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Abstract

This thesis is about representations of Leavitt Path Algebras (LPAs). Specifically, we first
generalize a previously known construction of twisted Chen modules over the Leavitt Path
Algebra of a directed graph. We then give some thought to its extension to other modules,
and present new classes of simple Leavitt Path Algebra modules previously unknown. These
are modules generated by indicator functions of closed sets of P, the set of all infinite paths

of a directed graph.
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Chapter 1

Introduction

This thesis is mostly about irreducible representations of Leavitt Path Algebras (LPAs).
Specifically, we first generalize a previously known construction of twisted Chen modules over
the Leavitt Path Algebra of a directed graph. We then give some thought to its extension to
other modules, and present new classes of simple Leavitt Path Algebra modules previously
unknown.

As we study modules over a particular algebra, it is useful to note that these modules are
equivalent to representations of the algebra. A representation of an F-algebra A is a algebra

homomorphism:

p: A— Endp(2)

where € is a vector space over F, and Endp(2) refers to the algebra of linear endomorphisms
on 2. We will make the choice that our endomorphisms will act on the right, so that the
expression z f makes sense for x € Q, f € Endp(Q2). As an algebra homomorphism, p respects

addition, multiplication (which is composition for endomorphisms), and scalar multiplication:

pla+b) = pla) + p(b), plab) = p(a)p(b), p(ra) = Ap(a)

for a,b € A and XA € F. A module over an F-algebra A is a vector space {2 and a pairing



Qx A — Qdenoted (x,a) —> za. This pairing respects the addition and scalar multiplication

of both A and 2, as well as the multiplication of A so:

(x,a +b) — za+xb, (x,ab) — (za)b, (x,a) — A (za)

(x +y,a) — za+ya, (A\xr,a) — A(za)

for all a,b e A, x,y € 2, and A € F. Using the relation (z)p(a) = xa, one can see how modules
over the algebra completely define a representation p and vice versa. As a common abuse of
notation, we often omit p when speaking about a representation.

The theory of Leavitt Path Algebras is the confluence of three threads of mathematics,
involving ring theory, operator algebras, and quiver representations. The main thread of our
story is within ring theory, and began with investigations of W. Leavitt into the extent of the
failure of the Invariant Basis Number (IBN) property of a unital ring (with 1 # 0) around
1960 [30]. Any module over such a ring R that has a basis is a free (right) module over R, and
any module over a ring R that has a finite basis is finitely generated free (right) module over
R that is isomorphic to R™ for some n. A basis of a free module is a subset of the module
such that all elements of the module can be written uniquely as R-linear combinations of
elements of the basis. A ring has the IBN property when any two finite bases have the same
number of elements, that is: if R” = R™ as R modules, then n = m. For example, one of the
first results taught in linear algebra is that all fields have the IBN property. Other examples
include (unital) skew fields, commutative rings, Noetherian rings, finite dimensional algebras,
and any ring with a quotient that has the IBN property.

When a ring does not have the IBN property, then R” = R™ tells you nothing about n
and m. At the time, it was already well known that there are rings R such that the free
module of rank one is isomorphic to the free module of rank two. From this, it follows that
R™ = R™ for any m,n € N. For instance, R = End(FN), where FN is the formal vector space

with basis N = {0,1,2,...} over the field F (equivalently F-sequences of finite support) has



the property R = R?. Leavitt wanted to find a ring that met a finer condition - a ring R such
that R™ =~ R™ as R-modules (for m < n), but R* 2 R" for 0 < k < n, k # m. We say a ring
that meets this condition is non-IBN of type (m,n). Leavitt’s early investigations focused on
finding rings of type (1,n)

To realize the module isomorphism between R and R" is a straightforward task. It is a
fact that Hom(R™, R™) is isomorphic as a vector space over F to M,,«,(R) where matrices
act via left multiplication by elements. Viewing the module homorphisms from R to R" and

vice versa as matrices, we get:

T I
X9 4o

Y1 Y2 0 Yn| = IRn and Y1 Yo o Yn ‘ = IR
Tn T

This ensures that if R has elements z;,v;, 1 <, < n such that >, z;y; = 1 and y,x; = 5,
then R = R". Leavitt then defined R = Lr(n) as the algebra over the field F in noncommuting
variables x;,y; for 1 <17 < n, quotiented by the ideal generated by:

{Z Tidi — 1}1<z<n U {yixj B 5ij}1<i,j

<n

where 9;; is the Kronecker delta.
A concrete realization of Lg(2) is the operator algebra generated by upsampling and
downsampling operators of signal processing [36] acting on (finite) sequences, where the z; is

downsampling and the y; is upsampling. The action is defined as follows:
(Cl(), ay,as, . . .)Ilfl = (CI,Q, a2, 04, . . )

(ag,ay,as,...)xo = (a1, as,as,...)



(CL(), ay,as, .. )yl = (ao, 0, ai, 07 asg, 0, .. )
((ZO’ ay, ag, .. )?/2 = (Oa ap, 07 ay, 07 ag, .. )

The vector space of finitely supported sequences is isomorphic to the vector space FN, and
thus we can write the upsampling and downsampling operators as infinite matrices (acting

on row vectors on the right):

(100000 -] (010000 .-
000000 - 000000
010000 -- 001000
000000 000000 ’
T = Lo = =1 0|z,
001000 000100
000000 000000
000100 0000T10
(1000000 - (0100000 -
0010000 0001000
0000100 0000010 - 0
vi=l0000001 =10 0000 0 0 = oly
0000000 0000000
0000000 0000000

Thus, we have a subalgebra of End(FN) that also fails to have the IBN property.

Similarly, we can realize Lg(n) as the following downsampling and upsampling operators



(which also have realizations as matrices):

(ao,gl,GQ,ag,..-,&n,...)$1 ::(a07an7a2na"J
(ao,al,ag,ag,...,an,...)xg ::(al,an+1,a2n+1,..)
(ao,al,a2,a3> ceey Qny . )lEn = (an—17a2n—1>a3n—1a .- )

(ag, ay,as,as, ..., an, ... )y1 = (ao,0,0,...,0,a1,0,0,...,0,a9,,...)

S— SY—
n—1 n—1
(ag, ay,as,as, ..., an,...)y2 = (0,a0,0,0,...,0,a1,0,0,...,0,a2,,...)
SY— Y—
n—I1 n—1

(ag, ay,ag,as, ... ,an,... )y, = (0,0,...,0,a0,0,0,...,0,a1,0,0,...,0,as,,...)
—_—— —_—— —_——

n—1 n—1 n—1

In order to show that Lg(n) 2 Lr(n)* for 1 < k < n, Leavitt had to (essentially) compute
the nonstable K-theory of Lg(n). The nonstable K-theory of a ring R, denoted V(R), is the
commutative monoid of isomorphism classes of finitely generated projective (right) modules
over R under the operation of direct sum. A familiar, related idea is Ky(R), the Grothendieck
group of this commutative monoid. The Grothendieck group of a commutative monoid A is

the group with underlying set A x A quotiented by the equivalence relation:
(a,b) ~ (¢,d) < Je € A such that (a+d+e=b+c+e).

Addition is given by [a,b] + [¢,d] = [a + ¢, b + d] where [a, b] denotes the equivalence class



containing (a, b). The nuetral element os [0, 0], and the additive inverse of [a, b] is [b, a]. There
is a cannonical monoid homomorphism from V' (R) to Ky(R), given by a — [a,0]. In general,
this homomorphism is not injective. For example - consider an (additive) cyclic monoid A
generated by a with the relation 5a = 7a. We see that A has seven elements {0, a,...6a} but
the Grothendieck group Ky(A) has only two elements {0, [a, 0]}, since 2[a,0] = 0. Leavitt
needed to work with V(R) rather than Ky(R), because although Ky(R) can detect if a ring
has the IBN property or not , it cannot detect the type (m,n) of a ring. (R has the IBN
property if and only if [R] € Ky(R) has infinite order.)

Related to Leavitts’s work, P. M. Cohn and G. Bergman made important advances in ring
theory in the 1970s. In 1973, Cohn gave a general way to invert homomorphisms between
finitely generated projective modules, via inverting certain matrices over a ring R (a process
called Cohn localization or universal localization) [16]. The Leavitt algebra Lr(n) is a Cohn
localization of the polynomial algebra in n noncommuting variables. In 1974, Bergman
described a construction that takes any monoid where a + b = 0 implies a = 0 (called a
conical monoids) and creates a ring with that monoid as its nonstable K-theory. In the case
of finite cyclic monoids, Begman’s construction does give the Leavitt algebras [31].

The second thread began in the 1940s, when I. M. Gelfand and M. Naimark investi-
gated representations of of what would later be called C*-algebras, which are generalized
Weyl-von Neumann operator algebras [23]. These were part of von Neumann’s attempt
to axoimatize quantum mechanics. Soon afterwards, Gelfand, Naimark and Segal gave an
abstract characterization of closed #-subalgebras of bounded linear operators on some Hilbert

space [34].

Definition 1.1. A C*-algebra is a Banach algebra A (a complete normed algebra over C
satisfying ||zy|| < ||z|| - ||y||) with an anti-automorphism denoted by ()* such that, for all
r,ye Aand all A\ e C :

* Lk

$** — ((33’)*)* =, ($+y)* — $* +y*, (a:y)* = y*x*, ()\l‘)* — 5\33’*



and  [[z*x]] = |[2*]] ||2]]-

An example of a finite dimensional C*-algebra is the algebra of n x n matrices with entries
in C, where = is conjugate transpose, and || - || is the operator norm. A commutative example
is C'(X), complex valued continuous functions on a compact Hausdorff topological space X,
where (for f € C(X)), f* := f is complex conjugation, and || f|| := supex|f(z)|.

The Gelfand-Naimark theorem states that all (unital) commutative C*-algebras are
isometrically isomorphic to a C'(X) for some compact Hausdorff X. Moreover, this gives a (co-
)functorial correspondence between compact Hausdorff spaces and commutative C*-algebras
called Gelfand duality. The Gelfand-Naimark-Segal theorem states that all C*-algebras are
isometrically isomorphic to a closed subalgebra of bounded linear operators on some Hilbert
space. Unlike the commutative case, neither the subalgebra nor the Hilbert space are uniquely
determined. This has lead to the definition of a "noncommutative (or quantum) space” as
the "space” which corresponds to a noncommutative C*-algebra in the noncommutative
geometry of Alain Connes [17].

In the late 1970s, J. Cuntz defined a C*-algebras later called Cuntz algebras and denoted
0, [18]. These were the first explicit examples of separable simple infinite C*-algebras,
although Diximier had proven their existence earlier. Every simple infinite C*-algebra
contains 0, as a quotient. It was much later observed that G,, is the (universal) completion of
the Leavitt algebra L¢(n). Let us think back to the example of L¢(n) acting faithfully on CN
via downsampling and upsampling operators (where we have specified the field to be complex
numbers). Although CN is not a Hilbert space, it is dense in the space of square summable
sequences [3. The action of L¢(n) extends to this Hilbert space. When we complete L¢(n)
with respect to the operator norm, we have a concrete realization of 0,,.

The Cuntz algebras were a significant breakthrough in understanding and classifying
C*-algebras, and were generalized to Cuntz-Kreiger algebras. Later, these algebras were
further generalized to graph C*-algebras by M. Enomoto and Y. Watatani in 1980 [20]. The

Cuntz algebra 0,, corresponds to the graph C*-algebra on the on the n-petaled rose (one



vertex, n loops). Graph C*-algebras were popularized by 1. Raeburn and his coauthors in
the late 1990s and early 2000s. In particular, quantum spheres can be realized as graph C*
algebras.

Leavitt path algebras (examined in detail in the next section) were defined in 2004
by P. Ara, M. A. Moreno, and E. Pardo [10] and (independently) by G. Abrams and G.
Aranda-Pino [4] as algebraic analogues of graph C*-algebras. Soon after their inception,
Mark Tomforde observed that Leavitt path algebras were dense #-subalgebras of graph
C*-algebras [37]. This generalizes that the completion of L¢(n) is 0,, as was previously
mentioned.

The last thread began in 1972, when quiver representations associated to a directed
graph were defined and investigated by P. Gabriel [21]. A quiver representation is a functor
from a directed graph (thought of here as a small category whose objects are vertices and
whose morphisms are directed paths) to the category of vector spaces. Equivalently, a quiver
representation assigns to each vertex a vector space, and to each arrow a map from the
vector space assigned to the source to the vector space assigned to the target. A quiver
representation is equivalent to a module over FT', the path algebra. FI" is the algebra of formal
linear combinations of directed paths, where the product of paths is defined by concatenation
when applicable (and zero otherwise).

Gabriel classified all finite dimensional quiver representations of finite representation type
and tame representation type, showing almost all quivers have wild representation type. He
proved that all irreducible quivers (that is, the underlying graph is connected) will be of finite
type (admitting only a finite number of indecomposible representations) if and only if the
underlying graph without orientations is a simply-laced Dynkin diagram. In the next year, J.
Bernstein, I. M. Gelfand, and V. A. Ponomarev made Gabriel’s work more accessible and
introduced new techniques such as Coxeter functors, which opened up the area to further
advancements and generalizations by V. Kac and others [13].

In this thesis, we will focus on infinite dimensional representations of Leavitt path algebras



of exponential growth, as finite dimensional representations of Leavitt path algebra have
been completely classified [28]. To this purpose, A. Kog and M. Ozaydln observed in 2015
that representations of Leavitt path algebras are equivalent to a full subcategory of quiver
representations that satisfy an isomorphism condition (which will be our viewpoint also).
This fact is the representation-theoretic consequence of the Leavitt path algebra of I" being a
Cohn localization of FT'.

According to K. Rangaswamy, a leading expert in the theory of Levitt Path Algebras,
”The module theory over Leavitt path algebras is still at an infant stage [33].” For instance,
up until now, the only known simple representations of Levitt Path Algebras were mild
generalizations of modules called Chen modules [14]. The main contribution of this thesis
is to expand upon that knowledge, by construct new families of simple representations of

Leavitt path algebras by utilizing topological Markov chains.



Chapter 2

Preliminaries

2.1 Leavitt Path Algebras and their (irreducible and

indecomposable) representations.

Most of the results in this section are not new, but some of the proofs are. Standard
terminology is in italics. Less standard terminology is bolded.

Let T" be a directed graph consisting of V| a set of vertices, E, a set of arrows, and
s,t . E— V (the source and target maps respectively). We will only work in the finite case,
which means V' 1 F is a finite set. We will call a vertex v a sink when s™'(v) = & . A path
in I is either a finite sequence of arrows ejey - - - e, where te; = se;; forie {1,2,...,n—1}
or a vertex. The length of the path is n, and the length of a path that is a vertex is 0. We
extend the domain of s and ¢ to paths where sv =tv =v forve V, and for p =p;---p,
where p; € E, sp = sp1, tp = tp,. In the case where sp = tp, we will call p a closed path.
When the set {sp;}"_; has n distinct vertices, then we call p a cycle. In the case where there
is a path between any two vertices, we will call the graph strongly connected.

From this, we define the path algebra FI' in two different ways, and then show that these

10



seperate constructions define the same module. We will construct FI'; as the algebra over
some field F with a basis consisting of the set of paths in I' (denoted by Path(I')), and

multiplication of paths p, ¢ given by:

D tp=q

q p=sq

I
A

pq
ProPnGi Qe P=DP1" Pn,q=Gq Gk, tP=5q

0 otherwise

We abuse notation (and will continue to abuse notation) by having elements of the algebra
and elements of the sets V', E, have the same notation.
Here is the other construction of this object: for FI'y, take the non unital algebra over a

field F generated by V' L E with the following relations:

(V) wv = 6,0 for all u,v eV

(E) see=candete=cforalleec F

Here, 0 is the Kronecker delta. We also call the nontrivial monomials v € V and e; - - - ¢,
where e; € E, where te; = se;yq for i € {1,2,...,n — 1} paths. We again extend s and ¢ to
paths.

FI'y and FI'y do not have a unit when V' is infinite. In the case where V' is finite, then
1 = >}, v. We can put a partial order on V. For v,w € V, v = w means there is a p € Path(I")
such that sp = v,tp = w. Equivalence classes happen among strongly connected subsets of
vertices.

FT'y is isomorphic to FI's. We can define a map from FI'y to FI'; as identity on the
generators. The relations (V) and (E) are satisfied in the target. The map is surjective as all

basis elements in FT'; are images of paths in FI';. The map is also injective: for any linear

11



combination of paths in FT'5, the image in FT'; is zero iff all of the coefficients are zero. Thus,
the map is an isomorphism, and we will just refer to FI' from now on.

We extend construction of the path algebra on the doubled graph. Here we double the
edge set by adding new edges E* := {e*|e € E} where e* goes in the opposite direction as e

of the origional digraph.

Vdouble = v Edouble - E L E*

8|E:S t|E:t

se*=te te*=se forallee E*

We again extend s and ¢ to paths.
From the path algebra on the doubled graph, we create L(T"), the Leavitt Path Algebra

(LPA), where we impose the the following additional relations:

(CK1) e* f =d.steforalle* e E*, fe E,
(CK2) 2 ee* =Y (nonsink) ve V.

Here, CK stands for Cuntz-Krieger and ¢ is again the Kronecker delta.

We want to extend * as a linear antiautomorphism on the path algebra of the doubled

graph, where

foree E,veV, and f,g e E L E*. The relations hold under this automorphism, as:

(CK1) (e* f)* = f*(e*)* = ffe = st f = (O ste)* for alle, f € E,

(CK2) (Z ee*) = Z ee* =v =2 VY nonsinkveV.

Se=v SE=V

12



For p = py---p, where p; € E 1 E*, we can see that p* = p* .- pif. We see that L(T)
is spanned by {pq* |p,q € Path(I"),tp = tq} < L(I") by CK1. Also, note that p*q = 0 for
all p, g € Path(I') unless there exists r € Path(I') such that p = rq or ¢ = pr. We will call
e* € E* a dual arrow, and p* such that p € Path(I") a dual path.

Whenever one defines an algebra in terms of generators and relations, the question of
whether the algebra is trivial or some of the generators map to 0 should be settled. We
already know that the path algebra is not trivial, as FI" was defined with the paths of I" as a
basis. However, L(I") has more generators and more relations. We can use representation
theory to make sure all the generators of L(I") are nonzero.

For our argument, it is useful to note that that the category of quiver representations is
equivalent to the category of path algebra modules [19]. This is straightforward - to form a
quiver representation from a module M, assign the vector space Mv to the vertex v and the
linear map assigned to e will be the map that e induces from Mse to Mte. To form a module
from a quiver representation, let M be the direct sum of all the vector spaces assigned to
each vertex, and let v act as projection and then inclusion: M 2> Muv < M, and e acts via:
M 25 Mse - Mte — M.

The category of representations of L(I") are equivalent to the full subcategoy of modules

M over FT" such that the Isomorphism Condition holds [28]:

(IC)  (-€)se—v : MU= P Mte for all nonsinks v eV

se=v

By CKI1, e restricted to M se yields a surjection onto Mte, and e* yields a left inverse to

e, hence e* restricted to Mte is injective.

Example 1. To each vertex assign the vector space FN. Then, for each nonsink vertex,
consider an isomorphism FN — @,._,FN. We can find such an isomophism because vector
space isomorphism classes are uniquely determined by their dimension, and both @®,.—,FN

and FN are of countably infinite dimension. Then to each arrow e, assign the composition of

13



the isomophism from FN to @,.-,FN with the projection to the summand corresponding to

€.

Note that by our construction, this quiver representation satisfies the Isomorphism
Condition, making it an L(I') module. Each dual arrow e* on Mte = FN is given by the
inclusion of this summand into @®,.—,FN composed with the inverse on the isompophism
above.

The generators V L E' 1 E* cannot be 0 in L(I') as they do not act as 0 on the module.
We also infer that the spanning set {pg* | tp = tq} consists of nontrivial elements of L(T").

There is a Z-grading on L(I') and FI" as a consequence of assigning all v € V' grade 0,
all e € F grade 1, and all e* € E* grade —1. This is compatible with the relations (V), (E),
and (CK1), (CK2), as all these relations are homogeneous. As a consequence, homogeneous
elements of degree n are described as ), p;g¥ where the length of p; minus the length of
¢; is n for all i. Hence, L(T') is a Z-graded =-algebra, where = reverses the grading (with
multiplication by —1).

We can use the Z-grading of these algebras to prove that FI" embeds into L(I") [25]. First,
look at the map that sends FT" to L(T"). This is a Z-graded morphism, and the kernel must
be a graded ideal. Look at a homogeneous element in the ideal, say > | \ip;, where p; have
the same length for 1 < i < n. Taking the image of this element in L(I"), act on it on the left
with p¥. One obtains A;tp;, which is only trivial if \; = 0 for 1 <7 < n, as tp; is a non trivial
element of L(I'). Thus, the kernel is trivial, and the map is an injection.

We will need some more definitions to continue. Note that in order for a ring R to be
Artinian, that is having the Descending Chain Condition on ideals, all descending sequences
of ideals of R, say Iy 2 I, 2 --- are eventually constant. A ring R is Noetherian when it has
the Ascending Chain Condition on ideals: all ascending sequences of ideals I} € I, < ---
are eventually constant. A ring has Unbounded Generating Number when for each positive
integer m, any set of generators for the free right R-module R™ has cardinality greater than

or equal to m. A cycle has an exit when for any p that is a cycle, there is a path ¢ such that

14



sq = sp, but qr # p for any path .
Many investigations of LPAs focus on the relationship between I' and L(I"). These results

are summarized here and quoted [28, Introduction]:

(i) L(T") has DCC (Descending Chain Condition) on right (or left) ideals [6,
Theorem 2.6] if and only if I is acyclic (that is, I" has no directed cycles)
if and only if L(I') is von Neumann regular [7, Theorem 1] if and only if
L(T") is finite dimensional if and only if L(I") is isomorphic to a direct sum

of matrix algebras (over the ground field F) [1, Corollaries 3.6 and 3.7].

(ii) L(T') has ACC (Ascending Chain Condition) on right (or left) ideals [6,
Theorem 3.8] if and only if the cycles of I have no exits if and only if L(T")
is locally finite dimensional (i.e., a graded algebra with each homogeneous
summand being finite dimensional) if and only if L(T') is a principal ideal
ring [5, Proposition 17] in which case L(I") is isomorphic to a direct sum of
matrix algebras over F and/or matrix algebras over F[x, z7!] (the Laurent

polynomial algebra) [1, Theorems 3.8 and 3.10].

(iii) L(I") has finite GK (Gelfand-Kirillov) dimension, equivalently L(I') has
polynomial growth if and only if the cycles in T are mutually disjoint [8,
Theorem 5| if and only if all simple L(I')-modules are finitely presented [12,
Theorem 4.5]. In fact (i) and (ii) are special cases of (iii): T' is acyclic if
and only if the GK dimension of L(I") is 0. The digraph I' has a cycle but
the cycles of I have no exits if and only if the GK dimension of L(I") is 1.
The first instance of L(I') with GK dimension > 1 is given by the Toeplitz

digraph

I':q ( [26], [9], [28, Example 5.6]).

o — e
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(iv) L(T') has a nonzero finite dimensional quotient if and only if T" has a sink or a
cycle such that there is no path from any other cycle to it [28, Theorem 6.5]
if and only if L(I') has UGN (Unbounded Generating Number) [2, Theorem
3.16] if and only if L(I") @ L(I") is not a quotient of L(I") [28, Corollary 6.7].
If L(T") has finite Gelfand-Kirillov dimension then L(I') has a nonzero finite
dimensional quotient and if L(I") has a nonzero finite dimensional quotient
then L(I") has IBN. Neither of these implications is reversible. [28, Corollary

6.9]

We have a Galois connection between 2 (subsets of V) and ideals of L(T'). A Galois
Connection is a pair of order reversing functions F': A — B, G : B — A between two
posets A and B, such that forae A, be B, a < GF(a) and b < FG(b). The connection is

as follows:

IAV&ET

where (X) denotes the ideal generated by X. The partial order we use on the poset 2" is
inclusion, and the partial order we use on the set of ideals is reverse inclusion. This Galois
Connection establishes a bijection between particular subsets of vertices and graded ideals.
These subsets of vertices are hereditary and saturated: a subset of vertices is hereditary
if for v € H, if there is a p € Path(I") such that sp = v, then tp € H, and a subset of
vertices is saturated if te € H for all e € E where se = v, then v € H. In general, this
bijective correspondence is called a Galois Correspondence between {a € A|GF(a) = a} and
{be B|FG(b) = b}.

To support the claim of a Galois Correspondence, we will need a lemma:

16



Lemma 1. For any nontrivial graded ideal I of L(T'), I n'V # (.

Proof. Let 0 # x € I, where z = ), \;p;q}' is a homogeneous element. As 1 = ;. v, there

is a v € V such that v # 0. Since v = >, __ ee*, when v is not a sink and e* is always

se=v
injective, this means there is an e; such that zey # 0 when v is not a sink. One can continue
to find e; € E such that zvejes---e, # 0 and e; - - - e, is longer than any ¢ that appears in
the sum ), \ip;q] as long as te; is not a sink for j € 1,2,...n — 1. If there is a sink that
appears as tej, there is no ¢ that can be longer than it, as no starred path can precede
a sink. Thus, by CK1, we have zvejes---e, = X, \gp;, # 0. By similar argument, we can
find a w € V and a sequence of f* € E* such that ff, 1«.prwzveies---e, # 0. Thisis a

nonzero homogeneous element of grade 0. By CK1, this must be a sum of paths, and the

only paths that are of grade 0 are vertices. In particular, up to scaling by an element of F,

fEfE oo ffwaveiey - - e, = tfy. O]

Proof of claim of Galois Correspondence. Suppose H is a hereditary saturated subset of
vertices. It is clear that H < (H) V. Since H generates (H), for any vertex v € (H)nV \ H,
we have an expression: Y. A\ipiqFh;piq;* = v where h; € H and p;, ¢;, p}, ¢’ are paths in Path(T').
We see that, by using the relation of CK1, . \ip;qfhipiq* simplifies to Zj Aja;by where
aj,b; are paths in Path(I') and ta; € H since H is hereditary (remember: e*(se)e = te). For
all paths p such that sp = v that are either of length equal to the longest b or where ¢p is a
sink, we can see that tp € H. This is because p*vp = tp and p* (23 )\jajb;k) p is a nonzero
element with grade zero, where each summand has no generators from E*. This is a vertex
that is a descendant of an element of H, and therefore in H itself. By invoking that H is a
saturated subset of vertices, for all p such that ¢tp immediately precedes a sink or the length
of p is one less than the length of the longest b;, we have ¢p is also in H. We can repeat this
process until v € H, which means H = (H) n'V.

Suppose that [ is a graded ideal. It is clear that (I n'V) < I. Observe I nVis a hereditary

saturated set of vertices (if v € I, p*vp = tp € I, and if te € I for all e such that se = v, then

Dy etee® = se € I). Consider the graded module L(F)/ 7 — L) /([ A V). The
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graded kernel of this morphism contains no ideals as it contains no vertices by our lemma, so

it must be an isomorphism. O]

For H a hereditary saturated subset of vertices, we have an isomorphism:
L) /(1) = L0~ H)

where I' \\ H is the full subgraph of I' on the set of vertices V ~\ H.

For the map from L(I') to L(I' \ H) :

v vforveVNH
v—0forve H
e — e for e such that {te,se} €V~ H

e — 0 for e such that {te,se} €V N H

We see that the homomorphism from left to right is graded. Via the Galois correspondence
above, the graded kernel contains H and no other vertices, and is therefore exactly (H).

This correspondence between hereditary saturated subsets of vertices and graded ideals
of L(I'), extends to the non-graded case. The condition that the only hereditary saturated
subsets of V' are ¢ and V, and that any cycle has an exit are together equivalent to the
condition that L(T") is a simple algebra [3].

Most of the literature on representation theory is on representations of finite dimensional
algebras. However, in order for L(T") to be finite dimensional, I' must have no directed cycles.
This is equivalent to L(I") having DCC. This is an incredibly restrictive condition on I'. In
this case, L(I') is a finite sum of matrix algebras, indexed by the sinks of I". The summand
corresponding to a sink is an algebra of square matrices, where each n x n matrix has n equal
to the number of directed paths that end at that sink [1]. The representation theory of these

algebras is well understood.
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The representation theory of L(I") for T' with no directed cycles is well understood as
a consequence of Morita equivalence of rings. Two rings R and S are Morita equivalent if
there is a functor from the category of R modules to the category of S modules and another
functor going the other way, such that their composition is naturally isomorphic to the
identity. Using this functorial viewpoint, one finds that modules over R@ S (where R and S
are rings with unity) are the same as modules over R and modules over S as M — M(1,0)
and M — M(0,1) maps the category of R@® S modules to the category of R modules and S
modules (respectively), and the direct sum of an R module and an S module has a canonical
R x S module structure (R acts trivially on the second summand, S acts trivially on the first).
Thus we can break up a representation of @g,xs M, (F) into representations of M, (F). We
can then call upon the fact that, for any ring R, the representation theory of R is the same as
that of M, (R) [15]. Once we have reduced the representation of M, (F) to the representation
theory of IF, we understand that these modules are just vector spaces completely characterized
by their dimension.

When an algebra is not finite dimensional, mathematicians often focus on finite dimensional
representations of the algebra. However, finite dimensional representations of Leavitt Path
Algebras are now completely understood [27]. In general, given a module M, the support
Vs of the module M is the set of vertices v such that Mv # 0. When one looks at a module
M over L(T), consider the support subgraph T'); (that is, the full subgraph of T' on the
support of M). The cycles of the support subgraph have no exits [11].

In parallel to how representation theory in general evolved, we may wish to extend our
understanding from modules over matrix algebras to modules over F[x], or a Principal Ideal
Domain (PID). With this in mind, one can recall that finitely generated modules over a PID
are well understood. For any module M over a PID, say R, there is a unique sequence of
nested ideals I,, © I,,_; 2 -+ 2 I; such that M = @;_, R/[i. In general, the subcategory of
finitely generated modules is too unruly to work with unless the ring is at least Noetherian,

as submodules of finitely generated modules over a Noetherian ring are also finitely generated.
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Leavitt Path Algebras are often not Noetherian. A Leavitt Path Algebra is Noetherian
precisely when the cycles of T have no exit [28]. This condition is rather restrictive on I.
Instead, we restrict our attention to the category of modules that are of finite type, which
are both Artinian and Noetherian. This is the same as the category of modules with a finite
length composition series: a module M is said to have a composition series of lenght n when
there exists a sequence of submodules 0 = My < My < --- < M,, = M such that M;/M; 4 is
a simple module for ¢ € {1,2,...,n} (where a simple module is a nonzero module with no
submodules other than 0 and itself). This module category will often exclude the free module
L(T") (of rank one), but will still contain a breadth of interesting examples. We will also have
two tools to make use of here - the Jordan-Hdélder theorem and the Krull-Remak-Schmidt

theorem. Their statements are as follows (J-H found in [32], K-R-S found in [29] ):

Theorem (Jordan-Hélder). Let M be a A—module of finite length, and F := (0 =Fy, € F; < --- <

and G := (0=Goy <= Gy € --- < G, = M) two composition series for M. Then, for each
simple A—module S, we have that the number of times S appears as a quotient F;/F;_1 for
i€ {1,2,...,1} is the same as the number of times S appears as a quotient G;/G; 1 for

ie{l,2,...,m}, and hence l = m.

Theorem (Krull-Remak-Schmidt). Let M # 0 be a module which is both Noetherian and
Artinian. Then M s a finite direct sum of its indecomposable modules. Up to permutation,

the indecomposable summands are uniquely determined up to isomorphism.

Indecomposable modules are modules that cannot be written as the direct sum of two
submodules. While it is clear that a simple module is indecomposable, is is not true
that an indecomposable module is simple. When our module category is semisimple, then
indecomposable also implies simple, but the finite length modules of L(I") is not a semisimple
category. While this category is not semisimple, we can still try to understand simple modules
and how they might be extended to indecomposable modules.

As a brief example of why the category of finite length modules over L(I") is not semisimple,

consider the graph consisting of one vertex v and a single arrow e that forms a loop. It follows
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from (CK1) and (CK2) that for the arrow e, the dual arrow e* is its inverse. This algebra is
isomorphic to F[z~!, z], the Laurent polynomial algebra, via the map 1 — v, x — e. It is
well known that for f(x) € F[z] € F[z !, z], an irreducible polynomial where f(0) = 1, then
Flz~t, z]/(f(z)F) for k = 2 is indecomposable, but not simple.

Currently, the known simple modules over the Leavitt Path Algebra where I' is finite
(|V U E| < ) are either the projective simple modules vL(T"), where v is a sink (s 1v = ¥)
or modules defined by X. Chen in 2013 [14] (and later generalized). Chen modules are
generated by an infinite path - - - ajofaf = o, where a; € E for all 1 € N, and toy; = sa;y1.

The action is defined as follows :

* kK —
e asafog P =5

e s ag‘a;ai‘ P = Qp
(---azafag)p = 1

(I I e
razafoget p=e, te=sap, ee R

0 else

This defines the action with generators V 1 F 1 E*, which extends to all of L(I'). The
action of any pg* preserves tail equivalence, where tail equivalence for two infinite paths
a =---ajatay and B = - -- 3581 By means that there is a ko and kg such that ag, 1n = Brgin
for all n € N. Thus, Chen modules M have elements that are formal linear combinations of
tail equivalent infinite paths.

The infinite path a that generates a Chen module may be eventually periodic or not.
An infinite path is eventually periodic if there exists n,m € N where m > 1 such that
Qnik = Qpymir for all k € N. We call the modules generated by eventually periodic infinite
paths rational Chen modules (and we call the other Chen modules irrational). In the case
of rational Chen modules generated by (C*)* = ---C*C*C* where C is some primitive
closed path (primitive means that there is no other path D such that D¥ = C for k > 2),

generalizations were defined by X. Chen [14], P. Ara, and K. Rangaswamy [12]. The former
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twists the action of e € E by the gauge action (arrows act as a nonzero scalar multiple of
their previous actions), and the latter is a further twisting that can only be done when the
field is not algebraically closed and the C'is an ezclusive cycle (meaning there is no other
cycle with a common vertex). In 3.1 below, we will extend these constructions via irreducible

polynomials.

2.2 Graph C*-algebras and their representations on

Hilbert spaces

A +#-algebra A over F (where F has an involution ¢ — ¢ ) is an algebra with a map =

which is an linear anti-automorphism and an involution:

(zy)* = y*a*
(cx)* = ca®
(") =x

for all z,y € A, ceF.

A Cuntz-Kreiger I'-family is a family of mutually orthogonal projections {P,|v € V'}
(projections are elements such that P? = P, = P* and mutually orthogonal means that
P,P, = A} ' P,) and partial isometries {S, |e € E} (partial isometries are elements such that

S*S. is a projection). that generate a =-algebra such that:

(CK1) S*S, = Ps. forallee E
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(CK2) ] S.87 =P, for allve V such that t'(v) # .

te=v

where I is a graph as before. One noticeable difference is that composition is right to left.
For paths p = p1py---p, in I' with p; € E, we define S, := S, Sp, -+ Sp,,. When p = v, a
path of length 0, we define S, = P,.

Now we can define a graph C*-algebra, denoted C*(T"). Tt is a universal algebra such that
for each C*-algebra with the same I'-family, there exists a *—homomorphism from C*(I)
to it such that {P,|v € V} and {S, |e € E} are both preserved pointwise. This universal
algebra will not retain the same Z-grading that the =-algebra generated by the Cuntz-Krieger
[-family has (when one uses the analogous Z-grading placed on L(I")).

From the work of Gelfand-Naimark [22] and Segal [35], we know that C*(I") has a
realization as a closed =-subalgebra of bounded linear operator on some Hilbert space #€ [37],

in fact:

C*(T) = 5pan{S,S; | p,.€ Path(T),sp = s q}

As an example of a graph C* algebra consider the Toeplitz digraph as before:

r:Q
v fow

Let € be the Hilbert space of square summable sequences over C indexed by N. Consider

the action on J€ defined by:

(ao,a1,a2,a3>"')Pv = (0,a1,a2,a3"') (ao,a1,a27a3"')Pw = (CLo,O,O;O"')
(a07a17a27a37“')56 = (0,(12,@3,@4"') (a07alua’27a3"')5f = (a’1707070“.)

(a0aal7a27a37 ne )S: = (0707a17a27' ' ) (a07alaa’2aa3 ) )S}k = (Oa a070707 ’ )

When one completes this =-algebra with respect to the operator norm, then you obtain C*(T').
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2.3 Symbolic Dynamics, Topological Markov Chains

and Perron-Frobenius Theory

Let o be a (finite) alphabet. A full of-shift space is the space ", with a shift map
o: AN — o such that for all (z;)eny € 9V, we have (ox;) = x;41 for i = 1. We will call a
subset of ¢ a shift space if it is invariant under o. Here «" is a topological space with the
product topology where o has the discrete topology, and ¢ is a continuous self map.

Words in the alphabet &/ are finite strings of elements of @f. We will be interested in Shift
of Finite Type (SFT) spaces, which are shift spaces S defined by a finite list of forbidden
words - that is, words that do not appear as a substring of any element of X. These space
can also be described by a finite set of allowed words, where, given a set of allowed words, we
can think of constructing elements of X letter by letter, checking against the list to see if
each letter appended allows the end of the word to appear on the allowed list. An SFT is
called irreducible if, for any two allowed words wy, w3 there is an allowed word w, such that
the word w;wyws is allowed.

We have the discrete topology on &, and the product topology on #". Projection onto
an appropriate coordinate separates any two distinct points in o, showing that ¢~ (and
hence any subset /) is totally disconnected. By Tychonoff’s theorem, «¢" is compact if and

only if ¢ is finite. Moreover, ¢~ is metrizable. For example, we can use the metric:

1
d(alCLQ(Zg"' ,blbzbg"') = Z -—.

3
{i]a;#b;}

The shift ¢ on «" is continuous. A subset of ¢ defined by a collection of forbidden words
is closed and shift invariant.

We will look at P, := Py ("), the space of infinite paths on the digraph I". Here, &f = E,

24



the set of arrows of the digraph I', and P, is obtained by obtained by declaring the set
{ef|te # sf} as forbidden. P, is a Topological Markov Chain, or a 1-step SF'T. This is
because as we build the space, we need only examine the previous letter, or arrow, in order
to determine if the next letter/arrow is an allowed successor.

The topology placed on P, is the restriction of the product topology on EN. Notice that
Py is closed as it is defined by forbidden words. As a closed subset of a compact set, P, is

compact. It is also metrizable and totally disconnected.

FExample 2.
Pu(O)={+} ; Py(G-©O)= Cantor set.

Some combinatorial properties of the digraph I', equivalent to important algebraic proper-

ties of L(I") (quoted earlier in section 2.1), are also detected by the cardinality of P.:
1. Py = ¢ if and only if I' is acyclic.
When I' has no sinks:
2. P, is a finite set if and only if the cycles of I' have no exits.
3. Py is countable if and only if the cycles of ' are pairwise disjoint.

P, (I') is also separable. This is because Path(I') is countable, and hence so is the subset
of (finite) paths that can be extended to some infinite path. Picking an infinite extension
of such a finite path, we get a countable dense subset of P, since {pP., |p € Path(I')} is a
basis for the topology of P, (here pP,, is the set of all infinite paths with initial segment
p € Path(T)).

We can also endow P, with a Borel probability measure via the Perron-Frobenius
Theorem [24].

Given a real nonnegative n x n matrix A, we can define a digraph I'y where V =
{1,2,...,n}, and there is an arrow from i to j if a;; > 0. However, I'4 has at most one arrow

from i to j. Now A is irreducible (that is, there is a positive integer k = k(i, j) such that
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(A%);; > 0) if and only if I'4 is strongly connected. If A is stochastic (that is, the sum of the
entries of each row is 1), we get a probability distribution for a random walk on T.
Conversely, to define a random walk on a directed graph I', we assign a positive probability

p(e) to each arrow e, such that Y, _ p(e) =1 for each nonsink v e V. If V = {1,2,...,n}

and I' has no sinks, then we define the stochastic matrix A = (a;;), where a;; is the sum of
p(e) for e from i to j. Now (AF);; is the probability of going from i to j in k steps, hence I

is strongly connected if and only if A is irreducible.

Theorem (Perron-Frobenius). Let A be an n x n real matriz A that is irreducible and
stochastic. Then the largest eigenvalue of A is 1, which has multiplicity one. It has is a

n
unique left eigenvector z with each entry z; positive and Z z; = 1.
i=1

Proof. Consider the map A on A" = {(z;))", |#; = 0,>,;2; = 1} € R" (where A acts on

the right). This defines a self map on A", since for x € A""!, we have Z Z Ti;; =

i : i=1j=1
Z T Z a;j = Z x; = 1. By Brouwer fixed-point theorem, there exists a vector z such that
Zz:;l :j; Thusi;l1 has an left eigenvector of eigenvalue 1.

This vector z = [z1 29 -+ z,] has at least on entry, say z;, that is strictly positive since it

n

is an element of A"~!. Since 24 = z, we have the formula zj = Z zia;;. We also know that
zAF = z for all k > 1. Recall that for k = k(4, j), we have (Ak)zZ]=1> 0. As a consequence, z;
must be positive when z; is positive. Thus, z is an element of the interior of A",

Suppose, by way of contradiction, there are two distinct eigenvectors of eigenvalue 1 for

A, and call the second eigenvector y. Then, if the sum of the coordinates of y is not 0, then

consider y as an eigenvector of eigenvalue 1 whose entries sum to 1. If the sum of the

1
2 Yi
coordinates of y is 0, then consider y + z as an eigenvector of eigenvalue 1 whose entries
sum to 1. Given an eigenvector of eigenvalue 1 whose entries sum to 1 that is not equal to a

multiple of z , say u, consider

Az—(1-MNuwA=X z—(1-Nu
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for all values of A\. This line must intersect the boundary of A” ! for some values of \. Earlier,
we concluded that eigenvectors of A of eigenvalue 1 and whose coordinates sum to 1 cannot
lie on the boundary of A" ! so this is a contradiction.

Now, let A be the largest eigenvalue of A, for the right eigenvector of y, as left eigenvalues
are equal to right eigenvalues. We will assume, without loss of generality, that the largest

entry of y, say y; is equal to 1 (this can be done taking a constant multiple of y). Then we

have:
A=Ay = D ayyy < ) lagy| < ) ja < 1.
=1 j=1 j=1
As we have already found a eigenvector of eigenvalue 1, this bound is sharp. n
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Chapter 3

New Irreducible Representations

3.1 Generalized twisted rational Chen modules

We will now construct a module on which L(I") acts. This will be a previously unknown
generalization of rational Chen modules. For these new modules, we will consider the case
where I' contains a directed cycle. Let C' = ¢g - ¢1 - - - ¢, be a primitive closed path.

We define F Py as a vector space over F with basis Po , where P is the set of paths in
Path(T) that end at w = s C, but are not equal to a path ¢C for any path g.

Then M¢ := Flz,27'| ®r FPo as a vector space.

We will define the action of L(I') on M¢ using pure tensors of M acted on by V L Eu E*
on the right and have the action extend linearly and multiplicatively. We denote a generic
pure tensor (ignoring coefficients) in M¢ by 2™ ®ajas - - - ar, where ajas - - - ay is in Pe (a; € E

oraj---ap=w).
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" R ajas - - ag o= Ssa
"R ag - ag o= a
"R atay - - ay ae EF* sa=sa
(2" ®aras - - ag)a = <

"1 ®ec ey e, a=cy, a1 ap =w

" @ a=ct a=cforl<i<n k=n

0 otherwise

This defines an action of L(I') on My satisfying the path algebra relations as well as CK1
and CK2. This is clear for relations (V), (E) and (CK1). This is also true for relation (CK2)
because given a pure tensor in M, at most one e € s~1(v) will yield a nonzero result after

its action. For this e, acting by the factor ee* is the same as acting by v.

We also have a left action of F[x, 7] on M via multiplication by Laurent polynomials.

We have the categories Mgy, 17 of left Fz, 27 '] modules and M 1y of right L(I') modules.

Using M¢, we define two functors. Firstly, there is a functor

Fo : Myp ey — M)

where Fc(X) = X ®p[zo1] Mc for all objects X and Fo(f) = f ®idyy, for morphisms f.

We also have, in the opposite direction,

(gC : J%L(F) - J%F[I,x—l]

where Yo (X) = Hom* ™ (Mg, X) and for f : X — Y, we have the map Y¢(f), where
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Hom™ ™ (Mg, X) 32— foxe Hm" (Mg, Y).

Recall that Fz,z '] is a PID, as it is a localization of the PID F[x]. Thus, every finitely
generated module X over Fz, z '] is equal to the sum of F[] /(f(x)k) where f(x) is some
irreducible nonconstant polynomial, or the zero polynomial. As both %c and - respect

direct sums, we will focus on the case where X is finitely generated.

We will call F¢(X) = Mg s when X = Flz] /(f(a:)) Note that:

My = (F[xal"ll /(f(;g))) ®r FPc

Theorem 2. Yo o F¢ is naturally isomorphic to the identity functor.
We will need a lemma:

Lemma 3. Given p € HomL(F)(MC, Mcy), ¢ is determined uniquely and completely by an
element ofF[x] /(f(x))

Proof. We want to know the set

{Zh ®pz||2h ®pZC"(J*”—Zh ®pzf0rallneN}

because this is the set of possible images for 1®v under an L(T") morphism (M is a cyclic L(T")
module generated by 1 ® v). Given a particular element, let N be a number such that C*V is
longer than p; for all i. When we consider Y, hi(z)®p;CNC*V | the only terms that will have a
nonzero result are those where p; is an initial segment of CV. For such p; € P, this means that
(hi(2) @ p;)CN = (hi(x) ® v)q; where ¢; = ¢y, - - - ¢,CNi. If p; has positive length, k; # 0, and

thus ¢; is not a path starting with a power of C. (Suppose cxcgi1 -, CYN = CNeg -+ cp_p. As
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these are elements of Path(T"), we have ¢y - C,Chak = Co - * Cp, Where ¢;ypni1 := ¢;. We have
¢; = ¢j(modn + 1) and this contradicts the fact that C' is primitive.) Thus (h;(z) ® v)g; = 0
for all i with p; of positive length. As, >, hi(z) @ p;,CNC*N = 3. hi(z) ® p;, this means
Y hi(x) @pi = h(z) ®v. O

Proof of theorem. Consider the following diagram:

X > Y

| |

Hom™ ™ (Me, X @ Me) —2%Y s Hom ™ (Mg, Y @ Mc)

Note that x — f(x) — @fu) and x — @, — f®idy,, op,. Note that, by the lemma, both
maps are completely determined by a polynomial, and that polynomial is the first factor in the
image of 1®v. Let us call ¢,(1Qv) = h(z)®@v. Then v, (1QV) = f(p.)(1Qv) = foh(r)®@v
and f ®idy, o p(1®v) = foh(z)®v. Thus the diagram commutes when we restrict to
the category of finitely generated F[z, x~'] modules.

The functor 9¢ preserves inclusion (if X is a L(I') submodule of Y, then Hom*®)(M¢, X)
is a submodule of Hom*®) (M¢,Y)). Thus, if Flz,z '] /(f(x)) is simple (which happens

when f is irreducible), then so is My c. O

Note that in the case that C' is an exclusive cycle (a cycle with no exits), we have
Me = Flz, 2] Qppp 17 (sC)L(T). This is because CC* = C*C' = sC, so C' and C* are
inverses of each other as they act on the left of (sC')L(I") in this case.

Here is a general way to understand if a module you observe is a Chen module:

Let us define & = apajay - - - as a regular infinite path in L(T') (a; € E, ta; = sayqq Vi€
N). We will use the notion that an element m of a module M survives along a if m av,, is
nonzero for all n € N.

We will define the set P’ := {c an infinite path in L(I") | m survives along o} and often
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put the tail equivalence ( denoted £ /). We also define PM := U P
meM

Lemma 4. For M a simple L(T') module, P /. =Py’ /...
Proof. Clearly P < P7 Consider a € E™'. As M is simple, there is a € L(T') such that
mA =m'. Thus:

k K
! _ E3 _ !
many =M ) Pig; On =M ) Dik,
=1 i=1

where of, = gfa,, , n = max{l(¢)}%_, and mp;al, # 0 for 1 <i < K. Thus we have K paths
that are tail equivalent to « in P?*. Thus EY /~ = P&/, which yields thatP /o~ =
PE /- O

Lemma 5. For M simple, % /- = {[a]} = |P]| < 0.

Proof. Take a nonzero element m € M. Look at PJ'. If, by way of contradiction, |PJ| = oo,
then there must be at least two nonidentical paths that m survives along, say py and pj, .
Since M is simple, |Ex™| and |Ey" 6| are both infinite. One can continue in this way, forming

two infinite paths that are not the same at each step, and therefore cannot be tail equivalent.

This contradicts £ /~ = {[a]}. O

Corollary 6. For M simple, P / = {[a]} = there is a p € Path(T) such that EX = {'}

where ' is a truncation of o

Proof. By the above, PJ' is finite. Look at the element of P that takes the longest to
become tail equivalent to e, say 3. If f; € Path(I") is the initial part of this infinitely long

path that does not conform to e, then EL%* = {a/'} O
Lemma 7. For M simple, P /. = {[a]} <= M is a Chen Module.

Proof. < is clear by definition. For =, take any nonzero element of M. There is a path
p € Path(') such that mp survives only along a truncation of e (which, since we are
working with equivalence classes, we can take this path and call it ’). Consider the module
homomorphism from the Chen module to M that sends a to mp. This will be onto as M is

simple, and one-to-one as Chen modules are simple. O

32



Lemma 8. Given a simple module M such that there is an 0 # m € M where m f(C*) =0,
(f(x) is a polynomial in F|z], f(0) =1), P = {C*}.

Proof. With the condition that m f(C*) = 0, we can show that mp = 0 where p € Path(I")
is anything that deviates from C®. For f(z) = > ,a;x" we can write —a,mC*" —
Ap_ymC* =1 — ... — ;mC* = m. We consider mp = (—a,mC*" — Ap_ymC*=1) — . —
a;mC*)p. This may set some summands equal to zero, as it is assumed that p devi-
ates from C®. For the summands it does not set equal to zero, we consider the identity
—a,mC*" — a,_ymC*™ ) — ... —aymC* = m, we get —a,mC*"R) — g, mCHr-1tk)
oo — aymCFED = mC*F | which allows us to rewrite mC** in terms of summands with
strictly larger powers of C*. We can inflate these powers of C** to be longer than any p that
deviates from C'°. Hence, mp = 0.

Using a similar argument, consider C* acting on m for some k£ € N. When we act on m where
it has been rewritten with powers strictly larger than k. Then we get mC* = mg(C*) for

some polynomial g. This cannot equal zero, as mg(C*)C** = m. ]

Corollary 9. Given a simple module M such that there is a f(x) € F|x] where f(0) =1
and a 0 # m € M such that mf(C*) = 0, then M is a (generalized, twisted) rational Chen

module.

3.2 Extension of Generalized Twisted Chen Modules

Lemma 10. Given a commutative diagram:

0 s A f>E Y B s ()
lz‘d iso lid
0 v AL g2, p s 0

where the rows are short exact sequences, @ 1s an isomophism.
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Proof. Suppose ¢(e) = 0 for e € E Then ¢'¢p(e) = 0, which by commutativity implies that
g(e) = 0. By exactness, e € Im(f). Since f is injective, f~!(e) = a and by commutativity,
of(a) = f'(a) = 0. Since f'is injective, this means a = 0, so f(a) = e = 0.

As the diagram is commutative, ¢ is an injection.

Let ¢/ € E. Since ¢, g are both surjective, there is an e € F such g(e) = ¢'(¢/). By
commutativity, ¢'¢(e) = g(e), so ¢'p(e) = ¢'(¢'). This means p(e) + = = € where z is some
element of Ker(g'). Since Ker(g') = Im(f’) by exactness, then x = f(a) for some a € A. By
commutativity, ¢ f(a) = f'(a). Thus, p(e + f(a)) = €.

Therefore, ¢ is also a surjection, and thus an isomorphism.

]

Notice that we only needed a surjective map from A to A, rather than an isomorphism.
Given a projective module P (the first step of a projective resolution of B and a surjection

€ : P — B, then given any module £ and a surjective map 7 : E — B, we have an € such

that the following diagram commutes.

We will use this setup in two future diagrams.

Lemma 11. Given a short exact sequence:

0 — A— F "B

e}

~
~

there is an extension of B by A that is isomorphic to E.

Proof. First, consider the following diagram:
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0 s A s AP > P > 0
id [é]l ////g/,/’ €
0 y A L g~ T B » 0

Clearly the top sequence is short exact. We will check that it is commutative on the
squares.
For the left square: a — (a,0) — t(a) + €(0) = ¢(a) and a — a — (a)
For the right square: (a,a) — a — e(a) and (a,a) — (a) + é(a) — mi(a) + Té(a) =
0+ e(a) =e(w)
As a consequence of this diagram, we get that [2] is a surjective map. We will call the kernel

of this surjective map M. Note that M = {(a,a) € A® P|i(a) = —€(v)}. Thus, we get the

following commutative diagram:

0 , A 2l APy, M g » 0
idl [é]l lid
0 s A ‘ s I ul s B s 0

We note that the top right map is well defined. This is because when [a, a] = [a + d', a + /],
then t(a’) = —€(«’). This implies mi(a’) = wé(a'), so 0 = e(’) (as me = 0 and 7€ = €). Thus,

€(a+ a') = €(ar). The top sequence is again short exact.

So, given a fixed projective module P which projects onto B via €, we have Aer /M= E

where M is calculated using € (which uses the information of 7) and ¢.

]

Note that M = {(a,a) e A® P|i(a) = —é(a)} = {(a,a) e A® Pla = —1"(é(c))} (this
makes sense as ¢ is injective). Here, av is an element of the ker(e), as 0 = mi(a) = mé(a) = e(a).

Let us then consider M as the graph of a homomorphism from K := ker(e) to A (where
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the domain is the second summand and the range is the first summand). We will be more

specific in our notation then:

M, = {(a, k) e A® K |a = —p(k)}

for ¢ € Hom(K, A). Thus we have a correspondence between Hom (K, A) and equivalence
classes in Ext(B, A). Both of these sets have algebraic structure - Hom(K, A) is an additive
group, as is Fxt(B, A) under Baer sum. We will show that this correspondence respects the
additive structures of both. We will use the notation +pgg4., to denote the Baer sum and
E x g E' to denote the pullback with respect to B. Recall that the Baer sum is a quotient of

the pullback with respect to the pushforward (using two SESs with the same start and end).

Theorem 3.1. There is a correspondence between Hom(K,A) as an additive group and

Ext(B, A), an additive group under Baer sum

Proof.
(A® P) x5 (A® P) . AG P
! !
(AP [, ) x5 (ABP [y) AP [y, .,

|

AP [y, ) +paer (AP /1r,)

The first pullback uses the map (a, a) — €(a) on both summands. The second pullback uses
the map [a, a] — €(a) on both summands. The final Baer sum is with respect to the short
exact sequence seen on the top of the last diagram.

The downward maps are all quotients, and the horizontal map does the following:

((a1, 1), (ag, a2)) = (a1 + ag — pa(a1 — az), 1 + az)
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Altogether, this demonstrates an isomorphism between

(A@P/Mm)maer(A@P/Mm)

and A@P/

Note that 0 € Hom(K, A) corresponds to A @ P / M, = A® B. This makes the correspon-

M<P1+<P2'

dence between Hom(K, A) and Ext(B, A) a homomorphism. We wish to know the kernel of
this isomorphism, i.e. for what o € Hom(K, A,) is A® P/Mcp >~ A® B. Suppose we have

a isomorphism 6 from A ® P / M, to A @ B such that the following diagram commutes:

Pe————— A®P

|

0 42O ApP / M, 2t p s 0
idJ/ ol lid
0 s A s A® B ol g s 0

[

A

Then the map from the top left P to the bottom center A is p — proj»(0[0, p]), which we
will call ¢ is a homomophism whose restriction to K is ¢. Thus, ¢ extends to P. Suppose

conversely that ¢ : K — A extends to ¢ : P — A. Then,

0la,a] = (a + ¢(a), €(a))

makes the above diagram commute.
So Ext(B, A) = coker{Hom(P,A) — Hom(K, A)}

Now, consider the following short exact sequences of modules:
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As before, P is a projective module.

Consider the sequence:

0 — Hom(By11, Ap-1) > Hom(By11, Ay) = Hom(Byy1, Bn) — Ext(By11, Ay1)

- Emt(BnJrla An) - Emt(BnJrla Bn) - Eth(BnJrlv Anfl) —

We wish to check that the sequence is exact.

0 - Hom(B,11,An—1) —» Hom(By+1,A,) — Hom(B,41, B,) is exact, as this is the
result of the functor Hom(B,,;1,_) acting on the first SES. We also know Ext(B, 1, A, 1) —
Ezt(Bn.1,A,) — Ext(Bni1,B,) — Ext*(B,i1,A, 1) — --- is exact, as it is a result
of the functor Ext*(B,y1,_) acting on the first SES. We wish to see if the map [ :
Hom(By 1, B,) — Ext(B,1) such that 0 o An EBP/Mé is a map in the sequence
above that will combine these sequences to be one long exact sequence, where fe exists (as P

is projective) and makes the below diagram commute, and 6 = fe o .

Ky P —% B,
b »
:0 1 fe 6
' '
A,_q © y A, ——» B,

We will first check if ker(f) = img(Hom(Bns1, An) — Hom(Bpi1, By)). We know
from the previously established isomorphism (Ext(B,.1, A, 1) = coker{Hom(P, A,, 1) —

Hom(K, A,_1)}) that if § is the restriction of the map 6 : P —> A,_;, then it is in ker(f).
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K > L > P I BnJrl
. 7
:9 RN : € 6
v )</ 0 v

A, y A, —— B,

Consider (fe—0)e ' = ¢ € Hom(Bpni1, Ayn). Notice that ¢ is well defined, as for k € ker(e)
, (0e — 0)(k) = (0e — 0)(:™'k) = 0 by the commutativity of the lower left hand triangle in the
diagram (this triange is commutative because of the commutivity of the top triangle and the
injectivity of ¢).

Thus, ker(f) € img(Hom(B,11, An) — Hom(By11, By))

Given 0 € img(Hom(B,,11, A,) — Hom(B,41, By)) , we have the following diagram:

Ky——P — B,

where fe is the lift of wfe. Consider fe — fe. We know whe = mhe, so fe — e(p) € ker(n) =

A,y for all pe P. Also, (§e — e)(ik) = e(ik) = A(k) Therefore, 0 € ker(f).

Now, let us check that img(f) = ker(Ext(Bpi1, An_1) — Ext(Bni1, An)).

Using our previously established isomorphism, in order to determine if img(f) € ker(Ext(By.i1, Ap_1) —
Ext(B,1,A,)), we need to know when, given a § € Hom(B,,,1, B,) (and the resulting 0

that determines a homomorphism from K to A,_;), can we extend 6 to a map f from P to

A,,. This is a direct consequence of this previous diagram:
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We also need to establish that if we have 6, a homomorphism from K to A,_; that extends

to 0 from P to A,, whether it is the image of some 6 € Hom(By,41, By,).

K »—

A,_q © y A, ——» B,

where 6 = m@e~". This is well defined as, although € has kernel ¢(K), we have 70i(K) =

Td(K) =0

Any ¢ € Hom™ ™) (Mg, A) is determined uniquely by an element a in {a € A|a(wlc) = 0}

where

wle = span{pq* € L(I') |p,q € Path(T), sp =w, AN e N s.t. (C*)"p =0}

It is clear why this condition is necessary. It is sufficient because given any L(I') module A,

any a € {a € A|a(wlc) = 0} defines a morphism by determining its output on 1 ® v.

Note that {a € Av|aC"C** =a for all n e N} 2 {a € A|a(wlc) = 0}. Since (1 Q@v) =
P(1@v)C"C*" = p(1®v)v, it is clear why we have this containment. We have the reverse con-
tainment because if, by way of contradiction, there is a € {a € Av |aC"C*" = a for all n € N}
where awls # 0, then for all n € N, we have aC"C*"wls # 0, which is a contradiction of the

definition of wlc.
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3.3 Reducing a Digraph to Strongly Connected I' with

Multiple Cycles

We can do the reduction algorithm on I' that eliminates loopless nonsinks [28]. The
output of this reduction algorithm is not unique, but it is a Morita equivalence. Thus we have
changed the algebra but preserved the module category - in particular, our simple modules
under this functor are still simple.

We will fix a simple module M over some L(T).

Consider V), the support of M. Since M is a simple module, we can also denote this
set as V., for any w in the unique minimal equivalence class in V), (the partial order is
given by v < w when there is a path from w to v). Here is the reasoning: for any vertex v
not in Vj, all vertices less than v are also not in V), and if te € V ~. V), for all e such that
se =v, then v e V . V). Thus, V \ V), is a hereditary saturated set. We also see that for
any w, a minimal element of V), all other elements of its equivalence class are in V. If not,
then the fact that V ~ V), is hereditary means that w would not be in Vj;, a contradiction.
We have that this minimal equivalence class is unique, as if m; € Mvy, my € Muvy are two
nonzero elements for vy, vy in different minimal equivalence classes. By simplicity, there exists
> pigk € L(I') such that my Y., pigf € L(I') = my. Thus, tp; € Vi, and tp; is less than v,
and vy, which is a contradiction. Also, it is clear that any vertices greater than w are in Vjy,
as for any path p where tp = w, we have p* as an injective map from Mw to M sp.

We can use the isomorphism mentioned earlier to get:

L(T) /(V Vi) = L(Tow)
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where I, is the full subgraph of I' on V_,,. Thus, we have changed the algebra again,
but to one that is isomorphic.

We will denote w := )] v, where [w] is the set of vertices in the same equivalence

ve[w]

class as w. We will also denote I',) as the full subgraph on [w].

Lemma 12. The functor

— Qwrrys WL(T)
gives an equivalence of categories between L(I'fy) = L(I'f,) modules M and L(I") modules
N generated by Nw. The adjoint functor

Hom™ W% (L), —) = -

is the functor between L(I') modules N generated by Nw and L(I'r,)) modules M.

Proof.

—Qurr)zwl()
_

M M Qgrrys WL > (M ®grryw L)) @

We need to show (M QwL(M)m H)L(F)) W = M Qgprrys WL(')w. We can show this by

viewing M Qg 1w WL(T) as

(M ®prrys ©LT)w) @ (M @arrys WL(T)(1 — )

IIe

Notice that projection onto the first summand gives a section of —w. Thus, (M QwL(ryw @L(F)) w
M Qgrrys WL(I)w. Then, we have M Qg rys WL(I)w = M.

For the reverse direction, consider N an L(I') module such that NwL(I') = N.

I*@mL(r)wU)L(F)

N+ Nw N@ Qg ryw ©L(T)

By the evaluation map nw®ax +— nwx and the assumption that NwL(I') = N, the composition

of these maps are the identity. O]

42



Notice that if you have a L(I') module N, the image of N under the composition of these
functors is the submodule of N that is isomorphic to N@wL(I'). This can be seen by viewing
N as NwL(I') ® N(1 — w)L(I"). We see that NwL(I')W ®grrys wL(T) is isomorphic to
NwL(T") via the evaluation map. We can also see N(1 — @) L(I")W0 ®grrys WL(I') is trivial as
the only elements of (1 — w)L(I") are linear combinations of dual paths that start at vertices
not in [w]. However, all paths of wL(I")w start and end at elements of [w]. By CK1, this is
isomorphic to the zero module.

Since M = MwL(I") when M is simple, we may restrict attention to L(I'[,).

After the previous reductions, we are now considering a simple L(I") module, where T is
strongly connected and has full support V = V).

There are three possibilities for w:
e w is a sink
e w is on a single cycle.
e ['[,] contains multiple cycles

For the first case, L(I') = F, and M is any one dimensional vector space over IF. In the module
over L(I') before we did our reductions on I'; we have that M = wL(I"), a projective simple
module (in fact all projective simple modules over L(T") are of this form). The dimension of
wL(I") may or may not be finite. It is finite dimensional iff w there are no cycles leading to

w [27].

In the second case, L(T") = F|x,27!]. Since this is a PID (and if M is simple, it means
that M is finitely generated), we know all modules over it. These modules are the Chen
modules. All modules (in the case of disjoint cycles) are Chen modules [12]. These modules
can be further twisted and generalized as was done in the previous section.

Our new simple L(I') modules appear in the case that [w] contains multiple cycles.
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3.4 Spaces of step functions and infinite product paths

Our new modules are submodules of step functions (linear combinations of indicator

functions) on the space of infinite paths in I", denoted by
POO(F) = Poo = {616263 s |t61 = S€;11 Vi e I\T>07 e; € E} .

The topology placed on this is the restriction of the product topology on EN (where E has
the discrete topology). Basic open sets are determined by a path p = p1py - - p, € Path(T")
(where p; € E):

pPy = {ejeze3 - € Py|e; = p; for 1 <i < n}.

Recall from the preliminaries that P, is a closed, compact space that is Borel measurable.
We would like to have a probability measure on this space. This can be done by making

a weight function from F 1V to R that assigns to each edge in E a weight that is strictly

positive, with the condition that Z w(e) = 1. With these weights in mind, we can create

Se=v

the matrix:

W = Z w(e)

se=v
te=u v, ueV

Thus we have that the sum of each row is 1.
We can use Perron-Frobenius Theory to find the left eigenvector with positive coordinates
and eigenvalue 1. We make the choice of eigenvector unique by demanding that Z a, = 1.
We define w(v) := a, <

This weight function extends to a measure p on basic open sets (which are also closed).
For p = pipe -+ - pn € Path(l') (where p; € E), we define u(pPy) := w(sp))w(py) - - w(p,) :=
w(sp)w(p).

We then extend this measure to all closed sets S of P, via:
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pu(S) = lim p (ﬂ{p Py lpe P'r’n(S)}> =1lim > u(p- P

N\ pEPrm(S)
where Pr,(ejes---) = ejea---e, . Since the sequence is monotone decreasing and bounded
below by 0, it converges.

We wish to establish which linear combinations of step functions are trivial. To that end

consider:

F (¥ {g}) —F¥

i=1 i

where 2% is the power set of X. Notice that multiplication of indicator functions corresponds
to intersection of the corresponding sets. We can see that A + B — A u B is in their kernel
when A and B are disjoint sets. Consider an arbitrary element of the kernel. Using the
previous relation, we can rewrite any >, \;X; as an equivalent sum using disjoint sets, such

as
n

Z (a1 A + - apAy) ﬂ X
a;€{0,1} i=1
i XD
where X} := X; and X? := X \ X;. These sets are all disjoint, and the sum is mapped to

the trivial function if and only if each coefficient is 0.

The action of L(I') on F* is given by:

forveV (Ig)v =1,5 where vS = {x € S| sz = v}
foree E (Ig)e =lexg where €*S = {z|ex € S}
for e* € E* (Ig)e" =1.g where S = {ex |z € S, sx = te}

When F = C, we can adjust the action of L(T') on F/* to ensure that both v and ee* act
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as partial isometries:

forveV (Ig)v =Lys where vS = {x € S|sx = v}
foree F (Ig)e zw(;”gi)(e)ﬂe*s where e*S = {x | ex € S}
for e* € E* (1g)e* =%165 where eS = {ex |z € S, sx = te}

All relations of the Leavitt Path Algebra hold:

for v,ueV (1s)vu = (Lys)u = Lyws = Ls, jus = (Lg)0upv
foree E (Ig)see = (lges)e = Lekses = Lexg = (1g)e
foree £ (Ig)ete = (Lex g)te = Tyeer s = Lexg = (Lg)e
fore, fe b (Is)e™f = (Les)f = Lyres = Lo, 155 = (1s)de,ste
for v (nonsink) € V 2 (1g)ee* = Z (Lexg)e® = Z Teers = L, = (Ig)v

The last relation is true as ee*S = {x € S|z = ea’}. These sets are disjoint for each e € F,
thus the indicator function of the sum corresponds to the indicator function of their union.

Thus, |J,,_, ee*S = {r e S|z = ex'} = vS.

se=v
This action extends to step functions, which are functions that are linear combination of
indicator functions of closed sets S on P,. We will consider the indicator functions of closed
sets, as they are measurable.

However, when we have indicator functions of closed sets, we also have indicator functions
of locally closed sets, which are intersections of open sets and closed sets. We also have
indicator functions of constructible sets, which are unions of locally closed sets. This is

detailed in the following lemma.

Before we detail the proof of the lemma, the following facts are useful:
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1.

2.

In general, 14~ = 14 - 1p.

The intersection of two locally closed sets is a locally closed set - note when U; is open

and F; is closed for i € {0, 1}, we have:

(UO M Fo) M (U1 M Fl) = (U(] M Ul) M (F() M Fl)

Lemma 13. The following are equivalent:

1

NS

Co

r

D

f =2, Nilg,, where S; are nonempty, constructible sets.

f =2, Nlg,, where S; are nonempty, locally closed sets.

f =2, Nilg,, where S; are nonempty, closed sets.

f =2 Nils,, where S; are nonempty, disjoint, constructible sets.

f =2 Ails,, where the image of f is finite and each S; is nonempty and constructible.

f=20 100 Ail 100, where the collection of sets sets {/7Y(\) baer 48 locally finite

and each S; is nonempty and constructible.

Proof.
(1) = (2) We have f = . \ilg,, where S; are constructible sets. Consider that

each constructible set S; is the union of finitely many locally closed sets Aj. Note that

Ua- U (D)
k=1 are{0,1} k=1
Nhoy A 22

where A = A, and A) = Py N Ay.
The compliment of a locally closed set is a linear combination of indicator functions of

locally closed sets. For U an open set, F' a closed set:

Ip, wnr)y =lp. v+ 1p.r—Lip,0)n(PrF)
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Since the intersection of locally closed sets is a locally closed set, and intersection of
sets corresponds to multiplication of their indicator functions, we have successfully

rewritten f as a linear combination of indicator functions of locally closed sets.

(2) = (3) We have f = > A\ 1g,, where S; are locally closed sets. Note that for U

an open set, F' a closed set:

lynr = 1r — lpnp,.0)-

We have thus successfully rewritten f as a linear combination of indicator functions of

closed sets.

(3) = (4) We have f = >, \;1g,, where S; are closed sets. Consider the fact that
we can partition the union of the S; into disjoint sets locally closed sets:
U (=)

a;e{0,1}  \i=1
n Sa’;éQ

=14
where S} = S;, and S? = Py, \ S;. Then, we can rewrite f as:

Z (al)\l =+ - an)\n)]]_ﬂ;;l S;li

aie{o,l}
Niei Si'#2

(4) = (5) is trivial.

(5) = (6) Consider f = >, A\;1g,, where the image of f is finite and each S; is
constructible. We can, without loss of generality, rewrite f a a linear combination of
indicator functions of disjoint sets (using (1) = (2) = (3) = (4)). Then, let

Xy = U{S:|\i = A}. These X, are constructible, and there are finitely many of them
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(as Image of f is finite). We can then rewrite f as:

f=> Ay,
A

(6) = (1) is trivial.

]

Lemma 14. If f = Y. \i1g, # 0 is linear combination of indicator functions with S; distinct

nonempty closed sets, then there exists a path p such that fp = Alg with S closed, S # Q.

Proof. We can rewrite f as Y, p;Lx, a linear combination of indicator functions of disjoint
nonempty constructible sets by our lemma. As the sets are disjoint, we can find an n € N
and a p € Pr,(X1) such that p ¢ Pr,(X;), 2 <i <n. When we act on f with p, then fp
only has output 0 and p;. Consider how when p acts on ) \;1g, with S; distinct, if fp must
be the indicator of a disjoint union of closed sets in order to have one output other than 0.

As a finite union of closed sets is closed, fp = Al g with S closed, S # O. m

Thus, all simple modules in the space of step functions are generated by a single step
function.
Then the question remain of which step functions generate simple modules.
S is defined by a set of forbidden words if infinite paths in S have no paths in the set of
forbidden paths appears as a sub-segment. You may similarly think of S as being defined by
allowed paths (where allowed paths have no forbidden path as a sub-segment). For S defined
by a set of forbidden words, we say that S is irreducible that for any two allowed paths z

and z, there is an allowed path y such that xyz is a valid path.

Lemma 15. If (1s)v # 0 for irreducible S, then for any allowed path p such that tp = v ,

(ﬂs)p = )\(]15)1)

Proof. To understand this, consider S as a set defined by allowed words. The set of infinite

paths that start with p and those that start with ¢p are in 1 — 1 correspondence. O
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Lemma 16. If (1g)v # 0 for irreducible S , then there is an element x of FT' such that

(Ig)ve = 1g.

Proof. For u € V there is an allowed word p, such that sp, = v, tp, = u (this is due to
t
the irreducible condition) . Thus, Z Mpu is an element of FI" that sends (1g)v to
w(u)w(p)
1s. [

Theorem 17. All irreducible nonempty S < P, define indicator functions 1g whose associ-

ated cyclic modules are simple.

Proof. Consider 1g ), pig}, where Y. p;q¥ € L(I') such that 1), p,gf # 0. We can find a
path r longer than any of the ¢; such that 1g) . p,gfr # 0. By this, we obtain A1 gtr # 0.
By our corollary, there is an element x € FI" (scaled appropriately) that will send Al gtp to
1s Thus, we can go from any generic element of the cycloc module back to the generator 1g

via the action of L(I'). Thus, the module is simple. O
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Chapter 4

Other Simple Modules over L(1,2)

We will construct modules that are not Chen modules over L(1,2) (a construction that can

easily be modified for L(1,n) where n = 2). To remind the reader, the underlying graph T is:

4.1 Papillon

We will consider a quiver representation that satisfies the isomorphism condition, and
demonstrate why this is not a Chen module.

Let the vector space at the single vertex be
X = {(a;)ien | (as)ien is 2"-periodic for some k € N}
The edges, ey and ey respectively, will act in the following manner:
(ag, a1, as,---)eq = (ao, az, ag,---)

(a07a1aa2a o ')61 = (a17a37a5a T )
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Notice that this module satisfies the isomorphism condition. Therefore, it is a Leavitt module,
and:

(a0aa1aa27"')68 = (a'0707a1707"')
(a07a17a27"')€§ = (O7a0707a17"')

We will call this module Papillon. You may recall a very similar module from the intro-
duction to this thesis. The action is exactly the same (e; «— z;, ef < y;) but the space

X is markedly different from the space of finite sequences.

For any m € M, where M is an L(I') module, we define:

Ap i={p€ Path(T) |p = pipa--pn, m{sp)po---pn-1 # 0, mp = 0, where p; € E}

Lemma 18. For Chen modules, A,, has infinitely many elements when m # 0, unless we

have a rational Chen Module defined by a cycle with no exit.

Proof. For any nonzero m € M, M a Chen Module, m is a linear combination of infinite tail
equivalent paths (this means that for any set {a,...a,} of tail equivalent infinite paths,
there is a kq, for each a; such that all paths in the set are the same at and beyond the edge
of index kq,. For any m = Y a, without loss of generality, let ko, be the largest of the k.
There exists a path p of length kq, such that mp # 0 (by the repeated application of (CK2)
exactly kq, times ). We can see that A,,, has infinitely many elements - it consists of all
paths Qg +1 0k, +2 7" Uy +NE where Ne Nand ee E, e # Qg +N+1 (this is possible as the
infinite path is not on a cycle without exits). As A,,, = A,,, this shows that A, also has

infinitely many elements. O

This is not a property shared by the Papillon over L(1,2) described above - given any
nonzero x € X, any edge that does not annihilate x will divide the length of its period by 2.

This means that |A,| < k where 2F is the smallest period of z. It is also clear that Papillon
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is not a rational Chen module on a cycle with no exit, given that our I' has exits for any
rational path. Papillion is the same as the module generated by the indicator function for P,

on I'. The correspondence is clear when you have the constant sequence correspond to 1p, .

4.2 Modules with the action of Leavitt defined by poly-
nomials
We want to obtain new representations for L(I') acting on:
1. Z-indexed sequences
2. Laurent polynomials (F[z ™!, z])
3. Polynomials
4. z7'Fla 1

We will relate the actions of (1) and (2) with the correspondence

N

fo —m<k<l

o flz)= > fua

0 else k=—m

I
Il

. We can consider (3) and (4) as a restriction of (2).

We start with a polynomial mg(z) = > a;2", with the following conditions:
1. ag # 0
2. =31 a? #0

3. Zi_j:k a;a; = 0 for k even, k # 0
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As a consequence of the last condition, the degree n is odd. We will also define m;(z) =

2"mo(—2z71). For a Laurent polynomial f(z), the action is as follows:

f(x)er = X"tmy(2) f(2%) for i = 0,1
F(2)ei = § (mi(z72) F(212) + my(—2712) f(=212)) for i = 0,1

On Z-indexed sequences, the action is:

fo=f%
(n=1)/2
A7t Z firaop i is even
* k=0
f60 - (nfl)/g
A1 Z fl-,ka%ﬂ 1 is odd
k=0
(n—1)f2
At Z —fi_kQn_or 1 1S even
* _ k=0
i‘el - (nfl)/g
A Z Ji—kQn_(2k+1) 1 1s odd
k=0

feg = ( S Z foika, .. )
k=0

fep = (..., Z JoickOn—k, - .)
k=0

The conditions on mg ensures that the relations of the Leavitt path algebra hold.

Even though the action of e; may seem problematic, you always get a Laurent polynomial

or Z-indexed sequence due to cancellation of terms. Another way to describe the action
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is: e} upsamples (double all exponents) and multiplies by m;; e; multiplies by m; (where

m;i(x) = m;(z7!)) and then downsamples (halve all exponents and get rid of non integer

powers). To verify (CK1) and (CK2), it is handy to have the identities:

mi(x)m;(z) + m;(—x)m;(—z) = 2M\J;;

mo(x)mo(x) + my(x)my(z) = 2\

mo(z)mo(—x) + my(x)mi(—z) =0

mo(z)

All of these identities are a consequence of having

matrix , so that :

TT”L() (13)

mo(—z) my(—2)

mo(x)

my(x)

To check (CK1) for Laurent polynomials:

f(z)efe;

(A’lmi(z)f(zﬂ)) e;

m

o(—)

mi(z) myi(—x)

my(—x)

be almost a ”unitary’

20 0
0 2A
20 0
0 2\

= X7 (a2 f(2)my (27 2) + ma(=2"2) f(2)my (—277%))

1
_ )\*1_
2

= )\_1 _2/\5Uf(2)

1
2
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infinite sequences (indexed by natural numbers), F[z], or z 'F[z!].

To check (CK2):

+o AT (ma (27 f(2)ma(2) + (=27 f(=2)ma (2))

1

= 5)\_1f(z) (Mo (z)mo(2) + m1(2)mi(2))

A (=2) (To(—2)mo(2) + s (=) (2)

= %A‘lf(z)(Q/\) + %A‘lf(—Z)(O) = f(2)

The action on Z-indexed sequences is analogous.

We now have a way of generating representations of L(1,2). Let’s look at the representation

that is defined by mg = 1 + x (and thus m; = 1 — x). Regardless of whether you look at
this in the space of Laurent Polynomials or bi-infinite 2* periodic sequences, if you want to

produce simple representations, you find that you need to restrict to one of three spaces:

infinite sequences, it is helpful to look at the basis of rows of the infinite Hadamard matrix

constructed recursively:

anl anl
HO = ll] and H, =
Hn—l _Hn—l

Using the action on f = (..., fo, f1, fo,- -, for_1 - ..), which simplifies as:

feg = %( o fos fo, fus fus fos for o faro, faro, o)
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fe’f = %( .. 7f0, —fo, f17 —fl, f2, —fQ, . 7f2k—17 —f2k_1, .. )

feo=(...fo+ fi,fot+ fo, fo+ s fora+ for_y, fo+ fr,.. )

fer=(...fo=fi,fo=fa.fa—fo. .o foro — for1, fo— f1,...)

We get that that rows go to scalar multiples of rows under the action of e and ej. This allows
us to see that we can obtain all 2% periodic sequences (as rows of the Hadamard transform
form a basis of 2% periodic sequences). As all sequences can be reduced to the constant
sequence (eg, e; divide the period of any sequence by 2, and they cannot both annihilate a
given element), and the constant sequence survives (up to constant multiple) only along the
infinite path egegeg - - -, this is a Chen Module (one can see from a future lemma that the
feature of an element only surviving along one path uniquely defines a Chen Module).

On polynomials, the action is markedly different. This module is simple because all
nontrivial polynomials can be reduced by repeated action of ey, e; to a nontrivial constant
polynomial. By repeated action of e} + e*, e — e¥, we are able to take ™ and obtain 2" or
2?"1. We are able to obtain all monomials of power greater than or equal to 0 this way. This
module is the same as Papillon - 1 corresponds to (1, 1, 1, 1, ...) and monomials correspond
to the rows of the infinite Hadamard transform.

Lastly, the action of L(1,2) on x 'F[z '] is a nontrivial twist of the Papillon. We will

show that all twists by the gauge action are nontrivial.

Lemma 19. For all (a,b) € F* x F*, Papillon twisted by the gauge action of (a,b) is a

distinct simple module up to isomorphism.

Proof. We will check that the only thing that stabilizes Papillon is (1,1). We will consider

the twisted action of L(1,2) on Papillon, where é; = aey and €; = bey, for (a,b) € F* x F*.
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Consider that (1, 1, 1, 1, ...) is fixed under the action of ¢y and e;. Scalar multiples of this
sequence are the only ones fixed under the action of ey and e;. However, there is no nontrivial
constant sequence fixed by €y and €7, with the exception of when (a,b) = (1,1). Thus, the

action is faithful. O

The action of L(1,2) on z 'F[z~!] is a nontrivial twist of the Papillon, by the scalars
(1,-1).

Other modules can be constructed by considering the action defined my = 1+ 22", m; =

1 — 22" on Laurent polynomials (n € N. On monomials, the action simplifies as follows:

i k2 k is even
T €y =
pF=20=1/2 L iq 6dd
. /2 k is even
€Tr €1 =

—gpk=2n=1/2 L ig 6dd

kel = 2 4 g2kt anl

et = g2k g2+l

Given this action we have this decomposition of F[z, '] into these simple modules:

Flz,2 '] = Flz*"" @2 > 'Flz > '] P (@ ka>

o keO
Where O is a nontrivial orbit of (2) ( the multiplicative group generated by 2 in Z/(2n+1)Z
), and O is the preimage of O under the map from Z to Z/(2n + 1)Z. This is because the

action of eg,ef, e, el on a ¥ yields terms whose degree is either 2k, 2k + 2n + 1,k/2, or
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(k—2n —1)/2. All of the algebraic operations involved (multiplying or dividing by 2, adding
or subtracting 2n + 1) leave invariant the orbits of (2) in Z/(2n + 1)Z.

As far as why each piece is simple - notice that any Laurent polynomial under the repeated
action of ey and e; becomes a polynomial of reduced degree and increased order until the
order is greater than or equal to —2n — 1 and the degree is less than or equal to 0. It just

"1 are fixed under the action of eg, e;. Repeated application of

so happens that 1 and 22
ep, €1 (such that the action does not yield the 0 polynomial) to a polynomial of order strictly
greater than —2n — 1 and degree less than 0 keeps multiplying the powers of each term by
1/2, and adjusting to where each term is strictly between —2n — 1 and 0 - thus giving a basis
of polynomials of terms with powers in the same orbit of (2). As 2 and 27! are units in
Z/(2n + 1)Z, all elements of the orbit are achieved though repeated application of e, e;.
While F[z?"*!] and x 2" 'F[z2"'] are recognizable as Papillon and the Papillon twisted

by (1,—1) (this via the vector isomorphism z* +— 2k(2n+1)

, the modules indexed by the orbits
of (2) in Z/(2n + 1)Z are different. It is clear that these modules are not Chen, as monomials
are all nonzero under the action of ey and e; forever. At the same time, these modules are
not Papillon- this is clear when you consider the O always have even and odd elements. Look
at the action of ey, e; on odd powered monomials. If there was a polynomial such that it was
fixed (up to scalar multiple) under that action of ey, e, it would need to have all powers
between —2n — 1 and 0. The polynomial must have all even or odd degree (as ey and e; differ

only by a scalar on even or odd power terms - but not on polynomials with mixed even and

odd power terms). This cannot happen, as all orbits of (2) have even and odd numbers:
Lemma 20. All orbits of (2) in Z/(2n + 1)Z have even and odd numbers

Proof. Given any even element of an orbit, if you multiply by 2 enough, you get something
larger than 2n + 1. When you mod by 2n + 1, you will get something odd. If you start with
something odd instead, multiplication by 2 will either yield an even number (if your starting
number was less than or equal to n) or an odd number less than n (if your starting number

was greater than or equal to 7 + 1). When in the latter case, multiply by 2 again, giving an
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even number. O

There is no element fixed up to scalar by eqg, e;. Thus, these modules are not the same as
Papillon (where the constant sequence is fixed). They cannot be any module generated by an
indicator function on P,, as we have just shown that this module is not the one generated
by 1p,

Thus, we have constructed a module which is neither a Chen module, nor a module

generated by an indicator function on P.
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