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LU Abstract 

A vital component for the engineering of tissue constructs in vitro is a scaffo ld 

that allows cells to adhere and proliferate. Biomimetic scaffo lds aim to enhance the 

regeneration of dama ged tissue by mimicking the cells' natural environment. This study 

investigated the potential of surfa ce functionalization of PLA films. PLA fibers were 

modified using an aceto ne-water mixture to physica lly entrap amine functionali zed polyK 

uniformly. Biomimetic modification was achieved with linking of biological molecules 

using amine couplin g chemistry (amine to carboxy lic acid using a carbodiimide). 

Uniform surfac e coverage of entrapp ed and linkin g molecules was shown using 

fluorescent microscopy. Process flexibility is demonstrated with ce llular respon se to 

sur face modification using HE, HA, and RGD. Initial cell response was inves tigated with 

a stat ically attac hed cell culture of rMSC's, F-act in staining, and fluoresce nt micro scopy. 

This imaging showed surface modification enha nced cell attachment, cell stretching, and 

can potentially signa l cell differentiation. Expansion of the process to more materials 

showed a preference for amorp hous struct ure over crysta llini ty in poly (a -hydroxy 

esters). This process is a simple method for uniform surface modification that is non

destructive to the scaffo ld and can be used to attach many biological molecu les (proteins, 

peptides, and GAG 's) in order to present a ce ll friendly surface. 
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1.1 lulroduction 

Tissue engineering app lies biological and engineering principles toward the 

development of tissue and organ substitutes [I]. In genera l, cells are ex tracted from a 

patient or donor , given chemical and mechanical stimulati on durin g cultur e via a scaffo ld 

and a bioreactor , and transplanted into the patient for tissue restoration and improvement. 

Stem cells, such as MSC ' s, are widely used because of the potentia l to create multipl e 

tissues from one cell source [2]. It has been found that MSC 's can be harves ted from 

multipl e adult tissues and differentiated into severa l cell types such as neurons, 

chondrocytes, osteob lasts, and card iomyocytes [3-5]. These processes have been used to 

regenerate skin [6, 7], bone[8 , 9], cartilage[IO , 11], nerves[l2, 13], and heart va lves[ 14, 

15]. 

The cell environment is one of the keys to control the final different iation of the 

stem cel l [ 16, 17]. This interaction between the cell and scaffo ld is important to tissue 

eng ineers [ 18, 19]. Early biomaterials primarily provided structural support for tissue 

recon struction. The next generation of biomaterial s focused on produ cing bioactive 

materials. Toda y, third generat ion biomaterial s provide mechanical support , mimic the 

physio logical environment, and direct tissue fom1ation and reconstruction at the ce llular 

leve l [20]. Polymer s, both synthetic and natural , have been used. Natu ral polymers 

provid e benefits such as inherent biological recog nition molecu les, cell receptor binding 

domain s, but synthetic materials allow for more contro l of material propertie s [16]. 

Synthet ic materials used as biomater ials should evoke a limited susta ined inflamm atory 

response , degrad e in proportion to tissue fom1ation, have mechanical propertie s 

appropr iate for intended use , and produce non-toxic degradation by - product s [21 ]. In 



additi;;n, three dimensiona l biomat erials or tissue engineering scaffold s should provid e 

support for ce ll prolifer ation, migrat ion, and nutrient transport via systems of 

interconnected pores[22). 

Poly (a -hydroxy esters) are biodegrada ble polymers wide ly used as tissue 

enginee ring scaffo lds particu larly, PLLA , PGA, and their copolymers. These polymers 

have been used to create sca ffolds with multipl e arc hitectu res but as plain biomat erials, 

scaffo lds without modification s such as plasma treatment, chemica l treatment , or any 

molecules linked covale ntly or by physisorption , shows limited ab ility for cell adhes ion 

and grow th and cannot direct ce ll differentiation or mim ic the physio logical environment 

[23). In order to achieve these goa ls, the scaffo ld is modified to create a biomimeti c 

scaffo ld. This is done by modifying the scaffo ld surface with biological molecul es such 

as grow th factors or ECM molecules to mimic the ECM during repair. Modification is 

performed either as bulk modificat ion or surface modificati on [24, 25). Severa l 

techniques are used to impart biological molecule s including physisorption [26, 27], 

chem ical cros s linkin g of the polymer scaffo ld [28, 29], and cova lent attachment to the 

surface[30 , 3 1). The latter technique can be done provided a functional group is ava ilab le 

on the sca ffold surface. In order to prov ide this functional group the surfac e can be 

act ivated via plasma treatm em[32] , hydroly sis[33 ], aminolysis [34] , or by phy sical 

entrapm ent of a functionalized polymer anchor. 

Physical entrapment was first introduced by Hubbell et a l. to show that PEG could 

be entrapped in a polymer surfac e using a solvent/non-solvent technique [35, 36). Thi s 

technique was expa nded on by Quirk et al. lo successfu lly entrap poly (L-lysine) on 

PLLA and was shown to effect ce ll attac hment [37, 38). While most instances of ph ysical 
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e11irnpment have included a hydrophobi c pol ymer network , Hou et al. showe d that 

alginate can be used to phys ica lly entrap PEG and poly (L-lysine). This procedur e used a 

NaCI/CaC l2 mixture followed by a CaC I, to entrap the PA [39]. Rece ntly, our group has 

shown that an entrapped PA can be further linked to adhesive mo lecules such as RGD to 

increase attachment and direct MSC differentiation to osteoblasts [ 40-42]. In general thi s 

technique uses a so lvent to swe ll the polymer scaffo ld, which allow s the PA to diffu se 

into the sca ffold . After a short period of tim e, the scaffo ld is then soaked in a non-sol vent 

which co llapses the scaffo ld (returning the polymer network to its original state), 

effectively entrapp ing the PA at the surfac e of the scaffo ld. 

Severa l GAGs found in the extracellular matrix can enable ce ll attachment , 

facilitate ce ll migrat ion, store and release growt h factors, and trigger MSC differ entiation . 

HA is a linear, up to l 07 Dalton, non-sulfated GAG, compo sed of alternating (1-> 4) - P

D-glucuronic acid and (l->3) - P-N-acetyl-D-glucosamine , found in the ECM of 

connective tissues such as bone or cartilage[43 , 44 ]. HA as a natural TE scaffo ld ha s been 

widely inves tigated, but it can also be used as a signaling molecule. Ce ll-HA bindin g has 

been shown to occur via the CD44 and RHAMM receptors [45 , 46]. Through these 

connec tio ns HA is shown to trigger increased ce ll motility , angioge nesis, and even anti

angioge nesis depending on molecular we ight [47-49]. HE is a highly sulfated, highly 

negatively char ged GAG composed of a or P ( I -4) linked uronic ac id and a -D

glucosa min e[50]. 

HE 's importance comes from its ab ility to interact w ith several key ECM 

mo lecu les and growth factors. Singh et al. recent ly reported that VEGF cap tured by HE 

showed a greater potential for angiogene sis then VEGF cova lent ly linked to PEG [51]. 
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Tin, iukrnctions are not limited to VEGF , but also include FGF, fibronectin , and 

vitronectin. Sakiyama-Elbert et al. used HE for the controlled relea se of growth factors 

for nerve growth. This process showed an increase in neurite extension of I 00% 

compared to non-heparinized materials (52]. Another study used an alginate hydrogel 

with linked HE to bind bone morphogenic protein - 2 (BMP-2) and controllably release 

it. This process showed I. 9 fold increase in periphera l bone fonnation and 1.3 fold 

increase in calcium deposition compared to alginate scaffolds without HE [53]. Therefore 

HE can be used to create a better biomimetic scaffold by uti lizing its multiple prope rties 

of cell adhesion and growth factor release. A complete discussion of HE growth factor 

and protein binding has been provided by Capila et al(54]. 

In this study a simp le surface modification technique was introduced in order to 

present amine functional groups for biological modification. This functionality provides a 

surface that, through amine coupling chemistry, can be made biologically active. With 

the current variety of linkers available virtually any biological molecu le can be linked to 

the surface to elicit a specific cellular response. In a previous study by this lab a PA with 

side groups was used that is thought to have detrimental long tenn effects in vivo. 

Therefore, the first goal of this study was to replace the PA previously used by Alvarez -

Barreto et al. with PEG-amine , based on PEG, a widely used polymer , which has been 

shown to limit cell attachment and immun e response in vivo. The second goal was to 

eliminate one of the solvents (DMSO) used during entrapment by only using one step and 

a less biologically harsh solvent , an acetone /water solution , to entrap a PA and st ill 

produce a unifonn and stably modifi ed surface. The third goal was to improve upon the 

surface modification previously shown , linking small polypeptides (RGD), by cova lently 
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iinkingiarge molecules, HA or HE, to the surface . The final goal was to show the 

versati lity of the process by entrapping a PA in different po ly (a - hydroxy ester) 

polymers. 

1.2 Materia ls 

PLA (MW = I 08500) was provided by Nature Works LLC. PCL (Mw= 117600 , 

M, = 63600) , PLGA85 (Mw = 89300, M,, = 49100) , and PLGA50 (Mw = 122000 , M,, = 

71000) were provided by Duree! Corp.( Birmingham , AL). Poly-e-CBZ -L-lysine (MW = 

1000 - 4000) , Heparin sodium salt from bovine intestina l muco sa( ! 80 USP units /mg) , 

Hyaluronic acid sodium salt from Streptococcus equi (MW = 1,630,000) was purchased 

from Sigma-Aldrich (St. Louis, MO). OmniPur® MES, monohydrate and OmniPu r® 

HEPES , free acid were purchased from EMO Millipore (Billerica, MA). Heparin-FITC 

(MW = 3000-30000) was purchased from Polysciences , Inc. (Warrington , PA). EDC, 

NHS, NHS -rhodamine, SPDP , and p-HRP were purchased from Pierce Biotechnology 

(Rockford , IL). ABTS, GIBCO Minimum Essential Media Alpha Medium , and Alexa 

Fluor 488 phalloidin were purchased from lnvitrogen (Camarillo , CA). Triton X-100 and 

I 0% Fonnalin in phosphate buffered saline was purchased from VWR (Suwanee , GA). 

Chloroform and acetone were purchased from Fisher Scientific (P ittsburgh, PA). PEG

amine (MW = 20,000) with tenninal amine functiona l groups was purchased from 

Laysan Bio, Inc. (Arab , AL). 



i.3 Methods 

1.3.1 Preparation of 2-D films 

PLA films were prepared by dissolving PLA in chlorofonn at a conce ntrati on of 

50 mg/mL. The mixtnre was poured even ly in 60 mm petri dishes to dry overn ight. The 

dried films were then extracted from the petri dishes and stored under vacuum until use. 

1.3.2 E11trapme11t of PolyK i11 PLAfi/111s 

PLA films were cut to a standard size of8 mm in diameter and 140 ± 6.3 µmin 

thickness. The optima l procedure to entrap was found by testing 2 different groups as 

follows: 

I. PLA films were soaked in 600 µL of a 70/30 acetone /water (v/v) mixture for I 

hour and then incubated in 0.1 mg/ml polyK or PEG-amine dissolved in 2.5 ml DMSO 

for 12 hours. 

2. PLA films were incubated in 2.5 ml of70 /30 acetone /water (v/v) mixtnre with 

0.1 mg/ml dissolved polyK or PEG-amine for 12 hours. 

The entrapment technique was evaluated by incubating modified films in p-HRP 

al 10·8 Min PBS (pH = 7.3) for 2 hours. After a wash in I% Triton X- 100 and three 

washes of deionized (DI) water , films were incubated in ABTS sing le solution, solution 

provided previously prepared by the manufacturer al unknown concentratio n (lnvitrogen , 

Camail lo, CA) for 30 minutes. HRP catalyzes the reaction of ABTS and peroxide P-HRP 

activity was measured by reading absorbance in a Synergy HT plate reader (Bio -Tek, 

Winooski , VT) at 415 nm. Levels of polyK entrapment were quantitative ly related to the 

absorbance signal by a standard curve prepared as follows. 
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~ilms were punched as previously speci fied and 20 µL ofp-HRP solution was 

pipetted on the surfac e. This was allowed to incub ate for 30 minutes to let physisorption 

occur. Next, the prepar ed films were incubat ed in ABTS single solution for 30 minut es 

and then assayed in tripli cate. P-HRP activity was measured by reading absorba nce in a 

Synergy HT plate reader (Bio-Tek, Winooski , VT) at 41 5 nm . A control of a film with 

no HRP in ABTS and ABTS with no film was used. This curve allowed for quantification 

of the PA entrapped from 300 to 0.03 picomolar. This standard was used throughout thi s 

investigation to quan tify the amount of PA entrapped to the surfac e. 

1.3.3 Verification of uniform entrapment 

After modification , scaffo lds were incubated in 0.4 mM NHS-rhodamine in PBS 

at pH=7.2 for 30 minut es, and then washed once with 1% Triton X-100 and three times 

with DI water. Fluor esce nce microscopy of modified and unmodifi ed discs was 

perform ed using a Nikon Epifluorescence microscope (Lewisvi lle, TX) with exci tation at 

552 nm and emission at 575 nm. Images were captured with MetaMorph 6.2 (Universa l 

Imaging Corporation , Downingtown , PA). (n=4) 

1.3.4 Stability of entrapment in PLA 

The opt imal time for entrapm ent and the stabilit y of entra pped polyK in PLA was 

tested. Films were incubated for 12, 24, and 48 hour s using proc edure 2 with 0.1 mg/m l 

polyK , and then incubated in PBS for 8 days. At day 0 and then every two days , films 

were modifi ed further with p-HRP for use in an absorba nce assay. Films were incubated 

in p-HRP in PBS for 2 hours and then washed in 600 µL of 1% Tr iton X-100 once and DI 

water three times. Films were incubated in ABTS single solution for 30 minut es to 

monitor HRP activity. Activity was measured by reading absorba nce in a Syne rgy HT 
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plate reader (Bio-Tek , Winooski , YT) at 415 run. Levels of polyK entrapment were 

quantitatively related to absorbance using the standard curve described in section 1.3.2. 

(n=4) 

1.3.5 Linking a biological molecule lo polyK 

Biological modificatio n of entrapped polyK in fiber scaffo lds was performed for 

both HE and HA using the following technique (GAG will signify HE or HA). The 

carboxy l group of the GAG was activated by addition ofEDC and NHS. EDC at 2 mM 

and NHS at 5 mM were reacted with 0.0 l mg/mL HE or HA in MES buffer at pH 6 for 

15 minutes. NHS was added to stab ilize the EDC/GAG conjugate to link with the amine 

group of polyK. Next , an equal volume of PBS was added to increase the solution pH to 

7.1. Films were then added to 600 µL of this solution and fibers were added to I mL of 

this solution and reacted for 2 hours. Eac h scaffo ld was then washed, fibers with I mL 

and films with 600 µL. 

To test the improvemen t of cell adhesion of the HE and HA, RGD was also linked 

to polyK using a previously described method[40]. First, 0.4 mM SPDP was disso lved 

DMSO and dilut ed to 0. 1 mM in PBS at pH = 7.4, and then reacted with mod ified films 

or fibers for 30 minutes. Each scaffold was then washed as described above and reacted 

with 0.1 mM RGDC in HEPES at pH= 8.3 for 90 minutes at 40 °C[55 ]. Afte r fimher 

wash ing the scaffolds were placed in PBS until use. Steri le procedures were care fully 

followed when modified films or fibers were cultured with cells followi ng modific atio n. 
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1.3.6 Linking of fluorescent HE to films and fibers 

Films and fibers were modified with HE-FITC as described in the previous 

section. Each film or fiber was then washed as previou sly described, fibers with I ml 

and films with 600 µL in a dark box. Fiber sca ffolds were isolated and mechanically 

opened. Single fibers were taken from the center to test modificati on throughout the 

sca ffolds. Fluorescence microscopy of modified and unmodified films and fibers was 

perfonned using a Nikon Epifluorescence microscope (Lew isville, TX) with excitation at 

419 nm and emission at 516 nm. Images were captured with MetaMorph 6.2 (Universal 

Imaging Corporation, Downingtown , PA). (n=4) 

1.3.7 Collection of rat mese11chymal stem cells 

Adult rMSC were isolated from the bone marrow of 8-week-old male Wistar rats 

(Harlan Laboratories , Indianapolis , IN) using well-established methods. Briefly, rats were 

euthani zed, and the tibiae and femora were extracted. The epiphyses were cut off, and the 

bone maJTow was flushed and suspended in a-MEM supplemented with I 0% fetal bovine 

serum. The suspension was then distributed in polystyrene culture flasks (75 cm2). Cells 

were cultured at 37 °C and 5% carbon dioxide. Non-adherent cells were discarded after 2 

days of culture. MSCs were detached using trypsin, centrifuged at 400 g for 5 min , 

resuspended in a-MEM , and replat ed until the third passage. 

1.3.8 Cell attachment to scaffolds 

A static culture of third passage rMSC 's was used to assess the effect of the 

modification on cell attachment. Third passage rMSC's were used at a density of 800,000 

cells /ml and 200,000 cells/sca ffold for fiber scaffold s in a-MEM. Fiber scaffolds were 

pre-wet with 95% ethanol under vacuum to remove air bubbles. Scaffo lds were washed in 
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PBS for i hour , fitted into cassettes for static culture , and then the specified cell 

concentration was added and incubated for 6 hours. 

After incubati on, the scaffo lds were washed with PBS and then soaked in I 0% 

Formalin in PBS at 4 °C overnig ht. Next , scaffo lds were allowed to equilibrate to room 

temperature for 30 minutes. Alexa Fluor 488 phalliodin was used to sta in the F-actin 

filaments of ce lls attached to fiber scaffo lds at the concentration spec ified by the 

manufacturer. Alexa Flour 488 phalliodin was dissolved in methanol at 6.6 µM , and then 

diluted into PBS to 1.65 µM. Scaffolds was first rinsed in 0.1 % Triton X-100 and PBS at 

a pH of7.3. Nex t, 200 µL of the phalliodin solution was pipetted onto the scaffo lds and 

allowed to incubated for 30 minutes. Fluorescence micro scopy of modified and 

unmodified fiber scaffo lds was performed using a N ikon Epifluorescence micro scope 

(Lewisville, TX) with excitation at 495 nm and emission at 518 nm. Imag es were 

captured with MetaMorph 6.2 (Universal Imaging Corporation, Downingtown, PA). 

1.3.9 Scaffold ce/111/arity 

A static culture of third passage rMSC's was used to assess the effect of the 

modification on scaffold cellularity. Third passage rMSC 's were used at a density of 

2,000,000 cells /ml and 500,000 cells/scaffold for fiber scaffolds in a-MEM. Fiber 

scaffolds were pre-wet with 95% ethanol under vacuum to remove air bubbles. Next, 

scaffolds were washed in PBS for I hour, fitted into cassettes for stat ic culture, and then 

the specified cell concentration was added and allowed to incubate for 6 hours. After 

incubation , scaffo lds were rinsed in PBS and suspended in 3 ml nanopur e water. Three 

freeze thaw sess ion were perfonned to lyse the cells. A picogreen DNA quantification 

assay was then perfonned to access scaffo ld cellularit y. 
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A standard curve was generated from known concentration s on.DNA. Sample s 

and stand ards were prepared using aliquots of 43 µL in a 96 well plate. Nex t I 07 µL of 

reac tion buffer (20x I 0·3 M Tris-HCI, Ix I 0-3 M EDT A, pH=7.5) was added to each well. 

Picogreen dye was added to bring the tota l volume to 300 µL. Fluorescence was 

measured using a Synergy HT plate reade r (Biotek) at 490 nm exci tation and 520 nm 

emission. The number of cells was calculated using the total amount of DNA in a sample 

divided by the tota l amount of DNA in one cell, 7 pg [56].(n=4) 

1.3.10 PolyK cytotoxici(J' 

rMSC's were cultured on fiber scaffold s for 2 days in order to analyze the 

cytotoxici ty of entrapped polyK. There were two groups investigated , groups with 

entrapped polyK and those without. rMSC's at the third passage were uniforml y 

suspende d and seeded statica lly onto fiber scaffo lds. Cells were allowed to adhere for 8 

hours, and incuba ted for 2 days at 37 °C and 5% CO, . Then an alamar blue assay was 

perfom1ed. Alamar blue was added , 10% of the total volume, and allow to incubate for 4 

hours. Next , 300 µL were aliquoted to a 96-well plate and the fluorescence was measure 

using a Synergy HT plate reader (Bio-Tek, Winooski, VT) at exc itation 530 nm and 

emission 590 nm . The cyto toxicity was calcu lated as the percent viable by dividing the 

fluorescence of a samp le group by the fluore scence of the contro l group. (n=4) 

The scaffol ds were then washed with PBS and frozen in 1.5 ml of nanopure 

water. After three freeze - thaw sess ions the amou nt of cells was quantified using a 

picogreen DNA assay as previou sly described. A standard curve was genera ted from 

known concentrations of ADNA. Samples and standard s were prepared using aliquots of 

43 µL in a 96 we ll plate. Next I 07 µL of reaction buffer (20x I 0·3 M Tris-HCI , Ix Io ·' M 
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GDTA, pH=7.5) was added to each well. Picogreen dye was added to bring the tota l 

volume to 300 µL. Fluorescence was measured using a Synergy HT plate reader (Biotek) 

at 490 nm excitation and 520 nm emission. The number of cells was calculated using the 

total amount of DNA in a sample divided by the total amount of DNA in one cell. This 

number was then used along with the alamar blue assay results to acquire a normalized 

result and negate any variability in cell seeding. This was done by dividing the 

fluorescence by the number of cells , and obtaining fluorescence per cell or the qua litative 

amount ofre sazurin reduced per cell. (n=4) 

1.3.11 PolyK e11lrapme11I in polymer films 

Polymer films were produced by the method previously described. Films were 

created using PCl, PlA , PlGA85 , and PlGAS0. First, I 00 mg/ml polymer solutions 

were created by dissolving the polymer s in chloroform. Next, the films were poured 

evenly over 60 mm petri dishe s and the chloroform was allowed to evaporat e. The films 

were stored in a vacuum chamber. Special care was taken with PlGA85 and PlGAS0. 

For each , aluminum was placed in the petri dishes and the solutions were poured over 

them. After drying the films were then able to be taken out of the petri dishes and were 

placed in a vacuum chamber until use. 

Three different polymer anchors were invest igated. The first was hydrophobic , 

polyK , the seco nd was hydrophilic , PEG - amine , and the third was a di - block peptid e 

of arginine and leuc ine (Rl- peptide). The three polyme r anchors were investigated 

separat ely. Briefly , films were punched according to the previous protocol , 8 mm in 

diameter and approximately 200 µmin thickne ss. These films were then soaked for 12 

hours in a 70% acetone and 30% water solution with 0.1 mg/ml of the polymer anchor. 
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Thoo-f;I;;;, were then rinsed in 0.1 % triton X- 100 for 15 minute s, and DI water three times 

for 15 minute s eac h to wash off adsorbed po lymer anchors. Next, the film s were 

incubated for 2 hours in Io ·' M p-HRP in PBS (pH = 7.3). After rinsing the film s as 

desc ribed above, the films were soaked in ABTS for 30 minutes. Finally, 150 µL of 

ABTS so lution was pipetted into a 96 well plate at trip licate. P-HRP activity was 

measured by reading absorbance in a Synergy HT plate reader (Bio-Tek, Winooski , VT) 

at 415 run. The leve l of PA entrapment was direct ly related to p-HRP activit y using a 

standard curve. 

1.3.12 Statistical analysis 

Statistical Analysis was perfom1ed using analysis of variance (ANOVA) with 

groups of n = 4 unle ss otherwise stated. A Tukey test was then perfonn ed to analyze for 

significanc e between groups with a confidence level of95%. Statistical significance wa s 

given for sampl e groups with p <0.05. Valu es are report ed as the mean s with error 

report ed as standard error of the mean. 

1.4 Results 

1.4.l E11trap111e11t ofpolyK in 2-D films 

Two different methods, shown in figure I , were tested for entrapping PA into the 

surface of PLA. Method (I) uses an acetone /water so lution and then DMSO with the PA. 

Method (2) uses only the acetone /water soluti on with the PA to entrap. To test the 

op timal method between(!) and (2), a colorimetric assay was per formed using p-HRP 

and ABTS. Modification was then shown through a higher absor banc e signal. This signal 

was used to create a sta ndard curve , which was used to tran slate the abso rbanc e signa l to 

surface mole concentration (femtomole /cm'). The results are shown in figur e 2. 
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Figure 1 Two methods were used to entrap PA into a polymer network of PLA. Method 

(I) uses acetone /water to swell the polymer network , and then a solution of 0.1 mg/mL 

PA in DMSO to entrap. Method (2) used a single solution of 0.1 mg/mL PA in 

acetone/water to entrap . 

3.0 ~------------------~ 
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JOO 

Figure 2 The standard curve of absorbance of an ABTS sample vs. molar HRP x IO 12 

adsorbed to PLA surface. Linear regression was used to obtain a linear tit within a 95% 

confidence interval (not shown) . 

14 



Quantitative measurements , shown in figure 3, showed the amount of polyK to be 

0.99 ± 0.15 fmoles /cm2 and 0.20 ± 0.12 fmoles /cni2 for method (2) and method (I) 

respectively . These results are not in agreement with previous reports where a variant of 

method (I) was used. Specifically, the previous method used an acetone /water wash then 

DMSO incubation with 0.1 mg/mL of polyK and PLLA films (0% D form of poly(L

lactic acid)) [ 40]. 

1.2,---- --- ----~----- -- -~ 
- Mc1hod ( 1 l Acetone Wa1cr then DMSO 
- Method (2) Acc1011c1Wa1cr 

1.0 J--------- - -~ 

U.2 

0.0 

PEG-amine PolrK 

Polymer Anchor 

Figure 3 Quantification of PA entrapped using two different entrapment techniques. 

Technique s include polyK and PEG-amine using method (I) , acetone /water soaking and 

then incubation in DMSO with a PA concentration of 0.1 mg/mL, and method (2) , 

acetone /water soaking with a PA concentration of0. I mg/ml. Adsorbed p-HRP was 

subtracted out to give the values shown. (n=4, * p<0.00 I) 

The PA was then examin ed using polyK, a hydrophobic peptide , and PEG-amine , 

a hydrophilic polymer, and the results shown in figure 3. The amount of polyK entrapped 

was statistically higher than PEG-amine when using method (I) and method (2). Using 
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method (2) the amount of polyK was show n to be 0.99 ± 0.15 fmoles/cm2 or 1.06 ± 0.17 

pg , compared to 0.08 ± 0.07 fmoles/cm2 or 0.08 ± 0.08 pg when using PEG-a mine. 

Therefore the polyK entrapped using method (2) showe d the statist ically highest amount 

of entrap ped PA. For all furth er result s, polyK was used with method (2) to entrap the 

PA. 

1.4,2 Verification of uniform e11trap111e11t 

Uniform entrapment across the entire surface, rather than ove r random sec tions, 

would present a constant signa l, whether biologica l or otherw ise, over the entir e surfa ce 

of the material. Fluoresce nt microsco py was used in order to test this, with the results 

shown in figure 4. For these results a sam ple group with polyK entra pped at 0.1 mg/mL 

with a control gro up of PLA with no polyK entrapped but still using the ace ton e/water 

wash for 12 hours. NHS -rhodamin e is an amin e reac tive lluoroph ore that will react with 

the N- termin al amin e of the polyK. 

Figure 4 Fluoresce nt microgra phs, using an exposure time 100 ms, of the surfac e o f PLA 

modified with po lyK (A) and not modified with polyK (B). Both films were treated with 

N HS-rhodamine. The sca le bar is 1000 µm . 
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Thc,·cfoie the entrapment as well as the spatial distribution was shown by the higher 

fluorescence of modifi ed scaffo lds than unmodifi ed control scaffo lds. Figure 4a shows a 

uniform red signal over the surface of the PLA film, while figure 4b shows a barely 

detected signal due to NHS-rhodamine physisorption. These results show that entrapment 

of polyK in this PLA surface presents a unifom1ly functionali zed surface for further 

modification. 

1.4.3 Optimal process time and stability of entrapment of polyK in PLA 

Physical entrapment involv es the PA diffu sing into a swo llen polymer network. 

The time dependency of thi s diffusion was investigated. PLA films were exposed to equal 

amounts of polyK for the three different time periods of 12, 24, and 48 hours with results 

shown in figure 6. Control group s of plain PLA with physisorped p-HRP were used. All 

groups showed higher polyK surface conce ntration at day 0, immediately following 

entrapment , than the control group. Comparing the initial surface conce ntration shows 

that the 24 hour time period was statisticall y higher than 12 hours with a surface 

concentration s of2.20 ± 0.77 fmoles /cm2 and 0.99 ± 0.15 fmoles/cm2 respectively. The 

48 hour time period initially entrapment concentrat ion was not stati st ically different than 

either the 24 time period or the 12 hour time period with 1.60 ± 0.38 fmoles /cm 2. 

NHi 

NHi-'4 ------+! 

NHr 

Figure 5 A schematic of the moveme nt of PA into the polymer netwo rk during 

entrapme nt and then the diffu sion of the PA out of the sca ffold after a period of time. 
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Stability of entrapment is an important factor for a biomaterial. Some applications 

need a constant signal while other applications prefer a varying signal. The surface is 

unstable if the PA diffuses out into solution from the polymer network. Samples were 

taken each two days for eight days with a control sam ple of adsorbed p-HRP on plain 

PLA films for each time period. There was a significant drop at day 6 for the entrapment 

time periods of 12 and 24 hours , while this drop occurred at day 4 for the 48 hour time 

period. 

3.5 = Day0 

3.0 - Day2 

• Day 4 

~ 
lilZol Day6 

C 
2.5 - Day8 

.:!-~Ne • 
~ i 

2.0 

~ 
C 0 

d g 1.5 
~ "' ~ C 

,!:~ ;- 1.0 ,,, 

0.5 

0.0 

12 hrs. 24 hrs. 48 hrs. 

Entrapment Time 

Figure 6 Quantified entrapment ofpolyK with increa sing time including 12, 24, and 48 

hour s. Each group was washed for a given period in PBS at pH = 7.3, and then assayed 

using p-HRP and ABTS. The control group of HRP adsorbed on the surface was 

subtracted from the total to give the values shown. (n=4, • = p<0.00 I , # p > 0.05 

[ compared to control]) 
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This drop shows entrapment for each time period is unstable. After the drop the 

next days were indistinguishab le from the control group statistically. Therefore at those 

time periods, it is hypothesized all the polyK was diffused out of the network and into the 

solution. 

The most stab le entrapme nt method was shown to the 12 hour period, show n in 

figure 6, with a surface concentration of0.99 ± 0.15 fmoles/cm2, 0.76 ± 0.3 1 fmoles /cm 2, 

and 1.02 ± 0.33 fmole s/cm2 for day 0, day 2, and day 4 respective ly. This stab ility was 

contrasted by the variabi lity of the 24 hour entrapment period which had surface 

concentrations of 2.20 ± 0. 77 fmoles /cm2, 0.60 ± 0.22 fmoles /cm 2, 1.61 ± 0.45 

fmoles /cm2 for day 0, day 2, and day 4 respectively. An entrapment period of 48 hours 

showed a decreasing concentration of polyK from day Oto day 6 with surface 

concentrations of 1.60 ± 0.37 fmoles /cm2, 1.09 ± 0.26 fmoles /cm 2, 0.35 ± 0.10 

fmoles /cm2, and 0.24 ± 0.17 fmoles /cm2 respectively. Since stab ility was preferred over 

initial entrapment , all modified scaffolds were treated for 12 hours with the simple 

acetone and water solution containing polyK. 

1.4.4 Linking of f/11oresce11t HE to films and fibers 

Fluorescently modified heparin was used to visua lly assess if the functionali zed 

scaffo ld was further modified with GAG's, HE and HA, containing a carboxylic acid 

functional group. Modification was initially tested on PLA films and then PLA fibers. 

Con trol groups for the PLA films were plain PLA films with adsorbed heparin. PLA 

fibers were prepared using the previously stated procedure s [57], then modified , and after 

modification the fibers mechanica lly separated to obtain interior fibers for nuore scent 

microscopy. 
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Figure 7 Fluorescent micrographs, using an exposure time of 4000 ms, of the surface of 

PLA modified with the PA, polyK, linked to HE-FIT C (left) and only incubated with HE

FITC showing HE physisorption (right). Both films were treated with heparin modified 

with EDC and NHS. The scale bar is 395 µm. 

Figure 8 PLA fiber scaffo lds were modified with the PA, polyK , and linked to HE-FIT C 

(A), only modified with the PA polyK (B) , and only incubated with HE-FITC showing 

HE physisorption (C). The scale bar is 395 µm. 

20 



The rwo contro l groups used were PLA fibers with only entrapped polyK and with only 

adsorbed HE. For both PLA films and fibers , higher fluorescence indicates biologically 

modified surfaces. Figure 7 shows the results for PLA films. A higher and unifonn 

modification is seen in figure 7a while adsorbed heparin aggregates are shown on figure 

7b. 

Figure S show s the results for the PLA fibers. The fully modified fiber in figure 

Sa shows a higher fluorescence than figure Sb and figure 8c. It is important to note the 

lack of aggregates in figure 8b, and the lack of fluoresce nce of polyK in figure 8c. 

Addi tionall y the fiber shown is intact , show ing no dam age from the ace tone/water wash. 

This shows the higher fluorescence shown is from the covalently linked HE-FITC. 

1.4.5 Scaffo ld Cel/ularity 

Cellular response to both the physical entrap ment and the biological modification 

was investigated. First, cells were stat ically seeded on scaffo lds with HE or HA 

covale ntly linked to a PA, polyK. entrap ped in the surface. Control groups of plain PLA 

or PLA with polyK entra pped. A phall otox in was used to sta in F-actin filament s and 

visualize the cells. These results are shown in figure 9. These resu lts show stretch ed cells 

along the fiber surface as well as between fibers for fully modified scaffo lds with HE in 

figure 9c. Scaffo lds modified with HA showed a more round appearance as seen in figure 

9d. Both contro l groups. plain PLA and PLA with entrapp ed polyK , conta ined few cells 

and rounded appearance. 
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Figure 9 Fluorescent micrographs, using an exposure time of 4000 ms, of statically 

seede d rMSC s showing the cellular shape taken on the surface of PLA modified with (A) 

nothing (B) polyK (C) HE (0) HA. Cellular F-actin filaments were stained using 

phalliodin. Scaffolds modified with HE or HA show cell stretching , while scaffo lds with 

no modification s, or only polyK show limited stretching on the fiber surface. HE 

modified scaffolds show stretched cells along PLA fibers and across fibers. HA modified 

scaffo lds show less stretc hed cells than heparin modified scaffolds, but more stretching 

than polyK modified scaffo lds . 
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Figure IO Picogreen DNA assay results show ing the scaffold cellularit y with covalently 

linked to biological molecules, plain bars, versus scaffo lds with adsorbed molecules and 

plain scaffolds, bars cross hatched. HE and HA were linked to the sca ffold using a zero 

length carbodiimid e linker and RGDC was linked using 6.8 A spacer ann linker. Cell 

number was found from a picogree n DNA assay using the assumption of 7 pg/ce ll. (n =4, 

* p<0.05 compared to control,# p>0.05 compared to the plain sca ffol) 

In order to quantify the effect of HE and HA modification, the sca ffold cellularity, 

cells per sca ffold, was found . This was done using picogreen DNA assay and a standard 

DNA content per cell of7 pg/ce ll. The results are shown in figure 10. These results show 

an increase when biological molecules such as HE, HA, and RGDC are cova lently linked 

to the surface of the polymer fibers and no increase when molecules are adsorbed to the 
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surface. Var HE there was a 26.4 ± 7.5% increase in the amoun t of attach cells compared 

to the plain fiber. This was tru e for RGD C and HA as we ll as they improv ed ce ll see din g 

by 26.2 ± 5. 1 % and 23 .9 ± 17. 1 % respec tively. These result s are promising but some 

variabilit y still exists with HA linked sca ffold s. Th ere was found to be 56.7 ± 9.2 x 

I 03ce \\s/scaffo ld with \-IA linked to it and 45. 8 ± 1.4 x I 03 ce lls/ plain scaffo ld. Statist ical 

te sts show ed the mean s were not significantly diff erent , p ~ 0.09. All other link ed group s 

were found to be stati sticall y different than adsorb ed groups and the plain sca ffold , 

p<0.05. 

1.4.6 PolyK Cytotoxicity 

The cytotoxicity of the entrapped polym er anchor is important ifa material is to 

be later implant ed. To ve ri fy any cytotoxic effec ts, an alamar blue assay was perfonned. 

A lamar blue assays are widely used in order to show the metaboli c proces ses of ce lls are 

act ive and spec ifica lly the abilit y for cells to reduce resazurin. Thi s nontoxic and ce ll 

permeabl e molecul e is reduc ed to a fluorescent product, reso rufin. Thi s product can be 

measured and compa red to a control cell group to dedu ce the viabilit y of ce lls exposed to 

the po lymer anchor. The assay performed here shows no difference stati stica lly between 

the contro l and the modified group. The resu lts are shown in figur e 11. Th e control group 

had a va lue of 1.3 ± 0.033 x I 03, while the modified grou p had a va lue 1.2 ±0.071 x I 03 

for the amount ofresa zurin reduced per cell. The viab ility of the modified cells was 

found to 92.8 ± 6.0 %. This result showed limit ed cyto toxic ity of the polyK polymer to 

the ce lls over a short time period. 
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Figure 11 The results are shown for the alamar blue assay for modified group, fiber 

scaffolds with polyK entrapped, and the control, no polyK entrapped. The results show 

negligible difference between the modifi ed group and the control. Fluorescence was 

measured using an opaque white 96 - well plate and 300 µL of each samp le. The samp les 

were measured at 530 nm excitatio n and 590 nm emission. (n = 3, p>0.05) 

1.4.7 Po/yK Entrapment in Polymer Films 

The polymer networks effect on the ability to entrap three different polymer 

anchors was tested. The polymer network s used were PCL, PLA, PLGA85 , and PLGA50. 

The PAs were polyK , RL - peptide , PEG-amine . Each PA was tested separate ly at the 

same concentration. To measure the amount of entrapped polymer anchor , HRP and 

ABTS were used. This provided a qualitative estimate of the amount of polymer anchor 
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cnt,a;,;,cJ with a higher amount of abso rbance correlated to a higher amount of polymer 

anchor. The result s are shown in figure 12. 
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Figure 12 Th e qualitati ve amount of different pol ymer anchors entrapped in PCL , PLA, 

PLG A (85: 15), and PLGA (50:50). The amount of both entrapped pol yK and percent 

amorphous increa se from left to right. For each pol ymer , the amount of HRP covalently 

linked to a pol yK was statistically higher than PEG-amin e or RL-peptide. The amount of 

polyK also entrapped in PLG A85 and PLGA50 was stati sticall y higher than PCL and 

PLA. (n~4 , • p<0.05, # highe st absorbance , & p>0.05) 

The se resu lts show a large incr ease between the highly crys tallin e PLA and the 

amo rphou s PLGA 85. While polyK showed high entrapm ent amount s, the remaining 

hydrophili c polym er anch ors did not. For each polymer film the amount of RL-peptide 

entrapped and PEG-amin e entrapp ed was stat istica lly lower than the amount of polyK , 
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a~d did not show higher amounts of HRP than the plain scaffo lds. The quantified surface 

concentration in each of the four polymer netwo rks using pol yK as the PA is shown in 

figure 13. The lowest amount of entrapped polyK was found in the PCL at 1.64 ± 0.39 

fmole/cm2 and the PLA 2.67 ± 0.39 fmole/cm2 with statistically no difference between 

the two. Both PLGA copolymers have a much larger amount of entrap ed po lyK, wit h 

8.60 ± 0.90 fmo le/cm2 for PLGA85 and 10.22 ± 0.77 for PLGA50. These are 400% 

increases over PLA and PCL. These resu lts show a trend of increa sing entrapment with 

increasing amorphous structure. 
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Figure 13 The quantitati ve measurement of the amount ofpol yK entrapped into different 

poly (a-hydroxy este rs). Ther e is an increase in the amount of the polyK entrapped in the 

highly amorphou s structur e of PLGA50 and PLGA 85 (indicated by&) , while the more 

crystalline structur e of PLA and PCL showed lower entrapped pol yK per cm 2. The 

highe st amount of entrapped po lyK is shown by *. (n = 4, $ p > 0.05) 
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i .5 Discussion 

Thi s study presented a simple surface modification technique in order to introdu ce 

functional groups to the surface of commonly used biomaterials in tissue engineering 

applications. Surface modificatio n can provide a functional surface that can then be 

linked to a variety of biological molecules. A surfac e modification techniqu e for poly ( L

lactic acid) scaffo lds has been report ed that utilizes an acetone /water solution and then 

DMSO to allow for the incorporati on of polyK on the polymer surface . This study aimed 

at overcoming some negative effec ts that may be caused by the use of DMSO and the 

potential rep lacement ofpolyK to PEG-amine as the PA to impro ve the biocompatibility 

of this technique. Specifically this study wanted to I) replace the PA previou sly used by 

Alvarez -Barre to et al. with PEG-amine , 2) eliminat e DMSO from the entrapment 

procedure and replace it with a less biologically harsh solvent, 3) show large MW 

molecules, HE and HA, can be cova lently linked to the surface, and 4) to show the 

versatil ity of the process by entrapping a PA in severa l poly ( a - hydroxy ester) 

polymers. 

Physical entrapm ent is attract ive for its low cost and simplicity. Originally, 

presented by Ruckenstein and Chung[58], it was further developed by Hubbell et al.[35]. 

That work presented the technique of creating a surface physical interpenetrating network 

(SPIN) through the use solvent trifluoroacetic acid. This allowed the surface of the 

polymer to swe ll and PEG to diffuse in. Then water was used to co llapse the swo llen 

netwo rk and entrap PEG. Specifical ly shown in this study was the effect the MW of the 

PA had on entrapment. The optimal PA was found to be 18.5 kDa with lower molecu lar 

weights not being exposed at the sur face and higher molecular weights not sufficiently 

28 



,;;·,ta, ,i;lcJ for diffusion out to be limited. Additi ona lly the solvent and polymer used 

sho uld optimal ly have a so lubility factor with a diff erence squar ed no greater than 4, 

equation I , for sufficient swe lling to occur [36]. 

Equation l 

In this equation, 8,, is the solubilit y parameter in cal/cm3 of the polymer and 8, is the 

solubilit y param eter in cal/c m3 of the solvent. A variant of this method uses TFE and has 

the limitation using a strong solvent with a denna l LD50 of 1680 mg/kg in rats [59]. The 

LD5o is the median lethal dose needed to kill half a population sample after a certain 

period of time. 

A less harsh method was created previous ly by Alvarez-Barreto et al. that used 

two steps to entrap a polymer anchor [41]. This method used acetone to swe ll the polymer 

surface, then DMSO to allow the polymer anchor to diffuse into the polymer network, 

and finally wate r to collapse the network. Alvarez -Barreto et al. were able to show 

unifonn entrapme nt, cova lent linking of the RGD tripeptide , and enhance d cellular 

attach ment with osteob lastic induction using this method. While success ful, this method 

still relies on a harsh solvent with DMSO , dennal LD50 of >5000 mg/kg in rabbit s, and 

uses more steps than previous methods [60]. In order to improve this process , a simpl er 

one step method , and a less harsh solvent (acetone) , dermal LDso of7426 mg/kg in 

guinea pigs, was used [61]. 

Aceto ne is a cheap, versatile solvent with a compatib le solubilit y factor , 19.93 

MPa 112, for use with PLA, 2 1.0 I M Pa 112 [62]. Because of the aforeme ntioned features of 

acetone , it was chosen as an investigator y solven t to replace DMSO as the solve nt 

bgycnd its already established use as a swe lling agent. To test the acetone /water so lution, 
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iwu meih ods were used. Method ( I) acted as a control, (by using the same procedure as 

Alvarez-Barreto et al.) using acetone /water to swe ll the polymer and DMSO with the PA 

for entrapment, and method (2) used the simpler acetone /water solution with the PA for 

entrapment. Additionally , a 20kDa PEG-amine was chosen to satisfy the results shown by 

Hubbel et al. The results of using the method (I) and method (2) are shown in figure 3. 

The simpl e one step procedure is shown to produce a modified surface with over 5 time s 

the surfac e concentration of polyK entrapped. This result was unexpected as it was not in 

agree ment with results reported by Alvarez-Barreto et al. with a PLLA polymer network. 

DMSO was initially used for its excellent solvent capability when disso lving the 

polyK used in this experiment , and its hypothe sized slowing of the collapse of the 

polymer network[40] . This simultaneou s interaction with the polymer network and the 

PA allowed for an increased amount of entrapm ent over method (2) in the previous study. 

This was not the case in this investigation where instead of pure PLLA , the poly (lactic 

acid) contained 1.49% of the D enantiomer decr eas ing the polymer 's crystallinit y. The 

differ ence in polymer networks was substantial. It is thought the swe lling of the polymer 

is much slower using PLA with slight D impurities. Figure 6 shows that increa sed 

entrapment time can increa se the amount of PA entrapped. This proves that time does 

have an effect on the entrapment. While the swe lling time is adequate for method (2), 12 

hours, it is inadequate for method ( I), I hour. This lack of swe lling caused the PA to not 

adequa tely diffu se into the polymer network, and thus being not effec tive ly entrapp ed. 

Because of this, the potential benefits of increased PA entrapment when using method (I) 

was negligible and method (2) was used throughout the rest of the exper iment. 
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Another key feature of figure 3 is the lack of entrapment when PEG-amine as PA. 

Past investigation s invol ving the entrapment of hydrophi lic PA into hydrophobic polymer 

networks have used the polar solvent, TFE [63]. Its polar nature is hypothesized to 

interact strongly with both the polymer anchor and the polymer network equally, while 

acetone prefer entially interacts with the polymer network. This interaction leads the 

polymer anchor to interact high ly with the water, and therefore to stay in the solution 

instead of diffusing into the polymer network. 

The extent of this interaction was investigated in section 1.3.12 and can be seen in 

figure 12. While polyK was entrapped in increasing amounts in the PCL, PLA , PLGA85 , 

and PLGA50 , the PAs with hydrophilic characteristics , PEG-amine and RL-peptide, were 

not statistically different than control. For both of these PAs dissolution was complete in 

the acetone/water so lution but entrapment was inadequate. Because dissolution is not a 

var iabl e for PEG-amin e and RL-peptide , the interaction between the solvent, polymer 

network , and the PA is effecting the entrapment. PolyK is a hydrophobic polymer and 

doesn ' l interact with the acetone /waler solution highly , shown by the lack of complete 

dissolution , but it did entrap at a higher surface concentration than both PEG-amine and 

RL-peptide. These results , show n in figure 12, show a link between the hydrophobicity of 

the polymer and the amount of entrapped material. 

The sustainability of the modification is important for long term effects. This was 

tested by meas uring the amount ofHRP that was covalently linked to polyK after a 

certa in number of days. It was deem ed to have no polyK left entrapped after the 

abso rbance was the same as the control group. Figure 6 show s these resu lts for time 

periods of entrapment of 12, 24 , and 48 hour s. While 24 hour s has the largest initial 
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c,,l ,ap ,,,cnt , the polyK qui ckly diffuses out over a six day tim e period. The 48 hour time 

period show ed a s lightl y higher amount than the 12 hour time period and less than the 24 

hour tim e period. Wh ile none of the time period s show long term stabilit y, the initial 

stabilit y shown by the entrap ment time period of 12 hour s over the six day time period 

make s this most suitable for longer te1m cultures where a stabl e biomimetic surfa ce is 

needed to signal cell s to deposit matrix. By the sixth day cells have begun ECM 

depos ition and signaling nearby ce lls themse lves not requiring the und erlying biomimetic 

surfac e [ 64-68]. 

Th e instabilit y of this entrapm ent method is unique , and provides that special 

precautions must be made. Prev ious studies have shown stable entrapment. Alvarez

Barreto et al. showed stabilit y over ten days , whi le Quirk et al. and Hubb ell et al. washed 

sampl es for extended periods, up to two weeks, to ensure leachabl es were negligible . 

Because of the insta bilit y, the turnaround tim e betwe en the modification and the final 

app lication mu st be limited to four to six day s. Leac hing of remnants from the 

entrapment proc edure is of high importance. Figure 11 show s the result s of the 

cytotox icity assay. The modified sca ffold seeded stati ca lly showe d a 92.78 ± 5.97 % 

viabi lity compared to a plain scaffo ld afte r a two day cu lture . It was important that the 

scaffo lds be modified and for the PA not to leac h out into the solution for this 

experim ent. This allow s the ce lls to interac t with the peptide on the surface as it wo uld in 

vivo. Additionally, leaching of any so lvents wo uld also show by a decrease in viabilit y of 

the cells . These results show that the effec ts of leac habl es as we ll as the modi fied polyK 

are show n to be negl igible [69 , 70]. 
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Quirk et al. were the first to exp lore PLA as a poly mer netwo rk for phy sical 

entrapment , and were able to successfu lly entrap poly (L-lysine) and PEG. Using a 

method with 10% TP E, the y were able to successf ully entrap PEG and pol y (L- lysine) 

simult aneously, pro ving the method is able to entrap diff erent pol ymer s and with 

diffe rent functional groups simultaneou sly. Whil e success fully modifying the surfa ce , the 

method did produ ce non-unifonnit y on the surfac e in certain condit ions[38 ]. 

A uni fom1 surface is important for a biological signa l to be eve nly distributed 

ove r the surface of the mat erial. Figure 2 shows the result s testing the uniformit y of the 

entrapme nt ofpolyK. The darker areas observable on the PLA film s shown in figur e 4a 

are shown to be abnonnalit ies of the polymer network , instead of areas of low 

entrapm ent , by figure 7a. These result s show that a uniform signal will be given to the 

cells , no matter the position of attachment , providing an exce llent background for 

enhanc ing ce llular attac hm ent, proliferati on, and diff ere ntiation through the attachment of 

growt h factors and ECM peptid es. This allows for control over initial ce ll packing , 

growt h rate , and the final tissue product , three important factors for tissue engin eering . 

Cova lent attachme nt is a versatile way for biologica l molecule s to be attached to a 

functionalized surface. This method is robu st enough that for any functiona l group the 

appropriate linker is ava ilab le [71- 75]. For cova lent attac hment of GA G' s an appropr iate 

link er is the carbodiimide , EDC, stab ilized with NHS. This molecule reacts effic iently 

wit h the carboxy lic acid available on all abundant GA G's and can be readi ly reac ted with 

a free amine on anot her molecule[76-80 ]. Thi s funct ionalization does hydro lyze and 

return to a carboxylic ac id if not reacted quick ly. The N HS stabilizes the functionality for 

longer storage[S l ]. Both HE and HA were functionalized and cova lently attached to the 
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-u, fau ,-uf both polymer film s. The results of attaching a fluorescent HE are show n in 

figure 7 and 8. It is assumed that HA, with its similar structure, attaches simil arly. ln 

figure 7a it can be seen that HE attaches uni forml y across the surface. Agg regates of HE 

can be see n in figure 7b. This phenomenon is hypothesized to be a function of small 

holes etched by the extended use of the acetone/wa ter solution of method (2) in the PLA 

films. Aggregates of HE are fom1ed and stabili zed in the holes, not being washed out 

durin g the standard rinsing_ It is see n when given adequate function alities lo reac t on the 

surfa ce, aggregation is stopped and the surface does not have clum ps of HE. 

Three dimensional scaffolds and spec ifically fiber scaffo lds have beneficial 

characteristics for tissue engineering, such as increase d ce ll attachment, matrix 

depo sition, and tissue orga nization [82-84]. An important characte ristic of a we ll 

modified scaffo ld is unifonn entrapment throughout the sca ffold and an intact porous 

netwo rk . The poro us networ k allows for adeq uate nutrient distributi on w ithin the scaffold 

which facilitates ce ll proliferation, unifom1 differentiation, and leads to a healthi er 

engineered tissue. Fiber sca ffo lds were crea ted via melt blow ing, with fiber diameters of 

35 µm , and arra nged in a non-wove n pattern . These fibers were then modifi ed for the 

spec ified amount of time and then image d for any damage to fibers. The fibers are show n 

in figure 8, with fluorescently modifi ed HE attached to the sur face. It can be seen that no 

de formation is shown in the fibers (figure Sa), polyK does not fluoresce (figure Sb), and 

that HE is attached unifom1ly along a fibers length (figure Sa). Thi s show s uni form 

ent rapment and uni fom1 modifi cation along the fiber, without destruction of the fibers 

and therefore the poro us network. 
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RGD is one of a family of peptides that are der ived from proteins found in the 

ECM. These include the YIGSR and REDV peptides from laminin and fibrone ctin 

respective ly that have been shown to increase cell adhes ion (85, 86]. This tripeptide has 

been shown to increase the attachment of multiple cell types, and to also affect stem ce ll 

differentiat ion. Seve ral diff erent poss ible routes for the attachment of the tripeptide have 

been shown. An important aspect of this is that the peptide should have an appropr iate 

distance from the surface for optima l attachme nt. To impart this space a dual 

functio nalized linker was used to react to the free surface ami ne and the thiol group of the 

carboxyl end cysteine of RGDC. This method was shown and descr ibed previou sly by 

Alvarez-Barreto et al. Quantitat ive measurement s are poss ible when using SPDP because 

of the release of the pyridine - 2 - thion e group when SPDP is reacted with a molecule 

containing a thiol functional group. The amount of polyK and therefo re SPDP linked to 

the surfac e during this experiment falls below the detection limit as found by Alvarez

Barreto et al. The previous study found a limit at 18 ± 6 nmol es of SPDP or less than 60 

pg of polyK. The amount of entrap ped polyK in the ctm-ent study was found to be 34.32 

± 4.06 pg, wh ich is lower than the detectable limit. Because of this, the effect on cell 

attachment was chosen to corro borate the linking of RGDC. 

Cell attachment is very important to tissue engineering in order to decrease the 

amo unt of time for a mature tissue to be created. To this end, the fiber sca ffolds were 

modified and statica lly cu ltured in order to investigate increased attachment. First ce ll 

shape was investigated using fluorescent microscopy. The shape the cell takes when 

attachi ng to a material indicates the leve l of efficient surface modification , and therefore 

can be used to show the strength of attachment. Figure 9 shows the fluoresce ntly stained 
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cc!!3 atta.;hing to fibers. Figure 9c and figure 9d show larger cell shapes indicatin g more 

of the cell is in contact with the fiber. In contrast, figure 9a and 9b show the ce ll shapes 

taken on plain fibers or fibers with only polyK respectively. 

All of the fully modified scaffo lds showed an increase in leve l o f cell attachment, 

appro ximately 25% increase for each, as shown in figure I 0. These results concur with 

recent result s. RGD was adsorbed to a chitosan/hydroxyapatite scaffold at two diff erent 

concentrati ons and showed an increase in cellular adhesion of3 0.9% and 47.5% 

respective ly [87]. Previous results from Alvarez-Barreto concur with the results shown in 

figure 10 for RGD by showin g an increase in attachment when using RGD [42]. The 

increase cellularity for that study is found to be much larger than shown here. A rule of 

thumb was found by Mass ia and Hubb ell, that the minimum amount of RGD peptide 

sufficient for cell spreadin g was I fmol/cm2 and as low as IO fmol/cm2 to begin the 

fonn ation of focal contacts and stress fibers [88]. This has been shown to vary for 

different surfaces but generally has been shown to have increased values [89-92]. 

Entrapm ent of polyK in PLA showed a surface concentration of I ± 0. 15 fmoles/cm2 , 

seen in figure 3. This by itself falls below the rule establi shed by Mass ia and Hubbell 

with the assumpti on of I 00% reaction yield of SPDP with polyK and I 00% reaction yield 

ofR GDC with SPDP . Because yields of that magnitude may not occur, the results of only 

a marginal increase are explain ed. 

Poly (a-h ydroxy esters) are versatile polymers used to create scaffo lds for several 

different tissue types. Because of their importance, the physical entra pment o f a PA into 

severa l different polymers o f that family was investigated. These included PCL and 

PLGA. Copolymers of PLA and PGA have been useful because different ratios of 
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ecpc!yme.-s have shown to have wide range of mechanical and degrada tion propertie s. 

Figure 12 shows the result s of physical entrapme nt with several different polymers. 

Important characte rist ics shown in the figure are the steep increase when the polymer s 

become highly amorpho us from PLA to PLGA85. PCL has been shown to have a 

crystall inity of approxi mate ly 50% [93], while PLA is semi-crysta lline with the addition 

of the D isomer. This is increased in PLGA85 and PLGA50 with the addition of glyco lic 

acid and the 50:50 ratio ofD to L lactic acid isomers. These result s show for the first time 

that the increase in amorphous structure improves the ability for polyK to be entrapped. 

The solubilit y parameters also show an increase as PLA is blend ed into PGA (94]. This 

allows for the entrapm ent of polyK to be controlled by the polymer network chosen. With 

PLGA85 and PLGA50 the amount of polyK entrapped was approximately 400% times 

higher than PLA or PCL. Thi s entrapment is also higher than those shown by Alvare z -

Barreto et al. in the previous study , with 275.9 1 ± 19.23 pg and 58.5 ± 0.5 pg 

respectively. 

Table 1 Representative crysta llinity values for poly (a - hydroxy ester) polymers used in 

this study. 

Polvmer Crystallinitv Notes Reference 
Poly(L-lactic acid) 57 ± 5 % I 00% L enantiomer [95] 

Poly(D,L Lactic acid) 44 % 94% Land 6% d [95] 
enantiomer 

Poly (c-capro lactone) 50 ± 1% [96] 

poly (D,L - lact ide - co - amorphous [97] 
glycolide) rs 5: 151 
poly (D,L - lact ide - co - amorphous [97] 
glycolide) r50:501 
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lucluded in sec tion 1.4.7 is figure 11, wh ich show s the use ofa three peptide s 

with a range of hydroph obic or hydrophilic prop erties. The most hydrophilic polymer 

anchor is PEG-amin e, while the cus tom peptide , RL-peptid e, is a di-block polym er with 

half hydrophobic amino acid s, leuci ne, and half hydrop hilic amino ac ids, argini ne, and 

pol yK was used for the fully hydrophobic peptid e. Thi s grap h show s that the on ly 

polym er anchor to substantially ent rap is the polyK. As described previously , this is 

hypothe sized to be because of the so lvent - polymer anchor and water-polymer anchor 

interaction s. These result s further explore this by showi ng that incr eased hydrophobicit y 

is needed to enab le entrapme nt. Beca use this proces s increa ses the polymer anchor and 

the polymer network interactions so much , these direct interaction s should be 

inves tigated to complete ly under stand this beha vior. Th e hydrophobic nature of the 

pol ymer anchor and the side chain of the amino acid, spec ifically the ben zene ring , 

should be investigated lo bett er under stand the method of entrapping the polyK. 

1.6 Conclusion 

This inves tigation present s a simpl e, versatile method for the introdu ction of 

functional groups to the surfa ce of polymers netwo rks. The networks can include both 2-

D structur es, such as films , and 3-D structures, such as fibers. Initial attempts to replace 

pol yK with a mor e widely used pol ymer , PEG- am ine, was unsuccessfu l. Thi s is thought 

to be beca use of interac tion s between the so lvent so lution and the PA durin g entrapment. 

Prev iously used so lvents were replac ed with an ace ton e/water solution and a s imple one 

step method was perfo1111ed. Thi s modific ation was shown to be uniform over the surfac e, 

but unstable over time. Modification to fibers wa s show n at biologically relevant 

concentration s lo increase in cell attachment to a ll fully modified scaffo lds by as much as 
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25% ;. ·l·,c;, using HE, HA, and RGD. This proce ss can eas ily be ex tended to other 

biological molecule s for tissue engineering or other material based scenarios by simpl y 

app lying the correct linkin g mechanism to the appropriate functional groups. 

The extension of this process to other poly (a -hydroxy ester) polyme r networks 

further shows its versatility and expan ds its use to several different biomaterials and 

tissue engineering applications. Two genera lizations have also been shown by this 

invest igation. The interaction s between the solvent solution , the polymer network, and 

the polymer anchor are import ant to the entrapm ent process. We have shown that more 

than 50% of the polymer must be hydrop hilic and possible as much as I 00%. This should 

be investigate d further in order to under stand this in greate r detail. Second, the process 

can be controlled to a degree by the amount of time the PA is entrapped and by using a 

more amorpho us structu re. The latter showing more defining and controllable 

characteristics. 
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