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ABSTRACT

The deposition of sediment in the Ikpikpuk-Umiat Basin of the NPRA has been governed
by four distinct tectonic phases: 1) Franklinian crustal shortening, 2) Ellesmerian continental sag,
3) Beaufortian continental rifting, and 4) Brookian crustal shortening and tectonic inversion.
These tectonic phases and changes in global sea-level resulted in identifiable depositional
packages (megasequences). Utilization of the Vail seismic method and corresponding Galloway
petrophysical motif analysis identify four parasequence sets: Highstand Systems Tract (HST),
Regressive Systems Tract (RST), Lowstand Systems Tract (LST), and Transgressive Systems
Tract (TST). These parasequence sets are separated and divided by 25 operational sequence
boundaries from the Mississippian to the Cretaceous. Comparison of local and global sea-level
curves indicate that the Ikpikpuk-Umiat basin was controlled by allocyclic processes until
Brookian time, in which depositional loading of sediment forced the basin to subside.
Chronostratigraphic Wheeler diagrams illustrate the results of the complex relationship between
auto- and allocyclic accommodation changes. An understanding of the relationship between
these depositional phases will substantially increase hydrocarbon exploration strategies. Recent
studies suggest the Nanushuk in particular has promising potential for hydrocarbon production,
and the relative locations of the underlying systems tracts provide information on the most likely

locations of traps, seals, reservoirs, and source rocks.
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INTRODUCTION

The Northern Petroleum Reserve in Alaska (NPRA) is over 95,000 square kilometers in
area and consists of all the land north of the Brooks Range and Colville River and south and east
of the Chukchi and Beaufort Seas, respectively (Fulk, 2010). This study focuses primarily on the
sequence stratigraphy of the Ikpikpuk-Umiat basin, which covers roughly 7,000 square

kilometers of the eastern section of the NPRA, and extends west into an area just south of the

Barrow Arch.
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Figure 1: Map of NPRA boundaries in Northern Alaska showing the locations of the Meade
and Ikpikpuk-Umiat basins as well as the locations of the Ikpikpuk 1 well, the Inigok 1
well, and the North Inigok 1 well. (Modified from Fulk, 2010)

The NPRA consists of four main stratigraphic megasequences: The Franklinian
Megasequence, the Ellesmerian Megasequence, the Beaufortian Megasequence and the Brookian
Megasequence (Bird, 1987; Housknecht 2003). The Franklinian Basement complex is comprised
of pre-Mississippian metamorphic rocks and is regarded as the economic basement. The
Ellesmerian Megasequence was deposited during the Mississippian to early Cretaceous times

from a northern-derived source. The Beaufortian Megasequence, deposited during early to



middle Jurassic and early Cretaceous time, formed during the rifting event that opened up the
Arctic Ocean (Houseknecht, 2003). The Brookian Megasequence was derived from the Brooks
Range in the south from the Early Cretaceous to Cenozoic. The Ellesmerian, Beaufortian, and
Brookian Megasequences are all considered prospective for petroleum and have been explored
and developed by the US Government from 1944 to 1981 (Bird, 1987), and new oil and gas

leases commenced in 1999.

The stratigraphy of the Ellesmerian, Beaufortian, and Brookian Megasequences has been
the subject of numerous studies in the NPRA, and a general framework of the strata has long
been established. However, these studies have focused primarily on the major sequence
boundaries and do not delve into the finer parasequence sets contained within. Using a
combination of seismic sequence stratigraphy and well-log sequence stratigraphy, it is possible
to further constrain the sequence stratigraphic model of the NPRA. A higher resolution model of
the NPRA subsurface would substantially assist in the acquisition of hydrocarbons in the area.
This study focuses on the integrated application of Vail Seismic sequence stratigraphy and

Galloway log motif analysis to create a higher resolution model of the NPRA.

The methods used in this thesis are largely derived from the works of Peter Vail (1977),
Robert Mitchum (1977), and William Galloway (1981), all of whom played a large part in
developing the study of sequence stratigraphy. Sequence stratigraphy is a framework for
describing the deposition of conformable packages of strata that are bound by surfaces in time as
opposed to lithology or depositional environment. These surfaces in time are referred to as
sequence boundaries, and are understood to be significant erosional unconformities and their

correlative conformities (Mitchum and Vail, 1977).
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Figure 2: Model of an idealized deltaic sequence. Galloway sequence boundaries are
indicated by G, and Vail sequence boundaries are indicated by V. Relative location of
parasequence sets are also shown. Important surfaces are shown with the black arrows. See
text for explanation. (Modified from VVan Wagoner, 1988).

Alternatively, Galloway (1989) proposed the maximum flooding surface as the sequence
boundary for his genetic stratigraphic sequence. There are advantages to both approaches, the
main distinction being that in seismic it is easiest to use Vail and Mitchum’s framework
(Mitchum and Vail, 1977) due to the ease of spotting unconformities, while Galloway’s
approach (Galloway, 1989) works better for well logs, where maximum flooding surfaces are
commonly reflected in gamma ray logs (Pigott and Bradley, 2014);. For the pragmatic seismic
interpretive purposes of this thesis, Vail and Mitchum’s sequence boundary will be used, while
gamma ray logs from sparse well control in the region will provide a proxy for process energy to

indicate times of shoreline regression, transgression, and stasis (Pigott, 2018).
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Highstand Systems Tracts (HST), Sequence Boundary (SB), Lowstand Systems Tracts
(LST), Transgressive Surface (TS), and Transgressive Systems Tracts (TST) as they relate
to changes in sea-level (SL) and base-level (from Pigott and Bradley, 2014).

Sequences may be further divided into parasequence sets known as systems tracts:
highstand systems tracts (HST), lowstand systems tracts (LST), transgressive systems tracts
(Catuneanu, 2006) and regressive systems tracts (Pigott et al., 2012). In seismic, these systems
tracts are divided based on reflector geometry and termination patterns. The geometries within a
sequence are dependent on several different variables, such as rate of sedimentation, tectonic

activity, and eustatic sea level changes (Galloway, 1989). The different types of reflector



termination and their implications can be seen in Figure 4. Mitchum and Vail (1977) provide a

detailed method for determining sequence boundaries in seismic data.
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Figure 4: Diagram showing the different types of reflector terminations. Truncation is
associated with base level drop and erosion, toplap is associated with static base level, and
onlap is associated with rising base level and transgression. (Modified from Mitchum, 1977)

An understanding of sequence stratigraphy can provide valuable insight into the location
and production of hydrocarbons. Statements from the USGS indicate that the Nanushuk Group in
particular shows promising potential for hydrocarbon production, and as such the stratigraphic

framework of the underlying units may influence decisions moving forward.



GEOLOGIC HISTORY

The NPRA is located on a small continental fragment called the Arctic Alaska Microplate
(Hubbard et al. 1987), whose boundaries are only approximately known. The North Slope, most
of the Brooks Range, and part of Siberia are included on this microplate. While the plate tectonic
history of Northern Alaska remains a controversial subject, the most common interpretation is
the rotational hypothesis put forth by Carey (1958), Tailleur (1973), and Grantz (1998). In this
hypothesis, the Arctic Alaska Microplate was originally located adjacent to the Canadian Arctic
Islands. Rifting in the Cretaceous caused a rotational opening in the Canada Basin, forcing the
Arctic Alaska Microplate to move counter-clockwise away from Canada in a 60-degree arc about

the Mackenzie Delta. Other leading hypotheses are summarized by Lawver and Scotese (1990).
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Figure 5: Map showing the rotation of the Arctic Alaska microplate rotating away from the
Canadian Arctic islands. Heavy dashed line is inferred to be the extinct seafloor spreading
center that forced the Arctic Alaska microplate to move. (Laxon,1994: McAdoo, 1998)
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The geologic history of the NPRA has resulted in four distinct stratigraphic packages
which will be referred to as megasequences for the purposes of this paper (Houseknecht, 2003).
These megasequences are the Franklinian, Ellesmerian, Beaufortian, and Brookian, from oldest
to youngest. These megasequences reflect major tectonic events and result in significant
differences in sediment source area, structural frameworks, and depositional environments.
Changes in global sea-level further influenced deposition and created internal complexities

within the megasequences.

The Franklinian Megasequence formed more than 400 million years ago, before the
Middle Devonian time on a stable continental platform. Some of the sequence may have formed
on a passive margin sloping under a sea that deepened to the south. Franklinian deposition ended
in the Middle to Late Devonian during the Ellesmerian Orogeny and the megasequence became
moderately metamorphosed and highly deformed throughout the mountain belt. The formation of
failed rift sub basins such as the Meade and Ikpikpuk-Umiat accelerated the erosion of the
continental uplands to a low-lying south-facing coastal plain that began to subside below sea
level. A wide range of rock-types are prevalent throughout the sequence, including
metamorphosed argillites, graywackes, quartzite, carbonates, and volcanics. The Franklinian
Megasequence is often considered the non-prospective basement due to high thermal maturity

and generally poor reservoir quality. (Petroleum News, 2008)

Overlying the Franklinian Basement, the Ellesmerian Megaequence is comprised of
sediments eroded from Franklinian rock in the landmass north of the Beaufort Sea (Bird, 1981).
These sediments moved southward and accumulated in coastal and marine settings of the Arctic
Alaska basin. The Ellesmerian Megasequence is characterized by this south-facing passive

margin deposition and continues over 150 million years, ending in the early or middle Jurassic.



The megasequence is thickest in the center of the Colville basin and thins to the north due to
onlap against the landmass and to the south due to distance from sediment source. Deposition
was highly varied in Ellesmerian time, resulting in both carbonate and clastic formations that
contain petroleum source rocks, excellent reservoirs, and strong seals (Petroleum News, 2008).
The Ellesmerian Megaequence is commonly understood to contain multiple prominent groups
and formations. From youngest to oldest these are: Endicott group, Lisburne Group, Sadlerochit

Group, Shublik Formation, and Sag River Formation (Kupecz, 1995).

The Beaufortian Megasequence, often referred to as the rift sequence, was deposited
between Early to Middle Jurassic and Early Cretaceous time. This megasequence was heavily
influenced by the counter-clockwise rotational rifting that opened up the Arctic Ocean (Hubbard
and Others, 1987). During this time, the east-west trending structural high known as the Barrow
Arch began to form in a series of uplift-phases, resulting in a system of rift grabens to the north
and widespread surface erosion known as the Lower Cretaceous Unconformity (LCU)
(Petroleum News, 2008). Beaufortian strata are distinguished by northern provenance and
seismically defined clinoforms that indicate offlap to the south and southeast (Bird, 1987). The
Beaufortian Megasequence is comprised of the Kingak Shale and overlying Pebble Shale, which
are separated regionally by the LCU (Houseknecht, 2003). Some Beaufortian sediments
accumulated on the uplifted margin of the Barrow Arch, forming important sandstone reservoirs

(Petroleum News, 2008).

In late Jurassic and early Cretaceous time, thick sheets of fault thrusted rock from the
formation of the Brooks Range began to depress the Earth’s crust to the north, causing the
Colville Basin to begin to sink (Petroleum News, 2008). Sediments eroded from these thrust

sheets began to fill the basin progressively from the southwest to the northeast, forming the



Brookian Megaequence. The older Brookian sediments were deposited under relatively
deepwater settings and are most commonly shales and sandstones, while the younger Brookian
sediments were deposited in shallow water settings such as river deltas or coastal plains. This
transition from deep to shallow depositional environments demonstrates the progressive infill of
the Colville Basin (Houseknecht and Schenk, 2001). The most prominent formation contained
within the Brookian Megasequence is the Torok Formation, a series of prograding clinoforms
that grow younger to the east (Houseknecht and Schenk, 2001). Overlying the Torok Formation

are several other packages of Brookian strata, however these are beyond the scope of this thesis.
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STRATIGRAPHY

This chapter will focus on the major groups and formations present within the Ikpikpuk-
Umiat basin. From oldest to youngest these are: the Endicott Group, the Lisburne Group, the
Sadlerochit Group, the Shublik Formation, the Sag River Formation, the Kingak Formation, the

Pebble Shale Formation, and the Torok Formation. See Figure 2.

Endicott Group

The Endicott Group is made up of the Mississippian aged clastic rocks beneath the
Lisburne group. It forms the basal part of the northern-sourced Ellesmerian Megasequence, and
is comprised almost entirely of nonmarine and shallow marine clastic rocks, representing an
overall transgressive sequence (Bird and Jordan, 1977). This group has been penetrated by a
number of wells drilled in the NPRA, most notably the Ikpikpuk 1 well and the Inigok 1 well,
though the group is poorly represented in core (Wilson and others, 2001). Bird and Jordan
(1977) divided the Endicott Group into three formations: the Kekituk Conglomerate, the Kayak

Shale, and the Itkilyariak Formation.

Nilson (1981) describes the three members within the Kekituk Conglomerate. The lowest
member is a 90 foot thick section of breccia and conglomerate, interpreted to be of fluvial origin.
The middle member is a 90 foot thick section of fining upward conglomerates and sandstones,
likely deposited by braided streams. The highest member is a 60 foot thick section of repeated
cycles of fining upward conglomerate and sandstone that is rich with plant fossils, interpreted to

be deposited by meandering streams.

The Kayak Shale consists of a base sandstone layer overlain by black marine shale with

thin interbedded sandstone layers, most likely of debris flow origins. The uppermost section of

11



the Kayak is made up of interbedded shale and limestone beds. The abrupt shift from the basal

sandstone layer to marine shale heavily indicates strong marine transgression (Nilsen, 1981).

Mull and Mangus (1972) added the Itkilyariak Formation to the group because of
distinctive red beds they were able to correlate from the Sadlerochit mountains to the Prudhoe

bay area subsurface. The Itkilyariak Formation is not believed to be contained in the Ikpikpuk-

Umiat Basin (Mauch, 1985).
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Lisburne Group

The Lisburne Group is a carbonate platform that directly overlies the Kayak Shale in the
Ikpikpuk-Umiat basin. In the NPRA, and particularly in the Ikpikpuk-Umiat Basin, the Lisburne
Group shows highly variable thickness, ranging from 2000 to 6000 feet (Mauch, 1985).
Deposited on an irregular surface with high topographic relief, this group is discontinuously
present throughout the region, growing progressively older to the south. Having formed on a
south-facing passive continental margin, the Lisburne represents several northward
transgressions, though in the NPRA it has a westward component as well (Fulk, 2010).
Dumoulin and Bird (2001) divided the Lisburne Group into Mississippian age strata and

Pennsylvanian age strata, with an overlying transition zone into the Sadlerochit Group.

Dumoulin and Bird (2001) further divide the Mississipian strata into three units: the
lower limestone, middle dolostone, and the upper limestone. The lower limestone unit consists
mostly of bryozoan rich wackestones and packestones and contains thin interbedded shales as
well as grey dolomites and is the thickest unit of the Mississippian strata. Overlying the lower
limestone is the middle dolostone. The middle dolostone grades into bioclastic packestones,
though aside from these packestones fossil abundance was very low. The upper limestone unit is
more laterally extensive than previous units, and is comprised of white/tan/grey limestone, grey

dolostone, and some infrequent siltstone and sandstone (Dumoulin and Bird, 2001).

Pennsylvanian age strata in the Ikpikpuk-Umiat Basin is made up of limestone and
dolomitic limestone overlain by limestones interbedded with shales and siltstones. This unit is
thickest at the Inigok 1 well, where it is over 1,500 feet thick (Haywood, 1983). Dumoulin and
Bird (2001) report 10-50 feet thick shallowing upward cycles marked by ooids and bioclastic

grainstones, interpreted to represent a shift in environment from open marine, sub-wave base to

13



higher energy nearshore shoals. Above the Pennsylvanian age strata exists a transition zone in
which carbonate deposition was halted either because of an influx of siliciclastic sediment or a

shift to a deeper, colder marine setting (Dumoulin and Bird, 2001).

168" 164" 160" 156" 152" 148° 144° 140° 136°
7 U 1 1 1 I | \

70" |

68"

Study area

EXPLANATION 0 % 100 150 200 KILOMETERS
[ Y ESE WO o

- Outcrop belt of the Lisburne Group

Figure 8: Map showing a thickness isopach of the Lisburne Group on the North Slope.
Ikpikpuk-Umiat basin is labeled “A” and Meade basin is labeled “B”. (Modified from
Dumoulin and others, 2008)

Sadlerochit Group

Overlying the Lisburne Group disconformably is the Sadlerochit Group. This group is
composed of primarily coarsening upward siliciclastic sediment, with the exception of the
uppermost member, which is silty. The Sadlerochit shows variable thickness and thins to the
north, from 1,550 feet in the Inigok 1 well to 600 feet at the West Fish Creek well owing to
distance from the sediment source and erosion (Bird and Jordan, 1977). Wilson and others
(2001) divide the Sadlerochit into four formations: the Echooka Formation, the Kavik Shale, the

Ivishak Formation, and the Fire Creek Formation.
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The Echooka Formation was deposited from the Early to Late Permian and is a fine
grained silty sandstone that is rich in fossils (Wilson and others, 2001). Near the top of the
Lisburne unit the siltstones are more calcareous, grading upwards into a more quartzose heavy
sandstone-siltstone mixture (Mauch, 1985). The Echooka Formation is interpreted to have
formed in a shallow marine depositional environment, such as a prodelta (Mauch, 1985; Bird,

2001).

The Kavik Shale overlies the Echooka Formation in the Ikpikpuk-Umiat Basin. Near the
top of the Echooka Formation, it is composed primarily of shale with thin interlayers of siltstone
and grades upward into a slightly shaley siltstone, abundant with plant fragments (Wilson and
others, 2001). The Kavik Shale was most likely deposited in a more distal shelf or deltaic

environment.

The lvishak Formation unconformably overlies the Kavik Shale. The Ivishak coarsens
upward from siltstones and interbedded shales at the base to argillaceous sandstones and shales
at the top. It is believed to have been deposited in a fluvial deltaic environment during a

shoreline regression (Mauch, 1985; Wilson and others, 2001).

The uppermost formation in the Sadlerochit Group is the Fire Creek Siltstone. This
formation contains siltstone, mudstone and some sandstones. Wilson and others (2001) cite the
transition from sandstone to mudstone as evidence that the Fire Creek Siltstone was deposited

during a time of transgression.

Shublik Formation

The Shublik Formation was deposited atop the Sadlerochit Group from Middle to Late

Triassic time. Ranging from 250 to 500 feet thick in the NPRA, the Shublik Formation contains a
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number of lithologies: calcareous siltstones, limestones and dolomites, and shales and sandstones
(Mauch, 1985). This formation is very high in phosphate and organic material, and is considered
the prominent source rock of the Prudhoe Bay (Fulk, 2010). Detterman (1970) suggests a low-
energy, deep-water depositional environment, with mud to silt sized sediment sourced from the

north.

Sag River Formation

The Sag River Formation is a very thin (<70 feet) Late Triassic sandstone unit that
conformably overlies the Shublik Formation (Mauch, 1985). This formation is interpreted to be
correlative with the upper Shublik sandstone found in the Northeastern Brooks Range. This
glauconitic orthoquartzite thins towards the North and East, it is only 30 feet thick in the Inigok 1

well (Bird, 1982).

Kingak Formation

The Kingak Formation is primarily a marine shale with small amounts of fine-grained
sandstone and siltstone, deposited during Jurassic and Early Cretaceous time from a sediment
source in the North (Kirschner and others, 1983). Unlike the Sadlerochit Group, Shublik
Formation, and Sag River Formation, the Kingak Formation is very thick and grows thicker to
the south, reaching 2900 feet at the Inigok 1 well (Tetra Tech, 1982). In the NPRA, the Kingak is
generally characterized by a lower transgressive sequence with interbedded sandstones and
shales at the base, followed by a middle regressive sequence with erosion or a depositional
hiatus, and finally an upper transgression during which marine shales and siltstones were

deposited (Mauch, 1985; Tetra Tech, 1982). The Kingak is interpreted to either be a turbidite
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sequence or prograding shelf deposit (Kirschner and others, 1983). This formation is overlain by

the Lower Cretaceous Unconformity, on which sits the Pebble Shale.

Pebble Shale

The Pebble Shale is an Early Cretaceous shale derived mostly from a sediment source in
the south, though a northern upland provided some sandstones to the northernmost reaches of the
Pebble Shale (Balkwill and others, 1983). This unit is a black shale containing well rounded
quartz grains throughout, as well as highly polished chert pebbles. The exact origin of the
pebbles is unknown, though it is hypothesized that the pebbles were transported in by moving ice

or vegetation (Detterman and others, 1975; Molenaar, 1981).

Torok Formation

The Torok Formation is a Middle Cretaceous prograding predeltaic wedge that consists
of shale, siltstone, and very fine grained sandstone (Molenaar, 1981; Maunch 1985). This
formation progrades to the northeast from sediment derived from the southern Brooks Range.
The Torok uniformly grows in thickness to the southwest, ranging from 2,000 feet thick in the
Colville Delta in the Northeastern NPRA to 19,000 feet in the Knifeblade wells (Tetra Tech,
1982). In seismic data, the Torok Formation is visible as a series of prograding clinoforms that

onlap onto the Pebble Shale below.
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DATA AND INTERPRETATIONS

The dataset used in this study contains 590 miles of post-stack, unmigrated 2D seismic
line data centered around the Ikpikpuk-Umiat Basin in the NPRA (Kulander and others, 2005).
Shot in 1981, this data is 12-fold with a 2 millisecond sample rate and 6 second record length.
The distance between traces is a uniform 110 feet. In this dataset, wavelet peaks represent
positive reflection coefficients and the wavelets are zero-phase. The quality of this seismic data
is considered moderate to poor due to surface topography, permafrost, shallow gas hydrate
anomalies, or an inability to shoot directly on the planned path because of sensitive wild life or
weather conditions (Fulk, 2010). In addition to seismic data, sparse well control in the basin
allows for synthetic well ties to seismic, using depth converted sections from density and

velocity logs. All data in this study was provided by the United States Geological Survey.
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Figure 9: Map showing study area in the eastern NPRA as well as interpreted 1981 seismic
lines and key wells. All lines were interpreted, but this study will focus on the key lines and
wells mentioned previously.
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This study will focus on the sequence stratigraphic interpretations of lines 18-81, 27-81,
and B-81, which have been tied to the North Inigok 1, Inigok 1, and Ikpikpuk 1 wells. Seismic
interpretation was completed in Petrel 2016, and HampsonRussel Geoview was used for well-

ties, both of which were licensed by University of Oklahoma.

Using paleontology and lithostratigraphy reports provided with the well logs to infer tops,
seven horizons that correspond to lithologic formation tops have been interpreted in the seismic
data. These lithologic horizons include the Franklinian Basement, the Lisburne, the Sadlerochit-

Shublik, the Sag River, the Kingak, the Pebble Shale, and the Torok.
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In order to constrain the seismic to the borehole data, sonic and density logs from five
wells in the area were used along with their statistically extracted wavelets to perform well-ties.
The correlation coefficients for tied wells vary from 64% to 66%. Figure 13 shows the well to

seismic tie at the Inigok 1 well.
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Figure 13: Well-to-Seismic tie at Inigok 1 well. 66% correlation coefficient was achieved in analysis window
(between yellow lines).

Once the seismic data was constrained to the borehole and major lithologic formations
were picked, a sequence stratigraphic interpretation was performed. The rest of this chapter will

focus on the methodology used for sequence stratigraphy and the interpretations that followed.
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Methods

In 1977, Mitchum and Vail provided the initial theory and methodology for sequence
stratigraphy. Since then, several other approaches to the study of sequence stratigraphy have
been developed. Some of the more prominent approaches important for this study are Galloway’s
genetic sequence stratigraphy (1989) and Neal and Abreau’s (2009) accommodation succession
approach. Pigott and Radicojevic (2010) term Mitchum and Vail’s method and Galloway’s
method as the “Vail Approach” and the “Galloway Approach” respectively. These three
approaches form the sequence stratigraphic framework utilized in this study, thus the pragmatic
rationale behind utilizing the Vail approach on the seismic and then refining it with the Galloway

approach. The specific methods can be seen below:

1. Identify reflector terminations from seismic and identify whether they downlap,
onlap, truncate, or toplap.

2. Draw in unconformity surfaces between downlapping and onlapping reflectors above
and truncating or toplapping reflectors below.

3. Extend unconformity surface across the complete section and tie to intersecting
seismic lines.

4. Interpret well log motifs using gamma ray as a proxy for grainsize to indicate periods
of shoreline stasis, transgression, and regression.

5. Correlate to other interpreted boreholes located in the seismic section.

6. Constrain well logs with seismic and match unconformities to shifts in log motif.

7. ldentify the type of unconformity as a sequence boundary or a downlap surface.

8. The packages of strata between two boundaries is a systems tract, and the geometry

of the strata within aids in the identification of Systems tracts. (Figure 14)
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a. Prograding to Aggrading is indicative of a Lowstand Systems Tract.
b. Retrogradation is indicative of a Transgressive Systems Tract.
c. Aggradation to Progradation to Degradation is indicative of a Highstand
Systems Tract.
9. Match interpreted systems tracts to log motif trends.

10. Construct chronostratigraphic chart.

The methodology for construction of a chronostratigraphic chart was described in detail by
Pigott and Radivojevic (2010). A brief summary of the methods used to construct a

chronostratigraphic diagram follows:

1. Identify and date the reflectors that correspond to operational sequence boundaries
from oldest (bottommost reflector) to youngest (uppermost reflector).
2. Transfer this information to a chart with age on the Y-axis and horizontal location on
the x-axis (denoted by shotpoints).
3. Beginning with the oldest reflector, mark the lateral extent of that reflector at the
appropriate time.
4. Continue this process for every reflector.
5. Void spaces left on the chart represent zones of missing time. Four types of
recognized time gaps exist:
a. Non-depositional hiatus
b. Unconformity
c. Vertical or horizontal limits of control

d. Combinations of the previous three
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Figure 14: Accommodation Succession stacking patterns. progradation-aggradation is
understood to represent Lowstand Systems Tracts, retrogradation represents
Transgressive Systems Tracts, and aggradation-progradation-degradation represents
Highstand Systems Tracts. (Modified from Neal and Abreu, 2009)
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Sequence Stratigraphic Interpretation

In addition to the lithologic formation horizons, 25 operational sequence boundaries
have been interpreted in the seismic using reflector termination patterns to show unconformities,
depositional hiatuses, and maximum flooding surfaces according to the operational procedures
outlined in Pigott and Radiovejic (2010). These operational sequence boundaries are grouped
and colored by tectonic phase, with Ellesmerian, Beaufortian, and Brookian boundaries colored
red, blue, and green, respectively. Operational sequence boundaries delineate systems tracts and
provide valuable insight into ancient depositional conditions (Van Wagoner and others, 1988).

Figures 15 through 19 show the interpreted operational sequences and systems tracts.
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Several of the unconformity surfaces shown above correspond directly to the lithologic

formation tops shown earlier in this chapter. From oldest to youngest these are:

Lisburne Group to EL2

Sadlerochit-Shublik to BE1

Kingak to BE4

Pebble Shale to BE5

These operational sequence boundaries were picked independently of the lithologic
formation tops, solely based on reflector termination patterns. Arriving at the same conclusion in
both seismic and well analysis lends confidence to the interpretation, which will be further

explored with Galloway log motif analysis as shown in Figure 20 (procedure of Pigott, 2018).

Comparison of the Vail and Galloway analyses show both similarities and differences in
the results. Third order parasequence boundaries are seismically resolvable while the Galloway

motifs show fourth order parasequence boundaries.

34



sise3s puesmon
sisejs pueisysiy
uoissai3ay

uoissaidsues]

vy o Pumgsn

~p Il

< wowen
139

"o

boaced Loy oy

<P e

NeSury

—3 39

e e

R B -2 -

*SULLIN|OD Y00|¢ PUE SMOLIE YIIM UMOYS 318 S3|IAD J83pJo Yunoy

a|qeajosaiun Ajjediwsias pue ‘s30] ay3 uo sdoj se UMOYS d1e DILISIaS WOl saepunoq apPAd

J3pJo paiy] ‘sisels pue ‘uoissaiSsuel) ‘uoissaiSal auljaioys Jo saPAd Suimoys sjjam 1 joSiu)

pue ‘ T 3031u] yuoN ‘T yncbjid)y uo pajanpuod sisAjeue jiow Joj Aes ewiwen :0Z 34n313

> H I - DIl D)

s rerra 139
TIE— <D z%
- 0084
oooe
4 D
3P| = €39
AeBuiy AeBury
raad=l vae
oce
IWUS IS - Iwus I
Lol 539
e . cua
U & ]
LT T iNe
(v I (0]

B 5 i
Chcir

L e

LI
PATE Ui e
LL1E Uy ey

, .mio.o>
S NS

Srive

Seive
i
seus

iE o
D > >l »> > ED>» >

35



*(343u) T q031u| Yo pue (y3))

112M T Xo381u) jo suonisod MoyYs saul| [BI13I3A Hjoe|g 's3oel} swaisAs pueismo) a3edipul suoSAjod paus
pue ‘sjoesy swaysAs pueisysiy a3eaipul suo3Ajod anjq ‘syoea) swaisAs anissaaSsuesy ajeaipul suo3Ajod
U349 *suUWN|o2 y20|q 3yl Aq umoys sa|2Ad J13pio Yy1inoy 3jqenjosaiun Ajjediwsias yim Suoje syoely
swaisAs Suipuodsaliod pue saliepunoq asuanbas jeuoesado Suimoys 8-/ dul| J1WSISS :TZ 34n314

ns

T T “n L T T LU U ) 1) 1 x
(.74 hﬂ-ﬂ« £ et st e 155 U .ﬁﬁv Lo%y WU(I—.
ot wmonl ool v w3 Semetey obtion | LR N e om, Sormsariostre 2¥
aN erutoy 19w L 4 ey Lol e s AL X L It e el 80 0 MS
L
L)

TWT (ms)

36



ua319 *suWN|od y20j|q 3y3 Aq umoys sa|oAd J3pIo Yunoy 3jqeajosalun Ajjedsiwsias Yyim Suoje spoen

3 *(3y3u) yo31u| yoN

0 pue (y3]) |[aMm yndyidy] jo suonisod Moys saul| |BI11IBA yoe|g ‘s3oel] swalsAs pueismo| ajesipul suoSAjod
pa4 pue ‘s3oes) swaisAs pueisysiy ajesipul suoSAjod an|q ‘sjoely swajsAs anissasSsuesy ajeaipul suosAjod

swajsAs Suipuodsaliod pue sauepunoq asuanbas jeuonnesado Suimoys T8-8T aul| J1WSIAS :ZZ a4nS14

= e A e ‘/ﬂhmmn%ugx(v;ﬁhﬂun.ﬁ.&ﬂtmx A
. A A e T o o > x ‘ N : N Y i 4

‘»..4(1 / - e AT =3 - Wi e e N o ,,\\ N A Cowry, N )

e A T . 7 7 .%.I . Sp - N U 1.. R NP /.g
O %zgkﬂ%u\ P ’ . e — a7 S N ".L\\.v.,}..r 4
— \\.M“/M“(fymv\\xal.) . = ~— - - - - e P S - - o E e 2 ~ -y

—

i 8 333
£ = ¥ 2%

-

TWT (ms)

37



The vertical resolution of borehole data is much greater than the vertical resolution of
seismic data. As a result of this, the fourth order sequences visible in the well logs are much thinner
than the third order sequences shown in the seismic. The trends shown in the borehole data show

much more detail than the overall trends noted in the seismic data.

As a result of seismic sequence analysis, a chronostratigraphic Wheeler Diagram was
constructed on seismic lines 27-81 and 18-81 using the methodology described at the beginning
of this chapter. Wheeler Diagrams are useful for describing the temporal and spatial distribution
of rocks as well as the accommodation conditions at the time of deposition. Perhaps most
importantly, constructing Wheeler Diagrams makes the interpreter question the geological

integrity of the interpretation.
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As mentioned previously, the parasegeuence set boundaries shown above are grouped based on
tectonic phase. These groupings are the Ellesmerian, Beaufortian, and Brookian Megasequences.
Isopach maps as well as time-structure maps showing key surfaces in each megasequence are

shown in the Figures 25 through 33.
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Seismic Facies Interpretation and Petroleum Implications

This section of the study uses seismic reflector geometry to interpret seismic facies as well
as important seismic features in the Brookian clinoforms discussed previously. Figure 34 shows
how seismic reflector geometries are used to identify seismic facies. The most prevalent seismic
facies discernable in the Brookian clinoforms are parallel to divergent, draping parallel, and

transparent sigmoid clinoform facies.

3mi

Figure 34: Figure showing various types of seismic facies. (A) Parallel to divergent facies.
(B) Draping parallel facies. (C) Transparent sigmoid clinoform facies. (D) Hummocky
facies. (E) Chaotic facies. (Modified from Lofi et al., 2003)
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Parallel to divergent facies is represented by variably continuous high amplitude reflections
and are most common in the middle shelf. These facies are typically interpreted to have been
deposited in shallow marine environments. They are commonly characterized by erosional features

that have been filled with parallel, transparent or chaotic reflections. (Lofi et al., 2003)

Draping parallel facies is represented by gently dipping, continuous, low to high amplitude
drape reflections. This facies is commonly found at the base of clinoforms and are interpreted to

be deposited under low energy, deep water conditions. (Lofi et al., 2003)

Transparent sigmoidal clinoform facies is usually represented by moderate to high
amplitude seismic reflections showing distinct topsets, foresets, and bottomsets. In between the
clinoforms are discontinuous low amplitude reflections. This facies is characteristic of prograding
units and shelf deposits. This facies is commonly interpreted to be shallow-marine to slope

depositional environments. (Lofi et al., 2003)

The type of facies present in any area can give important indications of the lithology of that
package of strata. These seismic facies expressions can offer insight into the probable location of
petroleum system elements. For the purposes of this study, seismic facies and important seismic
features were distinguished in the Brookian clinoforms near the North Inigok 1 well, shown below

in Figure 35.
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Figure 35: Figure showing a zoomed in image of the Brookian clinoforms near the North
Inigok 1 well. Seismic Facies have been grouped by color. The blue polygon corresponds to
parallel to divergent facies. The green polygon corresponds to draping parallel facies. The
yellow polygons correspond to transparent sigmoid clinoform facies. Important geological
components of a delta are shown with black arrows.

The various component parts making up a delta can indicate the most likely location of
petroleum system elements. Deposited in deep water during low energy conditions, prodeltas
consist almost entirely of muds and fine grained organic material. These deposits make excellent
source rocks and seals. Above the delta plain is the delta front. The delta front is where distributary
mouth bar sands are located, and are found on the crest of the shelf before the slope, which serve
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as stratigraphic traps. The presence of sand and overlying stratigraphic traps, as well as the organic
rich prodeltas below make delta fronts excellent reservoirs. In the delta plain, the deposited
sediment is commonly deltaic mud along with sporadic and compartmentalized channel sands.
These delta plains often make good seals and can aid in trapping any hydrocarbons that have

migrated into the sand-rich delta fronts.

In the Brookian clinoforms, the foreset and the bottomset are part of the Torok Formation,
and the topset is part of the Nanushuk formation. The Torok Formation is made up almost entirely
of silt and mud, whereas the overlying Nanushuk has a higher concentration of sands. These
observations are consistent with the seismic facies expressions depositional environments.

Accordingly, the sandy delta fronts could be potentially lucrative targets for petroleum exploration.
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DISCUSSION

The preceding interpretations demonstrate the variable nature of deposition in the
Ikpikpuk-Umiat Basin and provides a sequence stratigraphic framework for the resolvable
parasequence sets in the seismic data. The following discussion describes those interpretations in
greater detail and will be grouped by megasequence. Following this is a comparison of local sea
level curves to the global sea level curve (Haq et al., 1987) in order to distinguish autocyclic or
allocylcic dominance in the Ikpikpuk-Umiat basin. The discussion will be concluded with a

comparison of this study to previous works.
Ellesmerian Megasequence

As mentioned previously, the Ellesmerian Megasequence consists of the Endicott Group,
the Lisburne Group, the Sadlerochit Group, the Shublik Formation, and the Sag River Formation.
In the seismic, only two operational sequence boundaries were distinguished: EL1 and EL2.
Boundary BE1 marks the top of this group and coincides with the top of the Sag River
Formation. This megasequence sits on top of the interpreted basement horizon, which is the top

of the Franklinian Megasequence discussed earlier in this work.

Figure 25 shows an isopach map of the Ellesmerian Megasequence. This sequence is
thickest in the southwest of the basin, thinning to the North and North-East. This is largely due to
the structure of the basement (Figure 26) which is deepest in the southwest and shallows to the
North. The reflectors between the basement and EL2 consistently onlap towards the northeast,
backstepping towards the sediment source. Parasequence set boundary EL1 truncates underlying

strata in places, indicating at least some erosion.
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Figure 27 shows the EL2 parasequence set boundary, which corresponds directly to the
top of the Lisburne Group. This boundary is laterally continuous and is interpreted to mark the
shift between Lisburne carbonates and the shallow marine siliciclastic rocks of the Sadlerochit
Formation. This surface truncates several underlying reflectors, but ultimately is not considered

to be an erosional surface, but a non-depositional one.

Figure 28 shows the BE1 parasequence set boundary which is interpreted to be the top of
the Ellesmerian Megasequence. Between boundaries EL2 and BE1 few reflector terminations are
visible and the strata are mostly conformable, though some onlap and truncation is present. This

surface is interpreted to be a non-depositional hiatus.
Beaufortian Megasequence

The Beaufortian Megasequence consists of the Kingak Formation, and the Pebble Shale
Formation. In seismic, five operational sequence boundaries have been distinguished: BE1, BE2,
BE3, BE4, and BE5. As mentioned above, BE1 corresponds to the top of the Sadlerochit-Shublik
Formations and marks the base of the Beaufortian Megasequence. The top of the Beaufortian

Megasequence is BE5, which corresponds to the Pebble Shale.

Figure 29 shows an isopach map of the Beaufortian Megasequence. This sequence is
thickest in the middle of the study area and thins outward from the center. This sequence reaches

it’s thickest near the Inigok 1 well.

Figure 30 shows boundary BE4, which corresponds to the top of the Kingak Formation.
BE4 is deepest in the south and shallows to the North. BE2 is interpreted to be the base of the
Kingak Formation. Within the interval bounded by these two surfaces, reflector terminations are

abundant. The Kingak exhibits onlap onto the BE2 boundary and above reflectors are truncated
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by the BE4 boundary. Between the BE4 and BES surfaces, reflector terminations are mostly
absent, tough truncation against the BE5 surface provides evidence that parasequence set

boundaries BE4 and BE5 are both erosional surfaces.

Figure 31 shows boundary BE5, which corresponds to the top of the Pebble Shale
Formation. Boundary BES5 truncates the reflectors beneath it, and the reflectors above it onlap
down on to it. As mentioned previously in this work, the Pebble Shale sits directly atop a

regional unconformity, the Lower Cretaceous Unconformity.

Brookian Megasequence

For the purposes of this thesis, the Torok Formation was the only member of the
Brookian megasequence to be analyzed. In the seismic, 18 operational sequence boundaries were
distinguished. These are BR1 through BR18. The Torok Formation sits directly atop the Pebble

Shale Formation in the study area.

Figure 32 shows an isopach map of the clinoforms in the Brookian Megasequence. The
Brookian Megasequence is thickest in the South and thins moving Northward and Eastward.
Figure 33 shows parasequence set boundary BR10, which is representative of the other
clinoforms in the Torok formation. These clinoforms prograde to the East and represent a huge

influx of sediment in a relatively short amount of geologic time.

The base of the Brookian Megasequence is BE5, or the Pebble Shale. In the seismic, this
is a regional onlap surface, and many of the clinoform reflectors in the Torok terminate against
it. Reflector terminations are abundant in the Brookian Megasequence, especially within the

Torok clinoforms, showing all of the forms of reflector termination shown in Figure 4. BR1
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through BR18 are interpreted to represent non-depositional surfaces, though the presence of

truncation in the clinoforms indicates periods of erosion as well.
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Comparison of Sea-Level Curves
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Figure 36: Comparison of line 27-81 local sea level curve
on the left to Global Sea level curve (Hag et al., 1987) on
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Comparison of local sea level curves to the global sea level curve can give insights into
the forces that control deposition in a basin, whether those forces be autocyclic or allocyclic.
Until around 80 million years ago, the local sea level curves match the shape of the global sea-
level curve, which indicates that the dominant controls on deposition were allocyclic through that
time. However, after that point, the global sea-level curve and local sea level curves diverge. The
local sea level curves indicate that accommodation in the basin was increasing despite the
decrease in global sea-level, which indicates the control on the basin was autocyclic dominated.
One possible reason for this divergence is the Brooks Mountain Range. Erosion of sediment
from the Brooks Mountain Range and subsequent deposition may have caused the basin to

subside slowly under the depositional load.
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Comparison to Previous Studies

As stated previously in this study, the NPRA has been the subject of numerous previous
studies as a result of its potential for hydrocarbon production. Studies conducted by the likes of
Bird (1977, 1981, 1982, 2018), Hubbard (1987), Parrish (2010), and Wilson (2010) focused

almost entirely on the appraisal of hydrocarbon resources in the NPRA.

Other studies, conducted by those such as Detterman (1973), Houseknecht (2004, 2009,
2010), Molenaar (1981), and Schultz (2013) focused on a sequence stratigraphic approach to
understanding the NPRA.. The primary difference between the studies mentioned above and the
sequence stratigraphic interpretation of this study is one of scale. While the studies above
provide excellent sequence stratigraphic models, they are generally regional in scale whereas this
study focuses on a higher resolution model of the Ikpikpuk-Umiat sub-basin in particular. Fulk
(2010) and Mauch (1985) also focused on the Ikpikpuk-Umiat sub-basin, but these studies were

concerned with the structural aspects of the sub-basin as opposed to sequence stratigraphy.
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CONCLUSIONS

Seismic sequence stratigraphic interpretation of the rock strata of the Ikpikpuk-Umiat
basin of the National Petroleum Reserve in Alaska constrained against Galloway log motif
analysis shows 25 operational sequence boundaries from the Mississippian to the Cretaceous.
These operational sequence boundaries occur across three phases of tectonism and their
depositional character reflects this fact. The Ellesmerian Megasequence contains two operational
sequence boundaries and was derived from a sediment source in the North and consists of both
carbonate and clastic rocks. The Beaufortian Megasequence contains five operational sequence
boundaries and is dominated by southward progradation of sand and shale, which are easily
identifiable due to extensive onlap and truncation. The Brookian Megasequence contains 18
operational sequence boundaries which prograde to the East and downlap onto the Pebble Shale
Formation, which is regionally distinguishable in the seismic. Construction of a
chronostratigraphic chart illustrate the results of the complex relationship between auto- and
allocyclic accommodation changes. The interpretation of these operational sequence boundaries

may assist in renewed hydrocarbon exploration in the NPRA.

The cyclic variation in accommodation detailed by this study has resulted in a largely
compartmentalized subsurface. Abundant shales and TST deposits form seals that overly and
divide sand-rich LST deposits which make ideal reservoirs. The Brookian Megasequence is
almost entirely characterized by the interplay of systems tracts. However, it is important to note
that the upper boundary of the Torok Formation is a time transgressive lithostratigraphic
boundary, and as such it does not correspond to any operational sequence boundary. Though the
Brookian Megasequence was deposited during a time of relative tectonic stability, tectonic

inversion and structural flexure associated with Beaufortian rifting and Brookian deposition may
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have opened up migration pathways through local faults in the Franklinian and Ellesmerian
Meagasequences. Several prominent organic-rich shales represent source rocks in the
Ellesmerian, Beaufortian, and Brookian Megasequences. An understanding of these petroleum
system elements may contribute to improved hydrocarbon exploration strategies in the Ikpikpuk-

Umiat basin.
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