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ABSTRACT 

An increase in hydrocarbon production by the application of several laterals from a single 

vertical wellbore is now a widespread practice. Horizontal and inclined wells are drilled at record 

lengths, which once seemed impossible for both onshore and offshore locations. However, well 

inclination causes eccentric geometry in the wellbore. The eccentric annulus results in a velocity 

distribution with stagnant zones that make hole cleaning inefficient which leads to the formation 

of stationary cutting beds and partial blockage of the annulus. These undesired bed development 

restrict the fluid motion by providing hydraulic resistance and thereby affecting the bottom hole 

pressure, which in turn influences the efficiency of the drilling operation and increases the non-

productive time.  

This research focuses on analyzing the fluid motion in a partially blocked eccentric 

wellbore using the Computational Fluid Mechanics (CFD) approach. A commercial software 

ANSYS Fluent is used to perform the CFD analysis. The study is conducted considering the flow 

of power-law fluid in eccentric annulus under turbulent flow conditions. Different flow geometries 

are created by varying the blockage height and diameter ratio. The pipe is considered highly 

eccentric (90%) for all cases. The fluid properties are varied by altering the consistency index and 

the fluid behavior index and analyzing their impact on the velocity profile, pressure loss, wall and 

bed shear stresses.  

Observations are made with respect to pressure loss and shear stress. The annular pressure 

loss increases with cutting bed height at a given flow rate. Furthermore, at a constant flow rate, the 

higher the shear-thinning property of the fluid, the lower is the effect of cutting height on the 

annular pressure loss.  
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CFD simulation results are evaluated by comparing with available experimental 

measurements and the predictions of existing models. The pressure losses predicted using CFD 

are predominantly in agreement with experimental measurements. After verification and 

validation, CFD simulation results are utilized to develop an approximate correlation for 

dimensionless bed shear stress. The developed correlation exhibits a discrepancy of about ±10% 

against simulation results. The correlation helps optimize hole cleaning and wellbore hydraulics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ACKNOWLEDGEMENTS  

 

I would like to express the deepest appreciation to my committee chair, Dr. Ramadan 

Ahmed, for placing faith in me and selecting me as his graduate student. This thesis would not be 

a reality without his kind support, patience and I express a deep sense of thanks and gratitude to 

my mentor for his advice and assistance in the preparation of this thesis.  

The author would also like to thank the advisory committee members Dr. Prakash Vedul 

and Dr. Hamidreza Karami, for their suggestions and advice. Also, the assistance provided by the 

College of Engineering for the computing software and the vital laboratory space in Rawl 

Engineering Practice Facility Room 220 and Carson Engineering Center Room 205 and 206 is 

acknowledged. Finally, I would also like to thank the Mewbourne School of Petroleum and 

Geological Engineering for supporting me during this investigation.  

This acknowledgment would not be complete without thanking my family members 

Anandalal Singh and Manju Singh, who have supported me throughout my MS endeavor 

financially, emotionally and morally.  



vii 
 

 

Table of Contents 

List of Figures…………………………………………………………………………………x 

List of Tables……………………………………………………………………………....xviii 

Chapter No.                             Pg. No. 

1. Introduction .......................................................................................................................1 

1.1 Overview .....................................................................................................................1 

1.2 Problem Description ...................................................................................................3 

1.3 Objective .....................................................................................................................5 

1.4 Scope of Work and Methodology ...............................................................................5 

1.5 Outline.........................................................................................................................5 

2. Literature Review ..............................................................................................................7 

2.1 Concentric Annuli .......................................................................................................8 

2.2 Eccentric Annulus .....................................................................................................10 

2.3 Blocked Annulus .......................................................................................................16 

2.4 Computational Fluid Dynamics ................................................................................17 

3. Theory of Turbulent Flow ...............................................................................................18 

3.1 Turbulent Flow Modeling .........................................................................................18 

 3.1.1 Two Equation: k-ε Model ...............................................................................21 

 3.1.2 Model Assumptions ........................................................................................22 



viii 
 

 3.1.3 Power-law Fluid ..............................................................................................23 

3.2 Relevant Flow Parameters ........................................................................................25 

 3.2.1 Reynolds Number ...........................................................................................25 

 3.2.2 Fanning Friction ..............................................................................................27 

 3.2.3 Wall Shear Stress ............................................................................................29 

 3.2.4 Hydraulic Parameter .......................................................................................32 

 3.2.5 Bed Shear Stress .............................................................................................33 

3.3 Existing Models for Partially blocked eccentric annulus .........................................35 

 3.3.1 Hydraulic Diameter Model .............................................................................35 

 3.3.2 Kozicki’s Model..............................................................................................36 

4. Computational Fluid Dynamics Analysis .......................................................................37 

4.1 Geometry...................................................................................................................37 

4.2 Mesh Generation .......................................................................................................39 

4.3 Boundary Conditions ................................................................................................41 

4.4 Grid Sensitivity Analysis ..........................................................................................41 

4.5 Numerical Setup in Fluent Solver .............................................................................44 

4.6 Post-Processing .........................................................................................................45 

5. Results and Discussion ....................................................................................................47 

5.1 Verification of Simulation Results ............................................................................47 

5.2 Annular Pressure Loss ..............................................................................................51 



ix 
 

5.3 Axial Velocity Distribution.......................................................................................54 

5.4 Shear Stress Distribution...........................................................................................58 

 5.4.1 Wall Shear Stress ............................................................................................58 

 5.4.2 Bed Shear Stress .............................................................................................60 

 5.4.3 Dimensionless Bed Shear Stress .....................................................................64 

5.5 Flow Rate Variation ..................................................................................................66 

5.6 Consistency Index Variation .....................................................................................70 

5.7 Comparison with Pre Existing Models .....................................................................72 

6. Conclusion and Future Works .........................................................................................75 

 6.1 Conclusions ........................................................................................................75 

 6.2 Future Works .....................................................................................................76 

Nomenclature ...........................................................................................................................77 

References ................................................................................................................................84 

Appendix ..................................................................................................................................92 

  

 

 

 

 

 

 



x 
 

List of Figures 

Figure No.                          Page No. 

Figure 1.1. Eccentric annular geometry ...........................................................................................3 

Figure 1.2. Partially blocked eccentric annulus ...............................................................................4 

Figure 2.1. Equivalent slot for annulus ............................................................................................9 

Figure 2.2. Eccentric annulus in bipolar coordinates (Haciislamoglu, 1989) ................................11 

Figure 3.1. Non-Newtonian fluid types (Nguyen and Nguyen, 2012)...........................................24 

Figure 3.2. Viscosity vs shear rate (Willenbacher and Georgieva, 2013) .....................................24 

Figure 3.3. Laminar flow streamlines in a pipe (Purushothaman, 2019) .......................................26 

Figure 3.4. Turbulent flow streamlines in a pipe (Purushothaman, 2019) ....................................26 

Figure 3.5. The velocity profile in a pipe (Rojas, 2016) ................................................................30 

Figure 3.6. The velocity profile in a concentric annulus (Bourgoyne, 1991) ................................31 

Figure 3.7. Shape factor for eccentric annular geometry (Ahmed et al., 2006) .............................33 

Figure 4.1. Front view of partially blocked annular geometry (𝜅 = 0.50) (a) 10%, (b) 

30%, (c) 50%, (d) 70%, (e) 90% and (f) 100%.........................................................38 

Figure 4.2. Front view of 50% blocked annular geometry with varying diameter ratio................38 

(a) 𝜅 = 0.25 (b) 𝜅 = 0.5 and (c) 𝜅 = 0.75 ...................................................................38 

Figure 4.3. Named faces of the geometry ......................................................................................39 

Figure 4.4. Example of structured grid ..........................................................................................40 

Figure 4.5. Example of unstructured grid ......................................................................................40 

Figure 4.6. Grid independent study for various number of grids...................................................43 

Figure 4.7. Eccentric annulus with x-y coordinate system (Rojas et al., 2017) .............................46 



xi 
 

Figure 5.1. A comparison of CFD prediction with experimental measurement for Mud 

A ................................................................................................................................48 

Figure 5.2. A comparison of CFD prediction with experimental measurement for Mud 

B ................................................................................................................................48 

Figure 5.3. A comparison of CFD prediction with experimental measurement for Mud 

C ................................................................................................................................49 

Figure 5.4. A comparison of CFD prediction with experimental measurement for Mud 

D ................................................................................................................................49 

Figure 5.5. Pressure loss vs bed height for conditions [𝜅 = 0.25, 𝑒 = 0.9 and 𝑄 = 5x10-5 

m3/s] ..........................................................................................................................52 

Figure 5.6. Pressure loss vs bed height for conditions [𝜅 = 0.50, 𝑒 = 0.9 and 𝑄 = 5x10-5 

m3/s] ..........................................................................................................................53 

Figure 5.7. Pressure loss vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 5x10-5 

m3/s] ..........................................................................................................................53 

Figure 5.8. Area of flow vs bed height for conditions [𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ...................54 

Figure 5.9. Annular flow velocity vs bed height [𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ...........................54 

Figure 5.10. Velocity profile for conditions [Hbed = 50%,  = 0.50, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................55 

Figure 5.11. Velocity distributions in partially blocked annuli [𝑛 = 1,  = 0.25, 𝑒 = 0.9 

and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) 

Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ....................................................56 



xii 
 

Figure 5.12. Velocity distributions in partially blocked annuli [𝑛 = 1,  = 0.75, 𝑒 = 0.9 

and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) 

Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ....................................................57 

Figure 5.13. Wall shear stress vs bed height for conditions [𝜅 = 0.25, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................58 

Figure 5.14. Wall shear stress vs bed height for conditions [𝜅 = 0.50, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................59 

Figure 5.15. Wall shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................59 

Figure 5.16. Bed shear stress vs lateral distance for Hbed = 30% [𝜅 = 0.25, 𝑒 = 0.9 and 

𝑄 = 5x10-5 m3/s] ........................................................................................................60 

Figure 5.17. Bed shear stress vs lateral distance for Hbed = 100 % and for conditions [𝜅 

= 0.75, 𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ........................................................................61 

Figure 5.18. Bed shear stress vs lateral distance for Hbed = 50 % and for conditions [κ 

= 0.25, 𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ........................................................................62 

Figure 5.19. Bed shear stress vs bed height for conditions [𝜅 = 0.25, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................63 

Figure 5.20. Bed shear stress vs bed height for conditions [𝜅 = 0.50, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................63 

Figure 5.21. Bed shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s] ...............................................................................................................64 

Figure 5.22. Dimensionless bed shear stress vs bed height for conditions [𝜅 = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s] ...........................................................................................65 



xiii 
 

Figure 5.23. Dimensionless bed shear stress vs bed height for conditions [𝜅 = 0.50, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s] ...........................................................................................65 

Figure 5.24. Dimensionless bed shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s] ...........................................................................................66 

Figure 5.25. Wall shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 

1x10-5 m3/s] ...............................................................................................................67 

Figure 5.26. Wall shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 

1x10-4 m3/s] ...............................................................................................................67 

Figure 5.27. Bed shear Stress vs dimensionless bed height for conditions [𝜅 = 0.75, 𝑒 = 

0.9 and 𝑄 = 1x10-5 m3/s] ...........................................................................................68 

Figure 5.28. Bed shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 0.9 and 𝑄 = 

1x10-4 m3/s] ...............................................................................................................69 

Figure 5.29. Dimensionless bed shear stress vs bed height for conditions [𝜅 = 0.75, 𝑒 = 

0.9, 𝑄1 = 1x10-5 m3/s and 𝑄2 = 1x10-4 m3/s] ............................................................70 

Figure 5.30. Dimensionless bed shear stress predicted vs dimensionless bed shear 

stress CFD for conditions [𝜅 = 0.50, 𝑒 = 0.9, 𝐾 = 10-4 to 10-5 Pasn and 𝑄 

= 5x10-5 m3/s] ............................................................................................................71 

Figure 5.31. Dimensionless bed shear stress predicted vs dimensionless bed shear 

stress CFD for conditions [0.25 ≤ 𝜅 ≤ 0.75, 𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ............72 

Figure 5.32. CFD measurements vs Kozicki’s model predictions for conditions 

[0.25 ≤ 𝜅 ≤ 0.75, 𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ......................................................73 

Figure 5.33. CFD measurements vs hydraulic diameter model predictions for 

conditions [0.25 ≤ 𝜅 ≤ 0.75, 𝑒 = 0.9 and 𝑄 = 5x10-5 m3/s] ....................................74 



xiv 
 

Figure A.1. Velocity distributions in partially blocked annuli [𝑛 = 0.8,  = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................92 

Figure A.2. Velocity distributions in partially blocked annuli [𝑛 = 0.8,  = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................93 

Figure A.3. Velocity distributions in partially blocked annuli [𝑛 = 0.6,  = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................94 

Figure A.4. Velocity distributions in partially blocked annuli [𝑛 = 0.4,  = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................95 

Figure A.5. Velocity distributions in partially blocked annuli [𝑛 = 0.2,  = 0.25, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................96 

Figure A.6. Velocity distributions in unblocked annuli [ = 0.25, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s]: (a) n = 1; (b) n = 0.8; (c) n = 0.6; (d) n  =  0.4; and (e) n = 

0.2..............................................................................................................................97 

Figure A.7. Velocity distributions in partially blocked annuli [𝑛 = 1,  = 0.50, 𝑒 = 0.9 

and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) 

Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ....................................................98 



xv 
 

Figure A.8. Velocity distributions in partially blocked annuli [𝑛 = 0.8,  = 0.50, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..............................................99 

Figure A.9. Velocity distributions in partially blocked annuli [𝑛 = 0.6,  = 0.50, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ............................................100 

Figure A.10. Velocity distributions in partially blocked annuli [𝑛 = 0.4,  = 0.50, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ............................................101 

Figure A.11. Velocity distributions in partially blocked annuli [𝑛 = 0.2,  = 0.50, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% .............................................102 

Figure A.12. Velocity distributions in unblocked annuli [ = 0.50, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s]: (a) n = 1; (b) n = 0.8; (c) n = 0.6; (d) n = 0.4; and (e) n = 0.2 ...........103 

Figure A.13. Velocity distributions in partially blocked annuli [𝑛 = 1,  = 0.75, 𝑒 = 0.9 

and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) 

Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ..................................................104 

Figure A.14. Velocity distributions in partially blocked annuli [𝑛 = 0.8,  = 0.75, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% .............................................105 

Figure A.15. Velocity distributions in partially blocked annuli [𝑛 = 0.6,  = 0.75, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% .............................................106 



xvi 
 

Figure A.16. Velocity distributions in partially blocked annuli [𝑛 = 0.4,  = 0.75, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ............................................107 

Figure A.17. Velocity distributions in partially blocked annuli [𝑛 = 0.2,  = 0.75, 𝑒 = 

0.9 and 𝑄 = 5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; 

(d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% ............................................108 

Figure A.18. Velocity distributions in unblocked annuli [ = 0.75, 𝑒 = 0.9 and 𝑄 = 

5x10-5 m3/s]: (a) n = 1; (b) n = 0.8; (c) n = 0.6; (d) n  =  0.4; and (e) n = 

0.2............................................................................................................................109 

Figure A.19. Bed shear stress distributions for diameter ratio [ = 0.25] (a) Hbed = 10%; 

(b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% ............................................................................................................110 

Figure A.20. Bed shear stress distributions for diameter ratio [ = 0.50] (a) Hbed = 

10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; 

and (f) Hbed = 100% ................................................................................................111 

Figure A.21. Bed shear stress distributions for diameter ratio [ = 0.75] (a) Hbed = 

10%; (b) Hbed = 30%; (c) Hbed = 5 0%; (d) Hbed = 70%; (e) Hbed = 90%; 

and (f) Hbed = 100% ................................................................................................112 

Figure A.22. Velocity profile [ = 0.25 and 𝑄 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed 

= 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 

100% .......................................................................................................................113 



xvii 
 

Figure A.23. Velocity profile [ = 0.50 and 𝑄 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed 

= 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 

100% .......................................................................................................................114 

Figure A.24. Velocity profile [ = 0.75 and 𝑄 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed = 

30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 

100% .......................................................................................................................115 

Figure A.25. Velocity profile [Hbed = 0% and 𝑄 = 5x10-5 m3/s] (a)   = 0.75; (b)   = 

0.50; (c)   = 0.25....................................................................................................116 

Figure A.26. Bed shear stress distribution [ = 0.25 and 𝑄 = 5x10-5 m3/s] (a) 𝐾 = 1x10-

5 kg/ms; (b) 𝐾 = 2.5x10-5 kg/ms ; (c) K = 5x10-5 kg/ms ; (d) 𝐾 = 7.5x10-5 

kg/ms ; and (e) 𝐾 = 1x10-4 kg/ms ...........................................................................117 

Figure A.27. Dimentional bed shear stress distribution [ = 0.25 and 𝑄 = 5x10-5 m3/s] 

(a) 𝐾 = 1x10-5 kg/ms; (b) 𝐾 = 2.5x10-5 kg/ms ; (c) 𝐾 = 5x10-5 kg/ms ; (d) 

𝐾 = 7.5x10-5 kg/ms ; and (e) 𝐾 = 1x10-4 kg/ms ......................................................118 

 

 

 

 

 

 

 

 

 



xviii 
 

List of Tables 

Table No.                              Page No. 

Table 2.1. Geometric Parameters 𝑎 and 𝑏……………………………………………………….16 

Table 4.1. Inputs for numerical simulation…...…………...……………………………………..42 

Table 5.1. Fluid Properties used in Experimental Analysis……………………………………...50 

Table 5.2. Pressure Gradient Comparison for CFD and Experimental Work…………………...50 

 

 

 

 

 



 
 

1 
 
 

Chapter 1 

1. Introduction 

1.1 Overview  

During the drilling operation, fluid from the surface flows through the drill pipe and returns 

back to the surface through the annular wellbore. As the fluid flows in this annulus, frictional 

resistant develops, leading to pressure loss. This frictional pressure loss is a critical parameter in 

the optimization of the drilling process. In this study, a 3-D hydrodynamic model is utilized 

incorporating the blockage issues experienced in the eccentric wellbore. Similar annular flows are 

experienced in numerous industries and can form the solution basis for industrial applications such 

as heat exchangers, steam generators, phase separators, inclined and horizontal wellbores, and oil 

risers. 

In order to maximize the efficiency of a drilling process, the drilled cuttings need to be 

transported out of the hole quickly. At the same time, the bottom hole pressure needs to be 

maintained below the fracture pressure. Also, while performing a drilling operation, the bottom 

hole pressure needs to be kept slightly above the pore pressure. These pressure maintenance 

requirements make hole cleaning very challenging. Failure in ensuring a good hole cleaning 

condition can result in major drilling issues like a stuck pipe, fluid loss and lost circulation, or 

formation damage. Therefore, a wellbore hydraulic study is crucial in developing accurate 

hydraulic models that are required to predict annular pressure loss and subsequently bottom hole 

pressure to optimize hole cleaning. 
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Flows in eccentric annuli are found to be affected by variations including annular geometry 

(eccentricity, diameter ratio, and bed height), fluid circulation velocity. In addition to these 

variables, fluid properties such as viscosity, consistency index also affect the wellbore flow 

dynamics. Numerous studies (Hanks, 1979; Filip and David, 2003; Bicalho et al., 2016a; 

Founargiotakis et al., 2008, Ahmed et al., 2006, Ahmed and Miska 2009, Rojas et al., 2017) have 

been performed in the past to better understand fluid flow in wellbores and help by contributing 

their findings for an effective hole cleaning solution. 

In the past, a number of studies (Hanks, 1979; Filip and David, 2003; Bicalho et al., 2016b; 

Founargiotakis et al., 2008)  focused on concentric annular flows. However, with the advancement 

of horizontal and inclined well drilling, flow in eccentric annuli has attracted great interest. In 

horizontal and inclined wells, gravity causes the inner pipe to lay down on the low-side of the 

annulus, forming an eccentric geometry. For the schematic of an eccentric annulus presented in 

Figure 1.1, the following relation expresses eccentricity in dimensionless form.  

 𝑒 =  
𝑑

𝑅0 − 𝑅𝑖
 (1.1) 

where, 

 e = Eccentricity 

 d = Distance of between the centers of inner and outer cylinders  

 𝑅0 = Radius of the outer cylinder  

 𝑅𝑖 = Radius of the inner cylinder  
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Figure 1.1. Eccentric annular geometry 

1.2 Problem Description 

One of the primary functions of a drilling fluid is to transport the solid cutting generated at 

the bottom of the wellbore to the surface. Failure in cuttings transport can cause bit damage,  

thereby reducing the efficiency of a drilling process. Besides this, ineffective hole cleaning can 

have many consequences. It can lead to the formation of cuttings beds in the wellbore causing a 

number of drilling problems such as stuck pipe, lost circulation, wellbore steering problems, an 

increase in drag and torque resulting in a significant increase in non-productive time. In order to 

minimize the adverse effects of bed formation and annular blockage, variables such as fluid 

velocity and rheology need to be controlled to achieve efficient wellbore cleanup. The shear stress 

acting on a cuttings bed has a direct relationship with fluid velocity. This means with an increase 

in fluid velocity, there is an increase in average cutting bed shear stress (𝜏𝑏̅𝑒𝑑). However, the ill 

effects of a high-velocity flow are excessive Equivalent Circulating Density (ECD) and wellbore 

erosion. So, for drilling fluid to perform its primary function effectively and guarantee an efficient 

hole cleaning, hydraulic optimization and regular monitoring and control of drilling parameters 
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are required.  Figure 1.2 shows a partially blocked eccentric annulus, with a blockage height      

‘Hbed = H/Hmax’. As the blockage increases, friction factor gets affected resulting in an increase in 

annular pressure loss. Thus, a better understanding of the effects of blockage on pressure loss and 

hole cleaning is essential. 

 

Figure 1.2. Partially blocked eccentric annulus 

 

The presence of cutting bed complicates flow geometries; as a result, analytical results 

cannot be obtained. Numerical investigations are often applied in order to better understand the 

relationship among flow parameters such as flow rate, bed shear stress, and pressure loss relation. 

Previously, approximate models have been developed to predict hydraulic parameters in partially 

blocked annuli. In this study, CFD simulations have been performed to solve this complex flow 

problem by presenting accurate hydraulic models to optimize the hole cleaning process. 



 
 

5 
 
 

1.3 Objective 

This study is aimed to better understand the flow non-Newtonian fluid in a partially 

blocked eccentric annulus under turbulent conditions, which is a common flow phenomenon 

observed in horizontal and inclined wells. In order to perform the flow analysis, various annular 

geometries are created and simulated using CFD software (ANSYS Fluent) aiming to better 

understand the effects of cutting bed on annular frictional pressure loss and cutting bed shear stress 

and formulate empirical correlations to calculate the bed shear stress. 

1.4 Scope of Work and Methodology  

This research involves CFD simulations in blocked eccentric annulus varying diameter 

ratio (𝜅), and cutting bed height (Hbed). Other than the geometric changes, flow rate, and drilling 

fluid rheological parameters have been varied during the simulation study. The power-law fluid 

parameters (consistency index (𝐾) and power-law exponent (𝑛)) have been varied to cover a wide 

range of drilling fluid properties. Validation is performed by comparing CFD simulation results 

with already published experimental measurements and the predictions of existing models. 

Furthermore, the CFD results have been analyzed and used to develop an empirical model for 

predicting bed shear stress and pressure loss. 

1.5 Outline  

This thesis comprises of six sections. Chapter 1 states the study objectives, problem 

statement, and the methodology used in the investigation. Chapter 2 presents past and recent 

studies conducted in the field of wellbore hydraulics. It provides a comprehensive review of 
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experimental, modeling and theoretical studies. Chapter 3 introduces the concept of turbulent flow 

modeling, especially in pipes and annuli. It also introduces the governing equations utilized in the 

CFD model. Chapter 4 introduces the techniques of CFD, which are used in simulating the steady-

state flow of power-law fluid in the partially blocked annulus. The boundary conditions 

implemented and the grid-independent study performed. Chapter 5 presents simulated results in 

the form of graphs and plots and related discussions along with comparisons with published results 

and predictions of existing models. Finally, Chapter 6 summarizes the relevant outcomes of the 

study that can improve the knowledge base of the drilling technology and provides a few 

recommendations for future studies. 
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Chapter 2 

2. Literature Review 

In this chapter, a review of the existing literature is summarized. The chapter also presents 

an insight into various flow parameters, and how they have been incorporated in the simulation 

software with the advancement of computational tools. Fundamental knowledge in these concepts 

is essential as they form the foundation for this study and help in the 3-D analysis of the model. 

Drilling engineers, on a routine basis, deal with the flow of drilling fluid in annular space 

formed between the drill pipe and casing or wellbore. A review of technical literature provides a 

comprehensive understanding of the annular flow in the wellbore. In wellbore hydraulic analysis, 

often the velocity profile or pressure drop is analyzed assuming the drill pipe is placed 

concentrically. However, in horizontal, inclined, and extended reach wells, the drill pipe is 

positioned in a fully eccentric configuration.  As a result of eccentricity, the annular frictional loss 

pressures are generally lower than anticipated, resulting in a reduced ECD. Furthermore, with the 

introduction of new drilling technologies like underbalanced drilling and managed pressure 

drilling, the accurate prediction of ECD becomes crucial for the successful completion of drilling 

projects. 

A number of rheological models have been used to model the flow behavior of non-

Newtonian fluids in eccentric annuli. Two and three-parameter rheological models are often used 

to describe the flow behavior of drilling fluid. The three-parameter model known as the Yield 

power-law (YPL) model proposed by (Herschel and Bulkley, 1926; Ahmed and Miska, 2008) is 

widely used throughout the industry to perform accurate pressure loss predictions. Two parameter 

models like power-law and Bingham also provide reasonable predictions. For further refinement 
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and better resolution of flow behaviors, four to five parameter models have also been tested but 

are not widely used in practice due to the complexity in the calculation of pressure loss and other 

flow parameters. In this study, the power-law model is selected for the investigation. 

A review of technical literature reveals that a number of studies have been conducted on 

the flow of non-Newtonian fluids in concentric and eccentric annuli under laminar and turbulent 

flow conditions. The studies are discussed in later sections to provide a brief insight into analytical, 

experimental and numerical modeling and hydraulic analysis of these flows. 

2.1 Concentric Annuli 

There are a number of studies conducted on the flow of power-law and Bingham plastic 

fluid in concentric annuli. To obtain a laminar flow solution, the non-linear governing equation 

needs to be solved analytically or numerically. There is no exact analytical solution for turbulent 

or laminar flow non-Newtonian fluids in concentric and eccentric annuli (Gucuyener and 

Mehmetoǧlu, 2004). It was observed that a numerical integration is necessary to obtain an exact 

solution for a concentric annulus. In order to avoid the numerical procedure, the narrow slot 

approximation is utilized. For a diameter clearance greater than 0.3 (𝜅 > 0.3) the narrow slot 

approximation (Fig. 2.1) provides a reasonably accurate solution for concentric annuli 

(Bourgoyne, 1991). It is not accurate for eccentric annuli. Nonetheless, it is used to estimate 

pressure loss in narrow eccentric annuli with low eccentricity (Iyoho and Azar, 1981). 

 In-depth research into concentric annular flow has led to the development of various 

models that are applicable to laminar and turbulent flow regimes. The comparison of numerical 

results with experimental data for non-Newtonian fluid in both concentric and eccentric annuli 

demonstrated good agreement (Escudier et al., 2000). Also, the turbulent flow of non-Newtonian 



 
 

9 
 
 

fluids in annular geometry with blockage has been extensively studied experimentally and 

theoretically (Nouri et al., 1993; Hussain and Sharif, 1997; Ahmed and Miska, 2009).  

 

Figure 2.1. Equivalent slot for annulus (Haciislamoglu, 1989) 

 

 𝐴 =  𝜋(𝑅𝑜
2 − 𝑅𝑖

2) 

   =  𝑊̅ℎ     (2.1) 

where, 𝑊̅ is the width and ℎ is the height of the slot 
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2.2 Eccentric Annulus 

The flow domain in the eccentric annulus is not easy to describe mathematically, especially 

using the classical Cartesian coordinate system. To account for its irregular shape, a bipolar 

coordinate system is utilized along the cross-sectional plane of the annular pipe (Ebrahim et al., 

2013; Heyda, 1959; Snyder and Goldstein, 1965). The bipolar coordinate system consists of two 

orthogonal systems of circles (Fig. 2.2) that provide an excellent alternative to determine velocity, 

pressure loss, and the flow rate in an eccentric annulus. In this coordinate system, the two circular 

boundaries coincide, i.e., the two cylindrical surfaces have a constant value of ‘𝜂𝑜,𝑖’. This constant 

is expressed in terms of dimensionless eccentricity and radius ratio. Various eccentricities shown 

on the y-axis are represented by different ‘𝜉’ values, which intersect the boundaries on the annulus 

orthogonally. Speigel (Speigel, 1968) provided a relationship to transform cartesian coordinate to 

bipolar coordinate by the following relations (Ebrahim et al., 2013; Liu et al., 1999). 

 

𝑥 =  
𝑎𝑏𝑖𝑠𝑖𝑛ℎ𝜂

𝑐𝑜𝑠ℎ𝜂 − 𝑐𝑜𝑠𝜉
             (2.2) 

𝑦 =  
𝑎𝑏𝑖𝑠𝑖𝑛𝜂

𝑐𝑜𝑠ℎ𝜂 − 𝑐𝑜𝑠𝜉
             (2.3) 

 

where 𝑎𝑏𝑖 is bipolar coordinate system on the x-axis 

𝑎𝑏𝑖 = 𝑟𝑖𝑠𝑖𝑛ℎ𝜂𝑖 = 𝑟𝑜𝑠𝑖𝑛ℎ𝜂𝑜     (2.4) 

and 

Lthird is the third axis, which is perpendicular to 𝜂𝑜. Also,   
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𝜂𝑖 = 𝑐𝑜𝑠ℎ−1 [
(1 + 𝜅) − 𝑒2(1 − 𝜅)

𝑎𝑏𝑖𝑒𝜅
]            (2.5) 

𝜂𝑜 = 𝑐𝑜𝑠ℎ−1 [
(1 + 𝜅) − 𝑒2(1 − 𝜅)

𝑎𝑏𝑖𝑒
]            (2.6) 

 

The above set of relationships are necessary as they incorporate the circular pipe 

boundaries into the bipolar coordinate system, for the limits of  0 ≤ Ƞ ≤ 2𝜋 and −∞ ≤ 𝐿𝑡ℎ𝑖𝑟𝑑 ≤

∞ 

 

Figure 2.2. Eccentric annulus in bipolar coordinates (Haciislamoglu, 1989) 

 

In various domains of engineering, fluid flow in eccentric annulus has caught much 

attention. In the past, modeling investigations of turbulent heat and mass transfer through pipes 

were conducted (Deissler, 1955) and model predictions are found to be in good agreement with 

experimental results. Later, the study was extended to the eccentric annulus (Deissler and Taylor, 

1955). Jonsson and Sparrow (1965) also performed experimental work regarding turbulent flow in 

an eccentric annulus. They proposed a friction factor that reduces with an eccentricity (Jonsson 

and Sparrow, 1966).  
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Using bipolar coordinate transformation, modeling studies developed solutions (Eq. 2.7) 

for turbulent flow in an eccentric annulus. Predictions are compared with experimental 

measurements and found to be in good agreement (Ogino et al., 1987).  

 

𝑄 =  [(
𝑑𝑃

𝑑𝐿
)
𝑐,𝑒

𝑟𝑜
3𝑛+1

𝐾
] 

1
𝑛 𝑄𝐷(𝑐,𝑒)    (2.7) 

where 

𝑄 = Dimensionless flow rate 

𝑄𝐷(𝑐,𝑒) = Dimensionless flow rate for concentric or eccentric annulus 

𝐾 = Fluid consistency index 

(
𝑑𝑃

𝑑𝐿
) = Frictional pressure loss gradient 

 

Another recent model (Pilehvari and Serth, 2009) predicts pressure loss of non-Newtonian 

fluid in concentric and eccentric annuli utilizing the effective diameter concept A numerical study 

(Cui and Liu, 1995) solved the continuity and momentum equations and found an increase in 

secondary flow with eccentricity. Analysis carried out by McCann et al., (1995), which used flow 

loop measurements found that pressure loss of a power-law fluid decreases significantly with 

eccentricity. Haciislamoglu and Langlinsia (1990) also performed numerical and analytical 

analyses and developed widely used correlations (Eqs. 2.8 and 2.9) to relate pressure drop of a 

concentric annulus to that of an eccentric annulus and estimate the pressure loss of power-law 

fluid. These correlations are valid for a fluid behavior index of 0.4 to 1.0, eccentricity range of 0 

to 0.95 and diameter ratio ranging between 0.3 to 0.9.  
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Laminar Flow Regime 

 

(
𝑑𝑃

𝑑𝐿
)
𝑒𝑐𝑐

= (1 − 0.072𝜅0.8454
𝑒

𝑛
−

3

2
𝑒2√𝑛𝜅0.1852 + 0.96𝑒3√𝑛𝜅0.2527) (

𝑑𝑃

𝑑𝐿
)
𝑐𝑜𝑛

 

                                                                                                                    (2.8) 

Turbulent Flow Regime 

 

(
𝑑𝑃

𝑑𝐿
)
𝑒𝑐𝑐

= (1 − 0.048𝜅0.8454
𝑒

𝑛
−

2

3
𝑒2√𝑛𝜅0.1852 + 0.285𝑒3√𝑛𝜅0.2527) (

𝑑𝑃

𝑑𝐿
)
𝑐𝑜𝑛

 

                                                                                                                    (2.9) 

 

where 

(
𝑑𝑃

𝑑𝐿
) = Frictional pressure loss gradient, 

     𝜅 = Diameter ratio, 

     𝑒 = Dimensionless eccentricity 

     𝑛 = Fluid behavior index 

 

Narrow slot flow models are utilized to present an approximate solution for the flow of a 

non-Newtonian fluid through the eccentric annulus (Iyoho and Azar, 1981; Uner et al., 1988; 

Tosun, 1984). A simplified model that determines the height (ℎ) of the eccentric annulus is given 

by: 

 

2ℎ =  √𝑟𝑜2 − 𝑒2𝑐𝑟
2𝑠𝑖𝑛2𝜃 − 𝑟𝑖 + 𝑒. 𝑐𝑟 . 𝑐𝑜𝑠𝜃    (2.10) 



 
 

14 
 
 

 

where, 𝑐𝑟 is the concentric radial clearance 

 

When an annulus is very thin, its slot height can also be represented as 

 

ℎ = (𝑟𝑜 − 𝑟𝑖)(1 + 𝑒. 𝑐𝑜𝑠𝜃)    (2.11) 

 

Iyoho and Azer (1981) along with most of their prior works in a similar domain concluded 

that eccentricity could dramatically reduce the annular pressure loss; thus, making its accurate 

estimation very critical. Piercy et al., (1993) provided an analytical solution for laminar Newtonian 

flow in eccentric annuli. They further went on to perform an experiential evaluation of the eccentric 

annular flow (Piercy et al., 1993). Also, recent studies (Rojas et al., 2017; Rojas, 2016) performed 

numerical simulation for the laminar flow of power-law fluid in the eccentric annulus. Other 

studies (Haciislamoglu and Langlinais, 1990; Haciislamoglu, 1989) performed numerical 

simulation in eccentric annuli by transforming the equation of motion into the bipolar coordinate 

system. A recent study (Fang et al., 1999) represented a set of equations by evaluating the effects 

of eccentricity on hydraulic parameters such as friction factor and Reynolds number. They are 

expressed as: 

 

𝑓 =
(
𝑑𝑃
𝑑𝑧

) . 𝐷ℎ

2𝜌𝑉̅2
 

 

(2.12) 
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𝑅𝑒𝑒𝑐𝑐 = 
𝜌𝑉̅2−𝑛𝐷ℎ

𝑛

𝐾
   (2.13) 

 

where 𝑓 is fanning friction factor, 𝑅𝑒𝑒𝑐𝑐 is Reynolds number for eccentric annulus, 
𝑑𝑃

𝑑𝑧
 is pressure 

gradient, 𝐷ℎ is hydraulic diameter, 𝜌 is density, 𝐾 is consistency index, 𝑉̅ is mean fluid velocity, 

𝑛 is fluid behavior index. 

For power-law fluid, the hydraulic parameter (𝑓𝑅𝑒𝑒𝑐𝑐) is a function of eccentricity (𝑒), 

fluid behavior index (𝑛) and diameter ratio (𝜅). Numerous studies (Escudier et al., 2000; Ahmed 

et al., 2006) reported similar findings. Kozicki et al., (1966) proposed a generalized solution for 

non-circular duct flows. Dimensionless geometry parameters are utilized to determine pressure 

loss within ducts. The generalized Reynolds number (Reg) is expressed as a function of the 

geometric parameters ‘𝑎’ and ‘𝑏’. Thus: 

 

𝑅𝑒𝑔 =
𝜌𝑉̅2−𝑛𝐷ℎ

𝑛

8𝑛−1𝐾 (
𝑎 + 𝑏𝑛

𝑛 )
𝑛   (2.14) 

 

The values of the dimensionless geometric parameters are determined using the following 

equation: 

 

𝑎 =  𝑎𝑜𝐻𝑏𝑒𝑑
3 + 𝑎1𝐻𝑏𝑒𝑑

2 + 𝑎2𝐻𝑏𝑒𝑑 + 𝑎3     (2.15) 

𝑏 =  𝛼𝑜𝐻𝑏𝑒𝑑
3 + 𝛼1𝐻𝑏𝑒𝑑

2 + 𝛼2𝐻𝑏𝑒𝑑 + 𝛼3     (2.16) 
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where a1, a2, a3,a4, and αo, α1, α2, α3 are the coefficients of the correlations which are obtained 

(Ahmed et al., 2006) using published numerical results of  Fang et al., (1999) and analytical 

solution presented for a Newtonian fluid. For a partially blocked eccentric annulus the expressions 

for the correlations are presented in Table 2.1 (Rojas et al., 2017). 

 

Table 2.1. Geometric Parameters 𝑎 and 𝑏 

𝑎𝑜 = −6.2328𝜅2 + 4.1994𝜅 − 0.8453  α𝑜 = −0.964𝜅2 + 5.425𝜅 − 1.3217       

𝑎1 = 9.152𝜅2 − 6.7796𝜅 + 1.1096        α1 = −0.1792𝜅2 − 8.1756𝜅 + 2.0884  

𝑎2 = −3.236𝜅2 + 2.778𝜅 − 0.0881       α2 = 0.836𝜅2 + 3.4122𝜅 − 0.9325        

𝑎3 = 0.284𝜅2 − 0.4266𝜅 + 0.06684     α3 = 0.2456𝜅2 − 0.2934𝜅 + 0.8761      

 

2.3 Blocked Annulus 

The fluid velocity is very low in the narrow zones of a block annulus (Nouri et al., 1993; 

Brighton and Jones, 1964; Jonsson and Sparrow, 1966). This reduced velocity is not enough to 

provide an effective hole cleaning. As a result, in horizontal or highly inclined wells, solids bed 

(blockages) form in the narrow zones of the annular area. Since the flow in a partially blocked 

annulus is complicated; there is no exact analytical solution. Thus, solutions are obtained using 

numerical procedures. 

Several numerical studies have been performed to better understand the relationship 

between flow parameters such as blockage, flow rate, and pressure gradient. Numerical studies are 

performed by applying the finite difference method and using a curvilinear boundary fitted 

coordinate system (Clark and Bickham, 1994; Li et al., 2007). A review of technical papers revels 
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that many hydraulic models have been developed to better understand the influence of fluid flow 

in a blocked annulus (Sorgun, 2011; Yue et al., 2008). Other studies (Rojas, 2016; Rojas et al., 

2017, Aworunse, 2012) developed a hydraulic model and performed extensive simulations to 

obtain a correlation between geometric parameters ‘𝑎’ and ‘𝑏’ in a highly eccentric (0.8 and 0.9) 

partially blocked annuli (Table 2.1). The correlations help predict frictional pressure loss. The 

geometric parameters are expressed as a function of fluid behavior index, dimensionless bed 

height, diameter ratio and eccentricity. Recent studies demonstrated the capability of using CFD 

to observe and understand complex fluid flow in the wellbore (Sorgun, 2011; Sorgun et al., 2018). 

CFD solutions have shown good agreement with experimental measurements (Rojas et al., 2017; 

Tang et al., 2016; Azouz et al., 1993). 

 

2.4 Computational Fluid Dynamics 

CFD is generally used to study fluid motion and heat transfer by solving the governing 

equations using a solver. CFD software (ANSYS Fluent) provides accurate predictions of fluid 

interactions between both fluid-fluid and wall-fluid interfaces. It eliminates the need for prototype 

generation (develop large physical models) or just laboratory experiments (ANSYS, 2019). In the 

petroleum industry, fluid flow analysis in a wellbore is very crucial. Parameters such as pressure 

loss, wall shear stress and the impact of blockage and fluid velocity variation can be accurately 

determined with the help of CFD. In the past, studies (Escudier et al., 2000; Fang et al.,1999; 

Sorgun, 2011; Singh and Samuel, 2009) have been performed in concentric and eccentric annuli 

considering laminar and turbulent flow conditions. Experimental measurements have been 

compared with numerical simulation and found to be in agreement.   
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Chapter 3 

3. Theory of Turbulent Flow 

3.1 Turbulent Flow Modeling 

The Navier-Stokes equations govern fluid motion and derive its roots from Newton's 

second law of motion for fluids. The equations represent the conservation of momentum, while 

the continuity equation describes mathematically the conservation of mass. These equations (Eqs. 

3.1 to 3.4) form the heart of fluid flow modeling for simple and complex geometries. Solving these 

equations for particular boundary conditions (like the inlet, the outlets, and the walls) helps in 

predicting the velocity profile and understand pressure distribution in a given flow geometry. The 

flow of blood in arteries, airflow over an automobile, and fluid flow in rivers are all governed by 

these equations. The Navier-Stokes equation in the cartesian coordinate system can be expressed 

as: 

Continuity Equation 

 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌 𝑉⃗ ) = 0 (3.1) 

   

where 𝜌 = Fluid density, 𝑡 = Time, 𝑉⃗  = Flow velocity vector field,  ∇. (𝜌𝑢𝑉⃗ ), ∇. (𝜌𝑣𝑉⃗ ), 

∇. (𝜌𝑤𝑉⃗ )  = Momentum convection. 

Momentum Equation 

Component in X-direction 
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 𝜌 (
𝜕(𝑢)

𝜕𝑡
+ 𝑢

𝜕(𝑢)

𝜕𝑥
+ 𝑣

𝜕(𝑢)

𝜕𝑦
+ 𝑤

𝜕(𝑢)

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑓𝑥  

  (3.2) 

Component in Y-direction 

 𝜌 (
𝜕(𝑣)

𝜕𝑡
+ 𝑢

𝜕(𝑣)

𝜕𝑥
+ 𝑣

𝜕(𝑣)

𝜕𝑦
+ 𝑤

𝜕(𝑣)

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑓𝑦 

  (3.3) 

Component in Z-direction 

 𝜌 (
𝜕(𝑤)

𝜕𝑡
+ 𝑢

𝜕(𝑤)

𝜕𝑥
+ 𝑣

𝜕(𝑤)

𝜕𝑦
+ 𝑤

𝜕(𝑤)

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+ 𝜌𝑓𝑧 

  (3.4) 

 

where 𝑢, 𝑣, 𝑤 are local fluid velocity in x, y, and z-axis,  𝜌 is fluid density, 
𝜕𝑝

𝜕𝑥
, 
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧
   are pressure 

gradient, 
𝜕𝜏𝑖̂𝑗̂

𝜕𝑥
,
𝜕𝜏𝑖̂𝑗̂

𝜕𝑦
,
𝜕𝜏𝑖̂𝑗̂

𝜕𝑧
 are viscosity-dependent momentum exchange terms, and 𝜌𝑓𝑖̂ is body force 

(gravity in x, y, and z-direction).  

Direct numerical simulation of turbulent flow using the Navier-Stokes equations is 

computational challenging. As a result, approximate models are used for practical applications. In 

the development of approximate models for the Navier-Stokes equation, a variety of modeling 

approaches have been established. One of the approaches used the Reynolds-averaged Navier–

Stokes equations (RANS) that help model turbulent flows in ducts and open channels. The 

mathematical technique behind solving this time-averaged RANS equation is the Reynolds 

decomposition. The technique is developed to separate the steady component of the equation from 

the fluctuating ones. The steady component can be a time-averaged component (steady with time). 
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The RANS equation is primarily used to describe turbulent flow in uniform ducts. It is widely used 

in industrial flow applications.  

 

Component in X-direction 

 

𝜕(𝜌𝑈𝑈)

𝜕𝑥
+

𝜕(𝜌𝑉𝑈)

𝜕𝑦
+

𝜕(𝜌𝑊𝑈)

𝜕𝑧

= −
𝜕𝑝̅

𝜕𝑥
+

𝜕

𝜕𝑥
[𝜇𝑒𝑓𝑓

𝑑𝑈

𝑑𝑥
] +

𝜕

𝜕𝑦
[𝜇𝑒𝑓𝑓

𝑑𝑈

𝑑𝑦
] +

𝜕

𝜕𝑧
[𝜇𝑒𝑓𝑓

𝑑𝑈

𝑑𝑧
] + 𝑆𝑈 

  (3.5) 

Component in Y-direction 

 

𝜕(𝜌𝑈𝑉)

𝜕𝑥
+

𝜕(𝜌𝑉𝑉)

𝜕𝑦
+

𝜕(𝜌𝑊𝑉)

𝜕𝑧

= −
𝜕𝑝̅

𝜕𝑦
+

𝜕

𝜕𝑥
[𝜇𝑒𝑓𝑓

𝑑𝑉

𝑑𝑥
] +

𝜕

𝜕𝑦
[𝜇𝑒𝑓𝑓

𝑑𝑉

𝑑𝑦
] +

𝜕

𝜕𝑧
[𝜇𝑒𝑓𝑓

𝑑𝑉

𝑑𝑧
] + 𝑆𝑉 

  (3.6) 

Component in Z-direction 

 

𝜕(𝜌𝑈𝑊)

𝜕𝑥
+

𝜕(𝜌𝑉𝑊)

𝜕𝑦
+

𝜕(𝜌𝑊𝑊)

𝜕𝑧

= −
𝜕𝑝̅

𝜕𝑧
+

𝜕

𝜕𝑥
[𝜇𝑒𝑓𝑓

𝑑𝑊

𝑑𝑥
] +

𝜕

𝜕𝑦
[𝜇𝑒𝑓𝑓

𝑑𝑊

𝑑𝑦
] +

𝜕

𝜕𝑧
[𝜇𝑒𝑓𝑓

𝑑𝑊

𝑑𝑧
] + 𝑆𝑍 

  (3.7) 

 

where  𝜇𝑒𝑓𝑓 =  𝜇 + 𝜇𝑡, where 𝑈, 𝑉,𝑊 are time-averaged local fluid velocity. 𝑝̅ is time-averaged 

pressure.  𝑆𝑈, 𝑆𝑉, and 𝑆𝑊 are additional source terms due to the non-uniform viscosity. 
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3.1.1 Two Equation: k-ε Model 

  

The k-ε model is the most widely used model in simulating mean flow characteristics for 

turbulent duct flows. The model comprises two differential equations to describe turbulence. The 

original motivation of this model was to enhance the Prandtl mixing-length approach. The k-ε 

model has been successfully used in simulating turbulent flow in uniform ducts. According to this 

model, the differential equation that describes the distribution of turbulent kinetic energy is 

expressed as: 

 

 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑖̂)

𝜕𝑥𝑖̂
=

𝜕

𝜕𝑥𝑗̂
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗̂
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘 

(3.8) 

Similarly, the equation used to describe the distribution of the rate of turbulent energy dissipation 

(ε) is given as: 

 

 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕(𝜌𝜀𝑢𝑖̂)

𝜕𝑥𝑖̂
=

𝜕

𝜕𝑥𝑗̂
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗̂
] + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀  

(3.9) 

The Reynolds stresses within the fluid are obtained by performing the averaging operation. 

The averaging is performed over the Navier–Stokes equations and accounts for turbulent changes 

(fluctuations) in a fluid motion. These non-linear stress terms are responsible for the creation and 

growth of the turbulence in turbulent flows. In the k- model, the Reynolds stress is determined 

using an eddy viscosity (𝜇𝑡) model, which is expressed as: 

 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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 𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
  (3.10) 

 

where 𝑘 is turbulent kinetic energy, 𝜀 is the rate of dissipation, 𝐺𝑘 is turbulent kinetic energy due 

to mean velocity gradient, 𝐺𝑏 is turbulent kinetic energy due to buoyancy, 𝑌𝑀 is fluctuating 

dilatation in incompressible turbulence to overall dissipation rate, 𝜎𝑘, 𝜎𝜀 is a turbulent Prandtl 

number for 𝑘 and 𝜀, 𝐶1𝜀, 𝐶2𝜀 , 𝐶3𝜀 , 𝐶𝜇 are constants. Furthermore, the turbulent Prandtl numbers 

and the constants have the following values: 

𝐶1𝜀 = 1.44, 𝐶2𝜀 = 1.92, 𝐶𝜇 = 0.09, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3  

3.1.2 Model Assumptions 

 

In order to perform the necessary CFD simulation for wellbore flow analysis, the required 

assumptions need to be made to simplify the Navier-Stokes equations. The following list of 

assumptions are made in performing the wellbore flow dynamic analysis: 

• Fully developed turbulent flow of power-law fluid 

• Steady-state and isothermal flow condition (time-independent) 

• Incompressible fluid 

• Non-rotating inner cylinder/pipe 

• Flow-rate condition at the inlet is constant (uniform flow distribution) 

• No-slip boundary condition at bed interface  

• The bed is uniform and stable 

• Negligible effect of solids on flow dynamics 

• Smooth pipe wall 
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3.1.3 Power-law Fluid 

The power-law model that relates shear stress and shear rate is given in Eq. (3.11). It is the 

most widely used empirical relationship in drilling engineering applications. 

 

 𝜏 = 𝐾𝛾̇𝑛 (3.11) 

 

where 𝜏 is shear stress, 𝐾 is consistency index, 𝑛 is fluid behavior index, and 𝛾̇ is the shear rate.  

Also, the above relationship can be rewritten in terms of apparent viscosity as follows: 

 

 𝜏 = 𝜇(𝛾̇)𝛾̇ (3.12) 

   

where 𝜇(𝛾̇) is apparent viscosity, which is a function of shear rate, 𝛾̇ . When the fluid becomes 

non-Newtonian, an additional relationship between shear rate and velocity gradient is required. 

Hence, the apparent viscosity of non-Newtonian fluids is related to the generalized shear rate 

expressed as: 

 

 
|𝛾̇|2   =   2 [(

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

(
𝜕𝑤

𝜕𝑧
)
2

] + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

 

  (3.13) 

where 𝛾̇ is shear rate, 𝑢, 𝑣, 𝑤 are local fluid velocities in x, y, and z-axis. The term 𝜇(𝛾̇) is defined 

as a ratio between shear stress and the shear rate. This relationship helps in the understanding of 

the flow behavior of fluids. In Eq. (3.11), one can vary the value of ‘𝑛’ and observe the relationship 

between apparent viscosity and shear rate. If ‘𝑛’ is less than one, fluid is said to have a pseudo-

plastic behavior, i.e.; it exhibits shear thinning property. If ‘𝑛’ is greater than one, the fluid is 

considered as dilatant fluid (i.e., it shows a shear thickening behavior). In the first case, the 
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apparent viscosity decreases with shear rate and in the latter case, it is found to increase with the 

shear rate. For a case of 𝑛 = 1, the fluid is said to behave like a Newtonian fluid. Figure 3.2 

represents the discussed behavior with respect to apparent viscosity.  

 

 

Figure 3.1. Non-Newtonian fluid types (Nguyen and Nguyen, 2012) 

 

 

 

Figure 3.2. Viscosity vs shear rate (Willenbacher and Georgieva, 2013) 
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3.2 Relevant Flow Parameters  

The Reynolds number and friction factor are very important dimensionless parameters used 

in the hydraulic calculation. These parameters are required to determine the average wall shear 

stress and pressure loss in non-circular ducts.  

3.2.1 Reynolds Number  

 

Fluid flow in a uniform duct can be in one of the three flow regimes, namely, laminar, 

transition and turbulent. The Reynolds number is a dimensionless number that compares the inertia 

force to the viscous force. It is used to determine if the flow is under laminar or turbulent condition 

(Holland, 1995). Thus, the Reynolds number is given as: 

 

 𝑅𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝐹𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝐹𝑜𝑟𝑐𝑒
 (3.14) 

 

If a fluid flow is streamlined and highly ordered (Figure 3.3), it is considered to be in 

laminar and in this case, the Reynolds number range between 0 and 2100. This range is applicable 

only for Newtonian fluid in a circular pipe. Lower ranges of Reynolds number means the viscous 

forces are dominant as compared to the inertia forces, which characterizes by a smooth fluid flow 

behavior. At higher Reynolds numbers (𝑅𝑒 > 4000), the flow regime is said to be turbulent. In this 

case, the flow is mostly dominated by inertia forces and a large number of eddies are generated 

(Figure 3.4), resulting in velocity fluctuations and disordered fluid streamlines (motion). The 

regime between laminar flow and turbulent flow is called the transition flow and occurs within a 

Reynolds number range of 2100 to 4000. The Reynolds number in an eccentric annulus is given 

by Equation 2.13 (Kozicki et al., 1966). The hydraulic diameter is necessary for the determination 
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of the Reynolds number in an eccentric annulus. For any non-circular duct, the hydraulic diameter, 

Dℎ  =  4A/P𝑊, where 𝑃𝑊 is the wetted perimeter of the duct and 𝐴 is the cross-sectional area of 

the duct. 

 

Figure 3.3. Laminar flow streamlines in a pipe (Purushothaman, 2019) 

 

Figure 3.4. Turbulent flow streamlines in a pipe (Purushothaman, 2019) 

 

 In literature, there are published correlations that follow a power-law model. The Dodge 

and Metzner (Dodge and Metzner, 1959) have published turbulent flow correlations for an annular 

flow which have gained widespread acceptance in the petroleum industry. The correlations are 

limited to smooth pipes and were developed by incorporating the apparent viscosity and the 

effective diameter into the Reynolds number equation (Bourgoyne, 1991). The Reynolds number 

is given as follows. 

𝑅𝑒∗ = 
109,000𝜌𝑉̅(2−𝑛)

𝐾
[
0.0282(𝐷𝑜 − 𝐷𝑖)

2 + 1/𝑛
]

𝑛

 (3.15) 

 

 Note: In this research, the difference (𝐷𝑜 − 𝐷𝑖) is replaced by the hydraulic diameter (𝐷ℎ) 

and 𝑅𝑒∗ represents the Reynolds number for turbulent annuli flow using the power-law model. 
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3.2.2 Fanning Friction 

 

Pressure losses in pipe encountered during a fluid flow occur as a result of hydraulic 

friction resistance. Pressure losses in a tube or annular duct are a function of the Fanning friction 

factor (𝑓), which is the ratio of average wall shear stress to the kinetic energy flow density. It is 

expressed as:  

 

 
𝑓 =

𝜏𝑤

𝜌
𝑉̅2

2

 
(3.16) 

where 𝑓 is fanning friction factor, 𝜏𝑤 is wall shear stress, 𝜌 is corresponding fluid density, 𝑉̅ is 

mean fluid velocity. 

 

Turbulent flow in tubes 

During turbulent flow within a round tube, an expression for friction factor was developed 

by Blasius (Equation 3.17). This relation has been found to work well for hydraulically smooth 

pipes when the Reynolds number is between 2100 and 105 (Klinzing et al., 2010; Holland, 1995). 

 

 𝑓 =
0.0791

𝑅𝑒0.25
 (3.17) 

 

For high Reynolds number (i.e. greater than 105) turbulent flows in smooth pipes, Koo (Klinzing 

et al., 2010; Holland, 1995) developed another explicit formula (Equation 3.18). This formula is 

applicable for a Reynolds number range of 104 <  𝑅𝑒 <  107. 

 

 𝑓 = 0.0014 +
0.125

𝑅𝑒0.32
 (3.18) 
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Also, a widely acceptable relationship applicable to a turbulent flow regime in hydraulically 

smooth pipes is given by the von Karman equation (Holland, 1995). 

 

 
1

√𝑓
= 4.0 log (

1

√𝑓
. 𝑅𝑒) − 0.40 (3.19) 

 

For pipes with a certain degree of roughness or experiencing complete roughness, the 

Fanning friction factor is calculated, taking into account the relative roughness factor (𝜖 𝐷⁄ ). A 

relationship between roughness and friction factor for high Reynolds number flows         

(4 × 104  <  𝑅𝑒 <  107) is given by (Haaland, 1983; Holland, 1995): 

 

 

1

√𝑓
= −3.6𝑙𝑜𝑔10 [

6.9

𝑅𝑒
+ (

𝜖
𝐷⁄

3.7
)

10
9⁄

] 

 

(3.20) 

Another generalized relationship between Reynolds number and Fanning friction factor, 

for any turbulent range, is shown as follows (Colebrook and White, 1937). 

 

 
1

√𝑓
= −2.0 log10 (

2.51

𝑅𝑒√𝑓
+ (

𝜖
𝐷⁄

3.7
)) (3.21) 

where 𝜖 is roughness of the inner surface of the pipe, and 𝐷 is pipe diameter. 

In non-Newtonian power-law fluids, the pipe roughness has a minor effect on pressure loss 

and friction factor. However, the Fanning friction factor is affected by the Reynolds number (𝑅𝑒) 

and fluid behavior index (𝑛). Kozicki et al., (1966) presented a generalized friction factor 

correlation for the turbulent flow of power-law fluid in non-circular ducts. Thus: 
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1

√𝑓
=

4

𝑛0.75
log10 (𝑅𝑒𝑔. 𝑓

2−𝑛
2 ) −

0.4

𝑛1.2
+ 4𝑛0.25. log10 [

4(𝑎 + 𝑏𝑛)

1 + 3𝑛
] (3.22) 

 

where 𝑅𝑒𝑔 is the generalized Reynolds number defined in Eq. (3.22), where constant “𝑎” and “𝑏” 

are geometric parameters. The information given by Kozicki et al., (1966) suggests that 𝑎 and 𝑏 

values obtained from a laminar flow can be used to determine the friction factor in turbulent flow 

regime using Eq. (3.22). Thus, the geometric correlations developed by Rojas et al., (2017) are 

used in this study to determine the turbulent friction factor in a partially blocked eccentric annulus.  

3.2.3 Wall Shear Stress 

 

As the fluid flows in pipes, there is shear stress developed on the surfaces of the conduit. 

The wall shear stress developed near the boundary wall is related to the friction pressure gradient. 

The wall shear stress in a pipe is determined from the pressure gradient as: 

 𝜏𝑤,𝑝 =
d𝑃

d𝐿
.
𝐷

4
 (3.23) 

 

where 𝜏𝑤,𝑝 is wall shear stress acting on the pipe wall, 
d𝑃

d𝐿
 is the frictional pressure loss gradient of 

a fully developed flow, 𝐷 is the diameter of a pipe. The maximum shear stress occurs at the pipe 

wall. For a fully developed pipe flow, the velocity profile is shown in Figure 3.5. 
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Figure 3.5. The velocity profile in a pipe (Rojas, 2016) 

 

Theoretical analysis of a pipe flow resulted in the development of a generalized wall shear 

rate model, which expresses the relationship between wall shear rate and wall shear stress. Thus:  

 𝛾̇𝑤 = (
8. 𝑉̅

𝐷
) . [

3

4
+

1

4

𝑑 𝑙𝑛 (8. 𝑉̅ 𝐷⁄ )

𝑑 𝑙𝑛𝜏𝑤
] (3.24) 

 

where, 𝛾̇𝑤 is wall shear rate for generalized fluid and  
8.𝑉̅

𝐷
 is the nominal Newtonian shear rate. For 

power-law fluid, the term 
𝑑 𝑙𝑛(8.𝑉̅

𝐷⁄ )

𝑑 𝑙𝑛𝜏𝑤
 is expressed as ‘𝑛’. Thus, the wall shear stress for power-law 

fluid is expressed as: 

 𝜏𝑤 = (𝐾 (
3𝑛 + 1

4𝑛
) .

8𝑉̅

𝐷
)

𝑛

 (3.25) 

 

A generalized wall shear stress model was proposed by Kozicki et al., (1966). The model 

is applicable for any arbitrary ducts that have a constant cross-section. In the case of power-law 
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fluid, the generalized wall shear stress is expressed as a function of fluid behavior index, nominal 

Newtonian shear rate and geometric parameters 𝑎 and 𝑏. Hence: 

 𝜏𝑤 = 𝐾. [
8. 𝑉̅

𝐷ℎ
(𝑏 +

𝑎

𝑛
)]

𝑛

 (3.26) 

 

The two geometric parameters (a and b) characterize the cross-section of the duct. In the case of 

fluid flow through a slot, the parameters 𝑎 and 𝑏 become 1/2 and 1, respectively. For the case of 

pipe flow, the geometric parameters 𝑎 and 𝑏 are 1/4 and 3/4, respectively. 

In the case of a concentric annulus, the wall shear stress acting on the inner and outer wall 

surfaces are not identical due to the difference in velocity profiles. Figure 3.6 shows the velocity 

profile in a concentric annulus. Figure 3.6 displays the case of a Newtonian flow; In the case of a 

power-law fluid, as the shear-thinning behavior of the fluid increases, the velocity profile is found 

to become flattered. 

 

Figure 3.6. The velocity profile in a concentric annulus (Bourgoyne, 1991) 

 

Applying the momentum balance for a slot based annular flow, the average wall shear 

stress is given by Equation 3.27. 
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 𝜏𝑤,𝑎 =
dp

dz
.
𝐷ℎ

4
 (3.27) 

 

where, 𝜏𝑤,𝑎 is the wall shear stress of a concentric annular flow. The geometric constants of the 

concentric annulus vary with the diameter ratio (𝜅) and flow behavior index (𝑛). Thus: 

 
𝑎 + 𝑏 =

(1 − 𝜅)𝑛

1 + 𝜅2 − (
1 − 𝜅2

ln (1 𝜅⁄ )
)

 
(3.28) 

 

and, 

 

 
𝑎 =

(1 − 𝜅)2

4 {1 −
1 − 𝜅2

2 ln(1 𝜅⁄ )
[1 − 𝑙𝑛

1 − 𝜅2

2 ln(1 𝜅⁄ )
]}

 
(3.29) 

 

3.2.4 Hydraulic Parameter 

For power fluid flowing in any uniform cross-section duct, the product of the generalized 

Reynolds number (𝑅𝑒𝑔) and the Fanning friction factor yields a constant 16. Thus: 𝑓. 𝑅𝑒𝑔 = 16. 

The friction factor is multiplied with the Reynolds number defined in Eq. (2.14), the value of the 

product varies with geometric constants, diameter ratio, eccentricity and fluid behavior index. 

Thus, for a given eccentricity and diameter ratio, the friction factor can be expressed as: 

 𝑓 =
23𝑛+1

𝑅𝑒𝑒𝑐𝑐
. (

𝑎

𝑛
+ 𝑏)

𝑛

 (3.30) 
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In the case of an eccentric annulus study, the geometric parameters are obtained by plotting 

the shape factor (𝑠 = (
𝑓𝑅𝑒𝑒𝑐𝑐

23𝑛+1
)
1/𝑛

) as a function of 1/n for different eccentricities and diameter 

ratios (Fig. 3.7). As observed, the data points obtained from numerical simulation results from 

straight lines in s versus 1/n plot. The straight-line helps obtain the values for 𝑎 and 𝑏.  

 

 

Figure 3.7. Shape factor for eccentric annular geometry (Ahmed et al., 2006) 

 

3.2.5 Bed Shear Stress 

 

In a partially blocked annulus, the presence of cuttings beds affects the flow pattern and 

the wall shear stress distribution. Thus, the shear stress acting on the beds (bed shear stress) 

determines the mobility of bed particles by affecting the lift and drag forces act on the bed. By 

determining the average bed shear stress and the pressure gradient across the annulus, one can 

evaluate hole cleaning performance in inclined and horizontal wells (Ahmed et al., 2003; George 

et al., 2014; Rojas et al., 2017). In the past, studies (Hussain and Sharif, 1997; Bicalho et al., 

2016b) have conducted to better understand the effect of blockage on annular flows. Numerical 
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models have been developed to investigate the laminar flow in a partially blocked annulus for both 

Newtonian and non-Newtonian fluids. Azouz et al., (1993) analyzed the effect of blockage on 

annular flow and concluded that shear stress behavior is non-linear. The dimensionless bed shear 

stress (Rojas et al., 2017) can be another parameter that is used to better understand the fluid flow 

behaviors within an eccentric annulus. The dimensionless bed shear stress is defined as: 

 𝜋𝑏𝑒𝑑 = (
𝜏𝑏̅𝑒𝑑

𝜏𝑤̅
)
𝑛

 (3.31) 

 

where 𝜋𝑏𝑒𝑑 is the dimensionless bed shear stress, 𝜏𝑤̅ is the average wall shear stress, 𝜏𝑏̅𝑒𝑑 is the 

average bed shear stress. In this study, fluid parameters like power-law index and flow parameters 

such as bed height and diameter ratio are investigated and incorporated into one equation with the 

aim to develop a model for dimensionless bed shear stress.  

The Fanning equation is the relation to calculate frictional pressure loss in pipes and annuli. 

All flow parameters are combined to eventually calculate the pressure gradient for the annular flow 

and the term pressure gradient is utilized to compare the CFD results with results obtained from 

existing models. 

 

 

𝑑𝑃

𝑑𝐿
=

𝑓𝜌𝑉̅2

𝐷ℎ
 

(3.32) 
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3.3 Existing Models for Partially blocked eccentric annulus 

The following are the two pre-existing models that are utilized in this study in order to 

compare the obtained CFD simulation results.  

3.3.1 Hydraulic Diameter Model 

  

 The following are the steps followed in regard to the Hydraulic diameter model 

comparison. 

➢ Mean flow velocity (𝑉̅) is an important input condition which is obtained by the ratio of 

flow rate (𝑄) with the cross-sectional area (𝐴). 

➢ Eq. 3.15 is used to calculate the Reynolds number to ensure flow is in turbulent regime and 

the Fanning friction factor (𝑓) is calculated by using the Eq. 3.17. 

➢ The hydraulic diameter (Dℎ) is calculated using the relationship Dℎ  =  4A/P𝑊, where 𝑃𝑊 

is the wetted perimeter and 𝐴 is the cross-sectional area of the duct. 

➢ Reynolds number (𝑅𝑒∗), is calculated by incorporating density (𝜌), mean velocity (𝑉̅) and 

rheological parameters (𝑛, 𝐾). 

➢ The dimensional measurement in all cases are obtained using ANSYS software. 

➢ Finally, the pressure gradient calculated by using Eq. 3.32. and the comparison of 

Hydraulic Model results with CFD results is displayed in section 5.7. 
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3.3.2 Kozicki’s Model 

 

The second model used to compare CFD result is the Kozicki’s model (Kozicki et al., 1966).  

➢ After the mean velocity (𝑉̅) is obtained from the flow rate (𝑄) and flow area (𝐴). 

➢ Geometric parameters (𝑎 and 𝑏) are obtained using correlations presented in Table 2.1. and 

Eq. 2.15 and 2.16 and incorporating the respective diameter ratio (𝜅). 

➢ The generalized Reynolds number (𝑅𝑒𝑔) is then obtained by incorporating the above-

mentioned 𝑎 and 𝑏 values into Eq. 2.14 along with mean velocity (𝑉̅), rheological 

parameters (𝑛, 𝐾) and hydraulic diameter (𝐷ℎ). 

➢ This is needed to calculate the Kozicki’s friction factor. The generalized Reynolds number 

and the geometric parameters are further incorporated into Eq. 3.22 to obtain Kozicki’s 

friction factor value. 

➢ Finally, the calculated mean velocity (𝑉̅), density (𝜌), Fanning friction factor (𝑓) and 

hydraulic diameter (𝐷ℎ) are substituted into Eq. 3.32 to obtain the pressure gradient. 

➢ The above-obtained pressure gradient is compared with simulation results in the form of 

plots and is shown in subsection 5.7. 
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Chapter 4 

4.  Computational Fluid Dynamics Analysis 

In this chapter, a brief insight is given on the steps undertaken before beginning the 

simulation process and performing the post-processing operation in order to obtain reliable and 

meaningful results. 

4.1 Geometry  

An accurate description of flow geometry is a crucial step before the beginning of the CFD 

simulation. The flow geometries are created as 3-D models using the tool, ANSYS Design 

Modular, present within the workbench the commercial software. This tool is also used to 

incorporate various bed heights in the flow geometry, which is a crucial alteration necessary for 

this study to investigate the impact of blockage on pressure loss and wall shear stress. The 3-D 

flow geometries created during the study not only vary from one another in terms of bed height 

but also in diameter ratio (𝜅 =  𝐷𝑖/𝐷𝑜). Three different diameter ratios (0.25, 0.5 and 0.75) are 

considered along with various bed heights (0%, 10%, 30%, 50%, 70%, 90% and 100%). The 

eccentricity (𝑒) in all the geometries remains fixed with a value of 0.9.  

The bed height, length, and inlet area are accurately calculated, and the flow geometry is 

created accordingly. The annular area and wetted perimeter dimensions were calculated and 

confirmed using Chen's geometric analysis (Chen, 2005). A front view of the geometry comprising 

of solid blockage percentage is shown in Figure 4.1. Also, another front view of the geometry 

sliced by its symmetry axis for a fixed bed height of 50% with the three variations of diameter 

ratio is shown in Figure 4.2. 
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(a) 

 
 

(b) 

 
 
 

 

(c) 

 
(d) 

 
 

(e) 

 
 
 

(f) 

Figure 4.1. Front view of partially blocked annular geometry (𝜿 = 0.50) (a) 10%, (b) 30%, (c) 50%, 

(d) 70%, (e) 90% and (f) 100% 

 

 
(a) 

 
(b) 

 
 
 

(c) 

Figure 4.2. Front view of 50% blocked annular geometry with varying diameter ratio  

(a) 𝜿 = 0.25 (b) 𝜿 = 0.5 and (c) 𝜿 = 0.75 
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The flow geometry has five named faces, namely Inlet, Outlet, Outer Surface, and Inner 

Surface and Bed Surface, as shown in Figure 4.3. These named sections/faces along with the 

geometry, are imported in the mesh solver of ANSYS Workbench for mesh generation and grid 

refinement, an essential step for performing accurate CFD analysis. 

 

Figure 4.3. Named faces of the geometry 

4.2 Mesh Generation 

The second step after flow geometry creation is meshing, which is the generation of an 

appropriate grid (mesh) structure before performing any CFD simulation. The computational mesh 

is generated using the meshing tool present in ANSYS workbench. Grids are generated throughout 

the flow geometry and they represent the entire flow domain. There are mainly two major types of 

grid structures that are found in a meshing operation: structured grids and unstructured grids. The 

simplest type of grid is the structured grid. These kinds of grids are applicable in simple flow 
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geometries. In structured grids, the nodes are arranged in an orderly manner. An example of a 

simple structured grid is shown in Figure 4.4. On the other hand, an unstructured mesh (grid) 

system is used for a more complex flow geometry (flow domain). For example, in the case of a 

buried drill pipe, the solid bed area is critical and needs to be accurately represented. Similarly, 

the area close to the pipe wall is also very important due to very high-velocity gradient, so we need 

to have finer mesh at those interfaces. The fine grid layers created along the walls are shown with 

the unstructured grid (Figure 4.5). 

 

Figure 4.4. Example of structured grid 

 

Figure 4.5. Example of unstructured grid 
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4.3 Boundary Conditions 

Following the grid generation, it is of paramount importance to define the necessary 

boundary condition to represent the flow in the wellbore. As mentioned earlier, there are a total of 

five named surfaces, namely inlet, outlet, the outer surface, inner surface and bed surface. These 

surfaces are shown in Figure 4.3 and can be grouped into the following three subcategories.  

Inlet (Fluid Inflow): The boundary condition at the inlet is defined as velocity inlet within 

ANSYS Fluent solver. The power-law fluid flows into the geometry through the inlet duct located 

on one end of the wellbore. The given inflow is specified at its upstream location and assumed to 

have a uniform flow rate of 5e-5 m3/s. 

Outlet (Fluid Outflow): The 3-D geometries outflow is directly opposite to the inlet surface 

(duct). It is defined as a pressure outlet boundary condition within the Fluent solver. 

Wall Boundaries: The Outer Surface, Inner Surface, and Bed Surface are all defined as wall 

surfaces in ANSYS Fluent. These three surfaces use a no-slip wall condition and the volume 

enclosed by the three boundaries is considered as the flow domain. 

 The fluid flows into the flow domain through the inlet and leaves through the outlet. The 

bed height and bed shear stress are obtained by post-processing the numerical simulation results 

within ANSYS Workbench.  

4.4 Grid Sensitivity Analysis 

To perform any reliable CFD based numerical simulation comprising of 3-D geometry, just 

like a partially blocked annulus, adequately refined computational grid (mesh) generation is 

essential to ensure the solution accuracy. Numerical modeling of an eccentric annulus comprising 
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of blockages is generally complex. In such a domain, the horizontal length scale is larger than the 

vertical length scale. In order to avoid any numerical instability within the simulation process, a 

large number of grid points (mesh elements) are required to decrease the maximum aspect ratio of 

the grids, thereby (minimizing inaccuracy), ensuring the solution accuracy.  

In this study, the unstructured grid system is selected for meshing the flow cross-sectional 

area. The mesh system comprises of tetrahedral, prism-like structures generated all along with the 

flow domain. In the axial direction, the annulus has been meshed with uniform grids containing 

tetrahedral elements and inflation lines have been used in the grid generator all along the solid bed 

and wall regions to better represent the wall effects. The total number of grid elements generated 

in the 3-D model is narrowed down using the grid refinement approach. 

To perform a grid-independent study, a partially blocked annulus with a 30% bed height is 

considered. Mesh systems comprising of grid points (elements number) of 0.5M, 1.25M, 2.5M, 

and 5M are created. The final grid system is selected by analyzing and observing the pressure drop 

variation with the number of grids used in the simulation. The input variables, geometry 

dimensions and simulation conditions used for this analysis are shown in Table 4.1. Note that all 

simulations are performed under turbulent conditions (i.e., Reynolds number (𝑅𝑒∗) greater than 

14000). 

 

Table 4.1. Inputs for numerical simulation 

Parameters Value 

Drill Pipe Diameter, 𝐷𝑖 (m) 0.025 

Casing Diameter, 𝐷𝑜 (m) 0.05 

Diameter Ratio, 𝜅 0.5 

Relative Eccentricity, 𝑒 0.9 
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Solid Bed Height, 𝐻𝑏𝑒𝑑 (%) 30 

Fluid Flow Rate, 𝑄 (m3/s) 5x10-5 

Fluid Density, 𝜌 (kg/m3) 1000 

Consistency Index, 𝐾 (Pa.sn) 5x10-5 

Fluid Behavior Index, 𝑛 1 

 

Simulation results (Figure 4.6.) demonstrated that with increasing the number of grids, the 

pressure gradient tends to stabilize after reaching a mesh size of 2.2M elements. Increasing the 

number of mesh elements helps provide better resolution and accuracy. This sensitivity study 

shows the number of grids required for reliable and accurate CFD simulation of the annular 

geometry in consideration.  

 

 

Figure 4.6. Grid independent study for various number of grids 
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4.5 Numerical Setup in Fluent Solver 

Once the 3-D model is developed and the grid refinement is performed, the next step is to 

implement the necessary boundary conditions in the CFD model. This research aims to build a 3-

D model taking into account the effect of cutting bed height. In order to study these effects, several 

numerical simulations need to be performed varying the cutting bed thickness and annular diameter 

ratio. Hence, one of the first things before performing CFD fluid flow simulation is to select the 

appropriate solver type. In this research, a steady-state pressure-based solver is selected as the fluid 

is incompressible in nature. Also, the final results obtained through simulation need to be 

independent of all initial conditions; thus, the simulation needs to be performed for steady-state 

conditions. 

There is no detailed step by step procedure to select the appropriate turbulent flow model 

used to simulate flow in a partially blocked annulus. As a result, the standard k-ε model is utilized. 

Due to the requirement of relatively reduced computational resources, the k-ε model is one of the 

most commonly used models to perform the numerical simulations of turbulent flows. Adding to 

it, the Enhanced Wall Treatment and Pressure Gradient Effect options are selected to provide a 

more refined result at wall boundaries. 

 Appropriate boundary conditions along with material properties and operating conditions 

are implemented in the solver. The ANSYS Fluent solver uses the time-based iterations to perform 

simulation for the defined flow condition. The numerical simulations are performed for turbulent 

flow conditions using the Semi-Implicit Pressure Linked Equation (SIMPLE) pressure velocity 

scheme. The SIMPLE scheme (algorithm) is a preferred method in providing solutions for 

incompressible flow problems. Also, second-order discretization is selected for Pressure, 
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Momentum, Turbulent Kinetic Energy and Turbulent Dissipation Rate to obtain an accurate and 

consistent solution. 

The convergence assessment parameter for the continuity equation is kept at 1x10-4 and the 

convergence criteria for momentum, 𝑘 and epsilon equations are set at 1x10-7. After the 

convergence criteria are meet the simulations are concluded and results are post-processed within 

the Fluent solver. Visual examination of the contour diagrams and the various plots help identify 

numerical instability issues and a better understanding of the flow dynamics.  

4.6 Post-Processing 

After the numerical simulations are carried out and desired results are obtained, it is 

important to display results in a meaningful manner to provide reasonable explanations and 

interpretations for various observations. Contour diagrams are easier to extract from the solver 

using the post-processing tool. But plots like the velocity profile and shear stress distribution 

require a dimensionless coordinate system (Fig. 4.7) to display and interpret their results. The 

dimensionless parameters (𝑋𝐿 and 𝑌𝑉) used to define eccentric annulus geometry. The 

dimensionless lateral distance is expressed as: 

 

 

 

𝑋𝐿 =
𝑋 − 𝑊𝑖

𝑊𝑏𝑒𝑑
 (4.1) 

 And, dimensionless vertical distance defined as: 

 

 

 

𝑌𝑉 =
𝑌

𝑅𝑜
 (4.2) 
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where 𝑊𝑖 is inner pipe width, 𝑊𝑏𝑒𝑑 is the bed width, 𝑋𝐿 = 0 means the inner pipe wall boundary, 

and 𝑋𝐿 = 1 means the outer wall boundary. 

  

Figure 4.7. Eccentric annulus with x-y coordinate system (Rojas et al., 2017) 
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Chapter 5 

5. Results and Discussion 

In this chapter, the effects of diameter ratio, fluid properties and blockage height on 

pressure loss and wall stress are observed over the generated 3-D model. Results are obtained 

through post-processing of data, which include the velocity contours, velocity profiles, and shear 

stress distributions varying the cutting blockage height, fluid properties, and diameter ratio, 

thereby demonstrating their effects on pressure loss. The results are compared with predictions of 

existing models. Also, CFD simulations are compared with existing experimental measurements. 

5.1 Verification of Simulation Results 

A comparison is performed between CFD simulation results and experimental data. The 

experimentally measured pressure losses were obtained from the literature (Adari, 1999) for 

different bed heights, fluid properties and flow rates in an eccentric annulus. The CFD simulations 

were performed to reproduce measured pressure loss for the same flow geometry (bed heights, 

eccentricity, and diameter ratio), fluid properties (Table 5.1), and flow rate. The CFD simulation 

results (Figures 5.1 to 5.4) show good agreement with experimental data, with an average 

discrepancy of ±22%, indicating that the approach adopted within ANSYS Fluent solver to 

simulate the flow is acceptable (Table 5.2). 
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Figure 5.1. A comparison of CFD prediction with experimental measurement for Mud A 

 

   

Figure 5.2. A comparison of CFD prediction with experimental measurement for Mud B 
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Figure 5.3. A comparison of CFD prediction with experimental measurement for Mud C 

 

   

Figure 5.4. A comparison of CFD prediction with experimental measurement for Mud D 
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the flow rates are varied from 150 to 400 gal/min for the blockage height’s ranging between 0.01 

to 4.00 in, i.e., from a nearly unblocked annular region to a fully buried inner pipe condition. Also, 

the corresponding Reynolds number is determined using Eq. (3.15), which helps distinguish the 

flow regime. The annular geometry was 8.0 in outer casing diameter and 4.5 in inner drill pipe 

diameter with an eccentricity of one. 

A comparison is made between the experimental and simulation results, based on the 

pressure gradient for all variations, and they are listed in Table 5.2. The trends observed are 

displayed in the form of plots shown in Figure 5.1 to 5.4. All the results are found to be in 

agreement with the laminar region pressure points having a discrepancy of around 30%, while the 

turbulent points are fairly accurate with discrepancy of about 17%. 

Table 5.1. Fluid Properties used in Experimental Analysis 

 

Fluid Type 

 

 

Fluid Behavior (𝒏) 

 

Consistency Index 𝑲 (kg/ms) 

 

Mud A 0.65 0.061 

Mud B 0.52 0.408 

Mud C 0.56 0.566 

Mud D 0.69 0.140 

 

Table 5.2. Pressure Gradient Comparison for CFD and Experimental Work 

Fluid 

Type 

 

Bed Height 

Hbed 

(in) 

Volumetric 

Flow Rate 

𝑸 (gal/min) 

Reynolds 

Number 

(𝑹𝒆∗) 

Experiment 

𝒅𝑷/𝒅𝑳 (psi/ft) 

Simulation 

𝒅𝑷/𝒅𝑳 (psi/ft) 

 

 

Mud A 

1.95 150 3113 0.0032 0.00243 

1.66 200 4418 0.0042 0.0034 

1.09 250 5550 0.0052 0.00508 

0.75 300 6794 0.0066 0.0064 

0.63 350 8234 0.0072 0.00746 

0.30 400 9397 0.0086 0.0096 

 

Mud B 

0.30 350 2040 0.0117 0.0122 

0.01 400 2324 0.0132 0.013 
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Mud D 

4.00 200 2447 0.006 0.0075 

2.78 300 3328 0.0086 0.00995 

1.75 400 4191 0.0126 0.01414 

 

A slightly higher error is observed for a few bed heights (Figure 5.1 to 5.4). This could be 

due to the meshing problem. The mesh system-generated might not able to capture the velocity 

distribution in the stagnant zone of the annulus. As a result, the impact of cutting beds on pressure 

loss is not accurately reflected as a thin bed is formed in the narrow annular gap. Also, 

discrepancies are higher at low Reynolds numbers. This could be related to the flow regime (Figure 

5.3). The Reynolds number determined from the flow parameters and fluid properties can only be 

considered as approximate indicative of the flow regime. Hence, some of the low Reynolds number 

flow measurements were possibly obtained under the laminar and/or transition flows.    

5.2 Annular Pressure Loss 

Numerous simulations have been carried to predict the annular pressure loss for a solid bed 

height ranging from 0% to 100%, which means from an unblocked annulus to a partially blocked 

annulus (fully buried inner pipe). For an eccentric annulus (𝑒 = 0.9), the effect of cutting buildup 

is observed. Maintaining a constant flow rate and turbulent flow condition for all the cases, 

observations are made in regard to the annular pressure gradient (𝑑𝑝/𝑑𝑧). Figures 5.5, 5.6 and 5.7 

show graphs of annular pressure loss as a function of bed height. An exponential increase in 

pressure loss is observed with bed height and diameter ratio. This is mainly due to the reduction 

in flow area as the bed height and diameter ratio increase (Fig. 5.8). The reduction in flow area 

significantly increases the mean fluid velocity (Fig. 5.9) resulting in increased pressure loss. 
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Another important observation is that the hydraulic resistance diminishes with decreasing 

the value of ‘𝑛’ (improving shear-thinning tendency of the fluid). From Figures 5.5 to 5.7, it can 

be interpreted that the annular pressure loss decreases with improving the shear-thinning behavior 

of the fluid. Furthermore, there is a substantial decrease in the frictional pressure loss, with a 

reduction in diameter ratio (from 0.75 to 0.25). The reason for this is an increase in the annular 

area, i.e., allowing the fluid to flow through with reduced restriction. As the flow area increases, 

the annular pressure loss decreases. Moreover, as the diameter ratio increases (Fig. 5.7), the 

pressure loss becomes more sensitive to the change in bed hight. As a result, the pressure loss 

increases sharply with bed height.  

 

Figure 5.5. Pressure loss vs bed height for conditions [𝜿 = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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Figure 5.6. Pressure loss vs bed height for conditions [𝜿 = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 

 

Figure 5.7. Pressure loss vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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Figure 5.8. Area of flow vs bed height for conditions [𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 

 

 

Figure 5.9. Annular flow velocity vs bed height [𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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behavior index (𝑛), the maximum fluid velocity slightly increased. With a reduction in fluid 

behavior index, a flatter velocity profile is observed. Overall, the impact fluid parameter ‘𝑛’ on 

the velocity profile is minor under turbulent flow conditions. It is also noticed and is seen to affect 

the nature of the graph significantly.  

 

 

Figure 5.10. Velocity profile for conditions [Hbed = 50%,  = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 5.11. Velocity distributions in partially blocked annuli [𝒏 = 1,  = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-

5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed 

= 100% 
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(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 5.12. Velocity distributions in partially blocked annuli [𝒏 = 1,  = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-

5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed 

= 100% 

  

Stagnant Zone 
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5.4 Shear Stress Distribution 

5.4.1 Wall Shear Stress  

For eccentric annulus, the wall shear stress is not uniform. The wall shear stresses vary 

significantly along the wetted perimeter resulting in a non-uniform distribution. Also, the presence 

of solids bed on the low-side of wellbore further complicates the shear stress distribution. Hence, 

the average wall shear stress (𝜏𝑤̅) is used to perform flow analysis. Figures from 5.13 to 5.15 

display the average wall shear stress (𝜏𝑤̅) as a function of bed hieght for different values of fluid 

behavour index.  

 
Figure 5.13. Wall shear stress vs bed height for conditions [𝜿 = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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causing the wall shear stress to increase. The effect of fluid behavior index on the wall shear stress 

is significant. As anticipated, the wall shear stress shows a substantial reduction with the 

enhancement of shear-thinning characteristics of the fluid. Furthermore, the average wall shear 

stress follows the trend displayed by the pressure loss. It can be visually depicted that wall stress 

is proportional to the pressure gradient (𝑑𝑝/𝑑𝑧). 

 
Figure 5.14. Wall shear stress vs bed height for conditions [𝜿 = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 

 

 
Figure 5.15. Wall shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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5.4.2 Bed Shear Stress 

 

As illustrated in the previous section, the lower the fluid velocity, the lower is the bed shear 

stress. The same phenomenon can be observed over the area occupied by the solids cutting bed. 

Figures 5.16 and 5.17, show the bed shear stress distributions in a partially blocked annulus and 

an annulus with a fully buried inner pipe. Two distinct observations can be made. At low blockage 

height (Fig. 5.16), the bed shear stress generated at the outer wall boundary is considerably higher 

than the one created at the inner pipe boundary. And, the reverse happens for the case of high 

blockage height (Fig. 5.17). The bed shear stress at the inner pipe is substantially higher than the 

bed shear stress at the outer pipe. In the case of intermediate blockage (Fig. 5.18), the bed shear 

stress at the inner and outer pipe walls are comparable. The maximum bed shear stress occurs close 

to the middle of the bed. 

 

 

Figure 5.16. Bed shear stress vs lateral distance for Hbed = 30% [𝜿 = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 

m3/s] 
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Figure 5.17. Bed shear stress vs lateral distance for Hbed = 100 % and for conditions [𝜿 = 0.75, 𝒆 = 

0.9 and 𝑸 = 5x10-5 m3/s] 

 

 

Furthermore, the impact of shear-thinning behavior on bed shear stress is significant. The 
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Figure 5.18. Bed shear stress vs lateral distance for Hbed = 50 % and for conditions [𝛋 = 0.25, 𝒆 = 0.9 

and 𝑸 = 5x10-5 m3/s] 
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flow area, resulting in an increase in fluid velocity. Thereby indicating an effect that as the bed 

height decreases, a reduction in bed shear stress is evident. The reduction in bed shear stress limits 
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Figure 5.19. Bed shear stress vs bed height for conditions [𝜿 = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 

 

Figure 5.20. Bed shear stress vs bed height for conditions [𝜿 = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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Figure 5.21. Bed shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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5.22, to 5.24 display the relationship between diameter ratio and dimensionless bed shear stress. It 

is important to note the impact of fluid behavior index (𝑛) on dimensionless bed shear stress (𝜋𝑏𝑒𝑑). 

As the index increases, the dimensionless bed shear stress increases. The effect of fluid behavior 
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bed height). Thus, indicating that the average wall shear stress increases with blockage height and 
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Figure 5.22. Dimensionless bed shear stress vs bed height for conditions [𝜿 = 0.25, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s] 

 

 

Figure 5.23. Dimensionless bed shear stress vs bed height for conditions [𝜿 = 0.50, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s] 
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Figure 5.24. Dimensionless bed shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s] 
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dependent on the mean velocity. A rise in the upper limit of pressure gradient is observed as the 

flow rate is increased leading to an increase in average wall shear stress (𝜏𝑤̅) 

 

 

Figure 5.25. Wall shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 1x10-5 m3/s] 

 

 
Figure 5.26. Wall shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 1x10-4 m3/s] 
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Impact on Bed Shear Stress 

As mentioned in previous sections, the bed shear stress substantially increases with cutting 

bed height. In Figs. 5.27 and 5.28, the increase is evident as the nature of the graph has an upward 

trend indicating a positive effect. Likewise, as the flow velocity increases, the shear stress 

generated at the bed surface increases significantly. Moreover, the bed shear stress for higher flow 

rates has a higher upper limit; similarly, for a lower flow rate, it has a lower upper limit. 

 

Figure 5.27. Bed shear Stress vs dimensionless bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 

1x10-5 m3/s] 
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Figure 5.28. Bed shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9 and 𝑸 = 1x10-4 m3/s] 

 

Impact on Dimensionless Bed Shear Stress 

The effect of flow rate on the dimensionless bed shear stress is analyzed (Fig. 5.29) 
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Figure 5.29. Dimensionless bed shear stress vs bed height for conditions [𝜿 = 0.75, 𝒆 = 0.9, 𝑸𝟏 = 

1x10-5 m3/s and 𝑸𝟐 = 1x10-4 m3/s] 
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Π𝑏𝑒𝑑 =    𝐴̂𝐻𝑏𝑒𝑑

4.5 + 𝐵̂𝐻𝑏𝑒𝑑
2.5 + 𝐶̂𝐻𝑏𝑒𝑑

0.51 + 𝐷̂𝑛𝜅0.51 + 𝐸̂(𝑛𝐻𝑏𝑒𝑑)
1.4 + 𝐹̂𝑛 + 𝐺̂ 

 

(5.1) 

where 𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂, 𝐸̂, 𝐹̂ and 𝐺̂ are coefficients and have the following values: 𝐴̂ = 0.492985, 𝐵̂ = - 

0.790858, 𝐶̂ = 0.859049, 𝐷̂ = -0.5004261, 𝐸̂ = 0.487752, 𝐹̂ = - 0.285120, 𝐺̂ = 0.555855. The 

correlation is valid for power-law fluid flowing through a partially blocked eccentric (90%) 

annulus under turbulent flow condition. The correlation is valid under the following ranges of 

parameters: diameter ratio (0.25 ≤ 𝜅 ≤ 0.75), power-law index (0.2 ≤  𝑛 ≤  1), dimensionless 

bed height (0.1 ≤ 𝐻𝑏𝑒𝑑 ≤  1), and Reynolds number (𝑅𝑒 ∗ >  2100). 

To validate the model, the consistency index is varied considering different power-law 

fluids. For all scenarios, the dimensionless bed height predicted by the regression model is in 

agreement with the simulation result (Fig. 5.30). A cross plot of the CFD data and model 

predictions are presented in Figure 5.31. The model is again found to be in agreement with CFD 

results showing mostly a discrepancy level of ±10%, which implies that the equation provides a 

reasonable prediction. 

 
 

Figure 5.30. Dimensionless bed shear stress predicted vs dimensionless bed shear stress CFD for 

conditions [𝜿 = 0.50, 𝒆 = 0.9, 𝑲 = 10-4 to 10-5 Pasn and 𝑸 = 5x10-5 m3/s] 
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Figure 5.31. Dimensionless bed shear stress predicted vs dimensionless bed shear stress CFD for 

conditions [𝟎. 𝟐𝟓 ≤ 𝜿 ≤ 𝟎. 𝟕𝟓, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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Pressure drop obtained from CFD simulation are compared (Fig. 5.32) with the predictions 

of an existing model developed by Kozicki et al., (1966). The friction factor correlation proposed 
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Figure 5.32. CFD measurements vs Kozicki’s model predictions for conditions [𝟎. 𝟐𝟓 ≤ 𝜿 ≤ 𝟎. 𝟕𝟓, 𝒆 

= 0.9 and 𝑸 = 5x10-5 m3/s] 
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between CFD results and Kozicki’s predictions increases, implying the Kozicki’s model fails for 

highly shear-thinning fluids (𝑛 ≤ 0.4), i.e., it is unable to predict an accurate pressure drop for 

highly shear-thinning fluids. 
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and 1.0.  The CFD results are in agreement with the model with all the discrepancies laying within 

±20%.  

 

Figure 5.33. CFD measurements vs hydraulic diameter model predictions for conditions [𝟎. 𝟐𝟓 ≤

𝜿 ≤ 𝟎. 𝟕𝟓, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s] 
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Chapter 6 

6. Conclusion and Future Works 

 6.1 Conclusions 

 

Extensive CFD simulations have been conducted under turbulent flow conditions 

considering power-law fluid. The simulation study is conducted varying bed height, diameter ratio, 

and power-law flow behavior index. Based on the current research and investigation, the following 

conclusions can be drawn: 

➢ Annular pressure loss and average bed shear stress are very important flow parameters that 

reduce with the shear-thinning behavior of the fluid.  

➢ The pressure gradient is sensitive to bed height. Its effect is more prominent for a bed 

height ( > 50%), this is mainly because of a reduction in stagnant zones. 

➢ The dimensionless bed shear stress is independent of fluid consistency index and flow rate. 

It varies with diameter ratio, flow behavior index and bed thickness. 

➢ The magnitude of bed shear stress is influenced by flow velocity, diameter ratio, bed 

thickness, and fluid properties.  

➢ The CFD simulation provides a reasonable prediction of pressure loss, which is in 

agreement with experimental measurements. 

➢ The CFD results and Kozicki’s model predictions show good agreement when the fluid is 

slightly shear thinning (0.6 ≤ 𝑛 ≤ 1). The model fails for highly shear-thinning fluids 

(𝑛 < 0.4). 
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➢ The CFD results and the hydraulic diameter model are in agreement as they are able to 

predict the pressure drop accurately for wide ranges of shear-thinning fluids (0.2 to 1.0) 

and diameter ratios (0.25 to 0.75).  

6.2 Future Works 

 

Using CFD, complex numerical simulations can be performed incorporating a number of 

flow variables to better understand flow in complex geometries such as partially blocked eccentric 

annulus.  

The following recommendations are a few scenarios, one can consider as future works: 

➢ Incorporating the effects of wall roughness under turbulent flow conditions in blocked 

eccentric annulus thereby studying its impact on frictional pressure loss. 

➢ Examining the effect of inner pipe rotation and studying its impact on the frictional 

pressure gradient. 

➢ Using other rheology models such as three-parameter models like Yield power-law fluids 

to investigate the flow in the eccentric annulus. 

➢ Studying the impact of heat transfer from the formation to drilling fluid and its impact on 

pressure loss.  

➢ Consider a multiphase flow pattern, along with the presence of dispersed cuttings flowing 

through the annular area. 
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Nomenclature 

 

Symbol 

𝐴  cross-sectional area of duct, pipe and annular, m 

𝐴̂   constant 

𝐴𝑓  area of flow, m2 

𝑎  geometric parameter 

𝑎0  constant  

𝑎1  constant 

𝑎2  constant 

𝑎3  constant 

𝑎𝑏𝑖  bipolar coordinate system 

𝐵̂   constant 

𝑏  geometric parameter 

𝐶̂   constant 

𝐶1  constant 

𝐶2  constant 

       𝐶3  constant 

𝐶1𝜀  constant 

      𝐶2𝜀  constant 

𝐶𝜇  constant 

𝑐𝑟  concentric radial clearance, m 
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𝐷  diameter of pipe, m 

𝐷̂  constant 

𝐷ℎ  hydraulic diameter, m 

𝐷𝑖  inner diameter, m 

𝐷𝑜  outer diameter, m 

𝑑  distance of central axis of inner and outer cylinder, m  

𝐸̂  constant 

𝑒  relative eccentricity  

𝐹̂  constant 

𝑓  fanning friction factor 

𝑓𝑅𝑒  friction factor- Reynolds number  

𝑓𝑅𝑒𝑒𝑐𝑐  friction factor- Reynolds number for eccentric annulus 

𝑓𝑅𝑒𝑔  friction factor- Reynolds number (generalized) 

𝑓𝑥  gravity in the x-direction, m/s2 

𝑓𝑦  gravity in the y-direction, m/s2 

𝑓𝑧  gravity in the z-direction, m/s2 

𝐺̂  constant 

𝐺𝑘  turbulent kinetic energy due to mean velocity gradient 

𝐺𝑏   turbulent kinetic energy due to buoyancy 

𝐻  bed height, m 

𝐻𝑏𝑒𝑑  dimensionless bed height, (%) 

𝐻𝑚𝑎𝑥  maximum height, m 
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ℎ  height, m 

𝑖  inner 

𝑖̂   component in the corresponding direction 

𝑗̂   component in the corresponding direction 

𝐾  consistency index, Pa.sn 

L  length, m 

𝐿𝑡ℎ𝑖𝑟𝑑  third axis 

𝛥𝐿  change in length, m 

𝑛  power-law index  

𝑜  outer 

𝑘  turbulent kinetic energy 

𝑃  pressure, Pa 

𝑃𝑊  wetted perimeter, m 

𝑑𝑃 𝑑𝐿⁄   frictional pressure loss gradient, Pa/m 

𝑝̅  mean average pressure 

𝑑𝑝 𝑑𝑧⁄   pressure gradient, Pa/m 

𝑄  flow rate, gal/min 

𝑄̅  dimensionless flow rate 

𝑄̅𝐷(𝑐,𝑒)  dimensionless flowrate for concentric or eccentric annulus 

𝑅  radius, m 

𝑅𝑖  radius of inner cylinder, m 

𝑅𝑜  radius of outer cylinder, m 
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𝑅𝑒  Reynolds number 

𝑅𝑒∗  Reynolds number for annulus using power-law fluid 

𝑅𝑒𝑒𝑐𝑐  Reynolds number for eccentric annulus 

𝑅𝑒𝑔  generalized Reynolds number 

𝑟𝑖  inner radius, m 

𝑟𝑜  outer radius, m 

𝑆𝑘  user-defined source term 

𝑆𝜀  user-defined source term  

𝑆𝑈  non-uniform viscous source term (X-component) 

𝑆𝑉  non-uniform viscous source term (X-component) 

𝑆𝑊  non-uniform viscous source term (X-component) 

𝑠  shape factor 

𝑈  non-uniform viscosity source term (X-component) 

𝑢   local axial velocity (x-axis), m/s  

𝑉  non-uniform viscosity source term (Y-component) 

𝑉̅  mean flow velocity, m/s  

𝑣  local fluid velocity (y-axis), m/s 

W  non-uniform viscosity source term (Z-component) 

𝑊̅  width of equivalent slot 

𝑊𝑖  inner pipe width, m 

𝑊𝑏𝑒𝑑  bed width, m 

𝑋  eccentric annular distance x-axis, m 

𝑋𝐿  dimensionless x-axis 
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𝑋𝑀  fluctuating dilatation 

𝑥  x-axis 

𝑑𝑥  changes with x-axis 

𝑌  eccentric annular distance y-axis, m 

𝑌𝑉  dimensionless y-axis 

𝑦  x-axis 

𝑑𝑦  changes with x-axis 

𝑧  z-axis 

𝑑𝑧  changes with z-axis 

 

Greek Symbols 

 

𝛼  constant 

𝛼0  constant 

𝛼1  constant 

𝛼2  constant 

𝛼3  constant 

𝛿  distance between axis of inner and outer pipe, m 

𝜀  rate of dissipation  

             constant 

∆𝑉𝑣𝑜𝑙  volume of fluid passing through control volume, m3 

∆𝑃  pressure drop, Pa 
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∆𝑡  variation in time, s 

𝛾̇  shear rate, 1/s 

𝜇  viscosity of Newtonian fluid, Pa.s  

𝜇𝑡  turbulent viscosity/eddy viscosity 

𝜇𝑒𝑓𝑓  effective viscosity 

𝜇(𝛾̇)  apparent viscosity, Pa.s 

𝜂  constant 

𝜃  𝜃-axis 

𝜅  diameter ratio, 𝜅 = 𝐷𝑖 𝐷𝑜⁄ = 𝑅𝑖 𝑅𝑜⁄   

𝜌  density, kg/m3 

𝜏  shear stress, Pa 

𝜕𝜏𝑖̂,𝑗̂ 𝜕𝑥⁄  viscosity dependent momentum exchange term 

𝜕𝜏𝑖̂,𝑗̂ 𝜕𝑦⁄  viscosity dependent momentum exchange term 

𝜕𝜏𝑖̂,𝑗̂ 𝜕𝑧⁄  viscosity dependent momentum exchange term 

𝜏𝑤  wall shear stress, Pa  

𝜏𝑤,𝑎  annular wall shear stress, Pa 

𝜏𝑤,𝑝  pipe wall shear stress, Pa 

𝜏𝑏𝑒𝑑  bed shear stress, Pa  

𝜏𝑏̅𝑒𝑑  average bed shear stress, Pa  

𝜏𝑤̅  average wall shear stress, Pa   

𝜎  turbulent Prandtl number 

𝜖  roughness of pipe  
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𝜋𝑏𝑒𝑑  dimensionless bed shear stress 

Π𝑏𝑒𝑑   correlation for dimensionless bed shear stress 

 

Acronyms 

 

CFD  Computational Fluid Dynamics 

ECD  Equivalent Circulating Density 

WBM  Water Based Mud 

YPL  Yield power-law 
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Appendix  

Velocity Distributions for Diameter Ratio 0.25 (n = 1) 

(a) 
 

(b) 
 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.1. Velocity distributions in partially blocked annuli [𝒏 = 1,  = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 

m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 

100% 
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Velocity Distributions for Diameter Ratio 0.25 (n = 0.8) 

(a) 
 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.2. Velocity distributions in partially blocked annuli [𝒏 = 0.8,  = 0.25, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.25 (n = 0.6) 

(a) 
 

(b) 
 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.3. Velocity distributions in partially blocked annuli [𝒏 = 0.6,  = 0.25, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.25 (n = 0.4) 

(a) 
 

(b) 
 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.4. Velocity distributions in partially blocked annuli [𝒏 = 0.4,  = 0.25, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.25 (n = 0.2) 

(a) 
 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.5. Velocity distributions in partially blocked annuli [𝒏 = 0.2,  = 0.25, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.25 and Hbed = 0% 

 
(a) 

 

(b) 
 

 
(c) 

 
(d) 

 
(e) 

 

 

Figure A.6. Velocity distributions in unblocked annuli [ = 0.25, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s]: (a) n = 

1; (b) n = 0.8; (c) n = 0.6; (d) n  =  0.4; and (e) n = 0.2 
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Velocity Distributions for Diameter Ratio 0.50 (n = 1) 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.7. Velocity distributions in partially blocked annuli [𝒏 = 1,  = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 

m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 

100% 
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Velocity Distributions for Diameter Ratio 0.50 (n = 0.8) 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.8. Velocity distributions in partially blocked annuli [𝒏 = 0.8,  = 0.50, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.50 (n = 0.6) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.9. Velocity distributions in partially blocked annuli [𝒏 = 0.6,  = 0.50, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.50 (n = 0.4) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure A.10. Velocity distributions in partially blocked annuli [𝒏 = 0.4,  = 0.50, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.50 (n = 0.2) 
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Figure A.11. Velocity distributions in partially blocked annuli [𝒏 = 0.2,  = 0.50, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.50 and Hbed = 0% 
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Figure A.12. Velocity distributions in unblocked annuli [ = 0.50, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s]: (a) n 

= 1; (b) n = 0.8; (c) n = 0.6; (d) n  =  0.4; and (e) n = 0.2 
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Velocity Distributions for Diameter Ratio 0.75 (n = 1) 
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Figure A.13. Velocity distributions in partially blocked annuli [𝒏 = 1,  = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-

5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed 

= 100% 
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Velocity Distributions for Diameter Ratio 0.75 (n = 0.8) 
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Figure A.14. Velocity distributions in partially blocked annuli [𝒏 = 0.8,  = 0.75, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.75 (n = 0.6) 
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Figure A.15. Velocity distributions in partially blocked annuli [𝒏 = 0.6,  = 0.75, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.75 (n = 0.4) 
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Figure A.16. Velocity distributions in partially blocked annuli [𝒏 = 0.4,  = 0.75, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.75 (n = 0.2) 
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Figure A.17. Velocity distributions in partially blocked annuli [𝒏 = 0.2,  = 0.75, 𝒆 = 0.9 and 𝑸 = 

5x10-5 m3/s]: (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) 

Hbed = 100% 
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 Velocity Distributions for Diameter Ratio 0.75 and Hbed = 0%  

(a) 
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(e) 

 

 

Figure A.18. Velocity distributions in unblocked annuli [ = 0.75, 𝒆 = 0.9 and 𝑸 = 5x10-5 m3/s]: (a) n 

= 1; (b) n = 0.8; (c) n = 0.6; (d) n  =  0.4; and (e) n = 0.2 
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Bed Shear Stress Distributions for Diameter Ratio 0.25  

(a) (b) 

(c) (d) 

 
(e) 

 
(f) 

 

Figure A.19. Bed shear stress distributions for diameter ratio [ = 0.25] (a) Hbed = 10%; (b) Hbed = 

30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Bed Shear Stress Distributions for Diameter Ratio 0.50  

 
(a) 

 
(b) 

 
(c) 
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Figure A.20. Bed shear stress distributions for diameter ratio [ = 0.50] (a) Hbed = 10%; (b) Hbed = 

30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Bed Shear Stress Distributions for Diameter Ratio 0.75  

 
(a) 

 
(b) 

 
(c) 
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(f) 

Figure A.21. Bed shear stress distributions for diameter ratio [ = 0.75] (a) Hbed = 10%; (b) Hbed = 

30%; (c) Hbed = 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.25  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(f) 

Figure A.22. Velocity profile [ = 0.25 and 𝑸 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed 

= 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.50  

 
(a) 

 
(b) 
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Figure A.23. Velocity profile [ = 0.50 and 𝑸 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed 

= 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Velocity Distributions for Diameter Ratio 0.75  

 
(a) 

 
(b) 
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Figure A.24. Velocity profile [ = 0.75 and 𝑸 = 5x10-5 m3/s] (a) Hbed = 10%; (b) Hbed = 30%; (c) Hbed 

= 50%; (d) Hbed = 70%; (e) Hbed = 90%; and (f) Hbed = 100% 
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Velocity Distributions for Hbed = 0% 

 

  
(a) 

 

 
 (b) 

 
 

(c) 

Figure A.25. Velocity profile [Hbed = 0% and 𝑸 = 5x10-5 m3/s] (a)   = 0.75; (b)   = 0.50; (c)   = 0.25 
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Bed Shear Stress Distribution for Diameter Ratio 0.50 with Varying 𝑲 

(a) (b) 

 
(c) 
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(e) 

Figure A.26. Bed shear stress distribution [ = 0.25 and 𝑸 = 5x10-5 m3/s] (a) 𝑲 = 1x10-5 kg/ms; (b) 𝑲 

= 2.5x10-5 kg/ms ; (c) K = 5x10-5 kg/ms ; (d) 𝑲 = 7.5x10-5 kg/ms ; and (e) 𝑲 = 1x10-4 kg/ms   

 

0.0001

0.001

0.01

0.1

0 50 100

𝜏
̅ 𝑏𝑒
𝑑

--
>

Hbed -->

0.0001

0.001

0.01

0 50 100

𝜏
̅ 𝑏𝑒
𝑑

--
>

Hbed -->

0.0001

0.001

0.01

0 50 100

𝜏
̅ 𝑏𝑒
𝑑

--
>

Hbed -->

0.0001

0.001

0.01

0 50 100

𝜏
̅ 𝑏𝑒
𝑑

--
>

Hbed -->

0.0001

0.001

0.01

0 50 100

𝜏
̅ 𝑏𝑒
𝑑

--
>

Hbed -->



 
 

118 
 
 

Dimensionless Bed Shear Stress Distribution for Diameter Ratio 0.50 with Varying 𝑲 
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Figure A.27. Dimentional bed shear stress distribution [ = 0.25 and 𝑸 = 5x10-5 m3/s] (a) 𝑲 = 1x10-5 

kg/ms; (b) 𝑲 = 2.5x10-5 kg/ms ; (c) 𝑲 = 5x10-5 kg/ms ; (d) 𝑲 = 7.5x10-5 kg/ms ; and (e) 𝑲 = 1x10-4 

kg/ms   
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