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SUMMARY

This investigation was concerned with determination of over-
all plate efficiencies of a Koch KASKADE tray. Equipment used by
Thcnpson(?) in his study of the system c¢yclohexane-iscoctane was
modified slightly for use with the system methanol-water.

The column studied was 14 inches in diameter and contained five
trays. The piping was so arranged that rectifying, stripping, and
total reflux operation could be investigated.

A procedure for the analysis of methanol-water solutions was
developed involving the use of refractive index and density measure-
ments. Vapor-liquid equilibrium date, as obtained from the litera-
ture(1), were revised by calculation to employ a fictitious molecular
weight of 39 for methanol so that heats of vaporisation of methanol
and water would be equalized.

Over-All plate efficiencies were determined at superficial wvapor
velocities in the range of 1.2 to 9.1 feet per second, liquid loadings
in the range of 0.7 to 11.2 gallons per minute per square foot of tower
cross sectional area, and liquid to vapor ratios ranging from 0.28 to
4.78. These efficiencies ranged from 84% at total reflux to 25% under
stripping conditions, appearing to decrease with an increase in liquid
loading and increase with an increase in vapor loading. Liquid to
vapor ratio appeared to have a profound effect on efficiency in that
high efficiencies were obtained when L/V was 1.0, and relatively low
efficiencles were obtained at L/V below and above 1.0.



INTRODUCTION

When operated under conditions of heavy liquid loads, bubble-cap
columns begome inefficient. The manufacturer of the Koch KASKADE tray
claims to overcome this disadvantage by a radical design. KASKADE
trays can be used in various installations where bubble-cap trays are
inapplicable.

At the present time there are very little data in the literature
on the operational characteristics of the Koch KASKADE trayl?)(3)(7)(9)
Therefore one of the primary objectives of this investigation was to
extend the existing knowledge of this tray. The classical system
methanol-water was chosen as a basis for this investigation.



STATEMENT OF THE PROBLEM

The primary object of the investigation was to extend the

limited knowledge on the performance of a EKoch KASKADE tray in

distillation. The problem resolved into the following stepsa:

1.

2.

3.

The development of an accurate, rapid method of analysis
for the system methanol and water.

The modifiecation of existing equipment for use with this
system.

The calibration of flow devices.

The determination of over-all plate efficiencies as

affected by liquid to vapor ratio, liquid loading, and vapor

loading.



SOURCE OF MATERIALS
l. METHANOL - The methanol used in this investigation was commercial-
grade methanol. Fractionation of the stock in a five-plate
laboratory still at approximately two to one reflux ratio resulted

in no echange in refractive index.
2. WATER - The water used in this investigation was steam condensate

obtained from the stesn header. Refractive index of this
condensate was found to be the same as for distilled water.



PROCEDURE
freliminary Run
The equipment as used by Thompson(?) vas operated with water
to determine what modifications were needed before the system i.thaml-
water could be investigated. The high latent heat of vaporisation and
low specific volume of the methanol-water liguid system necessitated
the revision of the flow measuring equipment and recalibration.
Miscellaneous piping was revised and the pumps were repacked with a
methanol resistant packing, The resulting flow diagram of the modified
unit is presented in Figure 1.
Start-Up Procedure
In all cases, the column was first started up under total reflux.
The following steps were taken to bring the column to steady operating
conditions:
1. Water to the condenser was started (valve C-5).
2. Reboiler circulation pump was put into operation (pump No. 2).
3. The vent on the reboiler steam side (valve C-8) was opened,
and the condensate lins was opened to the condensate return
line (valve C~10), which returned condensate to ths power plant.
4. Valves C-15, C-11, and C-12 were opened. Steam wae started
to the reboiler and was slowly increased (Pressure Controller
FC~1l) until the over-head temperature indicated that vapor
was entering the condenser.
5. The reflux pump (pump Eo. 1) was started, and valves C-1 and
C=2 were cpened slightly.
6. Steam was increased, and valve C~1 was adjusted to hald
level in the surge drum constant.



7. ©Steam was adjusted by weights on FC-1 to give the desired
boil-up rate.

To ux

To operate the column under total reflux, valves C-3 and C-7
were closed, and valve C-1 was adjusted to give a constant level in
the surge drum. When the level in the surge drum remained constant
for one hour without readjustment of valve C-1, the run was started.
Figure 2 shows the flow of material during a total reflux run.

ri tion

To operate the column as a stripper, the unit was first brought
to steady operation as a total reflux run. Then valve C~1 was opened
so that the rate of flow from the surge drum was greater than the
flow to it from the overhead of the column. This deficit was made
up by addition of material from the reboiler by cpening valve C~7 and
adjusting until the level in the surge drum became constant. After
one hour of steady operation without readjustment of either valves
C-1 or C~7, the stripping run was started. The flow of materials
in a stripping run is shown in Figure 3.
Rectifying Operation

To operate the column as a rectifier, the unit was brought to
steady operation as a total reflux run. Then valve C-1 was closed
down so that the rate of flow leaving the surge drum was lower than
flow entering it from the overhead of the column. The level in the
surge drum was maintained constant by opening valve C~3 which trans-
ferred material from the surge drum to the reboiler. When the level
had remained constant for one hour without readjustment of either



valves C-1 or C-~3, the rectifying run was started. The flow of
material during a rectifying run is shown in Figure 4,

When steady operation was established, the run was started by
opening valve C-9, closing valve C~10, and starting the stop watch,
Temperatures, flows, and pressures were recorded., The samples were
taken, starting at the top of the column and working down., The
temperatures, flows, and pressures were again recorded, The run
was ended by closing valve C=9, opening valve C~10, and stopping the
stop watch. The weight of steam condenpate collected during the run

was recorded,

Sampling Technique

ILiguids and vapors were sampled through sample ports equipped
with a copper co.t‘l.l, which was immersed in a water-ice mixture to
prevent excessive air stripping of the samples. The coils were
flushed out with the first ten milliliters of sample, The final
sample of 25 milliliters was collected in a sample vial and stoppered
tightly. Sampling points in the column are shown in Figure 5.
Apalytical Procedure

The large number of samples taken in this investigation
necessitated the use of a rapid method of analysis., However, the
method needed to be sensitive, since smmall errors in camposition
would result in large errors in plate efficiencies,

Refractive index measurements offered a rapid and sufficiently
accurate method of analysis for the complete range of composition

of the methanol-water system with the exception of the range 22 to



49 true mol percent methanol. This is illustrated in Figure 6.
Density measurements were made when the samples fell within this
range.

ti n

The refractive index of a sample was measured with a dipping
refractometer in a water bath maintained at 25.0° C. ¥ 0.1°. air
stripping of the sample usually occurred, so the sample was cooled
in its sample bottle before introducing it to the refractameter cell.

The calibration curve, Figure 6, of scale reading versus composi-
tion was obtained from solutions of known composition., Since two
values of composition were represented by the same scale reading,
it was necessary to determine which composition was correct. This
was done very easily by the addition of a drop of water to the sample
and observing whether the scale reading increased or decreased.

a8l n

When the refractive index of a sample was such that the scale
reading of the refractometer was greater than 33.0, it was returned
to its sample bottle and to the cooling bath for a density measurement.
The density measurements in this investigation were made with tared
ten milliliter pycnometers weighed on an analytical balance. The
density-camposition relation presented in Figure 7 was obtained from

solutions of known camposition at 25° C.



RESULTS

The calibration curves for refractive index-composition and
density-composition appear in Figures 6 and 7 respectively. The
analysis by either measurement ies sensitive to composition differences
of ¥ 0,2 mol percent. Table I presents the analytical results of this
investigation. For convenience, the table is divided into total
reflux (t) runs, rectifying (r) runs, and stripping (s) runs.

Since flows were much smaller than those encountered in previous
work(ﬂ, new orifice plates were cut, put in place and calibrated.
Figure 8 presents the calibration curves for the tower orifices, and
Figure 9 presents the calibration curve for water to the condenser.

Operational and calculated data for this investigation are pre-
sented in Table II, Over-all plate efficiencies were calculated by
the McCabe-Thiele nethod“) using a fictitious molecular weight of 39
for methanol tc equalisze the molar latent heats of vaporization of the
two components, Figure 10 is a caloulated curve for converting from
true to fictitious mol percent. Figure 11 is the resulting vapor-
liquid equilibrium curve incorporating fictitious mol percent. For
purpose of camparison, the true mol percent vapor-liquid equilibrium
diagram is presented in Figure 11 81.0(1).

Figures 12, 13, and 14 illustrate typieal McCabe-Thiele plots used
in calonlating theoretical plate requirements for total reflux, rectify-
ing, and stripping runs. Although pinching occurred, all trays wvere
used for calculation of efficiency except the bottom tray. The operating
lines were constructed with their calculated slope through the experi-
mental points of passing liquid and vapor streams.
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Since orifices measure flow on a volume flow basis, conversion to
mol flow basis was necessary., Figure 15 is a calculated curve of pound
mols per pound versus composition., Used in conjunction with Figure 16,
conversion from volume flow to mol flow basis was easily accomplished.
Specific heat and heats of vaporization of methanol-water solutions
were obtained from Perry'>)(6),

Heat balances made across the colummn, without correction for
insulation or radiation losses, eppear in Table III.

Flots of over-all plate efficiencies versus L/V, L, V, and v
are presented in Figures 17, 18, 19, and 20, Although the points
scatter widely, it is believed that correlation exists.



DISCUSSIOR

manpaon{'?) s in his investigation of the cyclohexane-isooctane

system, found:

1,

2.
3.

That liquid and vapor loading have about an equal effect
on over-all plate efficiency and that this effect was a
decreased efficiency with an increased loading,

That L/V has no detectable effect on efficiency, and

That over-all efficiency is lower with stripping operation
than with total reflux operation,

In this investigation with the system methanol-water, the

following coneclusions can be reached:

1.

2,

3.

The effect of an increased liquid loading is a decrease in
efficiency, while the opposite is true with an increased
vapor losding, '

That L/V has a definite effect on over-all efficiency,

and

That stripping operation is less efficient than either
rectification or total reflux operation.

Although these conclusions drawn from each investigation appear

to contradict one another, the following considerations should be

mades

that ligquid loading expressed volumetrically is much greater

in the cyclohexane-isooctane system than in the methanol-water system;

that while expressed on a mol basis the vapor loadings are directly

comparable, the corresponding liquid load is still greatly different.
In other words, on a volume bagis, the investigation of the methanol-

wvater system was in a range much lower than that covered in the

cyclohexane-isooctane investigation. The maximum liquid loading



obtained in this investigation was 11.2 gallons per minute per square
foot, which is close to the minimum liquid loading of eight gallons
per minute per square foot as investigated by Thmpaon"n -

Comparison of the performance of the Koch KASKADE tray with that
of a bubble-cap tray is difficult, in that plate efficiencies of
bubble-cap trays vary considerably from investigator to investigator.
However, qualitative comparison might be based on a recent investiga-
tion. Williams et al.(8) investigated plate efficiencies of a bubble-
cap column ten inches in diameter and reported efficiencies of 32.5
to 58,6 % while using the methanol-water system, Vapor velocities
ranged from 0.63 to 1,16 feet per second and L/V ranged from 0.63
to 2.4. Higher plate efficiencies were obtained with stripping
operation than with total reflux or rectifying operation.

Comparison with the results of this investigation shows that
the Koch KASKADE tray has a higher plate efficiency than a bubble-
cap in rectification or total reflux operation, but is less efficient
in stripping operation. The Koch KASKADE tray has a much higher
capacity than the bubble-cap tray.

The heat input appeared to balance very well with the heat
removal as can be seen in Table III., This would indicate that no
operational upsets occurred during each run.

12
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FUTURE WORK
This investigation was a small part of the work that could be
done on the Koch KASKADE tray. The high throughput and low pressure
drop characteristics are of particular interest in the field of
vacuum fractionation of heat-sensitive or polymer-forming materials.
Therefore, if future work is intended with this tray, it is suggested
that consideration be given to the determination of over-all plate

efficiencies, pressure drop, and throughputs in vacuum distillationm.
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Py -
Py =~
Py =
Py =~
Pavg.*
B -
R' =
Sn -
-
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HOMBERCLATURE
Specific heat of reflux, BTU/1b./CF.
Heat capacity of Bottoms, BTU/1b. mol/°F.

Density of reflux, 1b./gal.

- Percent over-all plate efficiency, 100 (Number of actual

plates/Number of theorctical plates).

Ligquid leading, 1b. mol/sec. (Fictitious).

Increased liquid loading due to sub=-cooled reflux, 1b. mols/sec.

(Fictitious).

Fictitious mols/1b, reflux.

Flow of cooling water, lb./amin.

Average fictitious molecular weight of reflux, 1b./lb. mol,
Average fictitiocus molecular weight of bottoms, 1b,/lb. mol.
Pressure in tower bottoms, psig.

Pressure of steam entering reboiler, psig.

Pressure of source gteam, psig.

Discharge pressure of circulation pump, psig.

Fressure in tower overhead, psig.

Average tower pressure, psia = P1 + P5 4 144
2

Refliux flow, 1b. mol/see. (Fictitious).
Reflux flow, gal./min.

Het steam consumption, 1b./sec.

Temperature of reflux stream, ©F.
Temperature of vapor leaving the tower, “F.

Temperature of produet leaving condenser, °F,

- Temperature of cooling wster entering condenser, °F.

Temperature of cooling water leaving condenser, °F,

15
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- Temperature of tower bottoms, ©F.

- Temperature in throttling calorimeter.

o sy m———.

Tavg.' Average tower temperature, OR, = ?2‘* 16 + 460,

Ja

2

Vapor loading, 1b., mol/sec. (Fictitious).

1

Superficial vapor veloeity, ft./sec.

Latent heat of vaporizsticn of steam at Pp, BTU/1b,

Latent heat of vaporigzation at top of column at Tp, BIU/1b. mol.
(Fictitious).

Latent heat of vaporization of bottoms at Py, BTU/1b.

~ Composition of liguid 1eaving plate a, fictitious mol fraction.
- Compogition of liquid in reboiler; fictitious mol fra¢tion.

~ Composition of liquid reflux, fietitious meol fraction.

- Composition of vapor leaving plate a, fictitious mol fraction.
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APFENDIX

Deseription of Houlpment

The equipment used in this investigation is adequately described
by Thompson(7). For convenience, the descriptien of major equipment
wiil be repeated.

1. Column.

The column was a five-tray, Koch KASCADE type, 14 inches in
dismeter. Tray spacing was 24 inches and the weir length eight
inches., Detailed drawing of the column and tray is presented by
Thompsan(7).

2. Reboiler and Condenser.

The reboiler and condenser were shell and tube type
exchangers. The shell was 6-5/8 inches I.D. and seven inches
0.D. There were 28 tubes of 0.50 inches I.D. and 0.84 inches
0.Ds, 19 feet in length. The exchangers were eqguipped with
3-inch flanged outlets. The condenger was insgtalled vertieally
and cooling water entered the tube side. The reboiler was
installed at an angle of 15° with the horizontal, and steam
entered the shell side.

3. Pumps.

Pump No. 1. The reflux pump was an A11lis-Chalmers "Electro-
fugal®, size 2 inch X 1-1/2 inch, type S8S-DH, with a capacity of
100 GPM at 120 ft. head. The motor was a 5 hp, 3-phase induction
motor.

Pump Ko. 2. The eirculation pump was a Deming, size

2=1/2 inch X 2 inch, figure 4012, type 24, with a capacity of



18

200 GPM at 60 ft, head. The motor was a 7-1/2 hp, 3-phase
induction motor,
4. Pressure Begulator (Steam).

The pressure of the steam to the reboiler was regulated
by a Davis counter-weighted piston, type No. 2, size 2 inches,
screwed, regulator.

5. Surge Drum,

The surge drum was a sixty gallon galvanized drum with

a volumetric constant of 0,695 gallons per centimeter in the

range of the sight glass.
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130
129
137
132
135
109
110
109
113
112
105
125
125
123
175
182

&7

69

T4

92

87

v

0,0117
0.0199
0.0253
0.0040
0.0111
0.0182
0.0206
0.0070
0.0212
0.0218
0.0220
0.0266
0.0249
0.0259

0.0268
0.0127
0.0133
0.0123
00,0130
0,0208
0.0208
0.0204
0.0242
0.0238
C.0231
0.0059
0.0064
0.0141
0.0085
0.0087
0.0116
0.0120

0.0132
0.0170
0,0235
0.0029
0,0101
0.0151
0.0186
0.0052
0.0072
0.0112
0,0059
0.0114
0.0206
0.0163
00,0157
0.0209
0.0327
0.0489
0.058/
00,0253
0.0730

0.0546

00,0329
C.0884
0.0635
0.0515
0.0082
0.0144
0.0230
0.,0127
0,0210
C.0261
0.0506

ALy

00,0009

0.0013

0.0014
0,0003
0.0011
0.0035
0.0010
0.0007
0.0004
0.0008
00,0003
C.0007
0.0010
0.0008
0.0014
0.0010
£.0009
0,0002
0.0009
0,0019
0.0015
0.0012
0,0009
0.0007
$.0008
0.0003
(.00C4
00,0008
0.0009
0,0008
0.0011
0,0010

L

0.0141
0.0183
0.0249
0.0032
0.0112
0.0183
0.0196
(,0059
0.0076
0.0120
0.0062
0.0121
00,0216
0.0171
0.,0223
0.0335
0.0498
0.0586
0.0262
0.0749
0.0561
0.0341
0.0875
0.0642
0.0523
0.0085
0,018
0.0238
0.0136
0.0218
0.0272
0.0516

AN
»



No.

t17
18
19
20
t22
t23

t25

sl0
sll
sl
el3
sls4
sl5
s16
817

136
125
157
151
177

N

172
184
190
186
175
171
175
in
194
190
197
201
194,
197
188
196
188
191
195
181
189
186
178
188

192

189
188
197
165
178
i91
185
195

TABLE II (Continued)

T3

93
100
126

90

59

73
115

43
118
113
124
136
137
136

87
134

62

50

50

52

75

78

76

109

120
117
108
88
47
43
4d

45

45

g

R4
230
231
233
219
222
226
223
223
223
221
229
236
231
215
238
215
215
216
218
<14
215

220

221
223
R2

226
222
201
218
216
214
212

Av

963
959
958
957
966
964,
961
963
963
963
964,
959
954,
058
968
954
968

- 968

968
967
969
968
965
964
963
962
960
964
977
967
968
969
970

0.82

» L] - * . L] L ]

¢ * 4 & 2 &

»

COC0OOOD00CO0CDO0
03 (30 00 020 02000 08 00 00 0 6 0o Co
T RO R RO EC N DO AR DGR

] L L] L]

W OO

.

L] *
SEETS AR

NO\FHO\.G‘G\C\O\G\J-\

/v

L]

COO OO K
L]
RPNV OO DD

s e &

A

VM~ O OO0 OO0 0O00

0.66

<3



TARLE III

HEAT BALANCES ACROSS THE SYSTEM

Run Heat In Heal Out Difference Percent
Ho, BIU/Min BTU/Min BIU/Min Difference
17 12,170 11,750 - 420 - 3.5
18 20,530 21,160 $+ 1070 + 5.2
t19 26,200 27,650 + 1450 + 5.5
120 49110 3,950 - 160 - 3,9
122 11,550 12,000 + 450 + 3.9
t23 18,900 19,260 + 360 + 1.9
t24, 21,330 224 4,60 4+ 108C + 5.1
t25 7, 280 7,300 +& 20 + 0,3
ri 23,110 24,750 + 1640 + 7.1
r2 23,610 24,4400 + 790 +1.9
r3 24,180 25,670 + 1490 + 6.2
4 28,690 29, 280 + 590 + 2.1
r5 25,890 26,800 + 910 ¥ 2.4
rb 27,460 28,290 + 830 + 2.3
7 17,150 17,390 + 240 + 1.4
8 : 28,150 30,440 4 2290 + 8,1
82 13,880 13,730 - 150 - 1.1
83 12,790 13,940 + 1150 + 9.0
sk 13,000 11,%10 - 1190 - 9.1
85 21,770 22,190 + 420 + 1.9
s6 21,690 21,870 + 180 + 0.8
s7 20,850 21,200 + 350 + 1.7
83 25,150 24,600 - 550 - 2.2
s9 24,760 24,600 - 160 - 0.6
gl0 24,020 R4, 320 + 300 + 1.3
sll 6,140 6,550 + 410 + 6.7
gl 6,620 6,900 + 280 4+ 4.2
s13 14,920 12,340 - 2580 ~17.3
sl4 8,910 9,230 + 320 + 3.6
sl5 9,090 O, 470 + 380 + LR
s16 12,130 12,700 + 570 * L7
sl7 12,540 13,140 + 600 + 4.8
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FIGURE 5

COLUMN SAMPLE POINTS
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FIGURE 12

MC CABE.THIELE PLOT
FOR TOTAL REFLUX RUN
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FIGURE 15
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FIGURE 16
DENSITY OF METHANOL-WATER SOLUTIONS
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CALCULATIONS
1. OCalculaticn of Liquid Loading L, 1lb. mol/sec. (Fictitious).

(a) Stripping, rectifying and total reflux runs

L= R[l + CEMR(TQ"Tl)]
At

where

R= 3%%& 1b. mol/sec. (Fictitious).

R! = Reflux flow, gallons/min,
d = Density of reflux, 1b./gal. (Figure 16).
m = Fictitious mols/lb. (Figure 15).
Mp = Average fictitious molecular'weight of reflux,
T2 = Temperature of vapor leaving the column, °F,
T1 = Temperature of reflux stream, °F.
;\t = Latent heat of vaporization, BTU/1b. mol. (Fictitious).

2. Caleulation of Vapor Loading v, 1b. mol/sec. (Fictitious).

(a) Stripping and totsl reflux runs

V= Sﬁks

Ay

where

8y, = Het steam congumption, 1b,/sec.

A _ = lLatent heat of vaporization of gteam at pressure
S p,, BTU/1b.
2
M, = Molecular weight of bottoms, 1b./lb. mol. (Fictitious).
;\v = lLatent heat of vaporization of the bottoms at

pressure Pl, BTU/1b.

43



(b) Rectifying runs

- thé + chm(Té - Tl)
MV)V + Cpm,(Té - T1)

where

L from 1.({a)

¢ = Heat capacity of bottoms, BTU/1b. mol °F.

joill
T

Temperature of tower bottom, °F.

)
Tl Temperature of reflux streaw, 'F.

Calculation of Vapor Velocity v, ft./sec.

(a) Stripping, rectifying and total reflux runs

v = lO°O5VTav .
Pavg .

where

V from 2.{(a) or 2.(b)

T. « T
=2 6 0y
Tavg. £ B¢ 460, “R.
P 4+ P
Pavg.= .é_i._ﬁ + l4.4, psia.

T = Temperature of tower top, °p.

. - o
Té = Temperature of tower bottom, 'F.
P1 = Pressure in tower bottom, psig.
P5 Z Pregswre in tover top, psig.

Caleulation of Over-All ¥late Efficiency

E = (Actual Plates/Theoretical Fiates)1OC, %



Calculation of Heat Balance Across the Column

Heat in
Heat out
where

M =

T4=
T5 =

= S\, X 60, BIU/min.

= Ml(T5 - T BTU/min.

D
Gooling water flow, 1lb./min.
Temperature of cooling water leaving the condenser

Temperature of cooling water entering the condenser
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