
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

COMPRESSING AND PERFORMING ALGORITHMS

ON MASSIVELY LARGE NETWORKS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

MICHAEL ANDREW NELSON
Norman, Oklahoma

2019

COMPRESSING AND PERFORMING ALGORITHMS
ON MASSIVELY LARGE NETWORKS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan, Chair

Dr. Charles Nicholson

Dr. Changwook Kim

Dr. Qi Cheng

Dr. Christan Grant

c© Copyright by MICHAEL ANDREW NELSON 2019
All rights reserved.

Acknowledgements

I would like to thank Dr. Sridhar Radhakrishnan for being my committee chair,

advisor, co-author, and mentor. He has also given me invaluable real-world work

experience with an amazing program that helps provide accessible transportation

all over Oklahoma. None of my achievements would have been possible without

his guidance.

I would also like to thank Dr. Sekharan Chandra for his help in co-authoring

all of my papers. He provided many insights that drove my writing through

difficult sections.

Dr. Amlan Chatterjee also deserves acknowledgement not only as my co-

author, but also since he was my first research mentor back when I was a Master’s

student and he was working on his PhD.

Next, I would like to thank Virginie Perez-Woods for being an amazingly

helpful academic coordinator. She started her position at the School of Computer

Science around the same time I started my undergraduate degree and has helped

me every step of the way. No one cares more the students than she does.

Finally, I would like to thank the professors (Dr. Nicholson, Dr. Kim, Dr.

Cheng, and Dr. Grant) on my committee for their time and advice.

iv

Contents

1 Introduction 1
1.1 Types of real-world graphs . 2

1.1.1 Social networks . 2
1.1.2 Information networks . 3
1.1.3 Technological networks . 4
1.1.4 Biological networks . 5

1.2 Graphs . 6
1.2.1 Time-evolving graphs . 7
1.2.2 Representations . 8
1.2.3 Properties . 11
1.2.4 Queries . 12

1.3 Compression . 14
1.3.1 Lossless compression . 14
1.3.2 Queryable compression . 15
1.3.3 Incremental compression 16

1.4 Graph compression . 16
1.4.1 Exploitable structural properties 18
1.4.2 Node reordering . 18
1.4.3 Compressed Sparse Row 19

1.5 Prior work . 20
1.6 Conclusion . 22

2 Arrays of compressed binary trees 24
2.1 Introduction . 25
2.2 Related work . 28
2.3 Preliminaries . 30

2.3.1 Real-world networks . 31
2.3.2 Real-world network compression 32
2.3.3 Real-world network operations 33

2.4 Indexed array of compressed binary trees 34
2.4.1 Node-centric, indexed structures 34
2.4.2 Compressed binary trees 35

v

2.4.3 Improved encoding . 35
2.4.4 Analysis . 40
2.4.5 Direct construction . 43
2.4.6 Querying the compressed structure 47

2.5 Experiments and results . 50
2.5.1 Compression . 51
2.5.2 Query operations . 57
2.5.3 Streaming operations . 58

2.6 Conclusions . 59

3 Boolean matrix-vector multiplication on compressed static graphs 60
3.1 Introduction . 61
3.2 Related work . 63
3.3 Differential compressed binary trees 65
3.4 Matrix-vector multiplication . 66
3.5 Matrix-matrix multiplication . 70
3.6 Experiments and results . 73
3.7 Conclusions . 76

4 Compressing time-evolving graphs using binary trees 77
4.1 Introduction . 78
4.2 Preliminaries . 80

4.2.1 Time-evolving graphs . 80
4.2.2 Operations on time-evolving graphs 82

4.3 Related work . 82
4.4 Time-evolving graphs as differentially compressed binary trees with

improved encoding . 86
4.4.1 Improved compressed binary trees 88
4.4.2 Differential compressed binary trees 90
4.4.3 Time-spanning compressed binary trees 92
4.4.4 Overall structure . 93
4.4.5 Analysis . 97
4.4.6 Proof of correctness . 100
4.4.7 Supported operations . 100

4.5 Experiments and results . 105
4.5.1 Compression . 110
4.5.2 Operation times . 111

4.6 Conclusion . 112

5 Algorithms on compressed time-evolving graphs 113
5.1 Introduction . 114
5.2 Preliminaries . 115

5.2.1 Time-evolving graphs . 115

vi

5.2.2 Problems on time-evolving graphs 116
5.3 Time-evolving graphs as implicit differential compressed binary trees118

5.3.1 Compressed binary trees 119
5.3.2 Differential compressed binary trees 122
5.3.3 Ordering compressed binary trees 124
5.3.4 Matrix-matrix multiplication 126

5.4 Compressed time-evolving graph algorithms 127
5.4.1 Earliest-arrival time . 127
5.4.2 Transitive closure . 129
5.4.3 Incremental transitive closure 131
5.4.4 Time-evolving transitive closure 133

5.5 Experiments and results . 134
5.5.1 Differential processing . 139
5.5.2 Earliest arrival . 139
5.5.3 Transitive closure . 140
5.5.4 Incremental transitive closure 141
5.5.5 Time-evolving transitive closure 141

5.6 Related work . 142
5.7 Conclusion . 143

6 Conclusion 144
6.1 Chapter 1 . 144
6.2 Chapter 2 . 146
6.3 Chapter 3 . 147
6.4 Chapter 4 . 148
6.5 Chapter 5 . 149
6.6 Closing remarks . 151

vii

List of Tables

1.1 Some static graphs . 8
1.2 Time-evolving network graphs . 9
1.3 Common graph representations (assuming 64-bit) 10
1.4 Succinct graph representations for arbitrary graphs 21

2.1 The dataset stats . 51
2.2 Compressed graph sizes . 52
2.3 Compression times . 53
2.4 Compression memory usage . 53
2.5 Arc existence execution times . 53
2.6 Neighbor query execution times 54
2.7 Add arc execution times . 55
2.8 Comparison with Slashburn graphs (bits-per-arc) 56

3.1 The datasets . 73
3.2 Experimental results with Webgraph by Boldi and Vigna [12] . . . 74
3.3 Experimental results with CBT 75

4.1 Operations on time-evolving graphs 83
4.2 The dataset stats . 106
4.3 Compressed graph sizes . 107
4.4 CBT′ execution times . 108

5.1 The dataset stats (including the compressed size and the time to
compress) . 135

5.2 Algorithm run-times . 136
5.3 Algorithm run-times (continued) 137

viii

List of Figures

1.1 A graph example . 7
1.2 A graph as a Boolean adjacency matrix 9
1.3 A graph as an adjacency list . 10
1.4 A complete graph of size 7 . 17
1.5 Reducing a complete bipartite graph 17
1.6 A reduced complete bipartite subgraph 17
1.7 An unordered adjacency matrix (left); the same, reordered adja-

cency matrix (right) . 19

2.1 A graph represented as a series of compressed binary trees 36
2.2 Improved compression of an adjacency row (n=32) containing 17

arcs with only 13 bits . 37
2.3 The improved compressed tree encoding comparisons in the (a)

best case and (b) worst case . 40
2.4 A full binary tree of a node with 6 neighbors, and 7 shared (gray)

nodes . 41
2.5 3D-plot of space (bits) requirements of our technique given n (nodes)

and m (arcs) . 42
2.6 A worst case adjacency matrix (left); the same matrix, reordered

(right) . 43
2.7 An unrolled linked list . 50

3.1 A Boolean matrix (a) and a series of differential compressed binary
trees (b); bit-strings in preorder traversal (c) 66

3.2 A CBT of row Ai at time t. The ones and zeros are both compressed. 67
3.3 A CBT′ with a single arc at [28] being added to the CBT from

Figure 3.2. 67

4.1 A time-evolving graph with n = 6 and τ = 5 represented as a
series of differential compressed binary trees 87

4.2 A CBT of row Ai at time t. The ones and zeros are both compressed 89
4.3 A CBT′ with a single arc at position 28 being added to the CBT

from Figure 5.2 . 89

ix

4.4 A CBT of row Ai,t with two arcs (top), a CBT′ from Ai,t to Ai,t+1

with an additional two arcs (middle), and a T-CBT from Ai,t to
Ai,t+1 (bottom) . 94

4.5 3D-plot of space (bits) requirements given n (nodes) and c (differ-
ential contacts) with τ = 414347809 99

4.6 3D-plot of space (bits) requirements given n (nodes) and c (con-
tacts) with τ = 135 . 100

5.1 A time-evolving graph with n = 6 and τ = 3 represented as a
series of differential compressed binary trees 120

5.2 A CBT of row Ai at time t . 121
5.3 A CBT′ with a single arc at position [28] being added to the CBT

from Figure 5.2 . 121

x

List of Algorithms

1.1 GenerateComplexString() . 15

2.1 A relative binary path . 38
2.2 Improved Binary Tree Compression 39
2.3 Binary tree compression . 44
2.4 Indexed array of binary trees compression 45
2.5 Array of Binary Trees (ABT) Compression - preorder Arc Query . 48
2.6 ABT Compression - Streaming an arc 49

3.1 CBT-Vector Multiplication . 68
3.2 CBT Matrix-Vector Multiplication 69
3.3 CBT-CBT (Boolean vector-vector) multiplication 72

4.1 A relative binary path . 90
4.2 Differential binary tree compression 91
4.3 Time-evolving compression using binary trees 96
4.4 Differential CBT - Decoding . 101
4.5 Time-Evolving Differential ABT Compression - Arc-Time Query . 103
4.6 Differential CBT - Streaming an arc 104

5.1 A relative binary path . 122
5.2 Differential binary tree compression 123
5.3 CBT-CBT (Boolean vector-vector) multiplication 127
5.4 Earliest-arrival paths and times . 128
5.5 Transitive closure . 130
5.6 Incremental transitive closure . 131
5.7 Time-evolving transitive closure . 133

xi

Abstract

Networks are represented as a set of nodes (vertices) and the arcs (links)

connecting them. Such networks can model various real-world structures

such as social networks (e.g., Facebook), information networks (e.g., cita-

tion networks), technological networks (e.g., the Internet), and biological

networks (e.g., gene-phenotype network). Analysis of such structures is a

heavily studied area with many applications. However, in this era of big

data, we find ourselves with networks so massive that the space require-

ments inhibit network analysis.

Since many of these networks have nodes and arcs on the order of bil-

lions to trillions, even basic data structures such as adjacency lists could

cost petabytes to zettabytes of storage. Storing these networks in sec-

ondary memory would require I/O access (i.e., disk access) during analy-

sis, thus drastically slowing analysis time. To perform analysis efficiently

on such extensive data, we either need enough main memory for the data

structures and algorithms, or we need to develop compressions that require

much less space while still being able to answer queries efficiently.

In this dissertation, we develop several compression techniques that

succinctly represent these real-world networks while still being able to effi-

ciently query the network (e.g., check if an arc exists between two nodes).

Furthermore, since many of these networks continue to grow over time,

our compression techniques also support the ability to add and remove

nodes and edges directly on the compressed structure. We also provide a

way to compress the data quickly without any intermediate structure, thus

giving minimal memory overhead. We provide detailed analysis and prove

that our compression is indeed succinct (i.e., achieves the information-

theoretic lower bound). Also, we empirically show that our compression

xii

rates outperform or are equal to existing compression algorithms on many

benchmark datasets.

We also extend our technique to time-evolving networks. That is, we

store the entire state of the network at each time frame. Studying time-

evolving networks allows us to find patterns throughout the time that

would not be available in regular, static network analysis. A succinct rep-

resentation for time-evolving networks is arguably more important than

static graphs, due to the extra dimension inflating the space requirements

of basic data structures even more. Again, we manage to achieve succinct-

ness while also providing fast encoding, minimal memory overhead during

encoding, fast queries, and fast, direct modification. We also compare

against several benchmarks and empirically show that we achieve com-

pression rates better than or equal to the best performing benchmark for

each dataset.

Finally, we also develop both static and time-evolving algorithms that

run directly on our compressed structures. Using our static graph compres-

sion combined with our differential technique, we find that we can speed

up matrix-vector multiplication by reusing previously computed products.

We compare our results against a similar technique using the Webgraph

Framework [50] [12], and we see that not only are our base query speeds

faster, but we also gain a more significant speed-up from reusing products.

Then, we use our time-evolving compression to solve the earliest arrival

paths problem and time-evolving transitive closure. We found that not

only were we the first to run such algorithms directly on compressed data,

but that our technique was particularly efficient at doing so.

xiii

Chapter 1

Introduction

Graphs are structures consisting of a set of objects (vertices) and the relation-

ships (arcs) among them. These structures can represent various real-world data

such as social networks, information networks, technological networks, biological

networks, and many more. While all this data has given us the opportunity to an-

alyze and better understand these fields, the sheer size of the data has presented

many challenges. For example, in this age of big data, real-world graphs have

grown to contain vertices and arcs on the order of billions to trillions. Even basic

structures such as adjacency lists could require petabytes to zettabytes of main

memory. Moreover, the space requirements will only increase, as these graphs

are ever-growing. Storing these graphs in secondary memory would require I/O

access (i.e., disk access) during analysis, thus drastically slowing analysis time.

In order to perform analysis efficiently on such large data, we either need enough

main memory for the data structures and algorithms, or we need to develop com-

pressions which require much less space while still being able to efficiently answer

queries.

In this dissertation, we address this massive space requirement problem by

1

developing implicit and succinct representations of arbitrary graphs while also

allowing fast access for certain queries. We then develop and run algorithms

directly on the implicit and succinct representations. Our analysis will show that

our compressions are indeed implicit and succinct and that algorithm run-times

have been reduced to be proportional to the size of the compressed graph.

First, we must introduce some preliminary concepts needed to build a basis for

understanding the rest of the dissertation. This includes descriptions of different

types of graphs, graph representations, graph queries and algorithms, and graph

compression concepts. Throughout this dissertation, we use the terms “network”

and “graph” interchangeably, although a graph is technically a representation of

a network.

1.1 Types of real-world graphs

In this section, we describe several types of real-world graphs.

1.1.1 Social networks

A social network is a set of people or groups of people and the relationships

or interactions among them. Popular services such as Facebook, LinkedIn, and

Instagram are all examples of social networks. Of all the real-world networks,

social networks have the longest history of substantial quantitative study.

In the early days, social network analysis usually directly involved the par-

ticipants by having them fill out questionnaires or by conducting interviews. A

clever experiment performed by Milgram [93] in 1967 involved asking participants

to pass a letter to one of their acquaintances in order to deliver the letter to a

target individual. This experiment was the origin of the popular concept of the

2

“six degrees of separation,” even though the phrase itself wasn’t coined until later

by Guare [57] in 1990. However, with the exception of a few ingenious indirect

studies such as Milgram’s [93] [125], most social network analysis suffered from

problems of inaccuracy, subjectivity, and small sample sizes. A review of these

issues has been given by Marsden [89].

Recently, due to the wide-spread use of the internet, many researchers have

turned to other methods of probing social networks. Besides the above examples

of social media (Facebook, etc.), we also have access to collaboration networks,

which are plentiful and have relatively reliable data. A popular example of these

networks is IMDB, which thoroughly records affiliations among film actors. Other

examples of collaboration networks are coauthorship networks [55] [56] [58] [94]

[95] (individuals are linked if they have coauthored one or more papers) and

coappearance networks [1] [59] [74] [132] [136] (individuals are linked by mention

in the same context). Communication records also contain reliable data from

which we can construct social networks. Many studies have been performed on

networks that were constructed from telephone calls [13] [91], emails [31] [64]

[117], and instant messaging systems [33] [45] [111] [116].

1.1.2 Information networks

Information networks are similar to social networks, but focus more on the dis-

semination of information, rather than sharing experiences. They tend to be “fol-

lower” (i.e., directed) graphs rather than the “friend” model (i.e., undirected).

This is not a strict requirement though, as Twitter can be considered a social

network and an information network [97].

A well-studied example of such a network is the citation network, which is

3

a network of citations between academic papers. The structure of the citation

network reflects the structure of the information stored at its vertices, hence the

term “information network.” Citation networks are also acyclic, meaning that

papers cannot reference papers that have yet to be written. Research on citation

networks goes back at least as far as 1926, with Alfred Lotka’s discovery of the

Law of Scientific Productivity [30], which states that the distribution of the num-

bers of papers written by individual scientists follows a power law. In the 1960s,

Price [110] began forming networks from citation databases that had recently be-

come available through the work of pioneers in the field of bibliometrics. Studies

have continued since then with ever better resources.

The World Wide Web, which is a network of Web pages containing information

linked by hyperlinks, is another important example of an information network.

Note that The Web is different from the Internet, which is a physical network

of computers. The Web is also cyclic, as opposed to a citation network. Our

data about The Web comes from “crawls,” meaning that we start at a page and

we follow the hyperlinks. Thus, in a crawl that only covers a part of The Web

(as all crawls currently do), pages are more likely to be discovered if they have

many hyperlinks pointing to them. Since its appearance in the 1990s, it has been

well-studied with notable mentions of Albert et al. [4] [7], Kleinbegk et al. [77],

and Broder et al. [17].

1.1.3 Technological networks

Next, we have technological networks, which are man-made and typically de-

signed to transport some commodity or resource. In this category, we refer to the

networks formed by physical connections, not the networks formed by the traffic

4

of the commodity or resource being transported.

The most popular example of a technological network is the Internet, i.e., the

physical (and wireless) connections among computers. The partial structure of

the internet is usually reconstructed from large samples of point-to-point data

routes. This can be done via the “traceroute” program, which reports the path

its data packets took to get from the source computer A to some destination

computer B. Thus, a large enough sample of paths should reveal a meaningful

picture of the entire network. A few studies of Internet structure are Faloutsos et

al. [42], Broid and Claffy [19], Chen et al. [25], Wu et al. [134], Townsend [124],

and Ni et al. [102].

Telephone networks [85] and delivery networks [43] are other examples of

technological networks. Again, we are referring to the actual networks of tele-

phone wires and cables and networks of post-offices and parcel delivery companies,

rather than the networks of who called whom.

Some other technological networks include electric power grids [5] [104] [113]

[129] [130], airline routes [5] [36] [86], roads [32] [70] [67], and railways [52] [81]

[118].

1.1.4 Biological networks

Finally, we see that many biological systems can be usefully represented as net-

works.

Classic examples of biological networks are neural networks, in which neurons

are connected via synapses. Measuring the topology of real neural networks is

extremely difficult, but has been done successfully in a few cases. The best

known example is the reconstruction of the 282-neuron neural network of the

5

nematode C. Elegans by White et al. [131]. The network structure of the brain

at larger scales than individual neurons (functional areas and pathways) has been

investigated by Sporns et al. [119] [120] [121].

We also have networks formed by food webs, where nodes represent a species

and a directed arc from A to B means that species A preys on species B. Con-

structing these networks is labor-intensive, but many extensive datasets and stud-

ies have become available in recent years [37] [38] [79] [108].

Another important class of biological networks is metabolic pathway networks

[8] [46] [60] [69] [87] [109] [123] [128], which are representations of metabolic

substrates and products with directed arcs joining them if a known metabolic

reaction exists that acts on a given substrate and produces a given product.

In the next section, we formally describe how to represent networks as graphs,

how to represent graphs with actual data structures, various graph properties,

and common graph queries.

1.2 Graphs

A graph can be represented as a set of nodes and a set of arcs connecting the

nodes, as in Figure 1.1. More formally, a graph G is a system that G = (V,E),

where V is the set of vertices and E is the set of arcs. An arc (u, v) ∈ E connects

node u to node v. Thus, in a social network graph, the nodes are individuals and

the arcs represent the relationships among the individuals [138]. For example, in

graphs such as Facebook, an arc (u, v) indicates that person u and person v are

friends.

A graph can be either undirected (as in Facebook), or it can be directed (as

in Twitter). In the former case, a single arc (u, v) implies that the arc (v, u) also

6

Figure 1.1: A graph example

exists. We say that this relationship is reciprocated. However, in directed graphs,

(u, v) 6= (v, u). We also see that given the number of nodes n, the numebr of

arcs m, and ignoring self-loop arcs (u, u), a directed graph’s sparseness can be

calculated as m/(n2 − n), where n2 is the total number of arcs possible and n

is the number of self-loops. For undirected graphs, we ignore half the total arcs,

giving m/((n2 − n)/2) = 2m/(n2 − n).

In Table 1.1, we list some example static social, information, technological,

and biological network graphs and their details. We include whether the graph

is directed or not, the number of nodes (|V |), the number of arcs (|E|), and

how sparse the graph is based on the directed-ness and using (m/(n2 − n)) or

(2m/(n2 − n)) accordingly.

1.2.1 Time-evolving graphs

In Chapter 4, we will be considering time-evolving graphs. A time-evolving graph

can be considered as a series of graphs (static snapshots) G1, G2, ..., Gτ , for some

lifetime τ . That is, you can see exactly how the graph has evolved over time by

storing its state at each time frame.

Definition 1.1 (static arcs). The set of static arcs are those resulting from⋃τ
i=1Ei, for each Ei ∈ Gi. That is, the set of distinct arcs throughout all time

frames.

Definition 1.2 (contact). If an arc (u, v) exists from ti to tj, then we provide

7

Social Directed? |V | |E| Sparsity
Facebook FALSE 4039 88234 0.01
Friendster FALSE 65608366 1806067135 8.4× 10−7

LiveJournal TRUE 4847571 68993773 2.9× 10−6

LiveJournal(com) FALSE 3997962 34681189 4.3× 10−6

NotreDame TRUE 325729 1497134 1.4× 10−5

Pokec TRUE 1632803 30622564 1.2× 10−5

Information
Twitter TRUE 81306 1768149 3.5× 10−4

cit-Patents TRUE 3774768 16518948 2.3× 10−6

ca-AstroPh FALSE 18772 198110 0.001
web-Google TRUE 875713 5105039 6.7× 10−5

Technological
roadNet-CA FALSE 1965206 2766607 1.4× 10−6

roadNet-PA FALSE 1088092 1541898 2.6× 10−6

roadNet-TX FALSE 1379917 1921660 2.0× 10−6

Biological
CC-Neuron FALSE 1018524 24735503 4.8× 10−5

ChCh-Miner (drug) FALSE 1514 48514 0.04
PP-Pathways (protein) FALSE 21557 342353 0.001

Table 1.1: Some static graphs

two contacts (u, v, i) and (u, v, j) stating that the arc began at i and ended at

j. This technique is used when representing a time-evolving graph as an contact

list (Section 1.2.2) to avoid listing out the arc j − i times.

In Table 1.2, we list some examples of time-evolving social network graphs.

We describe them by their number of nodes (|V |), number of static arcs (|E|),

lifetime, and number of contacts. We not only develop a compression for these

graphs in Chapter 4, but we also run time-evolving algorithms directly on the

compression in Chapter 5.

1.2.2 Representations

Now we review some common representations for graphs.

8

|V| |E| Lifetime Contacts

I-Comm.Net 10000 15940743 10001 19061571

I-Powerlaw 1000000 31979927 1001 32280816

I-Wiki-Links 22608064 564224135 414347809 731468598

I-Yahoo-Netflow 103661224 321011861 114193 955033901

G-Flickr-Days 2585570 33140018 135 33140018

soc-RedditHyperlinks 55863 858490 104976000 858490

sx-stackoverflow 2601977 36233450 239673600 63497050

email-Eu-core-temporal 986 24929 69459254 332334

Table 1.2: Time-evolving network graphs

Figure 1.2: A graph as a Boolean adjacency matrix

In Figure 1.2, we show how a dots-and-lines graph can be be represented as

a Boolean adjacency matrix. Each node is assigned a number from 0 to n − 1,

where n = |V |. Then for each arc (u, v) ∈ E, we set the row u, column v entry in

the Boolean adjacency matrix to 1, and the rest are set to 0. This representation

offers fast (i.e., constant) access time, but requires n2 bits of space. On a billion

node graph, this is 125 petabytes.

In Figure 1.3, we show the adjacency list representation of the same graph.

Again, each node is assigned a number from 0 to n − 1, where n = |V |. Then

we allocate an array of size n, and for each node u ∈ V , we list each neighbor

v. This list is created with pointers which each cost 64 bits. Thus, the space an

9

Figure 1.3: A graph as an adjacency list

Size (bits) arc(u,v) N(v)

Adjacency Matrix n2 1 n

Adjacency List 2m× 64 + 2m log2 (n) + n log2 (n) O(δ(G)) O(δ(G))

arc List 2m log2 (n) O(m) O(m)

Table 1.3: Common graph representations (assuming 64-bit)

adjacency list representation occupies is 2m×64+2m log2 (n)+n log2 (n), where

m = |E|. When n = 1010 andm = 1015 (2×10−5% sparsity) this is 24.3 petabytes.

This structure offers better space requirement than the Boolean adjacency matrix

when n is large and m is small, i.e., the graph is sparse. However, it is slightly

slower to answer queries with a worst case time complexity of O(δ), where δ is

the size of the largest set of neighbors (i.e., maximum degree) of the graph.

A graph can also be represented as an arc list. This representation simply

lists out each arc (u, v). Thus, it requires m log2 (n) space with a worst case

query time of O(m). When downloading static graphs from the internet, they

will usually be in this form.

Table 1.3 three types of static graph representations with their complexities.

10

Time-evolving graphs

If a static graph can be thought of as a 2D Boolean adjacency matrix, then a

time-evolving graph can be thought of as a 3D Boolean adjacency matrix, also

called a presence matrix [47]. For each arc (u, v, t) ∈ E, we set the corresponding

presence matrix entry to 1, and the rest we set to 0. This representation requires

n3 bits of space. Because of this, we see that basic data structures are not

easy to adapt to time-evolving graphs. For another example, one could consider

providing a set of adjacency lists for the graph at each time frame, but if an arc

exists in many time frames, then we will have to create many redundant arcs.

Because of the similarity between adjacency time frames, many works have been

done using differential compression.

Additionally, we may represent a time-evolving graph as a contact list. This

representation consists of a set of triplets (u, v, t), in which a triplet represents a

change in an arc (u, v) at a time t, where u is the source and v is the destination.

If an arc already exists at a time ti and then appears again at tj, where i < j,

then the arc is deactivated. Thus, if an arc has an odd number of occurrences at

a given time, it is activated. It is deactivated otherwise.

1.2.3 Properties

Static graphs

Many types of graphs tend to exhibit a certain set of properties. The graphs we

examine are usually:

• Simple - The arcs are single, unweighted, undirected, and have no self-loops.

• Labeled - The users are anonymized and represented as integers.

11

• Large - There are nodes in tens of millions and arcs in the billions.

• Sparse - The sparsity is almost always below 0.01 (m/(n2−n)) or (2m/(n2−

n)).

• Streaming - Nodes and arcs constantly being added.

• Queryable - Many algorithms are run on these graphs in order to better

understand their structure.

Time-evolving graphs

Additionally, time-evolving graphs can be:

• Interval - Arcs exist in time intervals [ti, tj), where i < j.

• Incremental - Once an arc has been activated, it remains so until the end

of the lifetime. An arc may exist in several intervals and intervals may not

overlap.

• Point - Arcs only appear at a single time frame, i.e., [ti, ti+1). Arcs may

appear multiple times.

Time-evolving graphs also have a time granularity (e.g., second, hour, day,

etc.).

1.2.4 Queries

Static graphs

Common queries on graphs are:

• Arc existence (u, v) ∈ E? - is there an arc from u to v?

12

• List neighbors N(v) - list all the out-neighbors of node v.

• Reachability R(u, v)? - is there a path from u to v?

• Community queries (complete bipartite graphs) - a suite of operations such

as finding all communities of a fixed size, listing all maximal communities,

and enumerating all communities.

• Clique queries (complete subgraphs) - supports operations similar to com-

munity queries.

• Graph pattern matching - find all subgraphs that conform to some graph

pattern.

Time-evolving graphs

Common queries on time-evolving graphs are:

• DirectNeighbors(u,t) - returns active adjacent neighbors of u at time t.

• ReverseNeighbors(v,t) - returns active reverse neighbors of v at time t.

• arc((u,v),t) - returns true if arc (u,v) is active at time t, false otherwise.

• arcNext((u,v),t) - returns the instant of the next activation of (u, v) after

t, or t if it is active; otherwise returns ∞.

• Snapshot(t) - returns all active arcs at time t.

• Activatedarcs(t) - returns all arcs that were activated at time point t.

• Deactivatedarcs(t) - returns all arcs that were deactivated at time point t.

• Changedarcs(t) - returns all arcs that were activated or deactivated at time

point t.

13

1.3 Compression

Given some data X of length |X| = n, a compression is a function C : X → X ′

such that |C(X)| = n′ ≤ n. In other words, compressing some data reduces the

space that data occupies. Compression can be lossy or lossless. For the purposes

of this dissertation, we only focus on lossless compression.

1.3.1 Lossless compression

A lossless compression is one such that no information is lost, and thus the data

can be perfectly recovered. More formally, given a compression function C, a

decompression function D, and some data X, a lossless compression is such that

D(C(X)) = X. Such compressions are usually seen in applications such as:

images (PNG), audio files (FLAC), and general compressions (gzip, zip, 7zip).

A natural question is: “how much can we losslessly compress data?” While

there is a theoretical limit on every compression, it is generally uncomputable.

Obviously, there is some limit to lossless compressibility. All we are doing is

representing a binary string of size n with a binary string of size m < n. Since

there are less strings of size m than those of size n, clearly we can’t uniquely

compress every possible string of size n.

Kolmogorov complexity - the length of the shortest program to compress

a string.

Finding this measure is undecidable in general because it requires knowing

whether a program produces a given output. This means that having an oracle

that told you the Kolmogorov complexity of an arbitrary string would be enough

to solve the halting problem. We demonstrate this informally using Algorithm

1.1.

14

Algorithm 1.1: GenerateComplexString()

1 for i = 1 to ∞ do
2 foreach string s of length exactly i do
3 if KolmogorovComplexity(s) ≥ 6× 109 then
4 return s;

Let’s assume that Algorithm 1.1 requires 5001203792 bits of space; 5 × 109

bits for the language, 1.2×106 bits for the KolmogorovComplexity program, and

3792 bits for the GenerateComplexString program. GenerateComplexString is

designed to generate all strings (starting from the shortest) until it returns one

s that has a Kolmogorov complexity of at least 6 × 109 bits. However, this is

not possible. The Kolmogorov complexity is equal to the length of the minimal

description of s. Yet our program is only 5001203792 bits. Since it is not possible

to calculate the minimum description of an arbitrary input, it is also not possible

to calculate its optimal compression ratio.

Information-theoretic lower bound - we can still theoretically calculate

the storage lower bounds when considering a class of graphs. In particular, when

considering an arbitrary (undirected) graph with n vertices and m arcs, the num-

ber of such graphs is Z =
((n

2)
m

)
, the storage lower bound is dlog2 Ze.

1.3.2 Queryable compression

Typically, general compressions, such as gzip, cannot read the data while it is

compressed. The data must be completely decompressed before being able to be

read. Compressions that are designed to support compressed reads are usually

called compressed structures, as opposed to compression schemes.

More formally, a query preserving compression is designed to compress data

15

relative to a class Q of queries. Thus, given any query Q ∈ Q, some data X,

and the compressed data X ′, we have Q(X) = Q(X ′). This typically does not

reduce the complexity of the query, but it does reduce the space required to run

the query.

1.3.3 Incremental compression

In many real-life cases, the data we are dealing with changes frequently. When

compressing such data, it is beneficial to have an incremental compressed struc-

ture. In other words, we would like to have a compression that can directly edit

the compressed data without having to decompress the data.

More formally, given a compression function C : X → X ′, some data X,

the compressed data X ′, and a list of changes ∆X, an incremental compression

directly computes changes ∆X ′ to X ′ such that X ′
⊕

∆X ′ = C(X
⊕

∆X).

1.4 Graph compression

First, we ask: “Why not just use general compressions (gzip)?” The answer is

two-fold:

• Graph compressions can be designed to take advantage of structural prop-

erties of the graph that general compressions are ignorant of.

• As mentioned before, general compressions are not typically queryable.

In Figure 1.4, a general compression would end up compressing the full 42 arc

list. A graph compression could recognize this is a complete graph, and therefore

represent it with a single integer, 7.

16

Figure 1.4: A complete graph of size 7

Figure 1.5: Reducing a complete bipartite graph

In Figure 1.5, we have changed the representation from needing m+ n nodes

and mn arcs, to m + n + 1 nodes and m + n arcs. Obviously, we could instead

represent this graph with two integers, m and n, but we would lose links entering

and leaving this subgraph.

Figure 1.6: A reduced complete bipartite subgraph

In Figure 1.6, notice that this reduction also preserves links between nodes in

the same partition and also link from outside the subgraph (black). Clearly, no

links from outside the subgraph will attach to the virtual node (green).

17

1.4.1 Exploitable structural properties

The following structures and properties are some of those found throughout real-

life network graphs and can be exploited to improve compression:

• Cliques (complete subgraphs) - Clearly, networks like social networks will

have several groups of people where everyone is friends with one another.

Such structures can be represented with a single integer.

• Communities (complete bipartite graphs) - Similar to cliques, these struc-

tures can be found in social networks. They can be reduced either by using

only two integers, or by introducing a virtual node and redirecting all the

arcs to this new node.

• Similarity - This is a property that many nodes will end up having similar

sets of neighbors. This presents an opportunity to encode nodes by having

them reference other nodes. This is prevalent throughout many real-world

networks.

• Locality - This property is exposed when the graph has undergone an ap-

propriate node reordering. The resulting labels of neighbors of a node will

tend to be close to each other in the ordering. This property is the basis of

gap encoding.

1.4.2 Node reordering

Node reordering algorithms are meant to better expose patterns and redundancies

in the graph. This is illustrated in Figure 1.7. Node reordering is often combined

with existing compression algorithms. Many graphs found online will be in the

common lexicographical BFS ordering.

18

Figure 1.7: An unordered adjacency matrix (left); the same, reordered
adjacency matrix (right)

1.4.3 Compressed Sparse Row

Although used since the mid-1960s, the first complete description of the com-

pressed sparse row technique (CSR) was given by Tinney and Walker in 1967

[21]. Denoting the number of nodes with n and the number of arcs with m,

this format represents an m× n matrix M by three one-dimensional arrays that

respectively contain nonzero values, the extents of rows, and column indices.

This format allows fast row access and matrix-vector multiplications (Mx). The

details of the three arrays (A, IA, and JA) are as follows:

Let NNZ denote the number of nonzero entries in M .

• A is of length NNZ and holds all the nonzero entries of M in left-to-right,

top-to-bottom (“row-major”) order.

• IA is of length m + 1 and is defined by the following recursive definition:

– IA[0] = 0

– IA[i] = IA[i1]+ (number of nonzero elements on the (i− 1)-th row in

the original matrix)

19

• JA is of length NNZ and contains the column index in M of each element

of A.

For example, given the matrix:



0 0 0 0

0 0 2 9

0 4 0 0

8 0 0 0


we have A = [2 9 4 8], IA = [0 0 2 3 4], and JA = [2 3 1 0].

1.5 Prior work

In this section, we discuss various prior works which succinctly represent graphs

with no or little assumption about the structure of the graph itself. There are

many other techniques which require some assumptions (such as planarity), but

they are outside the scope of this dissertation. First, we must define different

terms that relate how “close” a data structure is to the information-theoretic

lower bound, in terms of space.

Suppose that Z is the information-theoretical optimal number of bits needed

to store some data. A representation of this data is called:

• implicit if it requires Z +O(1) bits of space

• succinct if it requires Z + o(Z) bits of space

• compact if it requires O(Z) bits of space

20

R
ef

er
en

ce
*

S
iz

e
(b

it
s)

L
ab

el
s

ar
cs

F
as

t
ac

ce
ss

F
as

t
en

co
d

in
g

G
ra

p
h

re
st

ri
ct

io
n

s
S

ch
em

e
ty

p
e

T
u

ra
n

[1
26

]
(n 2

) −1 8
n

lo
g
2
(n

)
+
O

(n
)

n
o

u
n

sp
.

n
o

n
o

-
-s

u
cc

in
ct

N
a
or

[9
8
]

(n 2

) −n
lo

g
2
(n

)
+
O

(n
)

n
o

u
n

sp
.

ye
s

ye
s

a
rb

it
ra

ry
a
d

j.
m

at
ri

x
-s

u
cc

in
ct

R
a
m

an
[1

1
2
]

dl
o
g
2

(n2 m

) e+
o(
m

)
n

o
d

ir
.

ye
s

n
o

-
su

cc
in

ct

F
ar

za
n

[4
4
]

lo
g
2

(n2 m

) +
o(

lo
g
2

(n2 m

))
ye

s
d

ir
.

ye
s

n
o

m
>

n
2

lo
g
1
/
3

2
n

su
cc

in
ct

F
ar

za
n

[4
4
]

(1
+
ε)

lo
g
2

(n2 m

)
ye

s
d

ir
.

ye
s

n
o

n
2

lo
g
1
/
3

2
n
≥
m
>

n 2
su

cc
in

ct

F
ar

za
n

[4
4
]

lo
g
2

(n2 m

) +
εm

lo
g
2
m

ye
s

d
ir

.
ye

s
n

o
ε
>

0,
m
≤

n 2
su

cc
in

ct

F
ar

za
n

[4
4
]

lo
g
2

(n2 /2 m

)
ye

s
u

n
d

ir
.

ye
s

n
o

n
2 4
>
m
>

n
2

lo
g
1
/
3

2
n

su
cc

in
ct

F
ar

za
n

[4
4
]

(1
+
ε)

lo
g
2

(n2 /2 m

)
ye

s
u

n
d

ir
.

ye
s

n
o

n
2

lo
g
1
/
3

2
n
≥
m
>

n 2
su

cc
in

ct

F
ar

za
n

[4
4
]

lo
g
2

(n2 /2 m

) +
εm
lo
g 2
m

ye
s

u
n

d
ir

.
ye

s
n

o
ε
>

0,
m
≤

n 2
k

=
O

(n
),
k

=
m
−
n

+
1

su
cc

in
ct

F
is

ch
er

[4
8]

(2
n

+
m

)
lo

g
2

3
+
h

lo
g
2
n

+
k

lo
g
2
h

+
o(
m

+
k

lo
g
2
h

)
+
O

(l
og

2
lo

g
2
n

)
u

n
sp

.
d

ir
.

ye
s

n
o

h
=
|K
|≤

k
K

=
{v
εV

:
|N

in
,v
>

1
}

su
cc

in
ct

T
ab

le
1.

4:
S
u
cc

in
ct

gr
ap

h
re

p
re

se
n
ta

ti
on

s
fo

r
ar

b
it

ra
ry

gr
ap

h
s

21

In Table 1.4, we list several succinct data structures for graphs with little

or no restrictions (arbitrary). We include the name of the first author (and a

reference), the size complexity in bits, whether the representation is vertex or

arc labeled, if the representation provides fast access or encoding, the graph’s

restrictions, and the scheme type (i.e., implicit, succinct, compact).

1.6 Conclusion

We have covered what a network is and how to represent one. We have also

defined some compression concepts and how to apply them to graphs. In this

dissertation we shall develop novel, implicit and succinct, queryable, incremental,

arbitrary graph compressions based on binary trees. Each subsequent chapter

tackles different challenges that emerge from massive space requirements and

gives discussion on related work, detailed algorithms, analysis, and empirical

study.

The rest of the dissertation is outlined as follows:

• We begin by developing a queryable, incremental, arbitrary, static graph

compression that reduces the graph’s size to the theoretical minimum (Chap-

ter 2).

• We continue this work by adapting the compression to speed up matrix-

vector multiplication by reusing products via differential compression (Chap-

ter 3).

• Next, we move our compression to the field of time-evolving network graphs,

again reaching the theoretical minimum (Chapter 4).

22

• We adapt our time-evolving graph compression to run algorithms such as

the earliest arrival paths problem, and our own novel problem definition of

time-evolving transitive closure (Chapter 5).

• Finally, we conclude the dissertation (Chapter 6).

23

Chapter 2

Arrays of compressed binary

trees

In this chapter, we propose to build a compressed data structure that has a com-

pressed binary tree corresponding to each row of the adjacency matrix. We do

not explicitly construct the adjacency matrix, and our algorithms take the arc

list (even gzipped) representation as input for its construction. This allows for

minimal memory overhead. Our compressed structure allows for faster arc and

neighborhood queries, and also it allows arcs to be added and removed directly

from our compressed structure (streaming operations). We have evaluated our

compression technique and compared the resulting size with existing compression

algorithms along with many other parameters. For the purposes of our experi-

ments for this chapter, we focus on social networks and the Webgraph framework,

which is the current state-of-the-art social network compression. We have used

the publicly available network data sets such as Friendster, LiveJournal, Pokec,

Twitter, and others. We show that our improvements allow the structure to per-

form better than the current state-of-the-art technique in terms of compression

24

size and other key metrics.

2.1 Introduction

A network can be represented as a graph. Most social networks like Facebook

are undirected, meaning that the relationship is mutual. We use the terminology

reciprocity or reciprocal to describe the relationship that flows both ways (viz.,

undirected). In contrast, a network like Twitter is directional, as meant by their

concept of ’following’. Clearly, we can see that knowledge learned from these

graphs has been used in the industry to better coordinate events, suggest friends,

advertise, and recommend games.

Most real-world networks are ever growing. For example, from Q2 2017 to

Q2 2018, the number of daily active Facebook users grew from 2.0 billion to 2.23

billion [29]. Many networks comprise not only of individuals but also of business

entities and hence the size of such graphs can pose a high level of difficulty for

analysis.

Many different queries may be run on networks. When developing a queryable

compression technique, the compressed structure is usually designed to be effi-

cient with a specific set of queries [73]. The most popular of these are typically

community operations and the reachability query. When building the algorithms

to answer these queries, neighborhood enumeration and arc existence operations

are put to heavy use, especially in problems such as network pattern mining and

friend suggestion.

Consider a snapshot of Friendster database with n = 65608366 nodes and

m = 1806067135 arcs. Using a Boolean adjacency matrix representation, we

get a size of 656083662 bits = 538TB. Assuming 64-bit pointers and using the

25

equation 2m× 64 + 2m log2(n) + n log2(n), even an adjacency list representation

would consume about 41GB. Clearly, most computers will not have enough main

memory to process such large graphs. As such, it must make access calls to

disk, thereby incurring a high time penalty. Given this, our desire is to compress

the graph to a size that can not only fit in the main memory but also provide

mechanisms to perform neighbor and arc queries on the compressed structure

itself.

Most raw, uncompressed graphs from various resources are represented as

plain text files. These files are merely the graph in arc list form. That is,

each line consists of two numbers, u and v, separated by a space. A common

requirement for most compression algorithms is an intermediate structure, such as

an adjacency list, that is built from this arc list and used to efficiently build a final

compressed structure [88]. Since we can incrementally build our compression, we

do not require such an intermediate structure.

For obvious reasons, the original arc list text files are stored with common

compression programs such as gzip. Preprocessing large graphs like our Friendster

graph requires at least 31GB of memory, and 7GB if the arc list was compressed

with gzip [Table 5.1]. Here, we also present a method of compressing the graph

directly from its gzipped arc list format. Since our compression scheme uses no in-

termediate structure when compressing, this ensures minimal memory overhead.

Our compression technique is based on indexed arrays of compressed binary trees

[100], with enhancements provided by preorder traversal. The binary trees will

be responsible for compressing a node’s arcs, and the indexes will provide quick

access to those nodes in the compressed graph. Our motivation for using binary

trees springs from our earlier research with the quadtree data structure [99]. The

quadtree structure could be thought of as compressing the graph’s entire 2D adja-

26

cency matrix representation, whereas binary tree representation compresses each

individual row of the matrix. Our contributions can be summed up as:

• We use a novel indexed array of compressed binary trees structure that can

incrementally construct the compressed file as nodes and arcs are added

and removed (streaming graph model). This representation is used in con-

junction with preorder traversal for efficient query execution. Existing al-

gorithms require the entire adjacency list or adjacency matrix before the

construction of the compressed output can begin.

• We improve our compression ratio by better encoding groups of ones, as

well as branches that only contain one arc.

• We provide improved encoding for directed graphs by only compressing the

upper triangular matrix and including an extra bit per arc to represent

reciprocity.

• We improve our compression ratio by more efficiently encoding our tree

structure once we reach the bottom levels.

• We provide a method for compressing the graph directly from its gzipped

arc list form.

• We present algorithms to execute arc and neighbor queries that directly

operate on the compressed file.

• We present a special in-memory data structure to further improve run-times

for streaming data.

• We present detailed experimental results using the SNAP database [122] to

obtain performance benchmarks on several networks, including a compar-

27

ison of BFS vs preorder traversal. It may be noted that SNAP datasets

in the form of arc lists are directly read in to memory for compression,

avoiding intermediate memory usage.

• We believe we are the first to provide a compression technique for streaming

graphs that efficiently support widely-used operations.

The rest of the chapter is organized as follows. In Section 2.2, we review

related works which are based on the availability of the entire adjacency matrix

or list for compression to complete. In Section 2.3, we formally define our queries

and review common network graph terminology. We then present the details of

binary tree compression in Section 2.4. We report empirical results in Section

2.5. Finally, we conclude the chapter in Section 2.6.

2.2 Related work

There are several existing works that present compression algorithms that are

similar in idea to the ones we present here. In general, our compression concept

is most similar to k2-trees [16]. However, k2-trees only compress the Boolean

adjacency matrix as a whole, whereas we use compressed binary trees to represent

each row of the adjacency matrix. We also use different encoding schemes to

better compress runs of ones and branches that only contain one arc. We do not

compare against k2-trees since Backlinks compression (BLC) outperforms them

in terms of directed static graphs.

Adler and Mitzenmacher [2] introduced a web graph compression scheme by

finding nodes with similar sets of neighbors. Randall et al. [114] were the first to

use the lexicographical ordering of the URL’s on a web page to compress a graph.

28

Their method exploits the fact that many pages on a common host have similar

sets of neighbors. Boldi and Vigna [12] also exploited inherent properties of web

graphs for compression. They found that proximal pages in URL lexicographical

ordering often have similar neighborhoods. This lexicographical locality property

allowed them to use gap encodings when compressing arcs. In order to further

improve compression, Boldi et al. [12] developed new orderings that combine

host information and Gray/lexicographic orderings.

In 2009, Chierichetti et al. [27] modified the Boldi and Vigna compression

method [12] to better target social networks. Their method exploits the similarity

and locality properties of web pages along with the idea that social networks

have a high number of reciprocal arcs. This method is called the Backlinks

Compression scheme and serves as the key benchmark for our empirical study.

In 2014, Liakos et al. [83] also improved Boldi-Vigna’s compression ratio and

access times by separately compressing the dense main diagonal stripe of the

graph’s adjacency matrix.

In 2010, Maserrat and Pei [92] introduced a compression scheme specifi-

cally designed to compress social networks while maintaining sublinear neighbor

queries. They achieve this by implementing a novel Eulerian data structure us-

ing multi-position linearization. Their results are the first to answer out-neighbor

and in-neighbor queries in sublinear time.

In 2014, Lim et al. [84] invented Slashburn, a new ordering method to execute

on the graph before a general compression. The idea is to stray away from the

definition of ‘caveman’ communities and instead use the idea of real world graphs

being more like hubs and spokes connected only by the hubs. After executing

their ordering function, they use a block-wise encoding method (such as gzip) for

the actual compression. The novel technique described in Slashburn [84] reduces

29

the total number of blocks (where a block is a sub-matrix with non-zero entries).

Their query times focus more on the problem of matrix-vector multiplication,

which is used in problems such as PageRank, diameter estimation, and connected

components [72].

Our work here targets graphs that are streamed in and therefore does not

lend itself to storing the graph in an adjacency matrix or list and renumbering

vertices to achieve a good compression (measured as number of bits used per arc

on the average).

The work presented here is an enhanced version of our work described in [100]

which was inspired by our previous work involving quadtree compression [99]

where we treated the Boolean adjacency matrix as a 2D space to be compressed

by a quadtree. The resulting tree was outputted in BFS order as a string of bits.

Our transition from quadtrees to an indexed array of binary trees is based on

the principle that if a quadtree can compress the entire n×n Boolean adjacency

matrix as a 2D image, then n binary trees can each compress a single row of

the matrix. This transformation in conjunction with (i) using preorder traversal,

(ii) providing an in-memory structure, and (iii) incorporating a key modification

to better encode reciprocal arcs, and (iv) a massive improvement to the general

encoding scheme, we show that we are able to improve the query and streaming

times.

2.3 Preliminaries

In this section, we describe some network characteristics, common operations,

and standard compression techniques.

30

2.3.1 Real-world networks

Here we shall describe the general characteristics that are typical in these types

of graphs.

Sparseness

Real-world networks are very sparse. For example, our LiveJournal graph con-

tains about 4.8 million nodes and about 69 million arcs. The total number of

possible arcs is (4.8 × 106)2 − 4.8 × 106 = 2.3 × 1013. Therefore we only have

(100× (6.9× 106)/(2.3× 1013) = 3× 10−5% of the total arcs possible. If we were

to draw the Boolean adjacency matrix for this graph, it would be mostly zeros.

Similarity

This property states that nodes close to each other in a lexicographical ordering

have similar sets of neighbors. For example, in a high school with 300 students,

the nodes might be numbered 0 − 299 in a lexicographical ordering. Since the

students are likely to be friends with each other, many of the nodes will have

similar sets of neighbors.

Locality

With locality, a node tends to be connected to other nodes closer to its position in

the lexicographical ordering. In other words, node 0 is more likely to be connected

to node 100 rather than node 1000000. Locality is tied closely with similarity,

but the distinction is important.

31

2.3.2 Real-world network compression

Next, we outline common compression exploits for the characteristics described

in Section 2.3.1. Our new compression technique doesn’t make explicit use of any

of these exploits, but our benchmark compression and many other algorithms do.

Regardless, these techniques are standard background knowledge when under-

standing any SN compression.

Gap encoding

This technique takes advantage of the locality property. Even though the label

numbers for a node’s neighbors may be large, the numbers should be close to

each other. Therefore instead of actually encoding the large label numbers, we

encode the differences (gaps) between them. For example, if we have nodes

labeled 1000000 and 1000001, instead of encoding these two large numbers, we

can encode the difference between them, 1.

Removing neighbor redundancies

Next, we describe how to exploit the similarity property. Since this property

states that nodes close to each other in the ordering share common neighbors, we

can see that those similar neighbors present redundant information that can be

optimized out. When encoding a node n, we check k of the previously encoded

nodes for common neighbors. If a sufficiently similar node x is found, node n is

compressed based on x.

It is important to realize the negative effect this technique has on access

operators. Since we are linking nodes to previous nodes, we can form a chain of

references. Therefore, when querying a node, we may end up having to query all

32

the nodes in the reference chain. This is also why streaming is usually impractical

on such compression schemes. One arc update may cause a large chain of updates.

Node reordering

If the ordering of the nodes in the graph is random, then the previous two exploits

will fail. Therefore, a common bit of preprocessing is to reorder the nodes in the

input graph based on some ordering scheme. The standard is a BFS lexicograph-

ical reordering. Recently, there is also Slashburn - a social network specific, node

reordering technique [84].

2.3.3 Real-world network operations

Lastly, we review the common operations performed on social network graphs.

Arc existence queries

The most basic operation is checking whether or not an arc exists between two

nodes. Formally, given a graph G = (V,E) and an arc (u, v), determine if (u, v) ∈

E.

Node neighbor queries

As previously stated, neighbor queries are arguably the most important for real-

world networks. Given a graph G = (V,E) and a node u, list all the out-neighbors

of u.

33

Arc addition/removal

This operation is available only in streaming graph compressions, otherwise known

as incremental graph compressions. These compressions allow arcs and nodes to

be efficiently added and removed without having to completely re-compress the

graph.

2.4 Indexed array of compressed binary trees

Next, we move on to the description of our compression technique. For every

input graph G = (V,E), we assume that E is sorted and nodes in V are labeled

from 0 to |V | − 1. We also assume that |V | is rounded up to the next power of

two.

This assumption is only necessary for a direct construction, rather than an

incremental one.

2.4.1 Node-centric, indexed structures

As previously mentioned, most real-world networks and their query operations

are node-centric. This indicates that our compression method must also be node-

centric. That is, our compression technique will compress one node at a time,

in order. Compressing a node consists of compactly representing all the node’s

neighbors in a lossless way. A node is compressed into a string of bits that is

then appended to the final bit-string.

A consequence of being node-centric is that when querying for an arc (u, v),

we must start at the beginning of the compressed graph and read sequentially up

to node u. A workaround for this is to include an array of indexes that point to

34

the positions of every node in the compressed graph. This is a common practice

and sacrifices minimal space for a great speed increase on queries [83]. In our

case, the space requirement is O(nd log(n)), yet we receive a neighbor query time

complexity of O(d log(n)), where d is the degree of the graph.

2.4.2 Compressed binary trees

A binary tree is a tree in which every non-leaf node has two children. A full

binary tree of depth k has 2k leaf nodes. Let n = |V |. When a graph G = (V,E),

as in Figure 2.1 (a), is represented as an n × n Boolean adjacency matrix, as

in Figure 2.1 (b), each row i of the matrix represents all the neighbors of node

i. Knowing this, we can represent a matrix row of width n with a binary tree

of depth log2(n). We do this for each node’s adjacency row as each time frame.

This process is summarized in Figure 2.1 (c).

For a compressed binary tree, each node in the tree is encoded with one

bit each. A node is set to true if it is a non-leaf node, or if it is a leaf node

corresponding to an arc. All nodes marked false are leaf nodes. This encoding

scheme prunes off sections of the matrix row that are empty, while the path to an

arc must travel to the bottom of the tree. Examples of compressed binary trees

are illustrated in Figure 2.1 (d). Nodes have brackets indicating which indexes

of the adjacency matrix row the nodes range over.

2.4.3 Improved encoding

Next, we show that this encoding scheme can be even further improved. Cur-

rently, our tree efficiently compresses runs of zeros, but must expand to the

maximum depth whenever an arc is active (i.e., there is a one). Now, notice that

35

Figure 2.1: A graph represented as a series of compressed binary trees

when a non-leaf node is labeled with a one, it should normally never be followed

with two zeros [23]. We can exploit this fact to better compress our ones. We

can use this to not only compress consecutive arcs, but also branches that only

contain one arc.

We show how to encode these two cases in Figure 2.2. If a non-leaf node is

followed by two zeros, then an additional bit must follow. If the bit is zero, then

the current branch contains only ones, as in indexes [0,15] of Figure 2.2. If the bit

is one, then the branch contains a single arc, as in index [28] of Figure 2.2. After

the bit, we then provide a relative binary path to the arc, given in Algorithm 2.1.

In Algorithm 2.1, we are given “begin” and “end” which represent the range

of our current node, along with the target index “j.” We calculate the relative

depth in line 2, which will be the length of our returned bit-string. In lines 5

36

Figure 2.2: Improved compression of an adjacency row (n=32) containing 17
arcs with only 13 bits

through 12, we loop through each level of the remaining depth, and append a

one or a zero, depending on which child the path should navigate to. We return

the path’s bit-string in line 13. Next, we describe Algorithm 2.2, which encodes

a node given its neighbor list.

In Algorithm 2.2, we are given as input a node’s neighbors a a list of positions

indicating the indexes of all the ones in the Boolean adjacency matrix row. If a

target is already a neighbor of the node, it is to be removed. We use the visitor

pattern and some LINQ notation [9] for ease of reading. We start by traversing

through the CBT representing the node’s current neighbors. On line 6, we get the

node’s neighbors as a list of the positions of the ones in the row of the Boolean

adjacency matrix. Line 10 makes use of our new encoding scheme by appending

‘000’, indicating that this entire branch is full of ones. Lines 12 through 16 also

uses a new encoding scheme by appending ‘001’, followed by the relative binary

path to the target position of the only one in this branch. If there were no ones

for this branch, then we simply append a zero, as in line 18. We return the

differential CBT as a bit-string in preorder traversal in line 21.

We further improve our encoding by noticing that as we reach the bottom of

our compressed tree where a node only spans two indexes of the row, it is no longer

37

Algorithm 2.1: A relative binary path

Input: int begin, int end, int j
Output: The relative binary path as a bit-string

1 begin
2 BitString s;
3 depth = dlog2 (end− begin)e;
4 s.Initialize(depth);
5 for i = 0; i < depth; i++ do
6 mid = d(begin+ end)/2e;
7 if begin ≤ j < begin + mid then
8 s.AppendBit(0);
9 end − = mid;

10 else
11 s.AppendBit(1);
12 begin + = mid;

13 return s;

efficient to maintain our tree structure. We instead directly replace this section

of the tree with the two indexes (bits) they are supposed to represent. Both

approaches have a best case of four bits when dealing with two nodes that span

four indexes together. However, the old approach requires six bits in its worst

case, compared to the new approach’s requirement of four bits. This change

is illustrated in Figure 2.3. However, for simplicity’s sake in our algorithms

and analyses, we maintain our notion that the last level keeps to the original

compressed binary tree structure.

When a compressed binary tree is output to a bit-string, we have many choices

of how to traverse the tree, e.g., BFS or preorder traversal. In our previous work

[100], we traversed the graph in the BFS order. However, it can be seen that a

preorder traversal would provide a better average time complexity when querying,

since the leaf nodes are not all at the end of the bit-string. Such a traversal would

also improve streaming operations, since all the bits related to an arc are grouped

38

Algorithm 2.2: Improved Binary Tree Compression

Input: List<int> ones
Output: CBT′i+1 as a bit-string

1 begin
2 BitString s;
3 Node node = cbt.Root;
4 Visitor vtr = PreOrderTraversal(node);
5 while !vtr.End() do
6 nodeTargets = ones.Where(x => node.Spans(x));
7 if nodeTargets.Count() > 0 then
8 s.AppendBit(1);
9 if node.IsFull(nodeTargets) then

10 s.AppendBitString(’000’);
11 vtr.Ignore(node);

12 else if nodeTargets.Count() == 1 then
13 s.AppendBitString(’001’);
14 path = RelativeBinaryPath(node.begin, node.end, target);
15 s.AppendBitString(path);
16 vtr.Ignore(node);

17 else
18 s.AppendBit(0);
19 vtr.Ignore(node);

20 node = vtr.Next();

21 return s;

next to each other, as opposed to being scattered throughout the bit-string when

applying BFS. Therefore, using preorder traversal, the bit-string for Figure 2.3

would be 1100010011100. For comparison, the corresponding BFS ordering would

be 1110000011100.

In Figure 2.2, we have an adjacency row of size n = 32 containing 17 arcs and

compressed to only 13 bits using our improved encoding scheme. This example

demonstrates the case where a node’s left child contains all ones, and the right

child only contains a single one. In the latter case, it means that the current

branch leads to a single arc to which we then provide a direct binary path,

39

Figure 2.3: The improved compressed tree encoding comparisons in the (a) best
case and (b) worst case

relative to the current branch. That is, while the example’s change is encoded

at the right child of the root of the tree (d = 1), it could occur at any depth

d < log2 (n)− 3 with a saving of log2 (n)− 2d− d− 3 = log2 (n)− d− 3 bits.

2.4.4 Analysis

Suppose that a arbitrary graph has n nodes and m arcs. Each arc is stored as a

1 in the Boolean adjacency matrix, with the rest of the entries being 0.

Lemma 2.1: Assuming a graph with n = 2k nodes where k > 0, the binary tree

corresponding to a node can have a depth of at most k.

Proof: At each depth, the range that a binary tree’s node can span is halved.

Thus, the maximum depth is log2(2
k) = k. �

40

Lemma 2.2: Given a directed graph with n = 2k and k > 0, a node with a

single arc can be represented with k + 4 bits.

Proof: Using Lemma 2.1, our improved encoding, and given a depth of k, we

need 4 bits to indicate that we are giving a relative binary path, plus the k bits

for the actual path. Thus, we have k + 4 bits. �

Lemma 2.3: Given an arbitrary graph with n = 2k, m arcs, and an average

degree δ = m/n, a single node from the graph can be encoded with a total space

of δ(log2(n/δ)) +O(δ) bits.

Figure 2.4: A full binary tree of a node with 6 neighbors, and 7 shared (gray)
nodes

Proof: Using Lemma 2.2 and the graph conditions explained above, a compressed

node would yield a total of kδ + 4δ bits. However, not all of the paths (in the

binary tree) to each neighbor may be unique. We can see that the worst case

is when every node in the binary tree is present up to depth blog2 δc. We can

see these shared nodes illustrated in Figure 2.4. After that level, the worst case

follows with each path to the δ neighbors being unique, giving a total space of∑blog2 δc
j=1 (2j) + δ(k − blog2 δc − 1) + 4δ = δ(log2(n/δ)) +O(δ) bits. �

Proposition: Given an arbitrary graph with n nodes andm arcs, the information-

theoretic lower bound for storage is m log2(n
2/m) +O(m) bits [18].

41

Theorem 2.1: Given an arbitrary graph with n = 2k nodes, m arcs, and average

degree δ = m/n, our compression’s space requirement is m log2(n
2/m) + O(m)

bits, thereby achieving the information-theoretic lower bound.

Proof: Given the graph conditions explained above, we must use the formula

in Lemma 2.3 for all the n nodes, giving n(δ(log2(n/δ))+O(δ)) = m log2(n
2/m)+

O(m). �

A 3D-plot of our upper bound space requirements is given in Figure 2.5.

Figure 2.5: 3D-plot of space (bits) requirements of our technique given n
(nodes) and m (arcs)

We can see that the worst case results in a perfect binary tree, which is where

all nodes have two children and all leaf nodes are at the same depth. This gives

us 2n+1 − 1 nodes. These trees can be formed from graphs such that every other

arc (in the sorted order) is missing, such as the adjacency matrix in Figure 2.6.

Here, we are given a Boolean adjacency representation of a graph. Since it is

checkered, there is no possible compression for this graph, and we are left with a

perfect binary tree. There are other possible worst case graphs, but there can be

42

no two arcs missing, (un, vn) and (un+1, vn+1), such that n is even. The parent

node of those arcs would become compressed, and we would no longer have a

perfect binary tree. Since most real-world graphs are extremely sparse (e.g.,

social networks), they are far away from the worst case, as verified in Section 2.5.

Figure 2.6: A worst case adjacency matrix (left); the same matrix, reordered
(right)

2.4.5 Direct construction

Since the input graph is usually a list of arcs, there are two ways to compress.

This first is to incrementally add (stream) each arc one at a time. This yields

a time complexity of O(m2log2(n)), which is slow on graphs with a number of

arcs in the billions, especially due to the cost of the decompression step. A

more interesting approach is to assume we are given all the arcs at once. After

sorting the arcs, each node’s compressed tree preorder traversal bit-string can be

constructed left-to-right directly. This way, we can achieve an initial compression

with a time complexity of O(m log2(n)). We now formally describe this process

in Algorithm 2.3.

Algorithm 2.3 uses the visitor pattern for traversing a tree using preorder

traversal. The visitor is responsible for keeping track of which node in the tree

corresponds to the current bit we are reading. For each arc (line 5), we build the

path to its leaf node. The span function on line 7 returns true if that node ranges

43

Algorithm 2.3: Binary tree compression

Input: A node’s sorted arc list
Output: The compressed node as a bit-string

1 begin
2 BitString s;
3 Node node = root;
4 Visitor vtr = PreOrderTraversal(node);
5 for arc=(u,v) in arclist do
6 while !node.isLeaf() do
7 if node.spans(v) then
8 s.AppendBit(1);

9 else
10 s.AppendBit(0);
11 vtr.Ignore(node);

12 node = vtr.VisitNext(node);

13 s.AppendBit(1);

14 //fill rest of tree with 0s;
15 return s;

over our current arc, and we set the corresponding bit appropriately. If the node

does not span our arc, we also tell our visitor to ignore the rest of that branch

when traversing.

Finally, we use Algorithm 2.3 to compress each node and then we store them

in an indexed array. We describe this process in Algorithm 2.4. For our index’s

integer encoding scheme, we use Delta Encoding [41].

Algorithm 2.4 loops through each node and uses Algorithm 2.3 to compress

the node. While doing so, it also keeps track of the index position of the encoded

node. Finally, it returns the list of indexes appended with the list of compressed

nodes.

44

Algorithm 2.4: Indexed array of binary trees compression

Input: The graph as a sorted arc list
Output: The compressed graph as a bit-string

1 begin
2 length← 0;
3 index← int[|V |];
4 for each node, n do
5 index[n]← length;
6 compressed[n]← CompressNode (node.arcs);
7 length+ = Delta(compressed[n].length);

8 return index + compressed;

Proof of correctness

Theorem 2.2: Given a graph G = (V,E), Algorithm 2.4 provides a lossless

compression of G.

Proof: Since Algorithm 2.4 already outputs a compressed version of G, we must

prove that this compression can be unambiguously reverted back to the original

graph.

Let G′ be the compressed version of G. Then it is sufficient to show that given

G′, we can obtain the original arc list E of the graph G.

Here we must make a note that the list of neighbors of each node is equivalent

to E. That is,
⋃|V |−1
u=0 (u, v ∈ N(u)) = E, where N(u) lists the neighbors of u.

Therefore, since our technique compresses the neighbors of each node, it is

sufficient to show that an arbitrary compressed binary tree correctly stores the

neighbors of the node it belongs to. In other words, we must prove that every

arc destination v appears as the appropriate leaf node in u′s binary tree.

As before, let u be an arbitrary node and N(u) be the neighbors of u. Clearly,

row u of the Boolean adjacency matrix will contain 1′s for each index v ∈ N(u)

and 0′s for every other index in the row.

45

If we start at the root of the compressed binary tree, then that node represents

indexes 0 through |V |−1 of the adjacency matrix row. If the node is set to TRUE,

then it has children to navigate to; i.e., the node leads to an arc. If it is set to

FALSE, then it contains no children; i.e., it does not lead to an arc.

As we traverse through the left or right children, the range of indexes that the

current node covers strictly decreases based on which child we navigated to. If

we reach the maximum depth, the range of the current leaf node targets a single

index of the adjacency matrix row. Since Algorithm 2.3 produces trees with leaf

nodes only where the target index is v ∈ N(u), and Algorithm 2.4 uses it to

actually compress the nodes, our compression is correct. �

Compressing directly from a gzip compressed arc list

During our experiments, we encountered such large graphs that even the raw arc

list format required over 30GB of RAM. Since most computers these days do not

have access to large amounts of main memory, we devised a way to compress

directly from a much smaller 8GB gzipped arc list. It is important to note that

the gzipped file must also be sorted.

The technique uses the zLib library [34] that gzip is built on. This library

allows us to partially inflate (decompress) the file in chunks. Since the file is

sorted, we can decompress a single node before we re-compress it with our method.

Obviously, this technique only affects compression time and memory required for

compression. These differences are shown in Section 2.5.

46

2.4.6 Querying the compressed structure

We provide three operations that can be performed on our structure: checking

arc existence, getting a node’s neighbors, and adding/removing arcs. While these

are all separate operation, they all involve knowing how to efficiently traverse the

compressed tree in bit-string form.

Normally when traversing trees, the user has access to pointers. However,

since this is a compressed tree, we must read bit-by-bit from left to right. We

stored the tree as labels in preorder traversal, therefore we must start at the

root and keep track of where in the tree we are as we traverse. Algorithm 2.5

demonstrates this through the arc query.

Arc query

In this section, we present and describe the algorithm for checking arc existence

in our structure. The process is formally given in Algorithm 2.5.

Like Algorithm 2.3, Algorithm 2.5 also uses the visitor pattern for traversing a

tree in preorder. The current bit is read on line 5. As before, the span function in

lines 7 and 11 returns true if the current node ranges over the arc we are looking

for. If the node spans our arc and is a leaf node, then the arc has been found. If

we encounter a node that spans our arc but is labeled as 0, then the branch has

been compressed away and the arc does not exist. If it is only labeled 0, then we

simply notify the visitor to ignore the rest of that part of the tree.

Neighbor query

The neighbor query completely reads through the compressed tree, returning any

leaf nodes set to true. This can be done in one read, as we simply need to read

47

Algorithm 2.5: Array of Binary Trees (ABT) Compression - preorder Arc
Query

Input: The compressed adjacency row as a bit-string s, v
Output: True or False

1 begin
2 Node node = root;
3 Visitor vtr = PreOrderTraversal(node);
4 for i = 0; i < s.Size(); do
5 label = s.GetBit(j);
6 if label == 1 then
7 if node.spans(v) then
8 if node.isLeaf() then
9 return True;

10 else
11 if node.spans(v) then
12 return False;

13 vtr.Ignore(node);

14 node = vtr.VisitNext(node);

the entire tree.

Streaming arcs

Adding an arc begins by finding the deepest node along its path that hasn’t been

pruned off. Once we find the proper location, we build the rest of the path by

inserting the proper bits into the bit-string. This process is formally described in

Algorithm 2.6.

Removing an arc is the mirror of adding, but it still begins by finding the

highest node in the path that it can compress. Then every bit representing

nodes below it in the path are removed. Finally, the highest node is set to false.

Compression benefits will be better the farther away the arc to be removed is

from the other arcs.

48

Algorithm 2.6: ABT Compression - Streaming an arc

Input: The compressed graph as a bit-string, x, y
1 begin
2 Node node = root;
3 Visitor vtr = PreOrderTraversal(node);
4 for i = 0; i < s.Size(); do
5 label = s.GetBit(j);
6 if label == 0 then
7 if node.spans(v) then
8 if node.isLeaf() then
9 return;

10 else
11 if node.spans(v) then
12 s.SetBit(j, 1);
13 while !node.isLeaf() do
14 if node.spans(v) then
15 s.AppendBit(1);

16 else
17 s.AppendBit(0);
18 vtr.Ignore(node);

19 node = vtr.VisitNext(node);

20 s.AppendBit(1);

21 vtr.Ignore(node);

22 node = vtr.VisitNext(node);

The streaming operation of Algorithm 2.6 is a combination of the arc query

in Algorithm 2.5 and the construction method used in Algorithm 2.4. That is,

it must first traverse through the tree to find the compressed node that ranges

over our arc. This first step completes at line 11. Immediately, the next thing

to do is set this node to 1 as we are about to partially decompress it. A partial

decompression means we only add children set to 1 on the path to our leaf node.

All other children are left compressed and set to 0. Since we are operating on

a bit-string, this consists of inserting the nodes’ bits into their proper position.

49

Now that we are using preorder traversal, all of these bits are guaranteed to be

right next to each other.

Alternate In-Memory Structure

Now that we are streaming using preorder traversal, our main speed inefficiency

comes from the time it takes to shift bits around. A typical vector from the C++

std library results in a copy of the underlying array after the maximum size is

reached. Therefore, we introduce a structure for when the graph has been loaded

into memory and is ready to have arcs streamed to it. The data structure is

essentially an unrolled linked list adapted to using bit operations. We set k to be

log(n) since this is the maximum length of any path along the tree.

Figure 2.7: An unrolled linked list

In Figure 2.7, we illustrate our unrolled linked list. We can see that each node

in the list contains three elements. First is a number z, indicating how much of

the node has actually been used. Second, we have the actual vector of size k.

Finally, we have the pointer to the next node in the list. We do not mind that

the list is limited to sequential access, as we have to start from the beginning of

the tree with each read anyway.

2.5 Experiments and results

Our experiments involve running ABT compression and our benchmark Back-

links compression [27] on the datasets given in Table 2.1. These datasets are

available from snap.stanford.edu. Backlinks compression (BLC) was chosen as

50

Directed? |V | |E| #Reciprocal arcs

Facebook FALSE 4039 88234 88234

Friendster FALSE 65608366 1806067135 1806067135

LiveJournal TRUE 4847571 68993773 26142536

LiveJournal(com) FALSE 3997962 34681189 34681189

NotreDame TRUE 325729 1497134 407026

Pokec TRUE 1632803 30622564 8320600

Twitter TRUE 81306 1768149 425853

Table 2.1: The dataset stats

the benchmark compression since it is the state-of-the-art technique for social

networks [83]. We have also compared the bits-per-arc of these two techniques

against Slashburn compression [84] and reported the results in Table 2.8. We

chose to compare against Slashburn since they are technically a reordering al-

gorithm that is subsequently compressed with gzip, which we also apply to our

compressions as an additional step.

In this chapter, we have set BLC to use BFS for the reordering algorithm and

we have set the window size to k = 10. The datasets are stored as an arc list and

the final output of the compressions is a bit-string.

We also provide side-by-side comparisons of ABT when using BFS versus

preorder traversal.

We run all of our algorithms on a machine with an Intel(R) Xeon(R) CPU

E5520 @ 2.27GHz (4 cores) with 64GB of RAM.

2.5.1 Compression

Table 2.2 shows a comparison among the sizes of the raw graphs, our array of

compressed binary trees (ABT) compression, the BLC benchmark, and all of their

51

.t
x
t

.t
x
t.

gz
A

B
T

A
B

T
.g

z
B

L
C

B
L

C
.g

z

F
ac

eb
o
ok

83
5K

B
21

4K
B

93
.0

2K
B

92
K

B
11

0.
32

K
B

93
K

B

F
ri

en
d
st

er
31

G
B

8.
2G

B
5.

5G
B

5.
2G

B
5.

7G
B

5.
2G

B

L
iv

eJ
ou

rn
al

1.
1G

B
24

8M
B

12
0.

85
M

B
11

9M
B

13
9.

98
M

B
12

2M
B

L
iv

eJ
ou

rn
al

(c
om

)
47

9M
B

11
9M

B
10

8.
33

M
B

94
M

B
11

0.
21

M
B

95
M

B

P
ok

ec
40

5M
B

12
7M

B
66

.4
0M

B
64

M
B

70
.5

9M
B

64
M

B

T
w

it
te

r
20

M
B

6.
1M

B
2.

92
M

B
2.

9M
B

3.
3M

B
3.

0M
B

T
ab

le
2.

2:
C

om
p
re

ss
ed

gr
ap

h
si

ze
s

52

ABT BLC

Facebook 0.32s 1.1s

Friendster 4.1h 10h

LiveJournal 8.6m 18.1m

LiveJournal(com) 4.0m 11.4m

Pokec 4.3m 8.9m

Twitter 10.9s 26.3s

Table 2.3: Compression times

txt → ABT gz → ABT txt → BLC gz → BLC

Facebook 931KB 310KB 3027KB 2406KB

Friendster 39GB 15GB 58GB 36GB

LiveJournal 1324MB 366MB 1818MB 966MB

LiveJournal(com) 590MB 231MB 920MB 560MB

Pokec 516MB 183MB 711MB 433MB

Twitter 25MB 9MB 38MB 24MB

Table 2.4: Compression memory usage

Confidence Level=95% ABT-BFS (µs) ABT-PRE (µs) BLC (µs)

Facebook 110.677 ± 2.869 76.453 ± 4.410 120.181 ± 11.800

Friendster 457.349 ± 10.707 293.589 ± 19.777 8353.309 ± 1770.793

LiveJournal 343.058 ± 7.511 156.454 ± 9.367 4335.078 ± 873.965

LiveJournal(com) 179.324 ± 4.100 84.836 ± 6.793 2892.767 ± 163.617

Pokec 120.422 ± 2.162 42.571 ± 3.490 1618.460 ± 153.371

Twitter 440.113 ± 4.915 196.446 ± 12.881 864.995 ± 87.509

Table 2.5: Arc existence execution times

53

Confidence Level=95% ABT (µs) BLC (µs)

Facebook 82.270 ± 1.252 148.547 ± 8.076

Friendster 301.553 ± 8.102 8802.230 ± 1688.793

LiveJournal 159.892 ± 3.684 4568.701 ± 809.209

LiveJournal(com) 85.897 ± 2.512 3059.430 ± 137.012

Pokec 46.760 ± 1.133 1765.696 ± 122.169

Twitter 200.461 ± 3.385 920.333 ± 75.571209

Table 2.6: Neighbor query execution times

respective gzipped files. The .txt files are the original arc list representations of

the graphs. The .txt.gz are those files after being gzipped. This data is important

because we have implemented a method of compressing the graph directly from

the smaller gzip files.

The data in Table 2.3 shows the total run time of both the ABT and BLC

algorithms on each graph. Clearly, the run-times depend on the size of the input

graph.

In Table 2.4, we list the different memory requirements for running our algo-

rithms. Not only does it show that ABT requires less memory than BLC, but it

also shows the benefits of loading directly from a gzipped graph file.

Additionally, we provide Table 2.8 as a quick comparison with Slashburn [84].

The size metrics are in the traditional bits− per − arc.

When examining the compression sizes of ABT and BLC, we see that ABT

outperforms BLC on every graph. Our new improvements involving better en-

coding of runs of ones as well as branches only containing one arc allows us to

outperform BLC’s use of differential encoding. This raises the question of whether

ABT can be even further compressed with differential encoding.

BLC’s process of building copy lists is also one of the reasons why their com-

54

C
on

fi
d
en

ce
L

ev
el

=
95

%
A

B
T

-B
F

S
(µ

s)
A

B
T

-P
R

E
(µ

s)
A

B
T

-U
L

L
(µ

s)
B

L
C

(µ
s)

F
ac

eb
o
ok

67
6.

26
5
±

11
2.

02
9

38
8.

76
5
±

21
2.

47
4

77
.4

72
±

4.
63

2
-

F
ri

en
d
st

er
41

09
.3

40
±

53
2.

65
9

20
74

.5
90
±

13
89

.9
89

29
1.

71
9
±

20
.7

85
-

L
iv

eJ
ou

rn
al

22
56

.7
70
±

30
9.

55
2

12
94

.9
01
±

71
9.

36
7

16
6.

53
8
±

9.
49

6
-

L
iv

eJ
ou

rn
al

(c
om

)
48

0.
72

9
±

45
.3

48
23

2.
23

5
±

14
0.

79
0

84
.4

95
±

7.
57

7
-

P
ok

ec
30

9.
19

5
±

66
.4

81
18

6.
86

3
±

10
4.

00
1

42
.8

30
±

3.
85

6
-

T
w

it
te

r
10

03
.6

75
±

11
5.

17
5

48
9.

23
7
±

26
9.

20
7

19
2.

52
4
±

13
.7

48
-

T
ab

le
2.

7:
A

d
d

ar
c

ex
ec

u
ti

on
ti

m
es

55

ABT ABT.gz BLC BLC.gz SB

LiveJournal 15.7 15.4 16.2 15.4 16.5

Barabasi 14.2 8.3 20.8 10.3 8.5

Table 2.8: Comparison with Slashburn graphs (bits-per-arc)

pression times are so long. As previously mentioned, we have set the window

size to a common k = 10. This means that we actually examine each node 10

times. Additionally, since BLC requires an adjacency list intermediate structure,

the query times for that list also affect compression run-times. ABT builds the

structure directly from the arc list, therefore it compresses much faster.

Our reasoning for applying the additional gzip compression is a matter of

in-memory querying versus storing on secondary memory. A non-gzipped com-

pressed graph is easily queryable but takes up more memory. Once the user is

done querying the graph, they may gzip the structure and store it in secondary

memory.

Next, we report that ABT uses much less memory during compression than

BLC. This is obviously because ABT does not require an intermediate structure

in order to efficiently compress. This benefit is massive, as many techniques are

restricted to smaller graphs due to the larger graphs requiring too much memory.

This fact, coupled with our new ability to also compress directly from the gzipped

arc list file, guarantees minimal memory overhead.

Finally, since we use gzip to improve our results, we also include a compres-

sion comparison with Slashburn [84]. This is because Slashburn is technically

a reordering algorithm that uses gzip to compress blocks in the adjacency ma-

trix that formed as a result of the reordering. For the sake of consistency with

Slashburn’s paper, we present the results using the traditional bits per arc metric.

56

2.5.2 Query operations

Table 2.5 shows the arc query execution confidence intervals, assuming a confi-

dence level of 95%. All times are in microseconds. Table 2.6 is the same as Table

2.5, but for the neighbor query instead.

Our ABT structure facilitates two query operations, the arc query and the

neighbor query. These are also the two queries supported by BLC. Since we have

updated our query operations after switching to preorder traversal we include a

comparison of query times between BFS and preorder.

Both BFS and preorder traversal have a worst case of reading the entire

bit-string. This is because while BFS always has to go towards the end of the

bit-string, preorder’s first arc may be only log2(n) bits deep into the tree. This

is reflected in the experimental query times.

Since both compression techniques are node-centric, we can use indexes for

fast access to each node. For ABT, once the node of interest has been navigated

to, we immediately begin reading the compressed tree. If it is an arc query, we

stop when we find the arc, or when we find a compressed node that indicates that

the arc does not exist. If it is instead a neighbor query, we must read the entire

tree.

Similar to ABT, BLC may also use indexes to jump to the node being queried.

However, the decoding process is more complicated than reading our simple tree.

It not only involves back-tracing the copy lists, but also many integer decodings.

Thus, on average, ABT outperforms BLC on both the arc and neighbor queries.

The neighbor query is essentially the same as the arc query for both ABT

and BLC. Just as ABT requires the entire tree to be read, BLC requires that the

entire adjacency list be read. Though again, BLC’s neighbor query suffers from

57

the same problem that its arc query has with the copy lists. Therefore, since the

queries are so similar, we can see that their access times are nearly identical but

with higher variance.

2.5.3 Streaming operations

Table 2.7 is the same as Table 2.5 but for streaming access times. Note that since

BLC is not a streaming compression, it does not have any entries.

As described earlier, our compression method supports the streaming opera-

tion. That means that we are able to directly add/delete arcs into the compressed

structure without having to completely re-compress the graph. Conversely, BLC

does not support this operation, mainly due to its incorporation of copy lists.

In Algorithm 2.6, we state that the streaming process is identical to the arc

query operation. The only difference is that once we have navigated to the correct

node, we may decompress or compress it by adding or removing the appropriate

bits respectively.

By comparing Table 2.5 and Table 2.7, we see that although the arc query

times are clearly faster than the streaming times, there is still a direct relationship

between them. Since both operations navigate the tree in the same manner, the

gaps between times are due to the actual cost of moving bits in the bit-string.

Streaming operations are where benefits of the switch to preorder really shine.

Before, the BFS ordering would cause all related bits to an arc to be scattered

across the bit-string. This would cause us to navigate to and edit multiple places

throughout the bit-string. Now, all bits relating to an arc are all grouped together,

resulting in one localized edit.

We also observe the time savings introduced by our adapted unrolled linked

58

list. This speed-up is attributed to the linked list not needing to recopy the entire

bit-string, as the previous vector implementation did.

2.6 Conclusions

In this chapter, we have improved upon our previous queryable, incremental

network compression using an indexed array of compressed binary trees [100].

We build this structure directly from the graph’s gzipped arc list text file without

using any intermediate structure such as an adjacency list. These two techniques

guarantee minimal memory overhead. Our compression also supports compressed

queries, namely the arc and neighbor queries in addition to arc additions and

removals (streaming operations) directly from the compressed structure.

Our improvements involve query and streaming speedups by massively im-

proving the encoding scheme to better encode branches full of arcs and branches

that only contain one arc, changing the traversal ordering from BFS to preorder,

and by providing an in-memory structure to more quickly shift/insert bits. We

also better encode reciprocal arcs for directed graphs, allowing us to only encode

the upper triangular matrix.

We also provide various comparisons among our compression, Backlinks [27]

(as a benchmark) and Slashburn [84] (as an addition). These comparisons use

metrics such as compression size, time to compress, memory usage, and query

times. Our experiments show that our improvements achieve better compression

than BLC. Furthermore, our improved basic query operations run, on average,

20 times faster than our BLC benchmark. This combined with our improved ca-

pability for streaming makes our compression highly desirable. Lastly, we believe

our compression technique can be used in the algorithms described in [92] and

[84] to further reduce the number of bits per arc.

59

Chapter 3

Boolean matrix-vector

multiplication on compressed

static graphs

Billion-scale Boolean matrices in the era of big data occupy storage that is mea-

sured in 100s of petabytes to zetabytes. The fundamental operation on these

matrices for data mining involves multiplication which suffers a significant slow-

down as the required data cannot fit in most main memories. In this chapter, we

propose new algorithms to perform Matrix-Vector and Matrix-Matrix operations

directly on compressed Boolean matrices using innovative techniques extended

from our previous work on compression. Our extension involves the development

of a row-by-row differential compression technique which reduces the overall space

requirement and the number of matrix operations. We have provided extensive

empirical results on billion-scale Boolean matrices that are Boolean adjacency

matrices of webgraphs. Our work has significant implications on key problems

such as page-ranking and itemset mining that use matrix multiplication.

60

3.1 Introduction

Frequent itemset mining and page ranking are classical data mining problems

that involve the use of Boolean matrices. A Boolean matrix is a matrix where

each entry is either true or false, represented as 1 or 0, respectively. For frequent

itemset mining, with n items we have an n × n matrix M and M(i, j) = 1 if

items i and j occur in the same transaction, otherwise it is 0. A variation of this

involves a matrix whose column size is equal to the number of items and row size

is equal to the number of transactions. If a transaction i contains an item j, then

the corresponding position of the matrix is set to 1, otherwise 0.

A web graph is then a graph G = (V,E) where V is the set of nodes (web

pages) and (u, v) ∈ E means that page u has a link to page v. These graphs can

be represented as a |V | × |V | Boolean adjacency matrix. That is, a cell (u, v) in

the matrix is a 1 if (u, v) ∈ E and is 0 otherwise.

Let n = |V | and A be our n× n matrix representing G. Given a real-valued

vector x ∈ Rn, a matrix-vector multiplication is then A · xT . This operation is

key in many algorithms such as association rule mining [82] and PageRank [107]

[28], which are our main motivations and discussed in our experiments.

Most real-world matrices such as the transaction-item matrix and the adja-

cency matrix corresponding to the web graph are very sparse, i.e., most of the

cells are 0. Rather than running a brute force Matrix-Vector multiplication algo-

rithm in O(n2) time, it would be preferable to reduce the number of operations

to O(m), where m is the number of non-zero cells in the matrix which could be

much less than n2.

There have been a number of works that compress a graph’s Boolean matrix

[39] [40] [16] [12] [84] [101]. Out of these compressions, k2-trees [16] and We-

61

bgraph [12] are generally considered to be state-of-the-art, with results in [16]

showing that k2-trees outperform Webgraph in all datasets. Although similar to

k2-trees, our work uses better compression, faster to query, supports streaming,

and contains many other improvements. Additionally, only Webgraph [12] and

our work involves differentially compressing the Boolean adjacency matrix row-

by-row. Results show that these compression schemes are the most suited for

matrix operations thus far.

Franciso et. al [50] used the compression algorithm of Boldi and Vigna [12] to

perform matrix-vector multiplication directly on the compressed matrix. They

found that because of the row-by-row differential compression technique, they

could reuse a product Ai · vT in the calculation of Aj · vT if j was compressed

differentially from i. This reduced the total number of matrix-vector operations

to being proportional to the size of the compressed graph [50].

Our contributions can be summed up as follows:

• We improve our previous compressed binary trees algorithm [100] [101] by

adapting it for differential compression with an enhanced encoding scheme.

The improved encoding allows us to better compress branches that only

contain one maximum depth leaf node and branches that are full.

• We provide algorithms for fast matrix-vector multiplication that directly

work on the compressed structure by reusing previously computed products.

• We extend this technique to perform fast Boolean matrix-matrix multipli-

cation. Here there are no intermediate matrix presentations and the final

resultant matrix is directly stored as the differential compressed binary

trees.

62

• Our empirical results for matrix-vector multiplication demonstrate that

this new technique outperforms the technique of Franciso et. al [50] on

all datasets in terms of execution time.

The rest of the chapter is organized as follows. In Section 3.2, we discuss

related work in data mining applications, compression algorithms, and other

matrix-vector multiplication speedup techniques. In Section 3.3, we describe

differential compressed binary trees with improved encoding. The matrix-vector

multiplication is described in Section 3.4 and the matrix-matrix multiplication

is presented in Section 3.5. In Section 3.6, we present our experimental findings

with discussion, and we conclude in Section 3.7.

3.2 Related work

We know that many data mining algorithms require repeated matrix-vector mul-

tiplication. Most famously, we have the PageRank algorithm [107], which cal-

culates a score that measures the importance of web pages. This can be done

by repeatedly multiplying a Boolean adjacency matrix of the web graph with

some real-valued vector. We initialize this vector to all ones, and we run our

experiments on PageRank using differentially compressed binary trees.

In other data mining applications, we also have diameter calculation [71],

which involves solving the all-pairs shortest paths problem via repeated matrix-

matrix multiplication and returning the largest diameter [68]. Our technique

would differentially compress the Boolean matrix that we use to repeatedly mul-

tiply. This not only saves space, but also improves calculation time by allowing

the reuse of products.

We also provide compression algorithms for Boolean Matrix-Matrix multi-

63

plication, which is helpful for other data mining algorithms such as connected

components [6] [62] [53] [127]. While the technique no longer benefits from the

reuse of products, it still saves space and allows us to short-circuit the Boolean

Matrix-Vector multiplication. This means we can return true as soon as a single

AND term is satisfied.

This chapter is based on our previous work involving arrays of compressed

binary trees [100] [101]. The compression concept is similar to k2-trees [16], except

we are the first to have each row of the matrix mapped to a compressed binary

tree with our improvements (ours is a row-by-row compression technique). We

also use different encoding schemes, and supply a technique to find the differential

CBT between two CBTs with these same improvements.

In 2018, Francisco et al. [50] studied the Matrix-Vector multiplication benefits

of the Webgraph Framework by Boldi and Vigna [12]. Their results show that

speedup is indeed possible through computation-friendly compressions.

In 2014, Nishino et al. [105] used adjacency forests to speedup matrix mul-

tiplication. Their technique allows adjacency lists to share common suffixes.

However, the authors consider matrices with real values instead of Boolean ma-

trices. Although they are not a compression, they observed that computational

results could indeed be reused. They also ran their experiments using PageRank

and their results show that similar adjacency rows allows for better compression

and Matrix-Vector multiplication speedups.

We note that this work is also relevant to the field of Online Matrix-Vector

(OMV) multiplication. Given a stream of binary vectors, x1, x2, ... if adjacent vec-

tors are similar enough, the results of previous vectors can be reused to speedup

computing later rows [61] [80]. However, none of the existing approaches prepro-

cesses the graph to exploit its redundancies. Thus by using techniques such as

64

node reordering, we can achieve a better compression, and thus better computa-

tion times.

3.3 Differential compressed binary trees

In this section, we show how an n × n Boolean matrix can be represented as a

series of differentially compressed binary trees (CBT′). Note that our technique

is very general and can be applied to matrices whose number of columns and rows

can be different. We then improve CBT′ by introducing a new encoding scheme

which allows us to better compress branches that are full and branches that only

contain one maximum depth leaf node (Section 2.4.3).

In Figure 3.1, we have a Boolean matrix (a) and its series of CBT′s (b). We

see that each CBT′ in (b) represents a row of the adjacency matrix in (a). Figure

3.1 (c) is the complete bitstring of the trees output in preorder traversal.

These CBT′s use the standard encoding where a one represents that the

branch contains a change, and a zero indicates otherwise. A consequence of

this standard encoding is that branches containing a change must travel to the

maximum depth of log2(n). What makes these CBT′s differential, is that when

a CBT′ encodes a node u, it only encodes the changes from node u − 1, i.e.,

|Au+1 − Au|, where 0 < u < n.

When we are encoding a node uj, we may also maintain a window W allowing

us to choose any node ui to differentially encode from, where 0 < j − i ≤ W ≤ n

where 0 ≤ i < j < n and n is the number of nodes. Figure 3.1 has W set to 1.

In Figures 3.2 and 3.3, the rows that the CBTs represent are obtained from

|Ai+1 − Ai|. This means that an entry v in the resulting row A′i = |Ai+1 − Ai|

indicates that Ai+1,v 6= Ai,v. In a differential CBT, a zero indicates that the

65

Figure 3.1: A Boolean matrix (a) and a series of differential compressed binary
trees (b); bit-strings in preorder traversal (c)

branch does not contain any ones, and a one indicates that the branch does

contain a one.

3.4 Matrix-vector multiplication

Assume we are given a CBT′ (a differential CBT), j, the CBTi it was differentially

encoded from, where i < j, and Ai · xT . Now, when we calculate Aj · xT , we

can simply calculate the product of the differential, (Aj − Ai) · xT , and add

66

Figure 3.2: A CBT of row Ai at time t. The ones and zeros are both
compressed.

Figure 3.3: A CBT′ with a single arc at [28] being added to the CBT from
Figure 3.2.

it to the result of Ai · xT , i.e., Aj · xT = ((Aj − Ai) · xT) + (Ai · xT). Thus,

we have a computation-friendly compression that is able to compute matrix-

vector multiplication in time proportional to the size of the compressed graph,

rather than proportional to the number of non-zeros in A. We can then see

that an appropriate node-reordering algorithm combined with larger values of

W will decrease the size of the compressed graph, and thus further improve the

computation time for matrix-vector product.

We also slightly modify the encoding again to include an extra bit after each

leaf node corresponding to a change. This bit will allow us to know whether

67

the change was a removal (0) or an addition (1) of an arc. This modification is

needed for our multiplication algorithm to know whether to subtract or add to

the product. We now describe Algorithm 3.1, which uses this new encoding to

calculate (Aj − Ai) · xT .

Algorithm 3.1: CBT-Vector Multiplication

Input: CBT a, int[] v
Output: int av

1 begin
2 int av = 0;
3 Node node = a.Root;
4 Visitor vtr = PreOrderTraversal(node);
5 while !vtr.End() do
6 if node.Label == 1 && IsMaxDepth() then
7 av = av + v[node.Index];

8 else if node.Label == 1 && node.Left.Label == 0 &&
node.Right.Label == 0 then

9 if node.IsPathBit == 1 then
10 index = node.RelativeBinaryPath();
11 av = av + v[index];

12 else
13 av = av + sum(v, node.begin, node.end);

14 else if node.Label == 0 then
15 vtr.Ignore(node);

16 node = vtr.VisitNext(node);

17 return av

In Algorithm 3.1, we take CBT a representing some adjacency row Aj and

the multiplying vector v, and we output Aj · v as an integer. For ease of reading,

we use the visitor pattern with preorder traversal (lines 3-4). First we handle

the standard encoding where we only add to our product when we reach arcs

at the bottom of the CBT (lines 6-7). Then, we check our improved encoding

cases where the node is labeled one, but followed by two zeros (line 8). If the

68

compression is a relative binary path (line 9), we get the index the path is pointing

to and add the v’s value at the index to the product (lines 10-11). If the branch

contains all ones (line 12), then we add all values in the current node’s range

(line 13). If the CBT is pruned off with a zero, then we know that we can skip

this entire branch (lines 14-15). We return the product on line 17.

Note that with the improved encoding, we can process multiple arcs quickly

if the branch is compressed with all ones. In other words, if the current branch

spans [begin, end] and it contains all ones (as represented by a one followed by

“000”) we no longer have to read any more of our tree and we can perform quick

sums to add directly to our product av. We now describe Algorithm 3.2 which

uses Algorithm 3.1 to perform matrix-vector multiplication using our differential

compression.

Algorithm 3.2: CBT Matrix-Vector Multiplication

Input: CBT[] a, int[] v
Output: int[] av

1 begin
2 int[] av = new int[n];
3 for int i = 0; i < n; i++ do
4 CBT u = a[i];
5 if u.IsDiff() then
6 uv = u.Multiply(v);
7 av[i] = av[u.Source] + uv;

8 else
9 av[i] = u.Multiply(v);

10 return av;

In Algorithm 3.2, we take as input an array of CBTs representing the rows

of our Boolean matrix A and the multiplying vector v, and we output an array

of integers that is the product A · v. We start by looping through each CBT u

representing row Au, for 0 ≤ u < n (lines 3-4). If the CBT is a differential (line 5),

69

then there is a node source from which u was differentially encoded and for which

we have already calculated Asource · v. We then calculate the differential product

(Au −Asource) · v (line 6), and add it to the source node’s result Asource · v. This

step is one of the main contribution of the chapter where we achieve our speed-up

by reusing products. If the CBT is not a differential (line 8), we perform a normal

multiplication and set the result in its appropriate position (line 9). Finally, we

return A · v on line 10.

Theorem 3.1: Given an n × n matrix M with n = 2k, m number of 1’s, and

average number of 1’s in each row δ = m/n, our CBT Matrix-Vector multiplica-

tion (Algorithm 3.2) runs with worst case time complexity O(m log2(n
2/m)), or

O(m log2(n(n− 1)/2m)) if we are only using the upper triangular matrix (where

we assume M(i, j) = M(j, i)).

Proof: Given the matrix conditions above, we assume run-time is equal to the

number of bits we must process. Thus, we refer to our space complexity given

in Theorem 2.1, which gives O(m log2(n
2/m)) bits. If we are only using the

upper triangular matrix, then we substitute n2 with (n2 − n)/2, which leads to

O(m log2(n(n− 1)/2m)) bits. �

Note again that compression size determines Matrix-Vector multiplication

time, and CBT’s size is equal to the theoretic minimum of m log2(n
2/m) +O(m)

[18].

3.5 Matrix-matrix multiplication

In this section, we take the technique from Section 3.4 and adapt it to Boolean

Matrix-Matrix multiplication. That is, we perform A × B = C where A, B,

70

and C are matrices represented as CBTs. Using CBTs allows us to perform

matrix-matrix multiplication with reasonable memory and that includes storing

the output directly as CBT. Now, notice that this involves multiplying the rows

of A with the columns of B, and that we also want to reuse C in place of B

for the next iteration. This means we must encode A such that its CBTs are its

rows, and B and C such that their CBTs are their columns. Thus, instead of

multiplying to construct C row-by-row, we instead want to multiply such that

we can build C column-by-column, top-to-bottom. This is as simple as looping

through B’s columns, then by A’s rows, instead of vice-versa. Also, since this is

Boolean multiplication, multiplying vectors involves switching the multiplication

with the AND operator, and the addition operation with OR. Although we lose

the benefit of reusing our products for calculation as in the cast of Matrix-Vector

multiplication where the vector contains real values, we gain the ability to short

circuit the multiplication and return true as soon as we find the first true AND

term. We now describe Algorithm 3.3, which multiplies two CBTs.

In Algorithm 3.3, for the sake of brevity, we only describe multiplication

using the standard encoding. As with Boolean vector multiplication, we take two

CBTs representing our input vectors and we output true or false. We begin by

traversing both trees at the same time using preorder traversal (lines 1-4). If

either of the current nodes is labeled zero (line 5), then we know that they have

no arcs in common and can thus ignore that entire branch for both trees (lines

6-7). However, if both nodes are labeled one and we have reached the bottom

of the trees (line 8), then we short-circuit and return true for the multiplication

(line 9). If we finish traversing either tree (line 4), then we have not satisfied any

AND operator and we return false (line 12).

Lemma 3.1: Assume we measure time by how many bits (nodes) we must

71

Algorithm 3.3: CBT-CBT (Boolean vector-vector) multiplication

Input: CBT a, CBT b
Output: bool ab

1 begin
2 Node node a = a.Root, node b = b.Root;
3 Visitor vtr a = PreOrderTraversal(node a) , vtr b =

PreOrderTraversal(node b);
4 while !vtr a.End() ∧ !vtr b.End() do
5 if node a.Label == 0 || node b.Label == 0 then
6 vtr a.Ignore(node a);
7 vtr b.Ignore(node b);

8 else if node a.Label == 1 && node b.Label == 1 &&
IsMaxDepth() then

9 return true;

10 node a = vtr a.VisitNext(node a);
11 node b = vtr b.VisitNext(node b);

12 return false;

traverse in the binary tree. Given two Boolean arrays A and B of size n, a

single CBT-CBT multiplication (Algorithm 3.3) runs with a worst-case time of

O(δ′(log2(n/δ
′))), where δ′ is the maximum number of 1s in A or B.

Proof: Notice that even though we know to ignore the current branch when

we encounter a zero in either tree, the other tree’s visitor may still need to read

through its branch to calculate where the next branch begins. Thus we know

that the worst case must read through all the distinct arcs from both trees, i.e.,

δ′, which is the maximum number of 1s in array A or B. Also, notice that nodes

near the root are double counted since we are reading two trees at the same time.

We then adjust our logic in Lemma 2.3 for our unioned tree, and it gives us∑blog2 δc
j=0 (2j+1) + δ(log2 n− blog2 δc − 1) + δ = O(δ′(log2(n/δ

′))). �

Theorem 3.2: Given two matrices Ma and Mb and number of arcs ma and mb,

respectively with |V | = n = 2k and δa = ma/n and δb = mb/n, the CBT Matrix-

72

Matrix multiplication in Algorithm 3.3 runs with worst-case time complexity of

O(m′ log2(n
2/m′)), where m′ = ma+mb. If we are only using the upper triangular

matrix then we have time complexity of O(m′ log2(n(n− 1)/2m′)).

Proof: We use the same notion as in Lemma 3.1, where we realize we must tra-

verse each 1 in the cell of each matrix , i.e., m′ = ma+mb. Our worst case is then

O(m′ log2(n
2/m′)), and if we are using upper triangular matrix we substitute our

n2 with (n2 − n)/2, which leads to O(m′ log2(n(n− 1)/2m′))). �

3.6 Experiments and results

We implemented all of our programs in C/C++ with an AMD FX(tm)-8350

Eight-Core @ 4.00Ghz and with 32GB of RAM. We ran 10 iterations of matrix-

vector multiplication for the Web graphs in Tables 3.2 and 3.3, with v initialized

to all ones. We compare the time to calculate these multiplications against our

benchmark, Web Graph by Boldi and Vigna (BV) [12]. We do not make any com-

parisons against the uncompressed matrix-vector multiplication since we would

have to hold a 143.1 petabyte Boolean adjacency matrix in main memory.

SizeBV SizeCBT ′ n m

eu-2015-hc 9.7GB 9.5GB 1.07× 109 9.17× 1010

eu-2015-host-hc 145MB 138MB 1.13× 107 3.87× 108

gsh-2015-hc 1.3GB 1.2GB 9.88× 108 3.39× 1010

it-2004-hc 194MB 177MB 4.13× 107 1.15× 109

uk-2014-hc 5.7GB 5.6GB 7.88× 108 4.76× 1010

Table 3.1: The datasets

Table 3.1 shows the Web crawl datasets used in the experiments along with

their sizes in Webgraph [12] and CBT′. Table 3.2 contains the computation time

results for Webgraph by Boldi and Vigna [12]. The column m is the number of

73

m m′BV tBV (s) t′BV (s) SBV = tBV

t′BV

eu-2015-hc 9.17× 1010 1.11× 1010 1715.5 591.8 2.9

eu-2015-host-hc 3.87× 108 1.10× 108 5.4 3.97 1.36

gsh-2015-hc 3.39× 1010 7.08× 109 973.9 544.1 1.79

it-2004-hc 1.15× 109 2.27× 108 14.7 7.4 1.99

uk-2014-hc 4.76× 1010 6.26× 109 1172.3 391.9 2.99

Table 3.2: Experimental results with Webgraph by Boldi and Vigna [12]

1’s, m′ is the number of differential non-zeros, t is the average time in seconds to

compute matrix-vector multiplication without differential compression, t′ is the

time to multiply with differential compression, and S is the observed speedup.

Table 3.3 contains the same information as in Table 3.2, but using CBT. The

results show that SCBT > SBV and t′CBT < t′BV . The column SCBT/SBV also

show the speedup as a percentage of using CBT vs BV.

We start by compressing each graph to a sequence of CBT′s. Then we calcu-

late m′CBT as the total number of nonzero entries represented by the compressed

structure. This m′CBT is different than m′BV since one structure may find it bene-

ficial to use its own differential compression, while the other may not. Note that

we keep a CBTj when there is no i such that sizeof(CBTj) > sizeof(CBTDiffj,i)

and 0 ≤ j −W ≤ i < j. In other words, it takes less space to normally compress

Aj than to compress it differentially.

Examining the results in Tables 3.2 and 3.3, we see that although m′CBT and

m′BV have very similar values, m′CBT is slightly smaller. This is because the

compression found it more beneficial to reuse more rows of the matrix, meaning

that the ratio CBTDiff/CBT is smaller on average than BVDiff/BV . This fact

helps explain why SCBT > SBV .

Our approach outperforms BV in terms of computation speeds t and t′ in all

74

m
m
′ C
B
T

t C
B
T

(s
)

t′ C
B
T

(s
)

S
C
B
T

=
t C

B
T

t′ C
B
T

S
C
B
T
/S

B
V

eu
-2

01
5-

h
c

9.
17
×

10
1
0

1.
10
×

10
1
0

15
02

.9
48

0.
7

3.
13

8.
0%

eu
-2

01
5-

h
os

t-
h
c

3.
87
×

10
8

1.
09
×

10
8

4.
6

3.
2

1.
44

6.
0%

gs
h
-2

01
5-

h
c

3.
39
×

10
1
0

7.
08
×

10
9

85
3.

9
45

1.
2

1.
89

5.
6%

it
-2

00
4-

h
c

1.
15
×

10
9

2.
26
×

10
8

11
.7

5.
5

2.
10

5.
5%

u
k
-2

01
4-

h
c

4.
76
×

10
1
0

6.
25
×

10
9

10
01

.5
31

1.
1

3.
22

7.
7%

T
ab

le
3.

3:
E

x
p

er
im

en
ta

l
re

su
lt

s
w

it
h

C
B

T

75

graphs. It outperforms in terms of t mainly due to a faster decoding method

and better compression brought about by the improved encoding methods from

Section 2.4.3. Additionally, it outperforms on t′ because m′CBT was smaller than

m′BV , meaning we reused more computations.

3.7 Conclusions

We have adapted our previous work involving differential compressed binary trees

to allow for matrix-vector multiplication. We have taken advantage of the tech-

niques described in [50] to allow us to reuse results for later computation. This

means that our computation time is now proportional to the compressed matrix

size, rather than the number of non-zeros in the original matrix. Therefore, the

better the compression is able to exploit redundancies, the faster the computation

time will be.

Our experiments show that differential CBTs allow for faster Matrix-Vector

multiplication than a similar adaptation of Boldi and Vigna. The first reason for

this is because our differential compression is succinct enough that the overall

compression allows for more reuses of encoded rows. We also massively improved

the encoding scheme in Section 3.3. Secondly, Boldi and Vigna’s technique also

makes use of integer encoders, which is more complex than our tree traversals.

We also extend our technique to support Boolean Matrix-Matrix multiplica-

tion which is used to find connected components and transitive closures. This

extension loses the ability to reuse products, but gains the ability to short-circuit

and return early.

We also observe that an interesting future work would involve reordering the

rows of the matrix in order to improve differential compression. Notice that we

would also have to reorder the multiplying vector or matrix correspondingly.

76

Chapter 4

Compressing time-evolving

graphs using binary trees

In this chapter, we propose to build a compressed data structure that has a

compressed binary tree corresponding to each row of each adjacency matrix of

a time-evolving graph. We do not explicitly construct the adjacency matrix,

and our algorithms take the time-evolving arc list (i.e., differential contacts)

representation as input for its construction. Our compressed structure allows for

directed and undirected graphs, fast arc and neighborhood queries, as well as the

ability for arcs and frames to be added and removed directly on the compressed

structure (streaming operations). We use publicly available network data sets

such as Flickr, Yahoo!, and Wikipedia in our experiments and show that our new

technique performs as well or better than our benchmarks on all datasets in terms

of compression size and other vital metrics.

77

4.1 Introduction

A time-evolving graph consists of a set of nodes in which the arcs among them

change over time. If we had a time-evolving graph of a web or social network

graph such as Facebook, we would be able to see how the graph evolved as nodes

and arcs are added and removed. In other words, we would be able to examine

the graph at any point in time, and directly see which nodes and arcs were active

at that time.

While many structures already exist to model time-evolving graphs, few focus

on implicitness and succinctness [11]. Now that networks such as web and social

networks are reaching such large scales with dynamic lifetimes, we need both more

main memory and compact yet fast time-evolving structures. If the user cannot

fit the graph into main memory, then they must make access calls to disk, which

incurs a high time penalty. During this work, we processed a Yahoo! network

flow time-evolving graph that only spanned three days yet occupied 21.5GB of

space. This massive amount of data presents a clear problem to areas such as

time-evolving graph pattern analysis.

When developing a queryable compression technique, it is usually designed to

answer a certain set of queries. While one technique may be efficient at answering

a query such as whether an arc is active at a particular time, it may be inefficient

at a query such as getting all arcs at a given time. A common requirement for

most compression algorithms is an intermediate structure, such as an adjacency

list, that is built from this list of triplets and used to efficiently build a final

compressed structure. Since we can incrementally build our compression, we do

not require such an intermediate structure. This, combined with our previously

developed technique of compressing directly from a gzipped text file, guarantees

78

minimal main memory overhead. For example, after preprocessing, our Yahoo!

dataset was 21.5GB as a raw text file. After gzipping, it shrunk down to 6.7GB,

giving us a main memory saving of 14.8GB.

Our novel compression technique is based on our previous work of using in-

dexed arrays of binary trees [100]. We adapt the original technique to time-

evolving graphs by compressing each node’s adjacency matrix row in each 2D

matrix time slice with differentially encoded compressed binary trees (CBT). We

also greatly improve the original definition of a compressed binary tree to better

compress runs of zeros and ones, as well as branches that contain a single one.

We also provide a method for aggregating a series of differential CBTs into a

single time spanning CBT, if more space efficient.

Our contributions can be summed up as:

• We adapt the technique introduced in our previous work [100] to compress

time-evolving graphs, in a queryable and streaming structure.

• We greatly improve the original notion of a compressed binary tree to com-

press runs of zeros and ones, as well as branches that only contain a single

one.

• We provide a differential compression technique that saves space by only

encoding the differences between a node’s frames.

• We maintain minimal memory overhead by not requiring any intermediate

structure (such as adjacency lists or matrices) to compress and by being

able to compress directly from a gzipped file.

• We provided an in-depth space complexity analysis as well as a proof of

correctness on our structure.

79

• We have developed algorithms to execute time-sensitive arc, neighbor, and

streaming operations that directly work on the compressed file.

• We provide a detailed empirical study that uses real, massive time-evolving

graphs and show that our technique performs as well or better than our

benchmarks on all datasets.

The rest of the chapter is organized as follows. In Section 4.2, we better define

time-evolving graphs and discuss the operations that can be performed on them.

In Section 4.3, we examine existing structures and describe our benchmarks. We

improve the notion of a compressed binary tree and apply it to time-evolving

graphs in Section 4.4. We also provide an analysis, a proof of correctness, and

supported operations with algorithms in this section. Finally, we report empirical

results in Section 4.5 and conclude in Section 4.6.

4.2 Preliminaries

In this section, we better define time-evolving graphs and the operations that can

be performed on them.

4.2.1 Time-evolving graphs

A time-evolving graph is a graph where arcs appear and disappear as time passes

[103]. Additionally, it retains the history of the graph at each time frame. There-

fore, we should be able to see the graph exactly as it was at each time frame.

A perfect example of this phenomenon is the popular social network, Facebook,

and how users are constantly adding/removing friendships.

80

Given a web or social network, it can be represented as a graph G = (V,E),

where V is a set of nodes (individuals) and E is a set of arcs (relationships).

Thus, a time-evolving graph would be a series of graphs GT = G1, G2, ..., Gτ ,

where τ is the number of time frames, i.e., the lifetime. Since a simple graph

G = (V,E) can be represented as a 2D matrix, then a time-evolving graph could

be represented as a 3D matrix.

When downloading a time-evolving graph off the web, we usually find them

represented as a contact list [23]. A contact is a 4-tuple (u, v, ti, tj) meaning that

the edge (u, v) existed (inclusively) between the time frames ti and tj, where

0 ≤ i < j < τ and τ is the lifetime of the graph.

From here, we provide several definitions that will be helpful in understanding

the different concepts surrounding time-evolving graphs. We denote n = |V | as

the number of vertices, m = |E| as the number of arcs, and τ as the number of

time frames, i.e., the lifetime.

Definition 4.1. An aggregated graph of a time-evolving graph GT is the static

graph defined by all arcs that have been active during the lifetime of GT . We can

also aggregate the graph from a given time-interval [ti, tj], where 0 ≤ i < j < τ .

Definition 4.2. An incremental graph is a time-evolving graph where once an

arc has been activated, it remains so until the end of the lifetime.

Definition 4.3. An interval graph is a time-evolving graph where arcs exist in

time intervals [ti, tj), where i < j. An arc may exist in several intervals and

intervals may not overlap.

Definition 4.4. A point-contact graph is a time-evolving graph where arcs only

appear at a single time frame, i.e., [ti, ti+1). arcs may appear at multiple points.

81

4.2.2 Operations on time-evolving graphs

Time-evolving graphs have many different applications, such as web and social

network graphs, communication networks, citation networks, etc. In each area,

the queries of interest are similar to those of static graphs, but with the addition

of the time dimension. We can see that these queries can be divided into four

categories shown in Table 4.1. Each of these queries can be targeted towards

a particular point in time, or a time interval. First, we have queries about

vertices, including retrieving the direct/reverse neighbors of a vertex. Next, we

have queries about arcs, such as determining whether an arc is active or not.

We also have queries about the graph as a whole, such as retrieving all active

arcs. Finally, we have queries about changes in the graph. For example, return

all arcs that changed state during the requested time period. We describe these

operations in Table 4.1.

4.3 Related work

Intuitively, a time-evolving graph can be represented as a sequence of static

graphs (snapshots), with each snapshot representing the graph at a particular

point in time. Since a snapshot can be represented as a 2D matrix, a time-evolving

graph can thus be represented as a 3D matrix, also known as a presence matrix

[47]. Formally, a presence matrix is a 3D binary matrix of size n× n× τ , where

an entry (u, v, t) represents whether the arc (u, v) is active at time t. The main

problem with this 3D representation is its large space requirements, and that the

arcs may remain unchanged for long time intervals. For example, as a 3D matrix,

the Wiki-Links dataset would require 22608064 ∗ 564224135 ∗ 414347809 = 26.5

zettabytes.

82

T
ab

le
4.

1:
O

p
er

at
io

n
s

on
ti

m
e-

ev
ol

v
in

g
gr

ap
h
s

C
la

ss
T

im
e-

ev
ol

v
in

g
op

er
at

io
n

V
er

ti
ce

s
D
ir
e
c
tN

e
ig
h
b
o
rs
(u

,t
):

re
tu

rn
s

ac
ti

ve
ad

ja
ce

n
t

n
ei

gh
b

or
s

of
u

at
ti

m
e
t

R
e
v
e
rs
e
N
e
ig
h
b
o
rs
(v

,t
):

re
tu

rn
s

ac
ti

v
e

re
ve

rs
e

n
ei

gh
b

or
s

of
v

at
ti

m
e
t

ar
cs

a
rc
((
u
,v
),
t)
:

re
tu

rn
s

tr
u

e
if

ar
c
(u

,v
)

is
ac

ti
v
e

at
ti

m
e
t,

fa
ls

e
ot

h
er

w
is

e

a
rc
N
e
x
t(
(u

,v
),
t)
:

re
tu

rn
s

th
e

in
st

an
t

of
th

e
n

ex
t

ac
ti

va
ti

on
of

(u
,
v
)

a
ft

er
t,

o
r
t

if
it

is
a
ct

iv
e;

ot
h

er
w

is
e

re
tu

rn
s
∞

G
ra

p
h

S
n
a
p
sh

o
t(
t)
:

re
tu

rn
s

al
l

ac
ti

ve
ar

cs
at

ti
m

e
t

C
h

an
ge

s
A
c
ti
v
a
te
d
A
rc
s(
t)
:

re
tu

rn
al

l
ar

cs
th

at
w

er
e

ac
ti

va
te

d
at

ti
m

e
p

oi
n
t
t

D
e
a
c
ti
v
a
te
d
A
rc
s(
t)
:

re
tu

rn
al

l
ar

cs
th

at
w

er
e

d
ea

ct
iv

at
ed

at
ti

m
e

p
oi

n
t
t

C
h
a
n
g
e
d
A
rc
s(
t)
:

re
tu

rn
al

l
ar

cs
th

at
w

er
e

ac
ti

va
te

d
or

d
ea

ct
iv

at
ed

a
t

ti
m

e
p

oi
n
t
t

83

In 2016, Caro et al. [23] developed ckd-trees, which we use as our main

benchmark. We do this not only because they have top compression rates, but

also because their technique is similar to ours in that they also use compressed

trees. They define a contact as a quadruplet (u, v, ti, tj) and then compress the

4D binary matrix corresponding to the time-evolving graph defined by a set of

these contacts. They do this by representing the 4D matrix as a kd-tree and

then distinguishing white nodes as those without any contacts, black nodes as

ones that only contain contacts, and gray nodes as those that contain only one

contact. This work was preceded by Brisaboa et al’s k2-trees [16] in 2014.

When compressing time-evolving graphs, two popular strategies are to either

(i) store the events of activation/deactivation of arcs or (ii) store changes between

snapshots by having representative snapshots and the log of events between them.

These are often referred to as log and copy+log, respectively.

Continuing on the snapshot representation idea, the G∗ database [78] is a

distributed index that solves the space issue of the presence matrix by only storing

new versions of an arc when its state changes, i.e., as a log of changes. They

do this by storing versions of the vertices as adjacency lists and maintaining

pointers to each time frame. If an arc changes in the next frame, they create a

new adjacency list for that vertex’s arc and add a pointer to the new frame. The

DeltaGraph [75] is also a distributed index, but it groups the different snapshots

in a hierarchical structure based on common arcs.

EveLog [22] is a compressed adjacency log structure based on the log of events

strategy. It consists of two separated lists per vertex - one for the time frames

and another for representing the arcs related to the event. The time frames are

compressed using gap encoding, and the arc list is compressed with a statistical

model. We can see that query times suffer because we need to sequentially scan

84

the log.

If we want to check if an arc is active at a particular time frame in the log

strategy, we must sequentially read the log of events (possibly deactivating/reac-

tivating the arc) until the time frame is reached. We can see that this approach is

slow for large time-evolving graphs, as it is done in linear time. Ferreira et al. [47]

follow this strategy by providing a quadruplet (u, v, t, state) for each time an arc

changes. In order to improve query times, in [20] the same authors also present

a data structure of adjacency lists where each neighbor has a sublist indicating

the time intervals when the arc is active. In arcLog [22], this idea is compressed

using gap encoding.

When querying copy+log at a time t, we must select the snapshot closest

to t and process the log of changes that occurred from the snapshot to t. In

[115], the authors develop the FVF (Find-Verify-Fix) framework which includes

a copy+log compression that also supports shortest-paths and closeness centrality

queries. More preliminary work is done in [10] [51], which describes three different

methods to index time-evolving graphs based on the copy+log strategy.

Two log of events strategies, CAS and CET, are proposed in [22] to address

the problem of slow query times when processing a log. CAS orders the sequence

by vertex and adds a Wavelet Tree [54] data structure to allow for logarithmic

time queries. CET orders the sequence by time, and the authors develop a

modified Wavelet Tree called Interleaved Wavelet Tree to also allow logarithmic

time queries.

In 2014, Brisaboa et al. [14] adapt compressed suffix arrays (CSA) [22] for

use in temporal graphs (TGCSA) by treating the input sequence as the list of

contacts. They use an alphabet consisting of the source/destination vertices and

the starting/ending times.

85

4.4 Time-evolving graphs as differentially com-

pressed binary trees with improved encod-

ing

As described in Section 4.2.1, a time-evolving graph can be represented as an

n × n × τ 3D matrix, where n = |V |. Additionally, it can be represented as a

series of graphs G0, ..., Gt, ..., Gτ−1, where Gt = (Vt, Et) and 0 ≤ t < τ .

Our compression represents each node u (0 ≤ u < n) at each time frame t

(0 ≤ t < τ). In other words, we compress the adjacency row representing the

neighbors of u at each time frame, differentially. In Figure 4.1 (a), we have a

graph of size n = 6 with τ = 5. Then, for each u, we represent each ut with

differential compressed binary trees (b). That is, the compressed binary trees

only represent neighbor changes since the previous time frame. For the sake

of brevity, only the first three nodes are compressed and illustrated with their

respective CBTs. However, the reader can find the final bit-strings for all nodes

at the bottom (c). We describe this more in Section 4.4.2. We can see that

our structure requires 130 bits, whereas the 3D matrix representation needs 180

bits. For undirected graphs, our binary tree would only represent the 3D upper

triangular matrix, giving 72 bits for our structure and ((nn−n)/2)× τ = 90 bits

for the 3D upper triangular matrix.

Our compression technique for time-evolving graphs is as follows:

• Compressed binary trees (CBT) are implemented with an improved en-

coding to better compress consecutive arcs and branches that only

contain one arc. (Section 4.4.1).

• Given a node i at time frames t− 1 and t where 1 ≤ t < τ , the adjacency

86

Figure 4.1: A time-evolving graph with n = 6 and τ = 5 represented as a series
of differential compressed binary trees

87

row Ai,t is encoded differentially from Ai,t−1. That is, a CBT is encoded to

represent the absolute difference between the adjacency rows |Ai,t−Ai,t−1|.

Only changes since the previous time frame are encoded. (Section 4.4.2)

• A window W is examined to determine if a series of CBTs can be more

efficiently represented as a single time spanning compressed binary tree

(T-CBT) (Section 4.4.3).

• The structure is outputted as a series of CBTs and T-CBTs with indexes

pointing to the beginning positions of each node (Section 4.4.4).

We also provide analysis in Section 4.4.5, a proof of correctness in Section

4.4.6, and supported operations with algorithms in Section 4.4.7.

4.4.1 Improved compressed binary trees

In this section, we introduce the compressed binary tree with the improved en-

coding techniques illustrated in Figures 4.2 and 4.3. In Figure 4.2, we have a row

Ai at a time t compressed with a binary tree using our new encoding scheme. We

can see that the branches containing only zeros are pruned off and compressed

with a single zero bit as usual. Now, notice that if a node is marked with a one,

it should normally never have its two children both marked with zero [23]. We

take advantage of this fact by saying that if a node is followed by two children

marked with zeros, then an additional bit must follow. If this next bit is zero,

then the branch is filled with all ones. If the bit is one, then the branch leads to

a single arc, as in Figure 4.3.

In Figure 4.3, we have row Ai again, but at time t+1 with one additional arc at

position 28. This row is encoded with a CBT differentially from the CBT of Ai,t

88

in Figure 4.2. We explain this more in Section 4.4.2. This example demonstrates

when a node’s two children are both marked zero, and the following bit is a one.

In this case, it means that the current branch leads to a single arc to which we

then provide a direct binary path, relative to the current branch. That is, while

the example’s change is encoded at the root of the tree (d = 0), it could occur at

any depth d < log2 (n)−3 with a saving of log2 (n)−2d−d−3 = log2 (n)−d−3

bits. We now describe Algorithm 4.1 which outputs a relative binary path given

a target index j and a node’s beginning and ending range.

Figure 4.2: A CBT of row Ai at time t. The ones and zeros are both compressed

Figure 4.3: A CBT′ with a single arc at position 28 being added to the CBT
from Figure 5.2

In Algorithm 4.1, we are given “begin” and “end” which represents the range

of our current node, along with the target index j. We calculate the relative depth

89

Algorithm 4.1: A relative binary path

Input: int begin, int end, int j
Output: The relative binary path as a bit-string

1 begin
2 BitString s;
3 depth = dlog2 (end− begin)e;
4 s.Initialize(depth);
5 for i = 0; i < depth; i++ do
6 mid = d(begin+ end)/2e;
7 if begin ≤ j < begin + mid then
8 s.AppendBit(0);
9 end − = mid;

10 else
11 s.AppendBit(1);
12 begin + = mid;

13 return s;

in line 2, which will be the length of our returned bit-string. In lines 5 through

12, we loop through each level of the remaining depth, and append a one or a

zero, depending on which child the path should navigate to (left = 0, right = 1).

We return the path’s bit-string in line 13.

4.4.2 Differential compressed binary trees

In Figures 4.2 and 4.3, the adjacency rows that the CBTs represent are obtained

from |Ai,t+1 − Ai,t|. This means that an entry v in the resulting row A′i,t+1 =

|Ai,t+1−Ai,t| indicates that Ai,v,t 6= Ai,v,t+1. In a differential CBT, a zero indicates

that the branch does not contain any change, and a one indicates that the branch

does contain a change. We now describe Algorithm 4.2 which also includes the

improved encoding scheme described in Section 4.4.1.

In Algorithm 4.2, we are given as input a node’s compressed binary tree (CBT)

and a list of arc targets. If a target is already a neighbor of the node, it is to

90

Algorithm 4.2: Differential binary tree compression

Input: CBTi,t, and a list of arc change targets
Output: CBT′i,t+1 as a bit-string

1 begin
2 BitString s;
3 Node node = cbt.Root;
4 Visitor vtr = PreOrderTraversal(node);
5 while !vtr.End() do
6 nodeTargets = targets.Where(x => node.Spans(x));
7 if nodeTargets.Count() > 0 then
8 s.AppendBit(1);
9 if node.arcs() == nodeTargets then

10 s.AppendBitString(’000’);
11 vtr.Ignore(node);

12 else if nodeTargets.Count() == 1 then
13 s.AppendBitString(’001’);
14 path = RelativeBinaryPath(node.begin, node.end, target);
15 s.AppendBitString(path);
16 vtr.Ignore(node);

17 else
18 s.AppendBit(0);
19 vtr.Ignore(node);

20 node = vtr.Next();

21 return s;

be removed. We use the visitor pattern and some LINQ notation [9] for ease of

reading. We start by traversing through the CBT representing the node’s current

neighbors. On line 6, we get the list of target changes pertaining to the current

node. If there are changes in this branch, we have three cases: (i) the branch is

removed entirely, (ii) the branch has one change, or (iii) the branch has many

changes. The last case is handled simply by line 8. The first case makes use of

our new encoding scheme in line 10 by appending ’000’, indicating that the entire

branch has been removed. The second case handled in lines 12 through 16 also

uses a new encoding scheme by appending ’001’, followed by the relative binary

91

path to the target change. If there were no changes for this node, then we simply

append a zero, as in line 18. We return the differential CBT as a bit-string in

preorder traversal in line 21.

The bit-strings for Figures 4.2 and 4.3 would be 110000 and 100111100, re-

spectively.

4.4.3 Time-spanning compressed binary trees

Over time, it may be more space-efficient to combine these differential binary

trees into one T-CBT structure [101]. This T-CBT is not a differential, but a

complete representation of the node during that time-span. The paper in [101]

mainly mentions T-ABTs, so when we say T-CBT, we are referring to a node’s

single T-CBT out of the entire T-ABT. However, we use variants of our improved

encoding scheme introduced in this chapter on the original technique [101].

We briefly describe a T-CBT. First, for some node i, we build a time-aggregated

adjacency row A′i which is the result of inclusively or’ing all Ai,t where begin ≤

t ≤ end < τ and [begin, end] is the desired time span. That is, A′i contains all

neighbors that node i has ever had within that time-span. Then, we build a

CBT representing A′i. However, once we reach a binary leaf node represent-

ing an arc v, we then begin another binary tree spanning the row Ai,v,t where

begin ≤ t ≤ end < τ . In other words, this new CBT spans the arc’s desired time

dimension where a 1 indicates whether or not the arc was active at that time

frame. We adopt the same concept involving both of a node’s children having

zeros from Section 4.4.1. If the third bit is a one, we build a relative binary path

directly to the arc, as above, followed by another CBT representing the arc’s time

dimension. If the third bit is a zero, then the node contains all ones. We then

92

list all the arcs’ time dimension CBTs in order, differentially.

In Figure 4.4, we can see that the space required for CBT (Ai,t)+CBT
′(Ai,t, Ai,t+1)

requires 7 more bits than T -CBT (Ai,t, Ai,t+1), which conveys the same informa-

tion [101]. Thus, when compressing from ti to tj, where i < j, we check to see

if
∑j

i (Size(CBT (ti))) > Size(T-CBT(i, j)). This trade-off can be explained by

the fact that T-CBTs only encode arcs once, while a series of CBT′s accrue ex-

tra space because arcs will get repeated. Therefore, we can see that our overall

structure for a single node will be a series of T-CBTs, followed by a series of

CBT′s.

4.4.4 Overall structure

When describing our technique for compressing, we must first envision each time

slice of the graph as its 2D Boolean adjacency matrix representation. For algo-

rithmic simplicity, we expand the matrices to the next highest power of two.

We start by compressing each node entirely, including all of its time dimension.

That is, for some node u, we are compressing Au,0 through Au,τ−1, where τ is the

lifetime of the graph. The first instance of the node u at time t0 will be a regular

CBT(Au,0). From there we append the node at each subsequent time frame with

CBT′s, as described in Section 4.4.2. Then, for some window W and ti to tj,

where 0 ≤ j − W ≤ i < j, we check to see if
∑j

i (Size(CBT (ti))) > Size(T-

CBT(i, j)). When this inequality is satisfied, we substitute CBT′s i through j

for a single T-CBT(i,j), as described in Section 4.4.3. Thus, we can see that our

overall structure will be a sequence of T-CBTs, with possibly different time-spans,

mixed with CBT′s, for each node.

We then apply indexes coupled with a lifetime to each node for quicker node-

93

Figure 4.4: A CBT of row Ai,t with two arcs (top), a CBT′ from Ai,t to Ai,t+1

with an additional two arcs (middle), and a T-CBT from Ai,t to Ai,t+1 (bottom)

94

centric queries throughout time. This is a common practice and sacrifices minimal

space for a great speed increase on queries [83]. In our case, the space requirement

is O(nd log(n)), yet we gain a time complexity of O(d log(n)), where d is the

contact degree of the graph.

Input

As mentioned in Section 4.2.1, when downloading a time-evolving graph off the

web, we usually find them represented as a contact list [23]. A contact is a 4-tuple

(u, v, ti, tj) meaning that the edge (u, v) existed (inclusively) between the time

frames ti and tj, where 0 ≤ i < j < τ and τ is the lifetime of the graph. Before

we compress, we preprocess this input to be a list of 3-tuples (u, v, t) indicating

that the edge (u, v) changes state at time 0 ≤ t < τ . Thus, every 4-tuple contact

(u, v, ti, tj) becomes two triplets, (u, v, ti) and (u, v, tj). We call these triplets

differential contacts. If an arc already exists and appears again in a later time

frame, then the arc is to be deactivated (and vice versa). This list of triplets is

to be sorted in ascending order, by u, then v, then t.

These assumptions are only necessary for a direct construction, rather than

an incremental one.

Direct construction

If we are given the sorted input graph all at once, we can construct each tree’s

preorder bit-string directly. This includes the T-CBT’s neighbor and time trees,

as well as every CBT′. This way, we can achieve an initial compression with a

time complexity of O(c log(n)). This process is the same as in Algorithm 4.3 and

[101].

Algorithm 4.3 uses Algorithm 4.2 and the T-CBT technique from Section 4.4.3

95

Algorithm 4.3: Time-evolving compression using binary trees

Input: The graph as a sorted list of triplets (u, v, t)
Output: The compressed graph as a bit-string

1 begin
2 diffSize ← 0;
3 for i= 0 to n− 1 do
4 for t= 0 to τ − 1 do
5 node ← GetNeighborsForFrame(n, t);
6 cbt-diff ← CompressToCBTDiff(node);
7 tcbt.Add(node);
8 if tcbt.Timespan() ≥ W then
9 tcbt.RemoveLastFrame();

10 if sizeof(tcbt) < sizeof(cbt-diff)+diffSize then
11 bitstring.Remove(diffSize);
12 bitstring.Append(tcbt.ToBitstring());
13 diffSize ← 0;
14 tcbt.Clear();

15 else
16 bitstring.Append(cbt-diff.ToBitstring());
17 diffSize += sizeof(cbt-diff);

18 indexes.Append(sizeof(bitstring));

19 return indexes.ToBitstring() + bitstring;

(lines 6 and 7, respectively) to compress each time frame into a CBT′ or a span

of time frames into a T-CBT. Notice that while we appear to be running with

complexity n × τ , the nested loops only perform real computation when there

is a change from the previous frame. We have only written it this way because

frames without any changes still require a zero bit. The window is maintained

in lines 8 and 9. Then, on line 10, it checks to see if the W most recent CBT′s

could be more efficiently represented with the single T-CBT. If so, it removes the

previous CBT′s (line 11) and appends the already calculated T-ABT (line 12).

Otherwise, on line 16, it appends the latest CBT′. While doing all of this, it also

keeps track of the index position and lifetime of each T-CBT. Finally, it returns

96

the list of indexes appended with the list of compressed nodes on line 19. For

our index’s integer encoding scheme, we use Delta Encoding [41].

As described above, the first frame, t0, will be a regular CBT representing

the entire graph at time t0. Then, while we are building and appending CBT′s,

we are also maintaining the current T-CBT that spans those CBT′s within some

window W . Thus, when our inequality
∑j

i (Size(CBT (ti))) > Size(T-CBT(i, j))

is satisfied, we already have the T-CBT ready and can replace the CBT′s with it.

Note that this representation is also needed to know what the T-CBT’s actual

size is for the inequality. Otherwise, we would have to approximate.

Compressing directly from a gzip compressed arc list

During our experiments, we encountered such large graphs that even the raw arc

list format required over 20GB of RAM. Since most computers these days do

not have access to large amounts of main memory, we devised a way to compress

directly from a much smaller gzipped file. It is important to note that the gzipped

file must also be sorted.

The technique uses the zLib library [34] that gzip is built on. This library

allows us to partially inflate (decompress) the file in chunks. Since the file is

sorted, we can decompress a single node before we recompress it with our method.

Obviously, this technique only affects compression time and memory required for

compression.

4.4.5 Analysis

Recall that a graph has n nodes, m static arcs, and c′ differential contacts. Each

differential contact is stored as a 1 in the 3D Boolean matrix, with the rest of

97

the entries being 0.

Lemma 4.3: Given a time-evolving graph with n = 2k (k > 0), c′ differential

contacts, a lifetime of τ , an average differential contact per frame δ = c′/τ , and an

average node-differential contact degree of α = δ/n, a single node in a frame from

the time-evolving graph can be encoded with a total space of α(log2(τn
2/c′)) +

O(α) bits.

Proof: Using Lemma 2.2 and the graph conditions above, a compressed node

would yield a total of kα + 3α bits. However, not all of the paths to each dif-

ferential contact may be unique. We can see that the worst case is when every

node in the tree is present up to depth log2(α). After that level, the worst case

follows with each path to the α differential contacts being unique, giving a to-

tal space of
∑blog2 αc

j=1 (2j)+α(k−blog2 αc−1)+3α = α(log2(τn
2/c′))+O(α) bits. �

Lemma 4.4: Given a time-evolving graph with n = 2k (k > 0), c′ differential

contacts, a lifetime of τ , an average differential contact per frame δ = c′/τ , and

an average node-contact degree of α = δ/n, a single frame can be compressed

with δ log2(τn
2/c′) +O(δ) bits, or δ log2(τn(n− 1)/2c′) +O(δ) bits if we are only

using the upper triangular matrix.

Proof: Given the graph conditions above, we must use the formula in Lemma

4.3 for all n nodes, giving n(α(log2(τn
2/c′))) +O(α) = δ log2(τn

2/c′)) +O(δ). �

Proposition: Given a time-evolving graph with n = 2k (k > 0) nodes, c′ dif-

ferential contacts, and a lifetime of τ , the information-theoretic lower bound for

storage is c′ log2(τn
2/c′) +O(c′) bits [18].

98

Theorem 4.1: Given a time-evolving graph with n = 2k, c′ differential contacts,

a lifetime of τ , an average differential contact per frame δ = c′/τ , and an average

node-contact degree of α = δ/n, the entire time-evolving graph can be compressed

with c′ log2(τn
2/c′)+O(c′) bits, or c′ log2(τn(n−1)/2c′)+O(c′) bits if we are only

using the upper triangular matrix, thereby achieving the information-theoretic

lower bound.

Proof: Given the graph conditions above, we must use the formula in Lemma 4.4

for each of the τ time frames, giving τ(δ(log2(τn
2/c′)))+O(δ) = c′ log2(τn

2/c′))+

O(c′). �

A 3D-plot of our upper bound for space requirements is given in Figures 4.5

and 4.6 with set values of τ .

Figure 4.5: 3D-plot of space (bits) requirements given n (nodes) and c
(differential contacts) with τ = 414347809

99

Figure 4.6: 3D-plot of space (bits) requirements given n (nodes) and c
(contacts) with τ = 135

4.4.6 Proof of correctness

Theorem 4.2: Given a time-evolving graph Gτ = G0, G2, ..., Gτ−1, Algorithm

4.3 provides a lossless compression of GT .

Proof: If G′i = Gi−Gi−1 and G′0 = G0, where τ > i > 1, then G0+G′1 = G1 and

thus Gt =
∑t

i=0G
′
i, where τ > t > 1. Therefore, {G′i} = Gτ , where τ > i ≥ 0.

Now, since {ABT ′i} = {G′i} and TABT ′i,j = {ABT ′k}, for all τ > j ≥ k ≥

i ≥ 0, our algorithm is correct. �

4.4.7 Supported operations

We provide four operations that can be performed on our structure: checking arc

existence at a given time t, getting a node’s neighbors at t, adding/removing arcs

at t, and appending/removing frames. While these are all separate operations,

they all involve knowing how to efficiently traverse the compressed tree in bit-

string form, which we have described for regular ABTs in [100] and for T-ABTs

100

in [101]. In Algorithm 4.4, we describe how to decode a CBT′, which is the final

tool needed to run our supported queries.

Algorithm 4.4: Differential CBT - Decoding

Input: CBTt−1 and CBT ′t
Output: CBTt

1 begin
2 Node node tm1 = cbt tm1.Root , node t = cbt t.Root;
3 Visitor vtr tm1 = PreOrderTraversal(node tm1) , vtr t =

PreOrderTraversal(node t);
4 while !vtr t.End() do
5 if node t.Label == 1 then
6 if node tm1.Label == 0 then
7 node tm1.Label ← 1;
8 vtr tm1.Expand(node tm1);

9 else if node t.isLeaf() then
10 node tm1.Label ← !node tm1.Label;

11 else
12 vtr tm1.Ignore(node tm1);

13 node tm1 = vtr tm1.VisitNext(node tm1);
14 node t = vtr t.VisitNext(node t);

15 return vtr tm1.ToBitstring();

Algorithm 4.4 takes as input a CBT representing Ai,t−1 and a CBT′ repre-

senting A′i,t = |Ai,t−Ai,t−1|, for some i ∈ V . It outputs the CBT after its CBT′ is

applied, thus representing Ai,t−1. For algorithmic simplicity, we assume that the

CBTs are using the original encoding scheme. However, all of experiments use

the improved version. We start by traversing both CBT and CBT′ at the same

time. At each node in the preorder traversal we check to see if CBT′ indicates

a change, as in line 5. If so, we have two cases. If the current CBT’s node is

labeled with a zero, then we must set it to one and expand he node (lines 6-8). If

the current CBT’s node is a leaf node, we flip the node’s label (lines 9-10). Line

11 means that CBT′ did not indicate a change in the node, and should therefore

101

be ignored. We return the new CBT in line 15.

Arc query

We shall describe Algorithm 4.5 for checking arc existence (u, v) at a time t in our

structure. It begins with lines 2-4 loading the indexes and using them to navigate

to u’s starting position. Then, on line 5, we begin decoding each T-CBT (line 6)

or each CBT′ (line 11) in chronological order while also maintaining the latest

frame of the node on lines 4, 10, and 12. If the current CBT is a T-CBT (line 6),

then we check to see if it spans our selected time frame (line 8). If so, we return

whether or not the arc is active on line 9. If the current CBT was a CBT′ (line

11), then we apply the CBT′ to the current CBT (line 12). Then, if the current

CBT spans t (line 13), we return whether the arc exists (line 14). This process

is the same as in Algorithm 4.4, except we return true or false when we decode

the node representing the requested arc.

Neighbor query

The neighbor query is the same as the arc query, except that it decodes the entire

node and returns the active arcs.

Streaming arcs

Streaming arcs involve being able to activate or deactivate an arc in any time

frame. Therefore, we present Algorithm 4.6 which assumes that CBTu,t−1 has

already been decoded, given a time t and an arc (u,v). The algorithm also assumes

that the streaming operation is an arc addition rather than a removal. This

assumption is merely for ease of algorithmic reading, as the removal operation is

the mirror of addition. Additionally for algorithmic simplicity, we again assume

102

Algorithm 4.5: Time-Evolving Differential ABT Compression - Arc-Time
Query

Input: The compressed time-evolving graph as a bit-string s, u, v, and t
Output: True or False

1 begin
2 indexes ← s.GetIndexes();
3 position ← indexes.GetStart(u);
4 currentCBT ← null;
5 while true do
6 if s.IsTCBT(&position) then
7 tcbt ← s.GetTCBT(&position);
8 if tcbt.Spans(t) then
9 return tcbt.Contains(v, t);

10 currentCBT ← tcbt.LastFrame();

11 else
12 currentCBT.Apply(s.GetCBTDiff(&position));
13 if currentCBT.Spans(t) then
14 return currentCBT.Contains(v);

that the CBTs are using the original encoding, rather than our improved one.

However, our experiments are coded using the improved version.

Algorithm 4.6 is similar to Algorithm 4.4 in the sense that we must tra-

verse multiple trees at the same time. We must additionally traverse and modify

CBT ′t+1 since a change in t will affect our differential encoding for t+ 1. During

this traversal, we only care about nodes that span over the targeted arc (line 5);

we ignore them otherwise (lines 25-27). When we encounter a spanning node, we

check if CBT′t or CBT′t+1 needs to be expanded (lines 6-11), which we continue to

do until we reach a leaf node (line 12). Once we reach the leaf nodes of both CBT′t

and CBT′t+1, we set our labels and recursively update/compress the branch if the

label was a zero (lines 15 and 20). Finally, since we have reached the leaf node

level, the algorithm is finished and we return the updated CBT′t and CBT′t+1 on

103

Algorithm 4.6: Differential CBT - Streaming an arc

Input: CBTt−1, CBT
′
t , CBT

′
t+1, and the arc to be added, y

Output: The new CBT ′t and CBT ′t+1

1 begin
2 Node node tm1 = cbt tm1.Root, node t = cbt t.Root, node tp1 =

cbt tp1.Root;
3 Visitor vtr tm1 = PreOrderTraversal(node tm1), vtr t =

PreOrderTraversal(node t), vtr tp1 = PreOrderTraversal(node tp1);
4 while !vtr t.End() do
5 if node tm1.Spans(y) then
6 if node t.Label == 0 then
7 node t.Label ← 1;
8 vtr t.Expand(node t);

9 if node tp1.Label == 0 then
10 node tp1.Label ← 1;
11 vtr tp1.Expand(node tp1);

12 if node t.isLeaf() then
13 if node tm1.Label == 1 then
14 node t.Label ← 0;
15 vtr t.RecursivelyUpdate();

16 else
17 node t.Label ← 1;

18 if node tp1.Label == 1 then
19 node tp1.Label ← 0;
20 vtr tp1.RecursivelyUpdate();

21 else
22 node tp1.Label ← 1;

23 return vtr t.ToBitstring(), vtr tp1.ToBitstring();

24 else
25 vtr tm1.Ignore(node tm1);
26 vtr t.Ignore(node t);
27 vtr tp1.Ignore(node t);

28 node tm1 = vtr tm1.VisitNext(node tm1);
29 node t = vtr t.VisitNext(node t);
30 node tp1 = vtr tp1.VisitNext(node tp1);

31 return;

104

line 23.

Streaming frames

Our final operation of streaming frames applies to adding/removing frames to/from

the end of the time-evolving graph. The appending operation is a trivial mod-

ification of the construction process of Algorithm 4.3. That is, adding a frame

includes inserting or appending a CBT′, and then converting the resulting series

of CBT′s to a T-CBT if needed. When removing a frame, if the frame is a CBT′,

then we simply remove it and update the next frame. If the frame is spanned by

a T-CBT, we break up the T-CBT into CBT′s and perform the same process.

4.5 Experiments and results

Our experiments involve comparing CBT′ compression sizes against various time-

evolving compression techniques, particularly ckd-tree [23]. We compare using

the time-evolving graphs in Table 4.2. The original results in [23] were in bpc

(bits per contact), but we have converted these compression rates to their final

compressed sizes (e.g., megabytes). This is because their definition of a contact

is not useful to us as we compress against a 3D representation rather than a 4D

one. We now explain each dataset.

The Comm.Net* and Powerlaw* graphs are synthetic and recreated accord-

ing to the specifications in [23]. Comm.Net* represents short communications

between random vertices. Powerlaw* is a power-law degree graph, where few

vertices have many more connections than other vertices, but with a short life-

time. We star(*) these graphs because they are not exactly equal to the original

graphs, but should yield comparable graphs.

105

T
y
p

e
|V
|

|E
|

L
if

et
im

e
C

on
ta

ct
s

I-
C

om
m

.N
et

*
In

te
rv

al
10

00
0

15
94

07
43

10
00

1
19

06
15

71

I-
P

ow
er

la
w

*
In

te
rv

al
10

00
00

0
31

97
99

27
10

01
32

28
08

16

I-
W

ik
i-

L
in

k
s

In
te

rv
al

22
60

80
64

56
42

24
13

5
41

43
47

80
9

73
14

68
59

8

I-
Y

ah
o
o-

N
et

fl
ow

In
te

rv
al

10
36

61
22

4
32

10
11

86
1

11
41

93
95

50
33

90
1

G
-F

li
ck

r-
D

ay
s

In
cr

em
en

ta
l

25
85

57
0

33
14

00
18

13
5

33
14

00
18

P
-W

ik
i-

E
d
it

P
oi

n
t

21
50

41
92

12
20

75
17

0
30

40
02

80
1

26
67

20
84

0

T
ab

le
4.

2:
T

h
e

d
at

as
et

st
at

s

106

.t
x
t

.t
x
t.

gz
C

B
T
′ %
B
E
S
T

C
B

T
′

ck
d
-t

re
e

C
A

S
C

E
T

T
G

C
S
A

I-
C

om
m

.N
et

*
19

8.
3M

B
66

.2
M

B
-3

.2
%

60
.1

M
B

62
.0

M
B

11
7.

2M
B

13
1.

0M
B

14
5.

8M
B

I-
P

ow
er

la
w

*
61

1.
5M

B
15

7.
6M

B
-4

.5
%

12
3.

2M
B

12
8.

7M
B

31
2.

7M
B

38
8.

2M
B

29
7.

8M
B

I-
W

ik
i-

L
in

k
s

16
.7

G
B

4.
2G

B
+

0%
3.

2G
B

5.
6G

B
3.

2G
B

5.
3G

B
6.

1G
B

I-
Y

ah
o
o-

N
et

fl
ow

21
.5

G
B

6.
7G

B
-4

.1
%

4.
9G

B
5.

1G
B

5.
8G

B
7.

5G
B

7.
5G

B

G
-F

li
ck

r-
D

ay
s

77
6M

B
81

.0
M

B
-1

.0
%

77
.1

M
B

95
.3

M
B

77
.9

M
B

55
5.

9M
B

20
9.

6M
B

P
-W

ik
i-

E
d
it

6.
6G

B
1.

7G
B

+
0%

1.
3G

B
1.

4G
B

1.
4G

B
1.

3G
B

2.
4G

B

T
ab

le
4.

3:
C

om
p
re

ss
ed

gr
ap

h
si

ze
s

107

C
on

fi
d
en

ce
L

ev
el

=
95

%
C

om
p
re

ss
io

n
(h

r)
a
rc
t

(µ
s)

N
ei
g
h
bo
r t

(µ
s)

S
tr
ea
m
t

(µ
s)

I-
C

om
m

.N
et

*
2.

7m
15

2.
78

2
±

13
2.

70
6

15
8.

72
2
±

12
9.

50
6

18
5.

05
0
±

14
0.

87
6

I-
P

ow
er

la
w

*
5.

2m
12

1.
23

1
±

99
.3

10
13

1.
24

3
±

98
.0

21
15

6.
66

1
±

10
4.

38
4

I-
W

ik
i-

L
in

k
s

1.
8h

46
3.

24
2
±

33
7.

23
7

46
9.

51
7
±

32
0.

75
1

47
8.

38
0
±

34
3.

44
6

I-
Y

ah
o
o-

N
et

fl
ow

2.
1h

39
5.

57
5
±

23
5.

52
3

40
2.

23
6
±

20
0.

66
2

41
2.

76
0
±

23
7.

52
2

G
-F

li
ck

r-
D

ay
s

5.
1m

93
.5

43
±

40
.9

57
95

.3
99
±

36
.0

04
10

5.
99

7
±

19
.8

90

P
-W

ik
i-

E
d
it

31
.1

m
22

5.
73

4
±

19
6.

51
2

22
9.

61
6
±

18
4.

51
7

24
5.

67
3
±

20
3.

35
7

T
ab

le
4.

4:
C

B
T
′

ex
ec

u
ti

on
ti

m
es

108

The Flickr-Days dataset is an incremental time-evolving graph with time gran-

ularity set to days from 11-02-2006 to 05-18-2007. It represents when users be-

came friends in the Flickr Social Network and can be found at http://socialnetworks.mpi-

sws.org/data-www2009.html.

The Wiki-Links (http://dumps.wikimedia.org/enwiki/) interval dataset shows

the history of links among articles in the English version of Wikipedia. It has time

granularity by second since 03-04-2014. Additionally, Wiki-Edit (http://konect.uni-

koblenz.de/) is a bipartite, point-contact graph indicating when a user edits

a Wikipedia article. It has time granularity of seconds since the creation of

Wikipedia.

Finally, we have the Yahoo-Netflow interval graph which contains communi-

cation records between end users in the large Internet and Yahoo servers. It

has time granularity by seconds starting at 04-29-2008 and can be found at

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g.

All datasets are anonymized and require preprocessing. For example, the

Yahoo-Netflow dataset contains timestamp, source IP address, destination IP

address, source port, destination port, protocol, number of packets, and number

of bytes transferred from the source to the destination. The IP addresses were

already anonymized with a random permutation algorithm. We also only needed

timestamp, source, and destination information, which were converted to frames

and vertices, respectively. Additionally, since we pulled both of the Wikipedia

dumps after the work in [23], we had to remove records until they matched the

original graphs.

We run all of our algorithms on a machine with an Intel(R) Xeon(R) CPU

E5520 @ 2.27GHz (4 cores) with 64GB of RAM.

109

4.5.1 Compression

While examining the compression results, we refer to Table 4.3. The first three

columns describe the dataset with its name, size as a raw text file, and size of the

text file compressed with gzip. Note that these text file sizes are after we have

performed our preprocessing on the graphs. The details of each dataset graph are

reported in Table 4.2. The next column gives a percentage of CBT′ with the next

best compression method, for easy reading. The following columns represent the

size of the graph after each compression technique has been applied.

The results show that CBT′ compresses as well or better than the other tech-

niques on all datasets. When examining this, we see that we achieve better space

than the ckd-tree in all cases. This makes sense, as our trees are similar, but our

technique makes use of differential encoding throughout time, giving strictly bet-

ter compression rates. This also explains why our technique outperforms CAS,

even on Wiki-Links and G-Flickr-Days. These graphs contain more active arcs

over time, which is a positive case for both CAS and CBT′. CAS no longer needs

to store the neighboring changes that deactivate arcs at the end of the lifetime

[23] [22], and our compression becomes mostly CBT′s.

For P-Wiki-Edit, which is a point-contact graph, we adjusted our CBT′s such

that an arc is automatically assumed to disappear in the next frame unless re-

peated again. Similar to G-Flickr-Days and I-Wiki-Links, the P-Wiki-Edit graph

also compresses to mostly these modified CBT′. It is only when users edit multi-

ple pages many times that it becomes more space-efficient to use T-CBTs. This

is because the entire branch has to be constructed each time, rather than once

with a time dimension as in [101].

110

4.5.2 Operation times

Next, we examine the various operation times of CBT′. Since we did not have

access to our benchmarks’ code, nor an equivalent machine, we can only compare

our operation times amongst themselves. When discussing these operation times,

we refer to Table 4.4.

The first column indicates the time it took for our technique to compress the

graphs. We can see that this time is somewhat proportional to the size of the

graphs in terms of contacts. Again, note that our technique does not require any

intermediate structure to compress. Thus, our compression times are not affected

by access times of these intermediate structures and only depend on the time it

takes to read the file and build the trees.

The following columns represent running times of different operations on the

compressed graph. These include the time to query an arc at time t (arct),

retrieving all neighbors of a node at t (Neighbort), and streaming/activating

arcs at t.

Each of these operation times is the average of 1000 queries with random

parameters. All these times are measured in microseconds with a confidence

level of 95%.

Before examining the times, realize that if we are searching through a T-CBT,

regardless of whether we are interested in an arc, once we have reached it, we

have no choice but to read its corresponding time tree before we can continue

with reading the rest of the tree for the aggregated matrix. This explains why

we have high variance on our arct and Streamt operations. This can be avoided

by including a number to indicate how long the time tree is, but this increases

space required.

111

We see that query times are mostly affected by τ , which also results in higher

variance. arct is inherently the fastest of the queries, as it returns as soon as it

finds the requested arc at a given time frame. We also manage to keep Streamt

somewhat similar to arct by using a modified unrolled linked list to allow for

faster bit insertion/deletion.

4.6 Conclusion

In this chapter, we have introduced a novel time-evolving web and social network

compression using differential compressed binary trees. We also maintain minimal

memory overhead while compressing and provide arc, neighbor, and streaming

algorithms. We also provide analysis for our compression which proves that our

technique requires c log2(τn
2/c)) + O(c) bits of space, which is asymptotically

twice the theoretical minimum. We compare this technique using several real-

world datasets against several benchmarks from [23]. We find that our technique

performs as well or better than the best benchmark compression in every dataset,

and we provide description and analysis of the results.

112

Chapter 5

Algorithms on compressed

time-evolving graphs

Time-evolving graphs are structures that encapsulate how a graph changes over

time. Thus, we not only have to deal with large graphs consisting of nodes and

arcs in the billions, but we must also keep track of when these arcs activate and

deactivate over long lifetimes. In this age of big historical data, we must make

use of efficient time-evolving graph compressions, or we will find ourselves quickly

out of main memory.

These time-evolving graph compressions must not only be space-efficient, but

must also facilitate fast querying directly on the compressed graph. In this chap-

ter, we define several novel time-evolving graph problems and develop algorithms

to solve them directly on various, massive, synthetic and real-world time-evolving

graphs compressed using our technique. Our experiments provide details of the

compressed graph sizes, algorithm run-times, and other metrics.

113

5.1 Introduction

In this chapter, we adapt our time-evolving compression from Chapter 4 to run

time-evolving algorithms. Our motivation is similar to that of Chapter 3, but we

instead claim that it is also desire-able to run algorithms directly on the com-

pressed time-evolving graphs. We compute the earliest arrival paths, transitive

closure, incremental transitive closure, and our own novel definition of time-

evolving transitive closure. We provide the definition and motivation for each of

these problems in Section 5.2.2.

Our contributions can be summed up as:

• We compress time-evolving graphs in a queryable and streaming structure

and provide different ways of ordering the structure to better accommodate

certain algorithms.

• We define our novel problem of time-evolving transitive closure.

• We provide an algorithm to solve the existing problem of finding earliest

arrivals paths.

• We provide an algorithm to solve our novel problem of time-evolving tran-

sitive closure. In doing so, we also provide algorithms for transitive closure

and incremental transitive closure.

• All algorithms keep all data compressed to give efficient run-times and

memory usages.

• We provide a detailed empirical study that uses real, massive time-evolving

graphs and report the findings on our algorithms’ run-times.

114

The rest of the chapter is organized as follows. In Section 5.2, we define

time-evolving graphs and the problems that we will be solving on them. We

describe our compression technique using compressed binary trees in Section 5.3.

We define the algorithms to run directly on our compressed graph in Section 5.4.

In Section 5.6, we discuss related work. Finally, we report empirical results in

Section 5.5 and conclude in Section 5.7.

5.2 Preliminaries

In this section, we define time-evolving graphs and the operations that can be

performed on them.

5.2.1 Time-evolving graphs

As described in Chapters 1 and 4, a time-evolving graph is a graph where arcs

appear and disappear as time passes [103]. A static graph (snapshot) can be

represented as a graph G = (V,E), where V is a set of nodes and E is a set of

arcs. Thus, a time-evolving graph would be a series of graphs GT = G1, G2, ..., Gτ ,

where τ is the number of time frames, i.e., the lifetime. Since a simple graph

G = (V,E) can be represented as a 2D matrix, then a time-evolving graph could

be represented as a 3D matrix, also known as a presence matrix [47].

When downloading a time-evolving graph off the web, we usually find them

represented as a contact list [23]. A contact is a 4-tuple (u, v, ti, tj) meaning that

the edge (u, v) existed (inclusively) between the time frames ti and tj, where

0 ≤ i < j < τ and τ is the lifetime of the graph. Before we compress, we pre-

process this input to be a list of 3-tuples (u, v, t) indicating that the edge (u, v)

changes state at time 0 ≤ t < τ . Thus, every 4-tuple contact (u, v, ti, tj) becomes

115

two triplets, (u, v, ti) and (u, v, tj).

We also notice that representing a time-evolving graph as a static graph (by

union-ing all arcs) loses temporal information that is vital in understanding cer-

tain properties of the time-evolving graph. For example, if we have two temporal

arcs (i, j, 1) and (j, k, 0), a union-ed version of the graph would show that i can

reach k through j. However, such a path is not actually possible in the time-

evolving graph because it would require going backwards in time from frame t = 1

to t = 0.

5.2.2 Problems on time-evolving graphs

In this section, we define several problems of interest on time-evolving graphs.

We address these problems by developing algorithms to run directly on the com-

pressed time-evolving graph. In fact, we keep all data compressed throughout

every algorithm, giving efficient run-times and memory usages.

Earliest arrival paths

We start by defining what a path is on a time-evolving graph, since a path that

travels through time does not translate directly from a path in a static graph.

Definition 5.1 (Time-evolving path). Note that given a time-evolving graph

GT = G1, G2, ..., Gτ , each arc e ∈
⋃τ
i=1(E(Gi)) can be represented as a triplet

e = (u, v, t), meaning that u is connected to v at time t. Thus, we define a

time-evolving path as a series of arcs (e1, e2, ..., ek), where v(ei) = u(ei+1), t(ei) ≤

t(ei+1), and 1 ≤ i ≤ k. In other words, the path can not go backwards in time.

We see that this definition preserves temporal information throughout the

path.

116

Definition 5.2 (Earliest arrival path). A path p ∈ P is an earliest arrival

path if for all paths p′ ∈ P , tend(p) ≤ tend(p
′), for some time range [tstart, tend].

Thus, we are given a source vertex s, and a time interval [tbegin, tend[and we

output a path to every other vertex in G.

A classic motivational example for the earliest arrival paths problem is to find

the earliest at which you can arrive at any airport given some source airport. We

provide an algorithm to solve this problem in Section 5.4.1.

Time-evolving transitive closure

Definition 5.3. (Transitive closure). Given a static graph G = (V,E) with

|V | = n, |E| = m, we aim to output an n × n matrix where C(u, v) = 1 iff v is

reachable from u.

Definition 5.4. (Time-evolving (dynamic) transitive closure). Assume we

are given a time-evolving graph GT = G1, G2, ..., Gτ , where τ is the number of

time frames. A time-evolving transitive closure is a structure that efficiently gives

the transitive closure of GT at any time frame in the interval [tbegin, tend].

Not all graphs are just one massive strongly connected component (SCC) [35].

Time-evolving graphs that contain many SCCs may add edges over time which

change the transitive closure. Thus, it would be useful to see how a graph’s

transitive closure changes over time.

Clearly, the graph at each time frame can have a different C value. A näıve

approach would be to calculate Ci for each Gi. However, a more interesting and

efficient approach would be to use Gj − Gi, where i < j, to update Ci, giving

us Cj. Thus, our input is GT and a time interval [tbegin, tend]. So we can see

that not only do we have to develop efficient transitive closure algorithms, but

we would also like to reuse a time frame’s previously computed transitive closure

117

when computing the transitive closure for the next time frame.

Using the airport example again, time-evolving transitive closure shows us

which airports are reachable to each other. While they may all be reachable to

each other given an unlimited amount of time, airport B may not be reachable

from airport A during the time frame [ti, tj]. We provide algorithms that address

these problems in Sections 5.4.2, 5.4.3, and 5.4.4.

5.3 Time-evolving graphs as implicit differential

compressed binary trees

As described in Section 5.2.1, a time-evolving graph can be represented as a

n × n × τ 3D matrix, where n = |V |. Additionally, it can be represented as a

series of graphs G0, ..., Gt, ..., Gτ−1, where Gt = (Vt, Et) and 0 ≤ t < τ .

Our compression represents each node u (0 ≤ u < n) at each time frame t (0 ≤

t < τ). In other words, we compress the adjacency row representing the neighbors

of u at each time frame, differentially. In Figure 5.1 (a), we have a graph of size

n = 6 with τ = 3. Then, for each u, we represent each row Ai,t with differential

compressed binary trees as shown in Figure 5.1 (b). That is, the compressed

binary trees only represent neighbor changes since the previous time frame. We

describe this more in Section 5.3.2. We can see that our structure requires 90 bits,

whereas the 3D matrix representation needs 108 bits. For undirected graphs, our

binary tree would only represent the 3D upper triangular matrix; however we

would need a larger example to illustrate the space benefits.

Our compression technique for time-evolving graphs is as follows:

• Compressed binary trees (CBT) are implemented with an improved encod-

118

ing to better compress consecutive arcs and branches that only contain one

arc (Section 5.3.1).

• Given a node i at time frames t− 1 and t where 1 ≤ t < τ , the adjacency

row Ai,t is encoded differentially from Ai,t−1. That is, a CBT is encoded to

represent the absolute difference between the adjacency rows |Ai,t−Ai,t−1|.

Only changes since the previous time frame are encoded (Section 5.3.2).

• The structure is outputted as a series of CBTs in one of many possible

orderings (Section 5.3.3).

5.3.1 Compressed binary trees

In this section, we describe compressed binary trees with the improved encoding

techniques illustrated in Figures 5.2 and 5.3. In Figure 5.2, we have a row Ai at a

time t compressed with a binary tree using an improved encoding scheme. Each

node in the tree spans its corresponding range of indexes (e.g., the root spans

[0, n− 1]) and contains a bit indicating whether or not that index range contains

a one.

We can see that the branches containing only zeros are pruned off and com-

pressed with a single zero bit. Now, notice that if a node is marked with a one,

it should normally never have its two children both marked with zero [23]. We

take advantage of this fact by saying that if a node is followed by two children

marked with zeros, then an additional bit must follow. If this next bit is zero,

then the branch is filled with all ones. If the bit is one, then the branch leads to

a single arc, as in Figure 5.3.

In Figure 5.3, we have row Ai again, but at time t+1 with one additional arc at

position 28. This row is encoded with a CBT differentially from the CBT of Ai,t

119

Figure 5.1: A time-evolving graph with n = 6 and τ = 3 represented as a series
of differential compressed binary trees

120

in Figure 5.2. We explain this more in Section 5.3.2. This example demonstrates

when a node’s two children are both marked zero, and the following bit is a one.

In this case, it means that the current branch leads to a single arc to which we

then provide a direct binary path, relative to the current branch. That is, while

the example’s change is encoded at the root of the tree (d = 0), it could occur at

any depth d < log2 (n)−3 with a saving of log2 (n)−2d−d−3 = log2 (n)−d−3

bits. We now describe Algorithm 5.1 which outputs a relative binary path given

a target index j and a node’s beginning and ending range.

Figure 5.2: A CBT of row Ai at time t

Figure 5.3: A CBT′ with a single arc at position [28] being added to the CBT
from Figure 5.2

In Algorithm 5.1, we are given begin and end which represents the range of

our current node, along with the target index j. We calculate the relative depth

121

Algorithm 5.1: A relative binary path

Input: int begin, int end, int j
Output: The relative binary path as a bit-string

1 begin
2 BitString s;
3 depth = dlog2 (end− begin)e;
4 s.Initialize(depth);
5 for i = 0 to depth− 1 do
6 mid = d(begin+ end)/2e;
7 if begin ≤ j < begin + mid then
8 s.AppendBit(0);
9 end − = mid;

10 else
11 s.AppendBit(1);
12 begin + = mid;

13 return s;

in line 2, which will be the length of our returned bit-string. In lines 5 through

12, we loop through each level of the remaining depth, and append a one or a

zero, depending on which child the path should navigate to (left = 0, right = 1).

We return the path’s bit-string in line 13.

5.3.2 Differential compressed binary trees

In Figures 5.2 and 5.3, the adjacency rows that the CBTs represent are obtained

from |Ai,t+1 − Ai,t|. This means that an entry v in the resulting row A′i,t+1 =

|Ai,t+1−Ai,t| indicates that Ai,v,t 6= Ai,v,t+1. In a differential CBT, a zero indicates

that the branch does not contain any change, and a one indicates that the branch

does contain a change. We now describe Algorithm 5.2 which also includes the

improved encoding scheme described in Section 5.3.1.

In Algorithm 5.2, we are given as input a node’s compressed binary tree (CBT)

and a list of arc targets. If a target is already a neighbor of the node, it is to

122

Algorithm 5.2: Differential binary tree compression

Input: CBTi,t, and a list of arc change targets
Output: CBT′i,t+1 as a bit-string

1 begin
2 BitString s;
3 Node node = cbt.Root;
4 Visitor vtr = PreOrderTraversal(node);
5 while !vtr.End() do
6 nodeTargets = targets.Where(x => node.Spans(x));
7 if nodeTargets.Count() > 0 then
8 s.AppendBit(1);
9 if node.arcs() == nodeTargets then

10 s.AppendBitString(’000’);
11 vtr.Ignore(node);

12 else if nodeTargets.Count() == 1 then
13 s.AppendBitString(’001’);
14 path = RelativeBinaryPath(node.begin, node.end, target);
15 s.AppendBitString(path);
16 vtr.Ignore(node);

17 else
18 s.AppendBit(0);
19 vtr.Ignore(node);

20 node = vtr.Next();

21 return s;

be removed. We use the visitor pattern and some LINQ notation [9] for ease of

reading. We start by traversing through the CBT representing the node’s current

neighbors. On line 6, we get the list of target changes pertaining to the current

node. If there are changes in this branch, we have three cases: (1) the branch

is removed entirely, (2) the branch has one change, or (3) the branch has many

changes. The last case is handled simply by line 8. The first case makes use of

our new encoding scheme in line 10 by appending ’000’, indicating that the entire

branch has been removed. The second case handled in lines 12 through 16 also

uses a new encoding scheme by appending ’001’, followed by the relative binary

123

path to the target change. If there were no changes for this node, then we simply

append a zero, as in line 18. We return the differential CBT as a bit-string in

preorder traversal in line 21. The bit-string for Figures 5.2 and 5.3 would be

110000 and 100111100, respectively.

Algorithm 5.2 is an implicit compression [11], and since it uses our list of

triplets (described in Section 5.2.1), it gives us a differential compression of our

time-evolving graph. Depending on which algorithm we want to solve, we can

order these triplets by u, then t, then v (for earliest arrivals) or by u, then v,

then t (for transitive closure). These orderings will give us either a node-by-node

or a snapshot-by-snapshot compression, respectively.

We also notice that for graphs with many vertices, long lifetimes, and few arc

changes, we might be spending too many bits to describe that a node’s neighbors

did not change for long intervals. For example, assume |V | = τ = 106, and most

nodes’ neighbors only have a few changes throughout time. Then we are essen-

tially spending 1012 bits to say that the nodes did not change much throughout

their lifetime.

We can handle this by layering another compressed binary tree spanning τ

where each leaf node corresponds to the root of each differential. Thus, consecu-

tive empty differentials as well as consecutive non-empty differentials are pruned

off.

5.3.3 Ordering compressed binary trees

Our differential compressed binary trees technique supports many different or-

dering schemes. We now describe some orderings and how they are beneficial to

our algorithms.

124

Node-by-node

In this ordering scheme, we enumerate a node’s neighbors throughout each time

frame before enumerating the next node. We can do this either row-by-row or

column-by-column.

In Figure 5.1, row-by-row would mean that we read the binary trees left-to-

right then top-to-bottom. In other words, we would haveA0,0, A0,1, ..., A1,0, A1,1, ...

for our enumeration. Column-by-column would be the transpose of this, where

the CBTs are encoded against the columns of the matrix.

This ordering technique lends itself to our earliest arrival algorithm in Section

5.4.1. If we were using the snapshot-by-snapshot ordering as in Section 5.3.3, we

would either have to read irrelevant, unreachable nodes that might not be in

the same temporal connected component or we would have to inflate the size by

providing indexes to each node at each time frame.

Snapshot-by-snapshot

As opposed to the node-by-node ordering, in Figure 5.1 snapshot-by-snapshot

means that we would enumerate the trees top-to-bottom then left-to-right. In

other words, A0,0, A1,0, ..., A0,1, A1,1, Again, we can provide an equivalent

column-by-column ordering on the transpose.

Both the row-by-row and column-by-column variants of this ordering facilitate

our matrix multiplicaiton and transitive closure operations. If we were to use the

node-by-node ordering in Section 5.3.3, then as we process the graph or increment

the transitive closure, we would have to keep track of where the next time frame

begins for each node.

125

5.3.4 Matrix-matrix multiplication

In this section, we describe an algorithm to perform Boolean Matrix-Matrix mul-

tiplication on our compressed binary trees. That is, we perform A × B = C

where A, B, and C are matrices represented as CBTs. Using CBTs allows us to

perform matrix-matrix multiplication with reasonable memory and that includes

storing the output directly as CBT. Now, notice that this involves multiplying

the rows of A with the columns of B, and that we also want to reuse C in place

of B for the next iteration. This means we must encode A row-by-row, and B

and C column-by-column. Thus, instead of multiplying to construct C row-by-

row, we instead want to multiply such that we can build C column-by-column,

top-to-bottom. This is as simple as looping through B’s columns, then by A’s

rows, instead of vice versa. Also, since this is Boolean multiplication, multiply-

ing vectors involves switching the multiplication with the AND operator, and

the addition operation with OR. This means we gain the ability to short circuit

the multiplication and return true as soon as we find the first true AND term.

We now describe Algorithm 5.3, which multiplies two CBTs.

In Algorithm 5.3, for the sake of brevity, we only describe multiplication using

the standard encoding. We take as input two CBTs representing our input vectors

and we output true or false. We begin by traversing both trees at the same time

using preorder traversal (lines 1-4). If either of the current nodes are labeled zero

(line 5), then we know that they have no arcs in common and can thus ignore

that entire branch for both trees (lines 6-7). However, if both nodes are labeled

one and we have reached the bottom of the trees (line 8), then we short-circuit

and return true for the multiplication (line 9). If we finish traversing either tree

(line 4), then we have not satisfied any AND operator and we return false (line

126

Algorithm 5.3: CBT-CBT (Boolean vector-vector) multiplication

Input: CBT a, CBT b
Output: bool ab

1 begin
2 Node node a = a.Root, node b = b.Root;
3 Visitor vtr a = PreOrderTraversal(node a) , vtr b =

PreOrderTraversal(node b);
4 while !vtr a.End() ∧ !vtr b.End() do
5 if node a.Label == 0 || node b.Label == 0 then
6 vtr a.Ignore(node a);
7 vtr b.Ignore(node b);

8 else if node a.Label == 1 && node b.Label == 1 &&
IsMaxDepth() then

9 return true;

10 node a = vtr a.VisitNext(node a);
11 node b = vtr b.VisitNext(node b);

12 return false;

12).

We use Algorithm 5.3 in Section 5.4.2 to perform matrix-matrix multiplica-

tion.

5.4 Compressed time-evolving graph algorithms

Now that we have defined our problems and our compression technique, we de-

scribe our algorithms that work directly on our compressed structure to solve the

defined problems.

5.4.1 Earliest-arrival time

In this section we describe our algorithm to compute the earliest arrival paths

and times.

127

Algorithm 5.4: Earliest-arrival paths and times

Input: The compressed time-evolving graph Gτ , source vertex x, and the
time interval [tbegin, tend]

Output: A BFS tree parent array giving the earliest-arrival paths from x
to every vertex v ∈ V within [tbegin, tend]

1 begin
2 Initialize t[x] = (−1, tbegin), t[v] = (−1,∞) for all v ∈ V \ {x}, and a

Queue Q with one element, x;
3 while !Q.Empty() do
4 y ← Q.Dequeue();
5 yNode = Gτ .GetNodeStart(y);
6 for t = 0 to tend do
7 foreach v in yNode do
8 if t ≥ tbegin and t[y].Second ≤ t
9 and t < t[v].Second then

10 t[v]← (t, t);
11 if t[v].First == −1 then
12 Q.Enqueue(v);

13 yNode ← yNode.NextFrame();

14 return t[];

128

In Algorithm 5.4 we are given as input the complete time-evolving graph Gτ ,

a source node x, a time range [tbegin, tend], and we output a BFS tree as a parent

array representing the earliest paths from x to all other nodes. For this algorithm,

Gτ is ordered node-by-node. In other words, it starts with node 0 and all its time

frames, then node 1 and all its time frames, and so on. This is opposed to the

ordering needed in Algorithm 5.7, where we order snapshot-by-snapshot.

We begin in line 2 by initializing a parent array where each entry v is a pair

containing the parent node u and the time-frame t of the arc used. Line 2 also

initializes a queue Q starting with x, and line 3 begins looping over Q until it

is empty. Thus, we are going to perform a variant of BFS such that once we

dequeue a node y, we then process all of y’s time dimension, up to tend (lines 4-

6). Since Gτ is a differentially compressed time-evolving graph, we must start at

t = 0 (line 6) so that we can differentially compute y at time tbegin. In lines 8 and

9, when we reach tbegin, we are now considering an arc (y, v, t) as candidate in the

earliest-path BFS. Thus, we must have a parent y that has already been reached

at time t and t must be less than our previously selected arc for v. If we select

the arc, then we update it in the parent array and enqueue v if it hasn’t already

been reached (lines 10-12). Finally, when Q is empty, we return the parent array

t[] in line 13.

5.4.2 Transitive closure

Recall that Algorithm 5.3 from Section 5.3.4 multiplies two CBTs together to

output a 1 or 0 (true or false). In this section, we will apply Algorithm 5.3 and

an addition algorithm to calculate the transitive closure of the graph.

While it has been shown that the transitive closure of a graph can be calcu-

129

lated in O(n2.81) time by performing some preprocessing [96], we start this work

using a version of the O(n3 log2(n)) repeated multiplication algorithm [49]. The

O(n2.81) algorithm must be carefully considered in compressed graphs and we

save this as a future work. Our algorithm also calculates the transitive closure

in time O(Min(δ, n− δ)n2 log2
2(n)) which is already much faster than O(n2.81) in

extremely sparse and dense graphs.

Also notice that although when calculating the transitive closure, matrix mul-

tiplication and addition are repeated up to log2(n) times, we can also short-circuit

this logic if the current iteration’s result is the same as the previous iteration.

Algorithm 5.5: Transitive closure

Input: CBT[] A, CBT[] B
Output: CBT[] C

1 begin
2 Initialize a column-by-column CBT[] C;
3 for k = 0 to log(n) do
4 for j = 0 to n− 1 do
5 for i = 0 to n− 1 do
6 product ← Multiply(A, B);
7 if product then
8 C[j].Stream(i);

9 C ← Add(B, C);

10 return C;

In Algorithm 5.5, we take as input the matrices A and B as CBT[]s and we

output C as a CBT[]. We use a version of the O(n3 log2(n)) repeated multiplica-

tion algorithm, but with compressed binary trees. On line 6, we use Algorithm

5.3 and on line 9, we use a similar algorithm that simply ORs two CBTs together.

Line 8 is the same as building the CBT from left-to-right since all incoming arcs

are in order. Finally, we return our product matrix on line 10.

130

5.4.3 Incremental transitive closure

In this section, we describe our algorithm for updating an already calculated

transitive closure given the addition of arcs to the underlying graph. While

Algorithm 5.5 in Section 5.4.2 already outputs a compressed transitive closure,

we need a differential compression. This can be done in a simple preprocessing

step which merges equivalent rows. We now describe the algorithm.

Algorithm 5.6: Incremental transitive closure

Input: The compressed transitive closure C of a graph G = (V,E), and
differential containing the arcs to add G′

Output: The updated compressed transitive closure as a differential, C ′

1 begin
2 Initialize a new differential graph C ′ with size n = |V |;
3 foreach new arc (u, v) in G′ do
4 ccNodeU ← C.GetCCNode(u);
5 ccNodeV ← C.GetCCNode(v);
6 if ccNodeU != ccNodeV then
7 ccMin ← Min(ccNodeU, ccNodeV);
8 ccMax ← Max(ccNodeU, ccNodeV);
9 newMaxRef ← C ′.GetCCNode(ccMax);

10 if ccMin == newMaxRef then
11 continue;

12 ccRowMax ← C.GetCCRow(ccMax);
13 C ′[ccMin].Stream(ccRowMax);
14 C ′[ccMax].SetCCNode(ccMin);

15 return C ′;

In Algorithm 5.6, we take as input a differentially compressed transitive clo-

sure C of a graph G = (V,E) and a graph differential G′ representing the arcs

to add, and we output a differential C ′ which represents the changes to C after

G′ was added. Thus, we would have to add C +C ′ to see the complete resulting

transitive closure. Note that since C is a static graph, we can only order node-by-

node, as opposed to Algorithms 5.4 and 5.7. Additionally, since C is a transitive

131

closure, we notice that nodes within the same connected components will have

the exact same rows in the adjacency matrix of C. Therefore, we encode rows

within the same connected component differentially. That is, if (u, v) ∈ C, then

we encode u using our compressed binary trees, but only point v to u so that we

do not repeat the exact same data multiple times.

We begin in line 2, where we initialize our differential C ′. We then loop

through each new arc (u, v) in G′ (line 3). Since rows u and v may be differ-

entials, we determine which nodes are the representatives for their respective

connected components, ccNodeU and ccNodeV (lines 4 and 5). If they are the

same representative node for the same connected component, then we know this

arc does not change the transitive closure and we can ignore it (line 6). We want

to only have y point to x if x < y, so we determine whether ccNodeU > ccNodeV

or ccNodeU < ccNodeV (lines 7 and 8). We also check if these two connected

components have already been merged together by checking if ccMax has already

been pointed to ccMin in C ′ (lines 9-11). If not, we get ccMax’s row (line 12),

stream it into C ′[ccMin] (line 13), and point C ′[ccMax] to ccMin (line 14) (signi-

fying that the two connected components have been merged). Finally, we return

C ′ in line 15.

We can see that this algorithm runs in time O(sCCn log2(n)) per arc, where

sCC is the size of the largest strongly connected component. This is because we

must find the representative rows of the SCCs for the arc’s source and destination

(which costs O(n)), and we must add a differential equal to sCC which costs

log2(n) per node in the SCC if the arc connects them.

132

5.4.4 Time-evolving transitive closure

In this section, we describe an algorithm which processes a time-evolving graph

and calculates its time-evolving transitive closure given some time interval.

Algorithm 5.7: Time-evolving transitive closure

Input: A compressed time-evolving graph Gτ , and a time range
[tbegin, tend]

Output: The compressed time-evolving transitive closure C[tbegin,tend].

1 begin
2 Initialize a new time-evolving graph C[tbegin,tend] and a static graph of

the current snapshot G;
3 for t = 0 to tend do
4 G′t ← Gτ .ReadNextFrame();
5 if t ≥ tbegin then
6 if t == tbegin then
7 C ← TransitiveClosure(G);
8 Ct ← C;
9 continue;

10 Ct ← IncrementTransitiveClosure(C, G′t);
11 C.Stream(Ct);

12 else
13 G.Stream(G′t);

14 return C[tbegin,tend];

In Algorithm 5.7 we are given as input the complete time-evolving graph

Gτ and a time range [tbegin, tend], and we output the differentially compressed

time-evolving transitive closure C[tbegin,tend]. For this algorithm, Gτ is ordered

snapshot-by-snapshot. In other words, it encodes nodes 0 through n − 1 at t0,

then nodes 0 through n − 1 at t1, and so on. This is opposed to the ordering

needed in Algorithm 5.4, where we order node-by-node.

We begin in line 2 by initializing a compressed time-evolving graph C[tbegin,tend]

and a static graph representing the current snapshot of G. Similar to Algorithm

5.4, we must begin reading at time t = 0 in order to apply our differentials to

133

compute what the graph is at time t = tbegin (line 3). We do this by grabbing

the current differential (line 4) and streaming it into the current snapshot (line

13). Once we reach tbegin (line 6), we no longer need to maintain the current

snapshot. We compute the transitive closure of G at tbegin (line 7) and set it

as the base frame for the differential frames to be followed (line 8). Once we

have our starting transitive closure C, we now only need to use the current

differential G′t to calculate the transitive closure differential for the entire frame

(line 10). Additionally, we must apply the transitive closure differential to C in

order continue incrementing with the latest transitive closure (line 11). Finally

we return C[tbegin,tend] on line 14.

5.5 Experiments and results

Our experiments involve running the algorithms described in Section 5.4 on the

various real-world and synthetic graphs given in Table 5.1. For each graph we

provide the number of vertices |V |, the number of arcs |E|, the lifetime τ , the

number of contacts, the number of connected components, and the largest diam-

eter. Our experiments include compressed graph sizes, algorithm run-time, and

other metrics. We now describe our datasets.

The Comm.Net* graph is synthetic and represents short communications be-

tween random vertices. This results in many disconnected components, and thus

a short diameter. Powerlaw* is also synthetic and is a power-law degree graph,

where few vertices have many more connections than other vertices, but with a

short lifetime. Both graphs have a constant number of active arcs at any given

time frame.

The Flickr-Days dataset is an incremental time-evolving graph with time gran-

134

T
y
p

e
|V
|

|E
|

L
if

et
im

e
C

on
ta

ct
s

S
iz

e(
C

B
T
′)

T
im

e(
C

B
T
′)

I-
C

om
m

.N
et

*
In

te
rv

al
10

00
0

15
94

07
43

10
00

1
19

06
15

71
60

.1
M

B
2.

7m

I-
P

ow
er

la
w

*
In

te
rv

al
10

00
00

0
31

97
99

27
10

01
32

28
08

16
12

3.
2M

B
5.

2m

I-
W

ik
i-

L
in

k
s

In
te

rv
al

22
60

80
64

56
42

24
13

5
41

43
47

80
9

73
14

68
59

8
3.

2G
B

1.
8h

I-
Y

ah
o
o-

N
et

fl
ow

In
te

rv
al

10
36

61
22

4
32

10
11

86
1

11
41

93
95

50
33

90
1

4.
9G

B
2.

1h

G
-F

li
ck

r-
D

ay
s

In
cr

em
en

ta
l

25
85

57
0

33
14

00
18

13
5

33
14

00
18

77
.9

M
B

5.
1m

T
ab

le
5.

1:
T

h
e

d
at

as
et

st
at

s
(i

n
cl

u
d
in

g
th

e
co

m
p
re

ss
ed

si
ze

an
d

th
e

ti
m

e
to

co
m

p
re

ss
)

135

C
on

fi
d
en

ce
L

ev
el

=
95

%
t

=
0

(s
)

[t
=

1,
t

=
τ
]

(s
)

E
ar

li
es

t
A

rr
iv

al
x
=
1
0

(s
)

E
ar

li
es

t
A

rr
iv

al
x
=
1
0
0

(s
)

I-
C

om
m

.N
et

*
15

7.
28

9
3.

17
4

0.
01

5
±

0.
00

6
0.

01
9
±

0.
00

8

I-
P

ow
er

la
w

*
29

9.
51

5
3.

59
1

1.
50

3
±

0.
04

7
2.

26
2
±

0.
10

8

I-
W

ik
i-

L
in

k
s

47
2.

94
1

56
73

.2
28

13
3.

91
4
±

3.
61

1
19

2.
33

0
±

7.
11

9

I-
Y

ah
o
o-

N
et

fl
ow

11
6.

30
7

71
02

.0
03

88
.2

75
±

2.
91

8
95

.0
43
±

3.
88

1

G
-F

li
ck

r-
D

ay
s

26
.0

45
42

.7
45

4.
45

5
±

0.
24

0
4.

86
1
±

1.
32

0

T
ab

le
5.

2:
A

lg
or

it
h
m

ru
n
-t

im
es

136

C
on

fi
d
en

ce
L

ev
el

=
95

%
T

C
(s

)
T

C
I
N
C

(s
)

T
C
T
E
,x
=
1
0

(s
)

T
C
T
E
,x
=
1
0
0

(s
)

I-
C

om
m

.N
et

*
20

.5
81
±

1.
27

8
0.

07
5
±

0.
05

3
29

.4
45
±

0.
48

3
34

.4
45
±

0.
49

4

I-
P

ow
er

la
w

*
29

1.
34

4
±

2.
21

5
1.

50
9
±

0.
02

2
36

8.
11

7
±

10
.4

98
47

5.
98

9
±

12
.4

76

I-
W

ik
i-

L
in

k
s

93
59

.1
46
±

16
2.

64
8

0.
08

4
±

0.
07

3
12

24
7.

08
6
±

37
5.

75
1

13
41

3.
20

9
±

66
7.

12
4

I-
Y

ah
o
o-

N
et

fl
ow

48
38

.3
98
±

24
3.

84
3

1.
74

6
±

0.
01

2
68

28
.2

52
±

99
7.

63
1

77
44

.2
06
±

16
31

.1
15

G
-F

li
ck

r-
D

ay
s

33
.6

84
±

0.
20

5
0.

02
2
±

0.
00

8
42

.8
81
±

8.
24

6
58

.8
74
±

11
.2

75

T
ab

le
5.

3:
A

lg
or

it
h
m

ru
n
-t

im
es

(c
on

ti
n
u
ed

)

137

ularity set to days from 11-02-2006 to 05-18-2007. It represents when users be-

came friends in the Flickr Social Network and can be found at http://socialnetworks.mpi-

sws.org/data-www2009.html.

The Wiki-Links (http://dumps.wikimedia.org/enwiki/) interval dataset shows

the history of links among articles in the English version of Wikipedia. It has

time granularity by second from 03-04-2014 to 01-01-2015.

Both Flickr-Days and Wiki-Links are one connected component throughout

time, and thus had to be disconnected in order to run our transitive closure

algorithms.

Finally, we have the Yahoo-Netflow interval graph which contains communi-

cation records between end users in the large Internet and Yahoo servers. It has

time granularity by seconds from 04-29-2008 to 01-01-2015 and can be found at

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g.

All datasets are anonymized and required preprocessing. For example, the

Yahoo-Netflow dataset contains timestamp, source IP address, destination IP

address, source port, destination port, protocol, number of packets, and number

of bytes transferred from the source to the destination. The IP addresses were

already anonymized with a random permutation algorithm. We also only needed

timestamp, source, and destination information, which were converted to frames

and vertices, respectively.

We run all of our algorithms on a machine with an Intel(R) Xeon(R) CPU

E5520 @ 2.27GHz (4 cores) with 64GB of RAM.

138

5.5.1 Differential processing

In columns t = 0 and [t = 1, t = τ] of Table 5.2, we have times related to our

differential processing.

Before examining our earliest arrival execution times, we must mention that

even though the desired time frame for the algorithm is [tbegin, tend], we must still

process the time-evolving graph from time t = 0 to tbegin. This is because our

compression is differential, and we must read and process the previous frames to

know what the graph’s active arcs are at tbegin.

We also must note that some graphs may already be large at t = 0 (e.g.,

Powerlaw and Flickr-Days), and subsequent frames are smaller changes to the

graph.

These two facts are why we have included the time to process the graph at

t = 0 and from t = 1 to t = τ .

These processing times are necessary for all our algorithms and thus are kept

separate from the algorithms’ actual running times. In other words, the algorithm

run-times assume the graph has already been read up to tbegin.

5.5.2 Earliest arrival

In columns Earliest Arrivalx=10 and Earliest Arrivalx=100 of Table 5.2, we pro-

vide times to solve the earliest arrival paths problem directly on our compressed

structure.

The running times for our earliest arrival algorithm are the average of 100

iterations with randomly chosen source vertices and time intervals of size 10 and

100. Again, these times assume the graph has already been processed up to time

tbegin.

139

From Algorithm 5.4, we know that we perform a variant of BFS where we

always have to read a given node’s time frames to tend. Thus, the main cause of

variance is from the size of the strongly connected component of which the source

vertex is a member. The larger the SCC, the bigger the BFS tree and the more

nodes we have to process.

5.5.3 Transitive closure

In Table 5.3, we provide various times associated with transitive closure, incre-

mental transitive closure, and time-evolving transitive closure.

In our experiments for transitive closure, the running times assume that the

left side (row-by-row) and the right side (column-by-column) of the multiplication

are already processed and allocated. Thus, the times only reflect the time to

repeatedly multiply and add the two matrices.

Before discussing our transitive closure experiments, notice that although

transitive closure is repeated up to log2(n) times, we can also short-circuit this

logic if the current iteration’s result is the same as the previous iteration.

In the results we can indeed see that the denser versions of the graphs calculate

more quickly than their smaller time frames. The exceptions to this are the

synthetic graphs, which contain a constant number of active arcs at any given

time frame. These times are essentially the same, but slightly varied most likely

because arcs changed locations in the compressed binary trees. Yahoo-Netflow

also took longer in its larger time frame. This is because the graph is disconnected

enough that the extra arcs did not help the short-circuiting and only added to

navigation time.

140

5.5.4 Incremental transitive closure

Using the transitive closures calculated earlier, we average the time required to

stream in 1000 random arcs which connect two strongly connected components

(possibly of size 1). Since the number of SCCs does not change between the

smallest and largest versions of the graphs (except Yahoo-Netflow), we only have

to consider one transitive closure per graph. Graphs which are already one SCC

won’t change given any arc, but must still determine that the source and vertex

are in the same SCC.

We see this fact reflected in the results, where the average time to stream an

arc into Powerlaw*, Wiki-Links, and Flickr-Days is only the time needed to check

if the source and destination are in the same SCC.

In Comm.Net* and Yahoo-Netflow, the algorithm still has to determine the

SCCs for the source and vertex, but must also merge the components by adding

differentials for the transitive closure.

5.5.5 Time-evolving transitive closure

Now, with the incremental transitive closure algorithm, we can process a com-

pressed time-evolving graph and give the transitive closure of each time frame

as another compressed time-evolving graph. We do this by using the transitive

closure and developing a time-evolving transitive closure for the next 10 and 100

frames. The running times begin after the initial transitive closure has been

calculated.

In this experiment, we must not only merge connected components and create

differentials, but we must also apply these differentials to our current running copy

of the transitive closure. The results show that this operation is actually quite

141

cheap, as our differentials are efficient and our streaming operation is fast with

the use of an unrolled linked list for our underlying bit-string data structure.

5.6 Related work

Time-evolving graphs have been extensively researched with many structures [15]

[16] [20] [22] [23] [47] [78] and problems/algorithms [24] [63] [65] [133] [135] already

defined.

In 2016, Caro et al. [23] developed and tested several time-evolving data struc-

tures including the ckd-tree. They define a contact as a quadruplet (u, v, ti, tj) and

then compress the 4D binary matrix corresponding to the time-evolving graph

defined by a set of these contacts. They do this by representing the 4D matrix

as a kdtree and then distinguishing white nodes as those without any contacts,

black nodes as ones that only contain contacts, and gray nodes as those that

contain only one contact. This work was preceded by Brisaboa et al.’s k2-trees

[16] in 2014. However, not only did they not reach compression rates and query

times as good as our technique, but their compression is not suitable for most

node-centric algorithms.

Time-evolving path problems have also been thoroughly defined [24] [63] [65]

[133] [135]. However, none of these works have run their algorithms on compressed

graphs.

Transitive closure has also been well studied with many improvements over

the years [3] [49] [76] [90] [106] [137]. However, none use compressed structures

to calculate the transitive closure and none address our novel problem of a com-

pressed time-evolving transitive closure, although a few [26] [66] do examine the

benefits of compressing a pre-computed transitive closure.

142

5.7 Conclusion

In this chapter, we developed a differential time-evolving graph compression and

applied algorithms on it. We found that not only were we the first to solve

such problems on compressed time-evolving graphs, but that our structure was

particularly efficient at doing so. We solved the earliest arrival paths problem,

incremental transitive closure problem, and our novel problem of time-evolving

transitive closure.

143

Chapter 6

Conclusion

Finally, we conclude by summarizing the concepts we covered in this dissertation.

Aftter summarizing each chapter, we give some closing remarks in Section 6.6.

6.1 Chapter 1

We began in Chapter 1, by introducing the concept of networks and the problems

we face when performing analysis on them. When networks become too massive

(billions to trillions of nodes and arcs), even basic data structures such as ad-

jacency lists end up requiring petabytes to zettabytes of memory. If we store

these networks in secondary memory (rather than main memory), any analysis

will require I/O access (i.e., disk access), thus drastically slowing analysis time.

Therefore, if we want to perform analysis on massive networks, we must either

provide enough main memory or supply some data structure which sufficiently

compresses the data while still allowing fast access times.

In Section 1.1, we described many real-world social, information, technologi-

cal, and biological networks to give the reader more context for the dissertation.

144

Each category of network was also supplied with sample networks and references

to relevant works.

After our context of real-world networks was established, we continued in

Section 1.2 by formally defining how graphs represent networks, including time-

evolving networks. Tables 1.1 and 1.2 listed out some real-world network graphs

and their properties. We also provided a discussion of basic representations such

as the Boolean adjacency matrix, adjacency lists, and arc lists in Section 1.2.2.

Common properties and queries of static and time-evolving graphs were enumer-

ated in Sections 1.2.3 and 1.2.4.

After defining all of our graph concepts, we familiarized ourselves with some

basic compression concepts in Section 1.3. This included a formal definition

of lossless compression, Kolmogorov complexity, and information-theoretic lower

bounds (Section 1.3.1), as well as formal definitions of queryable compression

(Section 1.3.2) and incremental compression (Section 1.3.3).

We then moved on to graph-specific compression in Section 1.4. We discussed

some common exploitable structural properties (Section 1.4.1), node reordering

techniques (Section 1.4.2), and the popular CSR technique (Section 1.4.3).

Prior work was discussed in Section 1.5. Here, we not only defined what

it means for a compression to be implicit, succinct, and compact, but we also

provided Table 1.4 which summarized many succinct arbitrary graph representa-

tions.

Finally, we outlined the rest of the paper in Section 1.6.

145

6.2 Chapter 2

In Chapter 2, we split a quadtree compression of a static graph’s 2D Boolean

adjacency matrix into its adjacency rows and compress them with compressed

binary trees. Adding indexes to this technique greatly sped-up access times while

only barely increasing space. We provided our motivation and exact contributions

in Section 2.1.

In Section 2.2, we discussed related work and justified our benchmark selec-

tion. We also referred to our previous work using quadtrees and a similar work

with k2-trees. Preliminaries were covered in Section 2.3, where we discussed

network properties, compression concepts, and queries.

We described our novel technique in Section 2.4, where we represented each

row of the Boolean adjacency matrix with a compressed binary tree. We achieved

the information-theoretic lower bound (Section 2.4.4), and we can optionally add

indexes to our structure to gain a query complexity proportional to the maximum

degree of the graph.

Normally, compression starts with the uncompressed graph in a raw text file as

an arc list. A normal technique would then load the arc list into some intermediate

structure (such as adjacency lists) for faster compression. Finally, the technique

outputs the compressed graph as a bit-string. We not only provided a way to

compress the graph without any intermediate structure (Algorithms 2.3 and 2.4),

but we can also compress directly from a text file that has been compressed using

some general technique such as gzip.

In Section 2.5, we presented our datasets and metrics. We saw from the results

that our compression outperforms our benchmark in every metric. Our results

also showed that our streaming times were nearly identical to the query times

146

while using the custom in-memory structure. Finally, we concluded the chapter

in Section 2.6.

The results in this chapter were published and presented at the 2017 IEEE

International Conference on Big Data (Big Data 2017) in Boston, MA.

6.3 Chapter 3

In Chapter 3, we applied differential compression to the technique introduced in

Chapter 2. We found that this differential static graph compression allowed us

to reuse previously computed products when performing matrix-vector multipli-

cation. Thus, algorithms such as PageRank are now no longer bound by the size

of the graph’s 2D Boolean adjacency matrix, but by the size of the compressed

graph. We discussed this motivation and outlined the rest of the chapter in Sec-

tion 3.1. We also discussed related work and chose our benchmark in Section

3.2.

In Section 3.3, we described how to apply a differential compression between

compressed binary trees. Once we obtained a differential representation, we

showed how to perform matrix-vector multiplication and we proved that its run-

time is proportional to the size of the compressed graph (Section 3.4). We also

extended this technique to matrix-matrix multiplication and again proved that

the run-time is proportional to the size of the compressed graph (Section 3.5).

We presented our datasets and metrics in Section 3.6. We saw that not only

are our base query speeds faster than the benchmark, but the speed-up gained

from reusing products is greater as well. Finally, we concluded the chapter in

Section 3.7. Here, we proposed future work by using matrix-matrix multiplica-

tion for transitive closures and by reordering the rows of the matrix to improve

147

differential compression.

These results were published at the 2019 IEEE International Conference on

Information Reuse and Integration (IRI 2019) in Los Angeles, CA.

6.4 Chapter 4

In Section 4.1, we adapted our differential compression technique from Chapter 3

to compress time-evolving graphs, rather than static graphs. We used this differ-

ential compression to only encode the differences between a node’s time frames.

Time-evolving graphs are interesting because they store a graph’s complete state

at each time frame, and thus, we can run analyses that study patterns through-

out time. We discussed this motivation and outlined the rest of the chapter in

Section 4.1.

We more formally defined time-evolving graphs and the operations performed

on them in Section 4.2. We showed that time-evolving graphs could be incre-

mental, interval, or point, and that the basic operations performed on them were

time-evolving versions of the arc existence query, neighbor query, and streaming

query. We discussed related work in Section 4.3, including ckd-trees, suffix arrays,

and various log and copy+log techniques.

Our time-evolving technique was defined in Section 4.4, where we apply dif-

ferential compression between each node’s time frames. We also provided an

extension that allows us to combine multiple differential compressed binary trees

into one T-CBT (Section 4.4.3). We did all of this using only minimal mem-

ory overhead again by compressing directly from a gzipped time-evolving arc

(contact) list (Section 4.4.4). We also proved that our compression reaches the

information-theoretic lower bound, with respect to the 3D Boolean adjacency ma-

148

trix and the number of contacts (Section 4.4.5). A suite of supported operations

was also provided including time-evolving arc existence, neighbors, streaming

arcs (throughout any time-frame), and streaming time-frames themselves (Sec-

tion 4.4.7).

We then ran experiments on our new technique in Section 4.5. The metrics

included the compressed graphs’ sizes (among many benchmarks), compression

time, and supported operation run-times. We saw that our technique compressed

to sizes better than or equal to any of our benchmarks. Our compression times

also ended up being proportional to the number of contacts in the time-evolving

graphs. The supported operations were not run with our benchmarks, but arc

existence and neighbor queries ran at nearly identical times, with the streaming

operation only slightly slower (while using our custom in-memory structure). We

provided discussion of all these topics in Section 4.5.

Finally, we concluded the chapter in Section 4.6.

The results in this chapter were published and presented at the 2018 IEEE

International Conference on Big Data (Big Data 2018) in Boston, MA.

6.5 Chapter 5

In Chapter 5, we adapted our time-evolving graph compression technique for

solving the earliest arrival paths problem and for our own novel definition of

time-evolving transitive closure. We found that not only were we the first to

solve such problems on compressed time-evolving graphs, but that our structure

was particularly efficient at doing so.

We briefly discussed motivation and outlined the chapter in Section 5.1. Af-

ter that, we formally defined time-evolving graphs (Section 5.2.1), the earliest-

149

arrival paths problem (Section 5.2.2), and time-evolving transitive closure (Sec-

tion 5.2.2). Again, note that our definition of our time-evolving transitive closure

is novel, to the best of our knowledge.

In Section 5.3, we began by describing our compressed binary trees, differential

technique, and ways that we can order them to achieve different representations

of a time-evolving graph. That is, we can order them node-by-node or snapshot-

by-snapshot. We then provided Algorithm 5.3 which is the basis of Boolean

vector-vector multiplication using our technique.

In Section 5.4, we described how to apply our technique to solve many prob-

lems. We used our snapshot-by-snapshot ordering to solve the earliest-arrival

problem in Section 5.4.1. Using this ordering allowed us to use a time-evolving

version of BFS to find the earliest-arrival paths and times in one pass. Next, we

provided Algorithm 5.5, which used repeated multiplication to find the transitive

closure of the compressed graph. Continuing with transitive closure, in Section

5.4.3 we provided Algorithm 5.6, which can increment a compressed transitive clo-

sure graph matrix given a set of arcs to add (stored as a compressed differential).

Finally, we provided Algorithm 5.7 in Section 5.4.4, which used node-by-node

ordering and calculated (while keeping everything compressed) the time-evolving

transitive closure given a time-evolving graph and a desired time interval.

After developing all of our algorithms, we ran experiments on them in Section

5.5. Our metrics included the time to process different intervals of the graph and

run-times for each algorithm. We discovered amazing run-times due to our clever

ordering techniques and the fact that our algorithms run in time proportional to

the size of the compressed graph. Thus, the smaller we can compress the graph,

the better our run-times become. We discussed these results in detail.

Related work was discussed in Section 5.6. We found that we had no appro-

150

priate benchmarks to compare against, as our novel problem definitions had not

yet been adapted by any other technique. Finally, we concluded in Section 5.7.

These finding were published in the 2019 IEEE International Conference on

Big Data (Big Data 2019) in Los Angeles, CA.

6.6 Closing remarks

In this dissertation, we developed several succinct representations for both static

graphs and time-evolving graphs. This included a suite of supported opera-

tions for each technique. Each chapter explored relevant work from which we

chose our benchmarks. We provided a detailed analysis showing we achieved the

information-theoretic lower bound, and we ran experiments that empirically that

showed that we outperformed our benchmarks (where applicable). We believe

that these improvements are great contributions to the fields of compression and

massive network analysis.

151

Bibliography

[1] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

[2] Micah Adler and Michael Mitzenmacher. Towards Compressing Web
Graphs. In Proceedings of the Data Compression Conference, number 9
in DCC ’01, pages 203–212, Washington, DC, USA, 2001.

[3] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137,
1972.

[4] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Di-
ameter of the world-wide web. Nature, 401(6749):130, 1999.

[5] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene
Stanley. Classes of small-world networks. Proceedings of the National
Academy of Sciences, 97(21):11149–11152, 2000.

[6] Baruch Awerbuch and Tripurari Singh. New connectivity and msf algo-
rithms for ultracomputer and pram. In ICPP, volume 83, pages 175–179,
1983.

[7] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-free char-
acteristics of random networks: the topology of the world-wide web. Physica
A: Statistical Mechanics and Its Applications, 281(1-4):69–77, 2000.

[8] Albert-László Barabási, Natali Gulbahce, and Joseph Loscalzo. Network
medicine: a network-based approach to human disease. Nature Reviews
Genetics, 12(1):56, 2011.

[9] Brian Beckman. Why linq matters: cloud composability guaranteed. Com-
mun. ACM, 55(4):38–44, 2012.

[10] G. D. Bernardo, N. R. Brisaboa, D. Caro, and M. A. Rodrguez. Compact
data structures for temporal graphs. In 2013 Data Compression Conference,
number 1, pages 477–477, March 2013.

152

[11] Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless
graph compression and space-efficient graph representations. CoRR,
abs/1806.01799, 2018.

[12] P. Boldi and S. Vigna. The Webgraph Framework I: Compression Tech-
niques. In Proceedings of the 13th International Conference on World Wide
Web, number 7 in WWW ’04, pages 595–602, New York, NY, USA, 2004.

[13] James E Bostick, John M Ganci Jr, Martin G Keen, and Sarbajit K Rakshit.
Performing contextual analysis of incoming telephone calls and suggesting
forwarding parties, September 18 2018. US Patent 10,079,939.

[14] Nieves R. Brisaboa, Diego Caro, Antonio Fariña, and M. Andrea Rodŕıguez.
A compressed suffix-array strategy for temporal-graph indexing. In SPIRE,
2014.

[15] Nieves R Brisaboa, Diego Caro, Antonio Fariña, and M Andrea Rodriguez.
Using compressed suffix-arrays for a compact representation of temporal-
graphs. Information Sciences, 465(24):459–483, 2018.

[16] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. Compact repre-
sentation of web graphs with extended functionality. Information Systems,
39(22):152–174, 2014.

[17] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Srid-
har Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener.
Graph structure in the web. Computer Networks, 33(1-6):309–320, 2000.

[18] Andrej Brodnik and J. Ian Munro. Membership in constant time and
almost-minimum space. In SIAM J. Comput., Volume 28, Issue 5. Soci-
ety for Industrial and Applied Mathematics, 1999.

[19] Andre Broido et al. Internet topology: Connectivity of ip graphs. In
Scalability and Traffic Control in IP Networks, volume 4526, pages 172–
187, 2001.

[20] Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing short-
est, fastest, and foremost journeys in dynamic networks. Technical Report
RR-4589, INRIA, October 2002.

[21] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and
Charles E Leiserson. Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. In Proceedings of the
Twenty-First Annual Symposium on Parallelism in Algorithms and Archi-
tectures, number 11, pages 233–244, 2009.

153

[22] Diego Caro, M. Andrea Rodŕıguez, and Nieves R. Brisaboa. Data structures
for temporal graphs based on compact sequence representations. Inf. Syst.,
51(C):1–26, July 2015.

[23] Diego Caro, M. Andrea Rodriguez, Nieves R. Brisaboa, and Antonio Farina.
Compressed kd-tree for temporal graphs. Knowl. Inf. Syst., 49(2):553–595,
November 2016.

[24] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola San-
toro. Time-varying graphs and dynamic networks. International Journal
of Parallel, Emergent and Distributed Systems, 27(21):387–408, 2012.

[25] Qian Chen, Hyunseok Chang, Ramesh Govindan, and Sugih Jamin. The
origin of power laws in internet topologies revisited. In Proceedings. Twenty-
First Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 2, pages 608–617, 2002.

[26] Yangjun Chen and Yibin Chen. Decomposing dags into spanning trees: A
new way to compress transitive closures. In 2011 IEEE 27th International
Conference on Data Engineering, number 11, pages 1007–1018, 2011.

[27] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On Compressing Social
Networks. In Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, number 10 in KDD ’09,
pages 219–228, 2009.

[28] Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the
National Academy of Sciences, 104(50):19735–19740, 2007.

[29] J. Clement. Number of monthly active facebook users worldwide as of 3rd
quarter 2019 (in millions), 2019.

[30] Russell C Coile. Lotka’s frequency distribution of scientific productivity.
Journal of the American Society for Information Science, 28(6):366–370,
1977.

[31] Germán Creamer, Ryan Rowe, Shlomo Hershkop, and Salvatore J Stolfo.
Segmentation and automated social hierarchy detection through email net-
work analysis. In International Workshop on Social Network Mining and
Analysis, number 18, pages 40–58. Springer, 2007.

[32] Toby Davies and Shane D Johnson. Examining the relationship between
road structure and burglary risk via quantitative network analysis. Journal
of Quantitative Criminology, 31(3):481–507, 2015.

154

[33] Don Rutledge Day and Rabindranath Dutta. Using video image analy-
sis to automatically transmit gestures over a network in a chat or instant
messaging session, May 2 2006. US Patent 7,039,676.

[34] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format specifi-
cation version 3.3. Technical report, 1996.

[35] Sergey N Dorogovtsev, José Fernando F Mendes, and Alexander N
Samukhin. Giant strongly connected component of directed networks. Phys-
ical Review E, 64(2):025101, 2001.

[36] Wen-Bo Du, Xing-Lian Zhou, Oriol Lordan, Zhen Wang, Chen Zhao, and
Yan-Bo Zhu. Analysis of the chinese airline network as multi-layer net-
works. Transportation Research Part E: Logistics and Transportation Re-
view, 89(8):108–116, 2016.

[37] Jennifer A Dunne, Richard J Williams, and Neo D Martinez. Network
structure and robustness of marine food webs. Marine Ecology Progress
Series, 273(11):291–302, 2004.

[38] Jennifer A Dunne, Richard J Williams, Neo D Martinez, Rachel A Wood,
and Douglas H Erwin. Compilation and network analyses of cambrian food
webs. PLoS Biology, 6(4):e102, 2008.

[39] SC Eisenstat, MC Gursky, MH Schultz, and AH Sherman. Yale sparse
matrix package. i. the symmetric codes. Technical report, Yale Univ New
Haven CT Dept of Computer Science, 1977.

[40] SC Eisenstat, MC Gursky, MH Schultz, and AH Sherman. Yale sparse
matrix package. ii. the nonsymmetric codes. Technical report, Yale Univ
New Haven CT Dept of Computer Science, 1977.

[41] P Elias. Universal codeword sets and respresentations of the integers. In
IEEE Transactions on Information Theory, pages 194–203, 1975.

[42] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In ACM SIGCOMM Computer
Communication Review, volume 29, pages 251–262, 1999.

[43] Mehdi Farsi, Massimo Filippini, and Urs Trinkner. Economies of scale,
density and scope in swiss posts mail delivery. Liberalization of the Postal
and Delivery Sector, (10):91–101, 2006.

[44] Arash Farzan and J Ian Munro. Succinct representations of arbitrary
graphs. In European Symposium on Algorithms, number 11, pages 393–
404, 2008.

155

[45] Gerald Faulhaber. Network effects and merger analysis: instant messaging
and the aol–time warner case. Telecommunications Policy, 26(5-6):311–333,
2002.

[46] David A Fell and Andreas Wagner. The small world of metabolism. Nature
Biotechnology, 18(11):1121, 2000.

[47] Afonso Ferreira and Laurent Viennot. A Note on Models, Algorithms, and
Data Structures for Dynamic Communication Networks. Research Report
RR-4403, INRIA, 2002.

[48] Johannes Fischer and Daniel Peters. Glouds: Representing tree-like graphs.
Journal of Discrete Algorithms, 36(10):39–49, 2016.

[49] Michael J Fischer and Albert R Meyer. Boolean matrix multiplication and
transitive closure. In 12th Annual Symposium on Switching and Automata
Theory (swat 1971), number 3, pages 129–131, 1971.

[50] Alexandre Francisco, Travis Gagie, Susana Ladra, and Gonzalo Navarro.
Exploiting computation-friendly graph compression methods for adjacency-
matrix multiplication. In 2018 Data Compression Conference, number 7,
pages 307–314, 2018.

[51] S. . Garca, N. R. Brisaboa, G. d. Bernardo, and G. Navarro. Interleaved k2-
tree: Indexing and navigating ternary relations. In 2014 Data Compression
Conference, number 9, pages 342–351, March 2014.

[52] Saptarshi Ghosh, Avishek Banerjee, Naveen Sharma, Sanket Agarwal,
Niloy Ganguly, Saurav Bhattacharya, and Animesh Mukherjee. Statisti-
cal analysis of the indian railway network: a complex network approach.
Acta Physica Polonica B Proceedings Supplement, 4(15):123–138, 2011.

[53] John Greiner. A comparison of parallel algorithms for connected compo-
nents. In Proceedings of the Sixth Annual ACM Symposium on Parallel
Algorithms and Architectures, number 9, pages 16–25, 1994.

[54] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order
entropy-compressed text indexes. In Proceedings of the Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages
841–850, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[55] Jiancheng Guan and Na Liu. Exploitative and exploratory innovations in
knowledge network and collaboration network: A patent analysis in the
technological field of nano-energy. Research Policy, 45(1):97–112, 2016.

156

[56] JianCheng Guan, KaiRui Zuo, KaiHua Chen, and Richard CM Yam. Does
country-level r&d efficiency benefit from the collaboration network struc-
ture? Research Policy, 45(4):770–784, 2016.

[57] John Guare. Six degrees of separation: A play. Vintage, 1990.

[58] Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team
assembly mechanisms determine collaboration network structure and team
performance. Science, 308(5722):697–702, 2005.

[59] Alexander Halavais. Search Engine Society. John Wiley & Sons, 2017.

[60] Edward JS Hearnshaw and Mark MJ Wilson. A complex network approach
to supply chain network theory. International Journal of Operations &
Production Management, 33(4):442–469, 2013.

[61] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and
Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic
problems via the online matrix-vector multiplication conjecture. In Pro-
ceedings of the Forty-Seventh Annual ACM Symposium on Theory of Com-
puting, number 9, pages 21–30, 2015.

[62] Daniel S. Hirschberg, Ashok K. Chandra, and Dilip V. Sarwate. Comput-
ing connected components on parallel computers. Communications of the
ACM, 22(8):461–464, 1979.

[63] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports,
519(28):97–125, 2012.

[64] Ralf Hölzer, Bradley Malin, and Latanya Sweeney. Email alias detection
using social network analysis. In Proceedings of the 3rd ACM International
Workshop on Link Discovery, number 5, pages 52–57, 2005.

[65] Silu Huang, James Cheng, and Huanhuan Wu. Temporal graph traversals:
Definitions, algorithms, and applications. CoRR, 2014.

[66] HV Jagadish. A compression technique to materialize transitive closure.
ACM Transactions on Database Systems (TODS), 15(4):558–598, 1990.

[67] Erik Jenelius and Lars-Göran Mattsson. Road network vulnerability anal-
ysis: Conceptualization, implementation and application. Computers, En-
vironment and Urban Systems, 49(11):136–147, 2015.

[68] Alan Jennings. Matrix computation for engineers and scientists. London
and New York, Wiley-Interscience, 1977. 340,, 1977.

157

[69] Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltan N Oltvai, and A-
L Barabási. The large-scale organization of metabolic networks. Nature,
407(6804):651, 2000.

[70] VK Kalapala, V Sanwalani, and C Moore. The structure of the united
states road network. Preprint, University of New Mexico, 2003.

[71] U Kang, Charalampos E Tsourakakis, Ana Paula Appel, Christos Falout-
sos, and Jure Leskovec. Radius plots for mining tera-byte scale graphs:
Algorithms, patterns, and observations. In Proceedings of the 2010 SIAM
International Conference on Data Mining, number 10, pages 548–558, 2010.

[72] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS:
A Peta-Scale Graph Mining System Implementation and Observations. In
Proceedings of the Ninth IEEE International Conference on Data Mining,
number 10 in ICDM ’09, pages 229–238, 2009.

[73] Chinmay Karande, Kumar Chellapilla, and Reid Andersen. Speeding Up
Algorithms on Compressed Web Graphs. Internet Mathematics, 6(3):373–
398, February 2009.

[74] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining
social networks and collaborative filtering. Communications of the ACM,
40(3):63–65, 1997.

[75] Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over
historical graph data. 2013 IEEE 29th International Conference on Data
Engineering (ICDE), (11):997–1008, 2013.

[76] Valerie King and Garry Sagert. A fully dynamic algorithm for main-
taining the transitive closure. Journal of Computer and System Sciences,
65(1):150–167, 2002.

[77] Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan,
and Andrew S Tomkins. The web as a graph: measurements, models,
and methods. In International Computing and Combinatorics Conference,
number 17, pages 1–17. Springer, 1999.

[78] Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Jr., Sean R.
Spillane, Jayadevan Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The
g* graph database: Efficiently managing large distributed dynamic graphs.
Distrib. Parallel Databases, 33(4):479–514, December 2015.

[79] Kevin D Lafferty, Andrew P Dobson, and Armand M Kuris. Parasites
dominate food web links. Proceedings of the National Academy of Sciences,
103(30):11211–11216, 2006.

158

[80] Kasper Green Larsen and Ryan Williams. Faster online matrix-vector mul-
tiplication. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, number 7, pages 2182–2189, 2017.

[81] Vito Latora and Massimo Marchiori. Is the boston subway a small-
world network? Physica A: Statistical Mechanics and its Applications,
314(4):109–113, 2002.

[82] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
Massive Datasets. Cambridge University Press, 2014.

[83] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis.
Pushing the envelope in graph compression. CIKM ’14, (9):1549–1558,
November 2014.

[84] Yongsub Lim, U. Kang, and C. Faloutsos. SlashBurn: Graph Compres-
sion and Mining beyond Caveman Communities. IEEE Transactions on
Knowledge and Data Engineering, 26(12):3077–3089, Dec 2014.

[85] Yun Liu, Veena B Mendiratta, and Kishor S Trivedi. Survivability analysis
of telephone access network. In 15th IEEE International Symposium on
Software Reliability Engineering, number 10, pages 367–377, 2004.

[86] Oriol Lordan, Jose M Sallan, and Pep Simo. Study of the topology and
robustness of airline route networks from the complex network approach:
a survey and research agenda. Journal of Transport Geography, 37(8):112–
120, 2014.

[87] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng
Zhang, and Tao Zhou. Vital nodes identification in complex networks.
Physics Reports, 650(63):1–63, 2016.

[88] Sebastian Maneth and Fabian Peternek. A Survey on Methods and Systems
for Graph Compression. 6(3), 2015.

[89] Peter V Marsden. Network data and measurement. Annual review of soci-
ology, 16(1):435–463, 1990.

[90] Daniel P Martin. Dynamic shortest path and transitive closure algorithms:
A survey. CoRR, 2017.

[91] Tobias Martin, Gerald Lumma, Ulrike Weber, Dieter Wuest, and Soenke
Gruetzmacher. Telephony communications system for detecting abuse in a
public telephone network, May 14 2019. US Patent 10,291,772.

159

[92] Hossein Maserrat and Jian Pei. Neighbor Query Friendly Compression of
Social Networks. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, number 22 in KDD
’10, pages 303–325, New York, NY, USA, 2010. Springiner-Verlag New
York.

[93] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[94] Erfanmanesh Mohammadamin, Rohani Vala Ali, and Abdullah Abrizah.
Co-authorship network of scientometrics research collaboration. Malaysian
Journal of Library & Information Science, 17(3):73–93, 2017.

[95] James Moody. The structure of a social science collaboration network:
Disciplinary cohesion from 1963 to 1999. American Sociological Review,
69(2):213–238, 2004.

[96] Ian Munro. Efficient determination of the transitive closure of a directed
graph. Information Processing Letters, 1(2):56–58, 1971.

[97] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Informa-
tion network or social network?: the structure of the twitter follow graph.
In Proceedings of the 23rd International Conference on World Wide Web,
number 5, pages 493–498, 2014.

[98] Moni Naor. Succinct representation of general unlabeled graphs. Discrete
Applied Mathematics, 28(3):303–307, 1990.

[99] Michael Nelson, Sridhar Radhakrishnan, Amlan Chatterjee, and Chandra
Sekharan. On compressing massive streaming graphs with Quadtrees. In
2015 IEEE International Conference on Big Data (Big Data), 2015.

[100] Michael Nelson, Sridhar Radhakrishnan, Amlan Chatterjee, and Chandra
Sekharan. Queryable Compression on Streaming Social Networks. In 2017
IEEE International Conference on Big Data (Big Data), 2017.

[101] Michael Nelson, Sridhar Radhakrishnan, and Chandra Sekharan. Queryable
compression on time-evolving social networks with streaming. In 2018 IEEE
International Conference on Big Data, number 5 in IEEE BigData ’18,
pages 146–151. IEEE, IEEE Computer Society, 2018.

[102] Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng David Gu, and Emil
Saucan. Ricci curvature of the internet topology. In 2015 IEEE Conference
on Computer Communications (INFOCOM), number 8, pages 2758–2766.
IEEE, 2015.

160

[103] Vincenzo Nicosia, John Kit Tang, Cecilia Mascolo, Mirco Musolesi, Gio-
vanni Russo, and Vito Latora. Graph metrics for temporal networks. CoRR,
2013.

[104] Takashi Nishikawa and Adilson E Motter. Comparative analysis of ex-
isting models for power-grid synchronization. New Journal of Physics,
17(1):015012, 2015.

[105] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata.
Accelerating graph adjacency matrix multiplications with adjacency forest.
In Proceedings of the 2014 SIAM International Conference on Data Mining,
number 8, pages 1073–1081, 2014.

[106] Patrick E O’Neil and Elizabeth J O’Neil. A fast expected time algorithm
for boolean matrix multiplication and transitive closure. Information and
Control, 22(2):132–138, 1973.

[107] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999.

[108] Pradeep Pillai, Andrew Gonzalez, and Michel Loreau. Metacommunity
theory explains the emergence of food web complexity. Proceedings of the
National Academy of Sciences, 108(48):19293–19298, 2011.

[109] János Podani, Zoltán N Oltvai, Hawoong Jeong, Bálint Tombor, A-L
Barabási, and E Szathmary. Comparable system-level organization of ar-
chaea and eukaryotes. Nature Genetics, 29(1):54, 2001.

[110] Derek J De Solla Price. Networks of scientific papers. Science, (5):510–515,
1965.

[111] Anabel Quan-Haase, Joseph Cothrel, and Barry Wellman. Instant mes-
saging for collaboration: A case study of a high-tech firm. Journal of
Computer-Mediated Communication, 10(4):JCMC10413, 2005.

[112] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct in-
dexable dictionaries with applications to encoding k-ary trees, prefix sums
and multisets. ACM Transactions on Algorithms (TALG), 3(4):43, 2007.

[113] Vaishali Rampurkar, Polgani Pentayya, Harivittal A Mangalvedekar, and
Faruk Kazi. Cascading failure analysis for indian power grid. IEEE Trans-
actions on Smart Grid, 7(4):1951–1960, 2016.

161

[114] Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G. Wick-
remesinghe. The Link Database: Fast Access to Graphs of the Web. In
Proceedings of the Data Compression Conference, number 9 in DCC ’02,
pages 122–131, 2002.

[115] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On
querying historical evolving graph sequences. PVLDB, 4(11):726–737, 2011.

[116] John Resig and Ankur Teredesai. A framework for mining instant messaging
services. In Proceedings of the 2004 SIAM DM Conference, 2004.

[117] Ryan Rowe, German Creamer, Shlomo Hershkop, and Salvatore J Stolfo.
Automated social hierarchy detection through email network analysis.
(8):109–117, 2007.

[118] Parongama Sen, Subinay Dasgupta, Arnab Chatterjee, PA Sreeram,
G Mukherjee, and SS Manna. Small-world properties of the indian rail-
way network. Physical Review E, 67(3):036106, 2003.

[119] Olaf Sporns. Network analysis, complexity, and brain function. Complexity,
8(1):56–60, 2002.

[120] Olaf Sporns and Richard F Betzel. Modular brain networks. Annual Review
of Psychology, 67(27):613–640, 2016.

[121] Olaf Sporns, Giulio Tononi, and Gerald M Edelman. Theoretical neu-
roanatomy: relating anatomical and functional connectivity in graphs and
cortical connection matrices. Cerebral Cortex, 10(2):127–141, 2000.

[122] Stanford Network Analysis Project. Stanford Large Network Data Collec-
tion. https://snap.stanford.edu/data/index.html, 2011.

[123] Jörg Stelling, Steffen Klamt, Katja Bettenbrock, Stefan Schuster, and
Ernst Dieter Gilles. Metabolic network structure determines key aspects of
functionality and regulation. Nature, 420(6912):190, 2002.

[124] Anthony M Townsend. Network cities and the global structure of the in-
ternet. American Behavioral Scientist, 44(10):1697–1716, 2001.

[125] Jeffrey Travers and Stanley Milgram. An experimental study of the small
world problem. In Social Networks, number 18, pages 179–197. 1977.

[126] György Turán. On the succinct representation of graphs. Discrete Applied
Mathematics, 8(3):289–294, 1984.

[127] Uzi Vishkin. An optimal parallel connectivity algorithm. Discrete Applied
Mathematics, 9(2):197–207, 1984.

162

[128] Andreas Wagner and David A Fell. The small world inside large metabolic
networks. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 268(1478):1803–1810, 2001.

[129] Duncan J Watts. Small worlds: the dynamics of networks between order
and randomness, volume 9. Princeton University Press, 2004.

[130] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-
worldnetworks. Nature, 393(3):440–442, 1998.

[131] John G White, Eileen Southgate, J Nichol Thomson, and Sydney Bren-
ner. The structure of the nervous system of the nematode caenorhabditis
elegans. Philos Trans R Soc Lond B Biol Sci, 314(1165):1–340, 1986.

[132] Jeffrey B Winner and Nicholas Galbreath. Online content delivery based
on information from social networks, August 6 2019. US Patent 10,373,173.

[133] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan
Xu. Path problems in temporal graphs. Proceedings of the VLDB Endow-
ment, 7(11):721–732, 2014.

[134] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Re-
search on the architecture of internet of things. In 2010 3rd International
Conference on Advanced Computer Theory and Engineering (ICACTE),
volume 5, pages V5–484, 2010.

[135] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. International Journal of Foun-
dations of Computer Science, 14(18):267–285, 2003.

[136] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. Social collaborative filtering
by trust. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(8):1633–1647, 2016.

[137] Huacheng Yu. An improved combinatorial algorithm for boolean matrix
multiplication. (11):1094–1105, 2015.

[138] Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Social media mining:
an introduction. Cambridge University Press, 2014.

163

