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Abstract 

 

The Woodford Shale (WDS) and the overlying Mississippian aged units are one of the most prolific 

unconventional reservoirs in the United States. Although the WDS extends to Texas, a total of 22 

billion barrels of bitumen and 16 billion barrels of saturated hydrocarbons expelled from the 

Woodford have been calculated only from the central and southern areas in Oklahoma (Comer 

and Hinch, 1987). I included in this PhD dissertation three related studies that investigate the 

possible local and global controls on the distribution of the organic-rich Woodford Shale deposits, 

situated in the southcentral part of Oklahoma. The research presented here spans several years 

of study and publications, so that the three chapters are numbered and placed in historical 

perspective.  

The first work dates to the end of 2014 (Molinares and Slatt, 2014), and was one of the 

first publications that described the importance of the paleo-topography as a critical factor in the 

exploitation of unconventional reservoirs. In the author’s opinion, few workers had addressed 

the pre-Woodford sub-crop maps previous to this publication. Pre-Woodford Shale sub-crop 

maps provide a helpful guide for recognizing "sweet-spots" corridors associated with the 

accumulation of the Late Devonian - Early Mississippian rocks. In the Arkoma basin, synclinal 

structures cored by Hunton Group limestones could have been more resistant to erosion, 

whereas anticlinal structures, deeply eroded or cored by softer intervals (such as the Sylvan 

Shale), were more easily eroded and created narrow corridors where thicker and highly 

prospective Early-Mississippian coarse-grained sediments were accumulated. Other theses and 

publications (e.g. Althoff, 2012; McCullough 2014; Hasbrook, 2015; Infante et al., 2017; Torres et 



xii 
 

al., 2017) have confirmed and supported the importance of the paleo-topography as key element 

in unconventional reservoir characterization. 

The second chapter introduced the vertical anisotropy (bedding/layering), as another 

important element in the characterization of unconventional reservoirs (Molinares et al., 2016). 

The best areas for developing unconventional resources are normally characterized by a higher 

organic content, brittle lithofacies and high-pressured zones. However, vertical transverse 

isotropy (lamination/bedding) is not commonly included when defining intervals for hydraulic 

fracturing. In the second paper, Thomsen’s coefficients epsilon (ε) and gamma (γ), values 

obtained from Ultra Pulse Velocities (UPV) analysis were used to quantify anisotropy and to 

explore their effect on rock brittleness. In fact, more laminae at brittle intervals possibly created 

planes of weakness that assist in reducing the effective minimum horizontal stress and break rock 

easier. Thomsen’s ε and 𝛾 coefficients are proposed as proxies to estimate the effect of 

anisotropy on rock brittleness. Thomsen’s coefficients have an advantage compared to other 

methods to determine vertical anisotropy because these coefficients may be applicable under a 

wide variety of observation scales, such as those recorded by 3D seismic surveys, borehole 

seismic, micro seismicity, sonic well logs and UPV core analysis.   

 The last chapter is a multiproxy research using a combination of stable carbon isotopes, 

spectral natural gamma-ray logs, scanning electron microscope images - coupled with an energy 

dispersive X-Ray analyzer (SEM-EDX), powder X-ray diffraction (XRD), X-ray fluorescence (XRF), 

and palynological analysis in samples from the Wyche-1 research well. This last work was 

presented at the GSA South-Central Section - 52nd Annual Meeting (2018) and awarded as the 

best PhD student oral presentation (Molinares et al., 2018).  
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The results confirm the age of the Woodford Shale (Late Devonian – Early Mississippian) 

and correlated a stable carbon isotopic curve obtained from Woodford Shale samples, with a 

series of positive Carbon excursion events associated with the Frasnian/Famennian (F/F) 

transition and the global extended Kellwasser events. The widespread occurrence of anoxic 

benthic conditions during the F/F boundary is poorly understood. However, the preservation of 

the OM in the Woodford Shale was the result of deep-water stagnation, low dilution rates, high 

salinity/dense vertical oceanic stratification, deep-water oxygen depletion, with no clear 

evidences of a shallow marginal sill southward. The preservation of organic matter in the 

Woodford Shale was largely influenced by relative sea level changes by controlling key primary 

productivity elements including: marine salinity, the influx of key nutrient (e.g. Fe-influx), water 

oxygenation, deep-water marine circulation and sedimentation/dilution rates. 
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Chapter 1: Thomas Amsden's Pre-Woodford sub-crop maps and the Late 
Devonian - Early Mississippian unconventional plays in the Arkoma Basin 

 

1. Introduction   

Thanks to significant advances in horizontal drilling and multistage hydraulic fracturing, the 

Woodford Shale continues to attract interest in the U.S. unconventional-shale boom. Recently, 

two new play concepts have emerged. The first play has been named "SCOOP" or South-Central 

Oklahoma Oil Province, where operators to date focus on liquids-rich production (Fig. 1.1). It is a 

corridor several tens of miles wide and might be an extension of the Woodford-Cana play 

southward to the edge of the Anadarko Basin. The second is the "STACK" play. It is located west 

and northwest of Oklahoma City with targets associated with a combination of the Late Devonian 

- Early Mississippian Woodford Shale and Mississippian ‘Lime’ brittle units. These Mississippian 

beds lie directly above the Woodford Shale, with porosities comparable to the Woodford but 

with significantly better permeability (Brown, 2014). Thickness, porosity, depth, thermal maturity 

and overpressured zones have been considered as important driving factors for setting liquids-

rich "sweet spots" in the Woodford Shale unconventional exploration (Andrews, 2009; Cardott, 

2012; Curtis et al., 2012; Slatt et al., 2011, 2012). Little attention has been paid to pre-Woodford 

sub-crop maps, which are a key factor in the Late Devonian to Early Mississippian 

unconventional-plays distribution. However, after this publication other authors have confirmed 

and supported the importance of the paleo-topography as a key element in the unconventional 

reservoir characterization (e.g. McCullough 2014; Slatt et al., 2015; Hasbrook, 2015; Infante et 

al., 2017; Torres et al., 2017).  
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2. Importance of Thomas Amsden's Pre-Woodford sub-crop maps 

In 1975 and 1980 the Oklahoma Geological Survey published the Bulletins 121 and 129 titled, 

respectively, "Hunton Group (Late Ordovician, Silurian and Early Devonian) in the Anadarko Basin 

of Oklahoma" and "Hunton Group (Late Ordovician, Silurian and Early Devonian) in the Arkoma 

Basin of Oklahoma”, both authored by Thomas W. Amsden. In relationship to the Woodford Shale 

and overlying units, these bulletins include valuable information such as isopach and structure 

maps of the Woodford Shale, Hunton Group and Sylvan Shale (Amsden, 1975; Panels 1-4; 

Amsden, 1980; Panels 1-4). Additionally, these bulletins included two sub-crop maps supported 

by 136 cores (which cut some part of the Sylvan – Hunton – Woodford sequences), well cuttings 

descriptions from 117 wells and lithological descriptions of more than 800 thin sections. 

 A key observation made by Amsden and commented in these bulletins was that a period 

of uplift and erosion preceeded the deposition of the Late Devonian – Early Mississippian 

Woodford Shale (Amsden, 1980). This erosion created some fluvial drainage systems in the 

Anadarko (Amsden, 1975) and Arkoma Basins (Amsden, 1980, fig. 26) (Figures 1.2, 1.3a). In the 

Arkoma Basin, Woodford Shale thickness changes are principally related with the fact that the 

Woodford's basal and top surfaces are unconformities and may outline incised valleys and karst 

topography (Althoff, 2012; Molinares, 2013). 

 The Woodford Shale is generally 100 to 200 ft thick but thins to less than 50 ft northeast 

toward the Ozark Uplift, where the Misener and Sycamore Sandstones underlying the Woodford 

were accumulated periodically (Figure 1.2). The Misener is primarily a quartz sandstone 

cemented with crystalline dolomite that grades into a crystalline dolomite with scattered quartz 
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grains. These two end members are intimately associated, and the bedding commonly is defined 

by dolomite-rich layers alternating with quartz-rich layers (Amsden and Klapper, 1972). The 

Misener clearly overlies the pre-Woodford unconformity and locally is interbedded with 

Woodford-type shales (Amsden, 1980). The Sylamore Sandstone overlies the Hunton Group in 

eastern Oklahoma and grades upward into black shales of the Chattanooga Formation (Amsden, 

1980). For these reasons, the Misener and Sylamore Sandstones are believed to be closely related 

in their depositional history to the Woodford Shale (Amsden and Klapper, 1972). 

 The Misener conodont faunas range in age from late Middle to Late Devonian (Givetian 

to early Famennian) and indicate that the Misener is correlative with part of the Woodford Shale 

in the region of the Arbuckle Mountains (Amsden and Klapper, 1972). There, the Woodford is 

thinner (<100 ft) but the Misener sandstones are not reported, possibly due to the absence of 

any substantial local source for such material (Amsden, 1960, p. 139-140).  

 In general, the Woodford Shale is thicker to the southwest in the Arkoma Basin, but this 

trend is interrupted in the center of the basin (Figure 1.2) where the Hunton Group is absent 

along some relatively narrow corridors (Figure 1.3a). Hunton Group erosion appears to be related 

to thicker overlying Mississippian intervals (Figure 1.4). Southwest of this central region, the 

Woodford thickness increases, following a trend that extends from northern Coal County 

northward through much of Hughes County, where most horizontal Woodford wells have been 

drilled. There, the Woodford Shale ranges from 7,000 to 10,500 ft deep and its thickness 

fluctuates between 100 and 200 ft (Figure 1.2). 
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Figure 1.1. Location of “Stack” and “SCOOP” plays in the Oklahoma basins (After Cardott, 2012).  
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Figure 1.2. Woodford shale wells with first production from 01-01-2001 to 06-01-2011 
(Modified from EIA 2012). 
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Figure 1.3a. Woodford Shale sub-crop map in the Arkoma Basin from Amsden (1980).  
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Figure 1.3b. Flattened section B-B’ located northeast of the Arkoma Basin (see Figure 3a for 
cross section location). The thicknesses of the Sylvan Shale and older units are not to true 
vertical scale. Synclinal structures cored by the Hunton Group may have been more resistant to 
erosion, whereas anticlinal structures cored by the Sylvan Shale may have been less competent 
and easier to erode (modified from Amsden, 1980). 
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Figure 1.4. Well correlation in the Arkoma Basin. In general, the Woodford Shale is thicker to 
the southwest in the Arkoma Basin, but this trend is interrupted in the center of the basin 
where the Hunton Group is not present along some narrow corridors. The Hunton Group 
erosion appears to be related to thicker overlying Mississippian intervals. See Figure 1.3a for 
location of wells. 
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Furthermore, the liquids-rich corridor associated with the Woodford Shale in the Arkoma Basin 

seems to be interrupted where the Woodford is thinner or apparently absent (Figure 1.2), and 

the underlying Sylvan shale or the Woodford is in contact with an overlying thicker, coarser-

grained Mississippian succession (Figure 1.4). The proximity with the Woodford Shale makes 

these Mississippian units highly prospective in the Arkoma Basin. Unfortunately, their 

distribution, composition and geomechanical properties have not been clearly determined and 

their reservoir potential has been overlooked. 

 

3. Conclusions 

 In summary, the pre-Woodford Shale sub-crop maps presented by Amsden (1975, 1980) 

may provide a helpful guide for recognizing "sweet spots" corridors associated with the 

accumulation of Late Devonian - Early Mississippian rocks. The distribution of these units could 

have been controlled by the pre-Woodford topography and the competency of underlying units 

(Figures 1a, 1b).  Synclinal structures cored by the Hunton Group and carbonate deposits could 

have been more resistant to erosion, whereas anticlinal structures cored by intervals such as the 

Sylvan Shale were more easily eroded and created narrow corridors where Early Mississippian 

coarse-grained sediments preferentially accumulated.  
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Key Points: 

 

• The Woodford Shale like many other unconventional reservoir rocks is evidently 

anisotropic or classed as vertical transverse isotropy (VTI). But, VTI (lamination/bedding) is not 

routinely included when defining intervals for hydraulic fracturing. 

• Thomsen’s coefficients ε and γ obtained from Ultra Pulse Velocities analysis were used 

to quantify anisotropy and to explore their potential effects on rock brittleness using Tensile 

Strength (T) and Fracture Toughness (Kic) core analysis. 

• More laminae at middle Woodford intervals create planes of weakness that assist in 

reducing the effective minimum horizontal principal stress during hydraulic fracturing. 
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Abstract 

The Woodford Shale as other unconventional shale reservoirs is evidently anisotropic. However, 

vertical transverse anisotropy (lamination/bedding) is not routinely included when defining 

intervals for hydraulic fracturing. Thomsen’s coefficients Epsilon (ε) and Gamma (γ), obtained 

from Ultra Pulse Velocities (UPV) analysis were used to quantify anisotropy and to explore their 

effect on rock brittleness. The intervals with more laminae are characterized by higher ε and γ 

coefficients, and by less Tensile Strength (T) and Fracture Toughness (Kic). Formation micro-

resistivity logs and thin sections help to support the idea that the differences in acoustic 

anisotropy between the upper Woodford Shale and the middle Woodford shale samples are due 

to lamination/bedding. This work illustrates that neglecting anisotropy in unconventional 

reservoirs may lead to an incorrect estimate of the minimum horizontal stress and that more 

laminae at brittle intervals may create planes of weakness that assist in reducing the effective 

minimum horizontal stress. 
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1. Introduction   
 

The Woodford Shale (WDS) is one of the most important unconventional shale resources in the 

USA and an excellent hydrocarbon source rock with high TOC (total organic carbon) values 

ranging from 3.47 to 16.90 wt.% with mainly Type II kerogen (Miceli-Romero and Philp, 2012). 

The WDS is also brittle due to biogenic quartz rich siliceous and cherty intervals composed of 

silicified Tasmanites and quartz derived from radiolarian and sponge spicules (Kirkland et al., 

1992). The WDS has been one of the most competitive lower 48 unconventional play areas in 

term of persistent rig count, possibly due to its oil-rich production and competitive pre-Tax rate 

of return (ROR%). Oil and gas companies have significantly reduced operational costs and they 

are more efficient in terms of drilling and completion times. However, one of the most common 

optimization problems that companies are facing is to select the best intervals for setting 

(“landing”) their horizontal wells, because more than one brittle interval may be characterized 

before drilling by similar geomechanical rock properties, such as the Young’s modulus (E) and the 

Poisson ratio (υ) calculated from well logs (Fig. 2.1).  

Brittle rock intervals based only on geomechanic (dynamic) properties calculated from 

well logs and mineralogic analysis from cores or logs may respond differently to hydraulic 

fracturing because that approach habitually ignores the rock anisotropy on defining rock 

brittleness (Sayers et al., 2015). In fact, most of the unconventional reservoirs may be described 

as Vertical Transverse Isotropic (VTI) under the absence of significant vertical discontinuities (i.e. 

fractures, faults, cracks, etc). VTI implies that shale rocks are isotropic within a plane but exhibit 

different properties perpendicular to this plane (Sondergeld and Rai 2011).   



15 
 

 

 

Fig 2.1a) The Wyche-1 core well was a research well drilled, cored and logged about 100ft. behind 

an active quarry in the Wyche shale pit, Pontotoc County, Oklahoma. b) The Wyche-1 core well 

Gamma Ray (GR) quartz-rich brittle intervals (yellow areas) and organic-rich ductile intervals 

(purple areas) compared with the Acoustic (A) Impedance, Young's modulus (E3) and the 

Poisson's ratio (v3) calculated from sonic and density well logs. These calculations assumed 

isotropic conditions. The Woodford brittle intervals are characterized by high acoustic 

impedances and the highest E and the lowest ν, define areas of intersection crossover. The 

differences between fast and slow velocities (DT fast-slow track) are indicating a marked 

horizontal anisotropy for the Hunton and Pre-Welden Shale intervals. Micro-resistivity well 

(FMI®) log shows almost horizontal bedding and the absence of fractures. Red Stars highlight two 

samples located at 121 feet and 155 feet. (After Molinares-Blanco, 2013). 

 

The anisotropy in organic-rich shale reservoir rocks is observed from different scales (Fig. 

2.2): The finest vertical isotropy is associated with plate shaped clay particles, typically oriented 

parallel to each other and observed in scanning electron microscope (SEM) captures (Sayers, 

2005; Slatt and O’Brien, 2011). The VTI is also observed in thin sections and at an even higher 

scale related to bedding or layering on Woodford Shale outcrops (e.g. Slatt et al., 2012). The 
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anisotropy may be quantified by the number of individual laminae (<1 cm thick) and/or beds (>1 

cm thick). But it is a really complicated and subjective exercise that involves some bias and may 

be limited by tools resolution when borehole logs are involved. Thomsen’s coefficients Epsilon 

(ε) and Gamma (γ) (Thomsen, 1986,) are related to the differences of the P- and S- wave velocities 

parallel and perpendicular to lamination/bedding and are proposed here as a proxy for 

determining anisotropy (lamination/bedding). P- and S- acoustic waves propagate faster in a 

direction parallel to the anisotropy plane but, propagate slower and as a function of the 

anisotropy, in a direction perpendicular to the anisotropy planes (e.g. Vernik and Landis, 1996; 

Wang 2002). 

Tensile Strength (T) is the maximum stress or energy that a material can withhold while 

being stretched or pulled before breaking. Brazilian Test is a lab test for quantifying the tensile 

strength of rocks and is expressed in stress units (Pa or N/m2). Fracture Toughness (Kic) is a 

property which describes the ability of a material containing a crack to resist fracture aperture 

propagation. T is one of the most important properties for well and hydraulic fracturing design 

applications and is defined as the energy required to grow a thin crack expressed in MPa m1/2 or 

MN/ m1/2. The subscript ic after the K letter means crack opening under a normal tensile stress 

perpendicular to the crack, since the material can also be shear (mode ii) or tear (mode iii) stress 

modeled (Scholz, 2002). Brittle compositional (Bi) index is another common measurement to 

estimate rock brittleness (e.g. Jarvie et al., 2007; Wang and Gale, 2009). However, 

unconventional reservoir rocks with similar mineralogical composition and characterized by the 

same values of Bi may display different values of Young modulus (E) and Poisson ratio (υ) (Wang 

and Gale, 2009). Anisotropy (lamination/bedding) may be associated with the fact that rocks with 
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the same Bi mineralogical composition, but different values of 𝐸 and υ may respond completely 

different under hydraulic stimulation (Herwanger et al., 2015).  

 

 

 

Fig 2.2. The Vertical Transverse Isotropy can be generated from nanno- to meso- scales in 

organic-rich, self-storage unconventional deposits: I) The finest intrinsic anisotropy is due to the 

constituent plate-shaped clay particles, normally oriented parallel to each other (Sayers, 2005; 

Slatt and O’Brien, 2011); the transverse isotropy associated with the small-scale lamination is 

commonly observed in (II) SEM, where letter C represents micro-porosity channels. (III) 

lamination in Woodford Shale thin sections showing radiolarian (R) chert particles, Tasmanites 

(Alg-A), Pyrite (Py) and organic stringers (c). (IV) in the horizontal bedding or layering, typically 

perceived at outcrop scale (after, Slatt and Abousleiman, 2011). 
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This work has as objective to compare the Kic and T in some Woodford shale brittle 

intervals associated with organic and quartz rich clay deposits, characterized by significant 

differences on lamination/layering (anisotropy) and described previously as Highstand System 

Tract (Lower/Middle Woodford Shale) and Transgressive System Tract (Upper Woodford Shale) 

deposits (Slatt et al., 2012). The goal is to support the idea that in brittle mudstone intervals more 

laminae in the middle Woodford might assist in reducing the effective minimum horizontal 

principal stress (Slatt and Abousleiman, 2011). This is because under classic Griffth’s crack theory, 

laminae rather than being physio-chemically bonded are geomechanical discontinuities, that can 

act as planes of weakness or flaws during hydraulic fracturing. 

 

2. Materials and Methods 

The analysis was run on core samples from a behind outcrop well core, drilled in the Wyche shale 

pit, Pontotoc County, Oklahoma (Portas, 2009; Molinares-Blanco, 2013) A complete set of well 

logs are available and detailed lithofacies descriptions and reservoir properties have been 

reported in some previous publications (e.g. Abousleiman et al., 2007; Slatt et al., 2012; Miceli-

Romero and Philp, 2012; Molinares-Blanco, 2013). The Woodford Shale in this core is 

approximately 120 feet (~40 m) long and delimited at the top by some organic-poor shale units 

named "pre-Welden" shale and overlies mainly Hunton Group’s carbonate rocks (Fig. 2.1). The 

total core was described and stored at the Reservoir Characterization Institute (RCI) of the 

University of Oklahoma. Some core pieces were immersed and preserved in mineral oil PG1 at 

the well site for later geomechanical studies (Abousleiman et al., 2007; 2009; Sierra et al., 2010). 
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The VTI rock modeling incorporates the Young’s modulus (E), Poisson’s ratio (υ) and the 

Shear modulus (μ) in directions parallel (subscripts 1) and perpendicular (subscripts 3) to the 

anisotropy planes (Fig. 2.3). The five independent elastic constants (C11, C12 = C13, C33, C44, C66) 

needed to fully describe the stiffness in a VTI modeling were obtained by measuring P- and S- 

wave velocities from core plugs parallel, perpendicular, and ± 45° to the laminae plane. The 

equations which relate the elastic properties parallel and perpendicular to the anisotropy plane 

and the five stiffness coefficients are expressed as follow: 

 

𝐸1 =
(𝐶11− 𝐶12)(𝐶11𝐶33−2𝐶13

2 + 𝐶12𝐶33)

𝐶11𝐶33−𝐶13
2 ,  (1) 

 

𝐸3 = 𝐶33 − 2
𝐶13

2

𝐶11+ 𝐶12
,                           (2) 

 

 𝜐1 =
(𝐶33𝐶12− 𝐶13

2 ) 

𝐶11𝐶33− 𝐶13
2  

,                              (3) 

 

 𝜐3  =
𝐶13

𝐶11+ 𝐶12
,                                     (4) 

 

𝜇1 = 𝐶66 =  
𝐸

2(1+𝜈)
,    and                           (5) 

 

𝜇3 = 𝐶44.                                                       (6) 
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Thomsen's anisotropy coefficients ε and γ were calculated based on the elastic constants 

obtained from UPV core analysis. Epsilon coefficient (ε) illustrates the fractional difference 

between horizontal and vertical P-waves, while Gamma coefficient (γ) measures the same 

characteristic but for S-waves: 

𝜀 =
𝐶11− 𝐶33

2𝐶33
=  

𝑉𝑝
2(90°)− 𝑉𝑝

2(0°)

2𝑉𝑝
2(0°)

 , and  (7) 

 

𝛾 =
𝐶66− 𝐶44

2𝐶44
=  

𝑉𝑠
2(90°)− 𝑉𝑠

2(0°)

2𝑉𝑠
2(0°)

.         (8) 

 

Brazilian Test was completed for measuring the Tensile Strength (T). T from five core 

samples were calculated as T = 2P/(πDL). Where P corresponds with the applied load, D the 

diameter of the sample (D=2R) and L the length of the sample (see Sierra et al., 2010). The 

Chevron Notch Semicircular Specimen (CNSCB) test was chosen for estimating the Fracture 

Toughness of the rocks. The notch was cut at 90 degrees with respect to the base of the specimen 

for mode-I fracture modeling. The compositional Brittleness indexes (Bi) proposed before by 

Jarvie et al., (2007) and modified later by Wang and Gale (2009) were calculated based on X-ray 

diffraction analysis (XRD). A detailed description and the original results for the geomechanical 

analysis here analyzed were reported before by Abousleiman et al., (2007; 2009) and Sierra et 

al., (2010). 
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Fig 2.3. The elastic compliance matrix for the Vertical Transverse Isotropy (VTI) cases expressed 

in terms of the Young’s modulus (E), Poisson’s ratio (ν) and the Shear modulus (μ), along the 

symmetry axis (E, ν and μ) and perpendicular (E’, ν’ and μ’).  

 

3. Results  

Table 2.1 and figure 2.4 display the different relationships and cross-plots between the 

geomechanical properties T and Kic versus the Bi and the Thomsen’s ε and γ anisotropy 

coefficients for the five Woodford shale core samples.  First, it is highlighted that the shale 

composition based on XRD analysis does not explain completely the rock brittleness because 

samples with similar Brittleness Index (Bi), one from the upper Woodford (111 ft) and the other 

from the middle Woodford (136 ft), display different values of Kic and T (Fig. 2.4). That means 

that rocks with similar composition may crack or propagates fractures at different values of 
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applied load. This confirmed from the lab tests the reasonable assumption that Woodford Shale 

samples are easier to break parallel (II) than perpendicular (T) to the lamination.  

Although the number of samples is limited, it is observed that the middle Woodford Shale 

samples exhibit more anisotropy characterized by higher ε and γ Thomsen’s coefficients, while 

the samples from the upper Woodford interval are marked by less anisotropy, because of lower 

values of ε and γ coefficients (Table 2.1). The dynamic-FMI® micro-resistivity well log (Fig 2.1) 

confirms the idea that the upper Woodford Shale is characterized by less anisotropy 

(laminations), in comparison with the middle Woodford Shale interval, which is also supported 

by core and thin section inspection (Fig. 2.5). 

 

 

Fig 2.4. Cross plot between the Tensile Strength (T) and Fracture Toughness (Kic) versus 

compositional brittle index (Bi), Epsilon (ε) and Gamma (γ) anisotropy coefficients calculated 
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from UPV analysis for the upper and middle Woodford samples. The Woodford Shale core 

samples are easier to break parallel (II) than perpendicular (T) to the lamination. Notice that the 

correlation is better for the Epsilon (ε) and Gamma (γ) cross-plots and higher anisotropy is 

associated with lower values of Tensile Strength (T) and Fracture Toughness (Kic).  

 

 

 

 

Fig 2.5. VTI differences between the Upper Woodford (HST - right) and middle Woodford (TST - 

left) shale deposits. The sample with fewer laminae (left figure) corresponds with HST upper 

Woodford interval (111 ft) and the interval of more laminae with the TST middle Woodford (136 

ft). This scheme also illustrates the hypothetical response during hydraulic stimulation that will 

depend on the local stress field, rock, and fluid properties. However, laminae can act as weakness 

planes to propagate or create induced hydraulic fractures. Figures also illustrating the changes 

between lofting, suspended load and bed load transport mechanisms after Zavala et al., (2011) 

and Slatt et al., (2012).  
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Table 2.1 Results of the anisotropy Thomsen’s coefficient Epsilon (ε) and Gamma (γ) indexes 

calculated from UPV’s analysis, Brittle compositional Index (Bi) from XRD analysis, Tensile 

Strength (T) and Fracture Toughness (Kic) tests from core lab test of Woodford shale samples 

(Data from Sierra et al., 2010). 

 

 

 

 

Table 2.2. Poroelasticity modulus, KVTI and KISO effective stress coefficients calculated from 

UPV’s analysis. 
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3.1 Effects of anisotropy (VTI) on the rock brittleness 
 

According to the poro-elasticity theory (Biot, 1941) and assuming that shales are isotropic bodies, 

the minimum horizontal stress (𝜎ℎ𝑚𝑖𝑛 ) required to create or to propagate a fracture in a normal 

stress domain might be defined as: 

                          𝜎ℎ𝑚𝑖𝑛 = 𝛼𝑝 + 𝐾ISO (𝜎𝑣 − 𝑝);  𝐾ISO =  
𝑣

1−𝑣
=  

𝜎𝑚𝑖𝑛

𝜎𝑣
  

Where 𝛼 is the Biot’s poro-elastic coefficient, that is related to the solid grain compressibility and 

to the bulk rock compressibility and generally is assumed equal to 1 (Hubbert and Rubey, 1959);  

𝑝 is the pore pressure;  𝜎𝑣 is the vertical stress, 𝑣 is the Poisson’ ratio and 𝐾𝑜 is the effective stress 

coefficient originally established by Mathew and Kelly (1967) as the ratio between the minimum 

effective in-situ stress and the overburden stress. Ko might be empirically calculated from the 

Poisson’s ratio values or derived from formation evaluation leak-off (LOT) test and locality 

established depending on stress field regions. 

In compacted shales and when 𝛼=1, the mineral skeleton of shales is inferred to have a 

compressibility equal (or negligible) compared to the bulk rock compressibility. However, there 

are geological evidences, such as horizontal stress distribution profiles, that support the idea that 

Biot’s coefficient values are lower than 1 (see Burrus et al., 1998 for a detailed discussion) and 

even limited in number, there are direct lab measurements which also confirm that 𝛼 is 

reasonably less than one and decreasing in value with increment of the pressure applied (e.g. 

Abousleiman et al., 2007). In addition to the fact that 𝛼 values are probably lesser than one, 

maybe 𝜎ℎ𝑚𝑖𝑛  is not reduced in shales because they are anisotropic and to avoid shale anisotropy 
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may lead to an incorrect estimate of minimum horizontal stress (Sayers, 2015). For a VTI medium, 

the minimum horizontal stress is better defined as:  

𝜎ℎ𝑚𝑖𝑛 = 𝛼ℎ𝑝 + 𝐾𝑉𝑇𝐼 (𝜎𝑣 − 𝛼𝑣𝑝);  𝐾𝑉𝑇𝐼 =
𝐶13

𝐶33
=  

𝐸11 𝑣33

𝐸33 (1 − 𝑣11)
 

Where, αh and αv are the Biot’s poro-elastic coefficients horizontally and vertically oriented to 

respect the anisotropy planes; E11 and E33 are the horizontal and vertical Young’s modulus; and 

υ33 and υ11 are the Poisson’s ratios that quantify the horizontal strain resulting from vertical and 

horizontal stresses (Sayers et al., 2010). Assuming isotropic conditions, the upper Woodford 

samples are characterized by higher values of effective stress coefficient (K ISO) in comparison 

with the middle Woodford Shale samples (Table 2.2). However, when the VTI (anisotropy) is 

incorporated into the modeling, the middle Woodford Shale samples were characterized by a 

higher effective stress coefficient (K VTI), in comparison with the upper Woodford Shale samples 

(Table 2.2). A higher value of effective stress coefficient (Ko) will be associated with a higher 

minimum horizontal stress value and rocks are more brittle (easy to break or to propagate a 

fracture) when the minimum horizontal stress is lower. The anisotropy modeling increased the 

KVTI values for the middle Woodford in comparison with the upper Woodford, but their behavior 

was more brittle during the geomechanic lab tests (Fig. 2.4). These results bring new questions 

about the role of Biot’s poro-elastic coefficients, their changes under variable confining pressure 

conditions and the suitability of using poroelasticity modulus (E and v) to calculate the effective 

stress coefficients under isotropic and anisotropic (VTI) scenarios (Sayers, 2010).   
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3.2 Rock brittleness, lamination and Sequence Stratigraphy 
 

The middle Woodford is more anisotropic than the upper Woodford and the differences in the 

anisotropy are related to the sedimentary process prevailing during the accumulation of these 

intervals. Additionally, to relate geomechanical properties to sequence stratigraphy models has 

practical implications for regional mapping because sequence stratigraphy subunits such as 

systems tracts and parasequences are commonly mappeable from 3D seismic volumes and well 

log correlations (Slatt and Abousleiman, 2011).  

The most laterally continuous and frequent lamination associated with the Transgressive 

System Tract (TST) of the lower and middle Woodford may be due to a rise in base (sea) level, so, 

the shoreline is translated landward (i.e. transgression). Consequently, deposition may be 

dominated by buoyant plumes and lofting depositional processes, which could be affected by 

seasonal upwelling and/or iron rich wind fertilization processes that in recent times bring 

continental nutrients to offshore areas and create periodic algae blooms (Fig. 2.5). On the other 

hand, during Highstand System Tract (HST) regressive periods, the seaward movement of the 

shoreline creates less accommodation space on the continental shelf areas and the shoreline is 

displaced (i.e. progrades) seaward (Slatt et al., 2012). As a result, offshore accumulation might 

be affected by the transfer and accumulation of continental sediments, commonly characterized 

by thicker laminated or less structured bodies (Fig. 2.5), where some sedimentary features 

(structures), sensitive to the contemporaneous subaqueous topography and associated with 

small increments in traction bottom-energy current are also commonly observed (Slatt and 
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O’Brien, 2011). For that reason, TST organic-rich shale deposits probably tend to be more 

laminae/layered, than HST shale deposits.  
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4. Conclusions 

Unconventional reservoirs can be described as Vertical Transverse Isotropic (VTI) under the 

absence of significant vertical discontinuities (i.e. fractures, faults, cracks, etc). To ignore that 

condition may lead to an incorrect estimate of the minimum horizontal stress (Shmin). Rocks 

more laminated are characterized by being more acoustic anisotropic in term of Thomsen’s 

coefficients Ɛ and ɣ. More laminae at brittle intervals possibly created planes of weakness that 

assist in reducing the effective minimum horizontal stress and break rock easier.  

This observation can be useful in unconventional reservoir characterization and reservoir 

optimization processes because rock intervals marked by a higher acoustic anisotropy (more 

laminae/bedding) could be related to a lower minimum horizontal stress. However, the KVTI 

values calculated for the middle Woodford Shale samples were higher, in comparison with the 

upper Woodford samples. A lower KVTI value would produce a reduction in the minimum effective 

horizontal stress, but it also depends on Biot’s poro-elastic coefficients, pore pressure and the 

local stress field. Thomsen’s ε and 𝛾 acoustic anisotropic coefficients proposed here as proxies to 

estimate the effect of anisotropy on rock brittleness have an advantage compared to other 

methods because these coefficients may be applicable under a wide variety of observation scales 

(P and S-wave frequencies) such as those recorded by 3D seismic, borehole seismic, micro 

seismicity, sonic well logs and UPV’s core analysis.  
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Abstract 

The Late Devonian Frasnian/Famennian (F/F) stages transition was recorded in an organic-rich 

black shale interval, equivalent to the Woodford Shale and logged in the Wyche-1 near-surface 

research core-well, located in the Lawrence Uplift, South-central Oklahoma. The total studied 

stratigraphic section includes approximately 54 m (~180 ft.), from the unconformable Woodford 

Shale contact with Early Devonian limestones, equivalent to the Hunton Group, to the gradual 

upward transition with the Early Carboniferous and organic-poor, light gray colored, pre-Walden 

Shales. The Woodford has been subdivided into the lower, middle and upper Woodford Shale 

intervals and two positive δ13C isotopic excursion events identified in the middle Woodford were 

correlative with the Upper (UK) and Lower (LK) Kellwasser global anoxic (extinction) events. 

Thorium/uranium (Th/U) ratios from spectral gamma-ray logs, evidenced oxic to suboxic 

conditions during the accumulation of the pre-Walden Shale and predominantly anoxic-bottom 

water conditions during the Woodford Shale deposition. Thorium/potassium (Th/K) ratios 

displayed clay mineralogical compositional changes, principally associated with illite contents 

variations, which were confirmed in powder X-ray diffraction (XRD) compositional analysis. 

Aluminum normalized enrichment factor (EF), contents of nickel (Ni), copper (Cu), molybdenum 

(Mo), uranium (U), iron (Fe), zirconium (Zr) and titanium (Ti) were obtained from X-ray 

fluorescence (XRF) elemental compositional analysis. Low Ni and Cu normalized EF values were 

associated with low marine (organic -C sink) productivity, during the accumulation of the middle 

Woodford and pre-Walden Shales intervals. High to moderate marine productivity was 

interpreted during the accumulation of the lower and middle Woodford Shale intervals, based 

on higher EF Ni and EF Cu concentrations. Mo and U contents and Mo/U ratios were used to 
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establish paleo-redox conditions. The EF Mo and EF U values were equivalent or higher than the 

average values reported from the modern Black Sea and Framvaren Fjord anoxic basins. In 

contrast, the middle Woodford was characterized by low Mo and low Mo/U ratios (~0.1x), 

compared with the seawater actual oceanic averages. Low Mo/U ratios were related to euxinia 

(anoxia + high sulfidic) and highly isolated stagnant bottom-water conditions, confirmed by the 

presence of C40 carotenoids biomarkers. High Zr/Al and Ti/Al contents characterized the upper 

Woodford and the end of the euxinic conditions. Higher Zr/Al and Ti/Al ratios were also related 

to higher terrestrial palynomorphs (spores) contents and higher Fe/Al normalized ratios and 

characterized by a higher ilmenite detrital mineral content, confirmed in scanning electron 

microscope images, coupled with an energy dispersive X-Ray analyzer (SEM-EDX). The regressive 

cycle identified in the upper Woodford corresponds with a sea level drop, which might coincide 

with the onset of the first Late Devonian glacial events reported from South America localities.  
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1. Introduction 

 

The Late Devonian Frasnian/Famennian (F/F) transition is characterized by one of the most 

severe biological crises during Phanerozoic time recorded in both terrestrial and marine 

ecosystems (Raup and Sepkoski, 1982; Copper, 1986; McGhee, 1996; Walliser, 1995; Racki, 2005; 

Bond and Grasby, 2017). In the terrestrial realm, the Late Devonian is characterized by important 

evolutive plant changes, such as larger root plant systems, first seed plants, the spread of vascular 

plants into dry uplands, the appearance of arborescence habit (Progymnosperms) and possibly 

the first forests on earth (Algeo et al., 1995). In the marine realm, the F/F boundary was marked 

by a significant diversity loss, particularly in shallow/tropical seas and affected by the massive 

extinction of stromatoporoid and reef-building organisms (Sandberg et al., 2002; Copper 2002; 

Racki 2005) (Fig 3.1). The F/F extinctions were apparently more drastic on equatorial marine 

regions than high latitude environments (McGhee, 1996) but, the F/F localities described around 

the world are mainly located within the paleo-equatorial belt, with scarce reports from paleo-

high latitudes and deep offshore waters (Racki, 2005). In fact, some authors describe the F/F crisis 

as an event associated with a significant decrease of new species origination rates, rather than a 

raise on extinction rates (McGhee, 1996).  

The Lower (LK) and Upper Kellwasser (UK) are two anoxic/extinction events associated 

with the F/F boundary and named after two bituminous limestone layers described at Lower 

Saxony, Steinbruch Schmidt (Kellerwald), Germany (Buggisch 1991; Schindler, 1993). The LK and 

UK strata have been described worldwide and they are characterized by two organic rich layers 

and positive stable carbon excursions correlative within those layers (e.g. Buggisch, 1991; 

Schindler, 1993; Joachimski and Buggisch, 1993; Joachimski et al., 2001; 2002; Filipiak, 2002; 



36 
 

Bond et al., 2004; Saltzman, 2005; Buggisch and Joachimski 2006; Van Geldern et al., 2006; 

Hillbun et al., 2015). The F/F extinction triggering mechanism remains debated (e.g. Bond and 

Grasby, 2017), they include single or interactions between multiple-causality scenarios such as, 

bolide extraterrestrial impact(s) (Claeys et al., 1992; Wang, 1992; McGhee, 1996) and large 

igneous province volcanism (McGuee, 1996; Bond and Grasby, 2017) and factors related with 

plant evolution (Algeo et al., 1995; 2001). The F/F extinction events are closely related to 

permanent anoxic conditions and for that reason, anoxia have been proposed as the main cause 

for the F/F marine extinctions (Joachimski and Buggisch, 1993; Algeo et al., 1995; McGhee, 1996; 

Bond and Wignall, 2008). In fact, in some localities these anoxic conditions were in addition 

euxinic, which means a high presence of free H2S dissolved in the oceanic water that affected 

deeply the marine ecosystems (Joachimski et al., 2001; Meyer and Kump, 2008). 

However, anoxic conditions were apparently not well developed in shallow-water 

locations and therefore, it could not be responsible for the decease of shallow-water taxa, 

principally stromatoporoid and coral reef-builder populations (McGuee, 1996; Copper, 2002; 

Bond et al., 2004; Racki, 2005). Some authors consider that the most reasonable explanation for 

the F/F reef-builders collapse seems to be a global sea-level drop (Johnson et al., 1985; Savoy and 

Mountjoy 1995; Joachimski et al., 2002; Bond and Wignall, 2008), as the consequence of 

combined effects of cooling and decreasing atmospheric CO2 levels (Berner and Kothavala, 2001; 

Rothman 2002), and that eustatic sea level drop, possibly was related to the first Late Devonian 

low latitude mountain glacial events (Copper 1986; Isaacson et al., 1999; Streel et al., 2000a; 

Soreghan et al., 2008).  
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The Woodford is an organic-rich black shale, Late Devonian to early Mississippian in age, 

and one of the most prolific oil and gas source rocks in Oklahoma, USA (Comer and Hinch, 1987; 

Cardott, 2012). This study documents the oceanic productivity and oxygenation changes during 

the accumulation of the Woodford Shale in South-central Oklahoma, using a combination of bulk 

organic matter stable carbon isotopes (δ13Corg), spectral natural gamma-ray logs, scanning 

electron microscope images coupled with an energy dispersive X-Ray analyzer (SEM-EDX), 

powder X-ray diffraction (XRD), X-ray fluorescence (XRF), and palynological analysis. This work 

includes rock samples from intervals near some localities where previous studies have identified 

the F/F transition based on conodonts (Over and Barrick 1990; Over, 1992a; 1992b; Over 2002) 

and magnetostratigraphy analysis (Crick et al., 2002; Fig 3.2).  

The goals of this study include: 1) to confirm that the F/F transition is located within the 

middle Woodford Shale deposits, based on paleontological reports and stable isotopic analysis; 

2) to identify possible anoxic (euxinic) conditions and how those anoxic intervals were related to 

oceanic productivity (organic C sinking flux) and 3) to analyze how the anoxic and paleo-

productivity changes could have been associated with variations on weathering/river nutrient 

influx input, apparently controlled by global transgressive/regressive sea level cycles. 
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Fig. 3.1. Middle to Late Devonian geological events. The UK and LK correspond with the Upper 
and Lower Kellwasser events. Sea level curves after Johnson et al., 1985; Mountjoy 1995 and 
Algeo et al., 2007. Meteoric impacts and crater compiled by McGuee, 1996 and microtektites 
reported by Claeys et al., 1991. CO2 and δ13C curves compiled from Saltzman, 2005; Buggisch and 
Joachimski 2006. CO2 decreasing values are coincident with a greenhouse to icehouse earth 
transition and the first Late Devonian South American glacial events (Copper, 1986; Isaacson et 
al., 1999; Streel et al., 2000; Soreghan et al., 2008). 

 

 

 

Fig 3.2. Woodford shale localities in South-central Oklahoma. 1) Wyche-1 well, Lawrence Uplift 
(Slatt et al., 2012); 2) YMCA Camp Classen section (Over, 2002; Crick et al., 2002); 3) Hunton 
Anticline section (Turner and Slatt, 2016; Turner et al., 2016); 4) I-35 road cut outcrop (Becerra 
et al., 2018); 5) Speake Ranch outcrop (Galvis et al., 2018); 6) McAlister Cemetery Quarry 
(Kirkland et al., 1992; Serna-Bernal, 2013; Ekwunife 2017). Co=Cambro-Ordovician strata; 
C=Gneiss-Granite; SG=Tishomingo Granite; SF=Felsic Rocks. Contours represent thickness in 
meter from Arbuckle group to surface (Modified from Tectonic Map of Texas, Ewing et al., 1991). 
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2. Stratigraphic Framework 

In the Arbuckle Mountains and Lawrence Uplift region, the Woodford Shale is Late Devonian to 

Lower Mississippian in age, principally based on conodonts and palynological contents (Kondas 

et al., 2018). The Woodford lies unconformably on Silurian to Lower Devonian limestones of the 

Hunton Group and is limited at the top by organic-poor shales and/or limestones of early 

Mississippian age (Over and Barrick, 1990; Over, 1992a; Over 2002). The Woodford Shale has 

been subdivided by several authors into three units from bottom to top described as, lower, 

middle and upper member (Fig 3.3). This subdivision has been based on: palynomorph 

distributions (Urban, 1960), geochemistry (Slatt et al., 2011; 2012; Miceli-Romero and Philp, 

2012; Wang, 2016; Torres-Parada, 2017), gamma ray log character (Northcutt et al., 2001), and 

recognized in outcrops, thanks to their lithological differences (e.g. Kirkland et al., 1992; Cardott 

and Chaplin, 1993; Treanton, 2014; McCullough, 2014; Bontempi, 2015; Becerra et al., 2018; 

Galvis et al., 2018; Ghosh et al., 2018). 

The lower Woodford is composed of dark gray siliceous shale and fissile shales, 

interbedded with highly silicified and massive cherts (Fig 3.3), some thickest and most complete 

sections contain a basal transgressive sandstone, interbedded with siltstones and greenish shales 

characterized by a poor organic content (Galvis et al., 2018). That lower interval could be 

stratigraphically equivalent to the Middle to Late Devonian Misener Formation (Amsden, 1980), 

which contains conodonts fossils and lies conformably under the Woodford Shale (Amsden and 

Klapper, 1972). The middle interval is mainly composed of black to dark gray siliceous mudstones 

and organic rich fissile shales, characterized by a frequent odor of petroleum in outcrops (Fig 3.3). 

The middle Woodford member has the highest gamma ray values and total organic Carbon (TOC) 
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content (Slatt et al., 2012; Miceli-Romero and Philp, 2012), and evidently has a lower quartz 

content, non-calcareous matrix and clay mineral fraction dominated by illite. The upper 

Woodford is similar to the lower interval, but it is distinguished by the presence of dolomitic 

mudstones and normally a higher content of phosphate nodules, interbedding with siliceous 

mudstones (Kirkland et al., 1992; Slatt et al., 2012). 

Phosphate nodules in the upper Woodford are particularly abundant in the upper 50 ft. 

of the McAlester Cemetery Quarry (Kirkland et al., 1992; Serna-Bernal, 2013; Ekwunife, 2017; 

Klockow, 2017). They are also common in other Woodford localities including the Henry House 

Fall Quarry (Turner et al., 2015) and the I-35 road cut (Becerra et al., 2018). The phosphates are 

spherical to slightly flattened parallel to the bedding and composed of collophane 

(microcrystalline apatite), with variable amounts of carbonate replacing phosphate. The quartz 

content in these nodules is roughly 10%, probably derived from biogenic silica. It is common that 

nodules have a nucleus associated with thin and elongated fragments of crustacean and 

ammonoids shells (Kirkland et al., 1992). The upper Woodford is also characterized by the 

presence of petrified logs (Fig 3.3), commonly associated with the genus Archaeopteris (Kirkland 

et al., 1992; Johnson and Cardott 1992; Slatt et al., 2012). The Archaeopteris was the most 

abundant and diverse arborescent Progymnosperm plant during Late Devonian times (Algeo et 

al., 2001). These trees expanded from tropical to boreal paleo-latitudes and were characterized 

by having trunks thicker than ~1.5 m (5 ft.) in diameter and heights exceeding ~30 m (100 ft.) (Fig 

3.1). The presence of the petrified logs (sizes) might indicates that the locus of deposition was 

located not too far from the Late Devonian Archaeopteris first forests, unless the log had traveled 

a long distant from a land mass.  
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Fig 3.3 a) Upper, middle and lower Woodford Shale subdivisions. Core photos represent 6 in. (~15 
cm) of rock. Upper Woodford is characterized by the presence of phosphate nodules (segment 
II) and natural fractures (segment III), and photos from I-35 road cut outcrop. The 
Frasnian/Famennian (F/F) boundary was identified in the middle Woodford Shale, characterized 
by organic rich black shales (segments IV and V), photo from the YMCA Camp Classen Section. In 
the lower Woodford phosphate nodules are not common. Lower Woodford is unconformably 
over Hunton Limestones and/or some basal gray to greenish shales to fine-grained sandstones. 
b) The F/F boundary in reference section located in Steinbruch Schmidt (Kellerwald), Germany 
(Buggisch, 1991; Schindler, 1993); F/F global stratotype at Coumiac, Montagne Noire, France 
(Klapper et al., 1994); Poland, Kowala section (Filipiak, 2002) and the Oklahoma, YMCA Camp 
Classen section (After Crick et al., 2002). c) Petrified logs commonly associated with the genus 
Archaeopteris spp. from Oklahoma outcrops (Photos courtesy Brian Cardott and Roger Slatt). 

    

The Wyche-1 research core well was subdivided from top to bottom into six segments 

and described next: The first segment (I) is characterized by light gray siliceous shales, with poor 

organic contents, low gamma-ray values and correlative with the pre-Welden Shale (Over and 

Barrick, 1990; Over, 1992a; 1992b). The segments II and III are equivalents to Upper Woodford 

Shale. The segment II corresponds with organic mudstones interbedding with siliceous 

mudstones and abundant phosphate nodules. Segment III corresponds with siliceous mudstones, 

hard, compacted and visibly affected by natural fractures (Fig 3.3). The segment IV and V are 

organic-richer intervals, characterized by the higher gamma-ray values and interpreted as the 

middle Woodford. The segment VI was correlated with the lower Woodford Shale and is 

distinguished from the upper Woodford by decreasing or complete absence of phosphate 

nodules. The segment VI tends to be more organic-richer than the upper Woodford, particularly 

some basal shales accumulated on top of some limestone equivalent to the Hunton group (Fig 

3.3). The total 54 m (~180 ft.) were described and preserved at the University of Oklahoma, 

except by a sampling gap preserved in mineral oil for geomechanic studies (Abousleiman et al., 

2007; Sierra et al., 2010; Slatt and Abousleiman, 2011; Slatt et al., 2012).  
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3. Methods 

For the stable organic carbon isotopic analysis, 33 samples were selected and from approximately 

10 grams of core samples, the carbonate contents were first removed by standard acidification 

and centrifugation methods. After this process, the CO2 from the total combustion of the organic 

matter was analyzed using a Carlo Erba Elemental Analyzer coupled to a ThermoFinnigan Delta 

Plus XP IRM, located in the National High Magnetic Field Lab (MagLab), at Florida State University 

(FSU). The results are reported in the standard δ13C notation relative to the V-PDB (Vienna Pee 

Dee Belemnite) standard, with an analytical precision of +0.2 ‰ (1σ). Sample precision and 

calibration of data were performed during routine analysis of laboratory standards that are 

calibrated against IAEA (International Atomic Energy Agency) standards. Internal FSU standards 

include Acetanilide (-29.2‰), Urea-2 (-8.13‰) and WYSTD (-12.7‰) (Kozik et al., 2019). The 

Total organic carbon (TOC) content was determined by a comparison of voltages for the CO2
+ ion 

bean intensity of masses 44, 45 and 46 between unknown samples and known wt% carbon of the 

gravimetric standard Acetanilide, which was analyzed during the same sequence (Table 3.1).  

Spectral natural gamma-ray logs were used to determine the contribution of gamma 

radiation in the Woodford Shale caused by absorption of thorium (Th), reactive potassium (K40), 

and the uranium (U) (Adams and Weaver, 1958; Luening and Kolonic, 2003). Th/U ratios were 

used as a paleo-redox proxy and Th/K ratios as clay compositional variation proxy (e.g. Adams 

and Weaver, 1958). These ratios were analyzed parallel with 22 X-ray diffraction (XRD) sample 

analyses to check potential changes in clay mineral compositional trends. The XRD analyses were 

performed using a Rigaku Ultima IV diffractometerTM, using a curved-graphite diffracted-beam 

monochromator detector and applying the standard Bragg-Brentano method. The XRD analysis 
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was completed using the JadeTM software and compared with the ICDD (International Centre for 

Diffraction Data) PDF4+ database, in the X-ray diffraction lab, School of Geology and Geophysics, 

University of Oklahoma. 

Trace and major element compositions analysis were collected using a Bruker Tracer IV–

SD, X-ray fluorescent spectrometer, available in the IRC, University of Oklahoma. Samples from 

well cores were scanned every 2 inches with a minimum of 2 torr vacuum and every point was 

scanned during 60 seconds at 40 kV for trace elements and during 90 seconds at 15 kV for the 

major elements. Details of the analytical methodology, including data quality, detection limits 

and calibration can be found in Rowe et al., (2012) and Turner et al., (2015). Aluminum (Al) was 

used as a normalization concentration factor to reduce the effects of the detrital and authigenic 

dilution (Calvert and Pederson, 1993; Tribovillard et al., 2006). Al normalized values of trace 

elements are usually given as x10-4 notation and it was applicable in this case, because Al resides 

principally within the detrital clay fraction and has not shown evidence of significant remobilizing 

during diagenesis (Elmore et al., 2016). The Aluminum normalized concentration was used to 

calculate the enrichment factors (EF) plots:  

EFelement X = [X]/Al sample / [X]/Al average shale 

The EF compares the elemental concentration of the analyzed sample in terms of 

international standards and values greater than one mean enrichments of trace element respect 

to standards and values less than one are associated with depletions, corresponding with 

international average values for the upper continental crust compiled by Tribovillard et al., 

(2006). The complete XRF raw data are available from the first author upon request.   
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The Average EF from four modern anoxic basin analogues (i.e. Black Sea, Cariaco, 

Framvaren Fjord and Saanich Inlet basins) were also compilated and used for paleo-

environmental comparison (Table 3.1). 

Table 3.1. Trace elements average values in shales and continental crust (Compiled by 
Tribovillard et al., 2006). Aluminum normalized and enrichment factor (EF) average values from 
modern anoxic basin. NA = Not Available (From Calvert and Pedersen, 1993). 
 

Average 

Shale

Average  

Continental 

Crust

X/Al 

(10
4
)

EF
X/Al 

(10
4
)

EF
X/Al 

(10
4
)

EF
X/Al 

(10
4
)

EF

Cu 45.0 25.0 7.1 1.4 12.3 2.4 37.5 7.3 5.3 1.0

Mn 850.0 600.0 132.6 1.4 106.3 1.1 160.0 1.7 31.2 0.3

Mo 1.3 1.5 4.3 14.3 18.0 60.0 100.0 33.3 11.1 37.0

Ni 68.0 44.0 19.8 2.6 7.4 1.0 90.6 11.8 5.8 0.8

U 3.0 2.8 3.3 8.2 1.4 3.5 8.1 20.2 2.2 5.5

Ti 2000 5700 NA NA NA NA NA NA NA NA

Zr 70 165 NA NA NA NA NA NA NA NA

Al 88,900 80,400 NA NA NA NA NA NA NA NA

Black Sea Saanich Inlet Framvaren Cariaco Trench

 

Thirty-eight (38) rock thin sections were examined using a Zeiss Axio Imager Z1m optical 

microscope and SEM/EDX analysis using a FEI Quanta 250 Scanning Electron Microscope located 

in the Devon Energy SEM Lab, University of Oklahoma. SEM shales samples were prepared 

following the methodology proposed by O'Brien and Slatt, 1990; Slatt and O'Brien, 2011, and 

analyzed on the SEM equipped with an energy dispersive spectroscopy (EDX) detector, operating 

at acceleration voltages between 5 and 15 KeV. Sampling was completed taking account those 

intervals affected by fractures and/or fluid mineralization and by examining in detail thin 

sections, particularly those related within the natural fractured intervals.  Additionally, 22 

samples were also subjected to standard palynological preparation and at least one complete 

oxidized slide per sample was scanned under a 40x objective. 300 Palynomorphs per slide were 

categorized into three groups: Pollen and pteridophyte spores, tasmanites and acritarch cysts. 

These morphogroups were used also to recognize transgressive/regressive cycles.  
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4. Results 

4.1 Chronostratigraphic framework 

Reference sections equivalent in age to the Woodford Shale contain a series of positive 

δ13C isotopic excursions associated with the Kellwasser events (e.g. Buggisch, 1991; Buggisch and 

Joachimski, 2006; Hillbun et al., 2015). To define the chronostratigraphic framework, the carbon 

isotopic curve obtained was used as a correlation tool, in combination with conodont 

biostratigraphy (Over and Barrick 1990; Over 1992a; 1992b; Over, 2002) and palynological 

reports from nearby Woodford Shale localities (Urban, 1960; Molinares-Blanco, 2013; Kondas et 

al., 2018). In the Wyche-core, within the middle Woodford interval a series of positive δ13C 

isotopic excursions correlative with the global UK and LK events were identified (Saltzman, 2005; 

Buggisch and Joachimski, 2006). These isotopic excursions coincide with the top of the presence 

of a permanent zone of euxinia (PZE), previously reported by Miceli-Romero and Philp (2012) and 

Connock et al., (2018), and based on aryl-isoprenoids and C40 aromatic Carotenoid biomarkers 

contents (Fig 3.4; Table 3.2). 

In the Lawrence Uplift, the uppermost Woodford Shale contains a well-preserved and diverse 

conodont fauna which represent the Late Famennian - early Mississippian boundary (Over and 

Barrick, 1990; Over, 1992). The Late Devonian fauna that occur near the top of the Woodford 

Shale is characterized by the conodont fossil assemblage: Pseudopolygnathus marburgensis 

trigonicus, Palmatolepis gracilis gracilis, and Pelekysgnathus guizhouensis.  

The Pseudopolygnathus marburgensis trigonicus ranges from the Upper P. expansa biozone 

through Middle P. praesulcata biozone and represents the older Late Famennian strata. The P. 

sulcata biozone is the lowest Carboniferous biozone and was identified at the Lawrence Uplift by 
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the first occurrence of Siphonodella duplicata (Over and Barrick, 1990; Over, 1992). This 

boundary agrees with a positive isotopic excursion localized at the top of the Wyche section 

between the segments I and II and interpreted here as the Devonian/Carboniferous (D/C) 

boundary (Fig. 3.4). This event is correlative with another anoxic global event named the 

Hangenberg event, which strongly affected ammonoids, trilobites, conodonts, pelagic ostracods, 

corals and bivalves (e.g. Racki, 2005; Buggisch and Joachimski, 2006; McGhee 1996).  

 

Fig. 3.4. Wyche-1 core subdivision. PWS= Pre-Walden Shales, UW = Upper Woodford, MW = 
Middle Woodford and LW = Lower Woodford. F/F corresponds with the Frasnian/Famennian 
boundary. Gamma-ray (GR) borehole in standard API units and core-gamma in counts per second 
(CPS). Th/U and Th/K ratios calculated from the spectral gamma-ray log. D/C = 
Devonian/Carboniferous boundary. UK and LK are equivalent to the Upper and Lower Kellwasser 
events. PZE = persistent zone of euxinia by Connock et al., 2018. Stable isotopic curve obtained 
in this study, compared with the global reference by Buggisch and Joachimski, 2006. 
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Table 3.2 Stable organic carbon isotopic analysis results. Gamma ray in count per seconds (CPS), 
E_TOC = estimated total organic carbon contents and Corg δ13C ratios relative to the V-PDB. 
 

Depth (ft) 
Sample  

Weight (g) 
Gamma Ray 

(CPS) E_TOC Corg δ13C Stdv 

70.60 10.11 278.4637 3.31 -29.72296607 0.16 

73.60 9.966 292.5626 3.43 -28.80645544 0.16 

79.60 10.062 NA NA -29.11653051 0.16 

83.01 10.048 NA NA -29.77830167 0.16 

86.20 10.041 413.0471 4.44 -29.77830167 0.16 

89.01 10.132 381.1029 4.17 -28.82308332 0.16 

93.60 10.054 583.2921 5.87 -28.65217367 0.09 

98.00 10.053 627.3852 6.24 -27.94475972 0.16 

104.20 9.979 609.9711 6.10 -29.04331940 0.16 

109.40 10.086 870.3672 8.28 -28.71306685 0.16 

111.90 12.2 851.6807 8.13 -29.27057327 0.09 

114.80 10.085 954.159 8.99 -29.28891552 0.16 

119.30 10.045 1014.896 9.50 -29.63785287 0.16 

120.59 9.99 898.5272 8.52 -29.91324287 0.09 

122.05 9.956 1036.137 9.68 -29.15631787 0.16 

124.60 10.02 NA NA -29.42153267 0.09 

129.10 9.91 1316.45 12.03 -29.08211803 0.16 

132.10 9.975 1135.079 10.51 -28.29785584 0.16 

134.30 10.073 958.1967 9.02 -28.65023207 0.09 

136.01 10.11 850.8541 8.12 -28.97011067 0.09 

137.40 10.105 897.095 8.51 -28.87739927 0.09 

139.80 10.815 936.8934 8.84 -29.05845347 0.09 

143.80 9.948 837.3372 8.01 -28.71049818 0.16 

147.10 9.96 790.7692 7.61 -28.93564727 0.09 

151.01 10.093 875.8711 8.33 -29.15310647 0.09 

153.20 10.056 906.4922 8.59 -28.90139936 0.16 

156.30 10.088 871.4694 8.29 -28.73583189 0.16 

160.50 9.98 910.4667 8.62 -29.62297367 0.09 

163.20 10.065 1002.788 9.40 -29.38949627 0.09 

165.20 10.047 1192.335 10.99 -30.15060347 0.09 

181.00 9.993 1023.838 9.57 -29.67151367 0.09 

191.20 10.02 1179.286 10.88 -28.75575152 0.16 

202.70 9.12 1041.114 9.72 -29.89285607 0.09 
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4.2 Natural gamma-ray spectrometry analysis 

Thorium (Th) / Uranium (U) ratios were used as a paleo-redox proxy (Fig 3.4). Th/U ratios less 

than two were associated with an environment under reducing (anoxic) conditions, which 

apparently were predominant during the accumulation of the whole Woodford Shale interval. In 

contrast, Th/U values greater than seven were observed at the top of the core, within the pre-

Walden Shale and were related to U mobilization and therefore, oxidizing conditions. (Fig 3.4).  

The contributions of the elements U, Th and K to the total gamma-ray radiation were 

obtained throughout a spectral gamma-ray core log (Fig 3.5). Th has a single insoluble tetravalent 

valency (Th+4), which is useful for redox comparisons (Adams and Weaver, 1958). In contrast, U 

has two oxidation states which are controlled by redox conditions (Calvert and Pedersen, 1993; 

Algeo and Maynard, 2004; Tribovillard et al., 2006). U has a soluble hexavalent state (U+6) which 

is in solution under oxic conditions, but that state is transformed to the insoluble tetravalent 

state (U+4), which is precipitated under reducing (anoxic) conditions.  

However, instead of being entirely authigenic (Uauth), a portion of U can also be detrital 

(Udet) and often associated with detrital U-bearing minerals (e.g. zircon) (Fig 3.5). The average 

amount of Th present within the detrital U-bearing mineral fraction is often assumed to be three 

times higher than the concentration of U. For that reason, the Uauth fraction from the total 

uranium (Utot) in ppm was calculated using the expression proposed by Wignall and Myers, 

(1988):  Uauth = Utot – (Th/3) 

The Udet dominates the pre-Walden Shale section (segment I) and the Uauth fraction 

dominates the Woodford Shale interval (segments II to VI), except for a more detrital rich interval 
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around 45.8 m (~150 ft.) depth, accumulated right before the positive isotopic excursion 

associated with the onset of the LK anoxic event (Fig 3.5).   

 

Fig 3.5. Borehole and core spectral gamma ray (GR) logs from the Wyche-1 core well. The core 
GR unit in counts per second (CPS) was used to tie the core to the well with the gamma ray from 
borehole. UK and LK correspond with the Upper and Lower Kellwasser events, D/C with the 
Devonian/Carboniferous boundary and the PZE = persistent zone of euxinia reported by Connock 
et al., 2018. The GR is dominate by the U contribution, over Th and Potassium and K contents. 
Uranium and total organic carbon (TOC) have a good positive correlation, but that correlation 
decreases in the intervals affected by the presence of permanent euxinic conditions.    
 

Th/K ratios were used as a guide to recognize geochemical facies and particularly changes 

in clay compositions (Adams and Weaver, 1958). XRD compositional analysis from Wyche core 

samples with low Th/K ratios are likely related to more potassium in the clay fraction, possibly 
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associated with higher illite contents in the mixed illite-smectite (I/S) clay fractions, but further 

analysis are required to verify this idea (Table 3.3).  

Table 3.3. X-ray diffraction (XRD) results for samples taken from Wyche -1 research core well. 

Depth(ft.) quartz I/S mixed chlorite kaolinite pyrite dolomite ankerite gypsum muscovite oligoclase albite K-feldspar jarosite

66'2'' 70 29.4 0.6

76'0'' 33.8 20.6 0.4 0.9 36.5 7.8

84'0'' 81.5 16.1 0.3 2.1 2.1

87'1'' 32.1 18 0.5 47.9 1.5

104'2'' 85.7 13.7 0.6

123''' 69.7 23.2 2.8 4.3

123''' 72.8 24.2 3

127''' 55 37.3 2.3 5.4

127''' 58.1 39.4 2.5

131''' 51.3 32.7 0.3 2.4 7.9 3.3 2.1

136''' 43.1 37 0.8 6.7 2.4 5.7 1.8 2.5

137''' 47.7 37 3.1 6.4 5.8

139'8'' 41.6 37.9 0.6 3.2 16.7

143'5'' 50.2 40 0.2 0.5 2.9 6.2

143'5'' 50 40.2 0.7 2.9 6.2

147'10'' 45.8 40 3.1 11.1

149'5'' 44.3 33.8 0.9 2.4 14.7 1.4 2.4

153'2'' 54.7 33.1 0.6 4.2 7.4

158'4'' 43.4 29.6 0.7 2.4 15.8 8.1

158'4'' 46.7 33.4 0.3 2.4 17.2

186'8'' 56.7 41 0.5 0.2 1.6

191'7'' 48.3 41.6 0.3 1.4 2.1 4.1 2.2  

Chlorite, k-feldspar and kaolinite were also commonly reported from low Th/K intervals 

and as traces in the high Th/K intervals. Kaolinite is often associated to soils produced by 

alteration of biotite and plagioclase feldspar, normally favored by wet and humid tropical 

conditions (Potter et al., 2005). This observation might support the idea that the UK and LK anoxic 

events are related to short-term changes in weathering rates, which have been related to the 

spread of vascular land plants during the Late Devonian (Algeo et al., 1995).  

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] can be formed by a diagenetic process 

from smectite [(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O], in a process denominated as I/S 

transformation (Potter et al., 2005). This process occurs at depths around 2-3 km and 

temperatures between 120-140°C degrees (Bruce 1984; Pollastro, 1993; O’Brien and Slatt, 1990). 

However, these diagenetic transformations was discarded because maximum temperature 
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reached by this section was probably less than 80°C degrees and organic matter reported from 

Wyche-1 core sample has been classified as thermally immature, based on vitrine reflectance (R0 

= 0.55) and biomarkers analysis (Cardott and Lambert, 1985; Cardott, 2012; Miceli-Romero and 

Philp, 2012; Connock et al., 2018).  

Higher weathering and iron detrital input apparently occurred during the UK and LK 

events and possibly stopped, at least temporarily, the permanent high reducing and euxinic 

conditions associated with the prevalent sulphate bacteria activity during the accumulation of 

the middle Woodford Shale deposits (Connock et al., 2018). During the UK and LK accumulation, 

Fe203 and SO3 ratios were higher than the Pyrite stoichiometric ratio of 0,5 and thank that surplus 

in Fe contents, authigenic Fe-rich carbonate (i.e. Ankerite) minerals were precipitated (Fig 3.6; 

Table 3.3). Moreover, during the Late Devonian glacial stages, clay contents were characterized 

by low Th/K ratios, drier and cooler conditions were prevalent and possibly physical weathering 

was favored over chemical reactions. In contrast, during interglacial stages, more humid climatic 

conditions facilitated the chemical weathering, where K and U cations removed from source 

areas helped to form authigenic phases enriched in these two elements, with the corresponding 

Th enrichment in the residual soils and high Th/K ratios observed in the Woodford shale clays.   
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Fig 3.6. Powder X-ray diffraction (XRD) analysis. The first sample was characterized by low 
Thorium/Potassium (Th/K) ratios, typical from intervals associated with the Upper (UK) and 
Lower Kellwasser (LK) events. The second sample was characterized by higher Th/K ratios and 
higher Illite clay contents, but iron limited contents (See Fig. 1.4 for samples location in the 
stratigraphic column).  
 
 

4.3 Major and trace element concentrations 

Major and trace elements are subdivided into two different categories according with their 

behavior under oxic, anoxic and euxinic conditions (Calvert and Pederson, 1993; Algeo and 

Maynard, 2004; Tribovillard et al., 2006; Algeo and Tribovillard, 2009). The first group includes 

the elements whose valency does not change with redox conditions and/or form highly insoluble 

sulphide phases under euxinic conditions, such as nickel (Ni) and copper (Cu). The second group 
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embrace the elements which valency varies with the redox potential and highly soluble anionic 

species in oxic waters which are reduced to reactive or insoluble species of lower valency under 

anoxic (euxinic) conditions: included in this group are the elements molybdenum (Mo) and 

uranium (U). The distribution and concentration of these trace elements were compared with 

previous publications (e.g. Calvert and Pederson, 1993; Algeo and Maynard, 2004; Algeo and 

Lyons, 2006; Tribovillard et al., 2006; Algeo et al., 2007; Algeo and Tribovillard, 2009; Algeo and 

Rowe, 2012; Turner et al., 2015; Turner and Slatt, 2016), and used to determine how paleo-

productivity rates and paleo-redox controlled the accumulation and preservation of the organic-

rich Woodford Shale lithofacies. 

The final concentration of organic matter in the sediment below the water column 

depends on the interaction of several processes including: the organic matter production 

(Pederson and Calvert, 1990), degradation of organic matter by oxidation (Demaison and Moore, 

1980), as well as dilution controlled by weathering/sedimentation rates (Canfield, 1994; Bohacs 

et al., 2005) and after deposition, by diagenetic factors and hydrocarbon migration (Tourtelot, 

1979). High organic content in fine-grained marine rocks is favored by high to moderate rates of 

primary organic productivity, and low to moderate rates of oxidation and dilution (Bohacs et al., 

2015). The contribution of these processes in the accumulation of the organic rich intervals in the 

Woodford Shale will be discussed in the next paragraphs.  

 

4.3.1 Organic matter production  

The organic matter (OM) and Marine productivity is largely controlled by the levels of 

nutrients available in the photic zone and they are generally proportional to the organic carbon 
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sinking flux to the sea floor, which is frequently correlative to the total concentration of Ni and 

Cu in fine-grained rocks (Canfield, 1994; Tribovillard et al., 2006). Ni and Cu element contents 

identified in the Wyche-1 core samples in more than 95% of the cases were higher than their X-

ray fluorescence, lower detections measurements (LDM); therefore, these values were valid and 

used as productivity proxies in the analysis (Fig 3.7). The Lowest Ni and Cu values were identified 

in the upper pre-Walden Shales (segment I) and the middle Woodford Shale (segment V), which 

indicates that organic carbon flux and marine productivity were lower during the accumulation 

of these two segments. In contrast, higher Ni and Cu contents were noticed for the other 

Woodford shale segments, which were also characterized by higher total organic contents (TOC) 

and correlative higher gamma ray values (Fig 3.7).  

Thin section samples from segments II and III were characterized by SEM-EDX microscopic 

analysis (Fig 3.8). These images confirmed the presence of post-diagenetic pyrite (FeS) and 

sphalerite (Zn,FeS) crystals filling the microfractures but, chalcopyrite crystals (CuFeS2) were not 

detected in the mineral paragenesis. Mineralized microfractures from Woodford Shale samples 

frequently contain other sulfidic minerals such as celestine (SrSO4), barite (BaSO4) and non-

framboid pyrite crystals (FeS), which were not here identified. Chalcopyrite (CuFeS2) in the 

Woodford Shale fractures was not identified, and it is not reported in other Woodford Shale 

diagenetic studies (Elmore et al., 2016).  
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Fig 3.7. Nickel (Ni) and Cupper (Cu) concentration in part per million (ppm), for the Wyche-1 core 
well (After Turner et al., 2015 and Turner and Slatt, 2016). LDM corresponds with lower detection 
limits. Dotted lines represent six point moving average values. The EF Ni and Cu average values 
from modern analogues basins after Calvert and Pederson, 1993. UK and LK correspond with the 
Upper and Lower Kellwasser events, D/C = Devonian/Carboniferous boundary and the PZE = 
Persistent zone of euxinia interval reported by Connock et al., (2018).   

 

Furthermore, Cu and Ni values after normalization by aluminum (i.e. EF normalization), 

confirm that Cu variability could be in fact due to the effect of bedding between organic-rich 

mudstones (shales) and siliciclastic mudstones (cherts), instead of originating by the natural 

microfractures. More frequent lamination/bedding in the upper and lower Woodford than the 

middle Woodford interval have been identified in wells based on higher resolution, formation 
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micro-resistivity well logs and this feature produced a significant change in geomechanical 

properties, including their ability to create or propagate fractures (Slatt and Abousleiman, 2011). 

 

Fig. 3.8 Scanning electron microscope (SEM) image, coupled with an energy dispersive X-Ray 
analyzer (EDX) showing the presence of sphalerite crystals (Zn,FeS), filling some microfractures, 
upper Woodford segment III, Wyche-1 core well. 

 

In the Wyche well, Ni and Cu values indicate that marine productivity during the 

accumulation of the Woodford was equivalent to the Black Sea and Framvaren Fjord basins and 

probably more intense during the accumulation of segments III and IV. The Black Sea is the largest 

(~423,000 km2) modern euxinic marine basin, characterized by low sedimentation (10 – 200 g m-

2 yr-1) and organic carbon accumulation rates (~ 1- 10 g m-2 yr-1), and separated from oxygenated 

open marine oceanic waters by a sill of ~ 33 m depth, located in the Bosporus Strait (Algeo and 
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Lyons, 2006). Framvaren is a relatively small Fjord (5,8 km2) located in southern Norway, 

separated from the North Sea by a shallower sill of 2.5 m depth, and characterized by low bulk 

sedimentation (50 - 120 g m-2 yr-1) rates, but higher organic accumulation (12-24 g m-2 yr-1) rates, 

mostly of terrigenous origin (Algeo and Lyons, 2006). The Cariaco basin is the second largest 

(~7,000 km2) modern anoxic basin analogue, located on the north Venezuela continental shelf, 

and it is separated from the Caribbean Sea by a series of deep sills on its western margin, which 

controls the surface and intermediate water fluxes. Cariaco basin is characterized by moderate 

bulk sedimentation (80-250 g m-2 yr-1) and organic carbon accumulation (10-60 g m-2 yr-1) rates, 

mostly marine in origin (Algeo and Lyons 2006). Ni and Cu were preferred as proxies for organic 

C sinking flux (productivity) rather than other elements such as barium (Ba) and phosphorous (P), 

because Ni and Cu are less soluble under reducing (anoxic) conditions, particularly during the 

early diagenesis phases (Algeo and Maynard, 2004; Tribovillard et al., 2006). Under reducing 

(anoxic) conditions, Ni can be preserved in organic-rich facies as Ni- porphyrins (Lewan, 1984) 

and the amounts of Ni in porphyrin structures are apparently controlled by the presence of a 

persistent open shale systems, which allows the diffusion of Ni from the overlying water body to 

the upper sediment layers (Lewan and Maynard, 1982). Ni is also chalcophile (having affinity for 

sulfur) and Ni can be included into pyrite structure or forms its own sulfide phases under reducing 

conditions similar to the Cu, which under anoxic conditions is reduced from Cu2+ to Cu+ and 

incorporated to porphyrins or to sulfidic structures (Tribovillard et al., 2006).  

In contrast, under sulfidic (euxinic) conditions the authigenic phosphates and barite 

(BaSO4) mineral precipitation is mainly controlled by the Iron (Fe) and Manganese (Mn) redox 

oxyhydroxides solubility (Jarvis et al., 1994). Fe(Mn)-oxyhydroxides can cap P and Ba on their 
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molecular structures, but when Fe(Mn)-oxyhydroxides are dissolved, reactive P and Ba diffuse 

out of the sediments, reducing the chance of these elements be trapped (Algeo and Ingall, 2007; 

Tribovillard et al., 2006). In fact, the P cycling is very efficient and thanks to this process, 

approximately 99% of organic phosphorous trapped in sediments is recycled, diffusing upward 

to the water column and used again in biological processes (Algeo and Ingall, 2007). In 

consequence, phosphate deposits are frequently associated with upwelling and high productivity 

zones, high phosphate accumulations are not necessarily always indicative of a high OM flux, 

because P and Ba may be enriched efficiently in sediments associated with the precipitation of 

Fe(Mn)-oxyhydroxides, even under the absence of high productivity in shallow marine waters 

(Jarvis et al., 1994; Tribovillard et al., 2006). Furthermore, the presence of phosphate nodules 

can also cause distortion in paleo-environmental interpretations (Turner et al., 2015), because 

trace elements can be incorporated in the phosphate nodules structures, replacing the PO4, Ca 

and F (Jarvis et al., 1994; Tribovillard et al., 2006), but those types of variations are frequently 

very spatially restricted and related to local disturbances with a very limited correlative value. 

 

4.3.2. Oxygenation and redox proxies 

The contact between oxygenated and oxygen free zones may be either above the 

sediment-water interface or below the sediment-water interface (Fig 3.9a and 3.9b). Inside the 

water column, anoxia may be developed in stagnant or confined water masses where there is 

not enough O2 circulation or in places where intense organic matter degradation consumes O2 

faster than it is replaced (Canfield, 1994). In this situation, the sediment-water interfaces are 

anoxic themselves, so that the consumption of dissolved oxygen exceeds the rates of oxygenation 
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renewal by turbiditic or other bottom currents (Calvert and Pedersen, 1993). In the second 

scenario, when anoxia is located below the sediment-water interface, the amount of oxygen in 

pores regulate the OM degradation and important features such as the benthic fossil content, 

lamination (bioturbation), rock color and pyrite content (Potter et al., 2005). However, marine 

sediments become anoxic at variable depths below the sediment/water interface and that occurs 

when the rate of burial of particulate organic matter exceeds the rates of degradation by oxygen 

or other secondary oxidant agents (Froelich et al., 1979). 

These anaerobic oxidizing agents are in order of decreasing energy: 1) nitrate reduction, 

2) manganese reduction from valence IV to II, 3) iron reduction from valence III to II, and 4) sulfate 

reduction (Fig 3.9b). In fact, fully anoxic conditions are certainly established only when all these 

oxidant agents have been depleted and the concentrations of H2S produced by sulfate-reducing 

bacteria is high enough that it can ultimately auto-inhibit their activity (Froelich et al., 1979; 

Calvert and Pedersen 1993; Tribovillard et al., 2006). Redfield stoichiometric proportions are 

commonly used to illustrate the classical sequence of equations, and how heterotrophic bacterial 

activity consumes organic matter, using various electron acceptors after oxygen consumption 

(e.g. Froelich et al., 1979; Tribovillard et al., 2006). Mo and U have been used widely as a paleo-

redox proxy, with higher concentrations interpreted to reflect lower redox potential (Tribovillard 

et al., 2006). EF values > 3 corresponds with enriched reducing environments and EF > 10 are 

typically related to highly enriched authigenic deposits (Algeo and Maynard, 2004; Algeo and 

Lyons, 2006; Tribovillard et al., 2006).  



62 
 

  

Fig 3.9 a) Hypothetical vertical and horizontal redox transitions in marine sedimentary basins. b) 
Oxidation reactions of sedimentary organic matter in a vertical profile. Redfield stoichiometric 
proportions are used. See text for further explanation. (After Froelich et al., 1979; Tribovillard et 
al., 2006; Calver and Pedersen 1993; Algeo and Tribovillard, 2009).   
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Mo and U were used to determine oxic, suboxic and euxinic conditions during the 

accumulation of the pre-Walden and Woodford Shale deposits and they were compared with 

modern anoxic reference basins (Table 3.1; Fig 3.10). Molybdenum (Mo)aq and Uranium (U)aq 

aqueous phases are uniformly present in low concentrations in seawater globally (Mo/U ~7.5-7.9 

molar ratio) and, due to their long residence times in seawater (∼780 and 450 kyr, respectively), 

it seems unlikely that they varied much through time. (Tribovillard et al., 2006; Algeo and 

Tribovillard, 2009).  

 

Fig. 3.10. Molybdenum (Mo) and Uranium (U) concentrations in part per million (ppm), from the 
Wyche-1 core well. (After Turner et al., 2015 and Turner and Slatt, 2016). Dotted black lines 
represent six point moving average values. LDM = XRF lower detection limits. UK and LK 
correspond with the Upper and Lower Kellwasser events, D/C with the Devonian/Carboniferous 
boundary and the PZE = persistent zone of euxinia reported by Connock et al., 2018. Modern 
anoxic basins analogues values from Calvert and Pederson, 1993; Algeo and Tribovillard, 2009.   
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The marine geochemistry of Mo and U under oxic to suboxic reducing conditions are 

similar, but they have some differences under highly reducing (sulfidic) conditions, which are 

useful to determine redox variations within sediment during accumulation (Algeo and Lyons, 

2006). The first difference is that authigenic uranium (Uauth) uptake commences at the Fe+3/Fe+2 

redox boundary and earlier than authigenic molybdenum (Moauth) reduction. U reduction from 

U+6 to U+4 occurs preferably within the sediment (not in the water column) and possibly catalyzed 

by enzymes produced by iron and sulfate-reducing bacteria (Fig 3.9b). On the other hand, Mo 

requires the presence of H2S for starting uptake (Algeo and Tribovillard, 2009). Under oxic 

conditions, Mo is largely present as unreactive molybdate oxyanion and under a critical 

concentration of hydrogen sulfide (aHS-= 10−3.6 to 10−4.3, equivalent to ∼50–250 μMHS-), Mo start 

conversion from molybdate oxyanion (MoO4
2-) to the reactive thiomolybdates form (MoOxS2-

(4−x), 

x = 0 to 3), which can be adsorbed either into humic organic substances or throughout Fe(Mn) 

oxyhydroxides (Algeo and Maynard, 2004; Algeo and Lyons, 2006). The second difference is that 

Moauth transferred to sediments is accelerated by the presence of Fe(Mn)-oxyhydroxide shuttle 

particles, whereas Uauth is not affected by this process (Algeo and Lyons, 2006). The Fe(Mn)-

oxyhydroxide formed at the chemocline and can adsorb molybdate oxyanions during transit 

through the water column. Once they reach the sediment/water interface, these “shuttle” 

particles are reductively dissolved, releasing molybdate ions that either diffuse back into the 

water column or can be scavenged by other mineral phases within the sediment (Algeo and 

Tribovillard, 2009). In this way, changes of Mo/U element ratios in marine sediments can provide 

information about benthic redox conditions and the evolution of water-mass chemistry in anoxic 

basins.  
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Mo/U ratios were significant lower (~0.1x) than the seawater global average during the 

accumulation of the Middle and Lower Woodford shale intervals (Fig 3.10). The lower Mo 

concentration and Mo/U ratios observed during the accumulation of the middle Woodford 

(segment V) were associated with bottom waters of silled euxinic basins, when Oklahoman basins 

were more sulfide-rich, and Mo was continuously depleted. Even Mo rarely shows significant 

covariation with pyrite, or total S in sediments (Algeo and Maynard, 2004), normally it is inversely 

related to deep water (H2S)aq in modern silled basins, because of drawdown of deepwater (Mo)aq 

under more stagnant conditions (Algeo and Lyons, 2006; Turner and Slatt, 2016). In fact, if Fe is 

strongly limited or H2S concentrations influences Mo accumulation by acting as a “switch” to 

transform molybdate (non-reactive) to thiomolybdates (reactive), lower Mo concentrations and 

decreased burial fluxes at higher aqueous sulfide concentrations are expected (Algeo and Lyons, 

2006). For example, the Cariaco basin has an Mo/U ratio (~6.7) which is slightly less than actual 

seawater average (~7.5-7.9), due to comparatively short renewal times ~100-125 yr in deep-

waters (Algeo and Lyons, 2006; Algeo and Rowe, 2012), while in the Black Sea (characterized by 

more prolonged renewal times of 650  ± 125 yr, the elevated rates of Mo removal to the 

sediment, without compensatory resupply produces a lesser degree of enrichment of Moauth 

relative to Uauth  and much lower Mo/U ratios than actual seawater averages. 

 This observation agrees with the restricted and sulfidic conditions based on biomarkers 

(Connock et al., 2018). A suite of a special group of aromatic organic compounds known as C40 

carotenoids have been identified recently in samples from the interval corresponding with the 

Woodford Shale segment V analyzed here (Fig 3.10). C40 Carotenoids biomarkers have been used 

for showing the presence of euxinic conditions in the photic zone during the time of accumulation 
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of organic-rich mudstones in phanerozoic global extinctions (e.g. Meyer and Kump, 2008). Based 

on these biomarkers, the lower and upper Woodford intervals were characterized by isolated 

pulses of euxinia, while a portion of the middle Woodford was associated to persistent euxinic 

conditions and coincided with higher values of gamacerane indices, indicating hypersaline 

conditions, shallowing chemocline and poorly ventilated waters (Miceli-Romero and Philp, 2012; 

Connock et al., 2018). The decrease of the chemocline apparently increased the competition for 

nutrient resources and produced a microbial community shift, from photosynthetic algae to more 

abundant sulphate reduction bacteria populations, which is coincident also with the low Mo and 

Mo/U ratios observed for this interval (Fig 3.10). 

Low Mo/U ratios were also observed in the pre-Walden and the uppermost Woodford 

Shale (Fig 3.10). However, these lower Mo/U ratios can be explained in a different way, because 

upper Woodford low Mo/U ratios are more related to oxic conditions and high phosphatic 

intervals could be associated with upwelling zones (Algeo and Tribovillard, 2009; Turner and Slatt, 

2016). In open marine anoxic facies associated with upwelling zones, Mo uptake is limited due 

the fact [H2S]aq that concentrations at the sediment-water interface are below the critical 

threshold for conversion of unreactive molybdate to the reactive thiomolybdate (Fig 3.9b). That 

means that water mass exchange was probably faster than H2S diffusing out of the sediments, as 

it now is in some eastern tropical Pacific continental margins (e.g. Algeo and Tribovillard, 2009). 

Mo and U contents were under or close to detection limits for pre-Walden, but the Th/U ratios 

and bioturbation structures confirm that oxidant water/bottom conditions were prevalent during 

their accumulation (Slatt et al., 2012) and low C40 Carotenoid concentrations (Connock et al., 
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2018), confirm also the idea that the low Mo/U ratios observed in the upper Woodford are 

associated more to low H2S concentrations and oxic/suboxic conditions.  

Mo and U concentrations vs TOC tend to significantly fluctuate and decrease under highly 

sulfidic (euxinic) conditions (Algeo and Maynard, 2004; Tribovillard et al., 2006). However, Ni and 

Cu are less affected by euxinic conditions and based on these contrasting behaviors, it was 

possible to distinguish the circumstances when high TOC were associated with high primary 

productivity and the presence of low sulfidic conditions, as was the case for the upper Woodford 

(segments II and III) and lower Woodford Shale (segment VI) intervals, from those periods when 

sulfidic conditions were established and sedimentary OM flux was reduced, and high TOC was 

more related with a low dilution and high preservation potential, as was identified for the 

Woodford segment V.  

Mn/Fe ratios were used also as a paleo-redox proxy and an important change in the 

concentration of iron was detected at the top of the middle Woodford segment V, coinciding 

with the end of euxinic conditions (Fig 3.11).  Redox sensitive behavior of Mn and Fe has been 

well documented by many authors (e.g. Froelich et al., 1979; Calvert and Pederson 1993; 

Tribovillard et al., 2006). Mn tends to be reduced first and shallower within water/sediment 

depths than Fe (Fig 3.9b). Fe(Mn)oxyhydroxides redox cycling is in fact an important factor 

controlling the preservation of phosphatic rich facies and probably can help to explain why 

phosphatic nodules are preferably accumulated in the Upper Woodford shale instead of the less 

oxygenated middle/lower Woodford segments.  

In bottom waters with Fe(Mn)oxyhydroxides available (i.e. upper Woodford shale), the 

Fe(Mn)oxyhydroxides particles within the sediments can facilitate retention of organic (reactive) 
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P and it is adsorbed into authigenic carbonate fluorapatite phases as Ca2+ and F-, which diffuse 

within the sediments (Fig 3.11). In contrast, under reducing (euxinic) bottom waters (i.e. during 

lower and middle Woodford shales), the lack of ferric iron phases allows most re-mineralized P 

to diffuse out of the sediment–water interface (e.g. Algeo and Ingall, 2007). Euxinic basins 

characterized by free H2S in the water tends to produce pyrite framboids (small raspberry-shaped 

clusters of pyrite crystals), characterized by a narrow size range, whereas non-sulfidic anoxic 

environments have larger and broader pyrite framboid size ranges (Wignall and Newton 1998). 

SEM-EDX thin section from the middle Woodford, associated with the permanent sulfidic 

conditions (segment V), were related to higher Mn/Fe ratios and low Fe concentrations, which 

were also characterized by tiny (less than 10 µm) authigenic and narrower pyrite framboid size 

distribution ranges (Fig 3.12). Diagenetic pyrite formation is limited by deficiencies in organic 

carbon, sulfate and reactive Fe (Raiswell and Berner, 1985), but high concentration of organic 

carbon and permanent sulfidic conditions from the middle Woodford shales provide evidence 

that these two factors were not a limiting aspect, and probably during the accumulation of middle 

Woodford shale deposits, the authigenic pyrite formation was limited by the Fe contents, as 

previously purposed by authors based on C-S-Fe ternary plots (i.e. Roberts and Mitterer, 1991). 

In general, Late Devonian oceans were characterized by Nitrogen (N) inventory depletion, 

because of denitrification during permanent greenhouse-anoxic conditions (Saltzman, 2015). 

These conditions normally persist on geological time scales, only if Fe and Mo company anoxic 

conditions as bio-limiting nutrients (Falkowski, 1997). The Woodford Shale significant Fe 

concentrations increments coinciding with the end of euxinic conditions and the onset of marine 

productivity and may help to support the idea that changes in Fe (and possible Mo) contents 
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during the F/F transition, affected the oceanic bottom-water redox conditions, marine 

productivity and increased the organic matter potential that could be preserved.   

 

Fig 3.11. Manganese (Mn)/Iron (Fe) ratios and Fe normalized by Aluminum (Al) contents, from X-
ray fluorescence (XRF) compositional analysis, Wyche-1 core well (After Turner et al., 2015 and 
Turner and Slatt, 2016). DW 21 and DW 28 correspond with two thin section samples with high 
and low Fe contents, analyzed under scanning electron microscope (SEM), and coupled with an 
energy dispersive X-Ray analyzer (EDX) (See Fig 1.14). Under oxic bottom-waters (upper section), 
redox cycling of Fe within the sediment facilitates retention of organic phosphorous (P) in the 
upper Woodford. Under anoxic (reducing) bottom-waters (lower section), the lack of ferric iron 
phases, favored that P diffused out of the sediments.  SWI = sediment water interface, PZE = 
permanent zone of euxinia. Modified from Algeo and Ingall, 2007.   
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Fig 3.12a) Scanning electron microscope (SEM) images, coupled with an energy dispersive X-Ray 
analyzer (EDX) for two thin section Woodford Shale samples. The lower sample (DW 28 @ 156’3” 
ft) was characterized by low iron and detrital contents (lower images). The second sample (DW 
21 @ 119’3”) was marked by higher Fe and detrital contents with abundant ilmenite. Ilmenite 
crystals were distinguished from other metallic phases, such as pyrite, because high titanium (Ti) 
and low sulphur (S) on SEM-EDX images. b) SEM-EDX analyis from upper Woodford sample 
located 36.4 m (119’3”) depth. Syngenetic pyrite was characterized by pyrite framboids (Py) and 
tiny metallic particles were identified as ilmenite (IL) crystals (FeTiO3).   
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4.3.3. Weathering and dilution  

Chemical weathering could be monitored based on the principle that large cation elements (e.g. 

Al, Ti, Si) remain relatively fixed, whereas smaller cation elements (e.g. K, Na, Ca) are removed 

first during weathering alteration (Potter et al., 2005). Oxides calculated from rock compositional 

analysis are often used to quantify weathering applying some ratios, such as the chemical index 

of alteration (CIA) (Nesbitt and Young, 1982). However, CIA as a weathering proxies is not directly 

applicable to fine-grained marine sediments, because deep-sea sediments commonly experience 

hydraulic sorting and other complications associated with the difficulty of separating individual 

mineral phases in major oxide phases (Potter et al., 2005; Lupker et al., 2013).  

As alternative, Al normalized concentration of Titanium (Ti) and Zirconium (Zr) were 

preferred as proxies for determining variation on intensity in weathering (and erosion) from 

source areas (e.g. Lash and Engelder, 2011; Lash, 2017). These ratios seem to support the idea 

that the main source of Fe immediately after the Woodford Shale euxinic conditions was related 

to an increased detrital continental influx (Fig 3.13). Ti/Al and Zr/Al ratios are frequently used to 

evaluate weathering changes on continental land masses and Ti and Zr trace elements are 

comparatively non-mobile element with Ti-bearing minerals (e.g., ilmenite, rutile, anatase) and 

Zr-bearing minerals (e.g. Zircons), characterized by being typically present in coarser siliciclastic 

fractions (Algeo and Rowe 2012; Tribovillard et al., 2006; Turner et al., 2015).  
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Fig 3.13. Zirconium (Zr) and Titanium (Ti) element concentrations from X-ray fluorescence (XRF), 
Wyche-1 core well (After Turner et al., 2015 and Turner and Slatt, 2016). Higher detrital contents 
correlate with higher continental (spores) palynomorphs contents. UK and LK correspond with 
the Upper and Lower Kellwasser events, D/C with the Devonian/Carboniferous boundary and the 
permanent zone of euxinia (PZE).  

 

Furthermore, Woodford Shale SEM-EDX compositional analysis revealed the presence of 

tiny metallic detrital fragments, which were characterized by being Fe- and Ti-rich mineral phases 

associated with detrital ilmenite (Fig 3.12b). The presence of multiple grain sizes could be 

associated to different sources and/or transportation mechanisms, but it must to be confirmed.  
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The ilmenite and Fe-oxides occurrence help to support the idea of a higher detrital 

continental input and Fe transported from continental areas, in part responsible for ending the 

permanent euxinic conditions. Late Devonian seas have been characterized by low nitrogen 

inventories and intense denitrification oceanic conditions (Saltzman, 2005). Denitrification is 

frequently caused (or enhanced) by iron-limited marine conditions (Falkowski, 1997). More 

humid conditions associated with more mature soils and evolutionary plant changes, in 

combination with high continental detrital fluxes (Algeo et al., 1995; 2001), possibly facilitated a 

higher Fe detrital input to the North America epicontinental seas and consequently, all these 

combined effects increased the sedimentation rates and the primary marine productivity, which 

facilitated a higher organic carbon sink and changed the redox conditions during the F/F 

transition. 

 

4.3 Sequence Stratigraphy Analysis 

The elemental gamma-ray (GR) spectroscopy, palynology and XRF elemental compositional 

analysis were used in order to identify the major flooding surfaces in the Woodford Shale. A total 

of 14 of flooding surfaces were inferred, correlated and defined. Based on that third-order 

sequences stacking patterns, a higher second-order cycle was established (Fig 3.14). The 

sequence stratigraphy model has been based on previously reported Woodford Shale (Portas 

2009; Slatt et al., 2011; Amorocho-Sanchez, 2012; Althoff, 2012; Chain, 2012; Serna-Bernal, 2013; 

Molinares-Blanco, 2013; McCullough, 2014; Treanton, 2014; Cardona-Valencia, 2014; Ali, 2015; 

Infante-Paez, 2015; Zhang, 2016; Maynard, 2016; Tuner et al., 2015; 2016; Jones, 2017; 

Ekwunide, 2017; Becerra et al., 2018; Galvis et al., 2018), principally by identifying oscillations in 
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GR well logs, and throughout the identification of GR stacking patterns (GRP). As a result, some 

laterally continuous and mappable units were identified (Fig 3.15).  

 

Fig 3.14. Sequence Stratigraphic model for the Woodford Shale, Wyche-1 well Oklahoma. Sea 
level curve after Algeo et al., 2007. UK and LK correspond to the Upper and Lower Kellwasser 
events. HST = High Stand System Tract; TST = Transgressive System Tract; mfs = Maximum 
flooding Surface. Woodford Shale depositional model after Slatt et al., 2011; Infante-Paez et al., 
2017; Torres-Parada et al., 2017. 
 
 

Frequently, the basal Woodford shale is characterized by being deposited unconformably above 

the Hunton limestones. After Hunton group accumulation, a sea level drop allowed the 

development of an erosional topography that lead to the accumulation of hypersaline lacustrine 

settings and ticker and more TOC-rich intervals (e.g. Infante et al., 2017; Torres-Parada et al., 

2017). In the lower and middle Woodford interval, flooding surfaces were easier to correlate and 

relative continuous, while the continuity in the upper Woodford interval and overlying units were 
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more uncertain (Fig 3.15). The difficulty on identifying the flooding surfaces in the upper 

Woodford and differences with previous interpretations can be explained as the result of the 

second order regressive pattern and/or lateral discontinuities, characterized by the possible 

presence of hiatus.  

 

Fig 3.15. Sequence stratigraphy model and Woodford Shale well correlation in South Central 
Oklahoma. HST = High Stand System Tract; TST = Transgressive System Tract; mfs = maximum 
flooding surface; SB = Sequence Boundary; SB/TSE = Sequence boundary or transgressive surface 
of erosion (After, Slatt et al., 2012; Infante et al., 2017). 
 
 
 The second-order Transgressive System Tract (TST) is characterized by flooding surfaces 

with GR and TOC values that progressively rise to the highest values in correspondence of the 

maximum flooding surface (mfs). Underlying this surface, the shales were characterized by 

homogenous and the finely laminated organic-richest mudstones (Fig 3.14). Transgressive-

regressive hemicycles were recognized based on the GR well log shape and supported by the 

comparison with detailed facies descriptions, palynology, mineralogy and composition from the 
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XRF and XRD analysis. The transgressive hemicycles are characterized by sharp base or lower GR 

values, more detrital-silica richer lithofacies and associated with low TOC contents. The 

regressive hemicycles were characterized by decreasing upward GR and TOC values, with the 

corresponding more marine, and higher TOC and GR values at the flooding surfaces. 

 The second-order regressive pattern was associated with the Highstand System Tract 

(HST) and characterized by increments in the detrital components, higher Ti, Zr and Fe contents, 

higher terrestrial palynomorphs (Urban, 1960; Molinares-Blanco 2013; Turner et al., 2015; 

Kondas et al., 2018). The HST was also characterized by the progressive decrease on the anoxic 

conditions and the end of the permanent zone of the euxinia (PZE) and more oxygenated open 

marine circulation by the end of the Late Devonian (Fig 3.14). The HST regressive pattern might 

be associated with the onset of the Late Devonian, early Famennian glacial events (Copper, 1986; 

Isaacson et al., 1999; Streel et al., 2000; Soreghan et al., 2008), which apparently induced a global 

sea level drop and regression in the North American platform (Johnson et al., 1985; Joachimski 

et al., 2002; Bond et al., 2004; Bond and Wignall, 2008; Bond et al., 2013). The third-order 

flooding surfaces within the HST were characterized also by decreasing upward GR values and 

respectively lower TOC contents. 
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5. Conclusions 

A multiproxy analysis from Woodford Shale samples in the research Wyche-1 core well recorded 

the depositional changes associated with the Frasnian and Famennian (F/F) transition in South-

central Oklahoma. The Woodford Shale accumulated unconformably over early Devonian 

limestones, equivalent to the Hunton group, and was delimited at the top by organic-poor 

mudstones, equivalent to the pre-Walden Shale. The Woodford was subdivided into the lower, 

middle and upper intervals. The middle interval was organic-richer than the upper and lower 

Woodford and accumulated under the presence of permanent euxinic conditions. The upper 

Woodford was characterized by oxic to suboxic redox conditions, the abundant presence of 

phosphatic nodules, a higher terrestrial-derived palynomorphs, and higher Fe contents related 

to increments in detrital ilmenite. 

The Woodford shale Mo/U ratios and C40 organic biomarkers support the idea of stagnant 

or marine restricted conditions during the accumulation of the middle Woodford Shale deposits. 

In the Arbuckle Mountain region, the Woodford shale outcrops identified the F/F transitions 

based on conodont assemblages and magnetic susceptibility correlations. The middle Woodford 

in the Wyche-1 well recorded two positive carbon excursion events which correlated to the 

Upper and Lower Kellwasser anoxic-events. In addition, the transition between the upper 

Woodford and the pre-Walden shales recorded another positive isotopic excursion which was 

interpreted as the Devonian/Carboniferous (D/C) transition and correlative with the upper 

Woodford age based on conodont assemblages reported from the Lawrence uplift outcrops.  

The top of the Upper Kellwasser event is associated globally with the F/F boundary. The 

F/F boundary was characterized by the end of the permanent euxinic conditions. This boundary 
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was also marked by a change from predominantly transgressive conditions, during the 

accumulation of the lower to middle Woodford, to marked regressive conditions identified in the 

upper Woodford. The regression can be associated with a global sea level drop, recorded by the 

end of the Famennian stage and according to some authors, caused by the first Late Devonian 

glacial events recorded in South America. 

 The distribution, contents and preservation of the organic matter (OM) in the Woodford 

Shale deposits was controlled by sedimentological and paleo-ecological conditions, which 

governed the marine productivity and redox conditions. These processes were largely influenced 

by relative sea level changes by controlling key primary productivity elements including: marine 

salinity, the influx of key nutrient (e.g. Fe-influx), water oxygenation, deep-water marine 

circulation and sedimentation/dilution rates. The widespread of anoxic benthic conditions during 

the F/F boundary still poorly understood. However, the preservation of the OM in the Woodford 

Shale was the result of deep-water stagnation, low dilution rates, high salinity/dense vertical 

oceanic stratification, deep-water oxygen depletion, with no clear evidences of a shallow 

marginal sill. 
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