' motives, rather than those of others (e.g., supervisors, coaches, etc.). A key purpose of setting goals is to make progress toward the motive from which they derive. Therefore, motives are associated with specific self-set goals (Emmons, 1989). One approach to understanding this relationship utilizes cognitive categorization (Cropanzano, James, & Citera, 1993; Day & Unsworth, 2013).

Goal Hierarchy Model

Cognitive categories are representations of knowledge (Barsalou, 1991). Motives and goals have been defined by Carver and Scheir (1998) as cognitive categories in a hierarchical model (see Figure 1). The highest level is the motive or "system concept." The top level motive addresses the reason *why* an individual desires to achieve the lower level goals below it (Bagozzi & Dholakia, 1999). For example, an entrepreneur may set a goal of increasing their annual income to \$100,000 if they are motivated by financial success.


As shown in Figure 1, goals can be established within three levels (Carver & Scheir, 1998; Kruglanski, Shah, Fishbach, & Friedman, 2018). The level directly below motives is "principles" which are typically expressed as "be goals" (i.e. be healthy). "Programs" or "do goals" are established at the next level to address the question "what do I aim to achieve?"

Directly below "programs" are "sequences" or "motor control goals" which represent specific actions that address the question "how can I achieve one or more higher-level goals?" The lower level goals within the hierarchy are more specific, short-term, numerous and substitutable (Duckworth & Gross, 2014). By pursuing the goals linked to a given motive, the behavior or action undertaken is in alignment with the motive(s) above it. The hierarchical relationships between a motive (system concept) and the goals it fosters are shown in Figure 1.

Fig. 1. A hierarchy of goals model from Rasmussen et al., (2006) Adapted from Carver & Scheier (1998)

This figure can also illustrate the relationship between entrepreneurial motives and their respective self-set goals. For example, an entrepreneur motivated by independence may set a goal of working from home three out of five work days. In order to attain this goal, the entrepreneur might establish subordinate goals such as hiring a full-time office manager. These subordinate goals can be further extended by specific procedural actions or tasks required to attain the higher-level goal (Carver & Scheir, 1998) as depicted by Figure 2.

Fig. 2. Example of goal hierarchal structure for an entrepreneur with independence as the motive

In addition to self-set goals, individuals can be assigned goals and therefore, the motive or rationale for the goal is not always explicit. Assigned goals can only be connected to motives if the individual recognizes the purpose of the goal and then connects their personal motive with

the goal (Locke, Latham, & Erez, 1988). Though entrepreneurs can also be assigned goals by investors, less than three percent of firms are financed by angel investors and venture capitalists (Robb & Robinson, 2014). Therefore, the majority of entrepreneurs set their own goals based on their personal motives. Individuals including entrepreneurs, may have multiple motives and therefore multiple goal hierarchies (Duckworth & Gross, 2014; Wiklund, Wright, & Zahra, 2019).

Within each hierarchical structure, the strength of the motive guides the value associated with the related goals (Emmons, 1996; Wicker, Lambert, Richardson, & Kahler, 1984). The value of a goal can vary in importance. If the goal is directly connected to a motive, the goal is higher within the hierarchy. Often goals set at the higher levels of the hierarchy (e.g. be goals and, do goals) carry greater value (Duckworth & Gross, 2014). For example, if independence is an important motive for an entrepreneur, he or she may set and pursue goals based on how valuable those goals are in relation to that motive. The entrepreneur may value a "be" goal of self-sufficiency and set "do" goals such as creating one's own schedule and/or refusing to accept investors financial support.

The value or importance of the goal, which partially influences goal commitment is a significant factor of setting goals (Locke, 1996; Locke & Latham 2013). Specifically, the level of importance or value associated with a goal is considered to have an impact with regards to how often individuals evaluate their own performance in terms of whether or not they have achieved, or made progress toward achieving, their goal (Bandura, 1991). Self-regulation theory refers to the processes through which individuals set goals, monitor progress toward those goals, adjust their behavior and goals in response to progress (Berk, 2013; Latham & Locke, 1991; Zimmerman, 2000).

If the motive strength is high, then the corresponding goals are important and valuable, and therefore self-monitoring goal progress may be pursued in order to ensure that he or she is staying on track and meeting their own expectations (Carver & Scheier, 2004). The attainment of the goals below the related motive can indicate to the individual the degree of progress that has been made (Carver & Scheier, 1998; Gutman, 1997). Therefore, entrepreneurs' evaluation of goal progress can be based on their assessment of attainment of all relevant goals. For example, an entrepreneur with the motive of innovation, to develop an idea for a product, may set the goal of registering their invention for a patent. In order to attain that goal, the entrepreneur must achieve their subordinate goals associated with attaining a patent which include, but are not limited to, completing a thorough patent search to ensure the invention is original and hiring a patent attorney in order to file a patent application (Chirico et al., 2018; Hsu & Ziedonis, 2008). Upon completing all of the associated subordinate goals, the higher level goal may be perceived as attained.

If the motive is high in strength, an individual may consider making alterations to relevant subset goals to ensure that the higher level goal is achieved (Elliot & Thrash, 2001). These alterations to subset goals are modifications to ones' strategy and may result in a change of direction with regards to effort. The changes are essentially the adjustments of subordinate goals that the individual perceives are necessary to achieve the related higher level goal. For example, entrepreneurs motivated to help others may have the goal of utilizing their profits from their business to feed the homeless in their community.

Entrepreneurs may adjust their goals downward or make modifications to them to fit a strategy she or he believes is most helpful to achieve the higher level goal. This may be increasing their profit margins from their paying customers to increase the amount of meals that

they can provide to the homeless. After the entrepreneur evaluates their alternative options, they can choose the strategy they believe is the best fit to attain the primary goal.

By evaluating the progress toward goals more often, individuals can quickly react to progress not meeting expectations. Therefore, the goals that are associated with motives of high strength will be evaluated more frequently to ensure that the required adjustments are made in a timely manner. For example, if an entrepreneur evaluates the motive of recognition as high strength, the goal of getting positive media attention is likely to be highly valued. Then throughout the time period of establishing the goal, she or he will be checking media platforms frequently in order to make any required changes as quickly as is feasible. These observations suggest that motive strength has an influence on the frequency with which an entrepreneur evaluates their progress of the relevant goals. More formally, the first hypothesis is

Hypothesis 1: There is a positive relationship between the strength of entrepreneurs' motives and the frequency with which they evaluate progress towards the goals they set relevant to these motives.

Evaluation of Progress and Positive Affect

Affect, feelings, moods and emotions experienced by individuals, have received considerable attention from entrepreneurship researchers (Baron, 2008; Shepherd, 2015; Davis, Hmieleski, Webb, & Coombs, 2017; Cardon, Post, & Forster, 2017). Furthermore, some have even argued that entrepreneurship cannot be fully understood without taking the entrepreneur's affect into consideration (Cardon, Wincent, Singh, & Drnovsek, 2009; Foo, Uy, & Murnieks, 2015). Research support this idea as well, considering the interrelationship that exists between

cognition and affect (Damasio, 1999; Phelps, 2006). To further comprehend the role of affect on the entrepreneur, it is important to understand the dimensions of affect.

Affect has two relatively independent dimensions; negative affect and positive affect. Negative affect refers to the "distress and unpleasurable engagement" and positive affect reflects the extent to which a person feels, "active and alert" (Watson, Clark, & Tellegen, 1988). Though affect may be considered as a multidimensional construct, such that an individual can feel high or low in both positive and negative affect at the same time this research focuses attention on positive affect for several reasons. First, studies have demonstrated that though an individual can feel both happy and sad at the same time, in most situations, positive and negative affect tend to be distinct in that they each can range from low to high (Baron, Hmieleski, & Henry, 2012; Larsen, McGraw & Cacioppo, 2001). Additionally, positive affect generates enthusiasm and alertness which are feelings that may play beneficial roles in many aspects of the entrepreneurial process including, discovering potentially valuable opportunities and acquiring resources from investors (Baron, 2008; Cardon et al., 2012)

A large volume of research in psychology and entrepreneurship recognizes a distinction between state and trait affect. Trait affect refers to the emotions that individuals experience internally based on their personal characteristics. State affect, on the other hand, describes the emotions individuals experience from a specific event. These feelings are carried by the individual from situation to situation over periods of time. A disagreement with cofounders and attaining a business loan are all examples of events that can have an influence on entrepreneurs' state affect.

Affective events theory is a model that further explains the influence of work events on state affect (Weiss & Cropanzano, 1996). As entrepreneur's attempt to attain their self-set goals,

they experience various levels of positive affect based on how they evaluate their own progress towards these goals (Chang, Ferris, Johnson, Rosen, & Tan, 2012). This assessment takes into account not only the desired outcome but also the expectation of the entrepreneur with regards to the goal. An expectation is a prediction of future outcome. The difference in expectation and actual performance, if recognized, can influence entrepreneurs' positive affect and feelings of satisfaction. Specifically, I propose the following hypothesis.

Hypothesis 2: There is a positive relationship between entrepreneurs' evaluations of progress toward self-set goals and positive affect

Evaluation of Progress and Authentic Pride

Pride is a self-conscious emotion that may be experienced at the point in which an individual becomes aware that they have "lived up" to some ideal representation of themselves (Carver, Sinclair, & Johnson, 2010). Considering that individuals' evaluations of their progress can be assessed based on their idealized outcome, persons, who perceive their progress as meeting or exceeding their expectations may experience feelings of authentic pride. Authentic pride—is pride based on actual performance (Tracy & Robins, 2007). Conversely, hubristic pride is pride based on overinflated views by individuals of their own traits and contributions to personal success. Similar to affect, pride can be measured as a stable trait or a temporary state. Researchers have found that authentic pride is positively associated with successful social relationships, performance on many tasks, and mental health (Tracy, Cheng, Robins, & Trzesniewski, 2009). Alternatively, hubris pride was most related to narcissism or self aggrandizement, aggression and misbehavior.

Though hubristic pride has effects on entrepreneurs—primarily negative effects that may interfere with firm performance, (Haynes, Hitt, & Campbell, 2015) the present research

specifically focuses on authentic pride because authentic pride reflects actual performance, including progress toward self-set goals, whereas hubristic pride is largely independent of actual performance.

In summary, because authentic pride is associated with actual accomplishments rather than an inflated view of an individual's talents, "special characteristics," and views of achievements, I suggest the following hypothesis.

Hypothesis 3: There is a positive relationship between entrepreneurs' evaluations of progress toward self-set goals and authentic pride

Positive Affect and Venture Performance

A review conducted by Lyubomirsky, King and Diener (2005) found positive affect to be positively related to a wide range of outcomes: relationships, income, work performance, and personal health. Importantly, the review indicated that these outcomes were related to ongoing, long-term processes.

Considering the substantial evidence for the benefits of positive affect for individuals, researchers in the field of entrepreneurship have investigated how affect influences key aspects of the entrepreneurial process (Baron, 2008; Kato & Wiklund, 2011). Findings suggest that up to moderately high levels of dispositional positive affect, entrepreneurs gain numerous benefits. including effectiveness in performing cognitive tasks, accuracy of their perceptions, higher task motivation and the capacity to engage in self-regulation (Baron et al., 2012). Moreover, recent studies suggest that these and other mechanisms, which are influenced by positive affect, are also likely to impact measures of firm level performance (Arora, Haynie, & Laurence, 2013; Baron & Tang, 2011). This idea was further supported by an empirical study that found affect to be a

predictor of venture effort (Foo, Uy, & Baron, 2009) and in many, but not all situations, increased effort, can lead to enhanced performance (Brinckmann, Grichnik, & Kapsa, 2010). Thus I offer the following hypothesis:

Hypothesis 4: There is a positive relationship between positive affect and venture performance

Authentic Pride and Venture Performance

In order to achieve any task, individuals must have a desire to do so (Garris, Ahlers, & Driskell, 2002; Korman, 1970). For entrepreneurs failing to achieve their goals, can lead to significant consequences including decreasing the survivability of their venture. Researchers have found that those who experience high levels of authentic pride gain a desire and willingness to achieve, which has a positive influence on their task performance (Herrald & Tomaka, 2002; Williams & DeSteno, 2008).

Additionally, authentic pride is a self conscious feeling that can advance the pursuit of valued goal relevant behavior (Cheng, Tracy & Henrich, 2010). Therefore, individuals that experience high levels of authentic pride tend to experience higher levels of self-control (Carver et al., 2010). Entrepreneurs, similar to all individuals, benefit greatly from high levels of self-control. For example, entrepreneurs with self-control, set goals that are not overly difficult and unattainable, resulting in a higher levels of company performance (Baron et al., 2016).

In addition to self-control, the willingness to view others as contributors to success has also been found to be positively influenced by authentic pride (Cheng et al., 2010).

Entrepreneurs are rooted in a social environment and often, must work closely with others to attain success. Thus, sharing the credit for success with other persons who have contributed to

such success, is an important action, one that individuals experiencing authentic pride are more likely to demonstrate than ones experiencing hubristic (Steier & Greenwood, 2000).

Additionally, entrepreneurs can include customers as contributors to success which has been found to be beneficial by increasing customers' loyalty to the company (Griffin & Herres, 2002). In summary, entrepreneurs with high levels of authentic pride may have increased performance of future individual tasks and collaborative endeavors that can influence the new ventures performance. Considering the above reasoning, I offer the following hypothesis.

Hypothesis 5: There is a positive relationship between authentic pride and venture performance

The figure below presents the conceptual model developed for this study.

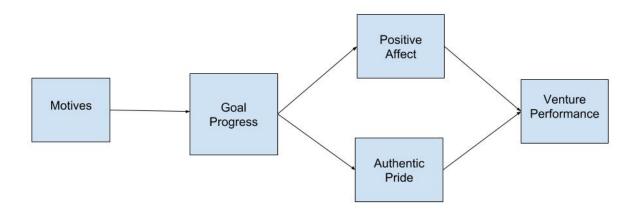


Fig. 3. Illustration of the Conceptual Model developed and investigated in the present research

CHAPTER III

METHODOLOGY

Participants

The sample for this study are entrepreneurs. Consistent with previous literature (Baron & Tang, 2011), entrepreneurs were identified as founders or owners who have participated in the startup process of their business. The online survey was distributed to a random sample of entrepreneurs that meet this definition. Individuals were primarily recruited through university affiliated entrepreneurship programs. These programs include shared co-working offices defined as incubators, hatcheries and accelerator programs. In addition, short term federally funded entrepreneurship exchange programs were utilized to request current and prior participants complete the survey to provide valuable insight to entrepreneurship research. This includes the Mandela fellowship program, the professional fellowship program and the veterans in entrepreneurship program. Contact information for additional entrepreneurs was obtained through face to face interaction at numerous entrepreneurship events within Oklahoma and Texas including One Million Cups Meetings and the South by South West Conference.

The majority of entrepreneurs were contacted via email, and social media platforms including Facebook and LinkedIn with a request to fill out a survey via a link for them to follow. In total 655 customized emails and messages were sent out to qualifying entrepreneurs in various

countries with the exclusion of those living in a country that resides in the European union under the general data protection regulation (GDPR). To encourage a high response rate, a recruitment letter was included to share the value of the research by stating that this project is designed to obtain information on several factors that together might influence entrepreneurs' success.

As such, the results indicated that 381 individuals clicked the link and started the survey. 331 of these respondents completed the survey to the end, but with varying degrees of missing data. This resulted in a response rate of 50.5%. The majority of the respondents were male 67%. The participants represent 31 different countries with the large majority from the United States (259). Of those participants located in the United States, 27 states were represented with the majority of those participants taking the survey in the state of Oklahoma (125). The ages ranged from 74 to 18 years old with the average age of 35 years (SD = 12.95). The highest level of education completed by the participants was as follows: 3% high school, 14% some college, 6% associates degree, 34% bachelor's degree, 33% master's degree, 6% Ph.D., J.D (or other terminal degree).

The first phase of the study included demographic questions and ensure that the individuals identify themselves as an entrepreneur The initial questions stated "have you ever been actively engaged in starting a new company" and "have you ever considered yourself an entrepreneur." Eight individuals marked no for both questions, and therefore were eliminated from the total sample as aligned with prior research ensuring the sample only included individuals that self identify as entrepreneurs and/or have launched a venture (Shir, Nikolaev, & Wincent, 2018) leaving a total of 323 participants. The participants ranged from 1 to 11 years of experience running their own business with a mean of 4.67 (SD = 2.75). Finally, the quantity of

business started by the participant that are still in operation ranged from 1 to 8 with an average of 2.24 (SD = 1.11). All of the hypotheses were tested utilizing ordinary least squares regression.

Measures

Motive strength.

The measure for motive strength was primarily based on the career reasons for venturing scale developed by Carter et al. (2003). The instrument utilized in the Panel Study of Entrepreneurial Dynamics (PSED) includes 18 items that are categorized into six different motives: self-realization, financial success, roles, innovation, recognition and independence. In the second study, PSED II four of the items were dropped leaving 14 items to represent the six categories. Utilizing the PSED II an additional category 'Prosocial Motivation' developed by Renko (2013) was included. This brings the total item number to 16 items representing seven different categories of entrepreneurial motives. The directions stated 'People have many reasons for becoming entrepreneurs and starting their own companies. Using the scale below, please indicate to what extent each of the following is a reason why you established your business?' Participants were asked to answer each item on a five-point scale (1 = Not a reason; 5 = A very strong reason).

Evaluations of self-set goal progress.

Frequency of evaluating self-set goal progress was adapted from Schunk and Ertmer (1999), frequency of performing self-regulatory activity. Initially, participants were asked if they set personal goals with respect to each of the 16 items representing the entrepreneurial motives.

The items were randomized to decrease common method bias (Podsakoff, MacKenzie, Lee, &

Podsakoff, 2003). If the individual marked yes, they were asked to indicate how often they evaluated their progress to each goal identified on the previous scale. A five-point Likert scale was used for these ratings (1 = Almost never; 2 = At least once a year; 3 = At least once a quarter; 4 = At least once a month; 5 = At least once a week). Perceived progress in goal achievement with regards to the advancement dimension (Brunstein, 1993) was adapted for this study. Participants were asked to indicate on a five-point Likert scale: "To what extent have you made progress toward achieving goals relevant' to each of their chosen 16 items representing each self set goal; e.g. to what extent have you made progress toward achieving goals relevant to earning a larger personal income" (1 = Progress was below my expectations; 5 = Progress was above my expectations). Participants will only be asked to evaluate their progress if they have previously indicated that they have set goals in order to achieve each item.

Positive state affect.

Positive affect was adapted using the Positive and Negative Affect Schedule (PANAS) developed by Watson, Clark and Tellegen (1988). Participants were asked to indicate to what extent they have felt this way about the progress of their business by referring to a list of adjectives representing positive affect. Inspired, proud and strong are three of the ten positive affect items that were assessed on a five-point Likert scale (1 = Very slightly or not at all; 5 = Extremely).

Authentic state pride.

The Authentic Pride Scale developed and validated by Tracy and Robins (2007) was adapted to measure authentic state pride. The scale includes a total of seven phrases and

adjectives that reflect authentic pride such as "like I have self worth" and "accomplished." Using a five-point Likert scale (1 = Not at all; 5 = Extremely), participants were asked to indicate the extent to which they felt this way about the progress of their business.

Venture performance.

The measure for venture performance is based on a comparison of entrepreneurs' performance to their competitors. Adapted from Stam and Elfring (2008), participants are asked to rate their venture performance on a five-point Likert scale (1 = Much worse than competitors; 5 = Much better than competitors). The different dimensions that were evaluated includes growth in sales, speed in developing new products and services, innovation in products and services, customer satisfaction, gross profit and quality of products and services. Several studies have found these dimensions to be correlated with actual financial performance (Baron et al., 2016; Ling & Kellermanns, 2010; Stam & Elfring, 2008).

Control variables.

Nine control variables were included in this study. The demographic control variables include age, gender and education level. Additionally, the entrepreneurs identified the amount of businesses he or she has started, the amount of businesses that are still in operation and the total amount of years of experience they have with running a business. Goal difficulty and self-control were also included as control variables considering their influence within goal setting theory for entrepreneurs (Locke & Latham, 2002; Van Gelderen, Kautonen, & Fink, 2015; Baron et al., 2016). Considering a person's confidence in their ability to perform task is associated with goal setting and influential on new venture performance (Cassar & Friedman, 2009; Hmieleski &

Corbett, 2008) the cognitive construct of self-efficacy was also included as an additional control variable.

Goal difficulty was assessed for every goal that the participant set out of the possible 16 entrepreneurial motive items. Adapted from Barrick, Mount, and Strauss (1993) scale of goal difficulty, participants were asked to indicate how difficult they perceived it to be to reach each goals that they set on a five-point Likert scale (1 = Very easy to achieve; 5 = Nearly impossible or very difficult to achieve).

The degree of each participants' self-efficacy was also captured using the general self-efficacy scale (Schwarzer, Bäßler, Kwiatek, Schröder, & Zhang, 1997). Participants were asked: "How true are the following statements, to you?" There were a total of 10 statements, such as: "I can always manage to solve difficult problems if I try hard enough." Participants marked their answer using a four-point Likert scale (1 = Not at all true; 4 = Exactly true).

Finally, the brief self-control scale (BSCS; Tangney, Baumeister, & Boone, 2004) was used to assess the level of self control of each entrepreneur. The participants were asked to indicate to what extent each of the following statements describes themselves on a five-point Likert scale (1 = Not at all; 5 = Very much). Participants were presented 13 different statements including, "I am lazy" and "I refuse things that are bad for me." Nine of the items were reverse coded to further validate that respondents were providing consistent answers (Baumgartner & Steenkamp, 2001).

CHAPTER IV

RESULTS

Considering the data were collected using the same survey methodology, it is possible that common method variance is a concern. Researchers suggest utilizing the Harman's (1976) single factor analysis to ensure that a single factor does not explain the majority of the variance of the dependent variable (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Arzubiaga, Kotlar, De Massis, Maseda, & Iturralde, 2018). All of the variable items from this study were analyzed. Being that no single variable accounted for more than 50% of the total variance, common method bias is not a major issue for this study (Podsakoff & Organ, 1986; Fuller, Simmering, Atinc, Atinc, & Babin, 2016).

Ordinary least squares (OLS) regression was used to test each hypothesis. For each of the variables comprising multiple motive categories (i.e. motive strength, frequency of evaluation of goal progress, and evaluation of goal progress) the sixteen corresponding goal-specific items were aggregated to a single variable by averaging all non-missing responses.

Prior to testing the hypothesized relationships, the assumption that motive strength influences the likelihood that the entrepreneur set goals relevant to motives of high strength was tested. As shown in Table 1 entrepreneurs set goals that were relevant to all 16 of the motive items of high strength with a p level less than 0.001.

Hypothesis 1 predicted that there is a positive relationship between the strength of entrepreneurs' motives and the frequency with which they evaluate progress towards the goals

they set relevant to these motives. The summarized results for hypotheses 1–5 is presented in Table 2 (Appendix B). For hypothesis 1 the coefficient was positive and significant (B = 0.243, p = 0.004) as seen in Table 3 (Appendix B). Thus, hypothesis 1 was supported. To further explore nuances amongst this relationship, structural equation modeling was used for each motive category (see Table 4 in Appendix B). The model would not converge with the motive categories innovation and recognition included in the model. With the items removed, the coefficient for each motive category are as follows, financial success (B = 0.496, p < 0.001), self-realization (B= 1.897, p = 0.047), independence (B = 0.546, p = 0.001), roles (B = 0.573, p < 0.001), and prosocial motivation (B = 0.625, p < 0.001). Additionally, the relationship was tested using ordinary least squares regression by each motive category averaged across all times per category with list wise deletion as shown in Table 5 (Appendix B). The coefficients were all significant at p < 0.05 with the exceptions of financial success (p = 0.698) and roles (p = 0.075), which may have been due to a lack of power considering the sample size was 53 and 15 respectively. Therefore, the model was also ran allowing up to one missing value per measurement construct with the missing value imputed as the average of the non missing values for that construct. This increased the sample size for financial success to 137 and 66 for roles. The regression coefficient was positive and significant for both financial success (B = 0.242, p = 0.038) and roles (B = 0.541, p = 0.004) as seen on Table 6 (Appendix B).

Hypothesis 2 predicted that there is positive relationship between entrepreneurs' evaluations of progress toward self-set goals and positive affect. The coefficient was positive and significant (B = 0.245, p < 0.001), and therefore support for hypothesis 2 was obtained (Table 3, Appendix B). Additional nuances for this relationship were tested utilizing ordinary least squares regression for each of the seven motive categories (e.g. financial success, recognitions). As seen

in Table 7, the effect of evaluation of progress and positive affect is both positive and significant for the motive categories self-realization (B = 0.151, p < 0.001), independence (B = 0.132, p < 0.001), recognition (B = 0.111, p = 0.010), and Prosocial (B = 0.164, p < 0.001). Three of the seven categories financial success (B = 0.070, p = 0.078), roles (B = 0.078, p = 0.155), and innovation (B = 0.024, p = 0.491) were not significant. As seen in Table 8, evaluation of goal progress was found to be significant with positive affect (p < 0.05) for nine of the sixteen specific goals (e.g. to fulfill a personal vision, to help others).

Hypothesis 3 predicted a positive relationship between entrepreneurs' evaluations of progress toward self-set goals and authentic pride. The results in Table 3 confirm that there is a positive and significant relationship between entrepreneurs' evaluation of progress toward selfset goals and their authentic pride (B = 0.399, p < 0.001), and thus hypothesis 3 was supported. Additional nuances were tested for this relationship by utilizing standard regression for each motive category. Five of the motive categories were positive and significant with authentic pride, which include financial success (B = 0.181, p < 0.001), self-realization (B = 0.231, p < 0.001), independence (B = 0.208, p < 0.001), recognition (B = 0.243, p < 0.001), and prosocial (B = 0.208), and prosocial (B = 0.208), and prosocial (B = 0.208). 0.220, p < .001) (see Table 9 in Appendix B). Only two of the seven categories were not significant, roles (B = 0.101, p = 0.111), and innovation (B = 0.062, p = 0.150). The progress toward each goal (e.g. to earn a larger personal income, to help community) were tested in relation to authentic pride which provided further statistical support for this relationship. Progress towards thirteen of the sixteen goals were found to be positive and significant with authentic pride (p < 0.05) as seen in Table 10. The three specific goal progress items that did not have a significant relationship to authentic pride were to follow the example of a person you admire (B = 0.030, p = 0.653), to continue a family tradition (B = 0.021, p = 0.884), and to

develop an idea for a product (B = 0.067, p = 0.118). In summary evaluation of goal progress with five of the seven motive categories and thirteen of the sixteen specific goals were positive and significant with authentic pride.

Hypothesis 4 predicted a positive relationship between positive affect and venture performance (as an aggregate of six individual performance items). However, as can be seen in Table 11, the relationship was not found to be significant (B = 0.055, p = 0.645). Therefore, the results do not support Hypothesis 4. Additionally, positive affect was individually tested with each performance item as seen in Table 11. The tests show that none of the relationships were significant, with the exception of profitability (p = 0.03) which was negatively related (B = -0.312) to positive affect, and was contrary to the hypothesized direction.

Finally, Hypothesis 5 predicted that there is a positive relationship between authentic pride and venture performance. Consistent with the predication, the relationship between authentic pride and venture performance was found to be both positive and significant (B = 0.332, p = 0.001). Therefore, hypothesis 5 was supported (see Table 11). Using standard regression this relationship was further examined with each performance item and found three performance items to be positive and significant with authentic pride, sales performance (B = 0.555, p < 0.001), profitability (B = 0.785, p < 0.001), and customer satisfaction (B = 0.289, p = 0.039) as seen in Table 11.

CHAPTER V

DISCUSSION AND CONCLUSIONS

Entrepreneurs have many motives for starting a business, yet there has been little agreement among researchers as to how these motives affect firm performance. The purpose of this study was to identify some of the mediating variables and describe the relationships between entrepreneurial motives and new venture performance. The results suggest three mediating variables: goal progress, positive affect and authentic pride. Entrepreneurial motives include financial success, self-realization, independence, recognition, roles, innovation and prosocial motive. These motives of high strength lead entrepreneurs to set goals related to them. After the goals are set, entrepreneurs evaluate the progress toward those goals, and I hypothesized that this evaluation would influence their positive affect and authentic pride. These variables, in turn, would be positively related to new venture performance. In summary, this research investigated entrepreneurial motives and goals, and their influence on entrepreneurs and their businesses.

The purpose of this investigation was to bridge the gap between entrepreneurial motives and new venture performance, and shed new light on the influence of evaluation of goal progress, authentic pride and positive affect and their relationship between motives and firm performance through the process of goal setting. This investigation found that entrepreneurial motives directly influence the goals that they set and how they evaluate their goals progress.

Additionally, findings suggest that entrepreneurial motives do not directly influence firm performance; rather this relationship is indirect, being mediated by individual level factors such as goal progress and authentic pride. Empirical evidence demonstrated that goal progress does influence both authentic pride and positive affect, and authentic pride can affect entrepreneurs new venture performance. Overall, these findings contribute to both entrepreneurship theory and practice, and so contribute to entrepreneurship research.

Contributions to Entrepreneurship Theory

Entrepreneurship researchers have investigated entrepreneurial motives in order to understand the reasons individuals decide to start new ventures (Carter et al., 2003; Zhao et al., 2005). Though there have been attempts to connect entrepreneurial motives to firm performance outcomes, prior research demonstrated the complexity of the relationship that involves a large number of both individual and macro level variables (Carsrud & Brännback, 2011; Gorgievski & Stephan, 2016). This investigation does bring to light a portion of the indirect relationship among entrepreneurial motives and firm level performance through goal setting. This study does support prior research on the role of goal setting within an entrepreneurial context (Baum & Locke, 2004; Baron et al., 2016; Clarysse & Van Boxstael, 2016), but extends it through integrating the influence of entrepreneurs motives for creating a business to the goals that entrepreneurs set and the evaluation of progress of those goals. This study expanded goal setting theory within entrepreneurship research by investigating how entrepreneurs' motives have a direct influence on their self set goal and evaluations of their progress.

Entrepreneurship researchers have emphasized the importance of utilizing alternative dependent measures beyond financial performance (Wiklund et al., 2019; Shepherd, 2015; Hitt, Ireland, Camp, & Sexton, 2001). Considering this emphasis, the investigation utilized individual

level outcome constructs which include goal progress, positive affect and authentic pride. These variables and the relationships among them can help us to understand the relationships between important individual level variables within goal setting to firm level performance outcomes. Such relationships are not direct and the present investigation helps identify some of the variables that mediate this relationship. Considering the large volume of research that highlights the importance of self-set goals in a wide scope of situations (Locke, 2012; Erez, Gopher, & Arzi, 1990), this research helps link goal setting theory more closely to entrepreneurship.

Entrepreneurship research has discussed and investigated the influence of hubris (excessive pride) on entrepreneurs and their new ventures (Hmieleski & Baron, 2008; Haynes et al., 2015) Additionally, research on the relationship between entrepreneurs and bipolar disorder found that hubristic trait pride, one of the four traits common to mania risk is significantly related to entrepreneurial entry and intent (Johnson, Madole, & Freeman, 2018). Yet none of the past entrepreneurship studies have brought into current theory the potential effects of one important form of pride, authentic state pride, and integrated it as an individual level construct within entrepreneurship theory. This study is one of the first to explore theoretically and test empirically how goals and the evaluation of goal progress influences state authentic pride. The results indicate that authentic state pride generated by greater or faster progress than expected, can have a positive and direct effect on aspects of new venture performance.

Additionally, this study further clarifies the relationships between goal progress and both authentic pride and positive affect. Specifically, authentic pride and positive affect are influenced in different ways depending on the specific goals that the entrepreneurs set and how they perceive their progress of those goals. For example, in this study, the degree of progress of the four goals related to financial success did not influence positive affect. Alternatively, authentic

pride was found to be significantly influenced by the progress of the four goals related to financial success. This example brings into the theoretical discussion the different ways that specific goals can have an influence on how entrepreneurs feel with regards to their business and how those situational feelings can influence their business.

This investigation further emphasizes why it is important to integrate positive affect and authentic pride into goal setting theory within entrepreneurship research considering they are influenced by evaluations of goal progress and their ability to directly affect the performance of entrepreneurs' ventures in different ways. Both positive affect and authentic pride do provide numerous benefits to individuals, yet the relation of the two constructs to entrepreneurship outcomes have been discovered to be are profoundly different. Affect has been researched within entrepreneurship context (Baron & Tang, 2011; Baron, Hmieleski, & Henry, 2012; Laguna, Alessandri, & Caprara, 2016) and has been found to influence entrepreneurs' cognitive processes which may influence aspects of the entrepreneurial process and firm level outcomes. Though this study did not find empirical evidence to support the relationship between positive affect and new venture performance, the data indicates that entrepreneurs' authentic pride can influence specific aspects of the performance of a new venture. Specifically, the sales performance, profitability and customer satisfaction were found to be influenced by authentic pride further demonstrating the possible role that authentic pride plays within the entrepreneurial process.

Contributions to Practice

There are several practical implications from this study that entrepreneurs may find useful. On the basis of these findings, I suggest that the first critical step in setting goals during new venture creation is for entrepreneurs to attempt to understand their own motives for becoming an entrepreneur. Only by initially asking themselves what they want to get out of

becoming an entrepreneur (e.g. their entrepreneurial motive) as they set goals, entrepreneurs can ensure that these goals are aligned with their own motives. Furthermore, it is imperative that these goals are realistic relative to their expectations of goal progress. Helping entrepreneurs set realistic and attainable goals may increase the likelihood that entrepreneurs will view their progress as high. Though goal difficulty can positively influence performance (Locke & Latham, 2006) too difficult or unattainable goals can decrease entrepreneurs' performance (Baron et al., 2016). Therefore, unrealistic goals can hinder the likelihood that entrepreneurs benefit from attainment leading to negative evaluations of goal progress which can decrease positive affect and authentic pride.

Findings of this study suggest we should encourage entrepreneurs to set goals for monitoring their progress, but also to help evaluate the difficulty of the goals that they set to ensure that the goals are not unreasonably high goals or unattainable. It is important that entrepreneurs are flexible as they pursue their goals, as entrepreneurs must be willing to adjust them to be realistic relative to their expectations. If an entrepreneur acknowledges that a goal is very difficult he or she can adjust the goal, perhaps through breaking it up into smaller attainable steps. This could enable entrepreneurs to better gauge the reality of their capabilities to achieve their goal. For example, if entrepreneurs have a goal of making \$100,000 in sales the first year, perhaps breaking the goal up into monthly goals; e.g. \$8,500 sales per month, can simplify realization of goal attainment. If during the first month, the entrepreneur recognizes that she or he may not meet their expectation, the current goal and goals for the following months can be adjusted to increase the likelihood of goal progress.

Additionally, entrepreneurs can further gauge the difficulty of their goals by seeking out feedback from advisers, mentors and stakeholders with entrepreneurial experience. The feedback

may assist entrepreneurs with acknowledging when goals are unrealistic. It would be up to the entrepreneur's discretion as to when the feedback is valuable or obstructing, but an alternative point of view may benefit the entrepreneur's assessment of the attainability of their set goals. This study suggests that by adjusting unrealistic goals to manageable and attainable goals entrepreneurs can increase the likelihood that goal progress is above their personal expectations which can benefit the entrepreneur by increasing their authentic pride, positive affect and as a result, perhaps increasing their new ventures performance.

Limitations

To ensure that the data collected were both reliable and validated several preventive measures were taken. The sample for this study consisted primarily of entrepreneurs that participated in an entrepreneurship program through an accredited university or an established incubator or residency program. Furthermore, the participants were asked to self qualify themselves as entrepreneurs to ensure that the study only collected data from individuals that have entrepreneurial experience. Though these precautions were taken, this investigation utilized a self report survey, in which the entrepreneurs read the questions and reported their answers without restrictions. The entrepreneurs' responses were not validated by an additional resource such as a co-founder or employee due to the time constraints of this investigation. An alternative resource on each entrepreneurs' evaluation of goal progress and firm performance could further validate the entrepreneurs' responses and thus enhance the robustness of this study with the addition of an outside perspective.

Opportunities for Future Research

This study primarily focused on the contributions of goal setting literature and theory to entrepreneurial research, specifically the indirect relationship of motives and self-set goals on new venture performance. Authentic pride and positive affect were included in this examination to link entrepreneurs' evaluation of goal progress to new venture performance.

Although positive affect did not have a significant influence on new venture performance in this study, prior research suggests that positive affect does play a significant role in the entrepreneurship process (Arora et al., 2013; Gorgievski & Stephan, 2016). Positive affect might, therefore, still have an influence on new venture performance through other mediating individual level factors and may be a fruitful opportunity for entrepreneurship researchers to explore. Individual level factors that could potentially impact an entrepreneur's firm performance include the capacity to handle stress, the acquisition of human and financial resources, opportunity recognition and venture task effort, (Cardon et al., 2012; Foo et al., 2009). Therefore, I suggest that entrepreneurship researchers narrowly examine how positive affect may influence new venture performance with these individual level constructs.

Additionally, my findings suggest that authentic pride has an influence on specific forms of new venture performance, as seen in Table 11. Prior research has reported that authentic pride can influence individuals' degree of self-control (Cheng et al., 2010). Within entrepreneurship research, self-control can affect task achievement, which can ultimately influence entrepreneurs' overall venture performance (Baron & Henry, 2010; Godwin, Neck, & D'Intino, 2016; Nambisan & Baron, 2013). Based on this reasoning, future studies may consider empirically testing the potential mediating influence of self-control between authentic pride and new venture performance.

Goal setting theory also includes a variety of constructs that influence performance, including goal difficulty and self efficacy (Locke & Latham, 2013). Due to the scope of this study acutely focusing on entrepreneurial motives and the process of setting and evaluating goals, these variables were not included in the model. Prior research suggests that these variables could influence goal attainment, positive affect and firm performance (Locke & Latham 2006; Erez & Isen, 2002; Baron et al., 2016; Arora et al., 2013), and were therefore included as control variables. To investigate the nuances of interactions among these variables, future researchers may want to further investigate how they potentially influence motives and self set goals within the context of entrepreneurship.

Entrepreneurs are a heterogeneous group (Gaglio & Katz, 2001; Shane & Venkataraman, 2000) and, therefore, may have unique and specific goals and motives that were not captured by the items utilized in this study. To further understand the relationships between entrepreneurial motives and goals, I suggest that researchers utilize qualitative methodologies in a longitudinal investigation in attempt to collect data on the various motives and goals of each entrepreneur. This may be achieved by interviewing entrepreneurs and asking them about their motives for becoming an entrepreneur and the degree of strength for each motive. The open ended answers could them be analyzed to further validate the reliability of the measure of entrepreneurs' motives. Additionally, this exploratory investigation may uncover additional entrepreneurial motives and goals that were not captured in this study that may have an influence new venture performance.

Conclusion

"Starting a company extracts so much energy and conviction that not having a clear-cut goal and meaningful mission can hamper your success."

-Sami Inkinen, Co-founder of Virta Health and Trulia

This study was designed to understand how entrepreneurial motives can indirectly influence firm performance. There are numerous motives for individuals to become an entrepreneur. These reasons range from financial success to gaining independence. When individuals choose to become an entrepreneur, they aim to fulfill their motives. These entrepreneurial motives play a major role in affecting entrepreneurs' behavior and decision making. Therefore, entrepreneurs should know their own motives for becoming an entrepreneur, and purposefully set goals that align with these motives in order to successfully achieve them. This is especially important for entrepreneurs considering they often have the autonomy to choose their own goals.

If entrepreneurs' evaluation of the goal progress is at or above their expectations, an entrepreneur can experience heightened positive affect and authentic pride, which can have a positive influence on specific forms of venture performance. Considering this finding, it is also important for entrepreneurs to set realistic goals. To ensure that realistic goals are set, entrepreneurs should be flexible and willing to adjust goals overtime if circumstances change and a goal seems out of reach. In summary, this study suggests that by adjusting unrealistic goals to manageable and attainable goals, entrepreneurs can increase the likelihood that goal progress exceeds or at least meets their personal expectations. Achieving one's self-set goals can benefit

entrepreneurs by increasing their authentic pride, positive affect and, in turn, can potentially improve their new venture's performance. In sum, it is hoped that insights from this study help both current and future entrepreneurs as they set goals throughout their entrepreneurial endeavors so that they not only benefit personally from their pursuits, but can ultimately improve the performance of their new ventures as well.

REFERENCES

- Aldrich, H. E., & Cliff, J. E. (2003). The pervasive effects of family on entrepreneurship:

 Toward a family embeddedness perspective. *Journal of Business Venturing*, *18*(5), 573–596.
- Arias, A., & Pena, I. (2010). The effect of entrepreneurs' motivation and the local economic environment on young venture performance. *International Journal of Business Environment*, 3(1), 38–56.
- Arora, P., Haynie, J. M., & Laurence, G. A. (2013). Counterfactual thinking and entrepreneurial self–efficacy: The moderating role of self–esteem and dispositional affect. *Entrepreneurship Theory and Practice*, *37*(2), 359–385.
- Ateljevic, I., & Doorne, S. (2000). Staying within the fence: Lifestyle entrepreneurship in tourism. *Journal of Sustainable Tourism*, 8(5), 378–392.
- Austin, J., Stevenson, H., & Wei-Skillern, J. (2006). Social and commercial entrepreneurship: Same, different, or both?. *Entrepreneurship Theory and Practice*, 30, 1–22.
- Arzubiaga, U., Kotlar, J., De Massis, A., Maseda, A., & Iturralde, T. (2018). Entrepreneurial orientation and innovation in family SMEs: Unveiling the (actual) impact of the board of birectors. *Journal of Business Venturing*, *33*(4), 455–469.
- Bagozzi, R. P., Bergami, M., & Leone, L. (2003). Hierarchical representation of motives in goal setting. *Journal of Applied Psychology*, 88(5), 915.

- Bagozzi, R. P., & Dholakia, U. (1999). Goal setting and goal striving in consumer behavior. *The Journal of Marketing*, 19-32.
- Bandura, A. (1991). Social cognitive theory of self-regulation. *Organizational Behavior and Human Decision Processes*, 50(2), 248–287.
- Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. *Journal of Applied Psychology*, 88(1), 87.
- Baron, R. A. (2008). The role of affect in the entrepreneurial process. *Academy of Management Review*, 33(2), 328–340.
- Baron, R. A., Hmieleski, K. M., & Henry, R. A. (2012). Entrepreneurs' dispositional positive affect: The potential benefits—and potential costs—of being "up". *Journal of Business Venturing*, *27*(3), 310–324.
- Baron, R. A., & Henry, R. A. (2010). How entrepreneurs acquire the capacity to excel: Insights from research on expert performance. *Strategic Entrepreneurship Journal*, 4(1), 49–65.
- Baron, R. A., Mueller, B. A., & Wolfe, M. T. (2016). Self-efficacy and entrepreneurs' adoption of unattainable goals: The restraining effects of self-control. *Journal of Business Venturing*, *31*(1), 55–71.
- Baron, R. A., & Tang, J. (2011). The role of entrepreneurs in firm-level innovation: Joint effects of positive affect, creativity, and environmental dynamism. *Journal of Business**Venturing, 26(1), 49–60.
- Barrick, M. R., Mount, M. K., & Strauss, J. P. (1993). Conscientiousness and performance of sales representatives: Test of the mediating effects of goal setting. *Journal of Applied Psychology*, 78(5), 715.

- Barsalou, L. W. (1991). Deriving categories to achieve goals. *The Psychology of Learning and Motivation: Advances in Research and Theory*, 27, 1–64.
- Baumol, W. J. (1991). (Almost) perfect competition (contestability) and business ethics.

 In Baumol, W. J. & Blackman, S. A. B. (Eds.), *Perfect markets and easy virtue: Business ethics and the invisible hand* (pp. 1–23). Cambridge, MA: Blackwell Publishers.
- Baum, J. R., & Locke, E. A. (2004). The relationship of entrepreneurial traits, skill, and motivation to subsequent venture growth. *Journal of Applied Psychology*, 89(4), 587.
- Baum, J. R., Locke, E. A., & Smith, K. G. (2001). A multidimensional model of venture growth. *Academy of Management Journal*, 44(2), 292–303.
- Baumgartner, H., & Steenkamp, J. B. E. (2001). Response styles in marketing research: A cross-national investigation. *Journal of Marketing Research*, *38*(2), 143–156.
- Berk, L. E. (2013). Child development. Boston: Pearson Education.
- Bird, B. (1988). Implementing entrepreneurial ideas: The case for intention. *Academy of Management Review*, 13(3), 442–453.
- Bosma, N., Hessels, J., Schutjens, V., Van Praag, M., & Verheul, I. (2012). Entrepreneurship and role models. *Journal of Economic Psychology*, *33*(2), 410–424.
- Brinckmann, J., Grichnik, D., & Kapsa, D. (2010). Should entrepreneurs plan or just storm the castle? A meta-analysis on contextual factors impacting the business planning—performance relationship in small firms. *Journal of Business Venturing*, *25*(1), 24–40.
- Brunstein, J. C. (1993). Personal goals and subjective well-being: A longitudinal study. *Journal of Personality and Social Psychology*, 65(5), 1061.

- Brunstein, J. C., Schultheiss, O. C., & Grässman, R. (1998). Personal goals and emotional well-being: The moderating role of motive dispositions. *Journal of Personality and Social Psychology*, 75(2), 494.
- Cardon, M. S., Wincent, J., Singh, J., & Drnovsek, M. (2009). The nature and experience of entrepreneurial passion. *Academy of Management Review*, *34*(3), 511–532.
- Cardon, M. S., Foo, M. D., Shepherd, D., & Wiklund, J. (2012). Exploring the heart:

 Entrepreneurial emotion is a hot topic. *Entrepreneurship Theory and Practice*, *36*(1), 1–10.
- Cardon, M. S., Post, C., & Forster, W. R. (2017). Team entrepreneurial passion: Its emergence and influence in new venture teams. *Academy of Management Review*, 42(2), 283–305.
- Carsrud, A., & Brännback, M. (2011). Entrepreneurial motivations: What do we still need to know?. *Journal of Small Business Management*, 49(1), 9–26.
- Carter, N. M., Gartner, W. B., Shaver, K. G., & Gatewood, E. J. (2003). The career reasons of nascent entrepreneurs. *Journal of Business Venturing*, *18*(1), 13–39.
- Carver, C. S., & Scheier, M. F. (1998). *On the self regulation of behavior*. New York, NY: Cambridge University Press.
- Carver, C. S., & Scheier, M. F. (2004). Self-regulation of action and affect. *Handbook of Self-Regulation: Research, Theory, and Applications*, 13–39.
- Carver, C. S., Sinclair, S., & Johnson, S. L. (2010). Authentic and hubristic pride: Differential relations to aspects of goal regulation, affect, and self-control. *Journal of Research in Personality*, 44(6), 698–703.
- Cassar, G., & Friedman, H. (2009). Does self-efficacy affect entrepreneurial investment?. *Strategic Entrepreneurship Journal*, *3*(3), 241–260.

- Chang, C. H., Ferris, D. L., Johnson, R. E., Rosen, C. C., & Tan, J. A. (2012). Core self-evaluations: A review and evaluation of the literature. *Journal of Management*, *38*(1), 81–128.
- Cheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary foundations of human social status. *Evolution and Human Behavior*, *31*(5), 334–347.
- Chirico, F., Criaco, G., Baù, M., Naldi, L., Gomez-Mejia, L. R., & Kotlar, J. (2018). To patent or not to patent: That is the question. Intellectual property protection in family firms. *Entrepreneurship Theory & Practice*, 1–29.
- Clarysse, B., & Van Boxstael, A. (2016). How to become more entrepreneurial? The role of identity in entrepreneurial goal orientation. *Academy of Management Proceedings*, 2016(1), 13716.
- Cropanzano, R., James, K., & Citera, M. (1993). A goal hierarchy model of personality, motivation, and leadership. *Research in Organizational Behavior*, *15*, 267–267.
- Damasio, A.R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York, NY: Harcourt.
- Davis, B. C., Hmieleski, K. M., Webb, J. W., & Coombs, J. E. (2017). Funders' positive affective reactions to entrepreneurs' crowdfunding pitches: The influence of perceived product creativity and entrepreneurial passion. *Journal of Business Venturing*, 32(1), 90–106.
- Day, D. V., & Unsworth, K. L. (2013). Goals and self-regulation: Emerging perspectives across levels and time. In E. A. Locke, & G. P. Latham (Eds.), *New developments in goal setting and task performance* (pp. 158-176). New York, NY: Routledge.
- De Charms, R. (2013). *Personal causation: The internal affective determinants of behavior*. New York, NY: Routledge.

- Dees, J. G. (1998). The meaning of social entrepreneurship. *The Kauffman Center for Entrepreneurship*, 1–6. Retrieved from http://www.redalmarza.cl/ing/pdf/TheMeaningofsocialEntrepreneurship.pdf
- Drucker, P. (2014). Innovation and entrepreneurship. New York, NY: Routledge.
- Duckworth, A., & Gross, J. J. (2014). Self-control and grit: Related but separable determinants of success. *Current Directions in Psychological Science*, *23*(5), 319–325.
- Elliot, A. J., & Thrash, T. M. (2001). Achievement goals and the hierarchical model of achievement motivation. *Educational Psychology Review*, *13*(2), 139-156.
- Emmons, R. A. (1989). The personal striving approach to personality. *Goal Concepts in Personality and Social Psychology*, 87–126.
- Emmons, R. A. (1996). Striving and feeling: Personal goals and subjective well-being. In P. M. Gollwitzer & J. A. Bargh (Eds.), *The psychology of action: Linking cognition and motivation to behavior* (pp. 313-337). New York, NY: Guilford Press.
- Erez, A., & Isen, A. M. (2002). The influence of positive affect on the components of expectancy motivation. *Journal of Applied Psychology*, 87(6), 1055.
- Erez, M., Gopher, D., & Arzi, N. (1990). Effects of goal difficulty, self-set goals, and monetary rewards on dual task performance. *Organizational Behavior and Human Decision*Processes, 47(2), 247–269.
- Foo, M. D., Uy, M. A., & Baron, R. A. (2009). How do feelings influence effort? An empirical study of entrepreneurs' affect and venture effort. *Journal of Applied Psychology*, *94*(4), 1086.

- Foo, M. D., Uy, M. A., & Murnieks, C. (2015). Beyond affective valence: Untangling valence and activation influences on opportunity identification. *Entrepreneurship Theory and Practice*, *39*(2), 407–431.
- Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. *Journal of Business Research*, 69(8), 3192–3198.
- Gaglio, C. M., & Katz, J. A. (2001). The psychological basis of opportunity identification: Entrepreneurial alertness. *Small Business Economics*, *16*(2), 95–111.
- Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. *Simulation & Gaming*, *33*(4), 441–467.
- Godwin, J. L., Neck, C. P., & D'Intino, R. S. (2016). Self-leadership, spirituality, and entrepreneur performance: A conceptual model. *Journal of Management, Spirituality & Religion*, *13*(1), 64–78.
- Gorgievski, M. J., & Stephan, U. (2016). Advancing the psychology of entrepreneurship: A review of the psychological literature and an introduction. *Applied Psychology*, 65(3), 437–468.
- Griffin, J., & Herres, R. T. (2002). *Customer loyalty: How to earn it, how to keep it* (p. 18). San Francisco, CA: Jossey-Bass.
- Gutman, J. (1997). Means–end chains as goal hierarchies. *Psychology & Marketing*, *14*(6), 545–560.
- Hansen, G. S., & Wernerfelt, B. (1989). Determinants of firm performance: The relative importance of economic and organizational factors. *Strategic Management Journal*, 10(5), 399–411.
- Harman, H. H. (1976). Modern factor analysis. Chicago, IL: University of Chicago Press.

- Haynes, K. T., Hitt, M. A., & Campbell, J. T. (2015). The dark side of leadership: Towards a mid-range theory of hubris and greed in entrepreneurial contexts. *Journal of Management Studies*, *52*(4), 479–505.
- Herrald, M. M., & Tomaka, J. (2002). Patterns of emotion-specific appraisal, coping, and cardiovascular reactivity during an ongoing emotional episode. *Journal of Personality and Social Psychology*, 83(2), 434.
- Heslin, P. A., & Wang, K. L. (2013). Determinants of goals. *New Developments in Goal Setting and Task Performance*, 133–146.
- Hitt, M. A., Ireland, R. D., Camp, S. M., & Sexton, D. L. (2001). Strategic entrepreneurship: Entrepreneurial strategies for wealth creation. *Strategic Management Journal*, 22(6-7), 479–491.
- Hmieleski, K. M., & Baron, R. A. (2008). When does entrepreneurial self-efficacy enhance versus reduce firm performance?. *Strategic Entrepreneurship Journal*, 2(1), 57–72.
- Hmieleski, K. M., & Corbett, A. C. (2008). The contrasting interaction effects of improvisational behavior with entrepreneurial self-efficacy on new venture performance and entrepreneur work satisfaction. *Journal of Business Venturing*, 23(4), 482–496.
- Hsu, D. H., & Ziedonis, R. H. (2008). Patents as quality signals for entrepreneurial ventures.

 **Academy of Management Proceedings, 2008(1), 1–6.
- Johnson, S. L., Madole, J. W., & Freeman, M. A. (2018). Mania risk and entrepreneurship:

 Overlapping personality traits. *Academy of Management Perspectives*, 32(2), 207–227.
- Kato, S., & Wiklund, J. (2011). Doing good to feel good: A theory of entrepreneurial action based in hedonic psychology. *Frontiers of Entrepreneurship Research*, 31(4), 1.

- Kirzner, I. M. (1973). *Competition and entrepreneurship*. Chicago, IL: University of Chicago Press.
- Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of motivation definitions, with a suggestion for a consensual definition. *Motivation and Emotion*, *5*(3), 263–291.
- Kolvereid, L., & Isaksen, E. (2006). New business start-up and subsequent entry into selfemployment. *Journal of Business Venturing*, *21*(6), 866–885.
- Korman, A. K. (1970). Toward a hypothesis of work behavior. *Journal of Applied Psychology*, *54*(1), 31.
- Kruglanski, A. W., Shah, J. Y., Fishbach, A., & Friedman, R. (2018). A theory of goal systems.

 In *The Motivated Mind* (pp. 207–250). New York, NY: Routledge.
- Kuratko, D. F., Hornsby, J. S., & Naffziger, D. W. (1997). An examination of owner's goals in sustaining entrepreneurship. *Journal of small business management*, 35(1), 24.
- Laguna, M., Alessandri, G., & Caprara, G. V. (2016). Personal goal realisation in entrepreneurs:

 A multilevel analysis of the role of affect and positive orientation. *Applied Psychology*, 65(3), 587–604.
- Larsen, J. T., McGraw, A. P., & Cacioppo, J. T. (2001). Can people feel happy and sad at the same time?. *Journal of Personality and Social Psychology*, 81(4), 684.
- Latham, G. P., & Locke, E. A. (1991). Self-regulation through goal setting. *Organizational Behavior and Human Decision Processes*, 50(2), 212–247.
- Ling, Y., & Kellermanns, F. W. (2010). The effects of family firm specific sources of TMT diversity: The moderating role of information exchange frequency. *Journal of Management Studies*, 47(2), 322–344.

- Locke, E. A., & Bryan, J. F. (1969). The directing function of goals in task performance. *Organizational Behavior and Human Performance*, 4(1), 35–42.
- Locke, E. A. (1996). Motivation through conscious goal setting. *Applied and Preventive Psychology*, *5*(2), 117–124.
- Locke, E. A. (2012). Self-set goals and self-efficacy as mediators of incentives and personality.

 In M. Erez, U. Kleinbeck, H. Thierry (Eds.), *Work motivation in the context of a globalizing economy* (pp. 21-34). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
- Locke, E. A., & Latham, G. P. (1990). *A theory of goal setting & task performance*. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and task motivation: A 35-year odyssey. *American Psychologist*, *57*(9), 705.
- Locke, E. A., & Latham, G. P. (2006). New directions in goal-setting theory. *Current Directions in Psychological Science*, 15(5), 265–268.
- Locke, E. A., & Latham, G. P. (Eds.). (2013). *New developments in goal setting and task performance*. New York, NY: Routledge.
- Locke, E. A., Latham, G. P., & Erez, M. (1988). The determinants of goal commitment. *Academy of Management Review*, *13*(1), 23–39.
- Lyubomirsky, S., King, L., & Diener, E. (2005). The benefits of frequent positive affect: Does happiness lead to success? *Psychological Bulletin*, *131*(6), 803.
- Mair, J., & Marti, I. (2006). Social entrepreneurship research: A source of explanation, prediction, and delight. *Journal of World Business*, *41*(1), 36–44.

- Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. *Annual Review of Psychology*, 59.
- McMullen, J. S., & Shepherd, D. A. (2006). Entrepreneurial action and the role of uncertainty in the theory of the entrepreneur. *Academy of Management Review*, *31*(1), 132–152.
- Memili, E., Eddleston, K. A., Kellermanns, F. W., Zellweger, T. M., & Barnett, T. (2010). The critical path to family firm success through entrepreneurial risk taking and image. *Journal of Family Business Strategy*, 1(4), 200–209.
- Miller, T. L., Grimes, M. G., McMullen, J. S., & Vogus, T. J. (2012). Venturing for others with heart and head: How compassion encourages social entrepreneurship. *Academy of Management Review*, *37*(4), 616–640.
- Mueller, S. L., & Thomas, A. S. (2001). Culture and entrepreneurial potential: A nine country study of locus of control and innovativeness. *Journal of Business Venturing*, *16*(1), 51–75.
- Nambisan, S., & Baron, R. A. (2013). Entrepreneurship in innovation ecosystems:

 Entrepreneurs' self–regulatory processes and their implications for new venture success. *Entrepreneurship Theory and Practice*, *37*(5), 1071–1097.
- Orbell, S., Johnston, M., Rowley, D., Davey, P., & Espley, A. (2001). Self-efficacy and goal importance in the prediction of physical disability in people following hospitalization: A prospective study. *British Journal of Health Psychology*, *6*(1), 25–40.
- Parker, S. K. (2014). Beyond motivation: Job and work design for development, health, ambidexterity, and more. *Annual Review of Psychology*, 65, 661–691.
- Perwin, L. (2003). The science of personality. Oxford: Oxford University Press.

- Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. *Annual Review Psychology*, *57*, 27–53.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88(5), 879.
- Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. *Journal of Management*, *12*(4), 531–544.
- Powell, G. N., & Eddleston, K. A. (2013). Linking family-to-business enrichment and support to entrepreneurial success: Do female and male entrepreneurs experience different outcomes?. *Journal of Business Venturing*, 28(2), 261–280.
- Rasmussen, H. N., Wrosch, C., Scheier, M. F., & Carver, C. S. (2006). Self-regulation processes and health: The importance of optimism and goal adjustment. *Journal of Personality*, 74(6), 1721–1748.
- Renko, M. (2013). Early challenges of nascent social entrepreneurs. *Entrepreneurship Theory* and *Practice*, *37*(5), 1045–1069.
- Rindova, V., Barry, D., & Ketchen D. J. (2009). Entrepreneuring as emancipation. *Academy of Management Review*, 34(3), 477–491.
- Robb, A. M., & Robinson, D. T. (2014). The capital structure decisions of new firms. *The Review of Financial Studies*, *27*(1), 153–179.
- Schumpeter, J. A. (1934). Change and the Entrepreneur. Essays of JA Schumpeter.
- Schumpeter, J. A. (2017). Essays: On entrepreneurs, innovations, business cycles and the evolution of capitalism. New York, NY: Routledge.

- Schunk, D. H., & Ertmer, P. A. (1999). Self-regulatory processes during computer skill acquisition: Goal and self-evaluative influences. *Journal of Educational Psychology*, *91*(2), 251.
- Schwarzer, R., Bäßler, J., Kwiatek, P., Schröder, K., & Zhang, J. X. (1997). The assessment of optimistic self-beliefs: Comparison of the German, Spanish, and Chinese versions of the general self-efficacy scale. *Applied Psychology*, *46*(1), 69–88.
- Segal, G., Borgia, D., & Schoenfeld, J. (2005). The motivation to become an entrepreneur. *International Journal of Entrepreneurial Behavior & Research*, 11(1), 42–57.
- Shane, S., & Venkataraman, S. (2000). The promise of entrepreneurship as a field of research. *Academy of Management Review*, 25(1), 217–226.
- Shepherd, D. A. (2015). Party On! A call for entrepreneurship research that is more interactive, activity based, cognitively hot, compassionate, and prosocial. *Journal of Business**Venturing, 30(4), 489–507.
- Shir, N., Nikolaev, B. N., & Wincent, J. (2018). Entrepreneurship and well-being: The role of psychological autonomy, competence, and relatedness. *Journal of Business Venturing*, In press.
- Singer, J. A., & Salovey, P. (1999). Independent emotions and consciousness: Self-consciousness and dependent emotions. In *At Play in the Fields of Consciousness* (pp. 97-116). New York, NY: Psychology Press.
- Stam, W., & Elfring, T. (2008). Entrepreneurial orientation and new venture performance: The moderating role of intra-and extra-industry social capital. *Academy of Management Journal*, *51*(1), 97–111.

- Steier, L., & Greenwood, R. (2000). Entrepreneurship and the evolution of angel financial networks. *Organization Studies*, *21*(1), 163–192.
- Stewart, W. H., & Roth, P. L. (2007). A meta-analysis of achievement motivation differences between entrepreneurs and managers. *Journal of Small Business Management*, 45(4), 401–421.
- Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. *Journal of Personality*, 72(2), 271–324.
- Tracy, J. L., Cheng, J. T., Robins, R. W., & Trzesniewski, K. H. (2009). Authentic and hubristic pride: The affective core of self-esteem and narcissism. *Self and Identity*, 8(2-3), 196–213.
- Tracy, J. L., & Robins, R. W. (2007). The psychological structure of pride: A tale of two facets. *Journal of Personality and Social Psychology*, 92(3), 506.
- Tubbs, M. E., & Ekeberg, S. E. (1991). The role of intentions in work motivation: Implications for goal-setting theory and research. *Academy of Management Review*, *16*(1), 180–199.
- Van Gelderen, M., & Jansen, P. (2006). Autonomy as a start-up motive. *Journal of Small Business and Enterprise Development*, 13(1), 23–32.
- Van Gelderen, M., Kautonen, T., & Fink, M. (2015). From entrepreneurial intentions to actions: Self-control and action-related doubt, fear, and aversion. *Journal of Business**Venturing, 30(5), 655–673.
- Van Gelderen, M., Shirokova, G., Shchegolev, V., & Beliaeva, T. (2017). Entrepreneurial autonomy in Russia: A comparison with the Netherlands. In *Academy of Management Proceedings*, 2017(1), 13590.

- Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. *Journal of Personality and Social Psychology*, *54*(6), 1063.
- Weiss, H. M., & Cropanzano, R. (1996). Affective events theory: A theoretical discussion of the structure, causes and consequences of affective experiences at work. In B. M. Staw & L. L. Cummings (Eds.), *Research in organizational behavior* (pp. 1–74). Greenwich, CT: JAI Press.
- Wicker, F. W., Lambert, F. B., Richardson, F. C., & Kahler, J. (1984). Categorical goal hierarchies and classification of human motives. *Journal of Personality*, *52*(3), 285–305.
- Wiklund, J., Wright, M., & Zahra, S. A. (2019). Conquering relevance: Entrepreneurship research's grand challenge. *Entrepreneurship Theory and Practice*, 43(3), 419–436.
- Williams, L. A., & DeSteno, D. (2008). Pride and perseverance: The motivational role of pride. *Journal of Personality and Social Psychology*, *94*(6), 1007.
- Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. *Educational and Psychological Measurement*, 73(6), 913–934.
- Zhao, H., Seibert, S. E., & Hills, G. E. (2005). The mediating role of self-efficacy in the development of entrepreneurial intentions. *Journal of Applied Psychology*, 90(6), 1265.
- Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M.Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), *Handbook of self-regulation* (pp. 13-39).San Diego, CA: Academic Press.

APPENDICES

Appendix A: Measures

Motive Strength

Scale: "People have many reasons for becoming entrepreneurs and starting their own companies. Using the scale below, please indicate to what extent each of the following items corresponds to one of the reasons why you established your business?"

1 (Not a reason); 5 (A very strong reason)

Financial Success

To have a chance to build great wealth or a very high income

To earn a larger personal income

To give yourself, your spouse, and your children financial security

To build a business your children can inherit

Self-Realization

To fulfill a personal vision

To have the power to greatly influence an organization

Independence

To have greater flexibility for your personal and family life

To have considerable freedom to adapt your own approach to work

Recognition

To achieve something and get recognition for it

54

To achieve a higher position in society

Roles

To follow the example of a person you admire

To be respected by your friends

To continue a family tradition

Innovation

To develop an idea for a product

Prosocial

To help others

To help community

Self-Set Goals

Scale: "Entrepreneurs often set personal goals for themselves. Did you set personal goals (insert motive item here e.g. to help others)?" YES or NO

Evaluations of Self-Set Goals Progress

Frequency

Scale: "How often did you evaluate your progress toward achieving these personal goals: (insert motive item here e.g. to earn a larger personal income)"

1 (Almost Never); 2 (At least once a year) 3 (At least once a quarter); 4 (At least once a month); 5 (At least once a week)

Progress

Scale: "To what extent have you made progress toward achieving goals relevant to:

(insert motive item here; e.g., to achieve a higher position in society)"

1 (progress was below my expectations); 5 (progress was above my expectations)

Positive Affect — Adapted from the Positive and Negative Affect Scale (PANA)

Scale: "Below are a number of words that describe different feelings and emotions.

Indicate to what extent you have experienced these feeling and emotions about the progress of your business:"

1 (very slightly or not at all); 2 (a little); 3 (Moderately); 4 (quite a bit); 5 (extremely)

Positive Affect Items

- 1. interested
- 2. alert
- 3. excited
- 4. inspired
- 5. strong
- 6. determined
- 7. attentive
- 8. active
- 9. enthusiastic
- 10. proud

Authentic Pride

Scale: "Below are a number of words that describe different feelings and emotions.

Indicate to what extent you have experienced these feeling and emotions about the progress of your business:"

1 (very slightly or not at all); 2 (a little); 3 (Moderately); 4 (quite a bit); 5 (extremely)

Authentic Pride Items

^{*}From Watson, Clark, & Tellegen, (1988)

- 1. accomplished
- 2. like I am achieving
- 3. confident
- 4. fulfilled
- 5. productive
- 6. like I have self-worth
- 7. successful

Venture Performance, Entrepreneur's Perspective

Scale: "On the basis of information you have, how does the performance (success) of your company compare to that of competitors:"

1 (Much worse than competitors); 3 (About the same as competitors); 5 (Much better than competitors).

- 1. Growth in sales
- 2. Innovation in products and services
- 3. Speed in developing new products and services
- 4. Quality of products and services
- 5. Gross Profit
- 6. Customer satisfaction

Control Variables

^{*} From Tracy, J. L., & Robins, R. W. (2007)

^{*}From Stam & Elfring, 2008; and Powell & Eddleston, 2013

Have you participated in entrepreneurship by attempting to launch your own business
Yes
No
Are you currently in the process of launching your own business?
Yes
No
Current work:
I run a business venture I started.
I run a business venture I purchased or someone else started.
I work for a company I did not start
I am not currently working
I am working part time
Other (please specify).
How many businesses have you started?
Of the businesses you started, how many are still in operation?
How many years of experience do you have running businesses?
What is your age?
What is your sex?
Male
Female
What is your highest level of education?
High School
Some College

Bachelor's Degree

Master's Degree

Ph.D., J.D. (or other advanced degree)

Other (please specify)

Goal Difficulty

Scale: "Please indicate how difficult you perceived it to be to reach these goals. (insert motive item here e.g. to have greater flexibility for your personal and family life):"

1 (very easy to achieve); 2 (moderately easy); 4 (moderately difficult); 5 (nearly impossible or very difficult)

General Self-Efficacy Scale

Scale: "How true are the following statements, for you?"

1 (Not at all True); 2 (Barely True); 3 (Moderately True); 4 (Exactly True)

I can always manage to solve difficult problems if I try hard enough.

If someone opposes me, I can find means and ways to get what I want.

It is easy for me to stick to my aims and accomplish my goals.

I am confident that I could deal efficiently with unexpected events.

Thanks to my resourcefulness, I know how to handle unforeseen situations.

I can solve most problems if I invest the necessary effort.

I can remain calm when facing difficulties because I can rely on my coping abilities.

When I am confronted with a problem, I can usually find several solutions.

If I am in a bind, I can usually think of something to do.

No matter what comes my way, I'm usually able to handle it.

The Brief Self Control Scale (BSCS)

Scale: "Please indicate what extent each of the following statements describe you."

1 (not at all); 5 (very much)

I am good at resisting temptation

I have a hard time breaking bad habits (R)

I am lazy (R)

I say inappropriate things (R)

I do certain things that are bad for me, if they are fun (R)

I refuse things that are bad for me.

I wish I had more self-discipline (R)

People would say that I have iron self-discipline

Pleasure and fun sometime keep me from getting work done. (R)

I have trouble concentrating (R)

I am able to work effectively toward long-term goals.

Sometimes I can't stop myself from doing something, even if I know it is wrong. (R)

I often act without thinking through all the alternatives. (R)

(R) Reversed Item

*Note. From Tangney, Baumeister & Boone, 2004

Appendix B: Tables

Table 1. *Regression Results for Entrepreneurial Motives and Self-Set Goals*

Source	SS	df	MS	n		278	
				F(6,271)		31.93	
Model	27.355	6	4.559	Prob>F		0	
Residual	38.689	271	0.143	R-squared		0.414	
				Adj R-squa	red	0.401	
Total	66.043	277	0.238	Root MSE		0.378	
g_f_wealth	Coef.	Std. Err.	t	P>t 95% Conf. Ir		nterval	
m_f_wealth	-0.230	0.017	-13.33	0.000	-0.264	-0.196	
se_all	-0.046	0.057	-0.81	0.421	-0.157	0.066	
sc_all	0.044	0.038	1.18	0.238	-0.030	0.119	
gender	-0.051	0.051	-1.01	0.315	-0.150	0.049	
yearsrunning	0.000	0.011	0.02	0.986	-0.021	0.021	
age	0.000	0.002	0.02	0.984	-0.004	0.004	
_cons	2.224	0.212	10.48	0.000	1.806	2.642	

Source	SS	df	MS	n	277
			L	F(6,270)	23.00
Model	18.954	6	3.159	Prob>F	0
Residual	37.082	270	0.137	R-squared	0.338
				Adj R-squared	0.324
Total	56.036	276	0.203	Root MSE	0.371

g_f_income	Coef.	Std. Err.	t	P>t	95% Conf. Interval	
m_f_income	-0.1943	0.0177	-11	0	-0.229	-0.160
se_all	-0.0862	0.0556	-1.55	0.122	-0.196	0.023
sc_all	0.0780	0.0370	2.11	0.036	0.005	0.151
gender	-0.0548	0.0494	-1.11	0.268	-0.152	0.042
yearsrunning	-0.0089	0.0104	-0.85	0.396	-0.029	0.012
age	0.0018	0.0022	0.84	0.404	-0.002	0.006
_cons	2.0234	0.2078	9.74	0	1.614	2.433

Source	SS	df	MS	n		277	
				F(6,270)		44.22	
Model	31.937	6	5.323	Prob>F		0	
Residual	32.503	270	0.120	R-squared		0.496	
				Adj R-squa	red	0.484	
Total	64.440	276	0.233	Root MSE		0.347	
g_f_security	Coef.	Std. Err.	t	P>t 95% Conf. In		nterval	
m_f_security	-0.222	0.015	-15.06	0	-0.251	-0.193	
se_all	-0.119	0.052	-2.29	0.023	-0.222	-0.017	
sc_all	0.065	0.035	1.89	0.06	-0.003	0.133	
gender	-0.044	0.046	-0.95	0.342	-0.135	0.047	
yearsrunning	0.024	0.010	2.5	0.013	0.005	0.044	
age	-0.005	0.002	-2.55	0.011	-0.009	-0.001	
_cons	2.428	0.190	12.8	0	2.055	2.802	

Source	SS	df	MS	n		278
				F(6,271)		37.65
Model	24.254	6	4.042	Prob>F		0
Residual	29.099	271	0.107	R-squared		0.455
				Adj R-squ	ared	0.443
Total	53.353	277	0.193	Root MSE	Root MSE	
g_f_inherit	Coef.	Std. Err.	t	P>t	P>t 95% Conf. Int	
m_f_inherit	-0.209	0.014	-14.75	0	-0.2372	-0.1814
se_all	0.004	0.049	0.08	0.939	-0.0925	0.1000
sc_all	-0.032	0.032	-0.99	0.324	-0.0959	0.0318
gender	-0.047	0.044	-1.07	0.287	-0.1327	0.0394
yearsrunning	-0.008	0.009	-0.88	0.382	-0.0261	0.0100
age	-0.001	0.002	-0.57	0.569	-0.0048	0.0027
_cons	2.464	0.177	13.91	0	2.1158	2.8132

Source	SS	df	MS	n		278
				F(6,271)	F(6,271)	
Model	2.458	6	0.410	Prob>F	Prob>F	
Residual	16.103	271	0.059	R-squared	R-squared	
				Adj R-squared		0.113
Total	18.561	277	0.067	Root MSE		0.244
g_s_vision	Coef.	Std. Err.	t	P>t 95% Conf. In		iterval
m_s_vision	-0.079	0.016	-4.99	0	-0.110	-0.048

se_all	-0.081	0.036	-2.23	0.027	-0.153	-0.009	
sc_all	0.021	0.024	0.88	0.378	-0.026	0.069	
gender	-0.054	0.033	-1.67	0.096	-0.118	0.010	
yearsrunning	-0.002	0.007	-0.23	0.817	-0.015	0.012	
age	0.001	0.001	1.01	0.315	-0.001	0.004	
_cons	1.643	0.142	11.56	0	1.364	1.923	
							1

Source	SS	df	MS	n		278
				F(6,271)		24.71
Model	24.069	6	4.011	Prob>F		0
Residual	43.992	271	0.162	R-squared		0.354
				Adj R-squa	red	0.339
Total	68.061	277	0.246	Root MSE		0.403
g_s_power	Coef.	Std. Err.	t	P>t	P>t 95% Conf. In	
m_s_power	-0.189	0.017	-10.9	0	-0.223	-0.155
se_all	-0.118	0.061	-1.94	0.053	-0.238	0.002
sc_all	0.096	0.040	2.4	0.017	0.017	0.175
gender	-0.034	0.053	-0.63	0.526	-0.139	0.071
yearsrunning	-0.009	0.011	-0.82	0.411	-0.032	0.013
age	0.002	0.002	0.68	0.495	-0.003	0.006
_cons	2.136	0.221	9.65	0	1.700	2.572

Source	SS	df	MS	n		279	
				F(6,272)		20.64	
Model	13.626	6	2.271	Prob>F		0	
Residual	29.923	272	0.110	R-squared		0.313	
				Adj R-squa	red	0.298	
Total	43.548	278	0.157	Root MSE		0.332	
g_i_flexibility	Coef.	Std. Err.	t	P>t 95% Conf. In		nterval	
m_i_flexibility	-0.163	0.015	-10.76	0	-0.193	-0.133	
se_all	0.004	0.049	0.07	0.942	-0.094	0.101	
sc_all	0.047	0.033	1.44	0.152	-0.017	0.112	
gender	-0.061	0.044	-1.39	0.166	-0.147	0.025	
yearsrunning	-0.001	0.009	-0.16	0.873	-0.020	0.017	
age	-0.001	0.002	-0.71	0.481	-0.005	0.002	
_cons	1.790	0.181	9.87	0	1.433	2.147	

Source	SS	df	MS	n		277
				F(6,270)		8.36
Model	3.942	6	0.657	Prob>F		0
Residual	21.227	270	0.079	R-squared		0.157
				Adj R-squared		0.138
Total	25.170	276	0.091	Root MSE		0.280
g_i_freedom	Coef.	Std. Err.	t	P>t 95% Conf. Inte		nterval
m_i_freedom	-0.109	0.018	-5.96	0	-0.145	-0.073

se_all	-0.032	0.043	-0.73	0.468	-0.117	0.054
sc_all	0.001	0.028	0.05	0.963	-0.054	0.057
gender	-0.052	0.038	-1.39	0.166	-0.126	0.022
yearsrunning	-0.001	0.008	-0.12	0.905	-0.017	0.015
age	0.002	0.002	1.11	0.269	-0.001	0.005
_cons	1.683	0.157	10.71	0	1.373	1.992

Source	SS	df	MS	n		278	
				F(6,271)		33.26	
Model	29.460	6	4.910	Prob>F		0	
Residual	40.008	271	0.148	R-squared		0.424	
				Adj R-squa	red	0.411	
Total	69.468	277	0.251	Root MSE		0.384	
g_r_recognition	Coef.	Std. Err.	t	P>t 95% Conf. Ir		nterval	
m_r_recognitio							
n	-0.210	0.017	-12.41	0	-0.243	-0.176	
se_all	0.016	0.057	0.28	0.778	-0.097	0.129	
sc_all	0.004	0.039	0.11	0.914	-0.072	0.080	
gender	-0.127	0.051	-2.49	0.013	-0.227	-0.027	
yearsrunning	-0.015	0.011	-1.35	0.177	-0.036	0.007	
age	0.006	0.002	2.75	0.006	0.002	0.011	
_cons	2.115	0.217	9.76	0	1.688	2.542	

Source	SS	df	MS	n		278	
				F(6,271)		29.94	
Model	25.740	6	4.290	Prob>F		0	
Residual	38.835	271	0.143	R-squared		0.399	
				Adj R-squa	red	0.385	
Total	64.576	277	0.233	Root MSE		0.379	
g_r_position	Coef.	Std. Err.	t	P>t 95% Conf. In		iterval	
m_r_position	-0.216	0.017	-12.52	0	-0.250	-0.182	
se_all	-0.043	0.056	-0.77	0.442	-0.154	0.068	
sc_all	0.014	0.038	0.38	0.704	-0.060	0.089	
gender	-0.100	0.050	-2	0.046	-0.199	-0.002	
yearsrunning	-0.001	0.011	-0.11	0.91	-0.022	0.020	
age	0.002	0.002	1.05	0.292	-0.002	0.007	
_cons	2.332	0.213	10.95	0	1.913	2.752	

Source	SS	df	MS	n		277
				F(6,270)	F(6,270)	
Model	30.512	6	5.085	Prob>F	Prob>F	
Residual	36.391	270	0.135	R-squared	R-squared	
				Adj R-squared		0.444
Total	66.903	276	0.242	Root MSE		0.367
g_l_admire	Coef.	Std. Err.	t	P>t 95% Conf. Inte		nterval
m_l_admire	-0.219	0.016	-13.63	0	-0.250	-0.187

se_all	0.055	0.055	1.01	0.315	-0.053	0.163	
sc_all	0.015	0.037	0.41	0.679	-0.057	0.088	Ì
gender	-0.074	0.049	-1.51	0.133	-0.171	0.023	
yearsrunning	0.003	0.010	0.33	0.745	-0.017	0.024	
age	0.003	0.002	1.59	0.114	-0.001	0.008	
_cons	1.922	0.208	9.25	0	1.513	2.331	

Source	SS	df	MS	n		278
				F(6,271)		37.83
Model	27.899	6	4.650	Prob>F		0
Residual	33.313	271	0.123	R-squared		0.456
				Adj R-squar	red	0.444
Total	61.212	277	0.221	Root MSE		0.351
g_l_respect	Coef.	Std. Err.	t	P>t	95% Conf. I	nterval
m_l_respect	-0.241	0.017	-13.96	0	-0.275	-0.207
se_all	-0.106	0.052	-2.04	0.043	-0.209	-0.004
sc_all	0.082	0.035	2.34	0.02	0.013	0.152
gender	-0.095	0.046	-2.04	0.043	-0.186	-0.003
yearsrunnin						
g	-0.013	0.010	-1.3	0.194	-0.032	0.007
age	0.002	0.002	0.87	0.387	-0.002	0.006
_cons	2.406	0.195	12.33	0	2.022	2.790
Source	SS	df	MS	n		278

				F(6,271)		24.51
Model	10.498	6	1.750	Prob>F		0
Residual	19.344	271	0.071	R-squared		0.352
				Adj R-squa	red	0.337
Total	29.842	277	0.108	Root MSE		0.267
g_l_traditio						
n	Coef.	Std. Err.	t	P>t	95% Conf. In	iterval
m_l_traditio						
n	-0.172	0.014	-11.9	0	-0.200	-0.143
se_all	0.029	0.040	0.73	0.467	-0.049	0.107
sc_all	-0.025	0.027	-0.94	0.349	-0.077	0.027
gender	-0.005	0.036	-0.14	0.888	-0.075	0.065
yearsrunnin						
g	0.011	0.008	1.5	0.135	-0.004	0.026
age	-0.001	0.002	-0.35	0.728	-0.004	0.003
_cons	2.127	0.150	14.18	0	1.832	2.422

SS	df	MS	n	278
			F(6,271)	34.04
24.115	6	4.019	Prob>F	0
32.000	271	0.118	R-squared	0.430
			Adj R-squared	0.417
56.115	277	0.203	Root MSE	0.344
	24.115 32.000	24.115 6 32.000 271	24.115 6 4.019 32.000 271 0.118	F(6,271) 24.115 6 4.019 Prob>F 32.000 271 0.118 R-squared Adj R-squared

g_n_idea	Coef.	Std. Err.	t	P>t	95% Conf. Interval	
m_n_idea	-0.201	0.015	-13.25	0	-0.230	-0.171
se_all	0.033	0.051	0.65	0.519	-0.068	0.134
sc_all	-0.046	0.034	-1.36	0.174	-0.113	0.021
gender	0.039	0.046	0.86	0.391	-0.050	0.129
yearsrunning	0.003	0.010	0.35	0.73	-0.016	0.022
age	0.005	0.002	2.24	0.026	0.001	0.009
_cons	1.835	0.195	9.41	0	1.451	2.219

Source	SS	df	MS	n		278	
				F(6,271)		27.73	
Model	17.681	6	2.947	Prob>F		0	
Residual	28.797	271	0.106	R-squared		0.380	
				Adj R-squa	ired	0.367	
Total	46.478	277	0.168	Root MSE		0.326	
g_p_helpother	Coef.	Std. Err.	t	P>t 95% Conf. In		iterval	
m_p_helpothe							
r	-0.208	0.017	-12.37	0	-0.241	-0.175	
se_all	-0.026	0.048	-0.53	0.594	-0.121	0.070	
sc_all	-0.004	0.032	-0.14	0.892	-0.068	0.059	
gender	-0.052	0.044	-1.19	0.237	-0.138	0.034	
yearsrunning	0.006	0.009	0.7	0.486	-0.012	0.024	
age	0.000	0.002	-0.24	0.811	-0.004	0.003	

_cons	2.178	0.182	11.95	0	1.820	2.537	
							ı

Source	SS	df	MS	n		278	
				F(6,271)		22.13	
Model	16.200	6	2.700	Prob>F		0	
Residual	33.066	271	0.122	R-squared	R-squared		
				Adj R-squared		0.314	
Total	49.266	277	0.178	Root MSE		0.349	
g_p_community	Coef.	Std. Err.	t	P>t 95% Conf. In		. Interval	
m_p_communit							
у	-0.184	0.017	-10.83	0	-0.217	-0.150	
se_all	-0.005	0.052	-0.1	0.918	-0.107	0.097	
sc_all	-0.001	0.035	-0.03	0.977	-0.069	0.067	
gender	-0.084	0.047	-1.79	0.075	-0.176	0.008	
yearsrunning	-0.001	0.010	-0.09	0.932	-0.020	0.018	
age	0.000	0.002	-0.06	0.953	-0.004	0.004	
_cons	2.067	0.198	10.42	0	1.676	2.457	

 Table 2.

 Summary of Hypothesized Relationships

Relationship	В	<i>p</i> -value	
H1: Motive strength → Frequency evaluation of goal	0.243	0.004	SUPPORTED
progress 112. Evaluation of goal macross. Nacitive effect	0.245	0.000	CLIDDODTED
H2: Evaluation of goal progress → Positive affect	0.245	0.000	SUPPORTED
H3: Evaluation of goal progress → Authentic pride	0.399	0.000	SUPPORTED
H4: Positive affect → Venture performance	0.055	0.645	NOT SUPPORTED
H5: Authentic pride → Venture performance	0.332	0.001	SUPPORTED

Table 3. *Regression Results for Hypotheses 1-3*

Source	SS	df	MS	Number o		277
Model Residual	17.1734849 199.186123	7 269	2.45335499 .740468861		d =	3.31 0.0021 0.0794 0.0554
Total	216.359608	276	.783911625			.86051
e_all	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
m_all d_all se_all sc_all gender yearsrunning age _cons	.243215 1110938 .2047803 .1152728 106722 0455055 .0005627 2.058798	.0825862 .0780148 .1347472 .0881917 .1146955 .0243372 .0051093 .6185574	-1.42 1.52 1.31 -0.93 -1.87 0.11	0.156 - 0.130 - 0.192 0.353 - 0.063 - 0.912	0806174 .264691 .060513 0583608 .332537 .093421 0094965 8409684	.4058125 .0425034 .4700735 .2889065 .1190929 .0024101 .010622 3.276627

Source	SS	df	MS		er of obs 268)	=	276 16.22
Model	37.0647415	7	5.29496307			=	0.0000
Residual	87.4880117	268	.326447805		uared	_	0.2976
					R-squared	_	0.2792
Total	124.552753	275	.452919102			=	.57136
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
p_all	.244709	.0466034	5.25	0.000	.1529537		.3364643
d_all	0777125	.0526314	-1.48	0.141	1813361		.0259111
se_all	.4370398	.0887465	4.92	0.000	.2623108		.6117688
sc_all	.105609	.0576862	1.83	0.068	0079667		.2191848
gender	0079078	.0764037	-0.10	0.918	1583355		.14252
yearsrunning	004557	.0163809	-0.28	0.781	0368087		.0276947
age	.0007816	.0033498	0.23	0.816	0058137		.0073768
_cons	1.632287	.3871019	4.22	0.000	.870139		2.394434
Source	SS	df	MS	Numb	er of obs	=	276
	+				268)	=	26.88
Model	74.850491	7	10.6929273			=	0.0000
Residual	106.614524	268	.397815386		uared	=	0.4125
	+				R-squared	=	0.3971
Total	181.465014	275	.65987278	B Root	MSE	=	.63073
autpride_all	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
p_all	.3987374	.051446	7.75	0.000	.2974478		.5000271
d_all	1375581	.0581004	-2.37	0.019	2519493		0231669
se_all	.4672069	.0979682	4.77	0.000	.2743217		.660092
sc_all	.0884629	.0636804	1.39	0.166	0369145		.2138404
gender	.0155465	.0843428	0.18	0.854	1505123		.1816053
yearsrunning	.0262297	.0180831	1.45	0.148	0093732		.0618327
age	.0015132	.0036979	0.41	0.683	0057674		.0087938
_cons	.6792628	.4273259	1.59	0.113	16208		1.520606

Table 4.Structural Equation Modeling Results for Hypothesis 1

	Coef.	Std. Err.	Z	P>z	[95% Cont	f. Interval]
Structural						
Eval_finan						
Motive	0.4963897	0.1021122	4.86	0	0.2962535	0.6965258
Measureme	nt					
m_f_wealth						
Motive	1	(constrained)			
_cons	3.353662	0.0767993	43.67	0	3.203138	3.504186
m_f_income						
Motive	1.060637	0.0758906	13.98	0	0.9118938	1.20938
_cons	3.477416	0.0739514	47.02	0	3.332474	3.622359
m_f_security	/					
Motive	0.9822652	0.0840848	11.68	0	0.817462	1.147068
_cons	3.403537	0.0820013	41.51	0	3.242818	3.564257
m_f_inherit						
Motive	0.4409898	0.0826635	5.33	0	0.2789724	0.6030072
_cons	2.355194	0.0795468	29.61	0	2.199285	2.511103
e_f_wealth						
Eval_finan	1	(constrained)			
_cons	3.023498	0.0925806	32.66	0	2.842044	3.204953
e_f_income						
Eval_finan	0.8055774	0.1146901	7.02	0	0.5807889	1.030366
_cons	3.211316	0.0844675	38.02	0	3.045763	3.376869
e_f_security						
Eval_finan	0.7262449	0.1166161	6.23	0	0.4976816	0.9548082
_cons	3.078399	0.0953183	32.3	0	2.891578	3.265219
e_f_inherit						
Eval_finan	0.5882617	0.1883296	3.12	0.002	0.2191425	0.9573809
_cons	2.639891	0.1547882	17.05	0	2.336512	2.943271
self-efficacy						
Motive	0.0529784	0.0276553	1.92	0.055	-0.0012249	0.1071818
_cons	3.316159	0.0265528	124.89	0	3.264116	3.368201
self-control						
Motive	-0.0632669	0.0415001	-1.52	0.127	-0.1446055	0.0180717
_cons	3.495372	0.039926	87.55	0	3.417118	3.573625
gender						
Motive	-0.0750946	0.0288681	-2.6	0.009	-0.131675	-0.0185142
_cons	1.32977	0.0270481	49.16	0	1.276756	1.382783
yearsrunning						
Motive	0.1265493	0.1625534	0.78	0.436	-0.1920495	0.4451481
_cons	4.670279	0.1539708	30.33	0	4.368502	4.972056
age						
Motive	0.4898135	0.7654155	0.64	0.522	-1.010373	1.99
_cons	35.57084	0.7260897	48.99	0	34.14773	36.99395
						n=323

74

	Coef.	Std. Err.	z	P>z	[95% Con	f. Interval]
Structural						
Eval_self-re						
Motive	1.897339	0.9565654	1.98	0.047	0.0225051	3.772172
Measuremer	nt					
m_s_vision						
Motive	1	(constrained)			
_cons	4.423331	0.0532215	83.11	0	4.319019	4.527643
m_s_power						
Motive	1.821541	0.9788648	1.86	0.063	-0.096999	3.740081
_cons	3.319055	0.0819704	40.49	0	3.158396	3.479714
e_s_vision						
Eval_self-re	1	(constrained)			
_cons	3.629376	0.0741524	48.94	0	3.48404	3.774712
e_s_power						
Eval_self-re	1.197551	0.4565993	2.62	0.009	0.3026332	2.09247
_cons	3.064703	0.0984115	31.14	0	2.87182	3.257586
self-efficacy						
Motive	2.494297	1.457628	1.71	0.087	-0.3626019	5.351195
_cons	3.316064	0.0266185	124.58	0	3.263892	3.368235
self-control						
Motive	1.999588	0.9279136	2.15	0.031	0.1809107	3.818265
_cons	3.495687	0.0399612	87.48	0	3.417365	3.57401
gender						
Motive	-0.1836908	0.2473421	-0.74	0.458	-0.6684724	0.3010908
_cons	1.329296	0.0270467	49.15	0	1.276285	1.382306
yearsrunning						
Motive	2.440146	1.6527	1.48	0.14	-0.7990866	5.679379
_cons	4.669246	0.1539639	30.33	0	4.367483	4.97101
age						
Motive	2.157651	6.32477	0.34	0.733	-10.23867	14.55397
_cons	35.57039	0.7261123	48.99	0	34.14723	36.99354
						n=323

	Coef.	Std. Err.	z	P>z	[95% Conf	. Interval]
Structural						
Eval_indepe						
Motive	0.5456233	0.1588527	3.43	0.001	0.2342778	0.8569688
Measuremer	nt					
m_i_flexibilit	.y					
Motive	1	(constrained)			
_cons	3.906703	0.0744552	52.47	0	3.760773	4.052632
m_i_freedon	า					
Motive	1.196334	0.275207	4.35	0	0.6569378	1.735729
_cons	4.345069	0.0568457	76.44	0	4.233654	4.456485
e_i_flexibility	/					
Eval_indepe	1	(constrained)			
_cons	3.377736	0.0816766	41.35	0	3.217652	3.537819
e_i_freedom						
Eval_indepe	1.182839	0.2791694	4.24	0	0.6356775	1.730001
_cons	3.425623	0.0764448	44.81	0	3.275794	3.575452
self-efficacy						
Motive	0.1882858	0.0456239	4.13	0	0.0988646	0.277707
_cons	3.316277	0.0264755	125.26	0	3.264386	3.368168
self-control						
Motive	0.0466647	0.0728043	0.64	0.522	-0.096029	0.1893585
_cons	3.495684	0.0399355	87.53	0	3.417412	3.573956
gender						
Motive	0.0319066	0.0484231	0.66	0.51	-0.0630009	0.1268141
_cons	1.328936	0.0270487	49.13	0	1.275921	1.38195
yearsrunning						
Motive	0.627909	0.2620995	2.4	0.017	0.1142034	1.141615
_cons	4.668256	0.1539632	30.32	0	4.366494	4.970019
age						
Motive	0.5682902	1.327038	0.43	0.668	-2.032657	3.169237
_cons	35.57052	0.726104	48.99	0	34.14738	36.99366
						n=322

	Coef.	Std. Err.	Z	P>z	[95% Conf	f. Interval]
Structural						
Eval_roles						
Motive	0.5733045	0.1515728	3.78	0	0.2762273	0.8703818
Measuremer	nt					
m_l_admire						
Motive	1	(constrained)			
_cons	2.811753	0.082771	33.97	0	2.649525	2.973982
m_l_respect						
Motive	0.532118	0.0977078	5.45	0	0.3406142	0.7236219
_cons	2.292013	0.0711724	32.2	0	2.152518	2.431508
m_l_traditio	n					
Motive	0.5967219	0.0904461	6.6	0	0.4194508	0.773993
_cons	1.726025	0.0672346	25.67	0	1.594247	1.857802
e_l_admire						
Eval_roles	1	(constrained)			
_cons	2.809728	0.1486407	18.9	0	2.518398	3.101059
e_l_respect						
Eval_roles	0.8918985	0.2824784	3.16	0.002	0.3382509	1.445546
_cons	2.52686	0.1474502	17.14	0	2.237863	2.815857
e_l_tradition	1					
Eval_roles	1.375365	0.3781291	3.64	0	0.6342454	2.116484
_cons	2.056452	0.2284678	9	0	1.608663	2.50424
self-efficacy						
Motive	0.0058157	0.0320268	0.18	0.856	-0.0569556	0.068587
_cons	3.316241	0.0266111	124.62	0	3.264085	3.368398
self-control						
Motive	-0.1500124	0.0515892	-2.91	0.004	-0.2511253	-0.0488995
_cons	3.48841	0.0399938	87.22	0	3.410023	3.566796
gender						
Motive	-0.0491524	0.0315415	-1.56	0.119	-0.1109727	0.0126679
_cons	1.329219	0.0270464	49.15	0	1.276209	1.382229
yearsrunning	S					
Motive	-0.4098782	0.2018681	-2.03	0.042	-0.8055323	-0.014224
_cons	4.671346	0.1539699	30.34	0	4.369571	4.973122
age						
Motive	-3.321853	0.9406323	-3.53	0	-5.165458	-1.478247
_cons	35.58181	0.7259968	49.01	0	34.15888	37.00474
						n=322

	Coef.	Std. Err.	z	P>z	[95% Conf	. Interval]
Structural						
Eval_prosoc						
Motive	0.6251811	0.1133713	5.51	0	0.4029775	0.8473847
Measuremer	nt					
m_p_helpoth	ners					
Motive	1	(constrained)			
_cons	3.920669	0.0666257	58.85	0	3.790085	4.051253
m_p_commu	ınity					
Motive	1.1439	0.1246964	9.17	0	0.8994999	1.388301
_cons	3.828066	0.0708405	54.04	0	3.689221	3.966911
e_p_helpoth	ers					
Eval_prosoc	1	(constrained)			
_cons	3.480971	0.0843265	41.28	0	3.315694	3.646248
e_p_commu	nity					
Eval_prosoc	1.080083	0.1622145	6.66	0	0.762148	1.398017
_cons	3.29083	0.0814145	40.42	0	3.13126	3.450399
self-efficacy						
Motive	-0.0038796	0.0310722	-0.12	0.901	-0.0647799	0.0570208
_cons	3.315871	0.0265769	124.77	0	3.263781	3.36796
self-control						
Motive	-0.0191266	0.0476044	-0.4	0.688	-0.1124294	0.0741762
_cons	3.495154	0.0399538	87.48	0	3.416845	3.573462
gender						
Motive	0.1032689	0.0324384	3.18	0.001	0.0396909	0.1668469
_cons	1.329392	0.0270406	49.16	0	1.276393	1.382391
yearsrunning						
Motive	-0.4108694	0.1838634	-2.23	0.025	-0.771235	-0.0505038
_cons	4.669641	0.1539568	30.33	0	4.367892	4.971391
age						
Motive	-2.347333	0.8918938	-2.63	0.008	-4.095413	-0.5992532
_cons	35.57895	0.7259361	49.01	0	34.15614	37.00176
						n=322

 Table 5.

 Regression Results for for Hypothesis 1 Using Listwise Deletion

Source	SS	df	MS		n	53
					F(7, 45)	0.61
Model	3.84699	7	0.54957		Prob>F	0.7465
Residual	40.70726	45	0.904606		R-squared	0.0863
					Adj R-square	-0.0558
Total	44.55425	52	0.856812		Root MSE	0.95111
Eval_finan	Coef.	Std. Err.	t	P>t	[95% Conf. In	iterval]
Motive_fina	0.072738	0.186514	0.39	0.698	-0.30292	0.448396
Diff_finan	-0.223015	0.173982	-1.28	0.206	-0.573433	0.127403
self-efficacy	0.031326	0.316595	0.1	0.922	-0.606329	0.668981
self-control	0.131406	0.2453	0.54	0.595	-0.362654	0.625466
gender	-0.333836	0.306021	-1.09	0.281	-0.950194	0.282522
yearsrunning	-0.03205	0.062287	-0.51	0.609	-0.157503	0.093403
age	0.004218	0.013495	0.31	0.756	-0.022962	0.031398
_cons	3.671139	1.493889	2.46	0.018	0.662291	6.679986

Source	SS	df	MS		n	153
					F(7,145)	3.72
Model	26.68108	7	3.811582		Prob>F	0.001
Residual	148.5281	145	1.024332		R-squared	0.1523
					Adj R-Square	0.1114
Total	175.2092	152	1.152692		Root MSE	1.0121
Eval _self-re	Coef.	Std. Err.	t	P>t	[95% Conf. In	iterval]
Motive_self-	0.437715	0.10835	4.04	0	0.223565	0.651865
Diff_self-re	-0.037817	0.090749	-0.42	0.678	-0.217179	0.141546
self-efficacy	0.219625	0.229618	0.96	0.34	-0.234206	0.673455
self-control	0.125757	0.14673	0.86	0.393	-0.164248	0.415762
gender	-0.260552	0.183744	-1.42	0.158	-0.623713	0.10261
yearsrunning	-0.010632	0.040262	-0.26	0.792	-0.090208	0.068944
age	-0.008385	0.008464	-0.99	0.323	-0.025113	0.008343
_cons	1.228759	0.939649	1.31	0.193	-0.628419	3.085938

Source	SS	df	MS		n	212
					F(7,204)	2.55
Model	21.40314	7	3.057591		Prob>F	0.0155
Residual	244.6476	204	1.199253		R-squared	0.0804
					Adj R-Square	0.0489
Total	266.0507	211	1.260904		Root MSE	1.0951
Eval_indep	Coef.	Std. Err.	t	P>t	[95% Conf. In	iterval]
Motive_inde	0.330282	0.105157	3.14	0.002	0.122949	0.537615
Diff_indep	-0.130566	0.08071	-1.62	0.107	-0.289699	0.028567
self-efficacy	0.037484	0.206323	0.18	0.856	-0.369315	0.444283
self-control	0.163604	0.133123	1.23	0.221	-0.09887	0.426078
gender	-0.180598	0.166097	-1.09	0.278	-0.508086	0.14689
yearsrunning	-0.025147	0.035245	-0.71	0.476	-0.094639	0.044345
age	0.000292	0.007306	0.04	0.968	-0.014113	0.014696
_cons	2.106475	0.799643	2.63	0.009	0.52985	3.6831

Source	SS	df	MS		n	82
					F(7,74)	2.82
Model	19.90702	7	2.843861		Prob>F	0.0116
Residual	74.5442	74	1.007354		R-squared	0.2108
					Adj R-Square	0.1361
Total	94.45122	81	1.166064		Root MSE	1.0037
Eval_recog	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
Motive_reco	0.474425	0.137708	3.45	0.001	0.200037	0.748813
Diff_recog	0.049922	0.120072	0.42	0.679	-0.189326	0.289171
self-efficacy	0.091671	0.292788	0.31	0.755	-0.491723	0.675065
self-control	-0.080685	0.22399	-0.36	0.72	-0.526995	0.365624
gender	-0.425148	0.233813	-1.82	0.073	-0.89103	0.040735
yearsrunning	-0.105006	0.065406	-1.61	0.113	-0.235329	0.025317
age	0.025473	0.014948	1.7	0.093	-0.004311	0.055258
_cons	1.163873	1.221064	0.95	0.344	-1.26915	3.596896

Source	SS	df	MS		n	15
					F(7,7)	4.89
Model	12.48353	7	1.783361		Prob>F	0.0264
Residual	2.553511	7	0.364787		R-squared	0.8302
					Adj R-Square	0.6604
Total	15.03704	14	1.074074		Root MSE	0.60398
Eval_roles	Coef.	Std. Err.	t	P>t	[95% Conf. Ir	nterval]
Motive_role	0.419959	0.201126	2.09	0.075	-0.055628	0.895545
Diff_roles	0.737188	0.340025	2.17	0.067	-0.066843	1.541218
self-efficacy	1.602785	0.470347	3.41	0.011	0.490591	2.714978
self-control	-0.123249	0.308157	-0.4	0.701	-0.851924	0.605425
gender	0.059974	0.449869	0.13	0.898	-1.003797	1.123746
yearsrunning	0.087637	0.0978	0.9	0.4	-0.143623	0.318896
age	-0.021984	0.019276	-1.14	0.292	-0.067565	0.023596
_cons	-5.628075	1.878759	-3	0.02	-10.07063	-1.185517

Source	SS	df	MS		n	197
					F(7,189)	4.03
Model	32.27249	7	4.610356		Prob>F	0.0004
Residual	216.2351	189	1.144101		R-squared	0.1299
					Adj R-Square	0.0976
Total	248.5076	196	1.267896		Root MSE	1.0696
Eval_innov	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
Motive_inno	0.347414	0.082497	4.21	0	0.184681	0.510147
Diff_innov	-0.153478	0.070657	-2.17	0.031	-0.292857	-0.0141
self-efficacy	-0.186342	0.199033	-0.94	0.35	-0.578953	0.206269
self-control	0.173062	0.131226	1.32	0.189	-0.085793	0.431917
gender	-0.196629	0.168796	-1.16	0.246	-0.529595	0.136338
yearsrunning	-3.11E-05	0.037702	0	0.999	-0.074402	0.07434
age	-0.004596	0.008019	-0.57	0.567	-0.020415	0.011222
_cons	3.143995	0.790152	3.98	0	1.585345	4.702646

Source	SS	df	MS		n	198
					F(7,190)	8.74
Model	59.23503	7	8.462147		Prob>F	0
Residual	183.9417	190	0.968114		R-squared	0.2436
					Adj R-Square	0.2157
Total	243.1768	197	1.2344		Root MSE	0.98393
Eval_prosoc	Coef.	Std. Err.	t	P>t	[95% Conf. Ir	iterval]
Motive_pros	0.570617	0.086919	6.56	0	0.399167	0.742067
Diff_prosoc	-0.182521	0.07878	-2.32	0.022	-0.337916	-0.027125
self-efficacy	-0.045426	0.18275	-0.25	0.804	-0.405906	0.315054
self-control	0.060863	0.12181	0.5	0.618	-0.179411	0.301136
gender	-0.177409	0.147394	-1.2	0.23	-0.468147	0.11333
yearsrunning	-0.046203	0.032687	-1.41	0.159	-0.110679	0.018273
age	-0.003053	0.006705	-0.46	0.649	-0.016279	0.010172
_cons	2.096362	0.837446	2.5	0.013	0.444477	3.748246

Table 6. *Regression Results with One Missing Value for Financial Success and Roles*

Source	SS	df	MS	n		137
				F(7, 129)		1.07
Model	7.214	7	1.031	Prob>F		0.3852
Residual	124.029	129	0.961	R-squar	red	0.055
				Adj R-squared		0.0037
Total	131.243	136	0.965	Root MSE		0.98054
Eval_finan	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	rval]
Motive_fin	0.2419162	0.1152277	2.1	0.038	0.0139354	0.469897
Diff_finan	-0.1268757	0.1139317	-1.11	0.268	-0.3522923	0.0985409
self-efficac	0.0122711	0.2160909	0.06	0.955	-0.4152699	0.4398122
self-control	-0.0182315	0.1476787	-0.12	0.902	-0.3104175	0.2739544

gender	-0.1665223	0.1956796	-0.85	0.396	-0.5536792	0.2206345
yearsrunni	-0.006199	0.0427682	-0.14	0.885	-0.090817	0.078419
age	0.0044207	0.0086328	0.51	0.609	-0.0126595	0.0215008
_cons	2.961869	0.9457742	3.13	0.002	1.090632	4.833107
_cons	2.961869	0.9457742	3.13	0.002	1.090632	4.833107

Source	SS	df	MS	n		66	
				F(7,58)		2.13	
Model	14.208	7	2.030	Prob>F		0.0543	
Residual	55.244	58	0.952	R-squar	red	0.2046	
				Adj R-s	quared	0.1086	
Total	69.452	65	1.068	Root M	SE	0.97595	
Eval_roles	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	rval]	
Motive_rol	0.5409179	0.1825396	2.96	0.004	0.1755251	0.9063106	
Diff_roles	0.1029679	0.1645143	-0.63	0.534	-0.432279	0.2263433	
self-efficac	0.368936	0.3035067	1.22	0.229	-0.2385986	0.9764707	
self-control	0.0492666	0.2408783	-0.2	0.839	-0.531437	0.4329037	
gender	0.1374047	0.2842303	0.48	0.631	-0.4315441	0.7063535	
yearsrunnin	-0.068262	0.0564194	-1.21	0.231	-0.1811978	0.0446738	
age	0.0046449	0.0124146	-0.37	0.71	-0.0294954	0.0202056	
_cons	0.7520616	1.285097	0.59	0.561	-1.820339	3.324462	

Table 7. Regression Results for Hypothesis 2 Influence of Evaluation of Goal Progress by Motive Category on Positive Affect

Source	SS	df	MS		n	235
					F(7,227)	11.050
Model	26.6115363	7	3.80164805		Prob>F	0.000
Residual	78.086672	227	0.34399415		R-squared	0.254
					Adj R-squared	0.231
Total	104.698208	234	0.447428241		Root MSE	0.587
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
prog_finan	0.070	0.039	1.770	0.078	-0.008	0.148
diff_finan	-0.105	0.051	-2.060	0.041	-0.205	-0.005
self-efficacy	0.489	0.099	4.960	0.000	0.294	0.683
self-control	0.148	0.066	2.240	0.026	0.018	0.279
gender	-0.007	0.084	-0.080	0.934	-0.172	0.158
yearsrunning	0.012	0.018	0.680	0.496	-0.023	0.048
age	-0.001	0.004	-0.330	0.742	-0.009	0.006
_cons	2.022	0.400	5.060	0.000	1.234	2.810
Source	SS	df	MS		n	262
					F(7,254)	12.260
Model	28.3046242	7	4.04351774		Prob>F	0.000
Residual	83.7568648	254	0.329751436		R-squared	0.253
					Adj R-squared	0.232
Total	112.061489	261	0.429354364		Root MSE	0.574
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
prog_self-r	0.151	0.035	4.320	0.000	0.082	0.219
diff_self-re	-0.039	0.037	-1.040	0.299	-0.112	0.034
self-efficacy	0.423	0.092	4.610	0.000	0.242	0.604
self-control	0.129	0.060	2.140	0.033	0.011	0.248
gender	-0.039	0.078	-0.500	0.618	-0.193	0.115
yearsrunning	0.015	0.017	0.910	0.366	-0.018	0.048
age	-0.001	0.003	-0.210	0.832	-0.007	0.006
_cons	1.765	0.369	4.780	0.000	1.038	2.492

84

Source	SS	df	MS		n	257
					F(7,249)	11.350
Model	26.0409592	7	3.72013703		Prob>F	0.000
Residual	81.6217678	249	0.327798264		R-squared	0.242
					Adj R-squared	0.221
Total	107.662727	256	0.420557527		Root MSE	0.573
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
prog_indep	0.132	0.035	3.730	0.000	0.062	0.202
diff_indep	-0.052	0.037	-1.390	0.165	-0.125	0.021
self-efficacy	0.423	0.092	4.590	0.000	0.242	0.605
self-control	0.162	0.061	2.670	0.008	0.042	0.281
gender	-0.028	0.078	-0.350	0.726	-0.182	0.127
yearsrunning	0.000	0.017	0.010	0.995	-0.033	0.034
age	-0.002	0.003	-0.530	0.595	-0.009	0.005
_cons	1.835	0.369	4.970	0.000	1.107	2.563
Source	SS	df	MS		n	161
					F(7,153)	7.530
Model	15.638	7	2.234		Prob>F	0.000
Residual	45.380	153	0.297		R-squared	0.256
					Adj R-squared	0.222
Total	61.018	160	0.381		Root MSE	0.545
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
_						
prog_recog	0.111	0.042	2.620	0.010	0.028	0.195
diff_recog	-0.046	0.044	-1.040	0.300	-0.133	0.041
self-efficacy	0.420	0.108	3.870	0.000	0.205	0.634
self-control	0.069	0.077	0.890	0.373	-0.084	0.222
gender	-0.084	0.092	-0.920	0.358	-0.265	0.097
yearsrunning	0.006	0.023	0.240	0.814	-0.041	0.052
age	0.006	0.005	1.120	0.265	-0.004	0.015
_cons	2.086	0.439	4.750	0.000	1.219	2.952

Source	SS	df	MS		n	156
					F(7,148)	4.730
Model	12.904	7	1.843		Prob>F	0.000
Residual	57.717	148	0.390		R-squared	0.183
					Adj R-squared	0.144
Total	70.621	155	0.456		Root MSE	0.624
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
prog_roles	0.078	0.054	1.430	0.155	-0.030	0.185
diff_roles	0.012	0.055	0.230	0.822	-0.096	0.121
self-efficacy	0.456	0.129	3.520	0.001	0.200	0.711
self-control	0.081	0.093	0.870	0.385	-0.103	0.266
gender	-0.029	0.111	-0.270	0.790	-0.248	0.189
yearsrunning		0.025	1.310	0.191	-0.017	0.083
age	-0.002	0.005	-0.450	0.654	-0.013	0.008
_cons	1.834	0.506	3.630	0.000	0.834	2.833
Source	SS	df	MS		n	198
					F(7,190)	9.960
Model	22.625	7	3.232		Prob>F	0.000
Residual	61.671	190	0.325		R-squared	0.268
					Adj R-squared	0.241
Total	84.296	197	0.428		Root MSE	0.570
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Inte	erval]
prog_innov	0.024	0.035	0.690	0.491	-0.044	0.092
diff_innov	-0.001	0.038	-0.030	0.972	-0.076	0.074
self-efficacy	0.503	0.104	4.840	0.000	0.298	0.708
self-control	0.159	0.070	2.270	0.024	0.021	0.297
gender	-0.040	0.090	-0.440	0.658	-0.217	0.137
yearsrunning	0.042	0.020	2.100	0.037	0.003	0.081
age	-0.003	0.004	-0.820	0.413	-0.012	0.005
_cons	1.674	0.398	4.210	0.000	0.889	2.459

Source	SS	df	MS		n	232
					F(7,224)	12.420
Model	27.063	7	3.866		Prob>F	0.000
Residual	69.703	224	0.311		R-squared	0.280
					Adj R-squared	0.257
Total	96.765	231	0.419		Root MSE	0.558
pos_affect	Coef.	Std. Err.	t	P>t	[95% Conf. Into	arvall
pos_arrect	coei.	Std. ETT.		120	[55% COIII: IIIC	er varj
prog_proso	0.164	0.038	4.270	0.000	0.088	0.239
diff_proso	0.000	0.042	-0.010	0.993	-0.083	0.083
self-efficacy	0.417	0.096	4.360	0.000	0.228	0.606
self-control	0.168	0.062	2.710	0.007	0.046	0.291
gender	-0.044	0.080	-0.550	0.580	-0.202	0.113
yearsrunning	0.005	0.017	0.310	0.757	-0.029	0.039
age	-0.002	0.004	-0.470	0.639	-0.009	0.005
_cons	1.607	0.390	4.120	0.000	0.838	2.376

Table 8.Regression Results for Hypothesis 2 Influence of Evaluation of Goals Progress by Specific Goal on Positive Affect

on Fositive Ajject							
Source	SS	df	MS		er of obs	=	168
	47. 704007/		0.5/4/400/	F(7,		=	7.30
Model	17.7913276	7	2.54161824			=	0.0000
Residual	55.7241434	160	.348275896		uared	=	0.2420
	70 545/74	4/7			R-squared	=	0.2088
Total	73.515471	167	.440212401	L Root	MSE	=	.59015
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
p_f_wealth	.0585988	.0441827	1.33	0.187	028657	5	.1458553
d_f_wealth	1324962	.054455	-2.43	0.016	240039	5	0249529
se_all	.3970279	.1183521	3.35	0.001	.163294	1	.6307616
sc_all	.1443567	.0831986	1.74	0.085	019952	3	.3086658
gender	0676719	.1023159	-0.66	0.509	269735	9	.134392
yearsrunning	0029964	.0239387	-0.13	0.901	05027	3	.0442801
age	.0037156	.0047946	0.77	0.440	005753	4	.0131845
_cons	2.513469	.4662727	5.39	0.000	1.59262	7 	3.434312
Source	SS	df	MS	Numbe	er of obs	=	198
				- F(7,		=	8.17
Model	19.5905392	7	2.79864846			=	0.0000
Residual	65.0535227	190	.342386961		uared	=	0.2314
+					R-squared	=	0.2031
Total	84.6440619	197	.429665289			=	.58514
posaffect_~1	 Coef.	Std. Err.	t	P> t	[95% Cor		Interval]
p_f_income	.034895	.0349145	1.00	0.319	033974	3	.1037648
d_f_income	0550692	.0449737	-1.22	0.222	14378		.0336426
se_all	.4475226	.107061	4.18	0.000	.236341		.6587033
sc_all	.1736261	.0707361	2.45	0.015	.034097		.313155
gender	0292894	.0921819	-0.32	0.751	211120		.1525419
yearsrunning	.012874	.0204921	0.63	0.531	027547		.0532952
age	.0002893	.0043718	0.07	0.947	008334		.0089128
_cons	1.951635	.4236463	4.61	0.000	1.11598	1	2.787289

Source	l ss	df	MS			=	172
Model	14.1004665	7	2.01435236		164)	=	6.38 0.0000
Residual	51.7549091	164	.315578714		uared	_	0.2141
						=	0.1806
Total	65.8553757	171	.385119156	Root	MSE	=	.56176
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
p_f_security	+ .0742101	.0414952	1.79	0.076	0077237		.1561439
d_f_security	0818828	.0529965		0.124	1865262		.0227605
se_all	.3381864	.1131717		0.003	.114725		.5616478
sc_all	.1947716	.0773558		0.013	.0420299		.3475133
gender	1056384	.0967939		0.277	2967612		.0854844
yearsrunning	.006163	.0196485		0.754	0326337		.0449597
age	000263	.0040937		0.949	0083461		.0078201
_cons	2.389528	.430504	5.55	0.000	1.539483		3.239573
						-	
Source	l SS	df	MS	Numbe	er of obs	=	70
	+			F(7,	62)	=	3.19
Model	6.54148395	7	.934497707		> F	=	0.0060
Residual	18.1746874	62	.293140119			=	0.2647
	+					=	0.1816
Total	24.7161713	69	.358205381	Root	MSE	=	.54142
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Conf	•	Interval]
p_f_inherit	.0504098	.0626496	0.80	0.424	0748249		.1756445
d_f_inherit	1414154	.0665916	-2.12	0.038	2745302		0083007
se_all	.533945	.1535666		0.001	.2269698		.8409203
sc_all	0338104	.1151477		0.770	2639873		.1963666
gender	1391522	.1485183		0.352	4360361		.1577318
yearsrunning	0322557	.030397		0.293	0930184		.028507
age	.0112701	.0062337		0.075	0011909		.0237312
_cons	2.746034	.6220254	4.41	0.000	1.502623		3.989445

Source	SS	df	MS		er of obs 249)	=	257 11.82
Model	27.4358876	7	3.91941252			=	0.0000
Residual	82.5532041	249	.331538972		uared	=	0.2494
Residual	02.5552041	249	.3313309/2		R-squared	=	0.2283
Total	109.989092	256	.42964489		•	=	.57579
TOTAL	107.707072	250	.42704407	ROUL	MOL	_	.5/5/7
posaffect_~l	Coef.	Std. Err.	t	P> t	[95% Con	f.	<pre>Interval]</pre>
	40000/0	00407/0		0.000	0//0/0/		404/000
p_s_vision	.1288262	.0318743	4.04	0.000 0.228	.0660486		.1916038
d_s_vision	0404027	.0334585	-1.21		1063004		.0254951
se_all	.4187081	.0931243	4.50	0.000	.2352963		.6021198
sc_all	.1401753	.0608553	2.30	0.022	.0203186		.2600321
gender	0574794	.0792021	-0.73	0.469	2134709		.098512
yearsrunning	.0183697	.016837	1.09	0.276	0147913		.0515307
age	0004354	.0034678	-0.13	0.900	0072654		.0063947
_cons	1.805615	.3614566	5.00	0.000	1.093712		2.517517
Source	l ss	df	MS	Numb	er of obs	=	155
Source	33	a i	MO		147)		5.86
Model	13.5557508	 7	1.93653583			=	0.0000
Residual	48.547134	147	.330252612		uared	=	0.2183
Residual	40.54/134	147	.330252012		uareo R-squared	=	0.1811
Total	62.1028848	154	.403265486		•	=	.57468
local	02.1028848	154	.403205480	ROOL	MSE	=	.5/408
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
	+						
p_s_power	.1300614	.0442848	2.94	0.004	.0425443		.2175786
d_s_power	0453206	.0459049	-0.99	0.325	1360393		.0453982
se_all	.3869866	.1268553	3.05	0.003	.136291		.6376823
sc_all	.0914354	.0836113	1.09	0.276	0738		.2566708
gender	0828392	.1054705	-0.79	0.433	2912736		.1255952
yearsrunning	.0096024	.0224257	0.43	0.669	034716		.0539208
age	.003633	.0047018	0.77	0.441	0056589		.0129249
_cons	2.072403	.4688422	4.42	0.000	1.145862		2.998945
_							

Source	SS	df	MS		er of obs	=	223
Model	15.7111307	7	2.24444725		215)	=	6.79 0.0000
Residual	71.0612284	215	.330517341		uared	_	0.1811
	1.0012204				R-squared	=	0.1544
Total	86.7723591	222	.390866482			_	.57491
	,						
posaffect_a	ll Coef	. Std. E	rr. t	P> t	95%	Conf.	Interval]
p_i_flexibili	ty .071841	.03349	22 2.15	0.03	3 .005	826	.1378562
d_i_flexibilit		.03550	83 -0.87	0.38	71007	975	.0391803
se_a	.344436	.10116	62 3.40	0.00	1 .1450	315	.5438405
sc_a:		.06854	32 2.82	0.00	.0585	047	.3287101
gende	er 064691	.08507	37 -0.76	0.44	32323	762	.1029942
yearsrunni	ng .0102593	.01794	65 0.57	0.56	0251	143	.0456329
ag	ge 0024533	.00367	55 -0.67	0.50	0096	979	.0047913
_cor	ns 2.172322	.38960	96 5.58	0.00	1.404	378	2.940265
Source	SS	df	MS		er of obs	=	248
	+				240)	=	10.86
Model	24.0496512	7	3.43566445		-	=	0.0000
Residual	75.8946636	240	.316227765		uared	=	0.2406
Total	99.9443148	247	.404632853		R-squared	=	0.2185 .56234
Total	99.9443148	247	.404032853	ROOT	MSE	=	.50234
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Cor	f. In	nterval]
p_i_freedom	.1118139	.0327628		0.001	.0472746		1763533
d_i_freedom	0580235	.0338267	-1.72	0.088	1246587	΄.	.0086117
se_all	.408879	.0920692	4.44	0.000	.227512	·	5902459
sc_all	.153666	.0607314	2.53	0.012	.0340313	ι.	2733006
gender	0342723	.0780772		0.661	1880764		1195319
yearsrunning	.0023801	.0170759	0.14	0.889	0312576		.0360178
age	001412	.003504	-0.40	0.687	0083144		.0054905
_cons	1.967277	.3623799	5.43	0.000	1.253425	5 2	2.681128

Source	SS	df	MS		per of obs	=	140 5.36
Model	9.7451678	 7	1.39216683		, 132)) > F	=	0.0000
Residual	34.3086041	132	.259913667		quared	_	0.2212
Kesiddai	34.3000041	132	.237713007		R-squared	_	0.1799
Total	44.0537719	139	.316933611		t MSE	=	.50982
posaffect_a	ll Coef	. Std. E	rr. t	P> 1	[95%	Conf	. Interval]
p_r_recognition	on .07886	1 .03962	07 1.99	0.0	.000	4873	.1572346
d_r_recognition	on 06208	8 .0421	56 -1.47	0.14	431454	4768	.0213009
se_a	11 .303910	.10976	49 2.77	0.00	.086	7847	.5210363
sc_a:	.07902	3 .07888	21 1.00	0.33	L80770	0135	.2350595
gende	er 076218	4 .09085	22 -0.84	0.46	9325	5933	.1034962
yearsrunni	ng .009866:	1 .02386	05 0.41	0.68	300373	3323	.0570646
ag	ge .003900	.00526	13 0.74	0.40	006	5069	.014308
_cor	ns 2.5988	1 .42623	54 6.10	0.00	00 1.75	5674	3.441945
Source	SS	df	MS		oer of obs	=	101
	+				93)	=	5.71
Model	13.3686987	7	1.90981411		> F .	=	0.0000
Residual	31.0929345	93	.334332629		quared	=	0.3007
	+				R-squared	=	0.2480
Total	44.4616332	100	.444616332	Root	MSE	=	.57822
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Cor	nf. I	nterval]
p_r_position	.124361	.0534295	2.33	0.022	.0182606	6	.2304615
d_r_position	0410974	.0614907	-0.67	0.506	1632057	7	.0810109
se_all	.565975	.1475847	3.83	0.000	.2729009	9	.859049
sc_all	.0230215	.110993	0.21	0.836	197388	5	.2434315
gender	2008842	.1216305	-1.65	0.102	4424182	2	.0406498
yearsrunning	.011467	.0325068	0.35	0.725	0530853	1	.0760191
age	.0074301	.0067356	1.10	0.273	005945	5	.0208057
_cons	1.80553	.6051436	2.98	0.004	.6038348	В	3.007225

Source	l ss	df	MS			=	113 3.57
Model	9.90705038	 7	1.41529291			=	0.0018
Residual	41.6635705	105	.39679591			=	0.1921
Residual	41.0035705	105	.370/9391			=	0.1382
Total	51.5706209	112	.460451972			=	.62992
10181	01.0700207	112	.400451772	. Noot	FIGE		.02//2
posaffect_~1	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
p_l_admire	.0305913	.0566099	0.54	0.590	0816557		.1428382
d_l_admire	0744874	.062069	-1.20	0.233	1975588		.0485839
se_all	.5388801	.1503084	3.59	0.001	.2408465		.8369138
sc_all	.0045579	.1116042	0.04	0.968	2167326		.2258485
gender	0289221	.1308711	-0.22	0.826	2884153		.2305711
yearsrunning	.042425	.0288262	1.47	0.144	0147321		.099582
age	0022402	.0066468	-0.34	0.737	0154196		.0109393
_cons	2.224091	.5907708	3.76	0.000	1.052702		3.395481
Source	SS	df	MS			=	91
	+			F(7,		=	2.78
Model	6.7128392	7	.958977029			=	0.0119
Residual	28.5804465	83	.344342729			=	0.1902
Total	35.2932857	90	.392147619			=	0.1219 .58681
	,						
posaffect_~l	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
p_l_respect	.1813647	.0707492	2.56	0.012	.0406474		.3220821
d_l_respect	.0865583	.0643685	1.34	0.182	041468		.2145846
se_all	.2756807	.1688193	1.63	0.106	0600941		.6114555
sc_all	.1049483	.1247322	0.84	0.403	1431389		.3530356
gender	.0231315	.1357782	0.17	0.865	246926		.2931889
yearsrunning	.0276783	.031416	0.88	0.381	0348069		.0901635
age	0021802	.0063162	-0.35	0.731	0147428		.0103825
_cons	1.760428	.6362323	2.77	0.007	.4949872		3.025868

Source	SS	df	MS	Numb F(7,	er of obs	=	33 1.27
Model	3.27662201	7	.468088858			=	0.3049
Residual	9.21838079	25	.368735232		uared	=	0.2622
					R-squared	_	0.0557
Total	12.4950028	32	.390468838			=	.60724
posaffect_all	 Coef.	Std. Err	t	P> t	[95% (Conf.	Interval]
p_l_tradition	+ 0422859	.1097459	-0.39	0.703	26833	118	.18374
d_l_tradition	.146503	.1521826	0.96	0.345	1669		.4599289
se_all	.3912186	.2475985	1.58	0.127	11872		.9011573
sc_all	.1562684	.1845299	0.85	0.405	2237	778	.5363149
gender	302912	.2809097	-1.08	0.291	88149	565	.2756324
yearsrunning	0201823	.0612561	-0.33	0.745	14634	417	.1059771
age	.0030704	.0124292	0.25	0.807	0225	528	.0286687
_cons	2.202803	1.086864	2.03	0.053	03563	358	4.441241
Source	SS	df	MS		er of obs	=	198
Model	20 40/07/		3.23213914		190)	=	9.96
Residual	22.624974 61.6710164	7 190	.324584297		> F uared	=	0.0000 0.2684
Residual	01.0/10104	190	.324564297		uareu R-squared	=	0.2414
Total	84.2959904	197	.427898428		•	=	.56972
posaffect_~1	Coef.	Std. Err.	t	 P> t	[95% Cd	onf.	Interval]
p_n_idea	.0239234	.0346421	0.69	0.491	044409	91	.0922559
d_n_idea	001316	.0379848		0.972	076242		.0736101
se_all	.5027721	.1039411		0.000	.297745		.7077988
sc_all	.1589635	.069926		0.024	.021032		.2968946
gender	0398548	.0897851	-0.44	0.658	216958	34	.1372489
yearsrunning	.041996	.019992		0.037	.002563		.0814308
age	0034979	.0042594		0.413	011899	97	.0049039
_cons	1.67411	.3980709	4.21	0.000	.888903	36	2.459316

Source	SS	df	MS	Number F(7, 20		=	216 12.01
Model	25.7485804	 7	3.67836863	Prob >		=	0.0000
Residual	63.6862325	208	.30618381	R-squar	_	_	0.2879
				Adj R-s		=	0.2639
Total	89.4348129	215	.415975874	Root MS		=	.55334
posaffect_all	Coef.	Std. Er	r. t	P> t	[95%	Conf.	Interval]
p_p_helpothers	.1804748	.0361998	4.99	0.000	.1091	.093	.2518402
d_p_helpothers	.0133364	.038675	7 0.34	0.731	0629	103	.089583
se_all		.0984647	7 4.37	0.000	.2366	183	.6248518
sc_all		.0642324	4 2.47	0.014	.031	.957	.285217
gender		.081657		0.435	2248		.0971127
yearsrunning		.01775		0.459	0218		.0481635
age		.003613		0.497	0095		.0046668
_cons	1.527749	.3930168	3.89	0.000	.7529	417	2.302556
Source	SS	df	MS	Number		=	213
+				F(7, 20		=	9.38
Model	22.0703461	7	3.15290659	Prob >	-	=	0.0000
Residual	68.9241383	205	.336215309	R-squar		=	0.2425
				Adj R-s		=	0.2167
Total	90.9944844	212	.429219266	Root MS	E	=	.57984
posaffect_all	Coef.	Std. Err	. t	P> t	[95% 0	onf.	Interval]
p_p_community	.1056755	.0372588	2.84	0.005	.03221	.58	.1791351
d_p_community	0338671	.0405249	-0.84		11376	62	.0460319
se_all	.4316284	.1019816	4.23	0.000	.23056	11	.6326956
sc_all	.1305394	.0686769	1.90		00486	41	.265943
gender	0183232	.0849595	-0.22		18582		.1491833
yearsrunning	.0070342	.0186518	0.38		02973		.0438083
age	0019519	.0038353	-0.51		00951		.0056098
_cons	1.924154	.4130492	4.66	0.000	1.1097	85	2.738524

Table 9.Regression Results for Hypothesis 3 Influence of Evaluation of Goal Progress by Motive Category and Authentic Pride

Source	SS	df	MS		n	235
					F(7,227)	16.710
Model	52.110	7	7.444		Prob>F	0.000
Residual	101.123	227	0.445		R-squared	0.340
					Adj R-square	0.320
Total	153.234	234	0.655		Root MSE	0.667
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
prog_finan	0.181	0.045	4.040	0.000	0.093	0.270
diff_finan	-0.162	0.058	-2.800	0.006	-0.276	-0.048
self-efficacy	0.494	0.112	4.400	0.000	0.273	0.715
self-control	0.179	0.075	2.380	0.018	0.031	0.328
gender	0.047	0.095	0.500	0.621	-0.140	0.235
yearsrunning	0.038	0.021	1.860	0.065	-0.002	0.078
age	-0.001	0.004	-0.130	0.900	-0.009	0.008
_cons	1.160	0.455	2.550	0.011	0.264	2.057
Source	SS	df	MS		n	262
					F(7,254)	17.800
Model	53.496	7	7.642		Prob>F	0.000
Residual	109.080	254	0.429		R-squared	0.329
					Adj R-square	0.311
Total	162.576	261	0.623		Root MSE	0.655
autpride	Coef.	Std. Err.	t	P>t	[95% Conf. In	tervall
autpride	coci.	Jea. Err.		120	[5570 COIII. III	cervarj
prog_self-r	0.231	0.040	5.810	0.000	0.153	0.310
diff_self-re	-0.073	0.042	-1.710	0.088	-0.156	0.011
self-efficacy	0.483	0.105	4.600	0.000	0.276	0.689
self-control	0.108	0.069	1.560	0.119	-0.028	0.243
gender	-0.024	0.089	-0.270	0.787	-0.200	0.151
yearsrunning	0.056	0.019	2.950	0.003	0.019	0.093
age	-0.001	0.004	-0.150	0.882	-0.008	0.007
	-0.001	0.004	-0.150	0.002	-0.008	0.007

96

Source	SS	df	MS		n	257
					F(7,249)	17.050
Model	51.970	7	7.424		Prob>F	0.000
Residual	108.402	249	0.435		R-squared	0.324
					Adj R-square	0.305
Total	160.371	256	0.626		Root MSE	0.660
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. Int	erval]
prog_indep	0.208	0.041	5.100	0.000	0.128	0.289
diff_indep	-0.090	0.043	-2.110	0.036	-0.174	-0.006
self-efficacy	0.529	0.106	4.970	0.000	0.319	0.738
self-control	0.161	0.070	2.310	0.022	0.024	0.299
gender	0.029	0.090	0.330	0.745	-0.148	0.207
yearsrunning	0.028	0.020	1.420	0.156	-0.011	0.067
age	0.000	0.004	-0.040	0.966	-0.008	0.008
_cons	0.657	0.426	1.540	0.124	-0.181	1.496
Source	SS	df	MS		n	161
					F(7,153)	13.750
Model	40.205	7	5.744		Prob>F	0.000
Residual	63.923	153	0.418		R-squared	0.386
					Adj R-square	0.358
Total	104.128	160	0.651		Root MSE	0.646
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. Int	erval]
prog_recog	0.243	0.050	4.820	0.000	0.143	0.342
diff_recog	-0.061	0.053	-1.170	0.245	-0.165	0.042
self-efficacy	0.507	0.129	3.940	0.000	0.253	0.761
self-control	0.006	0.092	0.060	0.952	-0.176	0.187
gender	-0.097	0.109	-0.890	0.374	-0.312	0.118
yearsrunning	0.044	0.028	1.590	0.114	-0.011	0.099
age	0.008	0.006	1.320	0.187	-0.004	0.019
_cons	0.979	0.521	1.880	0.062	-0.050	2.007

Source	SS	df	MS			156
Source	33	ar	IVIS		n ====================================	
N 4 1 - 1	22.516	-	2 250		F(7,148)	6.490
Model	23.516	7	3.359		Prob>F	0.000
Residual	76.665	148	0.518		R-squared	0.235
					Adj R-square	0.199
Total	100.180	155	0.646		Root MSE	0.720
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
prog_roles	0.101	0.063	1.600	0.111	-0.023	0.225
diff_roles	-0.008	0.063	-0.120	0.905	-0.133	0.118
self-efficacy	0.527	0.149	3.530	0.001	0.232	0.821
self-control	0.122	0.143	1.140	0.257	-0.090	0.335
gender	-0.168	0.107	-1.320	0.189	-0.420	0.083
yearsrunning		0.029	1.810	0.103	-0.005	0.110
	-0.001	0.025	-0.120	0.906	-0.003	0.011
_cons	1.092	0.583	1.870	0.063	-0.060	2.244
_cons	1.032	0.363	1.070	0.003	-0.000	2.244
Source	SS	df	MS		n	198
					F(7,190)	10.300
Model	35.943	7	5.135		Prob>F	0.000
Residual	94.706	190	0.498		R-squared	0.275
					Adj R-square	0.248
Total	130.649	197	0.663		Root MSE	0.706
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
						•
prog_innov	0.062	0.043	1.440	0.150	-0.023	0.147
diff_innov	0.053	0.047	1.120	0.263	-0.040	0.146
self-efficacy	0.607	0.129	4.710	0.000	0.353	0.861
self-control	0.097	0.087	1.120	0.262	-0.073	0.268
gender	0.039	0.111	0.350	0.728	-0.181	0.258
yearsrunning	0.090	0.025	3.630	0.000	0.041	0.139
age	-0.003	0.005	-0.550	0.581	-0.013	0.007
cons	0.451	0.493	0.910	0.362	-0.522	1.424

Source	SS	df	MS		n	232
					F(7,224)	16.510
Model	48.394	7	6.913		Prob>F	0.000
Residual	93.793	224	0.419		R-squared	0.340
					Adj R-square	0.320
Total	142.187	231	0.616		Root MSE	0.647
aut_pride	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
prog_proso	0.220	0.045	4.940	0.000	0.132	0.308
diff_proso	-0.059	0.049	-1.200	0.231	-0.155	0.038
self-efficacy	0.426	0.111	3.830	0.000	0.207	0.645
self-control	0.216	0.072	2.990	0.003	0.074	0.358
gender	-0.030	0.093	-0.320	0.749	-0.212	0.153
yearsrunning	0.032	0.020	1.610	0.108	-0.007	0.072
age	0.000	0.004	0.090	0.925	-0.008	0.008
_cons	0.730	0.453	1.610	0.108	-0.163	1.622

Table 10.Regression Results for Hypothesis 3 Influence of Evaluation of Goal Progress by Specific Goal on Authentic Pride

on Aumenne Frie	ae						
Source	SS	df	MS		er of obs	=	168
No de 1					160)	=	10.43
Model	36.0914686	7	5.15592409			=	0.0000
Residual	79.097373	160	.494358581		uared	=	0.3133
Total	115 1000/0	147	400752542		R-squared	=	0.2833
Total	115.188842	167	.689753542	Root	MSE	=	.70311
autpride_all	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
p_f_wealth	.1197073	.0526395	2.27	0.024	.015749	 5	.2236651
d_f_wealth	1835703	.064878	-2.83	0.005	311697	9	0554427
se_all	.4634413	.1410053	3.29	0.001	.184969	8	.7419129
sc_all	.1492667	.0991232	1.51	0.134	046491	9	.3450253
gender	0516878	.1218997	-0.42	0.672	292427	7	.1890521
yearsrunning	.0450622	.0285207	1.58	0.116	011263	3	.1013878
age	.0022057	.0057124	0.39	0.700	009075	6	.0134871
_cons	1.668596	.5555195	3.00	0.003	.571499	4 	2.765692
Source	l SS	df	MS	Numb	er of obs	=	198
					190)	=	11.57
Model	39.0020504	7	5.57172149			=	0.0000
Residual	91.4710686	190	.481426677	R-sq	uared	=	0.2989
				Adj	R-squared	=	0.2731
Total	130.473119	197	.662300096	Root	MSE	=	.69385
autpride_all	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
p_f_income	.1068748	.0414011	2.58	0.011	.025209	 9	.1885396
d_f_income	1188524	.0533292	-2.23	0.027	224045		0136592
se_all	.4549578	.1269514	3.58	0.000	.204542	6	.7053731
sc_all	.2120046	.0838779	2.53	0.012	.046553	2	.3774561
gender	.0419283	.109308	0.38	0.702	173684	8	.2575414
yearsrunning	.0545825	.0242992	2.25	0.026	.006651	6	.1025133
age	0024439	.005184	-0.47	0.638	012669	5	.0077817
_cons	1.190746	.502354	2.37	0.019	.19983	9	2.181654

Source	SS	df	MS		er of obs =	
Model	32,533921	 7	4.647703		164) =	
Residual	71.5958433	164	.43656002		> F = uared =	
Kesiddai	/1.0700433				R-squared =	
Total	104.129764	171	.60894599		•	
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
n f conveitu	1 2002101	0400050		0.000	1110515	20/4047
p_f_security d_f_security	.2083191 0860454	.0488052	4.27 -1.38	0.169	.1119515 2091232	.3046867
se_all	.3495858	.1331085	2.63	0.009	.0867584	.6124132
sc_all	.2315142	.0909832	2.54	0.012	.0518649	.4111636
gender	0332698	.1138455	-0.29	0.770	2580617	.1915221
yearsrunning	.0347052	.0231099	1.50	0.135	0109261	.0803366
age	.0002913	.0048148	0.06	0.952	0092157	.0097983
_cons	1.179694	.5063436	2.33	0.021	.1799015	2.179487
Source	SS	df	MS		er of obs =	
	+			- F(7,		
Model	16.7989866	7	2.39985523			0.0000
Residual	21.6726671	62	.349559146		uared =	
T-4-1	+				R-squared =	
Total	38.4716537	69	.557560198	B Root	MSE =	.59124
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
p_f_inherit	.2648409	.0684133	3.87	0.000	.1280846	.4015972
d_f_inherit	1562269	.0727181	-2.15	0.036	3015882	0108656
se_all	.5999321	.1676948	3.58	0.001	.264715	.9351491
sc_all	.0574349	.1257413	0.46	0.649	1939184	.3087882
gender	1847759	.1621821	-1.14	0.259	5089733	.1394214
yearsrunning	008475	.0331935	-0.26	0.799	0748278	.0578779
age	.0113275	.0068072	1.66	0.101	00228	.0249349
_cons	1.143727	.6792518	1.68	0.097	2140776	2.501532

Source	SS	df	MS		er of obs =	
Model	54.2154265	 7	7.74506092		249) =	20.07
Residual	104.87793	249	.421196507		> F = uared =	
Kesiddai	104.07773		.421170507		R-squared =	
Total	159.093357	256	.621458424		•	
	1 207707007	200				
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
p_s_vision	.2223249	.0359266	6.19	0.000	.1515663	.2930836
d_s_vision	0634152	.0377122	-1.68	0.094	1376907	.0108604
se_all	.4674498	.1049635	4.45	0.000	.2607204	.6741791
sc_all	.125884	.068592	1.84	0.068	0092105	.2609785
gender	0464238	.0892713	-0.52	0.604	2222468	.1293993
yearsrunning	.0579264	.0189775	3.05	0.003	.0205495	.0953033
age	.0001475	.0039087	0.04	0.970	0075509	.0078459
_cons	.8201517	.4074096	2.01	0.045	.0177434	1.62256
Course	1 66	df	MC	Numb	er of obs =	155
Source	SS .	ar	MS			
Model	25.2422729		3.60603899			
Residual	71.6984068	147	.487744264		uared =	
Kesiduai	/1.0704000	147	.40//4420		R-squared =	
Total	96.9406797	154	.629484933		•	
10181	70.7400777	104	.02/404/00		riot –	.07007
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
p_s_power	.1443037	.053818	2.68	0.008	.0379468	.2506607
d_s_power	0824343	.0557868	-1.48	0.142	1926821	.0278134
se_all	.440238	.1541635	2.86	0.005	.135575	.7449011
sc_all	.1400762	.1016103	1.38	0.170	0607295	.3408819
gender	0214711	.1281752	-0.17	0.867	2747753	.2318331
yearsrunning	.0527622	.0272533	1.94	0.055	0010967	.1066211
age	.0036458	.005714	0.64	0.524	0076463	.014938
_cons	1.095709	.5697701	1.92	0.056	0302894	2.221708

Source	l ss	df	MS		er of obs	=	223 11.94
Model	36.3460635	 7	5.1922947		215) > F	=	0.0000
Residual	93.5058397	215	.43491088		uared	_	0.2799
	+		.45471000		R-squared	_	0.2565
Total	129.851903	222	.58491848		MSE	=	.65948
autpride_a	ll Coef	. Std. E	rr. t	P> t	[95%	Conf	. Interval]
p_i_flexibili	ty .159679	4 .03841	191 4.1	6 0.00	.083	9531	.2354056
d_i_flexibili	ty 048063	2 .04073	317 -1.1	8 0.23	9128	3478	.0322214
se_a	11 .414208	1 .11604	482 3.5	7 0.00	0 .185	4703	.642946
sc_a	.2458459	9 .07862	262 3.1	3 0.00	.090	8689	.4008228
gende	er 0206199	9 .09758	384 -0.2	1 0.83	32129	9723	.1717326
yearsrunni	ng .0433468	.02058	365 2.1	1 0.03	.002	7696	.083924
ag	ge 002233	.00421	L62 -0.5	3 0.59	7010	5438	.0060768
_coi	ns .8970848	.4469	923 2.0	1 0.04	.016	1731	1.777996
Source	l SS	df	MS		er of obs	=	248
	+				240)	=	14.33
Model	43.3148702	7	6.187838) > F	=	0.0000
Residual	103.628291	240	.43178454		uared	=	0.2948
	+				R-squared	=	0.2742
Total	146.943162	247	.59491158	6 Root	MSE	=	.6571
autpride_all	Coef.	Std. Err.	t	P> t	[95% Co	nf. I	[nterval]
p_i_freedom	.13582	.0382838	3.55	0.000	.0604049	9	.2112351
d_i_freedom	0800683	.039527	-2.03	0.044	157932	5 -	0022042
se_all	.5081263	.1075841	4.72	0.000	.296196	7	.7200559
sc_all	.1468891	.0709654	2.07	0.040	.007094	4	.2866838
gender	.0074832	.0912343	0.08	0.935	1722389	9	.1872054
yearsrunning	.0435424	.0199534	2.18	0.030	.004236	3	.0828485
age	0005475	.0040944	-0.13	0.894	008613	1	.0075181
_cons	.9323368	.4234456	2.20	0.029	.098192	2	1.766481

Source	SS	df	MS		mber of obs 7, 132)	s = =	140 10.64
Model	28.404782	 7	4.057826		ob > F	=	0.0000
Residual	50.3508195	132	.381445602		squared	_	0.3607
Kesiddai	00.3300173	132	.301443002		squareu j R-squareo		0.3268
Total	78.7556015	139	.566587061		ot MSE	, –	.61761
10101	70.700010	107	.000007003		0 C 110 C		.01701
autpride_a	ll Coef	. Std. E	rr. t	P>	t [95	5% Con	f. Interval]
p_r_recognition		1 .04799			900 .10	51731	.295063
d_r_recognition		8 .05106	95 -1.36	0.	17717	703933	.0316477
se_a	11 .334122	4 .13297			013 .07	710877	.5971572
sc_a	11 .038813	1 .09556	09 0.41	0.	68518	02158	.2278419
gende		6 .11006:				296198	
yearsrunni	ng .070063	7 .02890	55 2.42	0.	017 .01	128857	.1272417
ag	ge .002317	9 .00637			71701	102901	.0149259
_cor	ns 1.59677	5 .51635	84 3.09	0.	002 .57	753669	2.618183
Source	SS	df	MS		mber of obs 7, 93)	 s = =	101 7.47
Model	25.4290869	7	3.6327267		ob > F	_	0.0000
Residual	45.2415731	93	.486468528		squared	_	0.3598
	+				j R-squared		0.3116
Total	70.67066	100	.7067066		ot MSE	=	.69747
				D. I			
autpride_all	Coef.	Std. Err.	t	P> t	[95% [cont.	Interval]
p_r_position	.2187972	.0644495	3.39	0.001	.09081		.346781
d_r_position	0689048	.0741732	-0.93	0.355	21619	981	.0783886
se_all	.626874	.1780244	3.52	0.001	.27335	529	.9803951
sc_all	.0195501	.1338855	0.15	0.884	24631		.2854201
gender	2220471	.146717	-1.51	0.134	51339		.0693037
yearsrunning	.0170217	.0392114	0.43	0.665	06084		.0948878
age	.0130902	.0081248	1.61	0.111	00304		.0292245
_cons	.8168865	.7299556	1.12	0.266	63266	607	2.266434

Source	SS	df	MS		er of obs	=	113
Model	15.379389	7	2.19705558		105)	=	4.01 0.0006
Residual	57.5810582	105	.54839103		uared	=	0.2108
Kesiddai	07.0010002	105	.54657103		R-squared	Ξ	0.1582
Total	72.9604472	112	.651432565	_		=	.74053
10101	72.7004472	112	.001402000	, 1000	FIGE	_	.,4000
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf	f.	Interval]
n l odmiro	.0368354	.0665509	0.55	0.581	0951227		.1687935
p_l_admire d_l_admire	109228	.0729686	-1.50	0.137	2539113		.0354553
se_all	.5658425	.1767033	3.20	0.002	.2154725		.9162126
sc_all	.0714808	.1312025	0.54	0.587	1886695		.3316312
gender	1575387	.1538527	-1.02	0.308	4626003		.1475228
yearsrunning	.0568535	.0338883	1.68	0.096	0103406		.1240477
age	.001668	.007814	0.21	0.831	0138258		.0171618
_cons	1.567542	.6945134	2.26	0.026	.1904506		2.944634
	1.00/042			0.020			2.744034
Source	l SS	df	MS	Numb	er of obs	=	91
				- F(7,	83)	=	4.56
Model	14.8717048	7	2.12452926			=	0.0002
Residual	38.6532992	83	.4657024	R-sq	uared	=	0.2778
				- Adj	R-squared	=	0.2169
Total	53.525004	90	.594722267	7 Root	MSE	=	.68242
autpride_all	Coef.	Std. Err.	t	P> t	[95% Conf	f.	Interval]
	+						
p_l_respect	.1873303	.0822774	2.28	0.025	.0236839		.3509767
d_l_respect	.1098893	.0748569	1.47	0.146	0389981		.2587767
se_all	.4605535	.1963274	2.35	0.021	.0700663		.8510408
sc_all	.1163084	.1450565	0.80	0.425	1722031		.4048199
gender	0921194	.1579025	-0.58	0.561	4061811		.2219423
yearsrunning	.0676414	.0365351	1.85	0.068	0050254		.1403081
age	001003	.0073454	-0.14	0.892	0156126		.0136066
_cons	.5647547	.7399025	0.76	0.447	9068816		2.036391

Source	SS	df	MS	Numb F(7,	er of obs	=	33 1.23
Model	4.94506536	 7	.706437909		> F	=	0.3261
Residual	14.4130033	25	.576520147		uared	_	0.2555
					R-squared	=	0.0470
Total	19.358069	32	.604939658		MSE	=	.75929
autpride_all	Coef.	Std. Err	t	P> t	[95% (Conf.	Interval]
p_l_tradition	.0121506	.1372266	0.09	0.930	2704	728	.294774
d_l_tradition	.2187386	.1902896	1.15	0.261	1731	701	.6106472
se_all	.2888056	.3095979	0.93	0.360	3488	232	.9264344
sc_all	.1236098	.2307367	0.54	0.597	3516		.598821
gender	4252019	.3512503	-1.21	0.237	-1.148		.2982117
yearsrunning	0026939	.0765949	-0.04	0.972	1604		.1550562
age	.0109946	.0155415	0.71	0.486	0210		.0430029
_cons	1.652128	1.359018	1.22	0.235	-1.146	822	4.451078
Source	SS	df	MS		er of obs	=	198
					190)	=	10.30
Model	35.9431183	7	5.13473118		> F .	=	0.0000
Residual	94.7057396	190	.498451261		uared	=	0.2751
	400 ((0050	407			R-squared	=	0.2484
Total	130.648858	197	.663192172	ROOT	MSE	=	.70601
autpride_all	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
p_n_idea	.0620024	.0429291	1.44	0.150	02267	64	.1466813
d_n_idea	.0528836	.0470715	1.12	0.263	03996	62	.1457334
se_all	.6067402	.1288056	4.71	0.000	.35266	75	.8608129
sc_all	.0974834	.0866536	1.12	0.262	07344	32	.26841
gender	.0387412	.1112633	0.35	0.728	18072	87	.2582112
yearsrunning	.0898245	.0247744	3.63	0.000	.04095	62	.1386927
age	0029173	.0052783	-0.55	0.581	0133	29	.0074943
_cons	.4509591	.4932964	0.91	0.362	52208	21	1.424

Source	SS	df	MS		r of obs	=	216 15.54
Model	46.1123949	 7	6.58748499	F(7,		=	0.0000
Residual	88.1687738	208	.423888336	R-squ	_	_	0.3434
			.423000330		-squared	_	0.3213
Total	134.281169	215	.624563576	Root		=	.65107
autpride_all	Coef.	Std. Er	r. t	P> t	[95%	Conf.	Interval]
p_p_helpothers	.2374797	.0425932	2 5.58	0.000	.1535	099	.3214494
<pre>d_p_helpothers</pre>	0405756	.0455065	-0.89	0.374	1302	2886	.0491374
se_all		.1158551		0.000	.2076		.6644961
sc_all	.2198119	.0755768		0.004	.0708		.3688067
gender		.096079		0.815	2119		.1669243
yearsrunning		.0208872		0.098	0064		.0758659
age		.0042512		0.869	0076		.009083
_cons	.536486	.4624297	7 1.16	0.247	375	164	1.448136
Source	SS	df	MS		r of obs	=	213
+				F(7,		=	12.29
Model	39.355972	7	5.62228172	Prob		=	0.0000
Residual	93.7862671	205	.457493986	R-squ		=	0.2956
T-4-1	400 4/0000		/20000/2		-squared	=	0.2715
Total	133.142239	212	.62802943	Root	MSE	=	.67638
autpride_all	Coef.	Std. Err	t	P> t	[95% 0	conf.	Interval]
p_p_community	.1420428	.0434623	3.27	0.001	.05635	23	.2277333
d_p_community	0856804	.0472722	-1.81	0.071	17888	324	.0075217
se_all	.4519195	.1189613	3.80	0.000	.2173	375	.686464
sc_all	.1667353	.0801114	2.08	0.039	.00878		.3246832
gender	.0031461	.0991051	0.03	0.975	19224		.1985421
yearsrunning	.0382845	.0217573	1.76	0.080	00461		.0811813
age	0008151	.0044739	-0.18	0.856	00963		.0080056
_cons	1.113141	.481821	2.31	0.022	.16318	311	2.063101

Table 11.Regression Results for Hypothesis 4 and Hypothesis 5

Source	SS	df	MS MS		n	275
Jource	33	ui	IVIS		F(7,267)	16
Model	70.4574998	7	10.0653571		Prob > F	0
Residual	167.98902	267	0.62917236		R-squared	0.2955
residuai	107.50502	207	0.02317230		Adj R-square	0.277
Total	238.44652	274	0.87024277		Root MSE	0.7932
TOtal	230.44032	2/4	0.07024277		KOOL WISE	0.7552
perf_all	Coef.	Std. Err.	t	P>t	[95% Conf. In	tervall
pen_an	coen.	Sta. Err.		170	[5576 COIII. III	cci vaij
autpride_all	0.332481	0.1009368	3.29	0.001	0.1337478	0.5312144
posaffect_all			0.46	0.645		0.2890169
self-efficacy	0.279418		2.19	0.029		0.5302644
self-control	0.0174841	0.0797051	0.22	0.827		0.1744145
gender	0.0291652	0.1056131	0.28	0.783	-0.1787752	0.2371057
yearsrunning			4.75	0		0.1545646
age	-0.0081081		-1.74	0.083	-0.0172738	0.0010576
cons	0.5941925		1.31	0.192	-0.2992476	1.487633
_						
Source	SS	df	MS		n	273
					F(7,265)	11.64
Model	91.0433832	7	13.0061976		Prob > F	(
Residual	296.018888	265	1.11705241		R-squared	0.2352
					Adj R-square	0.215
Total	387.062271	272	1.42302306		Root MSE	1.0569
perf_sales	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	0.5554602	0.1353917	4.1	0	0.2888799	0.8220405
posaffect_all	-0.1382702	0.1589645	-0.87	0.385	-0.4512644	0.174724
self-efficacy	0.2191823	0.1701317	1.29	0.199	-0.1157996	0.5541642
self-control	-0.0338116	0.1063807	-0.32	0.751	-0.2432707	0.1756474
gender	0.044069	0.1413175	0.31	0.755	-0.2341789	0.3223169
yearsrunning	0.129223	0.0307033	4.21	0	0.0687695	0.1896765
age	-0.0095555	0.006213	-1.54	0.125	-0.0217887	0.0026777
_cons	0.4058386	0.6053407	0.67	0.503	-0.7860508	1.597728

Source	SS	df	MS		n	274
					F(7,266)	3.69
Model	35.4620117	7	5.06600168		Prob > F	0.0008
Residual	364.804412	266	1.37144516		R-squared	0.0886
					Adj R-square	0.0646
Total	400.266423	273	1.46617737		Root MSE	1.1711
perf_innova	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	-0.0217961	0.1491549	-0.15	0.884	-0.3154706	0.2718784
posaffect_all	0.2965624	0.1756151	1.69	0.092	-0.04921	0.6423348
self-efficacy	0.259543	0.1883929	1.38	0.169	-0.1113881	0.630474
self-control	0.068951	0.1178344	0.59	0.559	-0.1630557	0.3009577
gender	0.1412642	0.1560061	0.91	0.366	-0.1658997	0.4484282
yearsrunning	0.0844445	0.033962	2.49	0.014	0.017576	0.1513131
age	-0.0109019	0.0068762	-1.59	0.114	-0.0244407	0.0026369
_cons	1.085479	0.6707358	1.62	0.107	-0.2351474	2.406106
Source	SS	df	MS		n	272
					F(7,264)	6.38
Model	57.0860093	7	8.15514419		Prob > F	0
Residual	337.292667	264	1.27762374		R-squared	0.1447
					Adj R-square	0.1221
Total	394.378676	271	1.45527187		Root MSE	1.1303
perf_speed	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	0.229989	0.1456888	1.58	0.116	-0.0568709	0.5168489
posaffect_all		0.1709545	0.89	0.375		0.4885274
self-efficacy	0.1936482	0.1819493	1.06	0.288	-0.1646081	0.5519046
self-control	-0.0113396	0.113787	-0.1	0.921	-0.2353852	0.212706
gender	-0.126399	0.1521214	-0.83	0.407	-0.4259247	0.1731266
yearsrunning	0.0908208	0.0328551	2.76	0.006	0.0261294	0.1555123
age	0.000315	0.0066704	0.05	0.962	-0.012819	0.013449
	0.6608943	0.6494491	1.02	0.31	-0.6178647	1.939653

Source	SS	df	MS		n	274
					F(7,266)	9.47
Model	77.6974229	7	11.0996318		Prob > F	(
Residual	311.882869	266	1.17249199		R-squared	0.1994
					Adj R-square	0.1784
Total	389.580292	273	1.42703404		Root MSE	1.0828
perf_quality	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	0.2478779	0.1379124	1.8	0.073	-0.023661	0.5194167
posaffect_all		0.1623781	0.54	0.591	-0.2323983	0.4070215
self-efficacy	0.3474124	0.1741928	1.99	0.047	0.0044403	0.6903846
self-control	0.1732329	0.1089526	1.59	0.113	-0.0412864	0.3877521
gender	0.0209129	0.1442472	0.14	0.885	-0.2630987	0.3049244
yearsrunning		0.0314021	3.55	0	0.0495504	0.1732071
age	-0.0088292	0.0063579	-1.39	0.166	-0.0213475	0.0036891
_cons	0.5549673	0.6201793	0.89	0.372	-0.6661175	1.776052
Source	SS	df	MS		n	272
					F(7,264)	16.7
Model	112.921384	7	16.1316263		Prob > F	0
Residual	254.946263	264	0.96570554		R-squared	0.307
					Adj R-square	0.2886
Total	367.867647	271	1.35744519		Root MSE	0.9827
perf_profit	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	0.7847673	0.1260338	6.23	0	0.5366079	1.032927
posaffect all		0.1479055	-2.11	0.036	-0.6028356	-0.0203867
self-efficacy	0.3308322	0.1586664	2.09		0.0184195	0.643245
self-control	-0.1079103	0.0991883	-1.09	0.278	-0.3032111	0.0873906
gender	-0.061107	0.1320929	-0.46	0.644	-0.3211966	0.1989827
yearsrunning	0.0893668	0.028537	3.13	0.002	0.0331777	0.1455559
age	-0.0036724	0.0057756	-0.64	0.525	-0.0150445	0.0076997
_cons	0.2565342	0.5631132	0.46	0.649	-0.8522303	1.365299

Source	SS	df	MS		n	273
					F(7,265)	11.37
Model	95.3154285	7	13.6164898		Prob > F	0
Residual	317.241348	265	1.19713716		R-squared	0.231
					Adj R-square	0.2107
Total	412.556777	272	1.51675285		Root MSE	1.0941
perf_cus_sat	Coef.	Std. Err.	t	P>t	[95% Conf. In	terval]
autpride_all	0.2888486	0.1394449	2.07	0.039	0.0142876	0.5634096
posaffect_all	0.151091	0.16408	0.92	0.358	-0.1719753	0.4741574
self-efficacy	0.3370238	0.1760142	1.91	0.057	-0.0095404	0.683588
self-control	0.0162105	0.1104205	0.15	0.883	-0.2012026	0.2336236
gender	0.0704787	0.1459527	0.48	0.63	-0.2168958	0.3578532
yearsrunning	0.1543091	0.0317881	4.85	0	0.0917196	0.2168985
age	-0.0177032	0.0064262	-2.75	0.006	-0.0303562	-0.0050502
_cons	0.7366909	0.6267338	1.18	0.241	-0.4973205	1.970702

Table 12.Descriptive Statistics and Variable Correlations

	Variables	Mean	SD	1	2	3	4	5	6	7
1	m_f_wealth	3.363	1.356	1						
2	g_f_wealth	1.394	0.489	-0.613***	1					
3	e_f_wealth	3.206	1.236	0.286***		1				
4	d_f_wealth	3.806	0.916	-0.07		-0.186**	1			
5	p_f_wealth	2.534	1.146	0.063		0.288***	-0.334***	1		
6	m_f_income	3.494	1.302	0.683***	-0.368***	0.329***	-0.104	0.151*	1	
7	g_f_income	1.298	0.458	-0.441***	0.550***	-0.226**	0.152*	-0.107	-0.557***	1
8	e_f_income	3.366	1.192	0.205**	-0.081	0.589***	-0.068	0.152	0.183**	
9	d_f_income	3.417	0.969	0.082	-0.078	-0.144	0.600***	-0.270***	-0.096	
10	p_f_income	2.703	1.274	-0.012	-0.034	0.198*	-0.277***	0.663***	0.065	
11	m_f_security	3.419	1.443	0.511***	-0.302***	0.280***	-0.074	0.195**	0.613***	-0.400***
12	g_f_security	1.365	0.482	-0.361***	0.409***	-0.196**	0.123*	-0.156*	-0.419***	0.495***
13	e_f_security	3.251	1.298	0.116	-0.055	0.506***	-0.039	0.207*	0.106	-0.098
14	d_f_security	3.436	0.860	0.183*	-0.102	-0.041	0.504***	-0.128	0.143	-0.083
15	p_f_security	2.618	1.110	-0.011	-0.005	0.185*	-0.135	0.640***	0.001	0.006
16	m_f_inherit	2.359	1.407	0.260***	-0.253***	0.082	-0.05	0.074	0.208***	-0.173**
17	g_f_inherit	1.734	0.443	-0.166	0.248	-0.1	0.089	-0.01	-0.105	0.202
18	e_f_inherit	2.779	1.382	-0.038	-0.207	0.241	-0.085	0.097	0.044	-0.232*
19	d_f_inherit	3.649	1.036	0.035	-0.183	-0.013	0.546***	-0.252	0.062	-0.149
20	p_f_inherit	2.622	1.069	-0.033	-0.023	0.157	-0.342**	0.656***	0.035	0.066
21	m_s_vision	4.424	0.940	0.154**	-0.103	0.014	-0.006	-0.082	0.059	-0.028
22	g_s_vision	1.071	0.256	-0.055	0.213***	0.054	0.073	0.04	0.042	0.067
23	e_s_vision	3.634	1.236	0.162	-0.193***	0.351***	0.041	0.069	0.109	-0.173**
24	d_s_vision	3.043	1.123	0.067	-0.089	-0.064	0.291***	0.012	-0.013	-0.01
25	p_s_vision	3.183	1.161	-0.02	0.022	0.078	-0.125	0.384***	-0.009	-0.022
26	m_s_power	3.322	1.448	0.310***	-0.242***	0.114	-0.114	0.029	0.170**	-0.180**
27	g_s_power	1.433	0.496	-0.180**	0.288***	-0.14	-0.03	-0.052	-0.07	0.138*
28	e_s_power	3.169	1.334	0.063	-0.088	0.341***	-0.142	0.240**	0.051	-0.042
29	d_s_power	2.982	1.110	0.077	-0.099	0.089	0.280**	-0.126	0.044	-0.128
30	p_s_power	3.127	1.154	-0.07	0.098	0.082	-0.204*	0.195*	-0.11	0.146

	Variables	Mean	SD	1	2	3	4	5	6	7
31	m_i_flexib~y	3.907	1.315	0.240***	-0.083	0.144	-0.012	-0.07	0.359***	-0.207***
32	g_i_flexib~y	1.196	0.397	-0.116*	0.247***	-0.061	0.134	-0.011	-0.227***	0.350***
33	e_i_flexib~y	3.465	1.275	0.125	-0.104	0.379***	-0.042	0.105	0.056	-0.073
34	d_i_flexib~y	3.046	1.129	0.056	-0.053	-0.017	0.175*	-0.015	-0.003	-0.021
35	p_i_flexib~y	3.042	1.204	0.026	0.063	0.115	-0.106	0.308***	0.031	0.041
36	m_i_freedom	4.343	1.003	0.236***	-0.149**	0.028	-0.054	0.008	0.257***	-0.230***
37	g_i_freedom	1.109	0.312	-0.022	0.181***	0.038	0.184*	-0.029	-0.073	0.289***
38	e_i_freedom	3.493	1.238	0.201***	-0.168**	0.434***	0.038	0.126	0.142*	-0.130*
39	d_i_freedom	2.644	1.112	0.096	-0.074	-0.05	0.277***	-0.074	0.075	-0.087
40	p_i_freedom	3.232	1.157	-0.02	0.031	-0.009	-0.065	0.259***	-0.078	0.129*
41	m_r_recogn~r	3.270	1.416	0.327***	-0.257***	0.04	0.05	-0.059	0.205***	-0.129*
42	g_r_recogn~n	1.474	0.500	-0.180**	0.219***	-0.057	0.083	0.002	-0.067	0.097
43	e_r_recogn~n	3.064	1.273	0.246**	-0.255***	0.459***	0.213*	-0.078	0.219**	-0.227**
44	d_r_recogn~n	3.065	1.086	0.009	-0.105	-0.052	0.458***	-0.183	0.011	-0.022
45	p_r_recogn~n	3.197	1.196	-0.057	0.122	0.057	-0.236*	0.381***	-0.096	-0.006
46	m_r_position	2.588	1.346	0.478***	-0.337***	0.136	0.023	-0.043	0.370***	-0.238***
47	g_r_position	1.638	0.481	-0.302***	0.308***	-0.095	0.052	0.023	-0.217***	0.214***
48	e_r_position	2.713	1.374	0.159	-0.18	0.601***	-0.18	0.206	0.126	-0.223*
49	d_r_position	3.454	1.054	0.162	-0.131	0.005	0.378***	-0.214	0.18	-0.084
50	p_r_position	2.798	1.194	-0.238*	0.186	0.186	-0.241*	0.492***	-0.141	-0.029
51	m_l_admire	2.813	1.463	0.197***	-0.188***	-0.043	0.033	-0.034	0.11	-0.11
52	g_l_admire	1.593	0.492	-0.092	0.161**	0.022	0.003	0.038	0.005	0.141*
53	e_l_admire	3.195	1.322	0.03	-0.179*	0.079	0.205	-0.093	-0.19	0.082
54	d_l_admire	3.057	1.035	0.051	-0.105	-0.099	0.307**	-0.02	0.009	-0.049
55	p_l_admire	2.983	1.089	0	0.044	0.183	-0.152	0.424***	-0.117	0.083
56	m_l_respect	2.293	1.258	0.253***	-0.201***	0.088	0.01	-0.118	0.191***	-0.128*
57	g_l_respect	1.667	0.472	-0.200***	0.181***	-0.11	0.131	0.014	-0.131*	0.149**
58	e_l_respect	2.776	1.328	0.172	-0.09	0.499***	-0.03	0.131	0.11	-0.171
59	d_l_respect	2.440	1.028	0.097	-0.099	-0.04	0.129	-0.024	0.082	-0.084
60	p_l_respect	3.421	0.974	0.033	0.012	0.034	-0.157	0.183	-0.087	0.024
61	m_l_tradit~n	1.727	1.188	0.210***	-0.259***	0.022	-0.043	0.044	0.168**	-0.211***
62	g_l_tradit~n	1.869	0.338	-0.140*	0.159**	-0.099	0.052	-0.055	-0.101	0.150**

	Variables	Mean	SD	1	2	3	4	5	6	7
63	e_l_tradit~n	2.605	1.326	0.042	-0.19	0.395*	0.017	0.239	-0.073	-0.121
64	d_l_tradit~n	3.216	1.004	0.273	0.104	0.113	0.496**	-0.076	0.251	-0.086
65	p_l_tradit~n	2.857	1.115	0.370*	-0.195	0.195	-0.123	0.534**	0.332	0.128
66	m_n_idea	3.646	1.381	0.093	-0.212***	-0.027	0.141	-0.099	-0.092	0.018
67	g_n_idea	1.288	0.454	-0.127*	0.210***	0.066	-0.124	0.098	0.022	0.096
68	e_n_idea	3.673	1.153	-0.049	-0.021	0.259**	0.02	0.190*	-0.019	0.009
69	d_n_idea	3.028	1.139	0.085	-0.044	-0.1	0.175*	0.047	0.02	-0.015
70	p_n_idea	3.159	1.243	0.052	-0.01	0.189*	-0.052	0.270***	0.035	-0.034
71	m_p_helpot~:	3.913	1.179	0.018	0.034	0.013	-0.067	-0.091	-0.064	0.093
72	g_p_helpot~s	1.205	0.404	0.066	0.078	-0.03	0.083	0.076	0.083	0.068
73	e_p_helpot~s	3.649	1.224	0.036	-0.08	0.193**	-0.102	0.184*	-0.06	-0.047
74	d_p_helpot~s	2.329	1.082	0.051	-0.137	-0.242**	0.316***	-0.196*	-0.061	0.043
75	p_p_helpot~s	3.203	1.116	0.067	-0.07	0.083	-0.220**	0.256**	0.055	-0.12
76	m_p_commur	3.826	1.250	0.046	0.006	0.022	-0.103	-0.102	-0.009	0.038
77	g_p_commun	1.224	0.418	0.049	0.069	-0.029	0.063	0.015	0.077	0.036
78	e_p_commun	3.457	1.177	0.065	-0.139**	0.244**	-0.066	0.032	-0.023	-0.076
79	d_p_commun	2.481	1.103	0.017	-0.104	-0.099	0.285***	-0.131	-0.056	0.033
80	p_p_commun	3.062	1.173	0.021	0.005	0.097	-0.174*	0.173*	0.017	-0.041
81	se_all	3.316	0.449	0.101	-0.083	0.178*	-0.123	0.257***	0.084	-0.078
82	sc_all	3.496	0.674	-0.101	0.105	0.051	-0.035	0.218**	-0.101	0.136*
83	gender	1.329	0.484	-0.139*	0.067	-0.065	0.005	-0.107	-0.114*	0.039
84	yearsrunning	4.671	2.754	0.002	0.03	0.043	-0.046	0.179*	0.028	-0.029
85	age	35.572	12.969	-0.057	0.066	0.042	0.038	0.151*	0.034	0.025
86	posaffect_~I	3.952	0.675	0.065	-0.107	0.136	-0.234**	0.275***	-0.018	-0.065
87	autpride_all	3.527	0.814	0.033	-0.044	0.118	-0.280***	0.357***	-0.01	-0.033
88	perf_sales	2.745	1.179	-0.017	-0.033	0.077	-0.148	0.366***	0.013	-0.035
89	perf_innov~n	3.488	1.206	0.025	-0.06	-0.013	-0.052	0.171*	-0.086	0.096
90	perf_speed	2.951	1.203	0.023	-0.045	0.08	-0.034	0.280***	-0.025	0.039
91	perf_quality	3.756	1.202	-0.029	-0.032	0.036	-0.068	0.306***	0.017	0.006
92	perf_profit	2.740	1.170	0.032	-0.032	0.075	-0.109	0.419***	0.041	-0.055
93	perf_custsat	3.699	1.229	-0.01	-0.024	0.12	-0.137	0.351***	0.005	-0.046
94	perf_all	3.235	0.927	0.007	-0.049	0.083	-0.119	0.400***	-0.004	0.002

	Variables	8	9	10	11	12	13	14
8	e_f_income	1						
9	d_f_income	-0.104	1					
10	p_f_income	0.122	-0.259***	1				
11	m_f_security	0.133	-0.043	0.082	1			
-	g_f_security	-0.229***	0.069	-0.076	-0.650***	1		
	e_f_security	0.345***	-0.154*	0.165*	0.179*		1	
	d_f_security	-0.072	0.470***	0	0.144*		-0.037	1
15	p_f_security	0.053	-0.184*	0.621***	0.058		0.146*	-0.048
16	m_f_inherit	0.049	-0.043	-0.124	0.383***	-0.328***	0.139	-0.015
17	g_f_inherit	-0.084	0.08	0.123	-0.303***	0.291***	-0.12	0.192**
18	e_f_inherit	0.384**	-0.225	0.113	0.189	-0.219	0.494***	-0.16
19	d_f_inherit	-0.163	0.485***	0.018	-0.042	0.094	-0.207	0.474***
20	p_f_inherit	0.144	-0.163	0.504***	0.036	0.029	0.136	0.13
21	m_s_vision	0.028	-0.053	0.069	0.084	-0.026	0.026	0.119
22	g_s_vision	-0.046	0.114	-0.049	-0.014	0.129*	0.033	0.118
23	e_s_vision	0.301***	-0.05	-0.007	0.127*	-0.141*	0.305***	0.05
24	d_s_vision	-0.133	0.304***	-0.075	0.039	0.006	-0.041	0.336***
25	p_s_vision	0.055	-0.084	0.405***	0.011	0.002	-0.035	0.026
26	m_s_power	0.106	0.066	0.014	0.185***	-0.191***	0.086	0.051
27	g_s_power	-0.141*	-0.129	-0.026	-0.117*	0.184***	-0.011	-0.029
28	e_s_power	0.307***	-0.122	0.233**	-0.01	-0.014	0.349***	-0.095
29	d_s_power	0.025	0.368***	-0.015	0.064	-0.083	-0.123	0.277**
30	p_s_power	0.061	-0.008	0.266**	-0.067	0.053	-0.044	0.013
31	m_i_flexib~y	-0.035	-0.064	-0.01	0.359***	-0.283***	0.137	-0.003
32	g_i_flexib~y	0.033	0.006	-0.026	-0.300***	0.381***	-0.132	0.023
33	e_i_flexib~y	0.427***	-0.190**	0.1	0.078	-0.176**	0.572***	-0.245***
34	d_i_flexib~y	-0.068	0.339***	-0.017	0.026	-0.001	-0.071	0.468***
35	p_i_flexib~y	0.128	-0.071	0.288***	0.017	-0.006	0.005	-0.065
36	m_i_freedom	-0.022	-0.074	0.014	0.291***	-0.258***	0.065	0.114
37	g_i_freedom	-0.018	0.009	-0.08	-0.034	0.205***	0	0.121
38	e_i_freedom	0.378***	-0.089	0.013	0.12	-0.082	0.577***	-0.11
39	d_i_freedom	-0.045	0.360***	-0.118	0.035	-0.036	-0.143	0.370***
40	p_i_freedom	0.07	-0.037	0.317***	-0.036	0.022	-0.036	0.007
41	m_r_recogn~r	0.077	0.021	0.042	0.1	-0.068	0.026	0.109
-	g_r_recogn~n		0.088	-0.044	-0.015	0.079	0.009	0.063
43	e_r_recogn~n	0.329***	0.14	-0.176	0.170*	-0.111	0.334***	0.083
44	d_r_recogn~n	-0.034	0.457***	-0.153	-0.082	-0.005	-0.012	0.401***
-	p_r_recogn~n		-0.200*	0.355***	-0.017	-0.096	-0.191	-0.097
46	m_r_position		0.04	-0.045	0.283***	-0.240***	-0.061	0.06
-	g_r_position	-0.155*	0.001	0.017	-0.142*	0.212***	-0.036	-0.033
-		0.439***	-0.112	-0.009	0.223	-0.262**	0.161	-0.236*
	d_r_position	0.041	0.323**	0.07	0.137	-0.14	-0.039	0.447***
-	p_r_position	0.039	-0.207	0.241*	-0.234*	0.117	0.096	-0.251*
51	m_l_admire	80.0	0.025	-0.077	0.104	-0.148**	-0.039	0.061

	Variables	8	9	10	11	12	13	14
52	g_l_admire	-0.062	0.046	0.041	-0.035	0.141*	-0.056	-0.026
53	e_l_admire	0.335***	0.159	-0.048	-0.096	-0.055	0.146	0.03
54	d_l_admire	-0.048	0.197	-0.12	0.013	-0.053	-0.065	0.319**
55	p_l_admire	0.148	-0.042	0.489***	0.017	0.044	0.157	0.038
56	m_l_respect	0.104	0.003	-0.04	0.181***	-0.212***	-0.034	-0.011
57	g_l_respect	-0.068	0.038	0.022	-0.108	0.169**	0.067	0.034
58	e_l_respect	0.453***	0.002	0.064	0.129	-0.289**	0.118	-0.018
59	d_l_respect	-0.183	0.264*	-0.06	0.089	-0.036	-0.135	0.306**
60	p_l_respect	0.102	-0.18	0.092	-0.011	-0.003	-0.057	-0.149
61	m_l_tradit~n	0.117	0.006	-0.031	0.225***	-0.209***	0.11	0.018
62	g_l_tradit~n	-0.032	0.078	-0.044	-0.149**	0.197***	-0.104	0.082
63	e_l_tradit~n	0.238	0.04	0.26	0.295	0.058	0.189	-0.002
64	d_l_tradit~n	-0.318	0.312	-0.169	-0.044	0.073	0.18	0.493**
65	p_l_tradit~n	0.167	0.07	0.406*	0.266	-0.17	-0.319	0.252
66	m_n_idea	0.05	0.156*	-0.087	-0.052	-0.075	-0.004	-0.03
67	g_n_idea	-0.035	-0.159*	0.092	0.087	0.031	-0.113	0.026
68	e_n_idea	0.203*	-0.054	0.039	-0.006	0.035	0.261**	-0.088
69	d_n_idea	-0.165*	0.119	0.077	0.055	-0.036	-0.175*	0.136
70	p_n_idea	0.236**	-0.01	0.155	0.05	-0.018	0.02	0.139
71	m_p_helpot~	0.065	-0.114	-0.068	0.104	-0.033	0.036	0.043
72	g_p_helpot~s	-0.064	0.11	0.083	-0.07	0.109	-0.044	0.001
73	e_p_helpot~s	0.317***	-0.173*	0.117	0.06	-0.101	0.344***	-0.063
74	d_p_helpot~s	-0.245***	0.313***	-0.232**	-0.06	0.063	-0.031	0.204*
75	p_p_helpot~s	0.073	-0.074	0.209**	0.097	-0.116	-0.023	-0.059
76	m_p_commur	0.019	-0.081	-0.089	0.143*	-0.073	0.062	-0.015
77	g_p_commun		0.14	0.051	-0.073	0.118*	-0.052	0.099
78	e_p_commun	0.261***	-0.052	-0.037	0.106	-0.064	0.319***	-0.059
79	d_p_commun	-0.145	0.303***	-0.05	-0.072	0.033	-0.097	0.263***
80	p_p_commun	0.075	-0.039	0.044	0.08	-0.117	0.023	-0.03
81	se_all	0.103	-0.198**	0.213**	0.102	-0.123*	0.041	0.027
82	sc_all	0.02	-0.098	0.184**	-0.059	0.074	0.106	0.057
-	gender	0.004	0.042	-0.095	-0.113*	0.042	-0.149*	0.016
-	yearsrunning	-0.008	-0.113	0.088	0.096	0.011	0.07	-0.084
	age	0.041	-0.05	0.094	0.133*	-0.096	0.023	-0.025
-	posaffect_~I	0.145*	-0.193**	0.183**	0.055	-0.079	0.167*	-0.07
-	autpride_all	0.113	-0.276***	0.291***	0.017	-0.017	0.124	-0.075
-	perf_sales	0.144*	-0.201**	0.366***	0.086	-0.098	0.01	-0.024
-	perf_innov~n		-0.024	0.06	0.006	0.023	0.046	-0.154*
$\overline{}$	perf_speed	0.197**	-0.06	0.183**	0.06	-0.017	0.02	0.016
-	perf_quality	0.164*	-0.175*	0.235***	0.06	-0.023	0.05	-0.033
-	perf_profit	0.116	-0.230***	0.379***	0.097	-0.131*	0.07	-0.039
-	perf_custsat	0.159	-0.101	0.219**	0.105	-0.087	0.083	0.047
94	perf_all	0.170*	-0.168*	0.304***	0.092	-0.073	0.057	-0.04

	Variables	15	16	17	18	19	20	21
15	p_f_security	1						
	m_f_inherit	-0.04	1					
17	g_f_inherit	0.033	-0.664***	1				
18	e_f_inherit	0.153	0.214		1			
19	d_f_inherit	-0.292*	-0.203		-0.119	1		
20	p_f_inherit	0.571***	0.124		0.076	-0.186	1	
21	m_s_vision	-0.06	0.088	-0.027	0.062	-0.039	0.027	1
22	g_s_vision	0.055	-0.114*	0.109	0.102	0.151	0.262*	-0.301***
23	e_s_vision	0.02	0.09	0.008	0.387***	-0.18	0.003	0.212***
24	d_s_vision	-0.085	0.02	-0.026	0.082	0.412***	0.02	-0.036
25	p_s_vision	0.419***	-0.041	-0.019	-0.019	-0.062	0.515***	0.118
26	m_s_power	-0.011	0.205***	-0.128*	0.02	-0.169	0.171	0.231***
27	g_s_power	-0.043	-0.109	0.116*	-0.065	0.137	-0.191	-0.092
28	e_s_power	0.419***	0.104	-0.08	0.503***	-0.252	0.288*	0.156*
29	d_s_power	-0.058	-0.035	0.176*	-0.121	0.410**	-0.044	0.059
30	p_s_power	0.240**	-0.041	-0.126	0.08	-0.099	0.347	0.133
31	m_i_flexib~y	-0.054	0.199***	-0.115*	-0.029	-0.14	-0.146	0.245***
32	g_i_flexib~y	0.013	-0.187***	0.205***	-0.09	0.137	0.029	-0.098
33	e_i_flexib~y	0.02	0.102	-0.04	0.355**	-0.162	0.025	0.029
34	d_i_flexib~y	0	0.05	0.067	-0.243*	0.311**	0.240*	0.027
35	p_i_flexib~y	0.365***	-0.045	0.046	-0.086	-0.081	0.412***	0.103
36	m_i_freedom	-0.01	0.121*	-0.022	-0.03	-0.021	-0.053	0.326***
37	g_i_freedom	-0.028	-0.085	0.164**	-0.065	-0.072	0.042	-0.09
38	e_i_freedom	0.085	0.179**	-0.078	0.407***	-0.212	-0.014	0.188**
39	d_i_freedom	-0.022	0.008	0.015	0.143	0.352**	-0.02	0.032
40	p_i_freedom	0.244***	-0.048	0.014	-0.056	-0.025	0.352**	0.165**
41	m_r_recogn~i	-0.035	0.083	-0.049	0.063	0.088	-0.164	0.137*
42	g_r_recogn~n	0.047	-0.01	0.049	0.109	0.032	0.048	-0.055
43	e_r_recogn~n	0.028	0.112	-0.106	0.331*	-0.146	-0.17	-0.01
44	d_r_recogn~n	-0.250*	-0.047	0.077	0.102	0.626***	-0.043	-0.061
45	p_r_recogn~n	0.347***	-0.104	0.061	-0.04	-0.295	0.365*	0.093
46	m_r_position	-0.084	0.170**	-0.127**	0.051	-0.057	-0.095	0.200***
47	g_r_position	0.057	-0.150**	0.150**	-0.037	0.111	-0.073	-0.125*
48	e_r_position	0.214	0.184	-0.220*	0.581***	-0.062	-0.131	-0.038
49	d_r_position	-0.243*	-0.086	0.1	0.047	0.599***	0.186	0.08
50	p_r_position	0.456***	0.039	-0.084	-0.146	-0.257	0.361*	-0.08
51	m_l_admire	-0.085	0.297***	-0.153**	0.254*	-0.042	-0.145	0.158**
52	g_l_admire	0.068	-0.230***	0.151**	-0.134	0.117	0.067	-0.08
53	e_l_admire	0.066	0.143	-0.079	0.305	0.043	0.124	0.278**

	Variables	15	16	17	18	19	20	21
54	d_l_admire	-0.039	0.104	-0.095	0.06	0.423**	-0.161	0.017
55	p_l_admire	0.403***	0.065	-0.044	0.08	-0.19	0.553**	0.197*
56	m_l_respect	-0.115	0.182***	-0.094	0.191	0.013	-0.293*	0.091
57	g_l_respect	0.059	-0.126*	0.128*	0.071	0.011	0.043	-0.049
58	e_l_respect	-0.057	0.118	-0.088	0.370*	0.006	-0.19	0.002
59	d_l_respect	0.066	0.059	-0.072	-0.062	0.349*	0.211	0.099
60	p_l_respect	0.071	0.028	-0.172	-0.194	-0.193	-0.01	-0.102
61	m_l_tradit~n	-0.099	0.411***	-0.325***	0.214	0.039	-0.037	-0.062
62	g_l_tradit~n	-0.032	-0.334***	0.346***	-0.169	0.098	-0.083	0.035
63	e_l_tradit~n	0.114	0.27	-0.353*	0.507*	0.14	-0.036	0.348*
64	d_l_tradit~n	-0.003	-0.189	0.354*	0.004	0.511*	0.049	0.104
65	p_l_tradit~n	0.348	0.149	-0.053	-0.378	-0.312	0.447*	0.075
66	m_n_idea	-0.027	0.09	-0.054	0.216	0.06	0.014	0.315***
67	g_n_idea	0.071	-0.051	0.079	-0.157	0.009	-0.035	-0.236***
68	e_n_idea	0.091	0.03	-0.042	0.267*	-0.142	0.067	0.075
69	d_n_idea	-0.018	0.044	-0.022	0.036	0.464***	0.011	-0.117
70	p_n_idea	0.261**	0.009	-0.036	0.121	-0.008	0.378**	0.162*
71	m_p_helpot~:	-0.157*	0.219***	-0.127*	0.009	-0.097	0.025	0.335***
72	g_p_helpot~s	0.132	-0.160**	0.126*	-0.212	0.02	0.028	-0.176**
73	e_p_helpot~s	0.046	0.123	-0.087	0.245*	-0.323**	0.104	0.174**
74	d_p_helpot~s	-0.148	0.036	-0.116	0.033	0.482***	-0.157	-0.07
75	p_p_helpot~s	0.364***	0.077	-0.079	0.03	-0.295*	0.459***	0.151*
76	m_p_commur	-0.167*	0.312***	-0.205***	0.024	-0.124	0.093	0.262***
77	g_p_commun	0.021	-0.190***	0.150**	-0.038	0.157	0.001	-0.103
78	e_p_commun	-0.064	0.151*	-0.113	0.379***	-0.192	-0.012	0.187**
79	d_p_commun	-0.029	-0.095	0.031	-0.068	0.444***	-0.198	-0.064
80	p_p_commun	0.353***	0.04	-0.098	-0.083	-0.283*	0.252*	0.168*
81	se_all	0.166*	0.102	-0.085	0.01	0.041	0.044	0.111
82	sc_all	0.247***	0.051	-0.1	-0.129	0.011	0.067	0.026
83	gender	-0.191**	-0.121*	0.052	-0.260*	0.163	0.071	0.076
84	,	0.197**	-0.029	-0.039	-0.093	-0.121	0.099	0.035
85	age	0.198**	-0.021	-0.058	0.122	-0.001	0.098	
86	posaffect_~I	0.273***	0.130*	-0.158**	0.158	-0.233*	0.152	0.158**
87	autpride_all	0.431***	0.105	-0.105	0.07	-0.276*	0.442***	0.137*
88	perf_sales	0.234**	0.094	-0.051	0.078	-0.141	0.324**	0.130*
89	perf_innov~n	0.094	-0.059	-0.006	0.055	-0.093	0.046	0.082
90	perf_speed	0.187*	0.005	-0.031	0.11	-0.252*	0.061	0.136*
91	perf_quality	0.169*	-0.011	0.016	0.039	-0.168	0.155	0.164**
92	perf_profit	0.331***	0.032	-0.034	0.051	-0.066	0.446***	0.094
93	perf_custsat	0.177*	0.029	0.055	0.076	-0.229	0.096	0.115
94	perf_all	0.266***	0.032	-0.019	0.087	-0.202	0.241*	0.158**

	Variables	22	23	24	25	26	27	28
22	g_s_vision	1						
23	e_s_vision		1					
24	d_s_vision		-0.021	1				
25	p_s_vision		0.140*	-0.055	1			
26	m_s_power	-0.076	0.219***	-0.002	0.079	1		
27	g_s_power	0.189***	-0.154**	0.047	-0.035	-0.569***	1	
	e_s_power	0.082	0.482***	-0.093	0.248**	0.400***		1
29	d_s_power	-0.06	0.074	0.362***	-0.05	0.056		-0.026
30	p_s_power	0.042	0.033	-0.159*	0.400***	0.132		0.322***
	m_i_flexib~y	-0.059	0.039	-0.123*	-0.074	0.140*	-0.112*	-0.112
32	g_i_flexib~y	0.275***	0.044	0.147*	-0.002	-0.140*	0.206***	0.033
33	e_i_flexib~y	-0.038	0.420***	-0.072	0.091	0.124	-0.063	0.368***
34	d_i_flexib~y	-0.028	0.014	0.351***	-0.069	0.057	-0.031	0.006
35	p_i_flexib~y	0.066	-0.003	-0.036	0.374***	-0.059	0.066	0.172*
36	m_i_freedom	-0.092	0.190**	-0.033	0.076	0.298***	-0.158**	0.168
37	g_i_freedom	0.265***	-0.081	0.105	-0.025	-0.176**	0.193***	-0.181
38	e_i_freedom	-0.146*	0.486***	-0.056	0.157*	0.182**	-0.171**	0.412***
39	d_i_freedom	0.041	-0.013	0.399***	-0.171**	0.035	-0.025	0.085
40	p_i_freedom	-0.046	0.013	-0.065	0.479***	0.006	-0.073	0.073
41	m_r_recogn~r	-0.115*	0.07	0.045	0.078	0.329***	-0.208***	0.09
42	g_r_recogn~n	0.165**	-0.133*	0.003	-0.101	-0.166**	0.181***	-0.114
43	e_r_recogn~n	-0.072	0.459***	-0.117	-0.01	0.244**	-0.302***	0.435***
44	d_r_recogn~n	-0.096	-0.065	0.410***	-0.214**	0.015	-0.056	-0.035
45	p_r_recogn~n	-0.131	0.019	-0.044	0.532***	0.047	0.004	0.173
46	m_r_position	-0.07	0.136*	-0.067	-0.006	0.439***	-0.303***	0.105
47	g_r_position	0.156**	-0.118	0.017	-0.02	-0.369***	0.362***	-0.09
48	e_r_position	0.029	0.434***	-0.203*	0.11	0.210*	-0.136	0.369***
49	d_r_position	0.072	0.09	0.338***	-0.142	0.057	-0.123	-0.147
50	p_r_position	-0.035	0.005	0.028	0.394***	0.131	-0.015	0.223*
51	m_l_admire	-0.071	0.082	-0.02	0.029	0.279***	-0.153**	0.131
52	g_l_admire	0.177**	-0.128*	-0.011	0.016	-0.215***	0.184***	-0.13
53	e_l_admire	-0.214*	0.495***	-0.052	0.115	0.148	-0.154	0.296**
54	d_l_admire	-0.007	-0.011	0.341***	0.014	0.016	0.081	-0.191
55	p_l_admire	-0.058	0.198*	-0.111	0.438***	0.065	-0.038	0.331**
56	m_l_respect	-0.083	0.018	-0.024	0.015	0.336***	-0.180**	0.074
57	g_l_respect	0.142*	-0.001	0.015	-0.058	-0.278***	0.206***	-0.089
58	e_l_respect	0.094	0.495***	-0.087	0.008	0.227*	-0.149	0.435***
59	d_l_respect	0.055	-0.117	0.461***	0.147	-0.023	0.048	-0.163

	Variables	22	23	24	25	26	27	28
60		-0.045	0.086	-0.083	0.177	0.038	-0.217*	0.218
-	m_l_tradit~n	-0.001	0.075	-0.038	0.005	0.106	-0.075	0.08
62	g tradit~n	0.07	-0.048	-0.032	0.012	-0.074	0.129*	-0.102
63	e I tradit~n	-0.202	0.468**	-0.076	0.145	0.241	-0.162	0.281
64	d_l_tradit~n	0.3	0.068	0.642***	-0.179	-0.092	0.336*	-0.249
65	p_l_tradit~n	0.022	0.071	-0.051	0.416*	0.512**	-0.528***	0.272
66	m_n_idea	-0.134*	0.218***	0.044	0.117	0.289***	-0.245***	0.192*
67	g_n_idea	0.184***	-0.148*	0.028	0.003	-0.167**	0.172**	-0.194*
68	e_n_idea	0.019	0.469***	-0.016	0.104	0.064	-0.122	0.380***
69	d_n_idea	0.015	-0.09	0.367***	-0.104	-0.047	0.024	-0.114
70	p_n_idea	0.011	0.298***	0.019	0.420***	0.102	-0.045	0.196*
71	m_p_helpot~:	-0.143*	0.112	-0.081	0.011	0.132*	-0.022	0.085
72	g_p_helpot~s	0.294***	-0.1	0.05	0.01	-0.108	0.101	-0.091
73	e_p_helpot~s	-0.023	0.451***	-0.051	0.164	0.152*	-0.053	0.442***
74	d_p_helpot~s	-0.014	-0.123	0.393***	-0.170*	-0.04	0.072	-0.238**
75	p_p_helpot~s	-0.077	0.151*	-0.261***	0.455***	0.122	-0.137*	0.263**
76	m_p_commur	-0.115*	0.092	-0.051	-0.005	0.205***	-0.114*	0.109
77	g_p_commun	0.302***	-0.046	0.062	-0.031	-0.132*	0.151**	-0.116
78	e_p_commun	-0.069	0.490***	-0.005	0.103	0.185**	-0.058	0.406***
79	d_p_commun	-0.031	-0.177**	0.308	-0.133*	-0.1	0.095	-0.067
80	p_p_commun	0.078	0.113	-0.084	0.353***	0.142*	-0.074	0.208*
81	se_all	-0.142*	0.182**	-0.158**	0.157*	0.159**	-0.145*	0.156*
82	sc_all	-0.014	0.082	-0.055	0.154*	-0.071	0.132*	0.084
83	gender	-0.127*	0.035	-0.099	0.006	-0.063	0.032	-0.178*
84	yearsrunning	0.04	-0.182**	-0.027	0.062	-0.075	0.035	0.025
85	age	0.119*	-0.246***	0.014	0.03	-0.182***	0.119*	-0.041
86	posaffect_~I	-0.077	0.222***	-0.127*	0.298***	0.137*	-0.078	0.300***
87	autpride_all	-0.09	0.143*	-0.152*	0.398***	0.169**	-0.078	0.273***
88	perf_sales	-0.061	0.004	-0.024	0.253***	0.152**	-0.166**	0.210**
89	perf_innov~n	-0.061	0.083	-0.03	0.183**	0.129*	-0.143*	0.008
90	perf_speed	-0.048	0.043	0.019	0.125*	0.081	-0.03	0.216**
91	perf_quality	-0.098	0.086	-0.145	0.211***	0.093	-0.075	0.115
92	perf_profit	-0.025	-0.025	0.055	0.279***	0.096	-0.078	0.224**
93	perf_custsat	-0.083	0.126*	-0.096	0.193**	0.117*	-0.131*	0.092
94	perf_all	-0.083	0.071	-0.055	0.270***	0.131*	-0.122*	0.188*

	Variables	29	30	31	32	33	34	35
29	d_s_power	1						
30	p_s_power	-0.375***	1					
31	m_i_flexib~y	0.005**	-0.081	1				
32	g_i_flexib~y	0.023	0.072	-0.525***	1			
33	e_i_flexib~y	0.013	-0.01	0.181**		1		
34	d_i_flexib~y	0.342***	-0.051	-0.093		-0.204**	1	
35	p_i_flexib~y	0.015	0.215**	0.145*		0.140*	-0.208***	1
36	m_i_freedom	0.1	-0.025	0.474***	-0.258***	0.213***	0.033	0.139*
37	g_i_freedom	0.117	-0.072	-0.222***	0.424***	-0.141*	0.066	0.028
38	e_i_freedom	0.043	-0.025	0.161**	-0.142*	0.656***	-0.056	0.082
39	d_i_freedom	0.421***	-0.133	-0.023	-0.018	-0.1	0.474***	-0.165*
40	p_i_freedom	-0.184*	0.387***	0.094	-0.013	0.064	-0.156*	0.537***
41	m_r_recogn~i	0.179*	-0.037	0.044	-0.071	-0.008	-0.109	-0.01
42	g_r_recogn~n	-0.085	0.057	0.014	0.033	-0.039	0.087	0.051
43	e_r_recogn~n	0.08	-0.018	0.113	-0.129	0.340***	-0.088	-0.122
44	d_r_recogn~n	0.456***	-0.304**	0.034	-0.029	-0.071	0.305***	-0.243**
45	p_r_recogn~n	-0.16	0.468***	-0.055	-0.005	0.085	-0.074	0.350***
46	m_r_position	0.165*	-0.016	0.162**	-0.142*	-0.012	0.03	0.038
47	g_r_position	-0.198*	0.038	-0.074	0.220***	-0.003	-0.026	0.008
48	e_r_position	0.05	0.189	0.042	-0.231*	0.363***	-0.141	0.041
49	d_r_position	0.411***	-0.274*	0.035	-0.035	-0.092	0.441***	-0.102
50	p_r_position	-0.256*	0.411***	-0.093	0.019	0.19	-0.043	0.335***
51	m_l_admire	0.057	0.122	0.073	-0.071	0.043	0.028	-0.069
52	g_l_admire	-0.123	0.01	0.021	0.145**	-0.058	-0.098	0.095
53	e_l_admire	0.119	0.047	-0.047	0.09	0.367***	-0.046	0.008
54	d_l_admire	0.244*	-0.1	0.035	0.002	-0.002	0.285**	-0.02
55	p_l_admire	-0.167	0.456***	-0.018	0.099	0.102	0.057	0.295**
56	m_l_respect	0.101	-0.035	0.098	-0.081	-0.027	0.032	-0.169**
57	g_l_respect	-0.111	0.025	-0.04	0.177**	0.036	0.009	0.114
58	e_l_respect	0.229	0.08	0.065	0.079	0.344***	0.016	-0.009
59	d_l_respect	0.306*	-0.005	-0.06	-0.127	-0.345***	0.545***	0.007
60	p_l_respect	-0.164	0.378**	-0.128	0.252*	0.181	-0.304**	0.263*
61	m_l_tradit~n	0.027	0.047	0.093	-0.140*	0.078	-0.033	-0.057

	Variables	29	30	31	32	33	34	35
62	g_l_tradit~n	0.008	-0.062	-0.086	0.144*	-0.021	0.007	0.004
63	e_l_tradit~n	-0.076	-0.099	0.218	-0.289	0.363*	-0.108	0.224
64	d_l_tradit~n	0.663***	-0.182	0.066	0.189	-0.03	0.428**	-0.107
65	p_l_tradit~n	0.13	0.517*	0.125	0.032	-0.14	0.324	0.302
66	m_n_idea	0.165*	0.041	-0.016	0.017	0.144*	0.019	0.017
67	g_n_idea	-0.081	-0.111	0.067	0.043	-0.152*	0.057	0.032
68	e_n_idea	-0.07	0.08	-0.078	0.077	0.301***	0.037	-0.001
69	d_n_idea	0.303***	-0.094	-0.056	0.019	-0.021	0.237**	-0.022
70	p_n_idea	-0.04	0.231**	-0.059	0.075	0.074	0.041	0.189*
71	m_p_helpot~:	-0.011	0.138	0.207***	-0.171**	0.099	0.02	-0.046
72	g_p_helpot~s	-0.066	-0.078	-0.124*	0.310***	-0.101	-0.059	0.126
73	e_p_helpot~s	-0.002	0.027	0.021	0.009	0.464***	-0.084	0.041
74	d_p_helpot~s	0.134	-0.178*	-0.131*	0.096	-0.121	0.190**	-0.212**
75	p_p_helpot~s	-0.139	0.442***	0.024	-0.139	0.089	-0.101	0.331***
76	m_p_commur	0.115	0.016	0.153**	-0.138*	0.125	0.06	-0.047
77	g_p_commun	-0.122	-0.01	-0.015	0.277***	-0.105	0.001	0.114
78	e_p_commun	0.022	0.125	0.043	-0.03	0.408***	-0.057	0.007
79	d_p_commun	0.225**	-0.056	-0.104	0.140*	-0.151*	0.256***	-0.150**
80	p_p_commun	-0.213*	0.374***	0.002	-0.065	0.11	-0.076	0.319***
81	se_all	-0.035	0.157	0.102	-0.011	0.122	-0.081	0.039
82	sc_all	-0.045	0.225**	0.02	0.054	0.079	0.008	0.048
83	gender	0.11	0.005	-0.016	-0.064	-0.041	0.04	-0.071
84	yearsrunning	-0.139	0.045	0.112*	-0.08	-0.054	-0.119	0.207***
85	age	-0.203**	0.09	0.076	-0.071	-0.065	-0.085	0.097
86	posaffect_~I	-0.194*	0.341***	0.06	-0.09	0.141	-0.11	0.188**
87	autpride_all	-0.241**	0.333***	0.08	-0.086	0.114	-0.151*	0.317***
88	perf_sales	-0.092	0.177*	-0.069	-0.032	0.076	-0.103	0.257***
89	perf_innov~n	-0.165*	0.141	-0.151*	0.031	-0.071	-0.112	0.062
90	perf_speed	-0.145	0.257***	-0.076	0.079	0.002	-0.102	0.116
91	perf_quality	-0.240**	0.183*	-0.011	-0.049	0.046	-0.197**	0.241***
92	perf_profit	-0.190*	0.203**	0.003	-0.04	0.064	-0.058	0.283***
93	perf_custsat	-0.201*	0.180*	-0.014	-0.027	0.062	-0.098	0.193**
94	perf_all	-0.230**	0.252***	-0.065	-0.01	0.039	-0.148*	0.262***

	Variables	36	37	38	39	40	41	42
36	m_i_freedom	1						
37	g_i_freedom	-0.403***	1					
38	e_i_freedom	0.271***		1				
39	d_i_freedom	0.007		-0.033	1			
40	p_i_freedom	0.11		0.015	-0.249***	1		
41	m_r_recogn~r	0.196***	-0.057	0.114	0.014	-0.03	1	
42	g_r_recogn~n	-0.086	0.121*	-0.058	0.021	0.031	-0.609***	1
43	e_r_recogn~n	0.199*	-0.034	0.475***	0.078	-0.123	0.307***	
44	d_r_recogn~n	-0.021	-0.087	-0.024	0.344***	-0.254**	0.018	
45	p_r_recogn~n	0.11	-0.11	0.042	-0.250**	0.354***	0.015	
46	m_r_position	0.159**	-0.046	0.1	0.048	-0.055	0.499***	-0.379***
47	g_r_position	-0.061	0.157**	-0.089	-0.018	0.056	-0.433***	0.435***
48	e_r_position	0.079	-0.115	0.387***	0.056	-0.022	0.056	-0.085
49	d_r_position	0.104	-0.011	-0.005	0.408***	-0.127	0.023	-0.012
50	p_r_position	0.109	-0.151	0.09	-0.072	0.210*	0.045	-0.036
51	m_l_admire	0.168**	-0.087	0.093	0.052	-0.008	0.223***	-0.135*
52	g_l_admire	-0.068	0.101	-0.088	-0.031	0.057	-0.207***	0.160**
53	e_l_admire	0.17	-0.184*	0.345***	0.145	0.066	0.025	-0.002
54	d_l_admire	0.023	0.015	-0.051	0.365***	-0.068	0.021	0.054
55	p_l_admire	0.124	0.004	0.088	-0.07	0.498***	0.066	-0.147
56	m_l_respect	0.141*	-0.036	0.029	-0.001	-0.083	0.506***	-0.349***
57	g_l_respect	-0.141*	0.160**	0.017	-0.039	0.092	-0.432***	0.440***
58	e_l_respect	0.077	-0.015	0.352***	0.053	0.053	0.204*	-0.113
59	d_l_respect	0.049	0.039	-0.333***	0.387***	-0.045	-0.12	0.222*
60	p_l_respect	-0.024	-0.079	0.07	-0.232	0.280**	0.169	-0.283**
61	m_l_tradit~n	0.026	0.018	0.036	0.033	0.033	0.159**	-0.08
62	g_l_tradit~n	-0.009	0.014	-0.021	-0.021	0.012	-0.074	0.085
63	e_l_tradit~n	0.271	-0.224	0.362*	0.021	0.069	0.141	0.12
64	d_l_tradit~n	0.081	0.012	-0.083	0.425*	-0.279	0.166	-0.18

	Variables	36	37	38	39	40	41	42
65	p_l_tradit~n	0.014	0.21	-0.072	0.135	0.657***	0.322	-0.159
66	m_n_idea	0.182***	-0.118*	0.229***	0.071	-0.007	0.221***	-0.134*
67	g_n_idea	-0.075	0.186***	-0.210***	-0.034	0.036	-0.152**	0.132*
68	e_n_idea	0.036	-0.065	0.377***	-0.008	0.114	-0.104	-0.021
69	d_n_idea	-0.028	0.009	-0.139	0.320***	-0.04	0.075	0.003
70	p_n_idea	0.083	0.084	0.152*	-0.046	0.306***	0.035	-0.066
71	m_p_helpot~:	0.144*	-0.064	0.175**	0.026	-0.033	0.024	0.008
72	g_p_helpot~s	-0.066	0.230***	-0.163**	-0.05	0.029	0.007	0.058
73	e_p_helpot~s	0.118	-0.197**	0.436***	-0.095	-0.008	-0.029	-0.071
74	d_p_helpot~s	-0.047	0.027	-0.117	0.326***	-0.145	0.061	0.051
75	p_p_helpot~s	0.1	-0.157	0.062	-0.179**	0.384***	0.025	-0.024
76	m_p_commur	0.073	-0.092	0.166**	0.04	-0.036	0.043	-0.043
77	g_p_commun	-0.002	0.256***	-0.144*	-0.033	0.076	-0.025	0.135*
78	e_p_commun	0.191**	-0.175**	0.433***	-0.024	-0.034	0.005	-0.027
79	d_p_commun	-0.068	0.054	-0.176**	0.258***	-0.042	-0.058	0.012
80	p_p_commun	0.123	0.002	0.195**	-0.118	0.219***	0.001	0.029
81	se_all	0.263***	-0.148*	0.142	-0.157*	0.11	0.044	-0.011
82	sc_all	-0.007	-0.028	0.037	-0.149*	0.037	-0.154**	0.093
83	gender	0.071	-0.133*	-0.048	0.008	0.016	0.033	-0.154**
84	yearsrunning	0.135*	0.019	-0.014	-0.162**	0.234***	0.032	0.027
85	age	-0.012	0.102	-0.059	-0.045	0.134*	-0.145*	0.233***
86	posaffect_~I	0.144*	-0.165**	0.178**	-0.233***	0.274***	0.08	-0.108
87	autpride_all	0.154**	-0.148*	0.153*	-0.270***	0.313***	0.085	-0.066
88	perf_sales	0.045	-0.085	0.095	-0.139*	0.277***	0.088	-0.057
89	perf_innov~n	-0.062	0.013	0.072	-0.138*	0.230***	0.133*	-0.138*
90	perf_speed	-0.009	0.023	0.05	-0.09	0.153*	0.068	-0.013
91	perf_quality	-0.007	-0.130*	0.036	-0.257***	0.284***	0.083	-0.140*
92	perf_profit	0.078	-0.035	0.095	-0.082	0.235***	0.112	-0.028
93	perf_custsat	0.062	-0.069	0.088	-0.185**	0.288***	0.082	-0.127*
94	perf_all	0.018	-0.059	0.094	-0.193**	0.319***	0.125*	-0.103

	Variables	43	44	45	46	47	48	49
43	e_r_recogn~n	1						
44	d_r_recogn~n	-0.008	1					
45	p_r_recogn~n	-0.03	-0.288***	1				
46	m_r_position	0.347***	0.045	0.067	1			
47	g_r_position	-0.218**	-0.126	-0.016	-0.618***	1		
48	e_r_position	0.452***	0.04	0.177	0.276**		1	
49	d_r_position	0.04	0.652***	-0.392***	0.126		0.013	1
50	p_r_position	-0.103	-0.339**	0.506***	-0.021		0.097	-0.349***
51	m_l_admire	0.13	-0.112	0.111	0.283***	-0.204***	0.2	-0.088
52	g_l_admire	-0.162*	0.108	-0.051	-0.165**	0.231***	-0.212*	0.066
53	e_l_admire	0.275*	-0.013	0.232*	0.078	-0.201*	0.194	0.033
54	d_l_admire	-0.071	0.337**	-0.093	0.087	-0.024	-0.042	0.389**
55	p_l_admire	0.096	-0.136	0.441***	0.068	0.062	0.201	-0.094
56	m_l_respect	0.270***	0.008	0.12	0.537***	-0.380***	0.176	0.041
57	g_l_respect	-0.290***	0.029	-0.082	-0.380***	0.457***	-0.176	0.052
58	e_l_respect	0.498***	-0.004	0.103	0.345***	-0.122	0.670***	0.154
59	d_l_respect	-0.141	0.284**	-0.065	-0.154	0.04	-0.072	0.333**
60	p_l_respect	0.022	-0.333**	0.381**	0.165	-0.085	-0.153	-0.431***
61	m_l_tradit~n	0.147	-0.076	-0.049	0.222***	-0.153**	0.208	-0.053
62	g_l_tradit~n	-0.093	0.144	0.05	-0.07	0.200***	-0.056	0.087
63	e_l_tradit~n	0.513*	0.148	0.075	0.376*	-0.15	0.532*	0.068
64	d_l_tradit~n	-0.106	0.477*	-0.136	-0.145	-0.025	-0.265	0.513*
65	p_l_tradit~n	0.383	-0.264	0.29	0.513**	-0.360*	-0.044	0.129
66	m_n_idea	0.127	0.111	0.009	0.133*	-0.160**	0.167	0.097
67	g_n_idea	-0.160*	-0.178*	0.106	-0.140*	0.215***	-0.124	-0.051

	Variables	43	44	45	46	47	48	49
68	e_n_idea	0.273**	-0.183*	0.172	-0.038	0.062	0.153	-0.076
-	d_n_idea	-0.057	0.295***	-0.132	-0.013	-0.038	-0.125	0.363***
	p_n_idea	0.079	-0.182	0.372***	0.043	0.077	0.318**	-0.038
	m_p_helpot~:	0.064	-0.067	0.029	0.038	0.005	0.03	-0.069
72	g_p_helpot~s	-0.103	-0.092	0.024	-0.051	0.069	-0.188	0.031
73	e_p_helpot~s	0.229**	-0.065	0.180*	0.034	-0.056	0.231*	-0.031
	d_p_helpot~s	-0.004	0.226*	-0.249**	-0.024	0.013	-0.143	0.285**
75	p_p_helpot~s	0.069	-0.266**	0.320***	0.088	-0.083	0.187	-0.362***
76	m_p_commur	0.039	-0.066	-0.01	0.131	-0.142*	0.006	-0.068
77	g_p_commun	-0.131	0.006	-0.017	-0.015	0.134*	-0.141	0.068
78	e_p_commun	0.368***	-0.011	0.129	0.099	-0.076	0.422***	-0.035
79	d_p_commun	0.073	0.308***	-0.071	-0.021	0.082	-0.084	0.467***
80	p_p_commun	0.019	-0.183*	0.280**	0.027	-0.043	0.131	-0.359***
81	se_all	0.006	-0.155	0.175*	0.006	-0.042	0.122	-0.034
82	sc_all	-0.121	-0.068	0.185*	-0.145*	0.092	0.015	-0.219*
83	gender	-0.044	0.084	-0.073	-0.032	-0.081	-0.176	0.125
84	yearsrunning	-0.075	-0.132	0.129	-0.061	0.097	0.067	-0.095
85	age	0.02	-0.096	0.132	-0.183***	0.178**	0.037	-0.155
86	posaffect_~I	0.026	-0.249**	0.268***	0.053	-0.048	0.049	-0.191
87	autpride_all	-0.077	-0.283***	0.419***	-0.029	-0.024	0.01	-0.252**
88	perf_sales	-0.048	-0.151	0.260**	0.068	-0.039	0.161	-0.089
89	perf_innov~n	-0.072	-0.167	0.047	0.095	-0.011	0.088	-0.131
90	perf_speed	0.077	-0.12	0.1	0.069	0.024	0.094	-0.071
91	perf_quality	-0.132	-0.170*	0.059	0.058	-0.013	0.055	-0.174
92	perf_profit	-0.096	-0.199*	0.292***	-0.015	0.047	0.013	-0.119
93	perf_custsat	-0.04	-0.199*	0.164*	0.003	-0.006	0.182	-0.138
94	perf_all	-0.075	-0.238**	0.202*	0.053	0.006	0.133	-0.165

	Variables	50	51	52	53	54	55	56
FO		1	31	32	23	34	33	30
	p_r_position		1					
	m_l_admire	0.156	-0.648***	4				
52	g_l_admire	-0.073	0.282**	1	4			
	e_l_admire	0.141			0.001	4		
-	d_l_admire	0.23	0.071		0.081	0.122	4	
	p_l_admire	0.355**	0.015	0.200888	0.158	-0.123	0.454	
	m_l_respect	-0.019	0.334***	-0.268***	0.065	0.15	-0.151	0.510***
57	g_l_respect	-0.115	-0.248***	0.300***	-0.061	-0.038	0.031	-0.618***
	e_l_respect	-0.164	0.248*	-0.212*	0.382**	-0.022	0.008	0.256*
	d_l_respect	0.04	-0.073	-0.046	0.025	0.410***	0.098	-0.033
	p_l_respect	0.382**	0.126	-0.124	-0.069	0.08	0.219	0.047
	m_l_tradit~n	0.02	0.434***	-0.305***	0.098	0.118	0.065	0.261***
62	g_l_tradit~n	-0.143	-0.248***	0.276***	-0.02	-0.062	-0.046	-0.131*
-	e_l_tradit~n	0.457*	0.476**	-0.352*	0.635***	0.318	0.218	0.429**
	d_l_tradit~n	0.071	0.076	0.067	0.021	0.586***	-0.259	-0.281
65	p_l_tradit~n	0.419	0.023	-0.102	0.098	0.016	0.633***	0.325
66	m_n_idea	-0.003	0.196***	-0.06	0.317***	-0.003	0.023	0.108
67	g_n_idea	0.035	-0.114*	0.096	-0.242**	0.025	0.063	-0.038
	e_n_idea	0.201	0.041	0.008	0.419***	-0.047	0.156	0.024
69	d_n_idea	-0.07	0.042	-0.12	0.006	0.360***	-0.111	0.037
70	p_n_idea	0.304**	0.051	0.048	-0.003	-0.019	0.401***	-0.023
71	m_p_helpot~:	-0.038	0.170**	-0.170**	0.187*	-0.136	0.184*	0.072
72	g_p_helpot~s	0.053	-0.180**	0.259***	-0.112	0.07	0.005	-0.045
73	e_p_helpot~s	0.072	0.056	-0.069	0.396***	-0.081	0.228*	0.056
74	d_p_helpot~s	-0.175	0.034	-0.03	-0.059	0.436***	-0.156	0.013
75	p_p_helpot~s	0.455***	0.101	-0.04	0.145	-0.254**	0.426***	-0.019
76	m_p_commur	-0.088	0.173**	-0.132*	0.213*	0	0.105	0.081
77	g_p_commun	-0.062	-0.182***	0.227***	-0.209	-0.02	-0.018	-0.087
78	e_p_commun	0.149	0.054	-0.036	0.434***	0.004	0.069	0.066
79	d_p_commun	-0.279**	-0.014	-0.001	-0.026	0.299**	-0.086	0.045
80	p_p_commun	0.418***	0.066	0.012	0.115	-0.12	0.142	-0.034
81	se_all	0.032	0.07	0.029	0.178	-0.044	0.115	0.015
82	sc_all	0.159	-0.150*	0.153**	0.012	0.116	0.154	-0.173**
83	gender	-0.039	-0.084	-0.045	0.04	-0.051	0.032	-0.092
84	yearsrunning	0.197*	-0.058	0.147**	-0.235**	-0.021	0.152	-0.009
85	age	0.073	-0.212***	0.258***	-0.268**	-0.007	-0.007	-0.07
86	posaffect_~I	0.279**	0.085	0.001	0.123	-0.119	0.132	-0.022
87	autpride_all	0.378***	0.099	-0.013	0.125	-0.137	0.141	-0.025
88	perf_sales	0.246*	0.101	-0.06	0.052	-0.049	0.146	-0.005
89	perf_innov~n	0.161	-0.001	-0.026	-0.043	-0.073	0.129	0.015
90	perf_speed	0.232*	0.024	0.031	0.062	-0.008	0.075	-0.019
	perf_quality	0.231*	0.032	0.049	-0.015	-0.018	0.076	-0.015
92	perf_profit	0.311**	0.108	-0.057	-0.009	-0.092	0.108	-0.053
93	perf_custsat	0.276**	0.042	-0.014	0.091	0.01	0.042	0.005
94	perf_all	0.329***	0.073	-0.025	0.021	-0.048	0.121	-0.022

	Variables	57	58	59	60	61	62	63
57	g_l_respect	1						
58	e_l_respect		1					
	d_l_respect		-0.122	1				
60	p_l_respect		0.086	-0.285**	1			
61	m_l_tradit~n	-0.192***	0.135	-0.019	0.038	1		
62	g_l_tradit~n	0.188***	-0.089	-0.042	-0.039	-0.573***	1	
63	e_l_tradit~n	-0.254	0.547**	-0.062	0.311	0.457**		1
64	d_l_tradit~n	0.127	-0.085	0.539*	-0.187	-0.039		-0.067
65	p_l_tradit~n	-0.29	-0.062	0.19	0.372	-0.069		0.115
66	m_n_idea	-0.075	0.178	-0.074	-0.063	0.045	-0.055	0.317
67	g_n_idea	0.06	-0.143	0.125	0.072	0.001	0.101	-0.064
68	e_n_idea	0.021	0.194	-0.162	0.125	-0.008	0.056	0.465**
69	d_n_idea	-0.051	-0.096	0.199	-0.117	0.122	-0.107	-0.087
70	p_n_idea	0.002	0.217	-0.113	0.151	-0.098	0.119	0.268
71	m_p_helpot~:	-0.06	0.104	-0.066	-0.148	0.068	-0.03	0.358*
72	g_p_helpot~s	0.056	-0.155	0.052	0.066	-0.079	0.033	-0.311
73	e_p_helpot~s	-0.061	0.256*	-0.255*	0.044	0.026	0.008	0.184
74	d_p_helpot~s	-0.03	-0.126	0.324**	-0.194	0.095	-0.108	-0.035
75	p_p_helpot~s	-0.053	0.129	0.109	0.313**	-0.007	-0.016	0.13
76	m_p_commur	-0.064	0.159	-0.058	0.023	0.085	-0.057	0.217
77	g_p_commun	0.136*	-0.139	0.066	-0.078	-0.063	0.073	-0.18
78	e_p_commun	-0.094	0.227*	-0.123	-0.077	0.042	-0.004	0.364*
79	d_p_commun	0.015	-0.023	0.263*	-0.303**	0.033	-0.047	-0.243
80	p_p_commun	-0.094	-0.047	-0.121	0.234	-0.047	-0.013	0.062
81	se_all	-0.065	0.117	-0.136	0.203	-0.058	0.062	0.321
82	sc_all	0.169**	0.042	-0.092	0.095	-0.146*	0.061	0.329
83	gender	-0.041	0.006	0.009	-0.093	-0.130*	0.08	-0.116
84	yearsrunning	0.006	-0.121	-0.043	0.183	0.007	0.078	0.154
85	age	0.082	-0.121	0.069	-0.081	-0.047	0.06	-0.028
86	posaffect_~I	-0.009	0.18	0.008	0.321**	0.075	-0.03	0.332
87	autpride_all	-0.044	0.037	0.018	0.316**	0.048	-0.039	0.242
88	perf_sales	-0.036	0.138	-0.196	0.300**	0.08	-0.018	0.375*
89	perf_innov~n	-0.035	0.006	-0.148	0.333***	-0.022	0.054	0.454**
90	perf_speed	0.003	0.114	-0.125	0.332***	0.054	-0.06	0.347*
91	perf_quality	-0.035	-0.043	-0.089	0.299**	-0.051	0.084	0.512**
92	perf_profit	-0.006	0.069	-0.161	0.245*	0.011	0.018	0.285
93	perf_custsat	-0.049	0.126	-0.229*	0.277**	0.012	0.048	0.396*
94	perf_all	-0.03	0.097	-0.218*	0.405***	0.015	0.029	0.517**

	Variables	64	65	66	67	68	69	70
64	d_l_tradit~n	1						
65	p_l_tradit~n	-0.329	1					
66	m_n_idea	-0.034	-0.173	1				
67	g_n_idea	-0.106	0.390*	-0.647**	1			
68	e_n_idea	-0.161	0.253	0.296***		1		
69	d_n_idea	0.672***	-0.062	-0.137*		-0.170*	1	
70	p_n_idea	-0.077	0.399	0.358***		0.307***	-0.276***	1
71	m_p_helpot~:	-0.093	0.187	0.146**	-0.079	0.117	-0.06	0.052
72	g_p_helpot~s	0.052	0.197	-0.038	0.097	0.005	-0.023	0.03
73	e_p_helpot~s	-0.325	0.093	0.235***	-0.139*	0.437***	-0.145	0.150*
74	d_p_helpot~s	0.641***	-0.299	0.098	-0.084	-0.123	0.334***	-0.103
75	p_p_helpot~s	-0.356	0.415*	0.047	-0.024	0.135	-0.186*	0.386***
76	m_p_commur	-0.061	0.155	0.154**	-0.085	0.065	-0.015	-0.05
77	g_p_commun	-0.007	-0.021	-0.101	0.082	-0.016	0.008	0.067
78	e_p_commun	-0.28	0.095	0.201**	-0.200**	0.359***	-0.128	0.143
79	d_p_commun	0.578***	-0.344	0.017	-0.03	-0.067	0.279***	-0.142
80	p_p_commun	-0.32	0.436*	0.095	-0.032	0.01	-0.167	0.325***
81	se_all	-0.136	0.295	0.048	-0.019	0.042	-0.159*	0.193**
82	sc_all	0.149	0.241	-0.047	-0.004	0.092	-0.149*	0.218**
83	gender	0.258	-0.053	-0.07	0.054	-0.053	0.041	-0.073
84	yearsrunning	-0.051	-0.125	-0.109	0.150**	0.007	-0.139*	0.134
85	age	0.176	-0.17	-0.190***	0.238***	-0.017	-0.069	0.067
86	posaffect_~I	0.194	0.014	0.084	-0.098	0.088	-0.117	0.174*
87	autpride_all	0.214	0.002	0.003	0.007	-0.013	-0.066	0.199**
88	perf_sales	-0.243	0.091	0.047	-0.036	0.019	-0.108	0.186**
89	perf_innov~n	-0.16	0.247	0.147*	-0.146*	0.067	-0.147*	0.249***
90	perf_speed	-0.104	0.142	0.092	-0.083	0.009	-0.111	0.264***
91	perf_quality	0.046	0.179	0.002	-0.029	0.028	-0.158*	0.198**
92	perf_profit	-0.274	0.177	0.029	0.017	-0.02	-0.082	0.186**
93	perf_custsat	-0.06	0.158	-0.008	-0.03	0.067	-0.044	0.170*
94	perf_all	-0.175	0.215	0.068	-0.07	0.017	-0.145*	0.275***

	Variables	71	72	73	4	75	76	77
71	m_p_helpot~:	1	,,,	,,,	-	,,,	,,,	
-	g_p_helpot~s	-0.607***	1					
	e_p_helpot~s	0.340***		1				
-	d_p_helpot~s			-0.223***	1			
	p_p_helpot~s	0.135*		0.221***	-0.340***	1		
	m_p_commur		-0.497***	0.288***	-0.167**	0.086	1	
	g_p_commun	-0.494***	0.678***	-0.062	0.118	-0.07	-0.580***	1
-	e_p_commun		-0.175**	0.745***	-0.145*	0.189**	0.378***	
	d_p_commun		0.047	-0.169*	0.628***	-0.375***	-0.058	
	p_p_commun	0.121	0.084	0.173*	-0.265***	0.602***	0.115	
	se_all	0.022	-0.026	0.078	-0.260***	0.165*	-0.028	0.02
	sc_all	0.035	-0.042	0.058	-0.150*	0.026	-0.063	0.019
	gender	0.151**	-0.165**	-0.031	-0.065	0.053	0.178**	-0.195***
	yearsrunning	-0.066	0.074	-0.08	-0.109	0.131*	-0.094	0.058
	age	-0.05	0.059	-0.124	0.031	0.01	-0.150**	0.108
	posaffect_~l	0.005	-0.159**	0.194**	-0.190**	0.376***	0.017	-0.087
	autpride_all	0.014	-0.117*	0.140*	-0.266***	0.426***	-0.004	-0.087
	perf_sales	0.022	-0.066	0.043	-0.162*	0.248***	0.014	-0.1
	perf_innov~n	0.033	-0.056	-0.057	-0.027	0.078	0.031	-0.056
	perf_speed	0.004	-0.022	0.013	-0.052	0.088	-0.031	0.002
	perf_quality	0.043	-0.076	0.065	-0.196**	0.261***	-0.044	-0.062
	perf_profit	0.028	-0.027	0.023	-0.169*	0.203**	0.028	-0.056
93	perf_custsat	0.021	-0.068	0.107	-0.210**	0.234***	0.006	-0.071
94	perf_all	0.043	-0.074	0.043	-0.174**	0.251***	0.01	-0.08
	Variables	78	79	80	81	82	83	84
78	e_p_commun	1						
79	d_p_commun	-0.150*	1					
80	p_p_commun	0.247***	-0.341***	1				
81	se_all	0.081	-0.284***	0.249***	1			
82	sc_all	0.087	-0.182**	0.226***	0.396***	1		
83	gender	-0.013	-0.032	-0.005	-0.049	0.088	1	
84	yearsrunning	-0.160*	-0.069	0.195**	0.115	0.147*	-0.1	1
85	age	-0.158*	0.043	0.091	0.005	0.12	-0.110*	0.615***
86	posaffect_~I	0.153*	-0.229***	0.317***	0.421***	0.307***	0.004	0.153
87	autpride_all	0.102	-0.286***	0.367***	0.440***	0.304***	0.014	0.267***
88	perf_sales	-0.007	-0.210**	0.322***	0.240***	0.137*	0.004	0.326***
89	perf_innov~n	0.004	-0.147*	0.202**	0.184**	0.146*	0.047	0.154**
90	perf_speed	0.034	-0.006	0.220***	0.194***	0.129*	-0.048	0.294***
91	perf_quality	0.088	-0.224***	0.253***	0.293***	0.248***	0.005	0.292***
92	perf_profit	-0.062	-0.187**	0.296***	0.293***	0.127*	0.005	0.321***
93	perf_custsat	0.179**	-0.149*	0.338***	0.280***	0.178**	0.03	0.321***
94	perf_all	0.053	-0.200**	0.356***	0.320***	0.206***	0.011	0.369***

	Variables	85	86	87	88	89	90	91
85	age	1						
86	posaffect_~I	0.064	1					
87	autpride_all	0.129*	0.796***	1				
88	perf_sales	0.126*	0.290***	0.416***	1			
89	perf_innov~n	0.011	0.223***	0.208***	0.398***	1		
90	perf_speed	0.173**	0.280***	0.320***	0.511***	0.580***	1	
91	perf_quality	0.1	0.318***	0.368***	0.487***	0.539***	0.538***	1
92	perf_profit	0.146*	0.315***	0.490***	0.732***	0.332***	0.456***	0.427***
93	perf_custsat	0.061	0.328***	0.376***	0.532***	0.414***	0.532***	0.697***
94	perf_all	0.133*	0.382***	0.468***	0.790***	0.707***	0.785***	0.801***

	Variables	92	93	94
92	perf_profit	1		
93	perf_custsat	0.482***	1	
94	perf_all	0.744***	0.795***	1

Note: * *p*=.05; ** *p*=.01; *** *p*=.001.

Appendix C: IRB Documents

IRB Approval Letter

Oklahoma State University Institutional Review Board

Date: 12/05/2018 Application Number: BU-18-62

Proposal Title: INDIRECT EFFECT OF ENTREPRENEURS' MOTIVES AND SELF-

SET GOALS ON NEW VENTURE PERFORMANCE

Principal Investigator: Jonathon Button

Co-Investigator(s):

Faculty Adviser: Craig Watters

Project Coordinator: Research Assistant(s):

Processed as: Exempt

Status Recommended by Reviewer(s): Approved

The IRB application referenced above has been approved. It is the judgment of the reviewers that the rights and welfare of individuals who may be asked to participate in this study will be respected, and that the research will be conducted in a manner consistent with the IRB requirements as outlined in section 45 CFR 46.

The final versions of any recruitment, consent and assent documents bearing the IRB approval stamp are available for download from IRBManager. These are the versions that must be used during the study.

As Principal Investigator, it is your responsibility to do the following:

- Conduct this study exactly as it has been approved. Any modifications to the research protocol must be approved
 by the IRB. Protocol modifications requiring approval may include changes to the title, PI, adviser, other research
 personnel, funding status or sponsor, subject population composition or size, recruitment, inclusion/exclusion
 criteria, research site, research procedures and consent/assent process or forms.
- Submit a request for continuation if the study extends beyond the approval period. This continuation must receive IRB review and approval before the research can continue.
- Report any unanticipated and/or adverse events to the IRB Office promptly.
- Notify the IRB office when your research project is complete or when you are no longer affiliated with Oklahoma State University.

Please note that approved protocols are subject to monitoring by the IRB and that the IRB office has the authority to inspect research records associated with this protocol at any time. If you have questions about the IRB procedures or need any assistance from the Board, please contact the IRB Office at 223 Scott Hall (phone: 405-744-3377, irb@okstate.edu).

Sincerely,

Oklahoma State University IRB

Recruitment Letter

Email Letter

Subject: Okstate Study Seeking Entrepreneurs or Business Owners

Dear Mr./Mrs. XXXX,

My name is Jonathon Button and I am a PhD student at Oklahoma State

University studying Entrepreneurship at the Spears School of Business. I am

conducting a research study about entrepreneurial motives and goals to better

identify factors that help entrepreneurs succeed. I am reaching out to you ask if

you would like to take about 20 minutes to complete a survey for this research

project. Participation is voluntary and your answers anonymous.

If you are interested, please click on the link for the survey and additional information.

If you have any questions please do not hesitate to contact me Jonathon.button@okstate.edu.

Thank you very much for your time.

I hope you have a great day,

Jonathon Button

Participant Consent

Participant Information

Thank you for participating in this study. The following contains information about your study and your rights as a research participant.

Project Title: Entrepreneurial Motives

Investigator: Jonathon Button, Ph.D., Oklahoma State University

Purpose: This is a web-based survey research study designed to understand the influence of entrepreneurial motives.

Procedures: Proceeding with the following web-based survey will imply your consent to participate in this study. The survey will take about 15 minutes to complete.

Risks of Participation: The risks associated with this study are minimal. The risks are not greater than those ordinarily encountered in daily life. Moreover, you may stop the survey at any time.

Benefits: This research will assist researchers understanding what factors might influence entrepreneurs' success.

Confidentiality: The data will be stored by the principal investigators in their offices. The data will only be released in summaries in which no individual's answers can be identified. All identifiers will be destroyed in December, 2023.

Contacts: If you have any questions or concerns about this project, please contact Jonathon Button, jonathon.button@okstate.edu. If you have questions about your rights as a research volunteer, you may contact the IRB Office at 223 Scott Hall, Stillwater, OK 74078, 405-744-3377 or irb@okstate.edu.

Participant Rights: Your participation in this research is voluntary. You can discontinue the survey at any time without reprisal or penalty.

VITA

Jonathon Edward Button

Candidate for the Degree of

Doctor of Philosophy

Dissertation: INDIRECT EFFECT OF ENTREPRNEURS' MOTIVES AND SELF-SET

GOALS ON NEW VENTURE PERFORMANCE

Major Field: Business Administration

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Business Administration at Oklahoma State University, Stillwater, Oklahoma in July, 2019

Completed the requirements for the Masters of Science in Entrepreneurship at Oklahoma State University, Stillwater, Oklahoma in May, 2014

Completed the requirements for the Bachelor of Science in Business Management at University of Hawaii, Manoa, Hawaii in December, 2009

Experience:

Co-Founder of Life Out of the Box at Stillwater, Oklahoma

Specialist for Cosdel International Transportation at San Francisco, California

Professional Memberships:

President of Doctoral Student Association for Spears School of Business

Resident of Riata Center of Entrepreneurship & OSUAccelerate Student Incubator

TedxOSU Presenter – How Business Can Change the World