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ABSTRACT 

Resilience can be understood as the property of an object or system to recover from its state of 

disruption back to its complete functional stage as it was prior to the disruption event. There are 

different ways of measuring the resilience of a system and tracking the system performance is one 

of the methods. Thus, measuring the time taken by the system to recover to its original state is one 

of the parameters that can be considered. In this research work, we have focused on building a 

model(s) that predicts the time taken for an interdependent network to recover and function at 

100%. In order to implement this idea, we present a case-study of the system of interdependent 

water, gas, and power utilities in Shelby County, TN. The model is trained using the train data set 

from the data set generated by running the optimization code multiple times and observing the 

time taken for the inter-dependent network to recover completely. The prediction of time to recover 

is made on the test data set using different models and the results are then compared.  
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1. INTRODUCTION 

 

1.1. Resilience 

While our dependence on infrastructure systems such as electric power, water supply, and 

telecommunication networks continues to grow along with their dependence on each other, recent 

natural disasters and malevolent attacks have demonstrated how a single event can cripple such 

networks and the community that relies on them for an extended period (Ouyang, 2014). Due to 

the substantial economic and social impacts of disruptions to such interdependent infrastructure 

systems, ensuring their resilience is a major concern (Kettl, 2013) as even small disruptions can 

lead to substantial failures in such an interconnected system (Danziger et al., 2016; Eusgeld et al., 

2011; Wu et al., 2016). 

The concept of resilience has been quantified with various measures in different domains (Hosseini 

et al., 2016). In this work, we adopt a resilience paradigm based on the system performance across 

system states illustrated in Figure 1, adapted from Henry and Ramirez-Marquez (2012). In this 

model, the resilience measure is defined by two primary dimensions: vulnerability, or the drop in 

the performance after a disruptive event, 𝑒, and recoverability, or the timely restoration of the 

system performance to the desired level. From this model, resilience is quantified as the ratio of 

recovery at time 𝑡 to loss noted by Я𝜑(𝑡|𝑒). Network performance at time 𝑡 is represented with 

𝜑(𝑡) (e.g., the amount of demand met at a certain node).  

 



2 

 

 

Figure 1. System performance across system states (adapted from Henry and Ramirez-Marquez (2012)). 

 

1.2 Objective 

The objective of this research is to predict ( using different predictive techniques and compare) the 

time taken (in seconds) for an interdependent network to recover completely from an instance of 

interdiction of a set of randomly selected nodes, given the optimization objective of minimizing 

the cumulative weighted fraction of unsupplied demand and constraints of demand, supply, 

interdependency, restoration rates of the nodes, work crews available for restoring the network(s) 

among others.  

1.3 Workflow 

In this section, the basic work flow followed in achieving the objective is discussed. Firstly, a case-

study of the system of interdependent water, gas, and power utilities in Shelby County, TN, is 

chosen for the research. An optimization code is modelled with the objective of minimizing the 

cumulative weighted fraction of unsupplied demand (discussed in Section 3.1.4) and constraints 

involving demand, supply, interdependency, restoration rates of the nodes, work crews available 
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for restoring the network(s), interdiction of elements of the network such as nodes and links and 

many others (discussed in Section 3.1.6). Then, a modification is made to this optimization code 

such that the model is executed multiple times and node attack information, node restoration rate 

information and the time taken for the network to restore is stored in the form of data frame. The 

data obtained is then used for predictive analysis and the results are then compared (discussed in 

Section 4). 
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2. BACKGROUND 

The concept of interdiction on a network can be compared to a situation where a network (for e.g., 

a city) is interdicted (i.e., attacked) due to a natural disaster or a human-made attack that makes 

the network unstable or inefficient.  Thus, being able to analyze the network’s performance after 

an interdiction (which might cause damage to some of its elements) occurs is a way to be able to 

take precautionary measures. Predicting the time taken for the network to recover completely is 

one of the analysis that should be considered. 

This section explains the background of machine learning and how it has been used in the field of 

networks and optimization. Optimization and Machine Learning are the two main concepts this 

work is built on. While optimization is concerned with exact solutions, machine learning is 

concerned with generalization abilities of learners (Munoz, 2014). Recently, machine learning has 

been used in every possible field to leverage its amazing power (Wang et al., 2018). Security is 

one of the main concerns facing the development of new projects in networking and 

communications. Another challenge is to verify that a system is working exactly as specified. On 

the other hand, advances in Artificial Intelligence (AI) technology have opened new markets and 

opportunities for progress in critical areas such as network resiliency, health, education, energy, 

economic inclusion, social welfare, and the environment (Hussein et al., 2018). In this study, the 

focus is on the network resiliency, mainly on the time taken or the speed of the network’s recovery 

after an interdiction occurs.  By combining optimization techniques and machine learning 

methods, the network performance is analyzed and discussed. 
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3. METHODOLOGY 

In this section the methodology followed to implement the idea of building a model that will 

predict the time taken by our inter-dependent network after a disruptive event is discussed. 

It is achieved in 3 steps, the first being developing an optimization code that will select a set of 

nodes from the network that are being disrupted and reduce the recovery time. Second step is 

generating data by running the optimization code multiple times for random nodes being disrupted 

each time and observing the time taken (in seconds) for the network to recover completely. The 

final step is building different predictive models by training the data (train data set) generated and 

testing it with the test data set. The predictive models’ results are then compared.  

3.1. Optimization code 

The optimization model used in this work is an extension of the work from (Ghorbani Renani, et 

al., 2019). Hence the model’s notations, parameters and assumptions are taken directly form the 

source. The only  

3.1.1. Network description and representation 

For this research, we present a case-study of the system of interdependent water, gas, and power 

utilities in Shelby County, TN, USA. Figure 2 shows the general illustration of (a) the water, (b) 

gas, and (c) power networks individually, along with (d) their superposition (adapted from 

González et al., 2016). 
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Figure 2. General depiction of the (a) water, (b) gas, and (c) power networks, and (d) the interdependency 

among networks in Shelby County, TN (adapted from González et al. (2016)). 

This model considers the physical interdependency for networks (mentioned in Section 3.1.2) in 

which the functionality of a set of nodes in one or more networks enable the functionality of a 

node in another network. In this case study, the power is dependent on the water network, which 

enables cooling in the power network (Zhang et al., 2016). The interdependent system of networks 

consists of 125 nodes and 164 links. 

Table 1. presents the general structure of the network components particularly in this study. In the 

water network, storage tanks and water pumps represent demand and supply nodes, respectively, 

and water pipelines are considered as the links. For the power network, substations are demand 

nodes, and gate stations are supply nodes, where the power transmission lines are the links. For 

the gas network, pipelines and gas distribution stations represent links and nodes, respectively. 
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Table 1. General formation of the water, gas, and power networks components in Shelby County, TN. 

(adapted from (Ghorbani Renani et al., 2019)) 

Network Nodes Supply nodes Demand nodes Links 

Water 49 34 15 71 

Gas 16 3 13 17 

Power 60 37 9 76 

 

From figures 3, 4 & 5 show the water, gas and power networks represented with links. The size of 

the nodes is directly proportional to the degree and the color codes are as follows, blue represents 

water, green represents gas, red represents power and the grey is used for nodes with degree >= 4 

in all the networks. 
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Figure 3. Water network with 49 nodes and 71 links. 
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Figure 4. Gas network with 16 nodes and 17 links. 
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Figure 5. Power network with 60 nodes and 76 links. 
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3.1.2. Model assumptions 

The proposed optimization model has the following underlying assumptions associated with the 

structure and operation of the system of networks and their interdependencies, and recovery, 

among others.  

- Each infrastructure network consists of a set of nodes (including supply, demand and 

transshipment nodes) connected by a set of links, such that each supply node, demand node, 

and link have known supply capacity, demand, and flow capacity, respectively. 

- There are work crews (work groups) responsible for repairing disrupted components in 

each infrastructure network, and this number can vary by network.  

- A work crew can only work on a single disrupted component at a time. A disrupted 

component can be restored by a single work crew (once the disrupted component is 

assigned to them) until they become operational.  

- There is a known restoration rate for each component, 𝜆, representing the proportion of the 

component restoration per unit time by each work crew. 

- Restoration time for each disrupted component is a function of both its failure and its 

restoration rate, both of which can vary by component.  

- Infrastructure networks are physically interdependent such that every “parent” node must 

be operational for the dependent “child” nodes to be operational. 

 

3.1.3. Notation 

An undirected network is denoted by 𝐺 = (𝑁, 𝐴), where 𝑁 is the set of nodes, and 𝐴 is the set of 

links. Assume a set 𝐾 of networks, each with a set of nodes 𝑁𝑘 such that ⋃ 𝑁𝑘𝑘∈𝐾 = 𝑁 and set of 

links 𝐴𝑘 such that ⋃ 𝐴𝑘𝑘∈𝐾 = 𝐴. Nodes can consist of supply nodes (𝑁𝑠
𝑘 ⊆ 𝑁𝑘), demand nodes 

(𝑁𝑑
𝑘 ⊆ 𝑁𝑘) and transshipment nodes (𝑁𝑘\ {𝑁𝑑

𝑘 , 𝑁𝑠
𝑘}) such that 𝑁𝑠

𝑘 ∩ 𝑁𝑑
𝑘 = ∅. Sets 𝑁′𝑘 ⊆ 𝑁𝑘 and 
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𝐴′𝑘 ⊆ 𝐴𝑘 are candidate nodes and links, respectively, in network 𝑘 ∈ 𝐾, that can be interdicted or 

protected in the system of interdependent networks. Note that this model considers a single 

commodity flowing through each network, but it could be easily extended to a multicommodity 

model. 𝛹 represents interdependency among networks such that ((𝑖, 𝑘), (𝑖,̅ 𝑘̅)) ∈ 𝛹 denotes node 

𝑖 ∈ 𝑁𝑘 in network 𝑘 ∈ 𝐾 physically depends on node 𝑖̅ ∈ 𝑁𝑘̅ in network 𝑘̅ ∈ 𝐾 where 𝑁𝑘 ∩ 𝑁𝑘̅ =

∅, 𝐴𝑘 ∩ 𝐴𝑘̅ = ∅ and ∀ 𝑘, 𝑘̅ ∈ 𝐾: 𝑘 ≠ 𝑘̅. Set 𝑅𝑘 represents the available work crews in network 𝑘 ∈

𝐾. Index 𝑡 ∈ 𝑇 provides the set of available time periods. Table 2 and  

Table 3 outline the model parameters and decision variables, respectively.  

Table 2. Model parameters. 

𝜂𝑖𝑡𝑒
𝑘  Flow reaching node 𝑖 ∈ 𝑁𝑑

𝑘 in network 𝑘 ∈ 𝐾 before the attack 

𝑤𝑖
𝑘 Importance weight assigned to node 𝑖 ∈ 𝑁𝑑

𝑘  in network 𝑘 ∈ 𝐾 

𝑆𝑖
𝑘 Amount of supply in node 𝑖 ∈ 𝑁𝑠

𝑘 in network 𝑘 ∈ 𝐾 

𝑑𝑖
𝑘 Amount of demand in node 𝑖 ∈ 𝑁𝑑

𝑘 in network 𝑘 ∈ 𝐾  

𝑢𝑖𝑗
𝑘  Capacity of link (𝑖, 𝑗) ∈ 𝐴𝑘 in network 𝑘 ∈ 𝐾 

𝜆𝑖𝑗
𝑘  Restoration rate of the link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾  

𝜆𝑖
𝑘 Restoration rate of the node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾  

Ε An arbitrarily small positive number, 0 < 𝜀 < 1 

𝑀 An arbitrarily large positive number 

 

Table 3. Model decision variables. 

𝜂𝑖𝑡
𝑘  Amount of demand met at node 𝑖 ∈ 𝑁𝑑

𝑘 in network 𝑘 ∈ 𝐾 at time 𝑡 ∈ 𝑇, continuous 

𝑥𝑖𝑗𝑡
𝑘  Flow on link (𝑖, 𝑗) ∈ 𝐴𝑘 in network 𝑘 ∈ 𝐾 in time 𝑡 ∈ 𝑇, continous 

𝑦𝑖𝑗
𝑘  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is protected, binary   

𝑦𝑖
𝑘 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘  in network 𝑘 ∈ 𝐾 is protected, binary  
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𝑧𝑖𝑗
𝑘  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is interdicted, binary 

𝑧𝑖
𝑘 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is interdicted, binary  

𝐹𝑖𝑗
𝑘 Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is disrupted, binary  

𝐹𝑖
𝑘 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is disrupted, binary 

𝛼𝑖𝑗
𝑘  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is operational, binary  

𝛼𝑖
𝑘 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is operational, binary  

𝛼′𝑖𝑗𝑡
𝑘𝑟

 Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is restored by work crew 𝑟 ∈  𝑅𝑘  in time 𝑡 ∈ 𝑇, binary 

𝛼′𝑖𝑡
𝑘𝑟

 Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is restored by work crew 𝑟 ∈  𝑅𝑘  in time 𝑡 ∈ 𝑇, binary 

𝛽𝑖𝑗𝑡
𝑘  Equal to 1 if link (𝑖, 𝑗) ∈ 𝐴′𝑘  in network 𝑘 ∈ 𝐾 is reactivated at time 𝑡 ∈ 𝑇, binary 

𝛽𝑖𝑡
𝑘  Equal to 1 if node 𝑖 ∈ 𝑁′𝑘 in network 𝑘 ∈ 𝐾 is reactivated at time 𝑡 ∈ 𝑇, binary 

 

3.1.4 Objective function 

In particular, the model aims to minimize the (weighted) fraction of unsupplied demand over the 

planning horizon. For this purpose, let us define 𝜁(𝑡) as the weighted proportion of unmet demand 

(relative to the met demand before the disruption) at time 𝑡, as shown in Eq. (1), where 𝜂𝑖𝑡
𝑘  

represents demand being met at node 𝑖 in network 𝑘 at time 𝑡, 𝜂𝑖𝑡𝑒
𝑘  represents the amount of demand 

met prior to the disruption at time 𝑡𝑒 (from Figure 1), and 𝑤𝑖
𝑘 is the relative importance of node 𝑖 

in network 𝑘. As mentioned in Section 1, network performance at time 𝑡 is represented with 𝜑(𝑡) 

which equals to 1 − 𝜁(𝑡). 

𝜁(𝑡) =
∑  𝑖∈𝑁𝑑

𝑘 ∑ 𝑤𝑖
𝑘(𝜂𝑖𝑡𝑒

𝑘 − 𝜂𝑖𝑡
𝑘 )𝑘∈𝐾

∑  𝑖∈𝑁𝑑
𝑘 ∑ 𝑤𝑖

𝑘𝜂𝑖𝑡𝑒
𝑘

𝑘∈𝐾

 (1) 
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Then, the proposed objective function, which seeks to minimize the cumulative weighted fraction 

of unsupplied demand over the planning horizon for the worst-case disruption scenario, would be 

defined in Eq. (2).  

𝜉 = min
𝜂,𝑥,𝐹,𝛼,𝛼′,𝛽

∑𝜁(𝑡)

𝑡∈𝑇

 

  

(2) 

Constraints (3)-(6) present the nature of the first and second level decision variables. 

 

𝑦𝑖𝑗
𝑘 ∈ {0,1}      ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (3) 

𝑦𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾   (4) 

𝑧𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (5) 

𝑧𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾   (6) 

 

3.1.6. Restoration Level 

This level of the model is related to the second defender actions to plan the restoration of 

interdicted components. In this level, the failure of each disrupted component and its operationality 

status is determined for the recovery process. Flow balance constraints enable decision variables 

in this restoration level to connect with the objective function. Therefore, restoration scheduling is 

automatically set to return the system of networks to a stable operation as rapidly as possible.  
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The restrictions associated with the restoration level comprise constraints (3)-(44). Constraints (3) 

and (4) generally deliver failure status for candidate links 𝐴′𝑘 ⊆ 𝐴𝑘 and candidate nodes 𝑁′𝑘 ⊆

𝑁𝑘 respectively, depending on the protection and interdiction strategies. Constraints (5)-(8) 

determine the operationality status of each link and node based on their failure, where the binary 

variable 𝛼 is 1 when its associated link or node is operational (either protected or not interdicted) 

after the disruption. Constraints (9) and (10) ensure that operational links and nodes, respectively, 

are not restored. Constraints (11) and (12) state that nonoperational links and nodes cannot be 

functional at period 1, since they require at least one time unit to be reactivated. Constraints (13)-

(16) represent the flow balance constraints at node 𝑖 ∈ 𝑁𝑘  in infrastructure network 𝑘 ∈ 𝐾 at time 

𝑡 ∈ 𝑇. Constraints (17) represent the capacity restriction for each link (𝑖, 𝑗) ∈ 𝐴𝑘. Constraints (18)-

(20) ensure that a positive flow through any given link can be attained at a period 𝑡 ∈ 𝑇 only if 

such a link, along with its starting and ending nodes, are operational or were already recovered. 

Constraints (21) ensure that the restoration task of a disrupted link is continued without 

interruption once it has commenced. Likewise, constraints (24) accomplish this for a disrupted 

node. Constraints (22) and (23) calculate the total time that a specific work crew should be assigned 

to restore a nonoperational link. Note that constraints (22) and (23) together help to deliver integer 

value for the total required recovery time of an element. Similarly, constraints (25) and (26) 

calculate this time for a nonoperational disrupted node. Constraints (27) and (28) ensure that once 

the nonoperational disrupted link and node, respectively, are fully restored at time 𝑡 ∈ 𝑇, they are 

labeled reactivated from the next period (𝑡 + 1 ∈ 𝑇) to the end of the time horizon of the model. 

Constraints (29) ensure that once the restoration of a disrupted link commences by a work crew at 

time 𝑡 ∈ 𝑇, that specific work crew completes restoration of that link. Similarly, constraints (30) 

accomplish this same restriction for the disrupted nodes. Constraints (31) and (32) state that, at the 
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given time 𝑡 ∈ 𝑇, only one work crew can work on the restoration task of a specific nonoperational 

disrupted link or node, respectively. Constraints (33) ensure that, at the given time 𝑡 ∈ 𝑇, only one 

nonoperational disrupted component can be restored by a given work crew. Constraints (34) 

establish the interdependency among networks, ensuring that the positive flow through a link can 

be only available if their corresponding related parent nodes (in other networks) are operational. 

Finally, constraints (35)-(44) represent the nature of the decision variables for the restoration level. 

 

𝑦𝑖𝑗
𝑘 + (1 − 𝑧𝑖𝑗

𝑘 )(1 − 𝑦𝑖𝑗
𝑘 ) =  1 − 𝐹𝑖𝑗

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (3) 

𝑦𝑖
𝑘 + (1 − 𝑧𝑖

𝑘) (1 − 𝑦𝑖
𝑘) =  1 − 𝐹𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (4) 

𝛼𝑖𝑗
𝑘 ≤ 1 − 𝐹𝑖𝑗

𝑘 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (5) 

𝛼𝑖𝑗
𝑘 + 𝐹𝑖𝑗

𝑘 ≥ 𝜀 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (6) 

𝛼𝑖
𝑘 ≤ 1 − 𝐹𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾   (7) 

𝛼𝑖
𝑘 + 𝐹𝑖

𝑘 ≥ 𝜀 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾   (8) 

𝛼𝑖𝑗
𝑘 ≤ 1 − 𝛽𝑖𝑗𝑡

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾  (9) 

𝛼𝑖
𝑘 ≤ 1 − 𝛽𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁′𝑘 , ∀𝑡 ∈ 𝑇 , ∀ 𝑘 ∈ 𝐾 (10) 

𝛽𝑖𝑗1
𝑘 = 0 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑘 ∈ 𝐾 (11) 

𝛽𝑖1
𝑘 = 0 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (12) 
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∑ 𝑥𝑖𝑗𝑡
𝑘

(𝑖,𝑗)∈𝐴𝑘

− ∑ 𝑥𝑗𝑖𝑡
𝑘

(𝑗,𝑖)∈𝐴𝑘

≤ 𝑆𝑖
𝑘 ∀ 𝑖 ∈ 𝑁𝑠

𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (13) 

∑ 𝑥𝑖𝑗𝑡
𝑘

(𝑖,𝑗)∈𝐴𝑘

− ∑ 𝑥𝑗𝑖𝑡
𝑘

(𝑗,𝑖)∈𝐴𝑘

= 0 ∀ 𝑖 ∈ 𝑁𝑘\ {𝑁𝑑
𝑘 , 𝑁𝑠

𝑘}, ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (14) 

∑ 𝑥𝑖𝑗𝑡
𝑘

(𝑖,𝑗)∈𝐴𝑘

− ∑ 𝑥𝑗𝑖𝑡
𝑘

(𝑗,𝑖)∈𝐴𝑘

= −𝜂𝑖𝑡
𝑘  ∀ 𝑖 ∈ 𝑁𝑑

𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (15) 

𝜂𝑖𝑡
𝑘 ≤ 𝑑𝑖

𝑘 ∀ 𝑖 ∈ 𝑁𝑑
𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (16) 

𝑥𝑖𝑗𝑡
𝑘 ≤ 𝑢𝑖𝑗

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (17) 

𝑥𝑖𝑗𝑡
𝑘 ≤ 𝑢𝑖𝑗

𝑘 ( 𝛼𝑖𝑗
𝑘 + 𝛽𝑖𝑗𝑡

𝑘  ) ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (18) 

𝑥𝑖𝑗𝑡
𝑘 ≤ 𝑢𝑖𝑗

𝑘 ( 𝛼𝑖
𝑘 + 𝛽𝑖𝑡

𝑘) ∀ (𝑖, 𝑗) ∈ 𝐴𝑘  , ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (19) 

𝑥𝑖𝑗𝑡
𝑘 ≤ 𝑢𝑖𝑗

𝑘 ( 𝛼𝑗
𝑘 + 𝛽𝑗𝑡

𝑘 ) ∀ (𝑖, 𝑗) ∈ 𝐴𝑘  , ∀ 𝑗 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (20) 

∑𝛼′𝑖𝑗𝑠
𝑘𝑟

𝑡

𝑠=1

≤ 𝑀 (1 − (𝛼′𝑖𝑗,𝑡+1
𝑘𝑟

− 𝛼′𝑖𝑗𝑡
𝑘𝑟
)) 

 

∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑡 ∈ 𝑇 , ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 

 

(21) 

∑  

𝑟 ∈ 𝑅𝑘

∑𝛼′𝑖𝑗𝑡
𝑘𝑟

𝑡∈𝑇

≥ 
𝐹𝑖𝑗
𝑘

𝜆𝑖𝑗
𝑘 −𝑀𝛼𝑖𝑗

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (22) 

∑  

𝑟 ∈ 𝑅𝑘

∑𝛼′𝑖𝑗𝑡
𝑘𝑟

𝑡∈𝑇

< (
𝐹𝑖𝑗
𝑘

𝜆𝑖𝑗
𝑘 + 1) +𝑀𝛼𝑖𝑗

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (23) 
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∑𝛼′𝑖𝑠
𝑘𝑟

𝑡

𝑠=1

≤ 𝑀 (1 − (𝛼′𝑖,𝑡+1
𝑘𝑟

− 𝛼′𝑖𝑡
𝑘𝑟
)) 

 

∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 

 

(24) 

∑  

𝑟 ∈ 𝑅𝑘

∑𝛼′𝑖𝑡
𝑘𝑟

𝑡∈𝑇

≥ 
𝐹𝑖
𝑘

𝜆𝑖
𝑘 −𝑀𝛼𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (25) 

∑  

𝑟 ∈ 𝑅𝑘

∑𝛼′𝑖𝑡
𝑘𝑟

𝑡∈𝑇

< (
𝐹𝑖
𝑘

𝜆𝑖
𝑘 + 1) +𝑀𝛼𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (26) 

∑  𝑟 ∈ 𝑅𝑘 ∑ 𝛼′𝑖𝑗𝑠
𝑘𝑟𝑡−1

𝑠=1

𝐹𝑖𝑗
𝑘 𝜆𝑖𝑗

𝑘⁄
≥  𝛽𝑖𝑗𝑡

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1, ∀ 𝑘 ∈ 𝐾 (27) 

∑  𝑟 ∈ 𝑅𝑘 ∑ 𝛼′𝑖𝑠
𝑘𝑟𝑡−1

𝑠=1

𝐹𝑖
𝑘 𝜆𝑖

𝑘⁄
≥  𝛽𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1, ∀ 𝑘 ∈ 𝐾 (28) 

∑  

𝑠 ∈ 𝑅𝑘
𝑠≠𝑟

∑𝛼′𝑖𝑗𝑡
𝑘𝑠

𝑡∈𝑇

≤  𝑀(1 − 𝛼′𝑖𝑗𝑡
𝑘𝑟
) 

∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 (29) 

∑  

𝑠 ∈ 𝑅𝑘
𝑠≠𝑟

∑𝛼′𝑖𝑡
𝑘𝑠

𝑡∈𝑇

≤  𝑀(1 − 𝛼′𝑖𝑡
𝑘𝑟
) 

∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 (30) 

∑  

𝑟∈𝑅𝑘

𝛼′𝑖𝑗𝑡
𝑘𝑟
≤ 1 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑡 ∈ 𝑇  , ∀ 𝑘 ∈ 𝐾 (31) 

∑  

𝑟∈𝑅𝑘

𝛼′𝑖𝑡
𝑘𝑟
≤ 1 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇 , ∀ 𝑘 ∈ 𝐾 (32) 

∑ 𝛼′𝑖𝑗𝑡
𝑘𝑟

(𝑖,𝑗)∈𝐴′𝑘

+ ∑ 𝛼′𝑖𝑡
𝑘𝑟

𝑖 ∈𝑁′𝑘

≤ 1 ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 (33) 
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𝑥𝑖𝑗𝑡
𝑘 ≤ 𝑢𝑖𝑗

𝑘 ( 𝛼𝑖̅
𝑘̅ + 𝛽𝑖̅𝑡

𝑘̅) 

∀ (𝑖, 𝑗) ∈ 𝐴𝑘 , ∀ 𝑘, 𝑘̅ ∈ 𝐾 , ∀ 𝑖̅

∈ 𝑁′𝑘̅ | ((𝑖 , 𝑘), (𝑖,̅ 𝑘̅)) ∈ 𝛹  

𝑜𝑟 ((𝑗 , 𝑘), (𝑖,̅ 𝑘̅)) ∈ 𝛹, ∀ 𝑡 ∈ 𝑇  

(34) 

𝜂𝑖𝑡
𝑘 ≥ 0 ∀ 𝑖 ∈ 𝑁𝑑

𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (35) 

𝑥𝑖𝑗𝑡
𝑘 ≥ 0 ∀ (𝑖, 𝑗) ∈ 𝐴𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (36) 

𝐹𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (37) 

𝐹𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (38) 

𝛼𝑖𝑗
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (39) 

𝛼𝑖
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (40) 

𝛼′𝑖𝑗𝑡
𝑘𝑟
∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 (41) 

𝛼′𝑖𝑡
𝑘𝑟
∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾, ∀ 𝑟 ∈  𝑅𝑘 (42) 

𝛽𝑖𝑗𝑡
𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (43) 

𝛽𝑖𝑡
𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑘 ∈ 𝐾 (44) 

 

Before implementing the proposed solution algorithm, nonlinear constraints (3), (4), (27), and (28) 

are linearized. To linearize constraints (3) and (4), we define three different sets of linear 

constraints (Taha, 1998). Following this idea, constraint (3) can be replaced by constraints (45)-

(47). 



20 

 

𝑦𝑖𝑗
𝑘 + (1 − 𝑧𝑖𝑗

𝑘 ) + 𝐹𝑖𝑗
𝑘 ≥ 1 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (45) 

𝐹𝑖𝑗
𝑘 ≤ 𝑧𝑖𝑗

𝑘  ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (46) 

𝑦𝑖𝑗
𝑘 ≤ 1 − 𝐹𝑖𝑗

𝑘 ∀ (𝑖, 𝑗) ∈ 𝐴′𝑘  , ∀ 𝑘 ∈ 𝐾 (47) 

Similarly, constraint (4) can be replaced by constraints (48)-(50). 

𝑦𝑖
𝑘 + (1 − 𝑧𝑖

𝑘) + 𝐹𝑖
𝑘 ≥ 1 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (48) 

𝐹𝑖
𝑘 ≤ 𝑧𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (49) 

𝑦𝑖
𝑘 ≤ 1 − 𝐹𝑖

𝑘 ∀ 𝑖 ∈ 𝑁′𝑘 , ∀ 𝑘 ∈ 𝐾 (50) 

 

Finally, by adopting the big-𝑀 method (Taha, 1998), constraints (27) and (28) can be replaced by 

constraints (51) and (52). 

1 −

(

 
 

𝐹𝑖𝑗
𝑘

𝜆𝑖𝑗
𝑘  − ∑  𝑟 ∈ 𝑅𝑘 ∑ 𝛼′𝑖𝑗𝑠

𝑘𝑟𝑡−1
𝑠=1

𝑀

)

 
 
≥ 𝛽𝑖𝑗𝑡

𝑘  

∀ (𝑖, 𝑗) ∈ 𝐴′𝑘 , ∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1 , ∀ 𝑘

∈ 𝐾 
(51) 

1 −

(

 
 

𝐹𝑖
𝑘

𝜆𝑖
𝑘  − ∑  𝑟 ∈ 𝑅𝑘 ∑ 𝛼′𝑖𝑠

𝑘𝑟𝑡−1
𝑠=1

𝑀

)

 
 
≥ 𝛽𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁′𝑘, ∀ 𝑡 ∈ 𝑇 | 𝑡 ≠ 1, ∀ 𝑘 ∈ 𝐾 (52) 

 

Parameter 𝑀 in constraints (21)-(26) and (51)-(52) only needs to be greater than the maximum 

required time for restoring the disrupted components. 
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3.2 Data generation 

3.2.1 Understanding the data of Approach I 

The optimization model is modified to run multiple times and each time the nodes attacked are 

randomized and the restoration rates for each node are also randomized mostly between [0.7-0.99]. 

The time taken for the restoration of the entire network is also noted. As  mentioned earlier the 

total number of nodes in the network are 125, (water network – 49, gas network – 16 and power 

network – 60), each row in the data consists of 251 data cells, that is 125 cells with nodes’ data of 

whether a node is attacked (represented by 1) and or not (represented by 0), 125 cells of restoration 

rates of these nodes in the same order and the last cell represents the time for  total restoration of 

the network. Below is a table of how the data set of size n*251 looks.  

 

 

Table 4. Template of the data generated from the optimization code. 

Node1 Node2 … Node125 Rest_rate1 Rest_rate2 … Rest_rate125 Time 

Row 1         

Row 2         

…         

Row n         

 

The column names used are in the format: nwx_ny that represents network x node y. So, the 

column names are as follows, nw1_n1 to nw1_n49 for network 1 (that is the water network), 

nw2_n1 to nw2_n16 for network 2 (that is the gas network), nw3_n1 to nw3_n60 for network 3 
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(that is the power network). Similarly, for the columns with restoration rates, rr_nwx_ny represents 

the restoration rate for node y of network x. The snaps of the actual data are shown below. 

The entire data set can be found at https://sooners-

my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24

Q54mHEOF5wl01RTA?e=YUeYXQ in the folder Data > Original Data. 

Table 5. An extract of the data generated with the status of the nodes. 

nw1_n1 nw1_n2 nw1_n3 nw1_n4 nw1_n5 nw1_n6 nw1_n7 nw1_n8 nw1_n9 

0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 

0 0 1 0 0 0 0 0 0 

0 0 1 0 0 1 1 1 0 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

 

 

 

https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
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Table 6. An extract of the data generated with restoration rates along with the target value, time, in seconds. 

rr_nw3_

n53 

rr_nw3_

n54 

rr_nw3_

n55 

rr_nw3_

n56 

rr_nw3_

n57 

rr_nw3_

n58 

rr_nw3_

n59 

rr_nw3_

n60 time 

0.81 0.77 0.73 0.82 0.75 0.84 0.7 0.7 9 

0.91 0.76 0.86 0.76 0.83 0.76 0.91 0.82 29 

0.87 0.82 0.92 0.91 0.8 0.97 0.93 0.94 17 

0.82 0.96 0.91 0.84 0.97 0.92 0.92 0.97 33 

0.8 0.83 0.73 0.88 0.75 0.85 0.71 0.77 9 

0.63 0.53 0.7 0.74 0.51 0.56 0.72 0.59 11 

0.74 0.94 0.66 0.83 0.77 0.93 0.93 0.91 9 

0.74 0.84 0.73 0.82 0.77 0.85 0.7 0.8 9 

0.79 0.89 0.89 0.77 0.86 0.75 0.81 0.76 15 

0.94 0.88 0.85 0.95 0.91 0.82 0.88 0.87 23 

0.75 0.87 0.89 0.87 0.86 0.91 0.75 0.83 29 

0.96 0.93 0.98 0.97 0.89 0.88 0.92 0.9 23 

0.76 0.8 0.86 0.88 0.9 0.92 0.85 0.94 25 

0.85 0.83 0.87 0.78 0.86 0.72 0.7 0.82 11 

0.37 0.21 0.46 0.33 0.44 0.33 0.49 0.39 7 

0.76 0.82 0.7 0.75 0.75 0.83 0.77 0.89 13 

0.85 0.97 0.97 0.93 0.96 0.97 0.84 0.88 35 

0.28 0.47 0.47 0.27 0.38 0.37 0.24 0.48 10 

0.65 0.83 0.62 0.72 0.61 0.88 0.73 0.64 13 

0.76 0.78 0.75 0.89 0.81 0.76 0.87 0.84 9 

0.81 0.82 0.77 0.85 0.85 0.7 0.82 0.79 27 

0.7 0.75 0.84 0.86 0.82 0.81 0.87 0.81 13 

0.88 0.85 0.74 0.74 0.8 0.75 0.7 0.76 11 

0.88 0.83 0.87 0.71 0.8 0.88 0.84 0.71 7 

0.87 0.76 0.8 0.77 0.81 0.78 0.85 0.84 21 

0.84 0.75 0.72 0.8 0.85 0.79 0.78 0.81 9 

0.86 0.75 0.85 0.87 0.83 0.94 0.87 0.84 21 

 

Now investigating the distribution of number of nodes attacked (for the 10,000 iterations 

considered for analysis) in water, gas and power networks individually and the whole 

interdependent network. 
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Figure 6. Histograms of number of nodes attacked for a) water, b) gas, c) power networks and d) the whole 

network. 
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Figure 7. Screenshot of one of the frames of the GIF created for the power network. 

  

To represent the randomness of the nodes selected for being attacked, GIFs were created from 100 

iterations selected at random from the data set, as shown in figure 9. The gray color indicate that 

those nodes have been attacked. 

 



26 

 

3.2.2 Addition of features, extension of Approach I 

A few features were added to the existing data as a part of feature engineering. These features 

include 3 columns that represent the total number of nodes attacked in water, gas and power 

networks individually and these columns are named as ‘total_nw1’, ‘total_nw2’ and ‘total_nw3’ 

respectively. A column that represents the total number of nodes attacked in the whole network is 

also added and named as ‘total’. Addition of these four features improved the prediction accuracy 

and the comparison for one of the predictive methods is discussed in Section 4. 

3.2.3 Approach II 

Hence, an alternate method was thought of and implemented. This method includes formatting of 

the data obtained from the optimization code. It includes the multiplication of the first 125 columns 

with the next 125 columns, that is the AND product of the node attack data and the restoration rate 

data of the respective columns. The time column remains unchanged. This results in a data set with 

126 columns having restoration rate of an attacked nodes and zero otherwise, with last column still 

representing time. The entire data set can be found at https://sooners-

my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24

Q54mHEOF5wl01RTA?e=YUeYXQ in the folder Data > Formatted Data. 

This approach helps n keeping only the relevant data required for the prediction, that is the 

restoration rates of only the nodes attacked and the rest are zeros. An advantage of using this 

approach is that the computational time taken to train the dataset obtained is considerably reduced, 

as the dataset size is reduced by half (from 251 columns to 126 columns). As the size of the train 

dataset is only 7,000 rows, the time difference between training the datasets from approach I and 

https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
https://sooners-my.sharepoint.com/:f:/g/personal/ghaneshvar_ou_edu/EocFD7mhoEpEtMVVyBNsicYBIlHk24Q54mHEOF5wl01RTA?e=YUeYXQ
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approach II is in seconds. When larger datasets are trained, the time difference could be in hours 

or days. 

 

Table 7. An extract of the dataset after formatting. 

nw3_n53 nw3_n54 nw3_n55 nw3_n56 nw3_n57 nw3_n58 nw3_n59 nw3_n60 time 

0 0 0 0 0 0 0 0 9 

0 0.76 0 0 0 0 0 0 29 

0 0 0 0 0 0.97 0 0 17 

0.82 0 0 0.84 0 0 0.92 0 33 

0 0 0 0 0 0.85 0 0 9 

0 0 0 0 0 0 0 0 11 

0 0 0 0 0.77 0 0 0 9 

0 0 0 0 0 0 0 0 9 

0 0 0 0 0 0 0 0.76 15 

0 0 0 0 0 0 0 0 23 

0.75 0 0 0.87 0 0 0 0 29 

0 0 0 0 0 0 0 0 23 

0 0.8 0 0 0.9 0 0.85 0 25 

0 0 0 0 0 0 0 0 11 

0 0 0 0 0 0 0 0 7 

0 0.82 0 0 0 0 0 0 13 

0 0 0 0.93 0 0.97 0 0 35 

0 0 0 0 0 0 0 0 10 

0 0 0 0 0 0 0 0.64 13 

0 0 0.75 0 0 0 0 0 9 

0 0 0 0 0 0 0 0 27 

0 0 0 0 0 0 0 0.81 13 

0 0 0 0 0 0 0 0 11 

0 0 0 0 0 0 0 0 7 

0.87 0 0 0 0 0.78 0.85 0 21 

0 0 0 0 0 0 0 0 9 

0 0 0 0 0 0 0 0 21 

0.84 0 0.89 0 0 0 0 0 33 

0 0 0 0 0.84 0 0 0 11 

0 0 0 0 0 0 0.85 0 29 

0 0.34 0 0 0.22 0 0 0 23 
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3.2.4 Limitations 

As observed from the above histogram d) of figure 8, the maximum number of nodes attacked in 

the network is 40 (Figure, d)). This is because of the computational limits of the software package 

used to solve the optimization model, Gurobi. In order to increase the number of nodes considered 

to be attacked, the possible time required for the network (which is a parameter used in the code) 

to restore should also be increased. This increases the computational time exponentially. For 

example, keeping the possible time taken to restore to 75 seconds and the number of nodes attacked 

to 50 could possibly take more than 24 hours to execute just one iteration. Hence keeping in mind, 

the time constraint, maximum number of nodes attacked were restricted to 40. 

Proportion of the number of rows of the data generated to the total possible combinations of the 

number of nodes attacked is almost 0. This is because there are 125 nodes and even with the 

consideration of fixing the number attacked nodes to 25 (out of 125), the total combinations are 

1.3*1026 (nCr = 125C25), which is a huge number. The total number of unique combinations (rows) 

possible would be 2125 = 4.2*1037. Whereas the size (rows) of the data generated is 10,000. Thus, 

the ratio is very minimal and hence a very small portion of the combinations are considered (at 

random) for the analysis. The time taken to create 10,000 rows of data is around 12 days.  

 

3.3 Predictive modelling 

For the predictive analysis, a data set of 10,000 rows and 251 columns (as described above) is 

generated. This data set is divided into train data set (70%, 7000 rows) and test data set (30%, 3000 

rows). 
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Four different models were used to predict the time taken for the network to restore, namely, 

Random Forest Model, Gradient Boosting Model, Linear Model and Decision Trees Model. The 

predicted time values are the compared with actual values and the RMSE (root mean square error) 

and correlation are compared. RStudio software was used to make the predictive analysis and 

compare the results. 
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4. RESULTS 

4.1 Discussion of approach I 

On comparing the prediction results and validating (RMSE and correlation values) them with test 

data made using the Random Forest technique applied on the original data and the data after the 

addition of the 4 features (discussed in Section 3.2.2) produced from the optimization code, the 

following observation is made. The train dataset consists of 7,000 rows and the test data set consists 

of 3,000 rows. 

Table 8. Comparison of RMSE and correlation for Random Forest model. 

 Before feature engineering After feature engineering 

RMSE value 4.92 1.05 

Correlation 0.81 0.99 

 

Comparing and analyzing the four different predictive models, namely Random Forest, Gradient 

Boosting, Linear Model and Decision Trees that were used for predicting and comparing. 
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Figure 8. Comparison of the models: Random Forest, Gradient Boosting, Linear Model and Decision Tree for 

the original data. 

 

Figure 9. Comparison of the models: Random Forest, Gradient Boosting, Linear Model and Decision Tree after 

the addition of the four features. 
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It can be observed that there is clear improvement in the RMSE and correlation values of the 

prediction of time before and after adding the features. 

An analysis was made on how the addition of the four features (representing the number of nodes 

attacked) impacted the predictions and it was observed that these features alone were able to 

predict with a correlation of 0.95 (for the Random Forest model). This was because of high 

restoration rates of the nodes that were produced randomly were limited mostly between 0.7 and 

0.99. This means that all the nodes that fall under these restoration rates (0.5-0.99) take 2 seconds 

to recover (as 1/0.5 = 2 seconds and 1/0.99 = 1.01 ≈ 2 seconds). Thus, most of the nodes were 

assigned a restoration rate that results in 2 seconds to be repaired or restored. In that way the 

addition of features affects the prediction and do not help us in providing a value that is dependable 

despite having high accuracy. 

4.2 Discussion of approach II 

 

Figure 10. Comparison of the models: Random Forest, Gradient Boosting, Linear Model and Decision Tree for 

the formatted data. 
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This data generated using approach II was used for similar analysis and the results are compared 

as shown in figure 13. 

 

4.3 Comparison of approach I & II 

Table 9 shows the comparison of the three different data sets used for the predictive analysis. 

Table 9. Comparison of the results 

Predictive Method Original data 

(Approach I) 

After feature 

engineering 

After data formatting 

(Approach II) 

Random Forest RMSE = 4.94 

Correlation = 0.81 

RMSE = 0.98 

Correlation = 0.99 

RMSE = 4.34 

Correlation = 0.88 

Gradient Boosting RMSE = 3.23 

Correlation = 0.92 

RMSE = 1.25 

Correlation = 0.99 

RMSE = 3.54 

Correlation = 0.90 

Linear Model RMSE = 2.36 

Correlation = 0.95 

RMSE = 2.36  

Correlation = 0.95 

RMSE = 3.75 

Correlation = 0.88 

Decision Tree RMSE = 6.70 

Correlation = 0.54 

RMSE = 2.45 

Correlation = 0.95 

RMSE = 6.91 

Correlation = 0.49 

 

Comparing the original data (blue) and formatted data (green) predictions from Table 9, it is 

observed that the prediction from Random Forest model is better for the formatted data. Whereas 

for rest of the models, Gradient Boosting, Linear model and Decision Tree the original data yields 

better prediction. 
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5. CONCLUSION 

 

It is important to know how resilient a system is as it defines the strength of the system to recover 

to its original functioning state and can be used as a method of assessing how strong it is towards 

a disruptive event. From resilience point of view, time taken by a system to recover from a 

disruptive event is one of the measures of evaluating the system’s performance. This assessment 

can be used in taking precautionary measures towards the safety of the system. 

The objective of this research is to be able to predict the time taken for the interdependent network 

to recover completely from an interdiction of a set randomly selected nodes. This is done by 

training the data obtained from an optimization model, whose objective is to minimize the recovery 

time given supply, demand, restoration rates and other constraints. The validation is made by 

comparing the prediction results of the test data. 

In order to implement this concept, we present a case study based on the interdependent network 

consisting of water, gas, and power networks in Shelby County, TN, USA. The results show the 

predicted time taken for the network to recover completely to its original state and the comparison 

of the results obtained from different models used for the prediction. 

From the comparison Table 9, it can be observed that the predictions for the data set with the 

addition of the four features (highlighted in yellow) are highly correlative compared to the 

predictions for original data (blue) and the formatted data (green). Meaning these four columns are 

dominating the prediction process due the restoration rate limitations as discussed in Section 4.1. 

Thus, these prediction results (in yellow) representing the data after feature engineering cannot be 

considered for comparison for this work. 
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Comparison of the predictions of approach I (blue) and approach II (green) from Table 9, shows 

that the prediction from Random Forest model is better for the formatted data, that is approach II. 

Whereas for rest of the models, Gradient Boosting, Linear model and Decision Tree the approach 

I yields better prediction. 

Compelling conclusions cannot be made on which approach among approach I or approach II is 

better, or which predictive modelling gives better results compared to others as the dataset 

generated and used for training and predicting is only a very tiny fraction of what can be produced 

without limitations and hence the conclusions made on the results obtained are not substantial. But 

the objective of predicting the time taken for the network to recover is achieved and the validation 

results show the accuracy of the prediction. 
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6. FUTURE SCOPE 

Due to the time and software constraints, the depth of the research was limited. The directions in 

which this work can be explored in a broader way is discussed in this section. The future work can 

be explored on the following: 

• Focusing on the size of the data used for the analysis, bigger the data size, more the 

reliability of the analysis. 

• Increasing the number of nodes considered to be attacked or interdicted (discussed in 

Section 3.2.3) will provide a data set that is less sparse when compared to lesser nodes 

considered. 

• Decreasing the of restoration rates of the nodes, that is considering the nodes take long 

time to restore, for example consider a node with a restoration rate of 0.12, the node will 

need 1/0.12 = 8.3 ≈ 9 seconds to recover. This ensures the range of the time taken for the 

independent network to restore is high, thus the data is diversely spread. 
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