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Abstract 

Microbiologically influenced corrosion (MIC) is of global concern and a threat due to 

its economic, environmental as well as public health implications. Identifying the factors that 

govern or influence MIC is beneficial in predicting such effects and for taking early preventive 

measures. Although the basic process of MIC is electrochemical, when biotic components and 

environmental factors are included, MIC becomes a collection of complex interactions that 

requires individual components to be identified and studied in order to understand their 

effects. This dissertation focuses on the effect of elevated levels of nitrate on the MIC of steel 

exposed to seawater. 

Metal exposed to seawater is known to be susceptible to MIC. Based on the analysis 

of field data of steel pilings exposed to coastal marine waters, Professor Robert Melchers put 

forward an empirical multi-phase phenomenological model of steel corrosion. The model 

proposes two periods where MIC occurs whereby the rate of corrosion depends on bacterial 

metabolic activity.  The activity of the corrosive microbes is in turn thought to be largely a 

function of the nutrient supply. Oftentimes, the major nutrient limiting bacterial activity in 

seawater is dissolved inorganic nitrogen (DIN), most notably nitrate, ammonium and nitrite 

concentrations. The overall objective of my study was to investigate the effect of elevated 

levels of nitrate on marine biofilms that are associated with the corrosion of carbon steel. 

Based on the phenomenological model, the hypothesis was that nitrate enhances corrosion 

by general stimulation of microbial activity. 

The first section of the dissertation interrogated the microbial communities of biofilms 

on carbon steel coupons exposed to shallow warm marine waters at four locations around 

the globe. Metagenomic analysis was performed with DNA extracted from the biofilms 

growing on coupons immersed at each location. Two of the locations (#5 and #7) had normal 

and relatively low levels of nitrate while the marine waters off the locations #4 and #6 had an 

unusually high level of dissolved inorganic nitrogen (DIN) (2.4 – 2.6 mg/L). However, the 

largest weight losses and rates of corrosion were independent of the DIN status of the 

ambient seawaters, thus the results did not support the hypothesis. Location #6 had the 

highest rate of general corrosion, as measured by weight loss by mild steel coupons, but both 

location #5 and #6 had more severe pitting corrosion, indicative of MIC. It was subsequently 
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hypothesized that the high DIN levels may have enriched for nitrate-reducing sulfate-reducing 

bacteria that led to relatively high sulfide-driven corrosion rates in location #6. Bacterial 

communities of both locations #4 and #6 had relatively high biomass based on DNA 

concentration as well as 16S qPCR. Moreover, they had higher frequencies of nitrate/nitrite 

reducing gene reads compared to the other two sites. The taxonomic analysis of nitrogen 

cycling genes revealed that high levels of nitrate was associated with the increase of nitrifying, 

facultative anaerobic as well as aerobic Alphaproteobacteria. The biofilms from location # 6 

had a higher relative abundance of Deltaproteobacteria (majority were Desulfovibrio) and 

sulfur-oxidizing bacteria that is at least consistent with the higher corrosion rate compared to 

the other locations, but few of the sulfate-reducing bacteria also had nitrate reduction genes. 

Therefore, the second hypothesis was also disproven. Additionally, the relative frequency of 

ccoN genes (an indicator of aerobic respiration potential) was relatively high in the location 

#4 compared to the samples of other locations.  

The effect of elevated levels of nitrate on carbon steel corrosion was also tested with 

the common marine organism Marinobacter hydrocarbonoclasticus SP17 as the biotic 

component. In light of unpublished observations we hypothesized that Marinobacter biofilms 

protect 1018 carbon steel under aerobic conditions. Furthermore, it was hypothesized that 

the biofilm cells inhibit or reduce corrosion specifically by the removal of oxygen. Carbon steel 

coupons were exposed to Marinobacter cells that were amended with nitrate or ammonium 

as the nitrogen source and incubated under aerated (unsealed) or oxygen limited (sealed) 

conditions. The weight loss of coupons with biofilm was significantly lower than that without 

a biofilm regardless of the nitrogen source or oxygen supply status. The coupon weight loss 

difference was significant between the sealed (oxygen-limited) and unsealed (oxygen-

unlimited) incubations, with less weight lost from coupons incubated under oxygen-limited 

conditions. Dissolved ferrous iron measurements as an indicator of corrosion showed the 

same trends as measurements of weight loss with less corrosion associated with coupons with 

biofilms compared to biofilm-free coupons, regardless of the oxygen and nitrogen status, i.e., 

dissolved iron measurements were lower with coupons in sealed (limited-oxygen) treatments 

compared to unsealed treatments with or without a biofilm. The coupon weight loss and the 

dissolved ferrous iron measurements did not exhibit significant differences between abiotic 

treatments with nitrate, ammonium or no nitrogen source added. The observations 
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supported the hypothesis that Marinobacter biofilm protects 1018 carbon steel under aerobic 

conditions. The most likely mechanism for corrosion inhibition by the organism appeared to 

be oxygen respiration thereby limiting the ability of this gas to reach and interact with the 

coupon surface. In any event, the study did not support the hypothesis of enhanced corrosion 

in the presence of elevated levels of DIN, either nitrate or ammonium. 

This dissertation relied on both field and laboratory experiments to interrogate the 

impact of elevated levels of nitrate in seawater on carbon steel corrosion. The observations 

did not support the contention that elevated levels of nitrate were associated with higher 

corrosion.  Further, high levels of nitrate compared to ammonium as a DIN source were also 

not associated with significantly more corrosion in the presence of a common marine 

heterotrophic bacterium. The metagenomic analyses of biofilms from the field support the 

hypothesis of a generic stimulation of microbial proliferation. However, since both locations 

with high DIN did not experience same amount of corrosion and microbial activity was not 

tested, it does not explain increases in corrosion as proposed by Melchers. Admittedly, the 

examination of only four marine coastal areas can hardly be considered exhaustive.  Similarly, 

the impact of a pure culture heterotrophic bacterium that is capable of utilizing nitrogen 

under both aerobic and anaerobic conditions can only partially reflect the many intricacies of 

entire marine microbial communities. However, the observations described herein suggest 

that the presence of high DIN or nitrate in local marine environment cannot be used as the 

reliable indicator of high corrosion rates as selection for nitrate-reducing microbes can include 

those that enhance MIC and those that do not. Additionally, the use of nitrate/nitrite reducing 

gene frequency and/or nitrogen cycling genes as a marker for corrosion should be 

reconsidered. 
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Preface 

Microbiologically influenced corrosion (MIC), as a research topic, is receiving 

significant attention since it poses a threat to human safety, the environment as well as the 

economy. Metal infrastructure such as bridges, ships and their ballast tanks, oil and gas 

pipelines, offshore mooring systems and other carbon steel components that have been 

researched over the past few decades has provided ample evidence of the influence of 

microbes on corrosion. Developing tools or models for predicting corrosion loss are important 

as they will help to avoid huge economic losses. One influential model of marine corrosion is 

the phenomenological model by Dr. R.E. Melchers. Melcher’s model describes five phases of 

long-term corrosion for steel in marine waters. Although the model is mainly focused on 

accelerated low water corrosion (ALWC: unusually high levels of corrosion observed on steel 

structures located just below the usual low tide level in natural sea waters), it still can be 

applied with appropriate caveats to corrosion of steel in tropical shallow waters. A number of 

studies by Melchers and his group have also shown correlation between higher levels of 

dissolved inorganic nitrogen (DIN) in seawater and higher levels of ALWC. The objective of 

this dissertation was to examine the influence of biological activity/metabolism on the 

corrosion of steel in seawater with special regard to Dr. Melcher’s phenomenological model. 

My study focused specifically on the influence of nitrate on bacterial activity/metabolism and 

carbon steel corrosion. Chapter 1 is a field study designed to examine the impact of elevated 

nitrate levels in marine waters on corrosion and the resulting influence on the diversity of the 

attached microbial community. The effect of nitrate on metal corrosion was examined at the 

level of single species in Chapter 2 while the appendix documented the impact of this anion 

at the level of the transcriptome of a single species growing as a biofilm vs. planktonic phase.  

Chapter 1 extended the analysis of already existing data obtained by the collaborative 

work of University of Oklahoma (OU), Department of Microbiology personnel in conjunction 

with the AMOG Consulting, Inc. The AMOG Consulting Inc. received corroded coupon samples 

as part of an investigation into the role of MIC on the rapid corrosion of mooring chains from 

Deepstar®, an engineering company involved in marine technology development, with 

Chevron Energy Technology Company as the lead sponsor. The coupons, manufactured from 

mooring chain steel, were immersed in seawater at four different locations for several months 
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prior to retrieval and analysis. Two of the locations (#4 and #6) had elevated levels of nitrate, 

while the other two (#5 and #7) had lower and more typical seawater concentrations of this 

anion. The samples were analyzed in the Department of Microbiology and Plant Biology at 

OU. Although the project produced corrosion analysis, metagenomic as well as metabolomic 

data, the current chapter analyzed only the metagenomic data to evaluate the 

phenomenological model by Dr. Melchers. The corrosion analysis through weight loss, light 

microscopy and scanning electron microscopy (SEM) was performed by Dr. Iwona Beech and 

Dr. Zakari Makama (Department of Microbiology and Plant Biology, OU). The major findings 

of the coupon surface analysis are reported in Chapter 1 as they relate to the metagenomic 

analysis. The DNA was extracted from the biofilms and preparation of the samples for illumina 

MiSeq Next Generation Sequencing (NGS) was done by Dr. Kathleen Duncan and myself. The 

initial taxonomic analysis using 16S rRNA gene sequences and functional gene analysis was 

also performed by Dr. Duncan using the MGMIC pipeline constructed by Dr. Boris Wawrik 

(University of Oklahoma). My objective was to obtain deeper insight on the microbial 

community composition and potential function at each of the four marine sampling stations 

by further interrogation of the taxonomic as well as functional gene data. More specifically, I 

sought to address, i) What are the major bacterial groups in each location potentially capable 

of causing corrosion? ii) What are the major pathways that can enhance/inhibit corrosion 

present in each location? Special emphasis was placed on the aerobic respiration, nitrogen 

and sulfate reducing as well as sulfur oxidation pathways. Nitrate reducing, sulfate reducing, 

and sulfur oxidizing genes were interrogated for their taxonomic identities. The unusually high 

levels of nitrate resulted in an increase in nitrate/nitrite reducing gene frequencies at two of 

the sites. The bacteria responded to high nitrate levels in both sites were mainly aerobic and 

nitrate reducing Alphaproteobacteria. Corrosion rates all depicted severe general corrosion 

attack in all four sites with one site (#6) having slightly higher corrosion rate and two of the 

locations (#5 and #6) having higher rates of pitting corrosion. The data suggested that the 

activity of sulfate reducing bacteria as well as sulfur oxidizing bacteria in biofilms may have 

resulted in the relatively high corrosion rate of the coupons of location #6. Additionally, 

coupons of location #4 likely experienced higher oxygen levels as a greater proportion of the 

sequences were affiliated with aerobic or facultatively anaerobic taxa and there was a higher 

relative abundance of genes coding for enzymes essential for oxygen respiration. The severe 

pitting rate of coupons in location #5 appears to be associated with the activity of sulfate 
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reducing bacteria, as the DNA extracted from those coupons contain a high number of sulfate 

reducing genes as well as a high relative abundance sulfate reducers such as Desulfovibrio. In 

location #7, the corrosion of one coupon was associated with a high relative abundance of 

sulfate reducers while sulfur oxidizers were more prevalent in the other replicate coupon. 

These observations suggest that high DIN levels in the environment is likely a poor indicator 

of MIC and should not be used as the primary indicator of associated problems. 

Chapter 2 examined the effect of elevated levels of nitrate in seawater on corrosion 

of carbon steel employing Marinobacter hydrocarbonoclasticus SP17 as the biotic 

component. A single species was used to lower the complexity of the experiments and 

thereby allow for clearer interpretation of the results. Treatment variables included 

presence/absence of Marinobacter, nitrate versus ammonium as the nitrogen source, and 

sealed (e.g. limited oxygen) versus aerated (e.g. unlimited oxygen) incubation systems. The 

experiments revealed that Marinobacter indeed formed a biofilm on the coupons and that 

the weight loss of coupons with cells was always lower than without cells regardless of the 

nitrogen source. However, weight loss was less in the sealed bottles than the aerated bottles, 

and least in the sealed incubation systems containing Marinobacter. The weight loss reflected 

the concentration of oxygen in the bottles, with least weight loss and lowest oxygen levels in 

the sealed bottles with Marinobacter. Therefore, it was hypothesized that consumption of 

oxygen by the biofilm and planktonic cells reduced aerobic corrosion of coupons and that 

Marinobacter exercised a protective effect under these conditions. 

The goal of Appendix 1 was to better understand the effect of elevated levels of nitrate on 

bacterial activity/metabolism when a biofilm forms on a suitable surface. Transcriptomic 

analysis (microarray) was planned for Marinobacter hydrocarbonoclasticus SP17 biofilm 1) 

when it occupied an inert surface (glass) and 2) when it grew on carbon steel. This research 

was performed under the direction of Dr. Iwona Beech.  However, only part 1 (biofilm on glass 

surface) was completed and is reported as Appendix 1. Contrary to expectations, genes in the 

dissimilatory and assimilatory nitrate reduction pathways were downregulated in the 

presence of nitrate. Cytochrome oxidase genes (essential for oxygen respiration) were also 

downregulated, suggesting that the elevated levels of nitrate may be associated with a shift 

from aerobic to anaerobic respiration.  
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Chapter 1 

Short-term deterioration of steel by microbiologically influenced corrosion (MIC) in 

marine waters with varying nitrate content: Metagenomic analysis of biofilms on corroded 

mooring chain coupons 

Abstract 

The accelerated corrosion observed in steel mooring systems of sea-going vessels has been 

attributed to microbiologically influenced corrosion. The present study was done in response to 

general as well as pitting corrosion observed in mooring systems by DeepStar®, a joint industry 

technology development consortium. Metal coupons cut from steel mooring chains were exposed in 

four different offshore locations. The locations #4 and #6 had similar levels of relatively high dissolved 

inorganic nitrogen (DIN 2.4 – 2.6 mg/L) while two other locations had undetectable levels of DIN. In 

light of a phenomenological model for metal corrosion in seawater put forward by Dr. R.E. Melchers 

and colleagues, it was hypothesized that DIN enhanced corrosion through the stimulation of microbial 

activity. However, coupons recovered from location #6 experienced a somewhat higher rate of general 

corrosion compared to locations #4, #5 and #7, and coupons from locations # 5 and #6 had more 

pitting corrosion. Alternatively, it was hypothesized that the high levels of nitrate (the major 

component of DIN at the study locations) was associated with an increase in nitrate-reducing sulfate-

reducing bacteria (SRB), which might then lead to high rates of sulfide-driven pitting corrosion. 

Biofilms on two coupons from each location were recovered, DNA extracted and metagenomic 

analysis was conducted to characterize the microbial community structure and infer the metabolic 

potential of the biofilm communities at each location. Communities at the elevated nitrate locations 

(#4 and #6) had higher bacterial numbers (based on qPCR of 16S rRNA genes) than the low nitrate 

areas (#5 and #7), as well as a relatively higher frequency of nitrate/nitrite reducing gene reads. High 

numbers of SRB, based on qPCR of dsrA (essential gene for sulfate reduction) were found on both 

coupons from locations #5 and #6, and on one coupon from location #4. Based on analysis of the 

relative abundance of representative functional genes involved in major electron acceptor pathways, 

oxygen respiration appeared to be dominant in locations #4, #6, and #7, whereas sulfate reduction, 

as indicated by the relative abundance of dsrA, prevailed in location #5. The taxonomic analysis of 

nitrogen cycling genes revealed that high levels of nitrate were associated with a higher relative 

abundance of denitrifying, facultatively anaerobic and aerobic Alphaproteobacteria. Additionally, 

sulfur-oxidizing Epsilonproteobacteria responded to the high nitrate levels in location #4 but not in 

location #6. Collectively, the relatively high general and pitting corrosion in location #6 may be due to 

the combined effect of high numbers of bacteria, stimulated by nitrate, and in particular by high 
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numbers of sulfate reducing bacteria. Similarly, coupons from location #5 also had a high number and 

relative abundance of sulfate reducing bacteria as well as larger and deeper pits. 

Thus high DIN is associated with higher numbers of biofilm bacteria but different groups of 

denitrifying bacteria can be enriched, possibly depending on the ambient oxygen levels. The 

availability of oxygen is expected to decrease as the biofilm matures, as in Melcher’s model, and the 

degree of carbon steel pitting should increase as the number of anoxic regions multiply. The 

differences in biofilm community composition among coupons suggests that the coupons may have 

experienced different levels of oxygen availability when they were sampled.  While only four sampling 

sites are evaluated, the results are inconsistent with the prediction of increased corrosion being 

differentially associated with high DIN in marine waters.  As a corollary, the nitrate concentration as 

well as the frequency of nitrate/nitrite reducing and/or nitrogen cycling genes may not be useful as 

early warning signs of carbon steel corrosion and should be used with caution. 
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Introduction 

Professor Robert Melchers put forward an empirical multi-phase phenomenological model for 

carbon steel corrosion in seawater (Melchers, 2003). The model is based on the analysis of steel pilings 

exposed over long periods of time to coastal waters from around the globe. The model has five phases 

(Figure 1A) and two periods of biological activity (Melchers, 2010; Melchers and Jeffrey, 2011). In 

phase 0, the metal surface is initially colonized with marine organisms (i.e. prokaryotes and 

microeukaryotes). The corrosion in phase 0 is an aerobic process that exhibits non-linear kinetics, 

influenced by both the chemical and bacterial environment (particularly if the bacterial nutrient supply 

is unlimited). Phase 1 is governed mainly by the diffusion of oxygen through the developing biofilm to 

the metal surface. With rust layer build up, localized anoxic/suboxic microenvironments get created 

in the biofilm.  At this phase of development, the first stage of biological activity essentially ends. 

During Phase 3 and 4, the corrosion mechanisms change to largely anaerobic processes, mainly 

catalyzed by bacterial activity. The rate of corrosion during Phase 3 and 4 depends on bacterial 

metabolism and is a function of the nutrient supply. The nutrient most often limiting bacterial activity 

in seawater is dissolved inorganic nitrogen (DIN), including nitrate, ammonium and nitrite (Melchers, 

2014). The role of bacterial activity on carbon steel corrosion (microbiologically influenced corrosion 

- MIC) during 0-1 phases have been confirmed with field-collected data as well as laboratory 

experimentation (Melchers, R. E. 2007; Melchers and Jeffrey, 2011).   

Accelerated general and pitting corrosion observed in mooring systems has been previously 

attributed to MIC (Rosen et al., 2014; Witt et al., 2016). The SCORCH JIP (Seawater Corrosion of Ropes 

& Chain - Joint Industry Project) was developed to address multiple cases of severe pitting and 

localized corrosion of chains and wire ropes of mooring systems in tropical waters. The SCORCH JIP 

examined mooring chain links recovered from floating production units based in West Africa and 

Indonesia (Rosen et al., 2014). These were in service only for seven years and had experienced severe 

general corrosion in the splash zone and mega-pitting in the submerged near-surface zone.  Although 

not based on adherent microbial community analysis, the element composition of the rust from the 

recovered chain links suggested that pitting was the result of MIC (Rosen et al., 2014). Furthermore, 

a strong correlation was observed between the pitting and the nutrient concentration of the 

environment. Nitrate concentration (as N) in particular was unusually high in both locations (West 

Africa – 12.08 mg/L and Indonesia – 1 mg/L), thus the study suggested the further investigation of the 

association between MIC and nutrient concentration (Rosen et al., 2014).  

Since 2010, mooring systems in facilities off coast of Nigeria, Angola and Equatorial Guinea 

have received replacements as corrosion was suspected to be associated with MIC (Witt et al., 2016). 
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In 2014, a field study was conducted by the project comparing two sites of the coast of West Africa 

(Witt et al., 2016). Coupons at one site experienced comparatively higher corrosion including the 

formation of mega-pits. The DNA profile on coupons of the two sites were different with sequences 

representing sulfate reducing bacteria (SRBs) in the biofilm of the high corrosive site. However, the 

relative abundance of OTUs representing SRBs was low compared to other major bacterial groups. 

Although the findings were consistent with MIC in the high corrosive site, the ability of SRBs to produce 

severe general and pitting corrosion when in such low abundance was not verified (Witt et al., 2016).  

The present study was designed as a continuation of the SCORCH JIP to better understand MIC 

associated with mooring systems and to evaluate MIC mitigation strategies. A molecular analysis of 

the microbial communities on coupons was performed to gain insight on the adherent biofilms 

associated with MIC that may lead to the initial phases of general corrosion and the formation of 

macroscopic pits in mooring chains. To that end, metal coupons cut from steel mooring chains were 

exposed to four offshore locations in parts of the world that experienced different rates of corrosion. 

Biofilms on the coupons were recovered and metagenomic analysis was conducted to compare the 

microbial community structure and to infer the metabolic potential of the adherent populations. In 

light of the model put forward by Melchers and colleagues (Melchers, R. E, 2003; Melchers, R. E. 2007; 

Melchers, R. E, 2010; Melchers and Jeffrey, 2011), and previous observations of pitting corrosion of 

mooring chain links associated with high DIN levels (Rosen et al., 2014), it was hypothesized that DIN 

enhances corrosion by the general stimulation of microbial activity. If true, high rates of corrosion 

should be more evident in samples recovered from high DIN locations relative to low DIN areas.  

Alternatively, it might be that the high levels of nitrate (a component of DIN) in marine environments 

are associated with the differential increase in nitrate reducing sulfate reducing bacteria (Marietou, 

2016).  When aerobic conditions prevail in marine waters, sulfate reduction is typically negligible and 

the ability utilize nitrate as terminal electron acceptor might allow this type of SRBs to remain viable.  

When microbial biofilm development on coupon surfaces restrict oxygen penetration, the activity of 

this group of organisms would lead to an increase in corrosion through the production of high levels 

of sulfide that subsequently react with iron leading to formation of Fe (II) sulfide. Such an association 

would lead to relatively high sulfide-driven corrosion rate in coupons recovered from high nitrate 

locations.  
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Materials and Methods 

Metal coupon samples /Field sampling kit 

Metal samples were manufactured from offshore mooring chain links donated by Vicinay 

Marine and Asian Star Anchor Chain. The rectangular coupons (85 mm X 30 mm X 6mm) were taken 

near the surface of mooring chain links (Figure 2) and had a slight curvature on one side. Each coupon 

had two holes (8mm diameter) 12 mm and 26 mm away from the short edge of the coupon.  

The coupons were connected together to make a field exposure kit called the “microbiological 

fishing kit” (MFK) as described elsewhere (Witt et al., 2016). The MFK used in this study was slightly 

modified from that previously described in that the coupons were attached to plastic rods by one hole 

with a non-conductive bolt and spacer, and by the other hole with a plastic cable tie (Figure 3). The 

candidate locations selected to conduct the study are shown in figure 4 and were labeled as location 

#4, #5, #6 and #7 (Figure 4). The duration of exposure and depth of exposure of each MFK are given 

in Table 1. From the recovered MFKs, coupons C1, C2, C5, C8 and C10 were used for various analyses. 

All coupons Except C1 were treated with DNAzol (MRC, Inc. Cincinnati, OH, a reagent used to preserve 

DNA) prior to shipping.  

Metal coupon cleaning 

Coupons were shipped to the University of Oklahoma laboratory in individual transparent 

plastic bags. The surface of coupons C2 and C5 were scraped using a sterile spatula to remove the 

outer biofilm for subsequent DNA extraction. The coupons were then stored at -20oC until surface 

analysis. Coupons C1, C5, C8 and C10 were cleaned following an ASTM standard protocol (ASTM G1-

03, 2011).  Briefly, coupons were dipped in a cleaning solution (3.5 g/l of hexamethylenetetramine 

(Sigma-Aldrich, St. Louis, MO) in 6M HCl) followed by brief immersions in acetone and methanol. The 

coupons were subsequently dried using N2 gas and used for weight loss analysis to estimate rates of 

general corrosion. Coupon pit depth was evaluated by light microscopy using an SEM/SEM stereo pair 

analysis. 

Water sampling 

Water samples were collected from each exposure location at a depth of 2-5m below the 

water surface and were put on ice for preservation. The samples were analyzed for chemical 

composition in a laboratory close to the sampling locations (conducted by collaborators) and the 

reports were made available to the authors by DeepStar®.  
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 Biofilm collection and DNA extraction 

Coupons C2 and C5 of each location were used for biofilm collection and DNA extraction for 

metagenome analysis. The outer biofilm of each coupon was scraped using a sterile Teflon spatula and 

0.25g of the scrapings were added to sterile 2 ml screw cap tubes. DNAzol (50 µl, MRC, Inc. Cincinnati, 

OH) was added to the biofilm material and mixed by vortexing. The tubes were stored at 20oC until 

DNA could be extracted as described elsewhere (Cellikol-Aydin et al., 2016). This procedure is a 

combination of the Power Soil DNA extraction method (MO-BIO Laboratories, Carlsbad, CA) and the 

Maxwell® 16 Tissue LEV (Low Elution Volume) Total RNA purification kit AS1220 with the Maxwell® 16 

instrument (Promega Corp, Madison, WI). A tube of beads from Power soil extraction kit was added 

to each screw cap tube containing biofilm. The solution C1 from the same kit (60 µl) was added next 

and mixed by vortexing for few seconds. Three heat/thaw cycles were performed next as follows: 5 

minutes at 70oC and 5 minutes at -80oC. Proteinase K (10 µl, Quigen, Valencia, CA) was added to each 

sample and incubated at 45oC for 1 h. After that, the tubes were bead-beaten for 2 minutes. The 

samples were centrifuged at 10,000 x g for 30 seconds at room temperature and the supernatant was 

transferred to a new tube. After adding 250 µl of solution C2 of Power soil extraction kit and vortexing, 

the samples were incubated at 40oC for 5 minutes. Then, the samples were centrifuged at 10,000 x g 

for 1 minute at roome temperature and the supernatant was transferred to a clean tube. The solution 

C3 (200 µl) of Power soil extraction kit was added next, vortexed and incubated for 5 minutes at 4oC. 

The samples were then centrifuged at 10,000 x g for 1 minute at room temperature and the 

supernatant was transferred to a clean tube. Afterwards, 500 µl of RLA (RNA lysis buffer) and 500 µl 

RDB (RNA dilution buffer) were added and the samples and mixed well. The DNA was extracted from 

this mixture using the FFPE (formalin-fixed, paraffin-embedded)/Cells program of the Maxwell® 16 

instrument. The DNA was eluted in 100 µl of nuclease-free water and DNA quantified using a Qubit® 

2.0 Fluorometer and the Qubit® dS DNA HS assay (Life Technologies, Grand Island, NY) according to 

manufacturer’s instructions. The DNA samples were sequenced on an Illumina MiSeq instrument in 

the Next Generation Sequencing Facility at Oklahoma Medical Research Foundation, Oklahoma City, 

OK. 

qPCR 

Number of copies of bacterial 16S/archaeal rRNA gene and dsrA gene (dissimilatory sulfate reductase 

catalytic subunit, used to estimate #s of sulfate-reducing bacteria) was determined using qPCR. For 

bacterial/archaeal 16S, each qPCR reaction was performed in triplicate with a final volume of 15 µl 

containing 3 µl of biofilm DNA, 0.04 µl of forward primer (519F: 5’ CAGCMGCCGCGGTAA 3’, 100 µl 

stock, Klindworth et al., 2013), 0.08 µl of reverse primer (Bac_785R: 5’ TACNVGGGTATCTAATCC 3’, 
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100 µl stock, Klindworth et al., 2013), 7.5 µl of 2X Power SYBR green qPCR mix (Life Technologies, 

Grand Island, NY) with the balance provided by RT-PCR grade water. The real-time PCR reaction 

was run in a StepOnePlusTM Real-Time PCR System (Applied Biosystems, Carlsbad, CA, 

StepOneSoftware v2.1) at 95°C for 10 minutes followed by forty cycles of 95°C for 30 s, 52°C for 

45 seconds and 72°C for 45 seconds with data collection at 72°C. For dsrA, the primers DSR1F and 

RH3-dsrR were used (Ben-Dov et al., 2007). Samples were run in triplicate and each reaction 

mixture contained 3 µl of biofilm DNA 1:10 or 1:100 dilution, 0.1 µl of each primer (100 µl stock), 1.5 

µl of 5M Betaine, 7.5 µl of 2X Power SYBR green qPCR mix with the balance provided by RT-PCR 

grade water. Thermal cycling was carried out in the same RT-PCR system as above with the 

following cycling conditions: initial denaturation at 95°C for 10 minutes was followed by forty 

cycles of 95°C for 15 seconds, 60°C for 30 seconds and 72°C for 20 seconds and 79°C for 10 

seconds. Standard curves were developed by utilizing a plasmid containing one copy of either 16S 

or dsrA gene sequence. 

Metagenomic analysis  

The raw sequences were processed using the MGMIC pipeline application. The quality of 

sequences were assessed by FastQC (Andrews, 2010). Primer/Illumina adapter/barcode sequences 

were detected and trimmed using a combination of custom scripts integrated with TrimGalore 

(Babraham Bioinformatics) and Cutadapt (Martin, 2011). Reads were trimmed to a Phred quality score 

of 30 and poly-AAA tails and artifacts were eliminated using HomerTools (Heinz et. al., 2010). The read 

processing tool Trimmomatic (Bolger et al., 2014) was applied to screen sequences for a minimum 

length of 100 bp and to remove any homopolymers (>6bp). Unpaired reads were removed and 

sequences were converted to fasta format via Biopieces (http://www.biopieces.org). Finally, the 

success of quality screening was assessed by rerunning FastQC (Andrews, 2010).  

16S rRNA gene based microbial community analysis 

Using the MGMIC pipeline application, the 16S rRNA gene sequences were extracted from the 

metagenome by USEARCH (Edgar, 2010) against the SILVA 111 reference alignment database (Quast 

et al., 2013). All reads with >70% identity over a 100 bp fragment to the Silva database were extracted 

and assigned taxonomy via closed reference picking in relation to the Silva 118 reference alignment 

via QIIME pipeline (Caporaso et al., 2010).  
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Functional gene analysis 

Functional gene prediction was performed by searches of functional gene databases via 

USEARCH (Edgar 2010) by setting a minimum overlap of 50 columns at a 70% identity. Frequencies 

were calculated as RPKM (reads per kbp per megabase) and RPKM was calculated as = (reads / exon 

length) * (1,000,000 / mapped reads). The gene frequency for each gene was then normalized against 

the number of rpoB genes per sample and multiplied by 1000. Only one copy of rpoB is found per 

bacterial genome and therefore the number of rpoB genes is equivalent to the number of cells. Thus, 

the final calculated gene frequency gives the number of copies of a certain gene per 1000 cells. The 

reads of nitrogen and sulfur cycling genes were extracted from functional gene analysis and used the 

BLASTN function against NCBI nucleotide database (Altschul et al., 1990) to gain phylogenetic 

identification.  

Results 

Location parameters 

The coupons in all four locations were exposed to subtropical seawater in the euphotic zone 

although the four environments differed in several important parameters (Figure 4, Table 1). In 

locations #4 and #5, the coupons were exposed 20 meters below the sea surface whereas coupons 

were exposed 3 meters below the surface for locations #6 and #7. The water temperature was slightly 

higher at location #6 (28oC) whereas it was 26oC at the other three sampling areas.  The length of 

exposure of the coupons in seawater varied from 74 d (location #7) to 116 d (location #5), with location 

#4 at 95 d and location #6 at 92 d. 

The dissolved inorganic nitrogen (DIN) content in particular, was very high (> 2 mg/L) at 

locations #4 and #6 compared to the other two locations. Nitrate was the dominant form of DIN at 

both #4 and #6. Dissolved oxygen was not recorded for locations #4 and #7.  

Corrosion analysis 

Corrosion analyses were conducted by collaborating colleagues (Drs. Iwona Beech and Zakari 

Makama) and shown here to illustrate differences in coupon damage from the four locations and the 

variation in damage among the coupons in the same location (Figure 5). The rates were determined 

based on weight loss of each coupon but are not further described due to confidentiality agreements. 

The highest corrosion rate was observed with the coupons recovered from location #6 followed by 

locations #5, #7 and the lowest in #4. According to the NACE International Standards of corrosion rate 
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interpretation (NACE Standard, 2005), the damage in all four locations fall into the category of severe. 

The average rate at location #4 was just above the lower limit of severe corrosion rate while the others 

had values above the limit.   

Statistically, there was a significant difference between the groups as determined by one-way 

ANOVA (F (3,12) = 3.538, P = 0.048). A Tukey HSD test further indicated that the corrosion rates of 

location #4 were statistically significantly lower than that of location #6. Based on light microscopy 

and SEM, more aggressive pitting was observed on coupons exposed to locations #5 and # 6 compared 

to the other two locations (data not shown due to confidentiality agreements). While coupons of all 

locations experienced pitting, the pits of locations #5 and #6 were much deeper and wider compared 

to same measures at the other locations. 

Biofilm community analysis 

The DNA concentration from 500 mg of biofilm samples of two coupons from each location 

was used as a surrogate to estimate relative biomass quantities (Table 2). The highest biomass was 

found in the biofilms recovered from coupons of location #4. Coupons #6-C5 and #7-C2 had total 

biomass higher than 1000 ng followed by coupon #6-C2 with 968 ng. Coupon #7-C5 had only half of 

biomass compared to the other coupon (#7-C2) recovered from the same location. The lowest biomass 

based on DNA concentration was found in the biofilms recovered from location #5 (Table 2).  

With reference to qPCR data, the number of bacterial and archaeal 16S rRNA gene copies of 

biofilms from locations #4 and #6 was 10 times higher than the biofilms of other two locations (Table 

2). When number of copies of dsrA sequences is considered, biofilms of locations #5 and #6 contained 

more copies in general except for the high number of copies from coupon C5 of location #4 (Table 2, 

Figure 8). The qPCR for dsrA copy number of coupon C2 of location #5 was repeated several times but 

always resulted with an average higher than the 16S copy number.  

Based on the analysis of 16S rRNA gene sequences extracted from metagenomes, C2 and C5 

of location #4 and C2 of location #7 had >50% relative abundance of eukaryotes (Figure 6, Table S1). 

In biofilms of coupons #7-C5, #5-C2 and #5-C5, the relative proportion of 16S rRNA reads representing 

eukaryotes were 43%, 44% and 27%, respectively, with the lowest relative proportion of eukaryotes 

occurring in the biofilms of coupons from location #6. There also appears to be an effect of coupon 

position, with coupon C5 in each location having a lower relative abundance of eukaryotes than 

coupon C2. The eukaryotic sequences represented cnidarians, marine arthropods, bryozoans and 

radiolarians. 
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The great majority of the remaining 16S rRNA gene sequences were those of bacteria rather 

than archaea. The number of archaeal rpoB sequences was less than 1% that of bacterial rpoB 

sequences except for location #7 (approximately 1%). Around 90% of 16S rRNA gene reads in biofilms 

of location #6 were bacterial sequence reads (Figure 6). In the biofilm community of coupons C2 and 

C5 of location #6, Alphaproteobacteria made up 31.68% and 21.26% of the total reads with 79% and 

67% of them representing family Rhodobacteraceae, respectively. Deltaproteobacteria accounted for 

13.2% and 42.32% of the total reads in C2 and C5 of the same location, respectively (Figure 6, Table 

S1) and the majority (95% and 80%, respectively) were of genus Desulfovibrio. The relative abundances 

of Gammaproteobacterial reads in the same biofilm samples were 11% and 29% (Figure 6, Table S1). 

The majority of Gammaproteobacterial reads in C2 were members of the Vibrionaceae, with 

Thalassomonas and Vibrio most abundant, while Campylobacteraceae dominated C5, including the 

sulfur oxidizing bacteria Sulfurimonas and Arcobacter.   

In the biofilm communities C2 and C5 of location #5, Deltaproteobacteria was the dominant 

bacterial group with relative abundances of 23.5% and 38.7%, respectively (Figure 6, Table S1), with 

>80% of them represented by Desulfovibrio. Alpha- and Gammaproteobacteria were found in 

relatively smaller proportions (less than 10%) in the #5 samples (Figure 6, Table S1). The majority of 

the OTUs in the Alphaproteobacteria belonged to family Rhodobacteraceae. Epsilonproteobacteria 

made up 2.8 and 5.8%, respectively, of the total 16S reads in the same biofilm samples (C2 and C5), 

dominated by the sulfur oxidizer Sulfurimonas (Figure 6, Table S1). 

The biofilms recovered from the location #4 had ~9% relative abundance of 

Alphaproteobacterial sequence reads (Figure 6, Table S1). Biofilm on coupon #4-C5 had 11.28% of 

total reads representing Deltaproteobacteria while the other coupon of the same location (#4-C2) had 

only 1.89% total reads belonging to the same bacterial taxon, with the majority represented by 

Desulfovibrio. Epsilonproteobacteria made up 7.5 and 3.2%, respectively, of the total 16S reads in the 

same biofilm samples, dominated by the sulfur oxidizers Sulfurimonas together with Arcobacter 

(Figure 6, Table S1) About 4.59% and 5.64%, respectively, of the total 16S reads of #4-C2 and #4-C5 

biofilms accounted for Zetaproteobacteria with iron-oxidizing genus Mariprofundus accounting for all 

of them.   

With respect to 16S rRNA sequence analysis of the two biofilm samples of location #7, 

bacterial community composition of the two coupons were quite different in terms of relative 

abundances of major bacterial groups as well as the relative proportion of eukaryotes (Figure 6, Table 

S1). Particularly, relative abundance of Deltaproteobacteria in #7-C5 was 22.2% while in #7-C2, the 

value was only 3.1%, with the majority in each case was Desulfobacter (Figure 6, Table S1). Moreover, 
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Alphaproteobacteria accounted for 13.1% of total reads in #7-C5 when the same group accounted for 

4.8% of total reads in #7-C2. 

Functional gene analysis 

 To gain some insight on the potential major respiration pathways present, the metagenome 

of each biofilm was interrogated for the frequency of gene copies involved in in oxygen respiration 

(ccoN), nitrate/nitrite reduction (napA, napB, narG, narH, narI, narJ and nirK), sulfate reduction (aprA, 

aprB, dsrA, dsrB) and sulfur/sulfide oxidation (soxA, soxB, soxC, soxX, soxY, soxZ). The normalized gene 

frequencies were summed based on the pathway.  

Based on functional gene analyses, the biofilm bacterial community from all four locations 

had the potential for oxygen respiration, sulfur/sulfide oxidation (Figure 8, Table S2), sulfate reduction 

and nitrate/nitrite reduction (Figure 9, Tables S3 and S4). The ability of the microbial community to 

catalyze aerobic respiration is indicated by the frequency of the ccoN gene (cbb3-type cytochrome C 

oxidase catalytic subunit). Coupons of location #4 had the highest frequency of these genes (217.4 

and 220.4 reads, Figure 8, Table S2) and location #5 the lowest frequency. Further, biofilms of location 

#4 had the highest proportion of sulfur oxidation genes with normalized frequencies higher than 300 

(Figure 8, Table S2). The lowest representation of sulfur/sulfide oxidation genes was by biofilms of 

location #5 with frequencies of 116 and 158 and coupon C2 of location #7 with a frequency of 161 

(Figure 8).  

As far as the functional genes involved in anaerobic pathways are concerned, the biofilms 

from high nitrate locations #4 and #6 samples had higher frequencies of nitrate/nitrite reduction 

genes compared to the other two locations (Figure 9, Tables S3 and S4). Coupons #4-C2 and #4-C5 had 

normalized frequencies of 450.1 and 431.9 while the coupons #6-C2 and #6-C5 had 352 and 345.6 

frequencies (Table S3). In contrast, the highest number of reads for sulfate reduction genes were 

found in the #5 biofilms (554.8 and 668.2,) followed by coupons #6-C5 (544.3) and #7-C5 (457.1, Figure 

9, Table S4).  

In order to rank the potential of the aerobic and anaerobic pathways of each biofilm, the 

frequency of a single representative gene of each pathway was compared (Table 3). Location #4 

biofilms each had the highest potential for oxygen respiration as represented by relative abundance 

of ccoN genes, with less potential for dissimilatory sulfate reduction. For location #5, sulfate reduction 

and oxygen respiration both had fairly high potential but there was little potential for sulfur oxidation 

or dissimilatory nitrate reduction. Considering location #6, biofilm of C2 had highest potential for 

aerobic respiration followed by dissimilatory nitrate reduction and low potential for sulfur oxidation 
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and sulfate reduction (Table 3). In contrast, dissimilatory sulfate reduction had a much higher potential 

in biofilm of C5 of the same location. With respect to location #7, potential for oxygen respiration was 

the highest for C2 while in C5, potential for oxygen respiration was highest but the dissimilatory sulfate 

reduction appeared to have a very high potential as well, as shown by frequency of dsrA gene (Table 

3). In locations #5, #6 and #7, potential for oxygen respiration was lower (as depicted by relative 

abundance of ccoN gene copies) and potential for dissimilatory sulfate reduction was higher in C5 

coupons compared to C2 coupons (Table 3). Additionally, the potential for nitrate reduction was 

relatively higher in coupons of locations #4 and #6 (Table 3). 

Taxonomic identification/grouping of reads associated with nitrogen and sulfur cycling 

In order to identify the dominant organisms involved in nitrogen and sulfur cycling in biofilms 

of each coupon, the sequences of nitrate reduction (napA, napB, narG, narH, narI, narJ and nirK), 

sulfate reduction (aprA, aprB, dsrA, dsrB) and sulfur oxidation (soxA, soxB, soxC, soxX, soxY, soxZ) were 

interrogated for taxonomic identification. The organisms associated with more than 10 copies of a 

certain gene were identified thorough BLASTN searches of the sequences against NCBI nucleotide 

database (Altschul et al., 1990). The resulting organisms were binned into major proteobacterial 

groups. The number of reads observed for each gene and, the full list of organisms associated with 

these processes is shown in Tables S5 and S6.  

Based on the taxonomic analysis of each location, the majority of the nitrate/nitrite reducing 

genes in the high nitrate locations #4 and #6 were associated with Alphaproteobacteria (Figure 10). 

The #4 samples had 59.9 and 83.4 reads related to Alphaproteobacteria whereas the #6 samples had 

130.3 and 145.7 of such reads. Some Alphaproteobacteria were common to both locations #4 and #6 

and included both aerobes (Brucella melitensis, Ochrobactrum anthropi) and denitrifiers (Roseobacter 

denitrificans, Paracoccus denitrificans, Pseudovibrio sp., Table S5). Location #4 also had 40.7 and 57.7 

reads reflecting the presence of nitrate/nitrite reducing genes in the Epsilonproteobacteria (Figure 

10). Members of Epsilonproteobacteria found in #4 samples included the sulfur-oxidizer Sulfurimonas 

autotrophica as well as the sulfur-oxidizing denitrifiers, Sulfurimonas denitrificans and Sulfurimonas 

gotlandica (Table S5). While the biofilm of C2 of location #7 had no dominant organism with 

nitrate/nitrite reducing genes (no organism had gene copy numbers higher than 10), coupon C5 had 

around 17.2 reads representing Epsilonproteobacteria (Figure 10). The sulfur-oxidizing denitrifier 

Sulfurimonas gotlandica was the dominating Epsilonproteobacterium on this coupon (Table S5). 

Considering Gammaproteobacteria, the members of the group identified in #4 samples included 

Shewanella sediminis, Shewanella halifaxensis and Pseudomonas entomophila (Table S5). Of these 

organisms, Shewanella halifaxensis is known to denitrify. Reads identified as Gammaproteobacteria 
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in location #6 include those of Saccharophagus degradans (an aerobic cellulose metabolizing 

organism), Alteromonas macleodii, Hahella chejuensis (obligate aerobes) and Simiduia agarivorans 

(nitrate reducer, Table S5). Nitrate/nitrite gene harboring Gammaproteobacteria were dominant only 

in biofilms of locations #4 and #6 (Table S7). Deltaproteobacteria associated with nitrate/nitrite 

reduction genes were highest in coupon #6-C5 (61.1 reads), followed by #7-C5 (32.1 reads), #5-C2 

(24.6 reads), #6-C2 (11.1 reads) and the lowest in #4-C5 (5.8 reads, Figure 10, Table S5). No bacteria 

in coupon #7-C2 had nitrate/nitrite reduction gene reads higher than 10. The Deltaproteobacteria 

identified in these samples include the sulfate-reducing bacteria, Desulfocapsa sulfexigens, 

Desulfovibrio alaskensis G20, Desulfovibrio desulfuricans, Desulfovibrio vulgaris Hildenborough and 

Desulfovibrio gigas (Table S5). Of these Deltaproteobacteria, Desulfovibrio desulfuricans is known to 

reduce nitrate (Marietou et al., 2005).  

The majority of the organisms harboring sulfate reduction genes in all coupons except #4-C2 

were Deltaproteobacteria (Figure 11, Table S6). Highest sulfate reduction gene frequency associated 

with Deltaproteobacteria was found in #5-C2 (554.7 reads, Figure 11). Additionally, biofilms of 

coupons #6-C5 (460.6 reads) and #7-C5 (394.3) had comparatively higher frequencies for sulfate 

reduction genes associated with Deltaproteobacteria. The detected Deltaproteobacteria in locations 

#4, #5 and #6 were several Desulfovibrio spp., and in location #7 were Desulfotignum phosphitoxidans, 

Desulfobacterium autotrophicum and Desulfohalobium retbaense (Table S6). 

With respect to dominant organisms associated with sulfur/sulfide oxidation genes, 

Alphaproteobacteria harboring this group of genes were found in all coupons (Figure 12). Biofilms 

from locations #4 and #6 had relatively higher frequencies of sulfur/sulfide oxidation genes associated 

with Alphaproteobacteria. In biofilms of location #6, the frequencies observed were 84.6 and 106.2 

and the identified organisms included facultative anaerobes Polymorphum gilvum, Roseobacter 

denitrificans and Pseudovibrio sp. (Table S6). The two biofilms of location #4 had gene frequencies of 

41.4 and 61.8 representing Alphaproteobacteria and among the organisms were the obligate aerobes 

Leisingera methylohalidivorans, Ruegeria pomeroyi and facultative anaerobes Polymorphum gilvum, 

Pseudovibrio sp., Roseobacter denitrificans (Table S6). Additionally, biofilms from location #4 had a 

substantial number of sulfur/sulfide oxidation genes associated with Epsilonproteobacteria (46.6 and 

80.2, Figure 12) and the group was dominated by sulfur oxidizing genus Sulfurimonas (Table S6) which 

was noted above as possessing denitrification genes (Table S5).   
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Discussion 

The current investigation was conducted to better understand MIC associated with mooring 

systems and to develop mitigation strategies for MIC. Metal coupons cut from mooring chain links 

were exposed to four marine environments from across the globe.  The locations were generally 

comparable in most physical and chemical attributes, but two of the locations had high DIN 

concentrations.  The extent of corrosion was assessed by weight loss of metal coupons and the 

determination of pitting corrosion by light microscopy. In addition, DNA was extracted from the 

adherent biofilms on the coupons and a metagenomics analysis was performed in an attempt to 

deduce if MIC could be associated with particular types of microorganisms. 

Corrosion rates 

Based on the corrosion rates, it is clear that coupons exposed to location #6 experienced 

higher rates of general corrosion compared to those of other three locations (Figure 5). The general 

corrosion rates seems to be in the same range for the locations #4, #5 and #7, although the average 

corrosion rate of location #4 was significantly lower than the rest due to the gain in weight of one 

coupon (coupon #4-C8). Overall, the average corrosion rates (based on NACE standards, 2005) depict 

severe corrosion attack on coupons exposed in all four locations. However, according to light 

microscopy, locations # 5 and 6 experienced more pitting corrosion. These observations imply that, 

the environment and the biofilm communities present in all four locations contributed to severe 

corrosion in mooring chain coupons. Moreover, the differences in community composition and 

potential pathways that contributed towards corrosion might have led to the variability in corrosion 

rates and especially might have accounted for the higher pitting in locations #5 and #6.  

Biofilm community structure and possible corrosion mechanisms 

The information extracted from 16S rRNA gene identification of microbial community 

members as well as functional gene analyses of metagenomic data shows differences in terms of 

species composition and dominant electron acceptor pathways among the four locations as well as 

among individual coupons. Owing to the presence of a variety of microhabitats, a diverse microbial 

community with different physiologies can reside in the same biofilm (Leewandowski, 2000). Thus, 

the corrosion of the coupons attributed to MIC can be a collective result of the activities of corrosion 

enhancing as well as inhibiting microbes (Vigneron et al., 2018).  

Based on functional gene analysis (Table 3, Figure 8), coupons from location #4 are likely to 

have more oxygenated biofilms in comparison to other locations. Oxygen respiration is clearly the 

dominant energy utilizing pathway followed by sulfur oxidation. Carbon steel corrosion processes 
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therefore would most likely be governed by oxygen diffusion (0-1 phase of Melchers’ model, Figure 

1A) to the coupon surfaces.  The oxidation of reduced forms of sulfur are also likely given the presence 

and presumed activity of Sulfurimonas spp. (Figure 12, Table S6) in these biofilms.  The products of 

sulfur oxidation lead to iron corrosion as a well-documented MIC process (as reviewed in Little et al., 

2000, Lahme et al. 2019).  Sulfides formed through the action of SRB activity can be oxidized to acidic 

end products in the presence of oxygen and lead to severe corrosion (reviewed in Little et al., 2000).  

As far as location #5 is considered, it can be inferred that the biofilms were in a more anaerobic 

state with a high potential for sulfate reduction as evident by the high sulfate reduction gene 

frequency (Table 3, Figure 9). The majority of these genes were harbored by the genus Desulfovibrio 

(Figure 11, Table S6). The SRBs are considered to be one of the major taxonomic groups contributing 

to anaerobic corrosion (Beech and Sunner, 2004; Dall’Agnol and Moura, 2014) as they produce 

hydrogen sulfide that reacts with the metal surface to form metal sulfide (Little et al., 2000). The same 

activity could be attributed to higher pit depth and pit diameter observed in coupons recovered from 

location #5.  

With reference to location #6, the biofilms of the two coupons analyzed showed rather 

different types of microbial physiology/metabolism associated with the surfaces based on functional 

gene analysis (Table 3, Figure 6 and Figure 11). Sulfate reduction is likely to be the dominant electron 

acceptor utilizing pathway in Coupon #6-C5 with the highest abundance of sulfate reducing genes 

harbored by Desulfovibrio spp. (Figure 11, Table S6). It appears that the biofilm in coupon C5 was 

experiencing more anaerobic activity but also had some aerobic niches for aerobes to exist (1-2 phase 

of Melchers’ model, Figure 1). Thus, it is likely that the acid from oxidized sulfur compounds produced 

by Sulfurimonas spp. and Gammaproteobacteria Thioalkalivibrio sp. added to the overall MIC resulting 

in a comparatively higher corrosion rate in C5 (Figure 5). On the other hand, Coupon C2 of location #6 

likely had a more oxygenated environment facilitating aerobic metabolism (Table 3). The oxidation of 

iron (abiotic) can be suggested as contributing to corrosion as well as the activity of sulfur oxidizers 

Thioalkalivibrio spp. and Allochromatium vinosum (Table S6), resulting in pitting corrosion as well as 

increasing the general corrosion rate (Figure 3).  

In location #7, coupon C2 appeared to reresent a relatively aerobic environment as implied by 

the relative frequency of ccoN (Table 3). Based on the relatively high potential of sulfur oxidation, it is 

likely the sulfur oxidation that led to the observed corrosion rate in coupon C2. On the other hand, 

the sulfate reducing community (relatively high in abundance) may have helped account for the 

corrosion of coupon C5 of location #7 (Figures 9 and 11). Based the observations of functional gene 

analysis of coupons of locations #5, #6 and #7, it appears that the coupon in a more interior position 
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(C5) experienced a more anoxic state than the other replicate (C2) at the time of sampling (Table 3, 

Figures3, 6 and 9).  

Effect of elevated nitrate 

High nitrate levels were measured at both the #4 and #6 field locations (2.4 – 2.6 mg/L). 

Increased levels of general nutrient levels in marine environments, and in particular DIN (including 

nitrate), would be expected to facilitate severe pitting as well as uniform corrosion catalyzed by the 

attached microflora (Melchers and Jefferey 2012, 2013; Melchers 2014). Indeed, the absolute size of 

the bacterial population, according to 16S copy numbers determined by qPCR, was one order of 

magnitude higher in locations #4 and # 6 compared to the other two locations (Table 2, Figure 8). 

Thus, the higher DIN, particularly nitrate, in the environment likely stimulated the proliferation of 

resident microbes. However, there were very different rates of corrosion encountered at the two high 

nitrate locations with the higher corrosion rate in location #6 and variability within that location. This 

observation indicates higher bacterial populations in #4 and #6 but not necessarily greater 

biocorrosive activity in both locations.  

Biofilms of locations #4 and #6 had relatively high frequencies of nitrate/nitrite reduction gene 

sequences (Figure 9) that could have been a result of high levels of nitrate in seawater. The organisms 

responded to high levels of nitrate in both locations were mainly members of the group 

Alphaproteobacteria (Figure 10 and Table S5) with some aerobes (Brucella melitensis, Ochrobactrum 

anthropi), denitrifiers (Paracoccus denitrificans) as well as sulfur-oxidizing, nitrate-reducers 

(Roseobacter denitrificans and members of the genus Pseudovibrio, Tables S5 and S6). Some 

Gammaproteobacteria (e.g. denitrifying thiosulfate/sulfite/sulfur reducers such as Shewanella spp.) 

were also among the dominant nitrate/nitrite gene harboring organisms that were associated with 

high levels of nitrate (Figure 10). Shewanella spp. are also noted as metal-reducers (Vigneron et al., 

2018). Interestingly, no Gammaproteobacteria were found dominant at locations #5 and #7 (Figure 

10). At location #4, a high relative abundance of Epsilonproteobacteria (Sulfurimonas spp.) were found 

harboring nitrate/nitrite reduction genes (Figure 10 and Table 5). These are denitrifying sulfur 

oxidizers and noted for their ability to promote MIC (reviewed in Vigneron et al., 2018, Lahme et al. 

2019). The increase of sulfur-oxidizing nitrate reducing Epsilonproteobacteria has been previously 

observed in oil production facilities in response to nitrate injection (reviewed in Vigneron et al., 2018; 

Lahme et al., 2019; Lahme and Hurburt, 2017). The stimulation of sulfate-reducing nitrate-reducing 

Deltaproteobacteria by nitrate injection has also been reported (Vigneron et al., 2017) but not 

observed in locations #4 or #6. The Deltaproteobacteria in the high corrosion location #6 were 

primarily sulfate-reducers rather than sulfate-reducing nitrate-reducing organisms, although some 
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harbored nitrogen cycling genes (Figure 10, Table S5).  The ability of SRBs to utilize nitrate as a terminal 

electron acceptor is almost certainly underappreciated. Marietou (2016) points out that culture-

dependent attempts to characterize SRBs capable of this activity might have been predisposed to false 

negative results due to the use of media with reductants that inhibit nitrate reduction. 

Application of Melchers’ model 

The coupons from all four locations were exposed to seawater for less than a year. Therefore, 

it is reasonable to assume that the coupons were in the early stages (phase 0-2) of corrosion as 

determined by Melchers’ phenomenological model (Melchers, 2003; Melchers, 2010; Melchers and 

Jeffrey, 2011). The model was very useful in explaining the development of the biofilm on coupon 

surfaces as well as the corrosion attack in different phases. The model was used in this discussion 

(early paragraphs) in explaining the possible factors governing the corrosion of coupons extracted 

from the four different locations. 

As Melchers’ model proposes (Melchers, 2003; Melchers, 2010; Melchers and Jeffrey, 

2011;Melchers, 2014), the high nitrate content in #6 and #4 locations is indeed associated with higher 

bacterial populations as well as an increase in nitrate-reducing organisms (Figures 9, 10 and Table S5). 

However, the corrosion rates were dissimilar in the two high nitrate locations. Such an observation is 

inconsistent with Melchers’ proposed model and the presumed impact of DIN on MIC.   Melchers’ 

model was originally developed based on observations from steel pilings exposed to sea water for long 

periods of time (≥ 12 mo, Melchers, 2014) and was proposed to predict long-term corrosion (Melchers, 

2014) behavior. The SCORCH JIP project also investigated the MIC of mooring chain links with the 

hypothesis that the phenomenological model would explain the unusual corrosion rates. Since 

mooring systems are built to last decades and the corroded mooring links observed by SCORCH JIP 

(Rosen et al., 2014) were in service for seven years, Melchers’ model may indeed provide an 

explanation for the high rate observed of general as well as pitting corrosion. Given the constraints of 

time and budget, the coupons of current study were exposed to marine waters for less than a year 

and may therefore only provide only a limited early view of the salient corrosion processes.  

The DIN (specifically nitrate in this study) led to general stimulation of microbial biomass but not 

necessarily MIC. The hypothesis that DIN enhances corrosion by general stimulation of microbial 

activity cannot be supported by the existing data. Alternatively, it was hypothesized that the high 

nitrate content might differentially enrich for nitrate reducing sulfate reducing bacteria. This prospect 

would lead to relatively high sulfide-driven corrosion rate in samples from locations #4 and #6. The 

relatively high corrosion rate of coupons recovered from the high nitrate seawater in #6 could not be 

attributed to known nitrate-reducing sulfate reducers. However, it is very clear that far more needs to 
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learned about the ability of SRB to utilize nitrate in oxygen-poor but nitrate-rich environments 

(Marietou, 2016).  Rather, the increased corrosion in these waters appears to be the combined effect 

of sulfate reducing bacteria in conjunction with nitrate-reducing sulfur oxidizing bacteria. The high 

level of pitting corrosion in coupons from location #5 however, are associated with high numbers of 

sulfate reducing bacteria but not with nitrate-reducing sulfur oxidizing bacteria. Melchers’ 

phenomenological model, although mainly applied to long-term marine corrosion, has also been used 

in MIC in a marine setting despite the time of exposure. While hardly an exhaustive test of the model 

implications, the failure to support the role of DIN on the degree of MIC would seem to warrant 

caution in future applications of the model.  Additionally, the use of nitrate/nitrite reducing gene 

frequency and/or nitrogen cycling genes as a marker for corrosion needs to be reconsidered. 
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Table 1. Summary of water quality, depth and time of exposure. 

Location 
DIN 

(mg/L) 

Dissolved 

Oxygen 

(mg/l) 

Nitrate 

(mg/L) 

Ammonia 

(mg/l) 

Conductivity 

(Salinity) 

µS/cm 

Temperature* 

(℃) 
pH 

Depth of 

exposure 

(m) 

Duration 

of 

exposure 

(days) 

#4 2.6 - 2.49 0.093 55,000 26 7.9 20 95 

#5 <0.01 7.27 <0.01 - 52,380 28 7.3 20 116 

#6  2.4 6 2.33 0.11 49,463 26 8.3 3 92 

#7 <0.7 - <0.6 - 18,200 26 7 3 74 

 

Table 2. The total mass of DNA extracted from 500 mg of biofilm, the number of 
eubacterial 16S and dsrA (dissimilatory sulfate reductase catalytic subunit) gene copies/g 
of each biofilm (determined by qPCR). 

 

 

Table 3. Analysis of representative functional genes involved in major electron acceptor 
pathways. 
Colors are based on the frequencies that were normalized to the copy number of rpoB gene 

and multiplied by 1000. Oxygen respiration: ccoN (cbb3-type cytochrome C oxidase catalytic 

subunit); Dissimilatory nitrate reduction: narG (respiratory nitrate reductase alpha/catalytic 

subunit); Dissimilatory sulfate reduction: dsrA (dissimilatory sulfite reductase catalytic/alpha 

subunit); Sulfur oxidation: soxB (S-sulfosulfanyl-L-cysteine sulfohydrolase). 
 

  

Average SD Average SD

C2 2320 2.20E+09 1.57E+08 1.28E+07 3.65E+06

C5 2200 3.67E+09 1.51E+08 1.14E+09 3.47E+07

C2 424 3.49E+08 9.57E+07 1.72E+09 7.55E+07

C5 208 1.95E+08 1.02E+06 1.65E+08 1.83E+07

C2 968 1.44E+09 9.14E+07 1.50E+08 2.17E+07

C5 1040 2.11E+09 7.40E+07 2.43E+08 4.11E+07

C2 1024 3.28E+08 1.13E+08 4.47E+06 7.35E+04

C5 512 5.10E+08 1.52E+07 1.18E+07 2.43E+06

#4

#5

#6

#7

Location Coupon total DNA (ng)
number of 16S copies number of dsr copies

Location
ccoN soxB narG dsrA

#4-C2 217.477 124.2 125.5 15.8

#4-C5 220.469 121.3 124.0 65.8

#5-C2 133.078 42.2 24.6 142.9

#5-C5 105.245 46.6 31.9 181.7

#6-C2 202.288 59.5 106.5 48.7

#6-C5 160.937 67.8 115.6 135.1

#7-C2 173.913 49.9 69.2 33.8

#7-C5 132.935 68.7 39.6 110.5

Coupon
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Figure 1. (A) Phenomenological model for corrosion loss as a function of time (B) Schematic 

of development of bacterial activity with time (Melchers, 2010). 
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Figure 2. Dimensions of the chain link samples. (A) Top view. (B) Side view (Image supplied 

by AMOG Consulting, Inc.) 

 

 

 

 

 

 

 

 

Figure 3. Assembly of Microbiological fishing kit (MFK) (Image supplied by AMOG Consulting, 

Inc.).  

 

 

Figure 4. Location of the four sample sites. (https://en.wikipedia.org/wiki/World_map).  
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Figure 18: MFK Coupon Design 

 

The coupon size was selected to provide relatively robust specimens, capable of surviving a 

deployment into a high corrosion environment. Preliminary testing [75] using thin (2mm) coupons 

failed due to loss of specimens, likely related to enlargement of the attachment hole and subsequent 

cutting of the attachment strap or tearing of the hole. 

Extraction of the coupons from finished chain links followed a scheme similar to that shown in 

Figure 19.  

 

  

Figure 19: Extraction of Coupons from Finished Chain Links (courtesy of Vicinay Marine) 

 

Note that the flash butt weld and the adjacent heat affected zone were strictly avoided when 

extracting the coupons. 

To assist in identification of the coupons during assembly, each chain vendor provided its own 

unique stamp on each coupon, that conveyed the following information: 

· Manufacturer initials, 

· Grade of chain link from which coupon was manufactured (R3, R3S, R4, or R4S), 

· Coupon type (“A”, “B”, or “C”), and 

· Serial number (commencing at 1 and increasing sequentially for each coupon type). 

For example, a “Type A” coupon manufactured by Asia Star Anchor Chain from a Grade R3 link 

was stamped: 

· ASAC R3 A 001 
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Figure 19: Extraction of Coupons from Finished Chain Links (courtesy of Vicinay Marine) 

 

Note that the flash butt weld and the adjacent heat affected zone were strictly avoided when 

extracting the coupons. 

To assist in identification of the coupons during assembly, each chain vendor provided its own 

unique stamp on each coupon, that conveyed the following information: 

· Manufacturer initials, 

· Grade of chain link from which coupon was manufactured (R3, R3S, R4, or R4S), 

· Coupon type (“A”, “B”, or “C”), and 

· Serial number (commencing at 1 and increasing sequentially for each coupon type). 

For example, a “Type A” coupon manufactured by Asia Star Anchor Chain from a Grade R3 link 

was stamped: 

· ASAC R3 A 001 
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Figure 5. Corrosion rates of each coupon determined by weight loss (corrosion loss analysis 

was performed by Dr. Zakari Makama). Actual corrosion rate cannot be displayed due to 

confidentiality agreements. 

 

 
Figure 6. Microbial community composition (with bacteria at class level) of the biofilms 

formed on the coupons of the four different sites. 16S rRNA gene sequences were extracted 

from the metagenome and were analyzed using Qiime (Version 1.8.0).  
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Figure 7. The number of copies of 16S and dsrA (dissimilatory sulfate reduction catalytic 

subunit) of each biofilm determined by quantitative real time-qPCR (n = 3). Average value 

and error bars (+/- 1 STD) are shown. 

 

Figure 8. Summed frequencies of genes involved in sulfur oxidation (soxA, soxB, soxC, soxX, 

soxY and soxZ) and the frequency of gene ccoN. Gene ccoN codes for cbb3-type cytochrome 

C oxidase catalytic subunit that is indicative of aerobic respiration. The frequencies were 

normalized to the copy number of rpoB gene and multiplied by 1000. One copy of rpoB is 

found per cell and therefore the number of rpoB genes is equivalent to the number of cells. 

The value presented by the bars is the number of the summed copies of the particular group 

of genes per 1000 cells. (See Table S2).  
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Figure 9. Summed frequencies of genes involved in nitrate/nitrite (napA, napB, narG, narH, 

narI, narJ and nirK) and sulfate reduction (aprA, aprB, dsrA and dsrB). The frequencies were 

normalized to the copy number of rpoB gene and multiplied by 1000. One copy of rpoB is 

found per cell and therefore the number of rpoB genes is equivalent to the number of cells. 

The value presented by the bars is the number of the summed copies of the particular group 

of genes per 1000 cells. (See Tables S3 and S4).  
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Figure 10. Taxonomic analysis of nitrate/nitrite reduction genes (napA, napB, narG, narH, 

narI, narJ and nirK) in metagenomic data of biofilm samples and the amounts of gene 

frequencies belonging to the dominant bacterial groups. Genes with copy numbers higher 

than ten of a particular organism ID were compared to NCBI database and the identities of 

the best matches were obtained. The frequencies of each gene found in the identified 

dominant organisms (with copy number higher than 10) were normalized to the copy number 

of rpoB gene and multiplied by 1000. The normalized values were summed to obtain the total 

copy number belonging to dominant organisms for each bacterial group. The value presented 

by the bars is the number of copies of the particular group of genes per 1000 cells. Analysis 

of coupon #5-C5 could not be completed due to issues with metagenomic analysis pipeline. 

There were no organisms with more than 10 copy numbers of the analyzed genes for coupon 

#7-C2. (See Table S5).   
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Figure 11. Taxonomic analysis of sulfate reduction genes (aprA, aprB, dsrA, dsrB) in 

metagenomic data of biofilm samples and the amounts of gene frequencies belonging to 

the dominant bacterial groups. Genes with copy numbers higher than ten of a particular 

organism ID were compared to NCBI database and the identities of the best matches were 

obtained. The frequencies of each gene found in the identified dominant organisms (with 

copy number higher than 10) were normalized to the copy number of rpoB gene and 

multiplied by 1000. The normalized values were summed to obtain the total copy number 

belonging to dominant organisms for each bacterial group. The value presented by the bars 

is the number of copies of the particular group of genes per 1000 cells. Analysis of coupon #5-

C5 could not be completed due to issues with metagenomic analysis pipeline. (See Table S6)  
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Figure 12. Taxonomic analysis of sulfur/sulfide oxidation genes (soxA, soxB, soxC, soxX, soxY 

and soxZ) in metagenomic data of biofilm samples and the amounts of gene frequencies 

belonging to the dominant bacterial groups. Genes with copy numbers higher than ten of a 

particular organism ID were compared to NCBI database and the identities of the best 

matches were obtained. The frequencies of each gene found in the identified dominant 

organisms (with copy number higher than 10) were normalized to the copy number of rpoB 

gene and multiplied by 1000. The normalized values were summed to obtain the total copy 

number belonging to dominant organisms for each bacterial group. The value presented by 

the bars is the number of copies of the particular group of genes per 1000 cells. Analysis of 

coupon #5-C5 could not be completed due to issues with metagenomic analysis pipeline. 

There were no organisms with more than 10 copy numbers of the analyzed genes for coupon 

#7-C2. (See Table S6).  
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Supplementary tables and figures 

Table S1. Taxonomic summary of the four sites. The taxonomic analysis was based on the 

16S reads extracted from metagenomes and analyzing using Qiime (version 1.8.0). The 

abundance of each group is given relative to the total number of reads. 
 

Coupon #4-C2 #4-C5 #5-C2 #5-C5 #6-C2 #6-C5 #7-C2 #7-C5 

All Eukaryotes (%) 73.0 53.0 44.0 27.0 12.0 8.0 79.0 43.0 

All bacteria (%) 27.0 47.0 56.0 73.0 88.0 92.0 21.0 57.0 

Cyanobacteria (%) 0.3 0.5 6.2 4.4 3.5 1.8 5.7 6.8 

Proteobacteria (%) 22.7 39.5 39.2 56.2 65.1 75.4 12.8 43.3 

Alphaproteobacteria (%) 9.5 9.4 6.7 6.6 31.7 21.2 4.8 13.1 

Gammaproteobacteria (%) 3.5 5.2 5.0 3.7 17.6 7.4 2.1 2.9 

Deltaproteobacteria (%) 1.9 11.3 23.5 38.7 13.2 42.3 3.2 22.2 

Epsilonproteobacteria (%) 3.2 7.5 2.8 5.8 0.4 1.8 2.5 5.1 

Zetaproteobacteria (%) 4.6 5.6 0.5 0.7 1.8 1.8 0.1 0.1 

 

 

Table S2. Frequency of sulfur oxidizing genes (normalized to rpoB gene frequency x 1000). 
The genes interrogated were L-cysteine S-thiosulfotransferase - soxAX complex (soxA,soxX), 
S-sulfosulfanyl-L-cysteine sulfohydrolase (soxB), sulfane dehydrogenase subunit (soxC) and 
sulfur oxidizing complex (soxY, soxZ).   

COUPON SOXA SOXB SOXC SOXX SOXY SOXZ TOTAL 

#4-C2 38.1 124.2 79.5 19.7 42.0 28.9 332.5 

#4-C5 37.4 121.3 87.0 16.2 63.1 25.2 350.3 

#5-C2 14.8 42.2 25.7 1.6 21.9 9.9 116.1 

#5-C5 18.5 46.6 36.3 6.2 34.3 16.1 158.0 

#6-C2 24.2 59.5 48.4 10.5 40.2 14.1 196.7 

#6-C5 28.3 67.8 53.8 9.4 37.7 16.1 213.3 

#7-C2 20.9 49.9 48.3 14.5 17.7 9.7 161.0 

#7-C5 23.2 68.7 56.0 17.2 40.3 14.2 219.6 
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Table S3. Frequency of nitrate/nitrite reducing genes (normalized to rpoB gene frequency x 

1000). The genes interrogated were periplasmic nitrate reductase catalytic subunit (napA), 

beta subunit (napB), respiratory nitrate reductase alpha/catalytic subunit (narG), beta subunit 

(narH), gamma subunit (narl), delta subunit (narJ), nitrite reductase (nirK). 

COUPON NAPA NAPB NARG NARH NARI NARJ NIRK TOTAL 

#4-C2 160.3 13.1 125.5 48.6 26.9 11.2 64.4 450.1 

#4-C5 138.9 26.6 124.0 43.3 31.6 14.9 52.8 431.9 

#5-C2 30.7 4.9 24.6 20.8 41.1 2.7 5.5 130.3 

#5-C5 50.1 8.6 31.9 17.1 51.8 4.8 9.3 173.5 

#6-C2 115.7 7.2 106.5 48.0 34.3 10.8 29.4 352.0 

#6-C5 88.2 4.9 115.6 59.9 48.7 15.8 12.5 345.6 

#7-C2 61.2 9.7 69.2 38.6 30.6 6.4 30.6 246.4 

#7-C5 65.7 6.0 39.6 21.7 59.0 6.0 9.7 207.6 

 

 

Table S4. Frequency of sulfate reducing genes (normalized to rpoB gene frequency x 1000). 

The genes interrogated were adenylylsulfate reductase catalytic subunit (aprA), beta subunit 

(aprB), dissimilatory sulfite reductase catalytic/alpha subunit (dsrA) and beta subunit (dsrB). 

 

COUPON APRA APRB DSRA DSRB TOTAL 

#4-C2 42.7 17.7 15.8 26.9 103.2 

#4-C5 117.2 29.8 65.8 48.7 261.5 

#5-C2 233.8 49.8 142.9 128.1 554.8 

#5-C5 262.9 60.3 181.7 163.2 668.2 

#6-C2 85.3 21.6 48.7 47.7 203.3 

#6-C5 212.4 68.1 135.1 128.7 544.3 

#7-C2 87.0 19.3 33.8 37.0 177.1 

#7-C5 194.9 39.6 110.5 112.0 457.1 
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Table S5. Taxonomic analysis of nitrogen cycling gene hits (napA, napB, narG,narH, narI, narJ 

and nirK) in metagenomic data biofilm samples. Genes with hits higher than ten were 

compared to NCBI database and the identities of the best matches were classified to their 

major groups. Oxygen tolerance group: (A) Aerobic (FA) facultative anaerobic (AN) obligate 

anaerobic.  
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napA napB narG narH narI narJ nirK

#4 - C2 Alphaproteobacteria Leisingera methylohalidivorans (A) 7.9

Paracoccus denitrificans (FA) 15.1

Roseobacter denitrificans (FA) 36.1 24.3

Betaproteobacteria Nitrosomonas sp. (A) 8.5

Gammaproteobacteria Pseudomonas entomophila (A) 11.2

Shewanella sediminis (FA) 9.9

Epsilonproteobacteria Sulfurimonas autotrophica (FA) 7.2

Sulfurimonas denitrificans (FA) 7.9

Sulfurimonas gotlandica (FA) 25.6

#4 - C5 Alphaproteobacteria Brucella melitensis (A) 5.0

Ochrobactrum anthropi (A) 8.6

Paracoccus denitrificans (FA) 5.4

Pseudovibrio sp. (FA) 7.7

Roseobacter denitrificans (FA) 26.6 6.8

Gammaproteobacteria Shewanella halifaxensis (FA) 5.4

Shewanella sediminis (FA) 6.8

Deltaproteobacteria Desulfovibrio alaskensis G20 (AN) 5.9

Epsilonproteobacteria Arcobacter sp. (FA) 6.8

Sulfurimonas denitrificans (FA) 6.8

Sulfurimonas gotlandica (FA) 31.1 13.1

#5 - C2 Alphaproteobacteria Ochrobactrum anthropi (A) 6.0

Deltaproteobacteria Desulfovibrio vulgaris Hildenborough (AN) 15.9

Desulfovibrio vulgaris Miyazaki F (AN) 8.8

#6 - C2 Alphaproteobacteria Azorhizobium caulinodans (A) 3.6

Brucella melitensis (A) 12.1 4.6

Dinoroseobacter shibae (FA) 19.9

Hyphomonas neptunium (A) 3.6 4.9

Methylobacterium radiotolerans (A) 4.2

Ochrobactrum anthropi (A) 17.6 9.2 4.2

Paracoccus denitrificans (FA) 5.9 3.6

Pseudovibrio sp. (FA) 9.2

Rhodobacter sphaeroides (FA) 5.9

Roseobacter denitrificans (FA) 11.8 7.5 3.6

Ruegeria pomeroyi (A) 8.5

Tistrella mobilis (A) 5.9

Gammaproteobacteria Saccharophagus degradans (A) 4.2

Simiduia agarivorans (FA) 5.9

Deltaproteobacteria Desulfocapsa sulfexigens (AN) 3.9

Sorangium cellulosum (AN) 7.2

Verrucomicrobia Coraliomargarita akajimensis (A) 5.9

#6 - C5 Alphaproteobacteria Brucella melitensis (A) 15.5 12.2

Dinoroseobacter shibae (FA) 5.2

Hyphomonas neptunium (A) 7.6 4.6

Maricaulis maris (A) 3.7

Ochrobactrum anthropi (A) 27.4 11.0 8.5

Paracoccus denitrificans (FA) 4.0

Pseudovibrio sp. (FA) 9.4

Roseobacter denitrificans (FA) 12.2

Tistrella mobilis (A) 5.2 4.0

Gammaproteobacteria Alteromonas macleodii (A) 4.9

Hahella chejuensis (A) 3.7

Deltaproteobacteria Desulfovibrio alaskensis G20 (AN) 10.3

Desulfovibrio desulfuricans (AN) 19.8

Desulfovibrio gigas (AN) 9.7

Desulfovibrio vulgaris Hildenborough (AN) 8.5

Anaeromyxobacter dehalogenans (FA) 3.3

Sorangium cellulosum (AN) 5.2

Thermodesulfatator indicus (AN) 4.3

#7 - C5 Alphaproteobacteria Dinoroseobacter shibae (FA) 9.0

Roseobacter denitrificans (FA) 8.2

Deltaproteobacteria Desulfovibrio alaskensis G20  (AN) 17.2

Desulfovibrio vulgaris Miyazaki F (AN) 14.9

Epsilonproteobacteria Sulfurimonas gotlandica (FA) 17.2

coupon Taxonomic identity
gene frequency normalized to rpoB x 1000
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Table S6. Taxonomic analysis of sulfur cycling gene hits (aprA, aprB, dsrA, dsrB, soxA, soxB, 

soxC, soxX, soxY and soxZ) in metagenomic data of biofilm samples. Genes with hits higher 

than ten were compared to NCBI database and the identities of the best matches were 

classified to their major groups. Oxygen tolerance group: (A) Aerobic (FA) facultative 

anaerobic (AN) obligate anaerobic.  
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aprA aprB dsrA dsrB soxA soxB soxC soxX soxY soxZ

#4 - C2 Alphaproteobacteria Leisingera methylohalidivorans (A) 11.2
Phaeobacter gallaeciensis (FA) 7.9
Roseobacter denitrificans (FA) 12.5
Ruegeria pomeroyi (A) 9.9

Gammaproteobacteria Thioalkalivibrio sp. (FA) 7.2
Epsilonproteobacteria Sulfurimonas autotrophica (FA) 8.5

Sulfurimonas gotlandica (FA) 8.5 17.7 11.8
#4 - C5 Alphaproteobacteria Leisingera methylohalidivorans (A) 6.8

Polymorphum gilvum (FA) 12.2
Pseudovibrio sp. (FA) 7.7 5.9
Roseobacter denitrificans (FA) 11.7 5.4
Ruegeria pomeroyi (A) 5.0 7.2

Gammaproteobacteria Thiomicrospira crunogena (A) 5.0
Deltaproteobacteria Desulfobacterium autotrophicum (AN) 5.4

Desulfohalobium retbaense (AN) 5.0
Desulfovibrio aespoeensis (AN) 6.8 5.0 15.3
Desulfovibrio alaskensis G2(AN) 15.3
Desulfovibrio piezophilus (AN) 22.1 17.6 6.3
Desulfovibrio salexigens (AN) 5.4
Desulfovibrio sp. (AN) 14.9 5.9
Desulfovibrio vulgaris Hildenborough (AN) 6.3

Epsilonproteobacteria Sulfurimonas autotrophica (FA) 5.0
Sulfurimonas gotlandica (FA) 5.0 36.5 15.8 12.2
Sulfurovum sp. (FA) 5.9

#5 - C2 Alphaproteobacteria Polymorphum gilvum (FA) 13.7

Deltaproteobacteria Desulfovibrio vulgaris Hildenborough (AN) 14.2

Desulfovibrio alaskensis G2 (AN) 7.7 9.4

Desulfovibrio salexigens (AN) 18.6

Desulfovibrio aespoeensis (AN) 22.5 22.5 32.3

Desulfovibrio sp. (AN) 98.6 3.1 69.6 4.5

Desulfotignum phosphitoxidans (AN) 6.6 12.6 14.8

Desulfobacula toluolica (AN) 6.6

Desulfovibrio gigas (AN) 1.5

Desulfovibrio piezophilus (AN) 7.1

Desulfomicrobium baculatum (AN) 2.8

#6 - C2 Alphaproteobacteria Dinoroseobacter shibae (FA) 3.6
Ensifer meliloti (A) 6.2
Leisingera methylohalidivorans (A) 4.9
Planktomarina temperata (FA) 4.9 4.2
Polymorphum gilvum (FA) 15.7 7.2
Pseudovibrio sp. (FA) 4.2 9.2 3.9
Rhodomicrobium vannielii (AN) 3.6 4.2
Roseobacter denitrificans (FA) 4.9 5.9
Ruegeria pomeroyi (A) 5.6
Xanthobacter autotrophicus (A) 4.2

Betaproteobacteria Thiobacillus denitrificans (FA) 4.6
Gammaproteobacteria Allochromatium vinosum (AN) 9.2

Marichromatium purpuratum (AN) 3.9
Thioalkalivibrio sp. (FA) 6.2
Thioalkalivibrio sulfidophilus (FA) 4.2

Deltaproteobacteria Desulfovibrio piezophilus (AN) 16.0 5.2 18.6 7.8
Desulfovibrio sp. (AN) 16.0 3.6 3.6

#6 - C5 Alphaproteobacteria Bradyrhizobium japonicum (FA) 3.3 4.3
Ensifer meliloti (A) 4.9
Hyphomonas neptunium (A) 5.5 3.3
Phaeobacter gallaeciensis (FA) 4.0
Planktomarina temperata (FA) 4.6 3.7
Polymorphum gilvum (FA) 24.9 4.6 3.3
Pseudovibrio sp. (FA) 7.0 7.9 6.1
Roseobacter denitrificans (FA) 9.7
Ruegeria pomeroyi (A) 4.0
Xanthobacter autotrophicus (A) 5.2

Betaproteobacteria Thiobacillus denitrificans (FA) 4.3
Gammaproteobacteria Allochromatium vinosum (AN) 4.6 3.3

Thioalkalivibrio sulfidophilus (FA) 4.0

Deltaproteobacteria Desulfohalobium retbaense (AN) 5.2
Desulfovibrio aespoeensis (AN) 22.2 23.7 15.8 56.3
Desulfovibrio piezophilus (AN) 84.9 28.0 87.9 39.9
Desulfovibrio salexigens (AN) 7.3
Desulfovibrio sp. (AN) 57.5 7.9 12.8 11.3

Epsilonproteobacteria Sulfurimonas autotrophica (FA) 4.9

#7 - C2 Deltaproteobacteria Desulfotignum phosphitoxidans (AN) 25.8 17.7

#7 - C5 Alphaproteobacteria Polymorphum gilvum (FA) 11.9 12.7

Deltaproteobacteria Desulfobacterium autotrophicum (AN) 38.8 2.2 1.5 23.2

Desulfotignum phosphitoxidans (AN) 96.3 11.2 65.0 52.3

Desulfobacula toluolica (AN) 29.1 16.4 21.7

Desulfohalobium retbaense (AN) 9.8

Coupon Taxonomic identity
gene frequency normalized to rpoB x 1000
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Table S7. Phylogenetic analysis of nitrogen cycling genes (napA, napB, narG, narH, narI, narJ and nirK) in metagenomic data of biofilm samples 

extracted from each coupon. Identities of the best matches were classified to their major groups and dominant organisms were identified.  

  

Alpha-proteobacteria Beta-proteobacteria Gamma-proteobacteria Delta-proteobacteria Epsilon-proteobacteria Verrucomicrobia

#4 - C2 Leisingera methylohalidivorans Nitrosomonas sp. Pseudomonas entomophila Sulfurimonas autotrophica

Paracoccus denitrificans Shewanella sediminis Sulfurimonas denitrificans

Roseobacter denitrificans Sulfurimonas gotlandica

#4 - C5 Brucella melitensis Shewanella halifaxensis Desulfovibrio alaskensis G20 Arcobacter sp.

Ochrobactrum anthropi Shewanella sediminis Sulfurimonas denitrificans

Paracoccus denitrificans Sulfurimonas gotlandica

Pseudovibrio sp.

Roseobacter denitrificans

#5 - C2 Ochrobactrum anthropi Desulfovibrio vulgaris Hildenborough

Desulfovibrio vulgaris Miyazaki F

#6 - C2 Azorhizobium caulinodans Saccharophagus degradans Desulfocapsa sulfexigens Coraliomargarita akajimensis

Brucella melitensis Simiduia agarivorans Sorangium cellulosum

Dinoroseobacter shibae

Hyphomonas neptunium

Methylobacterium radiotolerans

Ochrobactrum anthropi

Paracoccus denitrificans

Pseudovibrio sp.

Rhodobacter sphaeroides

Roseobacter denitrificans

Ruegeria pomeroyi

Tistrella mobilis

#6 - C5 Brucella melitensis Alteromonas macleodii Anaeromyxobacter dehalogenans

Dinoroseobacter shibae Hahella chejuensis Desulfovibrio alaskensis G20

Hyphomonas neptunium Desulfovibrio desulfuricans

Maricaulis maris Desulfovibrio gigas

Ochrobactrum anthropi Desulfovibrio vulgaris Hildenborough

Paracoccus denitrificans Sorangium cellulosum

Pseudovibrio sp. Thermodesulfatator indicus

Roseobacter denitrificans

Tistrella mobilis

#7 - C5 Dinoroseobacter shibae Desulfovibrio alaskensis G20 Sulfurimonas gotlandica

Roseobacter denitrificans Desulfovibrio vulgaris Miyazaki F
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Table S8. Phylogenetic analysis of sulfur cycling genes (aprA, aprB, dsrA, dsrB, soxA, soxB, 
soxC, soxX, soxY and soxZ) in metagenomic data of biofilm samples extracted from each 
coupon. Identities of the best matches were classified to their major groups and dominant 
organisms were identified. The name of organisms with sox genes is underlined.  
 

 

  

Alpha-proteobacteria Beta-proteobacteria Gamma-proteobacteria Delta-proteobacteria Epsilon-proteobacteria

#4 - C2 Leisingera methylohalidivorans Thioalkalivibrio sp. Sulfurimonas autotrophica

Roseobacter denitrificans Sulfurimonas gotlandica

Ruegeria pomeroyi

#4 - C5 Leisingera methylohalidivorans Thiomicrospira crunogena Desulfovibrio aespoeensis Sulfurimonas autotrophica

Polymorphum gilvum Desulfovibrio alaskensis G20 Sulfurimonas gotlandica

Pseudovibrio sp. Desulfovibrio piezophilus

Roseobacter denitrificans Desulfovibrio sp.

Ruegeria pomeroyi Desulfovibrio vulgaris Hildenborough

#5 - C2 Polymorphum gilvum Desulfovibrio vulgaris Hildenborough

Desulfovibrio alaskensis G20

Desulfovibrio salexigens

Desulfovibrio aespoeensis Aspo-2

Desulfovibrio sp. ND132

Desulfotignum phosphitoxidans

Desulfobacula toluolica

Desulfovibrio gigas

Desulfovibrio piezophilus

Desulfomicrobium baculatum

#6 - C2 Leisingera methylohalidivorans Thiobacillus denitrificans Allochromatium vinosum Desulfovibrio aespoeensis 

Ensifer meliloti Marichromatium purpuratum Desulfovibrio piezophilus

Planktomarina temperata Thioalkalivibrio sp. Desulfovibrio sp.

Polymorphum gilvum Thioalkalivibrio sulfidophilus

Pseudovibrio sp.

Rhodomicrobium vannielii

Roseobacter denitrificans

Ruegeria pomeroyi

#6 - C5 Allochromatium vinosum Thiobacillus denitrificans Thioalkalivibrio sulfidophilus Desulfovibrio aespoeensis Sulfurimonas autotrophica

Bradyrhizobium japonicum Desulfovibrio piezophilus

Ensifer meliloti Desulfovibrio salexigens

Hyphomonas neptunium Desulfovibrio sp.

Polymorphum gilvum

Pseudovibrio sp.

Roseobacter denitrificans

Ruegeria pomeroyi

#7 - C2 Desulfotignum phosphitoxidans

#7 - C5 Polymorphum gilvum Desulfobacterium autotrophicum

Desulfotignum phosphitoxidans

Desulfobacula toluolica

Desulfohalobium retbaense
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Chapter 2 

Effect of Marinobacter hydrocarbonoclasticus SP17 biofilms on corrosion of 1018 carbon 

steel in the presence of nitrate 

Abstract 

Microbiologically influenced corrosion (MIC) is of global concern due to its economic, 

social as well as human health consequences. Pollution of coastal waters from land-based 

sources, mainly agricultural runoff, can lead to increase of nutrients, particularly nitrate. The 

effect of nutrient availability on MIC has been studied extensively but conclusions from 

different studies are contradictory; e.g. some research show nutrients increase MIC while the 

others conclude increased nutrient levels lessen MIC. The current study investigated the 

effect of Marinobacter hydrocarbonoclasticus SP17 cells on the corrosion of 1018 carbon 

steel. Carbon steel coupons were exposed to medium containing Marinobacter cells that was 

amended with nitrate or ammonium as the nitrogen source and incubated under aerated 

(unsealed) or oxygen limited (sealed) conditions for 6 weeks. Marinobacter formed a biofilm 

on the coupons, as shown by recovery of viable cells from the coupons. The weight loss of 

coupons with biofilm was significantly lower than the abiotic controls regardless of the 

nitrogen source or oxygen supply status. The coupon weight loss difference was significantly 

less in sealed (oxygen-restricted) incubation systems compared to unsealed irrespective of 

presence of biofilm cover. The amount of ferrous iron dissolution from the coupons was also 

lower in the presence of biofilm compared to the abiotic control treatment regardless of the 

nitrogen source or oxygen supply. The observations are consistent with the hypothesis that 

Marinobacter biofilm protects 1018 carbon steel under aerobic conditions by reducing the 

amount of oxygen that would otherwise interact with the coupon surface. Further, these 

observations do not support previous observations of enhanced corrosion in the presence of 

elevated levels of nitrate compared to ammonium. 
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Introduction 

The consequences of metal corrosion are a global issue and include major economic, 

environmental and human health implications (Kilbane and Lamb, 2005; Videla and Herera, 

2005). Currently, methods for controlling MIC are costly and are not efficient in controlling 

and/or inhibiting the growth of microbes. Hence, attempts have been targeted towards 

environment-friendly, effective and yet much more specific MIC control measures. 

Microbiologically influenced corrosion or MIC has been defined as the deterioration 

of metal caused by the presence or the activities of microorganisms adhering to the surface 

(Beech et al., 2000). Microbes can interact with the environment/metal surface in many 

different ways (Dall’Agnol and Moura, 2014) and therefore the mechanism of MIC cannot be 

linked to a single reaction, process or a species of microorganisms (Kip and van Veen, 2015). 

The microorganisms associated with MIC include sulfate reducing bacteria (SRBs), archaea, 

methanogens, acetogenic bacteria, nitrate reducing bacteria, metal oxidizing bacteria and 

metal reducing bacteria.  Sulfate-reducing bacteria are considered to be the major causative 

group under anoxic conditions (i.e. pipelines, fuel storage facilities, ballast tanks etc.) and 

have been most extensively studied (Beech and Sunner, 2004; Dall’Agnol and Moura, 2014). 

Corrosion of steel in intermittently oxygenated marine waters (e.g. Accelerated Low Water 

Corrosion, ALWC) is also of great concern (Melchers, 2014b; Melchers and Jeffrey, 2012). 

Metal structures exposed to the euphotic zone of warm, oxygenated sea water experience a 

great deal of corrosion that becomes a threat to the stability of these structures (Melchers, 

2019). Although sulfate reducing bacteria (SRBs) are traditionally considered a major culprit 

in MIC, anaerobic microorganisms are unlikely to be abundant initially in ALWC due to the 

oxygenated sea water environment. 

Based on the analyses of steel pilings exposed for long periods to coastal waters, an 

empirical multi-phase phenomenological model of steel corrosion in sea water was 

formulated by Professor Robert Melchers (Melchers, 2003). The model has five phases with 

two periods of bacterial activity (Melchers, 2010; Melchers and Jeffrey, 2011). Once the metal 

is exposed to sea water, metal surface is colonized with marine organisms. The corrosion is 

aerobic with non-linear kinetics, influenced by a combination of chemical and bacterial 

activity. This first phase of bacterial activity can make a significant contribution to corrosion, 

especially if the nutrient supply is not limited. The model assumes that bacterial 
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activity/metabolism depends on the available nutrient supply, and in particular on the 

dissolved inorganic nitrogen (DIN) pool size (Melchers, 2014b). Influence during the first 

period of bacterial activity on corrosion mass loss has been implicated with field data 

(Melchers, 2007; Melchers and Jeffrey, 2011) as well as laboratory experiments (Lee et al., 

1995). 

A number of studies provide evidence linking an increase in MIC to higher 

concentrations of nutrients such as DIN, but the relationship is not straightforward (Little and 

Lee, 2014 and references there in). Microorganisms need nutrients for growth and the uptake 

of nutrients can stimulate the rate of corrosion (Little, B.J. 2003; Rodin et al., 2000; Jigletsova 

et al., 2004). Additionally, organic acids produced by fermentative bacteria can act as a 

nutrient for other microorganisms in the community, such as SRB, and lead to increased MIC 

(Mand et al., 2012). Rajasekar and Ting (2011) observed enhanced corrosion resistance in 

stainless steel 304 cultured together with Bacillus megaterium and Pseudomonas sp. in the 

presence of inorganic nitrates and phosphates. They proposed an acceleration of metabolite 

production in the presence of inorganic nutrients which led to the formation of a passive layer 

(Rajasekar and Ting, 2011). Pillay and Lin (2013) observed a reduced corrosion rate in mild 

steel in the presence of some bacterial isolates with 5 mM NaNO3 or NH4NO3 under aerobic 

conditions compared to the bacterial isolates without addition of nitrate. Interestingly, the 

same study provided evidence for nitrate enhancing metal corrosion under abiotic conditions. 

The presence of 5 mM NaNO3 or NH4NO3 resulted in increased corrosion rate of mild steel 

under aerobic conditions even in the absence of cells (Pillay and Lin, 2013).  

Three mechanisms of metal corrosion inhibition by biofilms have been proposed 

(reviewed in Zuo, 2007; Kip and Veen, 2015) (1) removal of corrosive substances through 

bacterial activity/metabolism (e.g. removal of oxygen under aerobic conditions) (2) growth 

inhibition of corrosion-causing organisms by other organisms in the biofilm through 

production of antimicrobial agents and (3) formation of a protective layer (such as passivating 

metal oxides or extracellular polymeric substances (EPS)). A number of studies have 

investigated oxygen removal via respiration and/or metabolism as a possible cause of 

inhibition of corrosion (Pedersen and Hermansson, 1991; Jayraman et al., 1997a; Jayraman et 

al., 1999a; Ismail et al, 2002; Dubiel et al., 2002). The observations by Dubiel and colleagues 

(2002) indicated microbial respiration (aerobic as well as iron respiration) as a possible key 
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factor reducing corrosion. Utilization of microbes secreting antimicrobial agents inhibiting the 

growth of corrosion-causing organisms is the second strategy (Jayraman et al., 1997a; 

Jayraman et al., 1997b; Jayraman et al., 1999b). Formation of a phosphate-containing 

protective layer was proposed as the possible mechanism of corrosion inhibition by some 

Pseudomonas spp. (Gunasekaran et.al., 2004; Chongdar et.al., 2005) and Shewanella 

oneidensis strain MR-1 (Dubiel et.al., 2002). Additionally, studies on sulfate reducing bacteria 

(SRBs) have shown corrosion inhibition under anaerobic conditions by EPS extracted from 

Desulfovibrio alaskensis (Stadler et al., 2008; 2010).  

According to Melchers’ phenomenological model, the initial period of corrosion 

(phases 0 and 1) are governed by oxygen diffusion and bacterial activity, which in turn is a 

function of nutrient availability (Melchers R.E. 2010; Melchers R.E. 2014). Nitrate is one of the 

forms of DIN found in the marine environment and varies in concentration depending on 

location (Melchers, 2012; 2014). The level of nitrate in unpolluted seawater is below 

detection level (Garcia et al., 2014) while the locations with elevated levels of nitrate can be 

as high as 2 mM (Fontaine et al., 2014). Pollution of coastal waters from land-based sources 

(mainly agricultural runoff) leads to significant increase of nutrients such as nitrate, ammonia, 

phosphate, sulfate as well as sulfite (Ngatia et al., 2019). 

As previously stated, Melchers’ model was developed based largely from field data 

(Melchers, 2003, Melchers 2010) and the laboratory studies depicting the periods of bacterial 

influence (as a community) in the model (Melchers and Jeffrey, 2011; Lee et al., 1995). 

Although the bacterial influence in terms of corrosion is depicted, the mechanism behind the 

influence is yet to be elucidated and the presence of a bacterial community increases the 

complexity of the experiments and interpretation of results. To obtain a better understanding 

of the effect of elevated levels of nitrate on MIC and/or MIC inhibition, the behavior of a single 

species marine biofilm was studied. We employed Marinobacter hydrocarbonoclasticus SP17, 

a gram-negative, rod-shaped, non-spore forming bacterium (Gauthier et.al, 1992), as the 

model organism. It is a halotolerant (0.08 – 3.5mM NaCl) member of the 

Gammaproteobacteria and can utilize oxygen, nitrate and nitrite as electron accepters 

(Gauthier et.al, 1992). Marinobacter spp. are common and found in different marine habitats 

including coastal water, sediment, deep waters, hydrothermal vents as well as oil fields 

(reviewed in Handley and Lloyd, 2013). 
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The objective of this chapter was to investigate the effect of Marinobacter 

biofilm/activity on corrosion of 1018 carbon steel under elevated levels of nitrate. In light of 

the previous observations (unpublished data), we hypothesized that Marinobacter biofilm 

protects 1018 carbon steel exposed to elevated nitrate levels under aerobic conditions. 

Possible mechanisms inhibiting corrosion include removal of oxygen by microbial respiration/ 

activity, removal of products of microbial metabolism that act to corrode the metal surface. 

 

Materials and Methods 

Media and cultivation of Marinobacter hydrocarbonoclasticus SP17 

A synthetic sea water medium modified after Widdel and Bak (1992) was used for 

culturing Marinobacter hydrocarbonoclasticus SP17 (Gauthier et.al, 1992). The medium 

contained the following components per liter: 100 ml of Widdel’s 10X salt mix (NaCl, 60.0 g; 

MgCl2, 3.0 g; CaCl2, 0.5 g; Na2SO4, 3.0 g; KH2PO4, 0.2 g; KCl , 0.5 g and 10 ml of 100X RST trace 

metals (Tanner, 1989 ), 3.5g of Na2SO4 and 0.01 g/L of sodium lactate as the carbon source. 

The pH was adjusted to 7.2. The composition of trace metal solution is KOH, 2.0 g; and MnSO4 

.H2O. 1.0 g; Fe (NH4)2(SO4)2.H2O, 0.8 g; CoCl2 .8H2O, 0.2g; ZnSO4 .7H2O, 0.2 g; CuCl2 .2H2O, 0.02 

g; NiCl2 .6H2O, 0.02 g; Na2MoO4 .2H2O, 0.02 g; Na2SeO4, 0.02 g; Na2WO4, 0.02 g. For each 9 ml 

of the medium, 0.3 mL 10% NaHCO3, and 1.0 mL 100x RST vitamins (Tanner 1989) were added.  

The organism was streaked onto tryptic soy agar plates from -80℃ glycerol stock.  

Single colonies were then inoculated into 50 ml of the above mentioned medium amended 

with either 0.5 mM sodium nitrate or 0.5 mM ammonium chloride. The cultures were 

transferred three times in either the medium with nitrate or ammonium before the 

experiment began.  

Experimental design     

Experiments were conducted in 160 ml glass serum bottles with 50 ml of medium 

amended with either 0.5 mM sodium nitrate or 0.5 mM ammonium chloride. Biotic 

treatments were inoculated with 2.5 ml (5% of the total volume) of a two days old culture of 

M. hydrocarbonoclasticus SP17. Bottles were sealed with rubber stoppers and aluminium 

rings and the aerated bottles had a sterile needle penetrated through a rubber stopper 
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connecting the outside air with the headspace of the bottle through a 0.2 µm filter. The head 

space of the sealed bottles was flushed with N2 for 5 minutes in order to lower the initial 

oxygen level. There were ten different treatments (Table S1), each treatment with five 

replicates. The bottles were incubated at 25oC with 100 rpm shaking for 6 weeks.  

Metal coupons 

The metal samples used were round (diameter of 10 mm and thickness of 1 mm) 1018 

carbon steel coupons (Alabama Specialty Products, Inc., Munford, AL). The coupons were 

cleaned prior to use in the experiment as previously described (Liang et al., 2014). In brief, 

coupons were sonicated in water individually for 15 minutes, dipped briefly in acetone and 

then in methanol before drying using N2 gas. The coupons were weighed, placed in sealed 

serum bottles under N2 and were autoclaved.  

After the experiment ended all coupons were cleaned following ASTM standard 

protocol (ASTM G1-03, 2011). Coupons were dipped in coupon cleaning solution (3.5 g/l of 

hexamethylenetetramine (100-97-0 Sigma-Aldrich, St. Louis, MO) in 6M HCl) for 5 minutes 

and then in acetone and methanol. Subsequently, they were dried using N2 gas and were 

weighed.   

Data collection 

Treatments 1 - 9 (Table S1) were sampled weekly and at the end of study after the six 

weeks. In order to maintain substantial volume of medium in each treatment, three replicates 

(a, b, c) from each treatment were sampled weekly for viable counts and, nitrate depletion 

measurements. The other two replicates (d, e) of each treatment were sampled weekly for 

dissolved oxygen and dissolved Fe (II) measurements. The replicates a, b, c of treatments 5, 6 

and 9 (Table S1) were sampled for optical density (OD) measurements every week. The 

treatments with coupons were not sampled for OD since the corrosion products interfered 

with the measurements. All five replicates were sampled for nitrate depletion and coupon 

weight loss at the end of the study. The data of one replicate was removed from final analysis 

due to contamination of an abiotic bottle (Treatment 8, replicate a, contamination seen at 

week 5). Only weight loss data was collected for treatment 10.  
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Growth of Marinobacter during the experiment was monitored by optical density at 

600nm and viable plate counts of planktonic cells. A 1:10 dilution series were made for three 

replicates (a, b, c) of each treatment and 100 µl were plated on tryptic soy agar (TSA). The 

dissolved oxygen concentration of one milliliter samples removed from each bottle was 

measured using the FireStingO2 fiberoptic oxygen meter (PyroScience GmbH, Aachen, 

Germany). Dissolved ferrous ion was measured by ferrozine assay based on a protocol 

previously described (Liang and Suflita, 2015). To summarize, 0.5 ml of the sample from 

replicates d and e were acidified with 10 µl of 37% HCl and left for 15 minutes. An aliquot (0.1 

ml) of the mixture was added to 5 ml of ferrozine reagent. Ferrozine reagent consists of 1 g 

of (3-(2-Pyridyl)-5, 6-diphenyl-1, 2, 4-triazine-p, p′-disulfonic acid monosodium salt hydrate) 

in 1 L of 50mM HEPES, pH = 7.0. Nitrate depletion was analyzed on an ion chromatograph 

(model ICS-1100, Dionex Corp., Sunnyvale, CA) equipped with an ion-exchange column 

system (IonPac® AS23 4X250 mm analytical column and an IonPac® AG23 4X50 mm guard 

column)-(Dionex Corp., Sunnyvale, CA). The entire biofilm on replicates a, b, c coupons was 

scrapped into 1 ml of Widdel’s aerobic medium each using a sterile flathead wooden 

toothpick and used for viable plate counts at the end of the study. Coupons a, b, c were then 

cleaned as described above. 

Statistical analysis 

Mean, standard deviation, variance were calculated using Microsoft Excel version 

2013. Also, T test, one-way ANOVA, 2-way ANOVA, and Tukey HSD (Honestly Significant 

Difference) were used to analyze the data in Microsoft Excel version 2013.  

 

Results 

Growth and nitrate consumption of M. hydrocarbonoclasticus SP 17 

Based on optical density measurements and viable plate counts of the planktonic cells, 

the organism reached the highest density at 7 days when grown under aerated conditions in 

Widdel’s medium with either 0.5 mM nitrate or ammonium (Figures S1 and S2). While the 

numbers show a gradual decrease with time, the viable cell density remained above 107 

CFU/ml after 6 weeks (Figure S2). The attached cell population (e.g. “biofilm”, as determined 

by viable counts) showed no significant difference between sealed vs unsealed/aerated 
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(nitrate-amended) conditions (n=3, p-value = 0.78). Biofilm cover of ammonium-amended 

condition had a high variance between replicates (Figure S3).   

The nitrate amounts in the treatments containing   Marinobacter showed a steep 

decline in the first week, with treatments containing coupons at a higher nitrate level than 

those without coupons, and were close to the limit of detection of the instrument (30 µM) 

for all treatments with Marinobacter by the fourth week (Figure 1). The values in abiotic 

treatments showed some fluctuation but did not show a significant loss of nitrate.  

Dissolved oxygen measurements 

Dissolved oxygen in the medium of aerated treatments maintained original ambient 

levels with some fluctuations (Figure 2). The oxygen in sealed-abiotic treatment decreased 

from around 9.5 mg/l to 6.87 mg/l in 6 weeks. In contrast, the sealed treatments with cells 

had much greater decrease of dissolved oxygen with values reaching around 3 mg/l by the 

end of 6 weeks.  

Coupon weight loss 

The weight loss of coupons with cells was lower than without cells regardless of the 

nitrogen source or aeration (Figure 3). The five coupons incubated under nitrate-amended 

and aerated treatment with cells showed more than a seven-fold decrease in weight loss 

compared to that of nitrate-amended and aerated without cells. However, two coupons 

under these conditions gained weight (187 mg and 2 mg). The oxygen-limited treatments 

(sealed) showed less weight loss compared to the aerated treatments either with or without 

cells. A two way ANOVA was performed to determine the effect of oxygen limitation and the 

presence of Marinobacter cells on coupon weight loss (Table S2). There was a statistically 

significant interaction between the effect of oxygen limitation and presence of cells on 

coupon weight loss, (F (1, 8) = 265.006, p = 2.04 X 10-7). The least weight loss was observed in 

the sealed (limited dissolved oxygen) treatments with cells under nitrate-amended 

conditions. The coupon weight loss was significantly higher with aerated treatments than 

sealed ones irrespective of the presence of cells (between treatments with cells: p = 0.006, 

between treatments without cells: p = 0.00004). As far as the effect of different nitrogen 

sources (e.g. nitrate, ammonium, no additional nitrogen source) are considered, for aerated 
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abiotic controls (Figure 4), there was no statistically significant difference among the groups 

as determined by one-way ANOVA (F(2,6) = 1.50, p = 0.27, Table S3).  

Dissolved ferrous ion measurements 

The amount of dissolved ferrous ion at the end of the experiment showed similar 

trends to coupon weight loss data (Figure 5). The amount of dissolved ferrous ion was lower 

in the presence of cells compared to the abiotic control treatment regardless of the nitrogen 

source or dissolved oxygen status. The quantity was six-fold less in the presence of cells under 

nitrate-amended aerated conditions whereas it was three-fold less under sealed conditions. 

In the ammonium-amended aerated treatments, the amount of dissolved ferrous ion was 2.5-

fold less in the presence of cells compared to the treatment without cells. 

 

Discussion 

According to phenomenological model of marine corrosion by R.E. Melchers, dissolved 

inorganic nitrogen (DIN) is thought to contribute to microbially induced corrosion through 

stimulation of growth/activity of microorganisms (Melchers, 2007; Melchers and Jeffrey, 

2011; Melchers, 2014b). The objective of this experiment was to investigate the effect of 

Marinobacter biofilm/activity on corrosion of 1018 carbon steel under elevated levels of 

nitrate. Our results demonstrate that the presence of Marinobacter cells reduced or inhibited 

the corrosion of 1018 carbon steel. Further, there was no statistically significant difference in 

weight loss between coupons exposed to nitrate compared to ammonium under abiotic 

conditions.  

Based on the coupon weight loss data as well as dissolved ferrous ion data, the presence of 

Marinobacter cells in the medium reduced/inhibited the corrosion of 1018 carbon steel. 

Furthermore, the corrosion of coupons was much lower in sealed treatments in which 

dissolved oxygen concentration was limited illustrating the well-known positive effect of 

oxygen on corrosion. Interestingly, statistical analysis of weight loss data shows an interaction 

between the presence of Marinobacter cells and the limited oxygen concentration. Based on 

the electrochemistry of metal corrosion, oxygen reduction coupled with elemental iron 

oxidation is the most common mechanism of corrosion under aerobic conditions (Zuo, 2007). 
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Oxygen is considered one of the most corrosive agents and the removal of oxygen could 

therefore reduce/inhibit corrosion. The collective effect of oxygen and Marinobacter cells 

(possibly in the form of biofilm) is likely due to the cells respiring oxygen in addition to the 

abiotic oxygen reduction with elemental iron oxidation.  

Removal of corrosive substances through bacterial activity/metabolism (i.e. mainly 

oxygen under aerobic conditions) is one of the proposed mechanisms by which biofilms 

inhibit metal corrosion (reviewed in Zuo, 2007; Kip & Veen, 2015). Research on corrosion 

inhibition by biofilms of a close relative of Marinobacter, Pseudomonas spp., provide evidence 

of protecting metal surfaces such as 1018 carbon steel, steel, unalloyed copper and 

aluminium alloy 2024 under aerobic conditions (reviewed in Kip and Veen, 2015). The 

proposed protection mechanisms are oxygen removal through metabolic activity/respiration 

(Jayraman et al., 1997a; Jayraman et al., 1999a) and production of a phosphate precipitation 

layer (Gunasekaran et.al., 2004; Chondgar et al., 2005). In the current study, two coupons 

incubated with nitrate and cells showed a gain in weight, but no precipitation layer was noted 

upon visual examination after the coupons were cleaned and weighed.  

Previous research (Pedersen and Hermansson, 1991; Jayraman et al., 1997a; Jayraman 

et al., 1999a; Ismail et al, 2002) investigated oxygen removal as a possible cause of inhibition 

of corrosion, but could not directly demonstrate a relationship between oxygen removal and 

corrosion inhibition. However, the studies showed that the inhibition is a consequence of a 

living biofilm. Thus some cellular activity is involved in the process (Pedersen and 

Hermansson, 1991; Ismail et. al, 2002). Dubiel and group (2002) investigated corrosion 

inhibition of iron-respiring Shewanella oneidensis strain MR-1 by comparing the wild type to 

its non-biofilm-forming and/or non-iron-respiring mutants. The results suggested that the 

corrosion inhibition was due to the consumption of oxygen by the Fe (II) ions that are 

produced by the reduction of Fe (III) to Fe (II) by the iron reducing biofilm (Dubiel et al., 2002). 

The authors further suggest that Fe (II) by scavenging oxygen acts as a barrier and prevents 

the oxygen from attacking the metal (Dubiel et al., 2002). 

Other literature shows that the effect of cellular activity may not be limited to oxygen 

scavenging. Removal of oxygen by flowing nitrogen through the medium was found to be less 

effective than the presence of living cells of Pseudomonas fragi strain K in corrosion inhibition 
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(Ismail et al., 2002). Hence Ismail et al. concluded that bacterial activity beyond the mere 

consumption of oxygen contributed to the overall diminution of corrosion. A more recent 

study on corrosion inhibition using Marinobacter aquaeolei found that the presence of the 

organism was associated with high corrosion resistance in X80 pipeline steel (Khan et al., 

2019). Open circuit potential and linear polarization resistance electrochemistry was used to 

monitor the system and scanning electron microscopy (SEM) and, confocal laser scanning 

microscopy were used to study the biofilm and X-ray photoelectron spectroscopy (XPS) was 

utilized to identify corrosion products on metal surface (Khan et.al., 2019). X-ray 

photoelectron spectroscopy (XPS) revealed the presence of iron oxide, iron phosphate as well 

as iron-EPS complexes (organic ligands, nitrosyl ligands, phenyl/benzyl and carbonyl ligands 

in complexes with iron). The authors suggest that the Marinobacter biofilm protected the 

metal by minimizing the amount of oxygen from reaching the metal surface while the 

associated EPS created a protective layer on the surface (Khan et al., 2019). 

In the current study there was no statistically significant difference in weight loss 

measured between the abiotic controls with nitrate, ammonium and without a nitrogen 

source (Figure 4). This contradicts the observations of Pillay and Lin (2013) where the addition 

of 5 mM NaNO3 or NH4NO3 to deionized water in aerated flasks increased corrosion (no 

mechanism was proposed by the authors). The current study was performed using a synthetic 

medium that more closely mimicked the high chloride chemical composition of sea water 

(Widdel aerobic medium) and maybe the difference in results lies in the chemistry of the 

medium. 

In the oil and gas sector, the application of nitrate or nitrite to restrict sulfide 

formation and thereby minimize corrosion and reservoir souring is becoming more common 

(Voordouw, 2003; Dunsmore et al., 2006; Hidaka et al., 2018). The principal objective is to 

inhibit sulfide production by sulfate reducing bacteria (SRBs) through the provision of a 

thermodynamically preferred electron acceptor like the nitrogen oxyanions. Numerous 

studies have been done investigating the effectiveness of the practice and also the multiple 

underlying mechanisms involved. A few main points have been highlighted in these studies 

(Dunsmore et al., 2006; Gao et al., 2014; Pillay and Lin, 2013; Schwermer et al., 2008): Upon 

addition of NO3
- (1) The community is shifted from sulfate-reducing to nitrate reducing, (2) 

The community is shifted from high diversity community to low diversity community 



53 
 

dominated by nitrate reducing bacteria, (3) General corrosion was reduced. Marques and 

group studied the effect of nitrate treatment on carbon steel corrosion using a complex 

microbial community found in production water (Marques et al., 2012). Coupons from all 

experiments with a nitrate treatment (continuous injections of 180 mg/L of sodium nitrate 

solution in a rate of 0.5 ml/min) showed slightly higher weight loss. It should be noted that 

Marinobacter species have been found to positively respond to high levels of nitrate via 

increases in cell numbers in multiple studies (Dunsmore et al., 2006; Marques et al., 2012; 

Pillay and Lin, 2014). Thus, it appears that utilizing an organism such as Marinobacter would 

certainly help in understanding the effect of nitrate in MIC. However, contrary to observations 

of the present study, Marques and colleagues (2012) as well as Pillay and Lin (2014) found an 

increase in corrosion with high levels of nitrate, indicating that any inhibition of corrosion by 

Marinobacter could be overwhelmed by the effects of nitrate on other members of the 

community.  

While appreciating the insights gained via single species studies, it is absolutely vital 

to investigate the mechanisms of MIC with multi-species communities. A biofilm on metal 

surface has various microhabitats facilitating the presence of aerobes such as Marinobacter 

as well as anaerobes such as SRBs which are known to cause MIC (Beech and Sunner, 2004; 

Dall’Agnol and Moura, 2014). Marinobacter sequences have been found in biofilms that 

caused severe corrosion (Vigneron et al., 2016). The influence of microbial activity on a metal 

surface can be thought of as the combined effect of complementary, antagonistic or parallel 

microbial pathways present in the biofilm (Vigneron et al., 2018). 

With the existing need of environmentally friendly corrosion mitigation techniques, 

studies of the mechanisms involved in enhancing or inhibiting MIC have gained much more 

attention. The current study investigated the effect of elevated nitrate on carbon steel 

corrosion in the presence of Marinobacter hydrocarbonoclasticus cells. The observations 

support the hypothesis that Marinobacter biofilm protects 1018 carbon steel under aerobic 

conditions. The most likely mechanism of corrosion inhibition by the organism appears to be 

oxygen respiration by the organism that ultimately reduces the ability of oxygen to react with 

the metal surface. The observations of the current study do not support the hypothesis of 

enhanced corrosion in abiotic systems due to the presence of elevated levels of nitrate 

compared to ammonium.   
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Figure 1. Nitrate depletion of nitrate-amended treatments as determined by ion 

chromatography (n = 3). “Marino” treatments were inoculated with Marinobacter cells. 

Points represent average values with error bars (+/- STD).  Marino + 0.5mM nitrate + coupon: 

Treatment 1, 0.5mM nitrate + coupon: Treatment 2, Marino + 0.5mM nitrate (no coupon): 

Treatment 5, Marino + 0.5mM nitrate + coupon (sealed): Treatment 7, 0.5mM nitrate + 

coupon: Treatment 8 and Marino + 0.5mM nitrate (no coupon): Treatment 9.  Treatments are 

listed in Table S1.   

 

 

Figure 2. The dissolved oxygen level in the medium (n = 2). “Marino” treatments were 

inoculated with Marinobacter cells. Points represent average values with error bars (+/- STD). 

Marino + 0.5mM nitrate + coupon: Treatment 1, 0.5mM nitrate + coupon: Treatment 2, 

Marino + 0.5mM nitrate (no coupon): Treatment 5, Marino + 0.5mM nitrate + coupon 

(sealed): Treatment 7, 0.5mM nitrate + coupon: Treatment 8 and Marino + 0.5mM nitrate (no 

coupon): Treatment 9.  Treatments are listed in Table S1.   
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Figure 3. Weight loss of 1018 carbon steel coupons after 6 weeks of exposure (n = 5 except 

where noted). “Marino” treatments were inoculated with Marinobacter cells. Bars represent 

average values with error bars (+/- 1 STD). Marino + 0.5mM nitrate + coupon: Treatment 1, 

0.5mM nitrate + coupon: Treatment 2, Marino + 0.5mM ammonium + coupon: Treatment 3, 

0.5mM ammonium + coupon: Treatment 4, Marino + 0.5mM nitrate + coupon (sealed): 

Treatment 7, 0.5mM nitrate + coupon: Treatment 8. Treatments are listed in Table S1.  The 

data of one coupon of the treatment 8 was removed from the analysis due to contamination 

(n=4 for Treatment group 8). There was a net loss of weight for Treatment 7 when all 5 

coupons were included, as three coupons lost weight and two coupons gained weight.  

 

Figure 4. Comparison of effect of nitrogen source on weight loss of 1018 carbon steel coupons 

in aerated incubations without cells. Coupons were exposed for 6 weeks. Bars represent 

average values with error bars (+/- 1 STD). Statistical analysis was performed using unequal 

sample sizes (0.5mM nitrate + coupon, n=5; 0.5mM ammonium + coupon, n = 5; no nitrogen 

source, n = 4). There was no statistically significant difference between the groups as 

determined by one-way ANOVA (F (2, 9) = 1.50, p = 0.27). 0.5 mM nitrate + coupon: Treatment 

2, 0.5 mM ammonium + coupon: Treatment 4, no nitrate + coupon: Treatment 10. Treatments 

are listed in Table S1.    
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Figure 5. Amount of dissolved Fe (II) determined by ferrozine assay after 6 weeks of 

incubation (n=2). “Marino” treatments were inoculated with Marinobacter cells. Bars 

represent average values with error bars (+/- STD). Marino + 0.5mM nitrate + coupon: 

Treatment 1, 0.5mM nitrate + coupon: Treatment 2, Marino + 0.5mM ammonium + coupon: 

Treatment 3, 0.5mM ammonium + coupon: Treatment 4, Marino + 0.5mM nitrate + coupon 

(sealed): Treatment 7, 0.5mM nitrate + coupon: Treatment 8. Treatments are listed in Table 

S1.  
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Supplementary tables and figures. 

TableS1. List of treatments. Each treatment had five replicates. 

Treatment 
group 

Nitrate Ammonium Marinobacter 
(5% v/total v) 

1018 
Coupons 

Aerated/sealed 

1 0.5mM _ √ √ Aerated 

2 0.5mM _ _ √ Aerated 

3 _ 0.5mM √ √ Aerated 

4 _ 0.5mM   √ Aerated 

5 0.5mM _ √ _ Aerated 

6 _ 0.5mM √ _ Aerated 

7 0.5mM _ √ √ sealed 

8 0.5mM _ _ √ sealed 

9 0.5mM _ √ _ sealed 

10 _ _ _ √ Aerated 

  

Table S2. Results of the two-way ANOVA on effect of dissolved oxygen and presence of 

Marinobacter cells on coupon weight loss. Treatments 1 (with Marinobacter, aerated) 2 

(without Marinobacter, aerated), 7 (with Marinobacter, sealed) and 8 (without Marinobacter, 

sealed) were compared. Three replicates (uncontaminated) were chosen from each 

treatment for analysis since the analysis needed equal sample sizes. (F critical = 5.32) 

ANOVA      
Source of 
Variation SS df MS F P-value 

Sample 1.46 x 10-4 1 1.46 x 10-4 1.05 x 103 9.14 x 10-10 

Columns 5.68 x 10-5 1 5.68 x 10-5 4.05 x 102 3.86 x 10-8 

Interaction 3.71 x 10-5 1 3.71 x 10-5 2.65 x 102 2.04 x 10-7 

Within 1.12 x 10-6 8 1.4 x 10-7   

      

Total 2.41 x 10-4 11       

 

Table S3. Results of the one-way ANOVA on effect of nitrogen source on coupon weight loss 

of abiotic treatments under aerated conditions. Treatments 2 (0.5 mM nitrate + coupon, n=5), 

4 (0.5 mM ammonium + coupon, n=5) and 10 (no nitrogen source + coupon, n=4) were used 

for the analysis. (F critical = 4.26). 

ANOVA      

Source of Variation SS df MS F P-value 

Between Groups 6.08 x 10-6 2 3.04 x 10-6 1.50 0.27 

Within Groups 1.83 x 10-5 9 2.03 x 10-6   

      

Total 2.44 x 10-5 11       
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Figure S1. Optical density/OD (at 600nm) of the planktonic phase of treatments with M. 

hydrocarbonoclasticus and without coupons (n=3). “Marino” treatments were inoculated 

with Marinobacter cells. Points represent average values with error bars (+/- 1 STD). OD was 

measured only in treatments that did not have coupons. In treatments with coupons, 

corrosion products interfered with the OD measurements. Marino + 0.5 mM nitrate: 

Treatment 5, Marino + 0.5 mM ammonium: Treatment 6 and Marino + 0.5 mM nitrate 

(sealed): Treatment 9. Treatments are listed in Table S1.  
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Figure S2. Viable cell counts of the planktonic phase of treatments with Marinobacter 

hydrocarbonoclasticus (n=3). “Marino” treatments were inoculated with Marinobacter cells. 

Points represent average values with error bars (+/- 1 STD). Marino + 0.5mM nitrate + 

coupon: Treatment 1, Marino + 0.5mM ammonium + coupon: Treatment 3, Marino + 0.5mM 

nitrate (no coupon): Treatment 5, Marino + 0.5mM ammonium (no coupon): Treatment 6, 

Marino + 0.5mM nitrate + coupon (sealed): Treatment 7, Marino + 0.5mM nitrate (no 

coupon): Treatment 9. Treatments are listed in Table S1.     
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Figure S3. Marinobacter hydrocarbonoclasticus biofilm determined by viable cell counts 

(n=3). “Marino” treatments were inoculated with Marinobacter cells. Marino + 0.5mM nitrate 

+ coupon: Treatment 1, Marino + 0.5mM ammonium + coupon: Treatment 3, Marino + 

0.5mM nitrate + coupon (sealed): Treatment 7. Treatments are listed in Table S1.      
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Appendix 

Transcriptomic response of Marinobacter hydrocarbonoclasticus SP17 biofilms to elevated 

levels of nitrate in the environment 

 

Abstract 

The phenomenological model of corrosion of steel in sea water by Dr. R. E. Melchers and 

group has two phases during which bacterial activity dominates corrosion. The rate of 

corrosion during these phases depends on bacterial metabolism, thus becomes a function of 

nutrient supply. The major limiting nutrient for bacterial activity in sea water is dissolved 

inorganic nitrogen which is mainly nitrate in oxygenated water. The current study investigated 

the effect of elevated levels of nitrate in the environment on Marinobacter 

hydrocarbonoclasticus SP17 biofilm at the level of transcription. It was hypothesized that 

genes for assimilatory and/or dissimilatory nitrate reduction in Marinobacter biofilms would 

be differentially expressed in the presence of elevated levels of inorganic nitrogen (nitrate vs. 

ammonium). The biofilm was grown aerobically on an inert surface (glass), RNA was extracted 

and a microarray containing 3697 Open Reading Frames (ORFs) was performed comparing 

biofilm cells as well as planktonic phase under nitrate-amended vs. ammonium-amended 

conditions. Only 4 transcripts showed upregulation (i.e. log2R ≥ 2) under nitrate amended 

biofilm conditions compared to ammonium amended biofilm conditions and 1086 showed 

downregulation (i.e. log2R ≤ -2). Contrary to expectations, the majority of genes in 

dissimilatory nitrate reduction were to be found downregulated in biofilm under nitrate-

amended conditions. Among other genes downregulated were glnG, glnL (two-component 

nitrogen regulatory system) and genes coding for nitrogen/nitrate transport 

systems/transporters. Seven of the genes coding for subunits of cytochrome c oxidases were 

found downregulated in nitrate-amended compared to ammonium-amended conditions in 

biofilm as well as planktonic phase. The shutting down of nitrate/nitrogen metabolism 

perhaps is due to the excessive amounts of nitrate. The downregulation of cytochromes is 

indicative of the culture reaching anaerobic conditions, as has been seen for Pseudomonas 

aeruginosa.  
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Introduction 

Aggregates of microorganisms in which cells are frequently embedded within a self-produced 

matrix of extracellular polymeric substance (EPS) that are adhere to each other and/or to a 

surface (IUPAC recommendations, Vert et al., 2012) are called biofilms. A biofilm is an 

essential part of natural environment, with both beneficial as well as detrimental aspects. A 

biofilm community functions very differently than the cells in a free-living community 

(Flemming et al., 2016). Many different factors, including nutrient availability or limitation can 

influence the growth, function and metabolism of a biofilm. Furthermore, these factors can 

differentially affect the biofilm during different phases of its development.  

As far as the marine environment is concerned, dissolved inorganic nitrogen (DIN) is critical 

for bacterial growth and/or activity since it is limited in the ocean compared to other 

nutrients. The different forms of dissolved inorganic nitrogen in sea water include nitrate, 

nitrite and ammonium. Many harbors around the world which are polluted with industrial, 

agricultural as well as urban runoff have shown increased levels of DIN. Based on field data 

analysis and modeling, Rob Melchers and group was able to demonstrate a positive 

correlation between elevated levels of annual average DIN in sea water (7 - 70 µmol/L ) and 

accelerated low water corrosion (ALWC) of steel piling (Melchers, 2012; Melchers, 2014; 

Melchers and Jeffrey, 2012). Bacterial growth and/or activity is known to be influenced by the 

availability of nutrients (Little and Lee, 2014 and references there in). In the relationship 

between ALWC and DIN proposed by Melchers’, DIN appears to be mainly nitrate, on the basis 

that oxygenated sea water has very low concentrations of nitrite and ammonium (Melchers, 

2012).  

Addition of NO3
− or NO2

− to injection water of oil and gas fields has been practiced for quite a 

long time. The principal objective is to inhibit the activity of sulfate reducing bacteria (SRBs) 

and other corrosion-inducing microorganisms. In most of these studies, these main points 

have been highlighted (Dunsmore et al., 2006; Gao et al., 2014; Pillay and Lin, 2013; 

Schwermer et al., 2008) : Upon addition of NO3
- (1) the community shifted from sulfate-

reducing to nitrate reducing, (2) The community shifted from high diversity community to low 

diversity nitrate reducing bacteria dominating community, (3) General corrosion was 

reduced. However, these environments differ from ALWC in that they are typically anaerobic, 

higher temperature, and have abundant hydrocarbons.  
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The effect of presence of high levels of nitrate in the marine environment were mostly studied 

and explained in terms of microbial community diversity, biofilm architecture, the extent of 

corrosion and acquisition of nitrate. However, the effect at the cellular level is yet to be 

elucidated. The behavior and function of marine biofilms/biofilm cells exposed to elevated 

levels of nitrate should be understood in order to explain the outcomes observed in the 

literature mentioned above.  

The objective of current study was to investigate the effect of elevated levels of nitrate in the 

environment on marine biofilms at transcription level. We employed Marinobacter 

hydrocarbonoclasticus SP17 (Gauthier et.al, 1992), which is commonly found in marine 

biofilms as the model organism. It is capable of utilizing nitrate under anaerobic conditions as 

an electron acceptor. Marinobacter biofilms were grown aerobically on an inert surface (glass 

slides) and were exposed to elevated levels of either nitrate or ammonium (acting as the 

control state). It was hypothesized that genes for assimilatory and/or dissimilatory nitrate 

reduction in Marinobacter biofilms will be differentially expressed in the presence of elevated 

levels of inorganic nitrogen (nitrate vs. ammonium). 

Materials and Methods 

Cultivation of M. hydrocarbonoclasticus SP17, experimental design and sample collection 

M. hydrocarbonoclasticus SP 17 obtained from glycerol stocks were grown in modified 

artificial sea water (ASW) medium (Lindell et.al., 1998) with 0.01 % (w/v) lactate as the sole 

carbon source, amended with either 0.5mM sodium nitrate or 0.5mM of ammonium chloride. 

The cultures were incubated under aerobic conditions at 25℃ with shaking (100 rpm) and the 

growth was monitored by standard plate counts using tryptic soy agar (TSA) 

Exponentially grown cells in ASW were harvested by centrifugation at 6000x g 10 min at room 

temperature, washed three times (by repeating centrifugation at 6000x g for 5 min and 

suspending in fresh media). The cells were resuspended to a final OD600nm of 0.06 (10%) in 

ASW with 0.01% (w/v) lactate and amended with either 0.5mM sodium nitrate or 0.5mM 

ammonium chloride.  

Clear, glass microscope slides (75 X 25 X 1 mm, VWR, Radnor, PA) horizontally immersed in 

50 ml of culture in polystyrene petri dishes (100 X 20 mm)-(VWR, Radnor, PA) were used as 

the substratum for biofilm growth. The petri dishes were incubated at 25℃ on a rocking 
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platform shaker (VWR, Radnor, PA) at speed 4 and the growth was monitored using OD at 

600nm. Nitrate depletion was monitored using an ion chromatograph (IonPac® AS23 

4X250mm analytical column and an IonPac® AG23 4X50mm guard column)-(Dionex Corp., 

Sunnyvale, CA) and a conductivity detector.   

The biofilm and planktonic samples were collected at the mid exponential phase after seven 

days of incubation. The culture medium with planktonic cells were carefully extracted using a 

micropipette and collected into sterile 50ml centrifuge tubes. Glass slides were briefly dipped 

in sterile fresh medium to remove any non-attached cells. Then, the biofilm on the glass was 

scraped into sterile 50ml centrifuge tubes using Teflon spatulas. Both planktonic and biofilm 

sample tubes were centrifuged at 6000x g for 5 minutes, cell pellets were resuspended in 2ml 

of sterile, fresh medium and transferred to 2ml screw cap tubes. The screw cap tubes were 

stored at -80℃ until used for RNA extraction.  

Total RNA extraction, cDNA synthesis and cDNA labeling 

Extraction of total RNA was performed using Nucleospin® extraction kit (Macherey-Nagel Inc, 

Bethlehem, PA) following manufacturer’s instructions. Contaminating DNA was removed with 

RQ1 RNase-free DNase (Promega, Madison, WI). The absence of DNA contamination was 

confirmed via PCR amplification using the 16S universal primers 27F (5’ 

AGAGTTTGATCMTGGCTCAG3’) and 519R (5’GWATTACCGCGGCKGCTG3’) (Lane, 1991). Total 

RNA in each sample was quantified using a Qubit® 2.0 Fluorometer and the Qubit® RNA BR 

assay (Life Technologies, Grand Island, NY) according to manufacturer’s instructions.  

For each RNA sample, 800ng of total RNA, 3.3 µl of random primers (3 µg/µl stock) were added 

to each tube and nuclease free water was added to bring the final volume to 16.5µl. The tubes 

were incubated at 70℃ for 10 min in a thermocycler. After transferring the tubes to ice, 6 µl 

of 5X buffer, 0.1M DTT, 1.5 µl of dNTP mix, 1 µl of RNase inhibitor and 1 µl of 1mM Cy3 dUTP 

dye were added to each tube. The tubes were incubated at room temperature for 10 minutes. 

Then, 1 µl of Reverse Transcriptase was added and each tube was incubated at 42℃ for 3 

hours and then 98℃ for 2 minutes to terminate the reaction. The tubes were then transferred 

to ice. The labeled cDNA samples were purified using Spinsmart nucleic acid purification 

columns (Denville scientific, Holliston, MA) following the manufacturer’s instructions. 

Labelling efficiency was measured Nanodrop 2000 spectrophotometer (Thermo Fisher 
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Scientific Inc., Wilmington, DE) and the nucleic acid pellet was dried in a Savant DNA Speed 

Vac (Thermo Fisher Scientific Inc., Wilmington, DE).  

Genomic DNA extraction and labeling 

M. hydrocarbonoclasticus genomic DNA was extracted using Maxwell® 16 Tissue LEV Total 

RNA purification kit AS1220 with the Maxwell® 16 instrument (Promega Corp, Madison, WI) 

with modifications as described in Oldham et al. (2012). Two ml of broth culture were 

centrifuged at 6000 xg for 5 min,  500 µl of 10mM Tris:1mM EDTA (pH=8) were added to the 

cell pellet, vortexed briefly to resuspend the pellet. RNA lysis buffer (RLA, 250 µl) and RNA 

dilution buffer (RDB, 250 µl) were added and the sample was processed using DNA/FFPE 

program in Maxwell® 16 instrument. DNA was quantified using a Qubit® 2.0 Fluorometer and 

the Qubit® dS DNA HS assay (Life Technologies, Grand Island, NY) according to manufacturer’s 

instructions.  

The dNTP mix for gDNA labeling was prepared by adding 5 µl of each dA/G/CTP, 2.5 µl of dTTP 

and 82.5 µl of DEPC treated water to a tube. For the random primer mix, 5.5 µl of random 

primer (Life Technologies, 3 ng/µl stock), 29.5 µl of gDNA were added to a tube, mixed and 

incubated at 99℃ for 5 minutes in a thermocycler and transferred immediately to ice. The 

labeling mix was prepared by adding 5 µl of 10X buffer, 2.5 µl of dNTP mix, 0.5 µl of Cy5 dye 

(25 nM stock) and water to make total volume of 15 µl. The 15 µl of labeling mix was 

transferred to the DNA/random primer mix and was mixed well. The reaction was incubated 

at 37℃ for 4 hours. The tubes were then incubated at 95℃ for 3 minutes to inactivate the 

reaction then at 4℃ until used. These incubation steps were done using a thermocycler. The 

labelled gDNA was purified using Qiagen QIAquick nucleic acid purification kit following 

manufacturer’s instructions. Labelling efficiency was measured with the Nanodrop 2000 

spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE) and the nucleic acid pellet 

was dried in a Savant DNA Speed Vac (Thermo Fisher Scientific Inc., Wilmington, DE). 

Microarray hybridization and scanning 

The cDNA samples and gDNA sample were rehydrated by adding 6 µl and 54 µl of water, 

respectively. The gDNA was mixed with hybridization solution (247.5 µl of 2X HI-RPM 

hybridization buffer, 49.5 µl of 10X aCGH blocking agent, 49.5 µl of 40% formamide and 41.4 

µl of water). 49.1 µl of the mix were added to each cDNA sample tube. The samples were 
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denatured at 95 ℃ for 3 minutes and were immediately transferred to 37 ℃ and,  incubated 

for 30 min. 48 µl of each sample were loaded into the array and hybridized overnight at 67 ℃ 

(MAUI Hybridization Station, BioMicro systems Inc., Salt Lake City, UT). The disassembly of 

the slide was done in wash buffer 1 (Agilent Gene Expression wash buffers, Agilent 

Technologies, Santa Clara, CA).  The microarray slide was washed using wash buffer 1 for 5 

minutes and then with wash buffer 2 for 1 minute following manufacturer’s instructions. The 

arrays were scanned for Cy3 and Cy5 fluorophores using ScanArray Express microarray 

scanner (Perkin Elmer, Boston, MA). 

Microarray design and analysis 

Custom DNA microarray was designed by Agilent based on the complete genome sequence 

of Marinobacter hydrocarbonoclasticus SP17 (GenBank Accession#: NC_017067). A total of 

3697 ORFs were targeted using up to six 50-mer oligonucleotide probes for each ORF. All 

probes were represented in triplicate in the array.  

Scanned images were processed and analyzed using Agilent Feature Extraction Software 

v10.7 (Agilent Technologies, Santa Clara, CA). After quantifying the spot signal intensity and 

background signals, signal-to-noise ratios (SNR) were calculated for each spot using the 

following formula: SNR = (spot signal-background signal)/standard deviation of background 

signal. Spots with SNR < 2 or without enough replicates were eliminated whereas spots with 

SNR > 2 were considered positive and were included in the analysis. The difference in gene 

expression between biofilm samples were determined by calculating the log ratio according 

to a previously published formula (Mukhopadhyay et al., 2006):  

Log2R = log2 (treatment) – log2 (control) 

The significance of the normalized log ratios was evaluated based on the Z-score calculated 

as previously described (Mukhopadhyay et al., 2006): 

Z = log2 (treatment/control) 

         √ 0.25 + ∑ variance 
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Results 

Nitrate-amended biofilm vs. ammonium-amended biofilm 

Most (2173) of the 3697 ORFs used for the microarray did not show differential expression 

(i.e. 2 > log2R > -2) between the biofilm cells exposed to nitrate and biofilm cells exposed to 

ammonium. Interestingly, only 4 transcripts showed upregulation (i.e. log2R ≥ 2) under nitrate 

amended conditions compared to ammonium amended conditions. A total of 1086 genes 

were downregulated (i.e. log2R ≤ -2) in nitrate amended biofilm compared to ammonium 

amended biofilm. 

Nitrogen metabolism: In the dissimilatory nitrate reduction pathway of M. 

hydrocarbonoclasticus SP17, the genes coding for respiratory nitrate reductase subunits narJ 

and narH were downregulated in biofilm exposed to nitrate compared to ammonia. However, 

the gene narG (codes for the alpha subunit) had a log2R value of only -1.66, e.g. close to but 

not quite at the level of significance. nasA, which codes for the alpha subunit of assimilatory 

nitrate reductase did not show a significant up or down regulation under nitrate-amended 

conditions compared to ammonium amended conditions. The nitrite reductase coding genes, 

nirS and nirB were downregulated in nitrate-amended biofilm cells but nirD was not 

differentially expressed. The two genes coding for a subunits of nitric oxide reductase (norB, 

norC) were found to be downregulated. Furthermore, the genes involved in dissimilatory 

periplasmic nitrate reduction pathway were downregulated under nitrate-amended 

conditions compared to ammonium amended conditions: ubiquinol-cytochrome c reductase 

iron-sulfur subunit-petA, ubiquinol-cytochrome c reductase, cytochrome B-petB and 

Ubiquinol-cytochrome c reductase, cytochrome c1 – petC.  Several genes associated with 

nitrate and nitrite transport were downregulated in biofilm cells exposed to nitrate compared 

to that exposed to ammonia: putative nitrate-and nitrite-responsive positive regulator 

(MARHY0169), ATP-binding nitrate transport protein (MARHY0170), nitrate transporter 

(MARHY0171), ABC-type nitrate/sulfonate/bicarbonate transport system, periplasmic 

component precursor (MARHY0172). Moreover, two component nitrogen regulatory system 

glnG and glnL had log2R values below -2.  

Iron metabolism: Among the upregulated in cells exposed to nitrate (compared to 

ammonium) was irgB, which is a transcriptional regulator for iron-regulation proteins. There 
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are two gene clusters located immediately upstream and downstream of this gene. The genes 

of both of these operons are involved in iron-homeostasis. The upstream gene cluster has a 

putative siderophore uptake periplasmic binding protein (MARHY3134) and cirA, ferric iron-

catecholate outer membrane transporter (MARHY3135) and the downstream gene cluster 

has fecB, an iron complex transport system protein and ferric-enterobactin transport protein 

components fepD, fepG and fepC. Interestingly, none of these showed differential expression 

between the two treatments.  

Other important genes with differential expression: Almost all of the genes coding for 

subunits of cytochrome c oxidases were found downregulated under nitrate-amended 

conditions compared to ammonium amended conditions. Among them are cytochrome c 

oxidase subunit II (MARHY0048), cytochrome c oxidase assembly protein coxG (MARHY0050), 

cytochrome c oxidase subunit III (MARHY0051), ctaD - cytochrome c oxidase, subunit I, ccoP 

- cytochrome c oxidase cbb3-type, diheme subunit, cytochrome c oxidase  cbb3-type subunit 

II, cytochrome c oxidase cbb3-type subunit I and cytochrome c oxidase cbb3-type CcoQ 

subunit.   

Nitrate-amended biofilm cells vs planktonic cells 

Only 16 transcripts showed upregulation (i.e. log2R ≥ 2) and 13 transcripts showed 

downregulation (i.e. log2R ≤ -2) in biofilm cells compared to planktonic cells. The upregulated 

genes were mostly membrane transporters. Among them were Putative Na+/H+ antiporter 

NhaD (MARHY1846), potB, spermidine/putrescine transport protein (ABC superfamily, 

membrane), putative NADH dehydrogenase, precursor (MARHY2024), conserved 

hypothetical protein, putative S-adenosyl-L-methionine-dependent methyltransferases super 

family (MARHY2892). The downregulated genes included exaC, a dependent acetaldehyde 

dehydrogenase, exaB, a Cytochrome c550, precursor and putative dioxygenase (LigB family 

enzyme, MARHY0129) and some membrane proteins (e.g. conserved hypothetical protein, 

putative membrane protein, putative EAL domain, MARHY3509).  

Ammonium-amended biofilm cells vs planktonic cells 

More genes (195) showed upregulation than downregulation (37) in biofilm cells compared 

to planktonic cells. There were few nitrate metabolism and transport proteins upregulated in 

biofilm cells: (narJ, nitrate reductase delta subunit, narV, nitrate reductase gamma subunit, 
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ATP-binding nitrate transport protein (MARHY0170), narH, nitrate reductase beta (Fe-S) 

subunit).  The upregulated transcripts were mainly membrane proteins including 

transporters. Among them were tricarboxylate transport proteins (putative membrane 

protein TctB (MARHY2791), putative Membrane protein TctA (MARHY2790)), several ABC 

family proteins/transporters (e.g., transporter permease protein membrane component 

(MARHY3815), putative branched-chain amino acid transport protein (MARHY3816) and the 

ATP-binding domains of transporters (eg. livG, a leucine/isoleucine/valine transporter subunit 

ATP-binding, cysA, a sulfate/thiosulfate transporter subunit; ATP-binding component, 

MARHY3810, Putative ATP-dependent protease ATP-binding subunit). 

Nitrate-amended vs. ammonium amended planktonic cells 

Sixteen transcripts showed upregulation (i.e. log2R ≥ 2) and 319 transcripts showed 

downregulation (i.e. log2R ≤ -2) in nitrate-amended compared to ammonium-amended 

planktonic cells. Some cytochrome-c-oxidases were found downregulated (MARHY0051, 

Cytochrome c oxidase subunit III, MARHY0050, Cytochrome c oxidase assembly protein coxG, 

MARHY0053, Putative transmembrane cytochrome oxidase complex biogenesis factor, ccoP, 

Cytochrome c oxidase cbb3-type, diheme subunit, MARHY0048, Cytochrome c oxidase, 

subunit II, MARHY1521, Cytochrome c oxidase, cbb3-type, subunit I, MARHY0369, putative 

Cytochrome c5, MARHY1519, cytochrome c oxidase, cbb3-type, CcoQ subunit). 

 

Discussion 

The transcriptomic response of M.hydrocarbonoclasticus SP 17 biofilms on glass to elevated 

levels of nitrate in the environment compared to elevated levels of ammonium was 

investigated using a microarray. Contrary to expectations, most of the genes involved in 

nitrate, nitrite and urea metabolism were found to be downregulated under nitrate amended 

conditions. Additionally, cytochrome c oxidase coding genes also were downregulated under 

nitrate-amended conditions. It appears that the biofilm is approaching an anaerobic 

environment under nitrate-amended conditions. However, the downregulation of 

dissimilatory nitrate reduction pathway genes does not support the hypothesis that the 

organism was using nitrate as an electron acceptor under these conditions.  Given the limited 

number of transcriptomic studies done with marine biofilms on solid substrata, further 
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investigation is needed to discover the pathways of Marinobacter involved in energy 

production as well as understand the behavior under elevated nitrate levels.  

The microarray data clearly demonstrated the downregulation of dissimilatory as well as 

periplasmic nitrate reduction pathways in biofilms under nitrate-amended conditions. It may 

be the high levels of nitrate in the medium were shutting down nitrate utilization. Marine 

waters typically have very low levels of nitrate (0.01mg/L, Melchers and Jeffrey, 2012) and 

most marine organisms including Marinobacter are accustomed to limited nitrate conditions. 

However, biofilm communities extracted from 1018 carbon steel coupons exposed to marine 

coastal waters polluted with fertilizer (0.1-0.9 mg/L of dissolved inorganic nitrogen, assuming 

most is nitrate) were found dominated by Marinobacter spp. (Beech, unpublished data). This 

observation suggests that Marinobacter is surviving as well as successful under high levels of 

nitrate in the environment.  

The downregulation of cytochrome c oxidase coding genes in nitrate-amended biofilm 

compared to that of ammonium, is an indication of experiencing anaerobic conditions. 

Downregulation of cytochrome c oxidase coding genes has been observed in biofilms of 

Pseudomonas aeruginosa clones isolated from Cystic fibrosis (CF) patients (Manos et al., 

2008). The same research and that of others showed upregulation of genes involved in 

anaerobic respiration with nitrate in CF biofilms (For example - Manos et al., 2008; Palmer et 

al., 2007; Van et al., 2007). The nitrate level commonly found in CF sputum is 0.4mM (Palmer 

et al., 2007). However, gene expression studies using microarray have often chosen 0.1mM 

of nitrate since it provides ample electron acceptor for growth (For example -  Palmer et al., 

2007 and references therein). Based on this information, it is possible that 0.5 mM nitrate 

used in the current study is above the amount needed for Marinobacter growth. 

The upregulation of membrane proteins/transporters in biofilms of both nitrate and 

ammonium amended conditions compared to their planktonic forms is an interesting 

observation. Membrane proteins and transporters play a critical role in homeostasis. The 

differential expression (upregulation) of the transcripts coding for these proteins could be due 

to unavailability or inaccessibility of nutrients/molecules needed for growth and/or 

metabolism.  
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The transcriptomic profile provides some information on the relative role of elevated levels 

of nitrate in the marine biofilms. However, the data from a single time point will only reveal 

part of the response since a biofilm has different stages of development and its transcriptome 

is expected to vary with stage. Therefore, data from several time points will be useful in 

obtaining a full picture on the response of marine organisms to exposure of high levels of 

nitrate. Moreover, metabolomic analysis and gene-deletion analysis will go hand in hand with 

the current study in providing valuable information of which pathways are truly induced in 

marine biofilms with high nitrate levels in the environment.   
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