A PILOT INVESTIGATICN OR CONSURER

PHEFERENCES YOR BEAF

By
Elmer J. Perdue
Bachelor of Science
OkIahoma Agricultural and Mechanical College
Stillwater, Oklahoma
1957

Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Hechanical College
 in partial fulfillment of the requirements
 for the degree of
 MASTER OF SCIENCE
 June, 1957

LIBRARY

AUG 121957

A PILOT INVESTIGATION OF CONSUMER

PREFERENCES FOR BEEF

Thesis Approved:

383144

ACKNOWLEDGMENTS

Abstract

The author wishes to express appreciation for advise and suggestions given by faculty members of Oklahoma Agricultural and Mechanical College. Special thanks and acknowledgment are given Dr. G. G. Judge of the Department of Agricultural Economics for making the study possible and for contributions of learned advice and invaluable suggestions. Sincere appreciam tion is given to J. R. Franzmann of the Department of Agricultural Economics for his assistance and encouragement throughout the study. Thanks are due to Professor L. E. Walters of the Department of Animal Husbandry for his technical advice and assistance with the experiments. The writer is grateful and expresses appreciation for suggestions given by Professors L. F. Miller and W. B. Back of the Department of Agricultural Eeonomics, R. H. Laftwich of the Department of Economics, and F. A. Graybill of the Department of Mathematics. Thanks are also given to my wife, Velma, for her patience and understanding throughout the study.

TABLE OF CONTENTS

Chapter Page
I. INIRODUCTION 1
General 1
The Problem Area Restated 4
II. THEORETICAL FRAMEWORK 6
III. METHODOLOGY 10
General 10
Available Methods 14
Consumer Surveys 16
Market Surveys 19
Controlled Experiments 20
Combination of Different Methods 24
IV. MODELS AND EMPIRICAL RESULTS 25
General 25
Stillwater Store Experiment 27
Test of Models and Hypotheses with Results from the Stillwater Store Experiment 32
Home Survey 37
Test of Models and Hypotheses with Results from the Stillwater Home Survey 39
Stillwater Store Survey 42
Test of Models and Hypotheses with Results from Stililwater Store Survey 43
Oklahoma City Experiment 50
Test of Models and Hypotheses with Results from Oklahoma City Experiment 61
Shawnee Study 73
Test of Models and Hypotheses with Results from Shawnee Experiment 74
V. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 84
Summary 84
Recommendations for Future Work 88
BIBLIOGRAPHY 90
APPENDIX 91

LIST OF TABLES

Table Page
I. Price Differentials Used in Stillwater Store Experiment 29
II. Pricing Treatments Bmployed in Stillwater Store Experiment 31
III. Percentage Distribution of Grades Purchased in Stillwater Store Experiment 32
IV. Pounds Per 1000 Customers Purchased in Stillwater Store Experiment 32
V. Analysis of Variance Summary for Purchases of T-Bone Steak in Sti,llwater Store Experiment 33
VI. Percentage Shift Among Grades Due to Price Changes in Stillwater Store Experiment 35
VII. Response to Price Increases in Preferred Grades in Stillwater Home Survey 40
VIII. Relationship Between First and Second Preference in Stillwater Home Survey 42
IX. Response to Price Increase in Preferred Grades in Stillwater Store Survey 44
X. Relationship Between First and Second Preferences in Sti.llwater Store Survey 45
XI. Relationship Between First Selection and Ability to Name Grades in Order in Stillwater Store Survey 46
XII. Percentage Distribution of Preferred Physical Character- istics by Grade in Stililwater Store Survey 48
XIII. Percentage Distribution of Annual Income Level by Grade Selections in Stillwater Store Survey 49
XIV. Percentage Distribution of Respondents by Income Levels Staying with Selected Grades Through Successive Price Increases in Stillwater Store Survey 50

LIST OF TABLES (Cont'd)

Table Page
XV. Pricing Treatments Employed in Oklahoma City Study 53
XVI. Percentage Distribution of T-Bone Sales by Grades and Treatments in Oklahoma City Study 57
XVII. Pounds Per 1000 Customers by Treatments and Grades in Ok.lahoma City Study 59
XVIII. Percentage Shifts Between Grades as the Prices of all Grades Changed by the same Absolute Amount in Oklahoma City Study 64
XIX. Percentage Shifts Between Good and Commercial Calf Grades When Good and Commercial Calf Were Priced the Same in Oklahoma City Study 70
XX. Analysis of Variance Summary of Purchases of T-Bone Steak in Oklahoma City Study 72
XXI. Pricing Scheme Employed in the Shawnee Study 73
XXII. Sales Stated as Percentages in Shawnee Study 75
XXIII. Pounds per 1000 Gustomers Purchased in Shawnee Study 77

LIST OF FTGURES

Pigure Page

1. Relationship Between Price Reflection and Rosource Allocation . 8
2. Position of Grades Within Display 28
3. Demand for Caly Grades in Oklahosa City 71

CHAPTER I

INTRODUCTION

General

One of the more important economic decisions in any society concerns the kinds of products and the amounts of each that are to be produced with scarce resources. The manner in which this decision is made differs greatly between different types of economic systems. In one type of system all economic decisions are made by a board of planners and consumers have little, if any, influence on resource allocation. However, in our capitalistic society, consumers play a very different role, the nature of this role being well exemplified by the adage "The customer is king". Consumer sovereignty in our society is based upon the relationship that exists between the interdependent forces of the household and firm. The theory of the household portrays individual consumers as having ordinal preference scales or utility functions which they wish to maximize under the restraint of their budget or income, and product prices as given in the market. Consequently, consumers register more dollar votes for those products that are higher up on their preference scales than for those commodities which occupy a lower position on their preference surface. The collection of goods finally chosen therefore depends on, (1) the individual's set of values or preferences, (2) the size of his income and (3) product prices as given in the market.

The theory of the firm portrays producers as attempting to maximize profits. With due consideration being given to the restraints imposed by transformation functions and resource costs, producers will reach their objective by producing those commodities that command the highest prices in the market. Hence, producers guided by the profit motive will respond to consumer desires.

In order for an optimum allocation of resources to come about it is necessary for the marketing foree, which brings households and firms together, to perform its pricing function efficiently. Most definitions of marketing are restricted to the physical tasks performed by middlemen. Such a narrow definition does not take into account the frunction of marketing in price formation or determination and the directive role it exercises in guiding the flow of factors into their optimum use in production and goods and services into consumption. Viewed in this light, marketing should start with determination of consumers' desires rather than with the bundle of goods that just happens to be produced. ${ }^{2}$ Therefore, one of the major objectives of our marketing system should be that of measuring consumers' preferences for various kinds and quantities of products and then accurately reflecting these preferences back to producers.

The general problem area of this study is concerned with the efficiency with which the marketing system performs its economic or pricing function.
${ }^{\text {I G. S. Shepherd, "The Field of Agricultural Marketing Research: Ob- }}$ jectives, Definition, Content and Criteria," Journal of Farm Economics, XXXI, No. 3 August, 1948, pp. 444-445.
${ }^{2}$ G. G. Judge, S. K. Seaver, and W. F. Henry, "Competitive Position of the Connecticut Poultry Industry: Eeonomic Interpretations of Interregional Competition," University of Connecticut, Builletin 309, 1954. p. 7.

For example under the present system do consumers get the types and quantities of commodities desired or could producers reap a greater return by changing the production ratio of products? In order to answer this question we need to have information relative to the following:

1. Consumer basic preferences ${ }^{3}$
2. The monetary values that consumers place on their basic preferences
3. How can we merchandize so as to better meet consumers desires
4. How can labeling, grading etc, be orientated toward consumer basic preferences

This study is primarily concerned with questions (1) and (2) above, that is, what are consumers basic preferences and what monetary values do they place on these preferences. In an attempt to investigate these questions, this study is concerned with the conmodity beef. However, since this is a pilot investigation and limited in personnel and funds, only the T-Bone cut of steak is utilized. This choice was made since T-Bone steak is one of the major primal cuts of beef for which price is affected by the grade.

The major objective of this study can be stated thus: to measure the various aspects of consumer basic preferences for T-Bone steak and to ascertain the monetary values consumers place on their basic preferences.

In the course of following through on the major objective several methods of research will be investigated as to their applicability to this type of study and suggestions will be giade for future work. Also price response relationships for different grades of T-Bone steak will be estimated from ompirical results and an economic analysis will be made for each relationship.
${ }^{3}$ Basic preferences, as used in this study are defined as those preferences which are independent of prices and income.

The problem area of this study has been stated in terms of the efficiency with which the marketing system performs its pricing function. Before we examine the problem area in more detail it may be well to define marketing efficiency as it is used here.

The following definition of marketing efficiency follows the logic presented in a preference study by Goldman concerning the commodity eggs.

The total efficiency with which eggs are marketed in a given community may be expressed symbolically as a vector:
$u=\left(u^{(2)}, u^{(2)}, \ldots, u^{(\theta)}\right)$
Where: $u=$ total efficiency (utility)
$u^{(1)}=$ the utility of the $i^{\text {th }}$ individual from the consumption of eggs
$\theta=$ the number of consumers in a given community
The vector, (1), is defined as greater than any other vector when at least one of its components is greater than the corresponding component of any other vector, and no other component is less. According to this definition, maximum marketing efficiency exists when no other change in conditions increases the vector, (1) --i.e., it must be impossible to increase the utility of any persons without decreasing that of others. 4

In a similar manner, by this definition a given society will be maximizing satisfaction from resources going into the production of T-Bone steaks only when function (1) is at maximum. Such a definition finds a basis in welfare economics and a measure of welfare is defined relative to the degree that the utility function is maximized. Maximum welfare exists when the atility function is maximized under a given transformation function for society and under a given income distribution. ${ }^{5}$

[^0]As has been pointed out previously, consumers cast dollar votes for those kinds of products that are higher on their preference scale. Therefore, whenever a consumer buys a particular quality (grade) of beef he is casting a dollar vote for that particular grade. Retailers, in turn, compile such dollar votes and then inform their suppliers of preferred grades by buying more quantity of those particular grades for which more votes have been cast. This process is carried back to the primary producer who then has knowledge of consumer preferences as indicated by price ratios of the various grades.

With reference to beef, consumer satisfaction can be at a maximum oniy when producers have an incentive by the means of price differentials to produce those grades and quantities of each that are desired. Therefore, in order to be efficient, a marketing system must not only determine consumers' basic preferences, but must also accurately reflect the true monetary values placed on these preferences back to producers.

The measurement of consumer preferences and related variables is a relatively new type of research, hence, the methodology upon which these studies are based is still in an exploratory stage. Therefore, a companion problem area is that of screening available methods as to their admissibility for generating empirical data by which to investigate the major problem area. Each of the available methods has certain advantages and disadvantages depending on the particular problem to be investigated. In particular the methods evaluated will be consumer and market surveys versus controlled experiments.

CHAPTER II

THEORETICAL FRAMEWORK

Since the measurement of consumer preferences is a relatively new area, there is a lack of systematic theory pertaining specifically to this type of work. However, a general framework can be developed from conventional economic analysis of the forces of the household, firm, and market, Only a brief statement of the relevant theory will be given in this section.

As pointed out earlier, the force of the household consists of individual consumers who attempt to maximize utility functions under the restraints of limited money incomes and product prices as given in the market place. In order to examine consumer behavior it is necessary to consider a.l. three factors simultaneously. Economic theory provides a convenient tool in indifference curve analysis, which combines all three factors into a single analysis.

The theory of the firm portrays individual producers as combining a bundle of resources in the manner which will enable them to realize the greatest net return for their productive effort. The restraints under which firms attempt to reach their goal are product prices, physical transformation possibilities and resource cost. The theory of the firm provides a tool in terms of iso-resource curves for anslyzing producer behavior toward resource allocation between products. Iso-resource or isomcost curves depicts possible combinations of two products that can be produced with a given resource or cost outlay.

It is not sufficient to present a theory that includes only the theory of producer and consumer behavior. Each of these units arranges its behavior pattern in terms of a market variable, which is price. To formulate a complete theory, it is necessary to present a theory of the determination of this market variable. The interaction of consumers and producers in the market place serves to determine the observed levels of prices.

In order to 111 ustrate the role of the marketing system in resource allocation, a given commuity's indifference map for Choice and Good grades of beef will be transposed on the community's isomeost or production possibility function. As a means of simplification it will be assumed that producers can produce either or both Good and Choice grade animals and the combinations of the two grades are as given in Figure 1.

In Figure 1, IX represents the community's production possibility curve for a given amount of resources available for the production of Good and Choice grade beef. The goal of society is to obtain the greatest amount of satisfaction as possible from the given resources. Two levels of satisfaction are represented by indifference curves I_{1} and I_{2}. SimilarIy two pricing schemes are represented by the price lines $Y_{1} X_{1}$ and $Y_{2} X_{2}$. These two pricing schemes bring about two different resource allocations, one is efficient, whereas the other is inefficient.

Assume that the marketing system reflects pricing scheme $Y_{1} X_{1}$. When this is the case, firms will produce at point R which yields $O a_{1}$ of Choice and Ob_{1} of Good. At point R consumers are on curve I_{1}, but this is not the optimum production combination since curve I_{2}, a higher level of satisfaction, is accessible with the given resource or cost outlay. In order to bring about the allocation that is consistent with society's goal, the marketing system must reflect pricing scheme $\mathbb{Y}_{2} X_{2}$. The point of equilibrium

Figure 1. Relationship Between Price Reflection and Resource Allocation
is at point 5 which yields Oa of Choice and On of Good.
The value of society's utility function cennot be at a maximun if the pricing mechanism fails to reflect consumer preferences. Fhat is, under a condition of mperfect reflection of consuner preferences to producers, resources are allocated in the commity according to prices that trperfectly designate the desires of consumers. Under these conditions welfare cannot be at a maxinum by definition. ${ }^{1}$

IO. Langes pp. 215-228.

METHODOLOGY

General

The major objective of this study has been stated thus: to measure the various aspects of consumer preferences for T-Bone steak and to ascertain the monetary values consumers place upon their preference. In order to investigate this objective it is now in order to consider the methodology underlying the generation of data for preference studies. Two important problem areas involved are:

1. What is the nature of the data necessary to test the postulated hypotheses?
2. What is the best research method for generating the type of data specified in (1)?

The general purpose of generating data is to test the empirical validity of postulated hypotheses; therefore, hypotheses themselves specify the type of data to be generated. Hence, the initial step in fruitful research is the formulation of meaningful, testable hypotheses.

Many hypotheses in research dealing with economic problems originate from functional relationships that economists postulate to describe the real world. The variables included in these relationships come from two major sources, economic theory and the researcher's own and others' experience in the field that initiated the problem.

In order to postulate functions that describe consumer basic and monetary preferences for different grades of beef, it is necessary to combine information from economic theory, the field of grading, and other factors that may condition consumer preferences. Since a brief statement of the theoretical framework has been presented, the discussion will proceed to grading and other factors.
"The specific grade of a slaughter animal is determined by an evaluation in terms of factors which influence carcass excellence conformation, finish, quality and maturity, n^{2}

These factors are discussed by Dowell and Bjorka in their book Livestock

Marketing.

Conformation is the build, shape, or proportion of the various parts of the animal or carcass. Animals or carcasses that possess superior conformation yield a high proportion of the most desirable cuts and a low proportion of the less desirable cuts.

Finish refers to the degree of fat. It includes the fat on the outside of the body or carcass, on the inside of the body cavity, and between the muscles and tissues. Thus, finish refers not only to the quantity but also to the quality and distribution of fat.

Quality refers to the character of the flesh and fat. In the carcass It is associated with the tenderness and palatability of the meat and hence refers to the strength of the muscle fiber, the amount and strength of the connective tissue and the character of the intercellular fat. Quality also refers to the relationship between edible meat and fat and the size and character of the bones.

In all grading work, it is necessary that due consideration be given to each factor. The same animal or carcass may possess prime confirmation, choice finish, and good quality. Hence, it is a matter of balancing one factor against the other in determining the final grade. ${ }^{\text {² }}$
$I_{0 f f i c i a l ~ U n i t e d ~ S t a n d a r d s ~ f o r ~ G r a d e s ~ o f ~ S l a u g h t e r ~ C a t t l e ", ~ P M A ~ S e r v i c e ~}^{\text {I }}$ and Regulatory Announcement No. 11, Washington: Government Printing Office, 1950, p. 2.
${ }^{2}$ Austin Allyn Dowell and Knute Bjorka, Livestock Marketing (New York and London, 1941) pp. 302-303.

Shepherd discusses the usefulness of grades for wholesaling and retail purposes.

In 1923 the Federal Government began official grading of carcasses, not merely for market reporting services, but as the basis for purchases of beef. Since that time a number or institutional buyers have come to specify that the beef they buy must be graded and stamped by an official government grader. This stamp that is placed on carcesges by official government graders remain visible on the retail cuts, therefore consumers cen ascertain what grade they are buying when they buy federally inspected beef. 3

Not all meat that consumers buy is starped with official governnent grades. Packers also market meat that carry packers private brands as well as meat that is not labeled to grade in any manner. Hence, consumers have three alternatives in determining the grade they buy:

1. Official govermment grades,
2. Packers brands,
3. Their own ability to judge grade guality from physical characteristics. Pectors such as fat to lean ratio, tenderness, etc. that are used by the trade to distinguish between grades will be referred to as grade factors.

Factors other than grade factors that may condition consumers basic preferences are:

1. The practice of shopping at a retail outiet that markets only one grado of beef,
2. The practice of consulting a butcher concerning the quality of bear that is purchased, 4
3. Health restrictions such as a nomat diet.

3Coonfrey S. Shepherd, Marketing Farm Products - Economic Analysis", The Iowa State Colloge Press, Ames Iowa, 1955, pp. 204-207.

When consuners ask butchers for advice with regard to quality they indirectly use grading factors since reconmendations will probably be based on grade factors.

This list is not exhaustive, but is sufficient to indicate that facw tows other than grade factors may condition consumers basic preferences. Even though these other variables do exist, this study assumes thoy ploy a minor role. Therefore hyotheses to be formlated will stress those factors that are used in grade determination.

A general nodel depicting the variables that condition consumers basic preference may be postulated as:

$$
g=I\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, \ldots, x_{n}\right) \quad \text { model } 3.1
$$

Where g $=$ preferred grade ${ }^{5}$

$$
\begin{aligned}
& x_{1}=\text { amount of marbling (flakes of fat intermingled with lean) } \\
& x_{2}=\text { amount of outside fat } \\
& x_{3}=\text { color of the lean } \\
& x_{4}=\text { color of the outside fat } \\
& x_{5}=\text { ilavor } \\
& x_{6}=\text { juiciness } \\
& x_{7}=\text { tenderness } \\
& x_{6} \text { … } x_{n}=\text { other physical tactors }
\end{aligned}
$$

Since Lhodel 3.1 is for basic preferences, (price and incone are not selection factors) it has economic meaning only when consumers are able and willing to attach monetary values to the characteristics they prefer.

A general nodel depicting preforences when price and incone axe the only factors nay be given by the following relationship:
$g=f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$
Model 3.2
Where $g=$ preferred grade ${ }^{6}$
$x_{1}=$ price of Frime
${ }^{5}$ Prime, Choice, Cood and Comercial are the only crades considered in this study.

6
Tbid.
$x_{2}=$ price of Choice
$x_{3}=$ price of cood
$x_{4}=$ price of Conmercial
$x_{5}=$ faming income
Hypotheses fomed solely from Rodel. 3.2 would also fall short of describing the real world unless consumers only consider price and income when making decisions as to that grade to purchase.

In order to formulate a model that describes the actual relationship existing for consumers' purchases, it would be necessary to inolude variables from both models. The mumer of hypotheses that could be tested fron such a relationship would necessitate more time and resources than were available in this study, therefore hypotheses presented for consideration will be limited to those the author deems the nost relevant. These are enumerated as followis:

1. In general consumers prefer lean to fet. Since the fat to lean ratio fs less in lower grades, consumers mill purchase the lower. grodee when prices of lower and higher grades aye equal. ${ }^{7}$
2. When the price ratio of a preferred grade to other grades increases, consumers will shift from preferred grades to others.
3. Consumers are not familiar with grade labeling.
4. Conamers do not have sufficient knowledge concerning grade factors to distinguish between grades.

Since the next step involves testing the validity of these hypotheses with empirical data, different methods of research will be oxanined with respect to their ability to generate the required data.

Aveilable 䲎ethods

Certain hypotheses regarding consumer preferences for different grades

7
Figher and lower grades as used in this study are relative terms, grade Good is a higher grade when compared with grade Comercial, but is a lower grade when compared with Choice.
of beef were set forth in the preceeding section. Hence, the next step is to evaluate different research methods as to their ability to generate the kind of data specified by the hypotheses. The methods that will be considered are:

1. Consumer surfoys
2. Naxket surveys (time-series data)
3. Controlled expeximents
4. Combinations of the above methods

Before proceeding further it is advisable to discuss the more important elements of each method as they are defined in this study. Consuner surveys involve "interviewings; whereas, market surveys and controlled experiments are besed on actoal purchases. Rhodes makes the following distinction:

In general, this discussion will class as "sales research" all those methods which base a decision about the effect of a given variable upon the volume of actual sales of the product concerned. In contrast, "interviewing rescarch" includes those nethods of deteraining consumers attitudes and preferences by some sort of direct communication with consumers thenselves, not necessarily involving their purchasing the product or products concerned. 8

Consuraer surveys as used in this study will be synonymous with Rhodes' "interviewing technique".

Since narket surveys and controlled experiments both involve actual purchases of the product concerved, they will bo distinguished on some other basis. Jessen makes a distinction whioh is appropriate for our purpose.

The essential disference between the survey and experiment for determining "cause and effect" relationship is that in the experinent the investigator exercises "control" over when and which investigative units of a given factor (or treatnent) whose effect
${ }^{5}$ V. Janes Rhodes, "A Theoretical and Erapirical Investigation of Consumer Preferences for Beef by Crades in Metropolitan St. Louis, 1954", Unpublished Thesis, Harvard University, 1955, pp. 122
is under measurenent will be put. It is the exercising of this "controll that we may call experinenting. when we dont exercise this control in our investigation (either because we can't or we don't choose to) we are surveying rather than experinenting. ${ }^{9}$

Both market survegs and controlled experinents as used in this study will refer to methods which involve actual purchases, but they will differ in that market survegs will refer to data which have been generated by the market under normal conditions, and controlled experinents will reîer to data that have been generated under conditions controlled by the investigator.

With these distinctions in mind, the discussion will proceed to the advantages and disadvantages of each of the three methods. After weighing the advantages against the disadvantages an investigator should be able to form ulate expectations regarding the accuracy of results he can obtain fron each method. Hence, he can then make a decision as to the method or combinam tion of methods that is best suited to his objective.

Consumer Surveys

The advantages of consumers surveys as given by horse are:
a. Herits of the Better Types of Consumer Survey. Since a conswmer survey circomvents the market and goos directly to the consumer it permito a more complete picture of conswers preforences than is revealed by sales data alone. It is restricted, if well conducted, only to the extent of the consuner's ability or willinghess to express her preferences.

Insomuch as the survey is conducted arong consuming units, certain basic facts with thich the preferences may be associated can be secured. In this way individuals whose proferences are studied may be classified according to such factors as: income, race, age groups, famity size, geographic region, and gize of commaties. Heasures of covariability of factors and preferences may be received.

It is by means of the conswer survey that one is able to go farthest in discovering the forces determining, affecting, and associated with consumer preferences. 10

9raymond J. Jessen, (unpub. sampling class notes) Iova State college, 1951.

10 R. L. D. Morse, "Rationale for Studies of Consuner Food Preference" Advances in Food Research, III, p. 410.

The advanteges that have been listed are dependent upon a setisfactory solution of many problers thet are inherent in the survey method. Sone of these problems axe brought out by Brown.

The survey method is used in the three following general forms: factual surveys, opinion surveys, and interpretive surveys. The dism tinotion among these three typer is japortant because there is a dif. ference in the seientific accuracy of information obtained by these forms of the queptionnaire nethod. $-\cdots$ -

When the survey nethod is employed in this form, its results are subject to many errors. These include the orrors of menory; the inability to generailize, the desire to make a good ippresstion, and verm ious humen tendencies which bias the report. Since a hunan being is reporting an action of hinself or hif family, meny errors are bound to be injected into the data obtained. 11

This list is not exhaustive of the problems that are encountered with surrey techniques, but enough are listed to give an indication of the many sources of errors that the investigetor should take into account when he designs a questionnaire and conducts the intervien. Another major problem which nay be mentioned in that of sampling. The resuits of a survoy, if they are to be useful, must be extrapolated to that popalation from which the sample was dram. Therefore, care must be taken tha' the samole represents, as much as possible, the total population from which it is taken. Assuming that sources of errors mentioned (and others not histod) have been minimized to a satisíactory lavel, an investigetox can expect to obtain fairity accurate results in neasuring consumer basic preferences for different grades of beef. He can also expect to obtain satisfactory measurements of those factors associated with basio proferences such as knowledge of grade characteristios, otc.

Basic preferences and associated factors are incorporated in the overall objective of ther study, but since the major objective also pertrans to measm uring gonetary vaines that consumers place on basic proferences, it is necessary

114gion 0. Brown, Harketing and Distribution Research. (Nem York, 1949 pp. 290-297.
to frmulate sone expectation of the accuracy of the data the investigator could expect to obtain if he injected hypothetical prices into the interm view.

The maner in which the interviever can present such a situation is by using photiographs or actual outs of the grades in which he is interested. Since it is assumed that he is interested in getting responses concerning grade it is necessary that factors such as kind of cut, amount of bone, size of cut, outside fat, etc, be at the same level for all grades. His oxiginal question could be twhich of these cuts would you choose if all were priced at \quad per 1b?" Since price is not a selection factor the respondent should be able to give his basic preference as based on physical characteristics. After the respondent selects a certain cut the interviemer oan then raise the price of that out to some desired level while holding the price of the other cuts at the original level. He then presents this new situation to the respondent, who may stay with the higher priced cut or emitch to one of the other grades. If the consumer shifts to a lower priced grade it may be that he is not villing to pay any differential, or some smaller differential than thet set by the intervjewer. In order to deternine if the rem spondent will pay a smaller differential than originally set, the interviewer would progressityly lower the price spread. Similarly to get a maximm differantial it may be nocessary for the interviener to continue raising the price of the original solectione

It is obvious that this acheme is versatile in the measwing of price differentials between first and second choices, second and third, first and third, and other combinations. This method would give an investigator unlimited power in getting at consumer monetary preferences, if it is assumed that consumers will give the same responses (or reasonably close) under
actual shopping conditions. The validity of such on assumption must be seriously questioned. Respondents are placed under a hypothetical shopping condition thet is entirely foreign to that met in real life and it is very probable they cannot predict their future actions because many factors other than price change from one shopping period to another.

Based on the limitations which have been presented, it may be difficult for an investigator to measure monetary praferences by using data obtained from consumer surveys.

Barket Surveys

Market surveys includes those methods of getting at consumer preferences by analyzing prices, quantities, and qualities of the product concerned. Horse lists the following limitations to measuring consumer preferences by using data obtained in market surveys.

A major limitation of the market survey method lies in the oversimplified relationship which is comonly assumed betweon price and consumers' prexerence. actually what is secured by the market data survey method is a picture of consumers' choices in terms of prices, and quantitios and qualitios taken. Such choices may reflect only roughly their proferences. The market may be so organized that is difficult, if not impossible, for the consumers to express adequately their likes and dislikes in their market selactions. Several conditions imay interfore: (1) The range of productis offored consumers may limit the extent of their cholees. (2) The products may be labeled inaccurately as to their quality. Hence, the consumers in part are unable to compare satisfactorily the qualities offered in the mertet and intelligently to express their preferences in their choices, and in part are actwally aisled in their market selections so that their martet choices reflect only a limited and perhaps a felse picture of consumers preferences. (3) Consumers' market selections of particular items are not solely a function of the price and the quality of the particular product; the selection is coniounded by such other considerations as: store personnel, types of display, proximity of the store, ${ }^{\text {fithere }}$ services, volume of other goods purchased at the store etc. ${ }^{\text {s }}$
${ }^{12}$ Ibid, PP. 93-95.

Fven though market suryeys yield data which is generated uncer actual marleting conditions, the limitations as givon above wota lead an investigator to expect such data to give inaccurate moanurements of either basic or monetary preforencen.

Controlled Experinemis

A poscible alternative to market and consumer surveys is controlled axperimentation which is a basic mothod of research in the physical and biological sciences. Controlled experiments are those mothods in which the investigator attempta to elininate the offect of "non-test" variables in order to measure the response of experimental material to varying levels of a given "test" variable.

Perhaps one of the best methods of elininating non-test factors is to hold then constant while subjecting the experimental meterial to different Ievels of the test variable. This procedure is relatively easy for physical scientists who work with such variables as temperatures, volume, pressure, chemical reaction etc., but it is much more difficult for social scientists who deal with subjeet matter that is affected by a multitude of veriables, many of mhich are impracticel, if not inponsible, to physically control. Hence, if a social scientist employs a controlled experiment, he must use some alternative procedure to physioal control for eliminating non-test variables.

An albernative to physical control is statistical control. Statistical control is used fin both experiments and surveys, but a major difference of its use in these two mothods of research is pointed out by Brunk.

Using the oxporimentail method the rasearcher must describe and control the conditionf under which the effects are produced. Variables not kept constant must be measured and eliminated statistically. The
date gathered with the survey method are the everyduy experiences of the population under study. glimination of the effeet of non-test variables is attemped by stratification in samping and by statistical anaiysis after the data are gathered. Asswaing that this can be done the latter approach is restricted in that innovation cannot be tested. This is a serious restriction for market development per se inplies innovetion. 13

A frequently used statistical tool in co-variance which allows an experimenter to adjust results for one source of uncontrolled variation. Other means of elimfnetion is by designing the experiment so that variability of non-test factore can be eliminated in the analysis. There are several designs that are available and the design which a given researcher omploys wfill depend upon the amount and kind of non-test variables, amount of com operation he can obtain in acquiring experimental test units, available rescurces, etc.
fn over-2ll appraisal of controlled experimentation in any study must be based on how much variation dve to non-test factors can be elininated by a combination of physical and statistieal control. With reference to preference studies, what expectations can an investigator formulate as to the accuracy of the results cbtained from a controlled experiment carried out under actual shopping conditions? Since sales or disappearance figures are the type of data to be analyzed to fulizill the major objective of preference studies, a general model that relates disappoarance and a few of the many possible sources of variation is presented in hodel 3.3.
$y_{i j k I m}=u_{1}+p_{i}+s_{j}+t_{k}+x_{1}+d_{m}+e_{i j k J n} \quad$ Model 3.3

13max E. Erunk and walter T. Federer, "Experimental Designs and Probability Sampling in Markebing Fesearch," American Statistical Association Journal, Vol. 48, September, 1953, pp. 440-441.

Wore $y_{i j k i n}=$ quantity disappearance of T-Bone ateak for $i^{\text {th }}$ price, $j^{i h}$ store, $k^{t h}$ time period, $i^{t h}$ position, and $m^{\text {th }}$ day.
$u=$ over-all mean offect
$p_{i}=$ price erfect (for the $i^{\text {th }}$ price)
$s_{j}=$ store type effect (for the $j^{\text {th }}$ store)
$t_{k}=$ tirne period effect (for the $k^{\text {th }}$ period)
$r_{1}=$ location position (for the $1^{\text {th }}$ location)
$d_{m}=$ dey effect (for the $m^{\text {th }}$ day)
e = random orror
Hodel 3.3 states that the disappoarance of T -Bone steaks is associated with the over-all mean effect, price of T-Bone, store type, time period, position of T-Bone display mithin the store proper, day effect, and residual error. It is realized that these are only a few of many variables that can logically affect sales volumes of T-Bone steak. Other factors are bone content, size of cut, amount of outside fat, etc.

Different experfmental designs can be employed to eliminate those facm tors that are not physically controlled. In Rodel 3.3 a randomized blocks design can be employed to oliminate the variation due to one non-test factor. If the investigator was limited in resources, etc. and randomized blocks was the most efficient design available under Eiven restrictions, he world then block experimental treatments into that non-test factor that would decrease error sun of squares by the greatest amount. Glen L. Burrows in a paper given to the Southwestern Social Science Meeting, April 1555 states:

And in retail store experinentation the greatest single source of variability has been demonstrated over and over again to be that among stores. Bren anong stores that have been purposively selected so as to agree in volume of sales, management practices, physical layout, geogrephical locstion and hours of operation, the between-
store component in an analysis of variation still dominates everything else. 14

In those cases that present two sources of large amounts of variation, the investigator can eliminate both by the use of Jatin square. The latin square design, however, is restrictive in that the number of stores must equal the nuber of treatments. Other statistical tools are different treatment arrangements mithin a given experimental design, such as factorial arrangements of treatments, incomplata blocks, split plots, ete. Use of the more complex designs are, hovever, dependent upon the objectives, knowledge of sources of variations, eto. The use of an appropriate design is essential to a study of this type because of the many factors thet are impossible to hoid constant by physical means. Honever, in order to return to the basic problem involved, it mill be assumed that an investigator can control nontest factors by combining statistical and physical controls.

If the investigetor is concerned with over-all preference for different crades, he can employ different pricing schemes as treatments, and the disappearance of various grades will be measurenents of the monetary value that consumers place on preferred grades. If the investigator is interested in deteraining consumers basic preferences for individual physical characteristios oy employing Model 3.3 it is necessary to hold price equal for all grades while varying the physical characteristics being tested. For example if the experimenter is interested in testing proference for amount of outside fat, all other physical factors, as well as prica, must be held constant while the amount of outside fat varies. Variation in disappearance figures would then be the result on the one factox, cutside fat.

14Glen L. Burrows, WThe Adaptation and Use of Experimental Designs in Werchandising Research (unpubl. paper presented at Southwestern Social Science Heeting, April 1955) p. 5.

Combinations oi pifferent Rethods

A major craticism on consumer surveys concorns the accuracy of data obtained from questions dealing with the price difierentials respondents are willing to pay. Since a knowledge of price differentiels is essential If the marketing syston is to perform its pricing function efficiontiv, a study of this type would have little economic significance if based solely on this research method.

Controlled experiments, if vell conducted, appears to be an accurate method of obtaining monetary preferences, but they are woak in that factors such as income, knowledge of grades, etc. can not be obtained from "sales data" alone. Therefore, in order to attain the major objective of this study, a combination of concrollec experimentation and consumer surveys will be omployed in the empirical investigation.

WODES ATB EPPITICAL PRSUMS

General

The specific objectivas of the ompirical investigation have been stated as follows:

1. To deterine consumer basic preferences for different physical characteristics of beal as they are ralated to the grades Prine, Choice, Good and Comercial,
2. To measure the monetary values that consurers place on their basio preferences (preverted grades),
3. To compare consumers responses to guestions concerning price differentials they are willing to pay as obtained by sumpeying versus responses under actual shopping onditions.

It nay be advisable at this time to point out that this investigation was restricted to vinual preferences, which includes those preferences that are based on the consumer's own ability to judge quality frow phyaical characteristics, grade labels, or butchers recomendations. No attempt was made to relate visual preferences to eating preferences. 1 Another point that should be clarified concerns obfective (2). This
${ }^{1}$ It is not too wnealistic to assume that consumers associate eating preferences with physiesl oharacteristics.
objective refers to measuring consumers monetary values placed on different grades rather than individual physical characteristics. Cases may arise in which a consumer prefers individual characteristics that are not incorporated within a single grede, for example he may prefer bright red Lean and littio in any marbling; in this case the chosen grade mill not represent the sum total of individual preferences for physical characteristucs, but will represent an over-all preference.
gelection of out. It would probably be desirable to study consumer preferences for all fresh oute of beet. Fowever, this mould be a task of Jorge proportions, and limited funcs and personnel made this approech infeastile. Therefore, this study was limited to the ceriter cut of the short Ioin (n-Bone stak). This cut was chosen for the following reasons:

1. T-Bone is s popular cut, therefore it enters into the purchases of nany of those consumers purchasing neat,
2. Crade differences are more tuportent in the loin section then any other section of the carcass, as detormined by diferences In wholesale prices,
3. T-Bones are amenable to controiled experiments; that is, nontost variables such as siza of out, mount of bone, outside trin, shape of out, etc. can be hold constant.

Selection of Stores. The retail outlets emploged in this study were selected on the following oriteria:
2. Self-serviee
2. Large volume
3. Clientele representative of different income levels.

Stillwater Store Superiment

The first phase of the study was carriod out during the late minter of 1956 in Stillwater, Oklahoma. This phase was set up as a pilot study and included a controlled oxperiment in one large selimservice store, a home survey of a samplo of consuners who actwally purchased T-Bone stoak during the test period, and a store surver of a sample of all shoppers within the test store. Since the controlled exporiment was the ifrst to be periormed, its adminism tration and results will be discussed before taking up the survey phases.

Procedure the controlled oxporiment was designed to give consumers an opportunity to select differont grades of T-Eone stesk at different prices. A necessary feature was to administer the experiment in such a menner that consumers would be unaware thet an experinemt was being periormed, hence store personnel who took part in the study wore cautioned as to this point.

The tost stome nomaling offers tro grades of Twine, Choice and Good mature. It was desired to experinent mith more than two grades, and managoment was questioned as to the possibility of adding both Prime and Comercial. Gomercial was rejected on the basis of stone policy. Therefore, the experiment included Erime, Ghoice and Good mature beef. Good and Choice grades were supplied by the store through its regular channel, but sinee its suppliers did not rerchandize Frine, this grede had to be ordered from another source.

It was anticipated that loins would vary fron the top to the bottom of grade classes, therefore that person who was responsible for cutting and dism playing nas requested to matoh top Good with top Choice and top Prine, $10 w$ Good with Iow Ghoice and low Prine, etc. ${ }^{2}$ The person responsible for cutting
${ }^{2}$ able assistance on matters concerning grade control was freely given by L. E. Walters of the Animal Husbandry Departient of Oklahoma A. \& W. College.
was also requested to match steaks of the same size and bone content. This was a fairly easy task since only the short loin was used for experimental purposes.

All steaks were trinmed to a uniform fat cover of $1 / 2$ inch and cellophane wrapped in packages of 1,2 and 3 steaks for each grade. Each package contained labeling as to type of cut, price per pound, weight in pounds and ounces, and total purchase price. Crade labeling was omitted on the first rive treatments.

The steaks were displayed in three adjacent bins as illustrated in the following diagram.

Other meats	*		:		;		*	
	*	Prime	*	Choice	:	Good	-	Other
	:	T-Bone	:	f-Bone	:	T-Bone	:	Preats
	:	Steak	*	Steak	:	Steak	:	
	:		-		2		\&	

Figwe 2. Position of Crades Within Display

A question arose as to position within the meat counter, and on the basis of traffic flow it was decided to use the center position. To eliminate position effects, the grades mere rotated daily among the bins. Since a source of variation may stem from different levels within bins, the person in charge of keeping the bins stocked was cautioned to keep all three at approximately the same level. This request not only referred to the absoIute level, but also to packages containing different number of steaks. In kegping with nomal shopping conditions, the stockers were also advised to keep bins at normal levels. Frequent visite were made to the store to insure that an adequate supply and grade differences were being maintained.

Fxicine Schenes, Soveral price gtroctures vere considcred, but the one which appared to of cr the poot iniometion is prosented in table I. Whe time pertod that was proposed tor each treatwent in Teble I vas 7 days sance th was relt that a mejority of concuners shop at least once a week. Treaturents 1 whough 5 used packeges unlaboled as to grade; whereas, treate monts 6 axd 7 used packages with grade haboling.

THMEI

Treathent	prine	Guciee	Cood
2	0	0	0
2	-14	0	0
3	+14	0	0
4	0	0	$+14$
5	0	0	-14
6	0	0	0
7	0	0	0

The abselute prices were set at a level that dia not vary too groatly sron the retail prices mich prevailed at that tine. A spread or 44 oents was consicored great encugh to obtain a shith in purchasen anong frades. ${ }^{3}$ The price of Choice was set at 69 cents tor all troatmonta and the price of prime and cood varied an indicated in peble I.

The reader may quection the advisability of beeping the price of ChoLe constant throwhout the experiment. Ith the given number of treat-

${ }^{3}$ It was also felt that when price is 4 cents below the nowat price sone shopperw wouk oowe into the T-Rone narkot, likowise 14 centry above the nomal price woula drive sone showgers avay.

Prine and Choice would outmeigh the information lost on Choiee. By using this pricing soheme it is possible to derive price consumption (demand) curves for Prime and Cood. 4

Treatments 1, 2 and 3 mere designed to generate a price consumption response relationship for Prime. In line with this objective it will be noticed that prices of Choice and Good were held constant during these treatments. Likewise, a price consumption response relationship for Good can be derived from Treatments 1, 4 and 5, in which the prices of Prime and Choice were held constant.

Treatments 2, 6 and 7 were designed to provide information on bastic preferences, therefore prices of all grades were equal during these treatments. Treatrents 1 through 5 differ from 6 and 7 in that no identification by means of labels or feeleral stamps mere available to purchasers; whereas, in Treatrents 6 and 7 packages were labeled as to grade, the objective being to attempt to estimate the impact of grade labeling on selection.

Model. A logical relationship between disappearance of Prime, Choice and Good I-Bone and associated variables for the Stillmater experiment may be represented by Model 4.1.

$$
\begin{equation*}
z_{i j}=u+p_{i}+c_{j}+\theta_{i j} \tag{siciel 4.1}
\end{equation*}
$$

Where $y_{i j}=\begin{aligned} & \text { disappearance of Frime, } \\ & \text { for the } i^{t h} \text { price and } j^{\text {th }} \text { customer count }\end{aligned}$ $u=$ over all mean effoct
$p_{i}=$ price effect (for the $i^{\text {th }}$ price) $c_{j}=$ customer count (for the $j^{\text {th }}$ count) e $=$ residual error
${ }^{4}$ Consumption curves derived in this study do not meet all the requirements of a theoretical demand curve, but the tine period for the entire experiment was short enough that incomes, tastes and preferences, range of available goods, prices of all other goods (excluding prices of T-Bone steaks), and the number of consumers probably did not undergo drastic change.

In this model store physical factors such as bone, shape, etc, are physically controlled, and grades are rotated mong bins. The orfect due to number of shoppers can be eliminated since the analysis is to be based on pounds per 1000 eustomers. Uncontrolled sources of variation entering Into the orror term are time effects, income offects, prices of substitute goocs (especially other meats), and meny others. However, it was felt that the time period of experimentation would be short enough that uncontrolled sources of variabion would remain fairly stable.

Besults. Before presenting the results it may be mell to point out that difficulty wer oncountered in obtaining adequate supplies. Fue to insufficient stock, one, two or all three grades were not available on certain days. Fortunately an adequate aupply of all three grades was available on Thursday, Friday and Saturday of Treatnents 2 through 5. Treatments 6 and 7 did not yield data that could be analyzed due to short supplies. Therefore, the following analysis will pertain to Thursday, Friday and Saturday of Treatments 1 through 5.

Results are presented in two types of tables, one type is based on percentege figures, while the other is based on pounds per 1000 custoners. 5 Table II is presented for the purpose of placing pricing treatments olose to the remults.

TABLE II
PRICING TRBATMENTS EDPLOYBD IN STILLWATHF STORE EXPERIGENT

Treatment	Prime	Choice	Good	Ave. Price
1	.89	48.89	6.89	8.8900
2	.85	.89	.89	.8433
3	1.03	.89	.89	.9366
4	.89	.89	1.03	.9366
5	.89	.89	.75	.8433

${ }^{\text {Figures }}$ based on pounds per 1000 customers were obtainable from daily customer count, which is a normal practice of store nanagement.

Tables ITI and IV give the saine results, but Table IV presents the information in a form thet is neeessery in much of the folloting analysis.

TABLE III
PBRCENTAGE DISTRTBUTION OF GRADES PURCHASED

Treatnent	$\begin{gathered} \text { Prime } \\ \hline \end{gathered}$	$\begin{gathered} \text { Choice } \\ \% \end{gathered}$	$\begin{gathered} \text { Good } \\ \xi_{6}^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \hline \end{gathered}$
1	20.1	42.7	37.2	100
2	29.9	39.3	30.8	100
3	21.5	35.6	42.6	100
4	12.9	45.5	41.6	100
5	19.1	25.8	55.1	100

TABLTS IV
POMUS PZR 1000 CUSTOLERS PUECHASED IN STILDEATER STORE EXPMCDEXT

Treatment	Prime	Choice	Good	Total
		Ibs.	Ibs.	
1	5.648	12.022	10.456	28.126
2	13.304	17.495	13.746	44.545
3	9.002	14.702	17.578	41.282
4	3.875	13.618	12.441	29.934
5	8.074	10.902	23.320	42.296

Test of Wodels and Hypotheses with Results from the Stillmater Store Experiment

Basic Preferences. In Treatment 1 price was not a selection factor since all grades were priced at 89 cents. Distinguishing physical cheracterw istics among grades were amount of marbling and color of the lean. The lean to fat ratio mas the highest in Good, followed by Choice, then Prine. During Treatment 1 Prime accounted for 20.1 percent of the total 1 -Bone seles;
whereas, Choice and Good accounted for 42.7 and 37.2 percent respectively. In testing the hypothesis that consumers prefer lean to fat it appears from this evidence that consumers are not adverse to a moderate amount of marbling but do not wish to purchase those steaks that are more heavily marbled.

Treament 1 is the only treatment that gives information as to basic prefexences since the other four involve price differentigis. However, an analysis of variance was run on the data presented in fable IV. The design employed was that of randomized blocks in which the various grades were blocks and the five pricing schemes were treatments. A sumnory of the results is presented in Table V.

TABEE V

AHAYSTS OF VARIAMCE SUNARX FOR PURCHASE OF T-BONE STBAK
IN STILLWATER ETORE EXPCEMEWI

Source	D.F.	S.S.	M.S.	Fobs.
Total	14	336.12	-	
Treatnents	4	77.24	19.31	1.49
Grades	2	155.04	77.52	5.97%
Error	8	103.34	12.98	-

*Significant at .05 level
Grade mean $\frac{\text { Prime }}{7.980 \mathrm{Ibs}} \frac{\text { Ghoice }}{13.747 \mathrm{Ibs}} \frac{\text { Cood }}{15.508} \mathrm{Ibs}$. Standard error of a grade mean $=1.61$.

A multiple range test computed for grade means resulted in Prime being significantiy different fron Good and Choice at the .05 level of sienificance. Pricing treatments were not significantly different from ach other at the . 05 level of probability. These results lend credence to the evidence that consumers prefer lean to fat.

Demand for Prine. In order to obtain a point estimate of the price response for Prine in the Stilnwater test store, the disappearance of Pame per 1000 customers (y) was fitted as a Linear function of the price of Prime (x). This relationship is based upon Treatnents 1,2 and 3 and appears as Equation 4.1 in the text.

$$
y=22.992-. .354 x \quad(.227) \quad \text { Equation } 4.1
$$

In Equation 4.1. the sign of the price coefficient is negative and therefore agrees with economic theory. The price elasticity of demand at the means is -1.468 , and it is estimated that a 1 percent increase in the price of Prine would result in approxinately a 1.5 decrease in its sales. Although this equation does appear logical, the fact that it is based on only thee points and the standard error of the price coefficient is relative Iy lapge (.227), only limited statistical and economio inferences should be dram.

Datiand for Good. A point estimate of derand for Good can be approxinated by Equation 4.2 in which y is the disappearance of good per 1000 customers and x is the price of Good. This equation is based upon Treatments 1, 4 and 5 in which Prime and Choice were hela constant at 89 cents, while Cood varied from 75 cents to 12.03 .

$$
\begin{aligned}
y=49.985= & .389 x \quad \text { Equation } 4.2 \\
& (.306) \quad
\end{aligned}
$$

Equation 4.2 gives a negative sign for the price coefficient. Price elasticity at the means is -2.245 . However, this equation is similar to that estimated for Prine in that it is based on only three points and gives a Iarge standard error (.306) for the price coefficient. Hence, inference from quation 4.2 is also linited to a point estimation.

Congumer Pesponse to Price Change. Ong of the hyotheses which was cesired to test was that consumers shift from their proferred grede into a second choice when the prico of their preferred grade increases. The rem sulta presented in Table TII can be omployed to get at consumers response to price changes. Ey using the xesults from Treatnent I as a measure of basie preteronce, shints anong grades are shown in Table VI.

TABLE TI

FHGEDPAGE SHTHT AMONG GRADES DUE YO PRICE CHANGES

Tratment	$\begin{gathered} \text { Prime } \\ \frac{8}{2} \end{gathered}$	(\% Change)	Choice g	(\% Change)	Gcod	(\% Change)
1	20.1	0	42.7	0	37.2	0
2	29.9	+9.8	39.3	-3.4	30.8	-6.4
3	27.8	+1.7	35.6	-7.1	42.6	+5.4
4	12.9	-7.2	45.5	$+2.8$	41.6	+4.4
5	19.1	-1.0	25.6	-16.9	55.1	+17.9

*all percent changes computed from Treatment 1.

The (\% change) columns in Table VI do not refer to absolute quantities. For example, the absolute amount of Prine sold in Treatment 2 may remein the same or decrease from the absolute amount sold in Treatment I, even though the percentage change is +9.5 . The aigure +9.8 rerers to percentage increase in Prime seles in Treatment 2 as compared to its percentage salas in Treatment 1, similarly all (\% change) figures compare a given treatment to Treatrient 1.

In Treatnent 2 Prime decreased from 89 to 75 conts and Ghoice and Good were held constant at 89 cents. Even though the absolute pricos of grades Choice and Good romsined unchanged their prices increased relative to the
price of Pmone. the net rosult was an increase of 9.8 percent for Frime and 3.4 and 6.4 percent decrease in Choice and Good respectively. 6

In Treabment 3 Frine increased to 4.03 while Good and Choice remained at 89 cents. Hence, thare wad a relabive decrease in the prices of cood and Ghoice. By comparing ireatment 3 with Treatment I it is found that Prine increased 2.7 percent even in face of the 14 cent price increase. Choice decreased 7.1 percent and Good increased by 5.4 percent.

In Treatment 4 Good was priced at 1.03 while Prime and Choice were priced at 89 cents. By comparing greatment 4 with Ireatarent 1 the 14 cent increase in Good resulted in a 4.4 percont increase in Cood whin Prins decreased 7.2 percent and Ghoice increased by 2.8 percent.

In Treatment 5 Good decreased 14 conts as compared to Treatinont 1. Prime and Choice were held constant at 89 cents. The decrease in the price of Good resulted in 17.9 percent increase in Cood while Prine and Choice decreased by 2.0 and 16.9 percent respectively.

Treatmenta 2 and 5 yielaed expected resuits in that a lowering of the price of Prime in Trestment 2 resulted in a porcentage increase in Erimeg and ginilarly for Good in treatment 5. Hovever, Treatments 3 and 4 also showed a snail percontage increase in Prine and Good respecively, when the price of each was increased. Therofiore, Treatments 2 and 5 tend to support the hypothocis that consumers will shift to lower priced grades when the price of their preferred grade increases, however, Treatuents 3 and 4 give evidence contraxy to the hypothesis.

[^1]Berore leaving this partioutar andygis at may bo well to point out Table 7 indicates that in Treatnont 5 sales per 2000 customers wes the Iargent of all treatments, therefore the 17.9 percent increase in Good may be due to consumers enterine the market rather than shifiting from Prime and Ghoice.

One of the disanvantages of controlled experiments is that an investigator cannot obtain measurements of incone, consuner lmonledge of grade factors, cooking methods, eto. Hence, in order to measure such variables, surveys were conducted after the store experiment mas completed.

Home Survey

Procedure. The hone surveys included a sample of consumers who actually purchased r -Bone stoak during the experiment. Since the oxperiment was to simulate normal shopping conditions, it was necessary that the sample be draw in a manner that would not permit shoppers to know that an experiment was being performed. Therefore, cashiers were instructed to keep a list of those T-Bone steak pirchasers whon they knew by name and those who cashed checks. 7 Along with names they also listed addresses if they were known, date, grade, amount, and purehase price. ${ }^{\circ}$ Sheets mere made up that facilitated a quick Iisting of this information. Cashiers were cautioned to fill in sheets in guch a manner that purchasers would not be suspicious. The consumers dxam in this manner were later interviewed at their hones.

[^2]Ono of the najor purposes of the hone survor mas to obtain consumer response to questicns concerning monebary preferences. Since consumer response to given pricing treatments were already determined under actual shopping conditions, it was felt that if a purchaser was presented the sane situation in a survey, sales and survey results could be compared. The schedule employed in the home survey is presented in Appendix A.

The resulits presented in this section wLll, to the large part, deal mith questions pertaining to the question "Gon consumer survers be omployed to measure the monetary velues that consumers place on their basic preferences?"

Tro interviewors mere used in the home suxvey in which a display of actual cuts of Prime, Choice and Good T-Bone steaks was presented to each respondent, The display device consisted of a porcelain tray that mas placed on the top side of a oardboard box that contained dry ice. Sach ateak was individually wraped in cellophane. The same precautions wexe taken as in the store experiment in eliminating non-test factors such as size, shape, outside trim, thickness, etc. by seleotive matohing. Official government stamps were renoved in order to present the respondent the same situation as that encountered in the store experiment. Position of steaks were rotated frequently in order to eliminate that source of variation.

As the interviewer presented the display the respondent was requested to choose between the three cuts, assumine that all cuts were priced at 99 cents per pound. Arter the respondent selected a given cut, he was then asked his reasons for choosing that particular cut. Feasons such as marbling, color of lean, texture otc. were the type of answers that were expected. Weny respondents howerer, besed their choice on size, bone content and other non-best variables. An ettompt was made to physically control
non-test factors but nevertheless it was difficult to match shape, bone content, etc., hence, some alferences in non-test factors were probably real; but even so, one respondent would list one steak as the laxgest whtle another would list a different steak as the largest. Therefore, it mas necessary to control non-test factors by making different assumptions to fit individual cases after a regpondent gave non-grade factors as reasons for their selection. This was satisfactory in some cases, but in others the best answer that could be obtained was whis steak just looke better than the others.

Test of Redels and Hypotheses with Results from Stillwater Home Survey

Resconse to Price Increase of Preferred Grade. When the respondent selected a cut and gave reasons for his selection, the price of the selected cut was increased from 89 cents to $\$ 2.03$ while the price of the other two cuts remained at 89 cents. He mas then asited which steak he would purchase. After the respondent made a selection under the new pricing scheme, the preferred cut was increased by 14 cents while the price of the other tro cuts were held conctant. In those cases in which respondents chose the same cut as before, the price of that cut mas increased to 1.17 while the other two cuts remained at 89 cants. In those cases in which respondents selected one of the other two cuts the new pricing scheme presented would be two cuts at 81.03 and the remaining cut at 89 cents.

These steps wore carried out until the respondent selected all three grades, of until it wes evident that he wonld not purchase the third, and in some cases the second choice at price of 89 cents. Fesults of this question are presented in Table VII.

TABLLE VII
RESPOASE TO PRICE THGREASES IN PRTHTHRED
GRADBS IA STILLHATH LIONE SUEVEY

Grade	558/20.	\%2.03/2b.	62.27/10.	32, 31/2b.	8.7.45/2b
Prime*	11	3	1	1	0
Choice*	12	4	2	0	0
Good*	14	4	2	0	0

*The prices of the other two grades remained constant at 89 cents.

Of the elevon consumers who chose Prine when all three grodes were priced at 89 cents only three said they vould purchase it at 81.03 when the other grades remained at 89 cents. of those three who stayed mith Prime only one remained when it increased to d.17; but this one stayed through 4.31. Responses of those prefercing thoice sud Good are very sinilar to those preferring Prime.

Table VII indicaten vary little dieference botween monetary preferences of those preferring different grades, that is, respondents preferring one grade placed approximately the same monetary value on their preference as those respondents prelerring other gredes.

Belationshio Botween Ereferred Grede and Second Choice. An important aspect of respondent shift in grades concerns the grade that is chosen when the price of the preiorred grade is increased. Table VIII presents this information for the howe survey.

TaBLS VIII
 GTThLUATYE HOME SURTHE

Parst	Turbor of Respondente	Becond Eroforence			
Ereference		Prime	Choico	Good	Hound ${ }^{\text {t }}$ buy*
Prine	12	**	7	4	0
Choice	12	4	--	6	2
G003	14	3	g	-	3

*Consumers who ftated thoy would only purchase first choice.

The second preference of the eleven Listing pxine as their first preFerence was divided into 7 for Choice and 4 for Good. The second preference of the 12 who listed Choice as thetr hrat preforenoo mas divided into 4 for Prine, 6 for Good and 2 who would not consider purchastng neither Good now prone. The second preference of the 14 who listed Cood as their first preference wes divided into 3 for Prime, 8 for Choice and 3 who would not consider purchasing nether Prime nor Cholce.

It appears from wabe VTII that consumers preferring Prime have a tendency to witoh to Choice, which ia reasonable since Choice has physical characteristies more closely associated to those inkerent in Frige then does grade Locd. Shinjerly, concuners preferring lood have a tendency to choose Choice rather than Prine. Since Choice is the grade between Prine and Good, the consumors in this proup ars expectod to be aplit fairly even between those prefering characteriatics tending tomere Prime and those who prefer cherncterastion tending toward Good, hence, the 4 and 6 split betwoen Prime and Cond respectively is consistent with the other reeulds.

Accuracy of Survey Results In Reasuring Monetary Freferences. A specific objective of this study is to compare consumer surveys and controlled experiments in obtaining measurements of the true monetary values that consumers place on tholin proforences for different grades of Imone steak. In order to got at this question, persons actually purchasing T-Done steak under experimental prices wore to be presented the sere situation in an intervien after the controlled experinent mas completed.

It was desired to conduct the controlled axperiment under conditions that simulated actual shopping conditions. Therefore, the survey sample was restricted to those purchasers whon cashiers lnem by nane and those wo cashed cheoks. Such a soheme worked satisiactorily for the finst two treatments, but ondy a fem names were obtained during the remainder of the expexim ment. Since the wajority of consumers surveyed purchased 9 -Bone steak during Treatment 7 , in which a price differential was not a factor, this study fails to generate sufficient data upon which to evaluate the survey method for neasurine consumer monetary preferences. However, in a future study that omploys a greater number of outlets, the mothod attempted here should yield data thet can be used to measure the accuracy of monetory preferences as obtained irom consumer survegs. Since the home survey was based on such a snall sample, it wes decided to employ the same type of interviem within the store proper.

Sidilwater Store Survey

Procedure. The store survey was conducted similar to the home survey in nost respects but differed in the following ways:

1. Pour grades were used in the store survey, whereas only three were
omployed in the home survey. As was pointed out earlier, it was desired to experiment pith Comercial grade, but store policy would not perait its sale. However, sineo surveying did not involve actual seles, it was possible to include comercial in the store survey.
2. A larger sample was drawn in the store survey than mes possible in the home survey. The sample used in store interviews was not restricted to purchasers of T -Bone steak as was the somple used in the home survey, but rather included shoppere drawn at random from the entire store population.

The display was similar to that winch was taken to consuners homes. Consuners were selected at randon as they passed by the display stand. Two interviewers alternated with each other so as to have an interviever present from opening to closing time. The same precautions concerning control of non-test physical characteristies that were taken in the controlled experiment and home survey were also taken here. The position of grades within the display were rotated as frequently as steaks were replaced with fresher cuts, which was approximatoly every two hours.

The store survey was condueted on Thursday, Friday and Saturday, Narch 29, through Warch 31, 1956. 140 usable scheakies were obtained.

Test of Models and Hypotheses with Resuits from Stillwaker Store Survey

Esponse to Price Incresse. Gonswar xesponse to questions concerning monotary values are given in Table IX.

TABLE TX
 STILUWATM STORB SUEVEY

Grade Selected	894/15.	2.03/10-9		1.17/2b.-8		. 32	- \%	
Prime*	28	6	21.43\%	2	7.1\%	1	3.6\%	0
Choice*	30	7	23.3\%	2	6.7\%	0	0	0
Good*	38	2	5.3%	0	0	0	0	0
Conmercial*	44	11	25.0\%	3.	6.8%	1	2.3\%	0

*The price of the other three grades remained constant at 898.

In Table IX, 6 of the 28 consumers preferring frime indicated they would pay 1.03 per pound for their preferred grade rather than select one of the other three grades at 39 cents per pound. Percontage wise this is 21.43 percent. When the price of Prime was increased to 1.17 , other grades remaining at 89 cents, only 2 of the 6 who stayed with Prime the first increase were willing to pay this sacond price increase. These two consumers made up 7.1% of the original 28. The othor grades are interpreted in the same manner.

Table IX indicates that consumer response to price increase is approxiwetely the same for those who selocted Prine, Choice, or Commercial as their first proference, Thoso preferring Good appear to react differently as indicata by a smaller percentage staying with thoir preference on the first price increase.

Relationghro Betreen First and Second Proferonees. As in the home survey, relevant infometion can be obteined by relating first and second preforences. Table X presents this information for the store survey.
mant

STILLMATER STORE SURVEY

$\begin{aligned} & \text { Pirst } \\ & \text { Pref. } \end{aligned}$	esps.			nd			Secon	d Pref (in p	erenc ercen		
		in					nune	Choice	good	Comm.	Pone*
Prine	28	-	14	3	5	6		50.0\%	10.7\%	17.9\%	21.4\%
Choice	30	8	-	16	3	3	26.7\%	-	53.3秀	10.07	10.0\%
Good	38	7	12	-	18	1	18. 4%	37.6%	-	47.4\%	2.6%
Comm.	44	33	16	9	-	6	29.6\%	36.4\%	20.5\%	-	13.5\%

Whaber of consumers who refused to indicate a second preference.

Fifty percent of those consumers listing Prime as their first preference selected Choice as their second. This is expected since Cholce is more nearly Iike Prine than the other two grades. Of those consumers listing Choice as their Girst preference 26.7 percent selected Prime and 53.3% selected Good. This result is logical since Choiae is the intermediate grade between Prime and Good. The percentage split for those preferring Good was 26.4 percent fox Prime, 31.6% for Choice and 47.4 percent for Comercial. This is also a logicel division since the Jarger percentages went to the two grades that Good comes between. Those consuners who selected Comercial as their first proference chose second preferences that are inconsistent vith their first choice, Cood, the grade that would be axpected to receive the highest percentage actually recsived 20.5 percent which is lower thon the 29.6 percent and 30.4 peroent recelved by Prime and Choice respectively.

Consumer Bnowledge of Grade Standards. It will be recalled that respondents were depondent upon their own ability to judge quality by physical
characteristics then selecting preferences. The relationshtp between ability to nane grades in order from Prime to Comorcial is presented in Table XI.

TABLE XI
RELATIONSIF BETUEEN FIRST SELECTON AMD ABILITY TO NABE CRADES IN ORDEX IM STTLUWRES STORE SUEVET*

Abllity to frame:	First selection			
	$\begin{gathered} \text { Prime } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Choiee } \\ \text { of } \end{gathered}$	$\begin{gathered} 600 d \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Gomercial } \\ 0 \end{gathered}$
4 or rove grades correctly	42.9	26.7	5.3	22.7
3 grades correctiy	17.9	6.7	5.3	9.2
2 grades correcty	10.6	13.3	7.9	15.9
1 grade correctly	3.6	0	7.9	4.5
No grades correctly	25.0	633	73.6	47.7

*This is not necessarily a test of judging ability. Consumers were just asked to name the grades, not to identify the grades on display.

The purpose of Sable XI is to test the hypothesis that consumers who are fadiliar with the grading systom tend to select the higher grades when paices of all grades are equal. Of those selecting Frime 42.9 percent could name four or more grades in order, whereas, of those selecting grade Good only 5.3 percent could name 4 or nore grades in order. Twenty-five percent of those choosing Prime could not name any grades in order, whereas, the percentage or grade Good was 73.6.

It appars irom feble XI that reapondents selecting Prime were nore faniliar with grades than any other group, however, those respondents selecting comercial wero more faniliar with grades than either the Gnoice or Cood groups. Hence, there is evidence both for and against the kyothesis.

Ereferences for Individual Physical Characteristics. Fespondents' preferences por individual phetical characteristics, both grading and nongrading factors, are prosented in Table Xul.

Table KII indicates littie difference betwoen respondents in different grade classes as to their preference for outside fat. The largest percentage of all grade classes preferred one-quarter inch or less; and the next smallest anount, one-half inch, accounted for almost all other rospondents.

The Prime group indicated a stronger preference for moderate anount of marbling than did the other groups. Choice ranked second with 50 percent preferring a moderate anount, 36.7 percent preforring a little and 13.3 percent desiring nons. The Good and Comercial groups were similar in that respondents in both groups were divided about equally among the three amounts of maroling. The relationship between grade selected and amount of marbling as shown by Table XII is logical since degree of marbling is one of the more Importent grade factors.

Fosponses given on preforred color of lean are not as grouped as those concerning amount of marbling. Wedium color mas preferred by the largest perm centage in all grade groups, whereas dark wes the least preferred except in the Good class where darls was preferred over light.

Whte fat was preferred over yellow fat by the largest percentage in all grade classes; however, approsimately one-third of the respondents in all grade classes indicated no preference.

The largest percentage of respondents in all grade alasses selected threomuarter inch as the most desired thicknoss. The second most preferred thickness of those selecting Prane was one inch or over, whereas the second preferred thickness for other grades was one-hatif inch.

TABLE XII
 BY GRADE IR STTLLWATER STORE SURVEX

Physical Characteristics:	Grade selected			
	$\begin{gathered} \text { Prime } \\ \hline 1 \end{gathered}$	Goice范	Good䈌	Comercial
Outside Fat Cover				
$1 / 4^{\text {in }}$ (or less)	53.6	60.0	57.9	65.9
1/2 ${ }^{\text {n }}$	39.2	36.7	39.5	29.6
3/4"	3.6	-	2.6	-
In (or more)	-	-	-	-
No Preference	3.6	3.3	$\underline{-}$	4.5
Total	100.0	100.0	100.0	100.0
Nexbling				
Hoderate	82.2	50.0	32.6	31.8
Little	10.7	36.7	34.2	38.7
Hone	3.6	13.3	28.9	25.0
No Preference	3.6		5.3	4.5
Totel	100.0	100.0	100.0	100.0
Color or Lean				
I.ight	32.1	30.0	13.2	34.1
Medium	60.8	43.3	60.5	43.2
Dark	7.1	16.7	21.0	18.2
No Preference	$=$	10.0	5.3	4.5
Total	100.0	100.0	100.0	100.0
Golor of Fat				
White	64.3	46.7	47.4	45.4
Yellow	3.6	10.0	15.5	11.4
Wo Preference	22.1	43.3	36.8	43.2
Rotel	100.0	100.0	100.0	100.0
Thicknoss				
1/4" (or loss)	-	3.3	-	2.3
1/2"	25.0	30.0	28.9	34.1
$3 / 4^{\prime \prime}$	42.9	46.7	57.9	43.2
$2{ }^{3}$ (or more)	32.1	16.7	10.6	18.1
do Preference	$\underline{-}$	$\frac{3.3}{1000}$	$\underline{2.6}$	2.3
Total	100.0	100.0	100.0	100.0

The orer-all indication of Table XII is that amount of marbling is the only phycical characteristic of those tested that differed to any degree between grade classes.

Felationshio Between Income Level and Preferred Grace. Before leaving the store survey it may be appropriate to obtein the relationships botween grade selection and income level; and incone level versus price increases of selected grade. Table KIII presents the resulits of incone level versus grade selection.

TABLE KIII
PRRCEMTACE DISTRIBUTON OF ANVUA INCORG LEVEL EY CRADE SELECTIONS IN STTLMAREM STORE SGWEX

Income Level	No. of Respes.	$\begin{gathered} \text { Prime } \\ y_{B} \end{gathered}$	$\begin{gathered} \text { Choice } \\ \text { i } \end{gathered}$	Good \%	Comm 8	Toter \%
Belom 2,000	19	10.5	21.1	26.3	42.1	100.0
2,000-4,000	49	18.4	20.4	20.4	40.8	100.0
4,000-6,000	42	19.0	26.3	35.7	19.0	100.0
6,000-8,000	17	23.5	23.5	29.5	23.5	100.0
8,000-10,000	10	50.0	-	30.0	20.0	100.0
Over 10,000	2	-	50.0	-	50.0	100.0

Or those respondents reporting annual income of two thousand dollars or below, 10.5 percent selected Prime, 21.1 percent selected Choice, 26.3 porcent chose Good and 42.1 percent selected Comercial. Percentages were similar in the two to four thousand dollar income bracket. Grade selections in the lour to six and six to eight thousand dollar income brackets were split fairly equal among all the grades.

It is very difficult to detect a possible relationship between income and grade selection because of the small number of respondents in each incone bracket, especially the last two.

Helationshipe Betpeen Incone Ievel and Price Increases. Another roLationship that is meaningful is that of income level and willingness to stay with a selection through price increases. Teble XIV is presented for this purpose.

TABLE XIV

 SELSGED GADES TMOUGH SUCGSSIVE BRTGE THORESES TM STTLLMATER STORE SURYE

Incorae	NO. of Respondents	$+\frac{146}{8}$	$\begin{gathered} +287 \\ \% \end{gathered}$	$\begin{gathered} +426 \\ 0 \end{gathered}$
Belom 2,000	19	42,1	15.8	5.3
2,000-4,000	49	16.3	2.0	-
4,000-6,000	42	11.9	2.4	-
6,000-8,800	10	17.6	3.9	5.9
8,000-10,000	2	50.0	50.0	-

Of those respondents reporting annual incone of two thousand dollars or less 42.1 percent stayed with their selected grades as the price of their preferred grade increased 14 cents (prices of other erades renained constant). Strilariy, only 16.3 percent of those in the incone bracket of tho to four thousand stayed with the \mathcal{L}_{4} cent increase.

Table IV indicates a reverse relationship to what would be oxpected. An explanation may be that respondents were not making actual purchases and such human characteristics as pride could very easily enter into this type of question.

Oklahoma City Experiment

Procedure. Kxperienoe gained in the stillmater study provided the basis for controlled experiments conducted in five large super-markets of
another ohan. Pour wose loated at Oklahona Gity and the other at Shamee. These exparinents were similar in mony respects to that concuctod in Stillwater, but were quite different in others. Since the procedure for the gtillwater experiment has been presented in sone detail, perheps these latter experimenta can be best presented by pointing out major diaferenees.

Consumer aurveys were taken in conjunction with the Stillwater experiment, whereas these experinenta wora restricted to sales data. The stillwater experiment was conducted with mature beef only. These oxperinents were conducted with both mature and call beef, the specific grades being Choice nature, and Good and Comercial calf. It will be recalled that packages were not labeled as to grade at Stillwater, whereas in the Oklahoma City stores, packages of T-Bone ateak were clearly labeled as to grade. However, the Shawnee oxperiment differed from the Oklahoma clty study in that packages were not labeled as to grade.

Pricing schemes used in the Oklahoma Gity and the Shamee studies not only differed from that employed at stillmater, but also differed between each other. 性agement had been stressing grade labels and felt thet pricing Choice mature below calf grades or Good calf below comercial calf would be harmeul to customer-store relationship. Therefore, the pricine scheme used in the Orlahoma City stores was placed under this restriction. However, since the Shawnee experiment was to be conducted mithout grade labels, management agreed to a moxe flextble pricing soheme in that one store. 9

Another ixportent difference is that of the treatment perioc. Due to short supplies that were encountered in the stillwater experimont it was decided to mun each pricing treatment one day only. Fridays and Saturdays were selected because of their being large volume days; and it was also felt that week-end shoppers constitute a fairly homogenoous population.

[^3]Ten treatnents were involved in these latter studies and it was hoped that the oxperinent could be concluded after five consecutive week-nds. However, during some week-ends, best stores advertised 9 -bone steak in order to meet competition and it wes not possible to conduct the experiments on those week-ends. Hence, the stady ran from August 17 through Getober 13, 1956.

Store management was concerned about the possibility of slow sales during those days in which higher prices were to be in effect and in order to minimize this possibility high and lom pricing treatments were paired together in each meek-ond. Hanagenent also included a safety factor by requesting meat mariet managers to return to normal pricing when they could not move large supplies under experimental prices. This restriction was most undesirable Irom the investigator's point of view, howevar in order to rotain observatione, meat norkot managers were requested to take a reading of the day's customer comt and gross sales at the time of return to nomal pricing. Since sales were to be analyzed as pounds per 1000 customers, such an arrangement appeared to be the best available alternative. 10 there was also a posm aibilfty that supplies would be exhausted before the end of the day's operatione, therefore, neat market managers were requested to take readings at the tinne of sell out of any grade.

A12 steaks used in these studies were supplied by test storea, who obm tained then througla regular chennols. Just as in the Stillwater study, those responcible were cautioned to maintain physial controls such as grade differences, bone content, otc. Other administrative procedures were similar to thase taken at Stilluater and will not be re-diseussed here.
$10_{\text {This }}$ arrangement was made with realization that evening shoppers may constitute a different population than morning and mid-day shoppers, but this risk had to be taken if observations were to be usable.

Since the oklahoma ciby study involved labeling, and a dincerent pricing scheare than thet used in thamea, zemits will be onalyzed seperotely. The renainder of this section mill be devoted to the oklohoma Gty phase, and the Shamee phase will be presented in the neat section.

Pricing Soheme. The pricing schame omployed in the oklahone Caty stores is presented in table XV.

RABLE XV

Treatment	Price per pound			Average Price
	Choice mature	$\begin{array}{r} \text { Good } \\ - \text { calis } \\ \hline \end{array}$	$\begin{gathered} \text { Conmercial } \\ \text { cals } \end{gathered}$	
1	6.99	\%. 99	8.99	\% 6990
2	1.05	. 89	. 75	.897
3	1.19	2.05	.89	2.043
4	.89	. 75	. 59	.743
5	1.05	. 89	. 89	. 943
6	1.05	. 89	.59	. 843
7	1.05	2.05	. 75	. 950
8	2.05	. 75	. 75	. 850
9	1.05	. 59	. 59	.743
10	. 99	.99	. 99	. 990

Whis pricing scheme ts similar to that usod at Stillmeter in that information on one grade was sacriniced in order to gain information on the other two. In thas case it was desired to gain information on the call grades, therefore, Choice nature was held at 1.05 per pound in all ireatments except 7, 3, 4 and 5.

Hodele. There are many different modols that could bo postulated for the relationship existing boween p-Bone sales and associated vaciables. Possible models differ not only to the lind and number of independent variables, but also to type of mathomatical form. In choosing models to be tested by
eroirical dota genorated in the Oklahona Gity stores, it would heyo been desirable to include memy independent variebles. Howerer, since this study was limited in personnel and resources, only those variables that were considered to be the nost inportant were neasured.

One of the simplest models that could be postoleted utilizes the linear form with a single variable. Such a nodel is model 4.2 which depicts the atsappearonce of a given grade of T-Bone as a funtion of its orn price.

$$
y=b x+e \quad \text { Ilodel } 4.2
$$

Where $y=$ disappearance of a given grade in pounds per 1000 customers $x=$ price of the given grade $\theta=$ random error

This model can be used to obtain an approxination of demand for a chosen grade if the prices of the other two grades are held constant as the grede under consideration is varied in price. 11 The results obtained from Treatnonts 2, 5 and 6 can be used to approxirnato donand for Gomeroial calf, since during these treatnents Choice mature was held constant at 1.05 and Cood calf mas held constant at 89 cents while the price of Comerciel oalf was variod from 59 to 89 cents. Sinilariy, data generated by Ireatnenss 2 7 and 8 can be usad to estimate the demend for Good cali since Choice mature was held at 5.05 and Comercial cali held at 75 cente while the price of Good call mas varied from 75 to 89 cents.

The demand for Goice mature camot be estimated from lodel 4.2 since Its price changes are not associated with constant prices for Good and Gomaercial call grades.

[^4]Wodel 4.2 on also be employed to obtain an approximation of denend for any two or all these grades as a single product rather then indsutual grades. y would represent disapparance of two or all three grades and x would represent different levels of prices; thet is, the prices of the gradea under consideration would be increased or decreesed by the same amount.

Treatments 2, 3 and 4 can be used to measure the demand of T-Bone steak as a gingle product rather than for individual grades. In Treataent 2 all grades were 14 cents higher than in Treatment 4 , sinilerly all grades were L. cents higher in Treatment 3 than in Treatreent $2 .{ }^{12}$

Whatel 4.2 can also be used to estinate the domand for calt grades as one product. In Treatment 5, 8 and 9, Good and Commercial calf wero both priced the same, Choice mature was held constant at 1.05 and the price of calf grades varied from 59 cents to 89 cents. Hence, the domand for call grades can be approximated from the resulte of these treatments.

The disappearance of a given grade may be associated with pricos of other grodes as well as its om price. Wodel 4.3 postulates such a relationship.

$$
\begin{equation*}
y_{i j}=b_{1} x_{i}+b_{2} x_{j}+\theta_{i j} \tag{Hodel 4.3}
\end{equation*}
$$

Where $y_{i j}=$ disappearance of a given grede in pounds por 1000 custoners $x_{1}=$ price of the given grade in cents per pound $x_{j}=$ price of a competing grade in cents per pound - $=$ randon error 4 , which is 2 cents over what was planned, but this 2 cents difference does not invalicate the principle of Model (4.2).

In Troptrents $2,5,6,7,8$, and 9 the price of Choice nature in helt oonctant, thareroxe those treatments can be omployed in Eicel 4.3 when ob-
 represente disamearonoe on cood call then x_{i} is the price of Good calf and x_{j} is the price of Comerctal calf. Lizevise, when $y_{i j}$ represents the dism appearance of Commercial calf then x_{i} is the price of Comercial calf and x_{j} is the price of Good call.

Becults of Oklahomp City Experiment. The results of the orlahoma City oxporiment are firct precented on a percentege basis in Table XVI and then as pound per 1000 customers in Table XVII.

In Table XVI sales of T -Bone of the three grades are listed as percentages of total sales for individual stores and also for all stores combined. Tor example, during Treatment 1 Choice mature aceounted for 46.50 percent of T-Bone sales in Store 1 ; whereas, it accounted for 43.67 percents of the all stores total.

The same information that is presented in Table XVI is listed as pounds pex 1000 customers in Table RVIT.

In Table XIII, Store 1 sold 14.604 pounds per 1000 oustomers of choice mature during Treatment 1; whereas, 9.778 pounds per 1000 customers were sold when all stores mere agregated. All store totals were computed by sumbing original pounds and custoner count across all stores and then dim viding total pouncs by total custoner count. In this maner all four stores are treated as one.

It is not to be implied that ali stores form a homogenous group, which In fact they do not, but since nost chain organizations follow the practice of raintaining identical prices in all their atores in a given city or vicinity, it js felt that "all stores" analysis has more meaning than indim vidual store analysis. Therefore, the following analysis is restricted to "ell stores" data.

 nmm Th omancia at suyby

			600421	Cuman Gif Total	
	Store Ho. 1	46.50	42.13	11.37	100
$\mathrm{C}_{4} \mathrm{E}-\mathrm{C}$ - 9	Store 4.0 .2	43.69	17.93	30.38	100
6.6.-6. 69	gtore Mo. 3	55.75	15.47	28.78	100
0.6.m. 69	Sture ic. 4	27.44	59.37	13.19	200
	Mi Starea	43.077	37.00	19.33	100
Treaturat bo. ${ }^{\text {a }}$					
	Store 10. 1	14.30	25.92	56.89	100
0.2.- 2.05	Store lio. 2	2.10	54.19	34.72	100
	Store No. 3	21.05	30.38	48.57	100
C.0.0.6. 75	Store \%e. 4	5.84	2.73	72.43	100
	All Stores	13.93	36.40	49.67	100
Sreaument Mio. 2					
	Store No. 1	18.60	44.31.	37.09	100
0.E. -1.19	Store Ho. 2	11.65	47.08	41.26	100
c.0.-2.05	store Mo. 3	27.00	37.53	33.47	100
C.6.- 6.88	Store IV. 4	7.08	21.23	71.69	100
	$411560 r e s$	35.46	39.53	44.96	200
	Store No. 2	13.30	32.99	53.71	100
C.4.4. 69	Storo 1.0. 2	2.279	64.10	23.11	100
	Store 16. 3	20.25	10.25	79.50	100
0.0 .8 .59	store ino. 4	2.36	34.43	60.71	100
	111 Stores	21.25	40.28	48.47	100
greateat Mo. 5					
	Store 170. 1	27.27	37.49	35.24	100
C. 2.0 .4 .05	store Mic. 2	38.0.	50.25	30.76	100
6.0.- 6.39	Store Mo. 3	9.04	38.28	52.68	100
c.0.- ${ }^{\text {a }} .89$	Whore Ho. 4	21.31	35.36	43.33	100
	A12 Storen	20.22	39.87	39.92	100
Seatmat ina 6					
	Store Mo. 1	21.36	4.455	47.09	10
0.2.- 2.05	Store $\mathbf{i o} .2$	21.32	31.05	57.63	100
0.0.- 69	Sture Ko. 3	0.82	25.00	74.18	100
C.0.0.6.39	Store No. 4	9.18	17.97	72.05	100
	All Stores	8.56	33.86	57.58	100

TABLE XVI (comthued)

			od Cal 1	Comm. Call Total	
Ireatmont NO. 7					
	Store 10. 1	19.42	31.58	49.00	200
0.4.4.-4.05	Store No. 2	30.78	39.32	29.90	100
6.0.-82.05	Store ITO. 3	8, 13	32.52	59.05	100
C.0.- ${ }^{\text {a }}$. 75	Store 10. 4	15.83	30.96	53.21	100
	A11 Stores	18.50	33.45	48.05	100
Ireatmont Mo. 8					
	Store No. 1	12.33	53.98	33.69	100
	Store Ho. 2	21.08	66.69	22.23	100
	Store Io. 3	12.36	39.95	47.69	100
C.C.- $\%$. 75	Store NO. 4	14.63	45.45	39.92	100
	All stores	12.09	54.95	32.96	100
Ireament ito. 9					
	Store No. 1	12.75	50.37	37.88	100
0.2.0.- 2.05	Store MO. 2	10.66	59.78	29.56	100
	Store 150.3	10.50	44.03	45.47	100
C.C. - \% 59	Store Mo. 4	11.78	4.32	46.90	100
	All Stores	11.31	50.42	38.27	100
Ireatnent 10. 20					
	Store Ne. 1	24.42	43.46	32.10	100
	Store Wo. 2	27.77	58.89	13.34	100
G, C.- ${ }_{\text {\% }}$. 99	Store Mo. 3	13.53	31.58	54.69	100
C.C.- 6.99	Store No. 4	35.88	53.82	10.30	100
	A11 Stores	24.92	47.23	27.85	100

TABLSE SVII
 IA OKLAHOMA CTTY GTUDY

Ireatrent No. 1	Chorce Patur		Coca Can Coman dan		Total
	Store lio. 1	12.664	13.286	3.586	
0.0.1.0.8. 99	Store No. 2	7.416	3.044	6.516	
6.0.-3 99	Store 170. 3	18.142	5.033	9.363	
0.0.-6. 9.9	Store No. 4	3.725	8.059	1.791	
	A11 Stores*	9.778	8.284	4.329	22.391
Ireatment Ho. 2					
	Store No. 1	9.937	20.237	39.825	
C.H.-3. 1.05	Store 1No. 2	5.607	27.386	17.540	
G.C.m. ${ }^{\text {B }}$ 89	Store illo. 3	13.689	20.040	32.044	
C.C.- ${ }^{\text {B }} .75$	Store H0. $4^{* *}$	1.132	4.401	13.833	
	all Stores	8.110	21.183	28.908	58.201
	Store Wo. 1	5.732	13.653	12.430	
C. $2 .-31.19$	Stors Mo. 2	3.925	15.856	13.893	
Q.0.-M1.05	Stora Mo. 3\%	13.311	19.195	13.141	
C.0.-6. 89	Store NO. 4	1.377	4.131	73.949	
	A11 Stores	4.653	11.913	13.530	30.096
Treatment Mo. 4					
	Store Mo. 1	7.035	17.445	20.404	
	Store 110. 2	5.721	28.674	10.339	
G.6.-\% ${ }^{\text {b }} 75$	Store NO. 3**	2.266	2.266	17.582	
c.0.- 0.59	Store 10. $4^{* *}$	1.050	13.393	22.321	
	All Stores	4.928	17.634	21.223	43.755
Treatment Ho. 5					
	Store 170. 2	16.254	22.342	21.003	
0.1.-1.05	Store No. 2	6.513	18.032	12.037	
	Store No. 3	4.877	20.644	28.409	
0.6.- 6.89	Stiore No. 4	3.597	5.969	7.313	
	all Stores	8.556	16. 882	16.902	42.340
Treatment Mo. 6					
	Stoxe Ho. 1	7.822	28.613	32.435	
0.12. 2.05	Store Mo. 2	3.263	8.950	16.614	
G.C.-4. 89	Store No. 3	0.286	8.745	25.949	
C.0.- 0.59	Store Mo. 4	3.501	6.855	27.786	
	All Stores	3.984	15.752	26.790	46.526

TABLT XITI (Contsnued)

Treatment Mo. 7

Store No. 1	9.731	15.821	24.548
store No. 2	9.186	11.735	8.923
Store No. 3	3.863	25.601	28.071
Store No. 4	2.669	5.221	8.973

A12 Stores $\quad 6.706 \quad 22.224 \quad 27.418 \quad 36.248$

Sreatnent io. \&
Store RO. 27.841
$34.323 \quad 21.424$

C.6.m .75 Store No. $4 \quad 2.756 \quad 8.567 \quad 7.524$

Treatnent Mo. 2

	Store Mo. 1	10.278	4.4 .057	33.139	
0.11.-6.05	Stere No. 2	6.611	37.070	18.332	
6.C.- . 59	Store 1\%O. 3	4.379	23.362	28.959	
0.0.- 6.59	Store No. 4	4.363	15.309	27.376	
	A13 Stores	6.718	29.957	22.740	59.4,15

Treatrent MiO. 70

	Store Wo. 1	8.718	15.522	11.600	
0.1.0.3. 99	Store Mo. 2	13.556	28.756	6.514	
C.0.- ${ }^{\text {b }} .99$	Store io. 3	2.092	4.879	3.430	
0.0.- 0.99	Store do. 4	4.024	6.036	1.156	
	A11 Stores	6.327	12.939	7.626	27.394

*all store totals were computed by summing original pounds across all stores and dividing by all stores oustonor count.

Houstoner count was not available, hence figures are based on customer count estimeted tron rearession mazyais.

Test of Rodels and Hypotheses with Results from Oklahoma City Bxperiment

The empirical deta used in teating postulated models consists of the "all stores" figures as they are given in Table gyI, and exosption being those data obtained from Treatment 2. In reference to Table 8 KII , the reader will notice that disappearance ifgures for Treatment 2 appoar to be extrenely high in relation to all other treatments, other than preatment 9. The Jarge diagppearance figures in Treatment 9 can logicaly be accounted for by the fact that both coif grades were at their lomest experinental price, 59 centa, but the sace logic cannot be aplied to treatuent 2 where Gocd colf vas priced at 89 cents end Comimeroial calif at 75 cents. Explanations such as pay periods, gross sales por custoner, etc. were examined, but the only one that appeared to be of value was the poscibilfty of advertising efrects.

As has been previously pointed out, interruptions wexe made in the experimental period due to test storas advertising m-Ione steak on given week-ends. T-Bones pers advertised on the week-end falling between Treatments 2 and 3, end two weekends between Treatments 8 and 9 . Treatnents 3 through δ were conducted without advertising breaks.

An emanination of Treataent resuzts on the bastis of prices and advertisirg pericas indicates that advertising tend to deflate the following meek-end disappearance figures. However, resuIts obtained in Treatrent 2 appears to be the only data that is completely inconsistent mith all other results. Hot all equations that are to be tonted require Treatment 2, hence, Treabment 2 mill ba omithed frow those equations in mbich its results are not essential, but in those equations in which it is necessary to use Treatment 2 , its recults mill onter the onalyets as estimated values rather than
those given in Table XVII. The adjustnent in cach case will be based on regression analysic that contains observations from Treatments 3 through S since these treatments were not interupted by advertising breaks. ${ }^{13}$ Demand for T-Bone Steaks (all mades combined). The demend for all grades an a bingle product oan be approximated by either Equation 4.3 or 4.4. Both equations involve Model 4.2 in which y is the disappearance of all grades per 1000 oustomers and x is the averege price of all grades; but these equations differ in that Equation 4.3 incivdes data obtained in Freatments 3 through 9: whereas, Equation 4.4 includes only the three level Treatments 2, 3 and 4. As a ratter of arbitrary seloction Equation 4.3 is presented first.

$$
\begin{equation*}
y=111.022-.763 x * * \tag{Equation 4.3}
\end{equation*}
$$

$\mathrm{F}^{2}=.733$
In this equation and others that follor, the stendard error of a coefSicient appears directiy below in the first set of porenthesis, and the t-value appears in the lower set. The symbol ($\%$) will appear with each coefficient thet is statistically different fron tero at the 5 percent level. Similarly, the symbol (*) will appear when the coefficient is stgnificantly different from zero at the I percent level. Gorrelation coenfacients are represented by the symbel R^{2}.

The results of Rquation 4.3 are in agrement with excting theory in that the price cocfficient is negative. The aize of the price coefficient

13 Tu is realiag that adfumuents ron edvortising exiecte con only be rough approximations, but nevertheless it appeared to be a better alternative than no adjustment.
is relatively large when compared with its standerd error and is statistically different from zero at the 1 percent level.

Price elasticity of demand, a vexy important concapt to both firms and policy makers, will be computed for all equations. Wlasticities will be computed at the means in each instance. The price elasticity of demand for all grades as estinated by Equation 4.3 is -1.679 . At the mean price (88.9 cente), Equation 4.3 predicts that a 1.7 percent increase in sales in T-Bones (all grades) will be associated with a 1 percent decrease in price.

Equation 4.4 can also bo used in appoximating the demand for all grades. This equation is based on data obtained in Treatments 2, 3 and 4 a 14 In these threo level weatments all grades changed by the same abolute amount, that in, each grads was I/ cents higher in Treatment 2 than in Treatrent 4, Iikewise, each grade wais 28 cente higher in mreatment 3 than in Treathent 40^{25}

$$
\begin{equation*}
y=75.334=.454 x \quad \text { Equation } 4.4 \tag{.151}
\end{equation*}
$$

$E^{2}=.900$
The negative sign of the price coerficient in Equation 4.4 is expected; also the standerd orror is small in relation to the nagnitude of the coefficient connecting consumption and price.

14
in estinated ificure of $40 . \% 20$ pounds per 1000 custoners was used in treatment 2 , the actual figure being 50.201. Fstimation was made iron the equation $y=a+$ bas where y is the disappearence of all grades per 1000 customers and x is the average price of all crades. This equation is based on results of thoge treatments thet wexe not intorrupted by advertising, the Treatments beine $l, 5,6,7$ and 8 .
${ }^{15}$ hs has been mentioned ariter, store manemament ohoneed pricos by 16 centis rather then 14 cembs for equen graes in ail levei ireathents, but $1 /$ cents is the average change and is more wiform than eny other figure.

The t-value is not large enough to meet the 5 percent level of probability, but this statistical test may not be too meaningful in this instant since it is based on only one degree of freedom. The large value of R^{2} lends support to the use of Equation 4.4 as a basis for predicting the sales of T-Bone from average price of all grades. The price elasticity of demand as given by Equation 4.4 is -1.064 , whereas, equation 4.3 gave price elasticity as -1.679.

The three level treatments used in Equation 4.4 may also be omployed in testing the hypothesis that conswners will shift to higher grades as the price level increases. Table XVIII presents the percentage shift betreen grades in the three level treatments.

TABLE XVIII
PERCENTAGE SHIFTS BETVEEN GRADBS AS THE PEICES OF ALL GRADES CHANGED BY THE SAME ABSOLUTE AMOUNY ITN OKLAHOMA CITY STUDY

		Choice Mature $\%$	$\begin{gathered} \text { Good } \\ \text { Ca.2f } \\ \hline 8 \end{gathered}$	$\begin{gathered} \text { Commercial } \\ \text { Calf } \\ \% \\ \hline \end{gathered}$	Total $\%$
Treatment No. 4					
$\begin{aligned} & \text { C.M. }- \text {. } 89 \\ & \text { G.C. }-7.75 \\ & \text { C.C. }-\sqrt{6} .59 \end{aligned}$					
Treatment No. 2					
Ireatment Ho. 3					
$\begin{aligned} & \text { C.M. }-12.19 \\ & \text { G.C. }-1.05 \\ & \text { C.C. }-.89 \end{aligned}$					

The results of table XVIII indicate very little shifting between grades during level treatments and thus a stability of choices on a relative basis.

Comparison of Equations 4.3 and 4.4. Equations 4.3 and 4.4 are both approximations of denand for all grades and as such should be compared. The price coefficients of both equations are negative, but the magnitude of the price coefficient in 4.3 is approximately toice as large as that in 4.4 . The ooefficient in 4.4 is not statistically significant fron zero at the 5 percent level, which may not be meaningrul since 4.4 is based on only three points; whereas, 4.3 is significant at the 1 percent level. The R^{2} value of 4.3 is .733 ; whereas, R^{2} of 4.4 is .900 . In viem of these criteria it would be dinficult to choose one over the other, but 4.3 may receive additional support in that it is based on more observations than in 4.4.

Perhaps the demand of all grades as one product is not very meaningful when based on results of this study since the disappearance of Choice mature is rolatively less than either of the calf grades in all Ireatments except 1 and 10. Hence, it may be well to estimate demand for calf grades as individual products.

Domand for Good Calf. The estimation of the parameters of Hiodel 4.2 where y is the disappearance of Good calf in pounds per 1000 customers and x the price of Good calf is presented in Equation 4.5. Data used in this equation were generated by Treatments 2, 7 and 8. ${ }^{16}$ In these treatments Choice mature was held at 1.05 per pound and Commercial calf was held constant at 75 cents per pound.

16 Data in treatment 2 is estimated from the equation $y=a+b x$ where y is disappearance of Good calty and x is the price of Good calf. This equation is based on those treatments that were not interrupted by advertising breaks.

$$
\begin{equation*}
y=56.560-.429 x \quad \text { Equation } 4.5 \tag{.079}
\end{equation*}
$$

$\mathrm{R}^{2}=.967$
The results of Equation 4.5 gives the price coefficient a negative sign. The stendard error of the regression coenficient is relatively small when compared to its magnitude, The t-value is not significant at the .05 level, but again this test was based on only one degree of freedom. In view of the large value of R^{2}, and small standard error associated with the estimated price com efficient, Equation 4.5 appears to be a fairly accurate method fox predicting the sales of Good calf from its own price. The ostimated prica elasticity of demand at the mean was -2.130 .

Disgppoaranoe of Good Cali as Associated with the Price of Good Calf and the Price of Comercial Calf. The disappearancs of cood calf is probably associated with the price of Comercial calf, a logical substitute, as well as its own price. An estimation of the parameters of Model 4.3 where $y_{i j}$ is the dicappearance of Good calf in pounds per 1000 customers, x_{1} is the price of Good calf, and x_{j} is the price of Comercial calf is given in Equation 4.6. Data used in this equation were generated by Treatments 5, 6, 7, 8 and 9 , in which Choice mature was held constant at $\$ 1.05$ per pound.

$$
\begin{aligned}
& y_{i, j}= 52.756-.429 x_{1} * *+.042 x_{j} \\
&(.061) \quad(.083) \\
&(7.057) \quad(.508) \\
& R^{2}= .067 \\
& \mathrm{~F}=28.88 \%
\end{aligned}
$$

The signs of price coefficients of both Good and Cormercial calf grades are what may be expected; however, the magnitude of the coefficient associated
with Comercial calf is oniy .042; whereas, that associated with cood calf is. 429.

Since five observations mere used in estimating Bgustion 4.6 the t-value probebly has more meanine than in those equations baced on three observations. If this is true then the price coefficient of Comercial call is not significontly difterent from zero. Hence, it appears that within the price range tested, the price of Comercial calif has littile effect on the sales of cood calf. The cross elasticiby of demand at the mean quantity of Good cain disappearance and the mean price of Conmercial calf was conputed as .152.

Demand for Compercigl Calf. The demand for Comeroial oalf can be approxinated from results obtained in Treatments 2, 5and 6. ${ }^{17}$ In these treatments Ghoice mature was held constant at $\%$. 05 per pound and Good celf was held constant at 89 cents.

The esbination of hodel 4.2 where y is the disappearance of Comercial calf per 1000 pounds and x is the price of Comercial calf is given in Gquation 4.7.

$$
\begin{equation*}
y=45.636-.334 x \quad \text { Equation } 4.7 \tag{.103}
\end{equation*}
$$

$\mathrm{R}^{2}=.913$
Equation 4.7 is consistent with theory in that the price coefficiant is negetive; however the standard error the coefficient is farly large relative to the magnitude of the coefficient and the t-vaiue is not
${ }^{77}$ Data in Ireatrant 2 is estimated from the equation $y=a+b_{x}$ where If is the disappearance of Comercial calf in pound per 1000 customers and x is the price of Comercial calf. This equation is based on thoge treatments that were not interrupted by advertising breaks.
statistically significant at as ruch as the . 05 level. Mlastioity of price denand was corputed as -1.190. In viev of this evidence, estimation of the disappoarance or Comercial cath from its own price mould probably involve a sizeble amount of error.

Since boct calf is a logican substitube for Gomacrial calc it may bo well to associate the sales of comercial call with the prices of both cain grades.

Disamperanoe of Comproial Caje as Aspociated with the Prioe of Conmercial Cali and Price of good Calp. The astination of Wodel d. 3 in which $y_{i j}$ is the disappearance of Commercial calf in pounds per 1000 customers, x_{1} is the price of Comercial eath, and x_{j} is the price or Good call, is given in Equation 4.8 . The data used in this equation were generated by Treatnents 5, 6, 7, 8 and 9; in which Choice mature was held constant at \% 1.05 per pound.

$$
\begin{aligned}
& y_{i j}=39.520-.346 x_{i}+.059 x_{j} \\
&(.166) \quad(.121) \\
&(2.088) \quad(.487) \\
& R^{2}= .696 \\
& i=2.306
\end{aligned}
$$

The signs of price coefficients of both Good and Gonmercial calf grades agree with theory in that a decrease in sajes of Comercial colf is associated with en increase in the price of Comeroial calf; whereas, an increase in sales of Comercial calf is associatod with a price increase of Good calf. However, even though the signs of both price coefficients agree with expectations, the magnitude of the coefticient of either grade is not statistically different from zero. Gross elasticity of demand from Equation 4.8 vas computed as .249.

Demand for Colf Grades. The dewand for celf gredes as a single procuct can be approximated in the same manner as was the denond for indvidual calf grades. The data that are used in this instance were obtained from Treatments 5, 8 and 9. In these trestments Choice mature was held constent at $\$ 1.05$ per pound ond the price of call grades (price of Good ealf $=$ price of Comercial calf) was varied fron 59 through 89 eents.

The estination of the paraneters of Model 4.2 where y is the disappearance of calf grades in pounds per 1000 oustoners and x is the price of calf grades is given in Equation 4.9 .

$$
y=89.339-.634 x \quad \text { Equation } 4.9
$$

$$
(.095)
$$

$$
\begin{equation*}
R^{2}=.978 \tag{6.682}
\end{equation*}
$$

The remplts of Equation 4.9 gives a nogative price cocfificient which is large in comparison with its standard error. The price cocfficient is not suatistically different from zero at as much as the 5 percent level, but in view of the one degree of ineedon that the twalue in based on, this statistical test may not have much meaning in this instance. The Large R^{2} value iends support to equation 4.9 ass a means of predicting the disappearance of caif grades from its price. The price elasticity of denand using the means of each variable is estimated to be $\mathbf{- 0 . 6 3 4}$.

Treataments 5, 8 end 9 can also bo usect to measure basic preferences for Good and Commerial calf grades since price wis not a factor (price of Good coll $=$ price of Gomercial calf) in these treatments.

Table XIX induates that purchases of calf grades were split approxinataly even in Trectmente 5 and 9, whereas, in Treatment 5 seles of Good calf was alnost twice as groat as sales of Comercial calf.

PERCENTAGE SHIMS BENTEEN GOOD AND COWABRCIAL CALP GRADES
 OKLAHOLA GITY STUDY

Another method of astineting demand for calf grades as a single product is to determine the association existing between the disappearance of calf grades and the average price of Good and Comercial calf grades. The estimation of Hodel 4.2 where y is the sales of calf grades per 1000 eustomers and x is the average price of Good and Comercial calf grades is given in Equation 4.10. Data used in this equation were obtained from Treatments 3 through 10 .

$$
\begin{gathered}
\begin{array}{c}
\mathrm{y}=86.224-.640 \mathrm{x} * * \\
\\
\\
(.136) \\
(4.703) \\
\mathrm{R}^{2}=.787
\end{array} \quad \text { Equation } 4.10 \\
\end{gathered}
$$

Equation 4.10 is graphed in Figure 3.
the results of Equation 4.10 is consistent with economic theory in that the price coefficient has a negative sign. The price coefficient is

Figure 3. Demand for Calf Grades in Oklahoma City
also signexioant at the one percent lovel of probabittty. In viev of these criteria and the fairy large F^{2} value, average calf price appears to be a Rairly accurate bests mpon which to predtct oal? grade sales. Price elastisiby of denand was computed as -1.132.

An analysis of yariance wes mu on the deta presented in pable zVIT. The dasign mployed was that of randonined blooks in whoh the grades were blocks and the prioing schemes were treatments. A sumaxy of the results is presented in Table XX .

TABLE XX
ANLMES OF VARAMCE BUAMAY OF PURCHASES OF T-BONE STEAK IN ORLAMMA GTRY STUDY

Standard error of a treatnent mean $=2.3505$
*Significent at . 05 level.

A mitiple range test computed for grade means resulted in Choice mature being eignificanty different from cood and Comercial celf grades at the .05
level of probablity. A sinilar test wes run for pricing trawnents and Treabnonts $7,4,8,5,6,2$, and 9 were ditferent fron Treatnents 1 and 10 at the . 01 level.

Shamnee Study

Smeing Scheqe. The Shawnee phase was concucted in one store only. This experiment also dintered from that ran in okjahona City in that packages were not labeled as to grade and a dincerent pricing schene was onm ployed. The pricing scheme is presented in Table xX.

TABLE XXI
PRICING SCREEE ETPLOYED IN THE SHAMNE STUDY

Ireathent	Choice Mature	$\begin{aligned} & \text { Good } \\ & \text { Collf } \end{aligned}$	$\begin{gathered} \text { Conmercial } \\ \text { Calf } \end{gathered}$	Average Price
1	\$ ${ }^{\text {c }} .99$	蓈. 99	4.99	\%. 990
2	1.09	. 59	. 59	.757
3	1.09	.39	.89	.957
4	1.09	.75	. 75	. 863
5	1.09	. 89	.75	.910
6	1.09	.75	. 89	.910
7	1.09	.59	. 89	. 857
8	1.09	. 89	. 59	. 857
9	1.09	.99	. 99	1.023
10	. 85	. 99	.99	. 943

This pricing scheme is similar to that used in Oklahoma City in that information on Choice meture was sacrificed in order to increase information on the call gredes. It will be noticed that Good calf is priced beLow Gomercial calf in Treatments 6 and 7, and Choice mature is priced belon both calf gredes in Ireatrant 10. Hence, this pricing scheme is more Rlexible than that used in Oklahona City.

Models to be tosted with data generated in the chomee stady are identical to those bested in the Oklohome Oty seotion. Fenoe, Millel 4.2 will be enployed when using ono independent variable and facdel 4.3 mill be used with two independent variables.

Results. The results of the Shamee experiment are first prosented on a percentage basis in Table XXI and then as powns per 1000 customser in Sable XXIII.

Shawnee braceximent

Deman for mone Steals as a Single Product. The estimation of the paraneters of Model 4.2 where y is the disappearance of all grades per 1000 customers and x is the average price per pound of all grades is given in Equation 4.12. Rquation 4.11 is based upon ell freatments except 6 and $20 .^{18}$

$$
y=55.625-.374 x^{*} \quad \text { Equetion } 4.11
$$

(.146)
(2.597)

$$
\mathrm{E}^{2}=.529
$$

The relationship botween the sales in pounds per 1000 customers of all grades and awerage price of all grades is consistent with economic theory in that the price coefficient is negative. The standard error of the price coefficient does not include positive signs and the t-value is statistically disierent fron zero at the .05 level of probability. Price elasticity of denand at the mean price was computed as -1.352 .

[^5]Wacer XMC

	Croice hature $-\frac{1}{2}$	$\begin{gathered} \operatorname{cood} \\ \operatorname{col} \\ \mathrm{t} \\ \hline \end{gathered}$	Comarreial 6e1f \qquad	Total
Preatment Mo. 1	23.91	37.03	39.06	100
O. . . - ${ }^{\text {d }}$. 99				
G.C.- ${ }_{\text {P }} .99$				
0.0.-4. 99				
Treatmeat 19. 2	34.78	34.06	51.16	100
C. $\mathrm{P}_{4} .01 .09$				
G. 0.0 - 59				
0.6.- 0.59				
Tractment 10. 3	21.64	35.32	53.04	100
C.31.81.09				
G.C.m 4.89				
6.6.-3. 69				
2roatment N0. 4	27.12	41.62	31.07	100
6, $1 .-1.00$				
G.C.- ${ }^{\text {c }} .75$				
C.C.-4. ${ }^{\text {. } 75}$				
Treatment Ho. 2	1. 5.58	29.82	55.60	200
C. $10 .-1.09$				
$6.0 .-89$				
C.C.- ${ }^{\text {P }}$. 75				
Treatment io. 6	20.03	35.53	4,4064	100
6.3.-8.1.09				
$\text { G.c.- } \$.75$				
$0.0 .-3.89$				
Treatment Ho. 7	18.70	56.45	24.85	100
6.1.-21.09				
6.0.- 6.59				
0.0.0.6.89				
Treatment fio. 8	29.73	23.52	46.75	100
$0.11 .-82.09$				
0.0 .48 .89				
C.0.0. 0.59				

TABLE XXII (Continued)

	Choice Mature \%	$\begin{gathered} \text { Good } \\ \text { Calf } \\ \% \end{gathered}$	$\begin{gathered} \text { Commercial } \\ \text { Galf } \\ \% \\ \hline \end{gathered}$	Total \%
Treatment No. 9	9.32	36.02	54.66	100
$\text { C.M. }-\$ 1.09$				
G.C. - \$ C.C. \%				
C.C.-\$. 99				
Treatment No. 10	14.19	35.90	49.91	100
$\begin{aligned} & \text { C.M. }-\$.85 \\ & \text { G.C. }-\$.99 \end{aligned}$				
C.C. - \$ 99				

TABLE XXIII

POUNDS PER 1000 OUSTOHKS PURCHASED IN SHAENET STUDY

	Choze Hature Ilas.	Good Call 2bs.	$\begin{gathered} \text { Commercial } \\ \text { Calf } \\ \text { Ibs. } \\ \hline \end{gathered}$	Total Ibs.
Treatment Mo. 1	4.480	6.938	7.321	18.739
0.312.-4.99				
G.C.-4. 99				
C.C.- ${ }_{\text {¢ }}$. 99				
Treatnent Ho. 2	4.442	10.238	15.378	30.057
C. $18 .-61.09$				
G.C.- ${ }^{\text {B }}$. 59				
C.6.- ${ }_{\text {B }}$. 59				
Ireatment 170. 3	2.302	8.505	12.773	24.080
C. $1 .-4.09$				
$\text { C.C. }-\frac{6}{2} .89$				
Treatment NO .4	5.806	8.956	6.655	21.417
$\text { Q.C. }-4.75$				
C.C.- ${ }_{\text {\% }}^{\text {\% }}$. 75				
Treatment No. 5	4.346	8.887	26.574	29.807
$\frac{0.11 .-2.09}{2}$				
G.C.- ${ }^{\text {S }}$. 89				
C.C.- ${ }^{\text {W }}$. 75				
Treatment Ho. $6 *$	4.174	7.205	9.263	20.842
C.4ic.-87.09				
G.C. -1.75				
C.C.-4.4. 69				
Treatment No. 7	5.333	16.097	7.088	28.518
C .1 H .81 .09				
G.C.- ${ }_{\text {B }} .59$				
C.C.m ${ }^{\text {W }}$. 69				
Treatment Mo.	7.865	6.224	12.368	26.457
G.C.- ${ }_{\text {W }}$. 89				
C.C. $-\% .59$				

TABLE XXIII (Continued)

	Choice Mature 2 bs .	Good Calf 1bs.	$\begin{aligned} & \text { Commercial } \\ & \text { Calf } \\ & \text { lbs. } \\ & \hline \end{aligned}$	Total Ibs.
Treatment No. 2	1.895	7.318	11.108	20.321
C.M. ${ }^{\text {G. }}$. 1.09				
C. C. - \$. 99				
Treatment No. 10*	2.235	5.655	7.853	15.753
C.M.-\$.85				
G.C.-\$. 99				
C.C.- ${ }^{\text {- }} 99$				

*Customer counts were not available for Treatments 6 and 10. Customer counts for these two treatments were estimated as the average customer count for the other Saturdays.

The R^{2} indicates that 53 percent of the variation in Tobone sales was accounted for hr average price of all grades, therefore, in view of this available eriterion, average price of all grades appears to be a fairly good indicator of total T-Bone steak sales in this one test store. 19

Demand for Good Galf. The demand for Good calf can be approximated from the results obtained in Ireatments 3,6, and 7.20 In these three treatments Choice mature was held constant at 1.09 , Commercial calf was held constant at 89 cents and the price of Good calf was varied from 59 to 89 cents. Rodel 4.2 was employed where y represents the disappearance of Good calf in pounds per 1000 customers and x is the price of Good calf. The estimation of the parameters is given in Equation 4.12.

$$
\begin{align*}
& \mathrm{y}=29.990-.260 \mathrm{x} \tag{.178}\\
&(.178) \tag{1.4.57}\\
&(1.457) \\
& \mathrm{R}^{2}=.680
\end{align*} \quad \text { Equation } 4.12
$$

Equation 4.12 is consistent with theory in that the price coefficient is negative; however, the standard error of the coefficient is fairly large relative to the magnitude of the coefficient and the t-value is statistically significant at only the 40 percent level. Elesticity of demand was computed as -1.811. In vien of this evidence, estimation of sales of Good calf som ita own price would probably involve a sizable amount of error.

Demend for Commercial Cali. Demand for Comercial celf can be approxim nated from Treatments 3, 5and 8. In these treatments Chotce mature was

19
${ }^{9}$ All implications made in this section will necessarily apply only to the one test store employed in the experiment.
${ }^{20}$ Customer count was not available for Treatnient 6 , therefore, it was estimated as the average of other Saturdays' custoner counts.
held constent at 42.09 and Good calt was held constant at 89 cents mhile the price of Gomeroial calt mas varied from 59 to 89 onts. dodel 4.2 was employed where y is the sales of Conacrcial cali in pounds per 1000 customers and x is the price of Comercial call. The paraneters are estimated in Equation 4.13.

$$
\begin{equation*}
y=13.761+.002 x \tag{Equation 4.13}
\end{equation*}
$$

(.154)
(.013)
$n^{2}=.002$
Equation 4.13 given the price coefificient a positive sign, but the magnitude of the coefficiont is very small. The standard error is approximately 7.5 times as large as the coefficient, and F^{2} indicates very Iittle relationship exists between the price of Comercial calf and its volume of sales. Rlasticity as givon by Equation 4.13 is +.003 .

These results are inconsistent with theory and perhaps one oxplanation rests upon the small number of observations taken, three in this case. A sizable anount of error in any one of the three observations could very oasily yield results that do not depict the true character of the relationship that actually exists between the price of Comercial calf and its dism appearance.

Derand for Calf Grades as One Product. Derand for Good and Commercial calif grades as one product can be approxinated from Treatnents 2, 3, 4 and 7. In these treatwents Choice mature was held constant at 1.09 while calf price (price of good calf $=$ price of Commercial calf), was varied from 59 to 89 cents.

The estination of the parameters of fodel 4.2 where y is the disappearance of call grades in pounds per 1000 customers, and x is the price of
calf grodes (price of Good calf = price of Commercial calf) is given by Equation 4.14.

$$
\begin{array}{r}
y=30.427=.127 x \\
(.149) \\
(.852) \\
\hat{N}^{2}=.266
\end{array}
$$

Equation 4.14 gives a price coelficlent that is in accord with ecom non之e thoory, but its standard error is large enough to pernit a positive sign. The t-value is statistically significant at only the 50 percent level and the F^{2} value indicates that only 26.6 percent of the variation of sales of call grades (when they are priced the same) is explained by calf prices. Friee elasticity was computed as -.504.

Disappearance of Caif rrades as a Function of Avarage Calf Price. In order to exanine the possibility of predicting the volume of sales of calf grades by a single indopendent variable, Model 4.2 was once again employed Where y represents the disappearance of calf grades in pounds per 1000 custoners and x is the average price of calf grades. The parameters in this instance are given by Equation 4.15. The treatments used to generate the emptricel data were Ireatments 2 through 9. 21 The price of Choice mature wes held constant at $\$ 2.09$ during these treatments.

$$
\begin{aligned}
& y=29.644-.105 x \\
&(.125) \\
&(.861)
\end{aligned} \quad \begin{aligned}
R^{2}=.129
\end{aligned}
$$

$$
\text { Equation } 4.15
$$

$21_{\text {Treatment }} 6$ was omitted since customer count was not available on that day.

Egation 4.15 gives prectically the sane recults as did wanation 4.14. thexefiore the same economic and statistioal inierence apples. The rejationship existing beween individun colf grades and two Independent variabies can be estimated from model 4.3.

Diemparance of Comorcial Calf as Associated with the Variablos, Price of $\operatorname{Gog} \operatorname{Coli}$ and Price of Comorcial CaIf. The estimation on the paramoters of Model 4.3 where $y_{i j}$ is the disappearance of Conmerciel calf in pounds per 1000 customars, x_{i} is the price of Conmercial oalf, and \bar{x}_{j} is the price of Goca cala is given in Equation 4.16. The data for this equation were generated by Trembents 2 through 9.22 The price of Gotee mature was held constant at bo cents during these treatmonts.

$$
\begin{aligned}
& y_{i j}=2.797-.055 x_{i}+.274 x_{j} \quad \text { Equation } 4.16 \\
& \text { (.097) (.094) } \\
& \text { (.563) (2.844) } \\
& \mathrm{B}^{2}=.594 \\
& E=3.66
\end{aligned}
$$

The signe of the x_{i} and x_{j} coorficients both agree with economic theory. Pquation 4.26 stetes that an sucroase in salen of Comercian calt grade is associated nith a decrease in the price of Comercial colt. Likewise, an Increase in the volume of sales of Comercial grada is associated with an Increase in the price of coos grade. The magnitude of the Goed cale price coefficient is larger than tho price coefficient of Comercial calf. This indicetes that a substitation of Comercial alf for cood calf, when the price of Good increases, has a stronger effect on the volume of comercial sales than the price of Comercial.

[^6]The standard error of the x_{i} cocfficient is large enough to allow a positive sigh, but the standard error of the x_{j} comphevent does not tuelude negative signs. Weither coencicient is statisticaly difterent from zero at the .05 level of probability. Cross elasticity of demand wes computed as 1.257.

Lisapparance of Socd Opy as Associated mith the Varionites, Price of Good Calt and Price of Comarcial Cain. The estimation of the paraneters of Hodel 4.3 where $y_{i j}$ represents the disappearance of Good cali in pounds per 1000 customers, x_{j} is the price of Good calf and x_{j} is the price of Commercial call is given in Bquation 4.17. The troatments used were the same as those used in equation 4.16 .

Figution 4.17 is similar to Equation 4.16 in that the signs of both price coefficients agree with economic theory. Both standard errors are small and the twolue of x_{i} is signilicant at the . 01 probability level and x_{j} is aignificant at the .05 level. Fron the magnitude of the signs the pises of Cood calf has nore elfect on the sales of Good calf than the substitution effect due to price changes in Comercial calf. Cross elasm wicity vas compated as .923.

GIAPTER V

SUNURE AMD RECOMTHDATIONS FOR FUTURE WOBK

Summary

A major responcibility of the marioting system in a capitalistic socioty is to measure the strength of consumers' desires for different kinds and awownts of producte, and then acourately reflect these desires back to producess in the form of price differentials. In order to gauge the eifficiency with which the marketing system is periorring its pricing function, consumer pyeferences studies can bo conducted in which conswner monetary preferences are measured at their source.

This type of research is still in the exploratory stage, hence, there are many problens concerning applicable theory, research methodology, and administration on procedure. This study is an attenpt towara netting up oprational methods for measuring the vartoun aspects of consumers' basic preferences and the monetary values they place upon thenr desires.

The comadity beef was the desired vehicle, but due to limited persomel and funds only the X -Bone cut was utilized. The major objectives may be listed thus:

1. To detemine conswers' basic proferences for different grades of f -Bone Steak,
2. To asoertain monetary values consuners place on their preferences.

In obraining measurerents, several methods of research wore evaluated as to their abitivy to generate the reguired ata. Fron this evaination it mas decided that the consurew survey bethod can be employed in gettang at basic proferences, but offers little value as a means of ascervaining monetary values placed on those preferances. Therefore, in order to measure monetary preferences it was decided to mploy a controlled experiment in mhom measurcments could be obtained as price responses.

The frat phase of the over-all study was conducted in Stinnater and consiated of a controlled experiment in one large self-service store, home surveys, and concunor surveys whin the store proper. The primery prepose of the controlled experiment was to test aduinistrative procedure.

The home survey was to get at basic preferencen and also to obtain infornation regerding the question "Can consumer survegs be employed in obtainine price differentials that respondents are willing to pay under actual shopping conditions?" Since each individual in the home survey had actually purchased ri-Bone steak duaing the store experinent, it was possible to preaent the nake situation. However, there was Minted mano listing after the furat two treabnents; and since in the parst treatiant all grades were priced oqually, it was not feasible to attempt to answer this question with the very madi sample obtained in Treabment 2.

In order to work with a larger sample, it mas necessany to condact a survey within the store proper. The questions asked respondents were very similar to those asked in the hone survey, the major differences being that all shoppers had an equal chance of belng chosen and Commercial grade was edded.

The more inportant results obtained fron the initial phase (Stillwater Study) are as followis:

Stillwater Controllad Bxperiment

1. In the same price range, the estimated denand for grade Good mas greater than the estinated denand for grade Prine. Consurption of both grades was inversely related to its prico,
2. Lends credence to the feasibility of using controlled experiments for estinating price-consumption response relationships,

Stillwater Home Survey

2. Results gave evidence that consumers will shist to lower priced grades when the price of their preferred grade increases,
3. As respondents shlfted fron their preferred grade when the price of that grade was increased, there vas a tencency for the second choice to be that grade most closely associated to the first selection,

Stinlwator store Suxyey
2. On the everage, 75 percent or the respondents shifted to a lower priced grade when the price of their selected grade increased 14 cents,
2. When acked to name Federal grados, a larger pexcentage of those preferring Prime were able to respond than those preferring other grades. Fonever, those selecting Comercial (the lowest grade) ranked second,
3. Darbling was the only individual physical charactexistic of those tegted that citcered to eny dogree betwoen grede classes. 82.1 percent of those selecting Prime chose a moderate amount of marbling, 50 percent of those in the Choico group desired a moderate amount, and only 31.6 and 31.8 percent respectively of the Good and Comercial groups chose the noderate amount,
4. 42.1 percent or those respondents in the lowest incone bracket ($\$ 2000$ annually) stayed with their preferred grade through the insti 14 cents price increase; whereas, the other incone brackets averaged approximately 15 percent.

OkIahoma Otty Study

The Oklahoma City phase was conducted in four large self-service markets. No surveys were taken in this study, hence, results are restricted to "selen data".

This phase was similar in many respects to that conducted in Stillwater, but was quita different in others. One of the rejor differences is that Choice mature and Good and Comercial calf T-Bones mere utilized here; whereas, in Stiliwater only nature beef was employed.

Since this phase was restricted to "sales data" the information is necessarily limited to price responses. Store management would not consent to Zowering the price of choice mature below calf grade prices, hence results are largely limited to call grades. Some of the more japortant results are as listed:

OkJahoma Gity Study

1. Littie shifting among grades was indicated as the price or all grades vere incressed by the seme absoluto amount, howerer consumption per 1000 customers was inversely related to price. The probe alasticity of domend was computed as -1.064 ,
2. The andes of cood and Comercial calf were both inversely related to fits own price. Blasticity of domand for Good calf was comm puted as -2.130 and elastivity for Comercin? mas comuted as -1.190,
3. The sales of either calt grades were not associated to a significant degree with the othortg price,
4. The sales of cood and Comercial calf arades mero spit approximetely even in two out of three treatments in which they were equaliy priced.
5. Phe disepperance of calf grodes mas inversely related to their average price. The price elasticity of demand sas computed as -1.632.

A companion stbudy to the Oklahomat bity stucy was condueted in Shamee. This experiment differed from the oklahoma City strdy in three major points. Only one store was used in Channee, peckages of T-Done steat nere malabeled as to grade, and the pricing schene wes more flexible. The more important results may be sumerized as:

1. Fhe saleo af hood calt were not very closely associated with its own price. Sinilar results were obtained for Cormercial call,
2. When an atbempt nas made to explain the duspapearamee of Gemercial calt as a function of the price of coct cell at well as its om price, results indicated that the price of Good calf had a greator offect on sales of Conmercial cajt then the price of Conmercial calf,
3. An analysis stmilax to (2) was run on the disappearance of Good cals and results in this inctance indionted that the waice of Good call had a groatar effect on its om salea than did the price of commerial gali.

Reconmendations for Dutur work
 oxpertwonta in the axea of onnsumer proferonoe athilieg mill probshy cone Trom arotang on alving the may probleme enountered in thic moris. Ficcom mendations are as listed:

1. In experimenting mith products that are graded it fas essential to beep experinental material avay fron border-ine ceses,
2. Before conducting an experiment in a store that dees not ordinarily handle products that are to be incluted in the emperisent, it may be well to initiate the new product on products sonetime prior to the acturl experinent,
3. Dae to arrore thet are asscciated pithestinating missing glots it is imperative that adequate suppilies be mainuained.
 cet-off when products wera not woving at experimental ratees. mon this happened a customer count was taken at out-ofit time. Since this study used data besed on pownts sald pex 1000 cuatomers it lisat appeared that onfects of such a cut-oft would not be too sreat, but this is true only fe arly and lata dag shopers constitate a Caixity honogenecus group,
4. If definite aifferences in dicapearance figures are desired then an investigator should inject a range of experituental prices that is wide enough to accoriplish this parpose.
5. Finis study faized to generate buficiant data to get st the guestion "Can connuwer survegs be emploged to obtain the trae price
differentials that respondents are willing to pay under actual shopping conditions"? However, the procedure employed in this study appeared to be a sound method and is recommended for future work that includes more stores,
6. Whenever possible it is recomended that an experimental design be employed that will allow store differences to be eliminated in the statistical analysis,
7. The effects of advertising between experimental treatments has already been fully discussed. Therefore, a strong recommendation is to avoid this pitfall if at all possible.

BIBLIOGRAPHY

Brown, Lydon O. Marketing and Distribution Research, (New York, 1949) pp. 296-297.

Brunk, Max E. and Walter T. Federer, "Experimental Designs and Probability Sampling in Marketing Research, "American Statistical Association Journal, Vol. 48, (September, 1953) pp. 440-441.

Burrows, Glen L. The Adaptation and Use of Experiment Designs in Herchandising Research," (unpubl. paper presented at Southwestern Social Science Hileoting, (April 1955), p. 5.

Dowell, Austin Allyn and Knute Bjorka, Livestock Marketing, (New York and London, 1941) pp. 302-303.

Goldman, Alan Stemart, "Efficiency of Marketing Eegs in Des Eines," Unpubished Ph.D. Dissertation, Iowa State College, (1956) pp. 1-3.

Jessen, Haymond J. (unpub. sarapling class notes) Iowa State College, 1951.
Judge, G. G., S. K. Seaver, and W. F. Henry, "Competitive Position of the Connecticut Poultry Industry: Eonomic Interpretations of Interregional Competition," University of Connecticut, Bulletin 309, (1954) p. 7.

Lange, 0. "The Foundation of Welfare Economics," Econometrica, X, (1942) pp. 215-228.

Morse, R. L. D. "Eationala for Studies of Consumer Food Preferenoe", Advances in Food Research, III, p. 410.

Official United Standards for Grades of Slaughter Cattle, PMA Service and Regulatory Announcement No. 11, Washington: Government Printing Office, (1950) p. 2.

Rhodes, V. James, "A Theoretical and Mmpirical Investigation of Consumer Preferences for Beef by Grades in Itetropolitan St. Louis, 1954", Unpublished Thesis, Harvard University, 1955, p. 122.

Shepherd, Geoffrey S., MWarketing Farm Products - Econonic Analysis", The Iowa State College Press, Ames Iowa, (1955), pp. 204-207.

Shepherd, G. S. "The Ejeld of Agricultural larketing Research: Objectives, Definition, Content and Criteria," Journal of Farm Econonics, XXXI No. 3, (August, 1948), pp. 444-445.

APPENDIX A

APTEMUX A

Department of Agricultural Economics Oklahoma A. \& College

Consumer Survey (Beef)
Date \qquad
Enumerator \qquad

1. Naxe
2. Ndaress \qquad
3. Occupation of Wage Earner(s)
4. Age of Persons Eating at Home:

5. Who nomally makes purchases of meat for the family? \qquad
6. On what days do you normally purchase meat?

$$
\begin{array}{lllllll}
\mathrm{S} & \mathrm{H} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F}
\end{array}
$$

7. Let's suppose you are purchasing T-Bone steaks for your family; which one of these cuts would you purchase? after each selection, ask respondent why the particular cut was chosen.
89
69
89
103
117
89
89
131
89-103
89
89-103-117
89-103
145
89-103-117-131
89-103-1.17
$103-117-131-145$
89-103-117-131
$103-117-131-145$
8. In general, what do you look for in buying T-Bone steak?
a. Fat (outside) : $1 / 4^{n} \ldots \quad 1 / 2^{\prime \prime} \ldots \quad 3 / 4^{\prime \prime} \ldots \quad I^{\prime \prime} \quad$ Ho pref._____
b. Fat (inside): moderate \qquad little \qquad none___no pref. \qquad
c. Color of fat: white \qquad yellow \qquad no pres.
d. Color of lean: light \qquad med. \qquad daric \qquad no preit. \qquad
e. Thickness: $1 / 4^{H} \quad 1 / 2^{n}$ \qquad $3 / 4^{\prime \prime}$ \qquad 1"_ no pref. \qquad
f. Size of steak: large \qquad medium \qquad smail \qquad no pref. \qquad
g. No. of pheces per package: \qquad $2-3$ 3 no pref. \qquad
9. What do you desire in a piece of steak ready for the table?
a. fenderness
d. \qquad
b. Flavor
e.

o. Juiciness
10. How would you rank the above characteristics in order of importance?
\qquad
a. b.___ c
11. Does your family eat steak fairly regularly or do you serve it more as a special meal?
a. Regular \qquad
b. Special \qquad
12. What cooking methods do you use to prepare steak?
a. Broil \qquad
b. Try
13. Hon often do you use meat tenderizers? (fiechanical, comercial enzymes, home techniques etc.) Frequently___ Occesionally__ Never___
14. Are you familiar with government gredes for meat? yes \qquad no \qquad If yes, ask question 15; ifino, go to question 16.
15. Would you identify these steaks as to grade? 1. \quad 2._ ${ }^{3 .}$
16. If the price of the grade you are acoustomed to buying increased, would you:
a. Buy the sene amount \qquad
b. Buy less \qquad
c. Switch to another grade \qquad
17. Hay I ask you how oíten you are paid?
a. meekly \qquad
D. Twice monthly \qquad
c. flonthly \qquad
d. Other \qquad
18. 籊ould you tell ze your approximate income?

Below 1000_	$6000-7000$
$1000-2000$	$7000-8000$
$2000-3000$	$8000-9000$
$3000-4000$	$9000-10,000$
$4000-5000$	$0 v e r ~ 10,000$

19. Approximately what \% of your income is spent on meat each week? \qquad \%

VITA

Elner J. Perdue
Candidate for the Degree of
Raster of Science

Major Field: Agricultural Economics

Biographical:

Personal data: Born in Michita, Konsas, April 29, 1927, the son of J, H and man Perdue.

Education: Attendod school in Wichita, Kansas; Bethany, Oklahoma; and Mederland, Texas; graduated from Mederland High School in 1945; attended East Central State Teachers College, Ada, oklohoma, and received the Bachelor of Science degree from the OkJahoma Agricultural and Mechanical College, with a major in Economics, in January, 1951; completed requirements for the Haster of Science degree in January, 1957.

Professional experience: Graduate assistant of Department of Agricultural Econonics, Oklahoma A. \& Pl. College September, 1956 to February, 1957.

[^0]: $4_{\text {Alan Stewart Goldman, "Efficiency of Marketing Eggs in Des Moines," }}$ unpublished Ph.D. Dissertation, Iowa State College, 1956, pp. 1-3.
 ${ }^{5}$ O. Lange, "The Foundation of We,lfare Economics," Econometrica, X, 1942, pp. 215-228.

[^1]: ${ }^{6}$ It is impossible to measure the exact nature of grade shifts, but measurement of the net result and direction affords a good estimate of the general relationship of shifting due to price change.

[^2]: 7_{A} sample drawn in this nanner is necessarily biased, however, it was the only sampling technique that met with management approval.

 It was Iater found that restricting the sample in this manner led to a smailer sample than was desired.

[^3]: ${ }^{9}$ Pricing schenes that were used will be presented later.

[^4]: 21 Tastes and preferences, prices of other goods (other than competing graces of m -bone) incones, etc, are assumed to remain fairly atable during the shox time period of experimentation.

[^5]: ${ }^{28}$ Treatnent 6 and 10 were not used since customer counts were not available for those days.

[^6]: 22 Treatment 6 was omitted.

