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ON CERTAIN CLASSES OF REGULAR NEAR-RINGS
CHAPTER 1
INTRODUCTION

1., Historical Background

A left near-ring, denoted by (N,+,:) is an algebraic
system consisting of a set N together with two operations
called addition and multiplisation and denotea respectively

by + and ¢ such that

(a) (N,+) is a group, not necessarily abelian,
(b) (N,°) is a semigroup,
(¢) x°(y + z) = x.y + x-z for all x,y,z € N.

A similar definition may be given for a right near-ring,
the only difference being the obvious change in property
(c). In this work, we shall deal exclusively with left
near-rings. Thus, in the sequel the term '"near-ring" shall
mean "left near-ring." When there can be no ambiquity con-
cerning the operations in the near-ring (N,+,:) we shall
use the abbreviated symbol N to denote the system. We adopt
the usual convention of denoting x-y by =xy.
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Many of the studies in the theory of near-rings have
paralleled studies in ring theory. The goal has often been
to extend results from ring theory to the more general
setting of near-rings, Clay and Lawver [6 ) defined the
concept of a Boolean near-ring and studied some of the
properties of this class of objects. Noting that p-rings
are generalizations of Boolean rings, Ratliff [18] de-
fined the concept of a p-near-ring and used the technique
employed by Clay and Lawver CG] to study certain classes
of p-near-rings. Regular rings are, in some sense,
generalizations of p-rings. Using the definition of a
regular near-ring from a paper by Beidleman [1] and a
technique similar to that employed in the previously
mentioned works, we have studied certain classes of regular

near-rings.

2., Basic Definitions and Conceggs

The concept of a regular ring was first discussed
by von Neumann [11] . For further work in this area
see also Forsythe and McCoy [8] and McCoy [16] . an

element r 1in a ring (R,+,°) is a regular element if

there is an r'gR such that rr'r. = r. The element r'

will be called a regularity cquanion of r. The prime

symbol on an element will be used exclusively to denote

any regularity companion of that element. Regularity
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companions are not unique. The element O in a ring is
always regular and any element is a regularity companion
for 0. If a ring has an identity element, then that

element isregular and is its own unique regularity companion.
Any element which has a multiplicative inverse is regular,.
While an element may not have a unique regularity companion,
multiplication of an element by any of its regularity com«
panions always produces the same result as we shall show
later,

A ring is said to be a regular ring if each of its
elements is regular. An element n in a near-ring
(N,+,+) is regular if there is an n' in N such that
nn'n = n, If every element in a near-ring is regular
then the near-ring is said to be regular. A p-ring is
a ring (R,+,°) for which there is a prime number p such
that xP = x and px =0 for all x in R. A p-near-ring
is a near-ring (N,+,+) for which there is a prime
number p such that xP=x and px = 0 for all x in N.
Clearly, any p-ring is a regular ring and any p-near-ring
is a regular near-ring,

Before proceeding further, we mention some examples
of the systems just defined. Any division ring, hence any
field, is an example of a regular near-ring. Of course,
any regular ring is a regular near-ring and any regular

near-ring which is a ring is a regular ring. Beidleman
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[ l:] has mentioned the following example of a regular
near-ring. Let M denote the set of all functions from
an additive group, not necessarily abelian, into itself
which commute with the zero function. Then M,+, ) is
a regular near-ring where the operations are pointwise
addition and composition of functions. The integers with
addition and multiplication defined modulo a prime number
p constitute an example of a p-ring. Many examples of
p-near-rings may be found in the work of Ratliff [18] .
There are examples of regular near-rings which are not
p-near-rings. Such examples are provided by classes (27),
(35), (48) and (52) in the list of Clay [5] where the
additive group is (ZG’+)'

We now give the definitions of some additional terms
which are used throughout this work. We shall be con-
cerned with the ideal structure of certain classes of near-

rings, A left ideal of a near-ring (N,+,°) is a normal

subgroup L of (N,+) such that for all n in N and

x in L, nx is in L., A.El!ﬁ!.lﬂﬁ!l of a near-ring
(N,+,:) is a normal subgroup R of (N,+) such that for
all m and n 1ﬁ N and x in R, (m + x)n-mn is8 in R, If I
is both a left ideal and a right ideal then I is an ideal
of (N,+,°). Ideals are frequently defined to be kernels
of near-ring homomorphisms., Blackett- [3] has shown that
the latter definition is equivalent to the former.
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The terms maximal sub-c-rigg and maximal sub-z-riqg

are defined in Berman and Silverman [z] . We shall have

occasion to refer to an abelian near-ring. By this we

mean a near-ring such that the additive group is abelian,
In Chapters II andIll we deal almost exclusively with

abelian near-rings. It should be realized that in these
instances all subgroups of the additive group are normal.
This fact is used frequently without being mentioned., A

sub-near-ring of a near-ring (N,+,-) is a subgroup of

(N,+) which is a sub-semi-group of (N,.). A subring of
a near-ring is a sub-near-ring which is a ring. The

factor near-ring of a near-ring (N,+,+) by an ideal I

will be denoted by N/I. The coset corresponding to an
element x will be denoted by X, Factor near-rings are
discussed in Berman and Silverman [z] . An element s

in a near-ring (N,+,¢) is right distributive if

(x + y)s = x8 + ys for all x and y in N, For any right
distributive element s we have 0s = 0, We say that a

near-ring (N,+,+) is distributively generated if N contains

a multiplicative semigroup S whose elements generate
(N,+) and are right distributive., A near-ring (N,+,°)
is said to be weakly commutative 42 xyz = yxz for all

X, ¥, 2z in N. A discussion of subdirect irreducibility
for rings may be found in McCoy [14] « A similar

discussion for the near-ring case may be found in Fain
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[ 7 ] . Since a nonzero near-ring (N,+,°) is sub-
directly irreducible if an only if the intersection of
all nonzero ideals of N is nonzero we take this condition

as the definition of subdirectly irreducible. On several

occasions we use the symbol 0 to denote the set whose

only element is O. This should cause no confusion.
We conclude this section with the remark that in

any left near-ring (N,+,°) we have ~(xy) = x(-y) for

all x and y in N and x0 = 0 for all x in N,

3. Prelininarz Results

Some of the following theorems are near-ring

parallels of established ring theory results.

THEOREM 1.1. Let (N,+,°) be a near-ring and
X a regular element in N. Let x' be a regularity com-

panion of x., Then x'x is idempotent.

PROOF, (x'x)(x'x) = x"(xx'x) = x'x.

The next theorem is due to Ratliff [18] .

THEOREM 1.2, Let (N,+,.) be a weakly commutative
near-ring. Then for every x and y in N and for every pos—
itive integer k, (xy)k - xkyk.

TREOREM 1.3, Let (N,+, °) be a weakly commutative
near-ring. Let x be a nonzero regular element of N. Then

x is not nilpotent.
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PROOF, Suppose x is a regular nilpotent element.

Then there is a positive integer k such that xK = 0, Let
x' be any regularity companion of x, Then, since x'x is
idempotent x'x = (x'x)k = (x')kxk = (x')k0 = 0. So

X = xx'x = x(x'x) = x0 =0,

COROLLARY 1.4, A weakly commutative regular

near-ring has no nonzero idempotents.

PROOF, Every element is regular.

THEOREM 1.5. Let (N,+,°) be a weakly commutative
near-ring and let x be a regular element in N, If x' and

x'' are two regularity companions for x them x'x = x"x,.

PROOF, xX'x = x'(xx'"'x) = x'"(x'"'xx) = (x'x"'x)x =

(x'""x'x)x = x'"*'(x'xx) = x'""(xx'x) = x"'x,

The following result is stated because of its frequent

use in the sequel,

THEOREM 1.6, Let (N,+,°) be a weakly commutative
near-ring and x an idempotent element in N. If x' is any

regularity companion of x then x'x = x,
PROOF, x'x = x'xx = xx'x = x,

We shall have occasion later to mention a commuta-

tive regular ring with identity. The field of real
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numbers provides us with an example of such a ring which
is not a p-ring. Other examples are provided by class
(27) 1n the list of Clay [5] where the additive
group is (Zg, +). With the help of the following lemma
we are able to characterize those finite rings with

identity which are commutative regular rings.

LEMMA 1.7. Let (R,+,°,1) be a commutative
regular ring with identity. let x be in N and x' a
regularity companion of x. Then for any positive

integer k, x = (x")* 15K,

PROOF, If x = 0 the result follows, Suppose

x#0, Ifx'=0¢then x = xx'x = x0x = 0, But x ¥ O

so x' 0, If k =1 then (x')k'?xk - (x)% x = x

where by definition a0 =1 if a is any nonzero element

in R. Now suppose the result holds for k = m where m

is some positive integer. Then (x')‘xm*i = ((x')"lx‘)x'x -
xx'x = x, Thus, by induction the result holds for all
positive integers k.

REMARK, From the proof of this lemma we note
that in a ring if x ¥ 0 then 0 is not a regularity com-
panion of x, We also note that in a commutative ring
the condition xx'x = x may be written as x'x% = x, We

shall use this consequence of commutativity freely,
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THEOREM 1.8, Let (R,+,*,1) be a finite ring with
identity. Then R is a commutative regular ring if and only

if for each x in R there is an integer n(x) >> 1 such that

x(X) - x,

PROOF, Suppose that for each x in R there is an

integer n(x) >1 such that xn(x) = x, Then by a well-
known theorem of Jacobson, R is commutative. Let x be
an element in R. If x = 0 then x is regular, If x ¥ 0
then x0n(X)-2x2 = x angd x is regular. Hence R is a commu-
tative regular ring, Conversely, suppose R is a commutative
regular ring. Let q be the number of elements in R
and x inR. If x =Oor 1 then x2 = x and the condition
is satisfied. Thus we need be concerned only with x in R
such that x ¥ 0 and x ¥ 1, If there is no such element
the proof is complete. Otherwise, consider the set

{ x, xz, cee, xq‘l} where x is neither O nor 1. None
of these elements is zero since by Corollary 1.4 there are
no nonzero nilpotent elements., If the elements are dis-
tinct then they must constitute the set of nonzero elements
of R, In this case, the identity must be among these ele-~
ments. Since x ¥ 1 there must be some integer k such that
1<k £€q-1 and x*X - 1, Then xK+1 = x where
2Lkl £ q. If the members of the set are not dis-

tinct then there must be positive integers m and n such
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that 1L m «= n=cg-1 and x" = x%, Let k = n - m>0,
Then x™ = x0 = xW+k = x® yK ¢ » =1, then x = x5+
and the proof is complete. Suppose mn>l. Let x'

be a regularity companion of x, Since x ¥ 0 then

x' # 0 by the remark following Lemma 1.7. Thus, by
Corollary 1.4, (x')""1 ¥ 0. Hence x = (x")0-1xm =

(x')m"lx.‘“xk = xxk = xE+1  and the proof is complete.



CHAPTER II

SPECIAL NEAR-RINGS AND SPECIAL REGULAR NEAR-RINGS

1. Motivation and Definitions

The class of Boolean near-rings studied by Clay
and Lawver [ﬁﬂ was, in some sense, related to a Boolean
ring with identity. Ratliff [;é] studied the more
general case of a class of p-near-rings related in a
similar way to a p.ring with identity. In each instance
the procedure was to begin with a ring (R,+,°,1) having
the desired property and define a new multiplication
denoted by * on (R,+) so as to obtain a near-ring
(R,+,%). The new multiplication was expressed in terms
of the original multiplication and addition and the
identity by defining x * y to be a polynomial in x and y
with fixed coefficients from R for arbitrary x and y in R,

If P(x,y) is any such polynomial we note that in
order for the left distributive law to hold we must have
P(x,y + z) = P(x,y) + P(x,2). Thus we restrict our

attention to those polynomials of the following type:
P(x,y) = an;Py + an_lxn-ly + ceo + 81Xy + B4y

11
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where the a, are fixed elements from the ring. In order
that the associative law hold we must have P(P(x,y),z) =
P(x,P(y,=)). If we attempt to write out these

expressions for the polynomial given above we see that the
problem is unmanageable unless additional restrictions are
placed on the ring or the coefficients or both, The rings
considered by Clay and Lawver [ﬁ] and also those consi-
dered by Ratliff [iq] were commutative, In his work
Ratliff [}é] used conditions on the coefficients similar
to ajay = 0 if i # j and ao2 = a,. If we arbitrarily
adopt these restrictions then for the case n = 2 associati-
vity requires that a23x4y2z - azzxzyzz for all

X, ¥, z in the ring. If we begin with a Boolean ring

this condition holds. This suggests that we need place
restrictions on our original ring in addition to those
already adopted if we wish to insure that the new multi-
plication is associative and, hence, that (R,+,*) is a

near-ring. The situation is more agreeable if we con-

sider the simpler polynomial corresponding ton = 1,

THEOREM 2.1. Let (N,+,°) be a weakly commutative
ring. Define a multiplication *:N x N~ N::(X,y)—» X * y =
axy + by where a, b € N. Then (N,+,*) 1is
a weakly commutative near-ring if and only if b(x * z) =

bz for all x, z € N.
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PROOF . We note that the polynomial P(x,y) used to

define the multiplication is linear in y. Therefore, the
left distributive law holds. Suppose (N,+,*) is a weakly
commutative near-ring., Then * is associative. Hence

x*% (y*2z) = (x*y) *z for all x, y, z in N, Now

x*k (y* 2) =x * (ayz + bz) = ax(ayz + bz) + b(ayz + bz)

azxyz + abxz + abyz + b2z and (x*y)*z =a(x*y)z +bz =
a2
a2

xyz + abyz + bz, Thus azxyz + abxz + abyz + b2z =

xyz + abyz + bz and so abxz + b2z = bz. Hence b(x * z) =
abxz + b2z = bz for all x, z € N. These steps are clearly
reversible. So if b(x * 2) = bz for all x, z € N then * is
associative and (N,+,*) is a near-ring. Also, b(y * z) =
abyz + b2z =bz. So for all X, ¥y, 2 €N, abxz = bz -~ b2z and

abyz = bz - bzz. So abxz = abyz. Then x * y * z =
2

a“xyz + abyz +bz =a2yxz +abxz +bz =y * x * 2z for all
X, ¥y, 2 E N.
COROLLARY 2.2, Let (N,+,+) be a weakly commu-

tative ring. Define *:N x N—N::(x,y)—P x * y =
axy +by. 1If ab =0 and b2 = b, then (N, +, *) is a weakly

commutative near-ring.

PROOF. Let x, y € N. Then b(x * y) =
b(axy + by)=abxy + bzy = by. The conclusion follows by
Theorem 2.1.

If (N,+,°) is a weakly commutative ring and a and b
are fixed elements of N such that ab = 0 and b2 = b
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and a new multiplication * is defined on (N,+) by x * y =
axy + by for all x, y € N then the near-ring (N,+,¥*)

will be called the special near-ring determined by a

and b, The ring (N,+,¢) will be referred to as the

base ring. Note that a special near-ring as discussed

in this work is not necessarily a special near-ring in
the sense of Fain [7] . As an example we may take a
ring from class (27) in the list of Clay [5] where the
additive group is (Zg, +). Choose a = 3 and b = 4,
The resulting special near-ring is in class (52),. It
is not a special p-near-ring as described in bs] .
The rings in the studies by Clay and Lawver [ 6]
and Ratliff [18] had identities. For these rings we
are able to show that the arbitrary conditions which we
placed on the coefficients in our polynomial are neces-
sary. Suppose (N,+,°,1) is a weakly commutative ring
with identity. Then N is commutative for xy = xyl =
yxl = yx for all x, y in N. Suppose a and b beloag to
N and let (N,+,*) be the special near-ring which they
determine. Then * is associative so 0* (0 *1)
= (0 * 0) 1, But 0 * (0 # 1) = 0 * (a0l + bl) =
O*b=abb+bb=b2and (0*0) *+1=0%1=a0l +
bl =b, Thus b2 =b. Alsol* (0% 1) = (1 *0) * 1,
Now 1 * (0#1) =1 # (a0l +bl) =1 *b = alb + b° =
ab+band (1 *0) *1=0%1e«ga01 + bl =bhH, Thus
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ab + b = b and ab = (.

THEOREM, 2.3, Let (N,+,-,1) be a commutative ring with
identity. Let a be a regular element in (N,+,°,1) and let
a' be a regularity companion for a. Define a new multipli-
cation * on N by x * y = axy + (1 - a'a)y, Then (N,+,%)

is a weakly commutative near-ring and a is regular in (N,+,%).

PROOF, let b =1 - a'a, Then bZ = (1 -a'a)2 =

l-a'a-a'a + (a'a)z. By Theorem 1.1 a‘'a is idempotent.
Hence b> = 1 - a'a - a'a + (a'a)2 =1 - a'a = b, Also ab =
a(l - a'a) =a ~aa'a=a~-a=0, By Corollary 2.2,
(N,+,*) is a weakly commutative near-ring. To show a is

regular note

a* (@)Y *xa=(* (@) «a
=8 (a* (a')3) a + (l-a'a)a
= a (aa(a')3 + (1-:';)(:')3) a + (a-a'aa)
= a4 (a')3 + a2 (1-a'a)(a')3 +0

-al' (a')3+0+0 - a,

A special near-ring determined by a is a special near-ring

such that the base ring has an identity, a is regular and

b=1-a2a'a,
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COROLLARY 2.4, Let (N,+,-,1) be a commutative
regular ring with identity. Let a € N. Then the special

near-ring determined by a is regular,

PROOF, Since a is regular in (N,+,-,1) we know
by Theorem 2.3 that a determines a weakly commutative
near-ring (N,+,*¥). To show that (N,+,*) is regular we
show that each of its elements is regular. Let zg€N. Then
z is regular in (N,+,-,1). Let z' denote a regularity
companion of z., Then we have

zk(a')2z' * z = (z * (a')2z') * 2

=a(z * (a')22')z + bz
= a(az(a')zz'i-b(a')zz')z + bz
- (aa')zzz'z + ab(a')zz'z + bz

= aa'z + bz = (a'a+b)z = 1z = z.

If the base ring is regular then the special near-ring
determined by an element a will be called a special regular
near-ring. Special regular near-rings are weakly commuta-
tive regular near-rings., The latter class of near-rings is
studied in Chapter IV. It should be noted that the

special p-near-rings studied by Ratliff tid] are special
regular near-rings. In this sense, many of the results

in the current chapter are generalizations of results he

obtained.
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2. Preliminary Results and Examples

In this section we deal with the questions of when
a special near-ring determined by an element a has an
identity, when it is commutative, when it is a
C-ring and when it is distributively generated.

We also consider the question of when an element is

right distributive.

LEMMA 2.5, Let (N,+,*) be a special near-ring
determined by a. Then a' is a left identity in (N,+,*).
Furthermore, a' is a right identity if and only if a'a = 1.

PROOF, Let x be any element of N. Then a' * x =
aa'x + (1 - a'a)x = a'ax + X -a'ax = x, Hence a' is a
left identity. Suppose now that a' a = 1, In this
case, X * a' = axa' + (1 - a'a)a' =a'ax + 0a' = 1x + 0 = x
for all x g N, Conversely, suppose a' is a right
identity. Then x * a' = x for all x € N. Take x =
l1+a'., Then (1 +a') *a' =a(l +a')a'" + (1 - a'a)e'=
1l +a’', So aa' + aa'a' + a' - a'aa' =aa' +a'=1+a’',
Hence a'a = 1, It should be noted that since a' is always

a left identity it is the identity if one exists.

THEOREM 2.6, Let (N,+,*) be a special near-ring
determined by a, and N ¥ 0,
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Then the following statements are equivalent:

(a) (N,+,*) has an identity,

) a has a unique regulanty companion in (N,+,-,1),
(c) a is neither zero nor a zero divisor in (N,+,°,1),
(d) a has a multiplicative inverse in (N,+,.,1),

(e) * is commutative,

() (N,+,*) is a C-ring,

(2) (N,+,¥,a') is isomorphic to (N,+,°,1).

PROOF, (a) implies (b). Suppose (N,+,*) has
an identity, e. By the remark preceding this theorem
e=a', Suppose a'' is any regularity companion for a.
Then by Lemma 2.5, a'' is a left identity. Hence a' =
a'' x a' = a'"', Thus a' is the unique regularity companion
of a,

(b) implies (c). Suppose a' is the unique regularity
companion of a in (N,+,°,1), Then a ¥ 0 since every ele-
ment is a regularity companion of O and N ¥ 0. Now
suppose ax = 0 for some x E N. Then a2x = 0 and a%x + a =~
a, Hence, azx + aZat = az(x + a') =a, Thus x + a' is

a regularity companion of a, By uniqueness x + a' = a',

Therefore, x = 0, So a is not a gzero divisor in (N,+,-,1).
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(c) implies (d). Suppose a is neither zero nor a zero
divisor in (N,+,°,1). Then a(l - a'a) = a - aa'a - a - a =
0. Thus 1 - a'a = 0 and a'a =1, So a has a multiplicative
inverse in (N,+,°,1).

(a) implies (e). Suppose a has a multiplicative
inverse in (N,+,°,1). Denote this multiplicative inverse
by u. Then ua = 1. Hence ua? = a so u is a regularity
companion for a. Then by Theorem 1.5, a' a = ua =1

and a' is a multiplicative inverse for a in (N,+,°,1).
Thus a' = a'ua = ua'a = u, We conclude that a' is the
unique multiplicative inverse of a in (N,+,°,1). Now

let y € N. Since a' a = 1, a'ay =y and (1 - a'a)y = 0
for all y € N, Thus x * y = axy + (1 - a'a)y = axy =
ayx + (1 - a'a)x =y * x for all ¢, y € N. So * is
commutative,

(e) implies (f). If * is commutative then 0 * x =

x * 0= 0 for all x € N, Hence, (N,+,*) is a C-ring.
() implies (g). Suppose (N,+,*) is a C-ring. Then
0=0%*1=2a01+ (1 -a'a)l =1 -a'a, Soa'a=1and

we see that a ¥ 0 and a' ¥ 0, Also (a'a)a' = la' = a’',
Now x * y = axy + (1 ~ a'a)y = axy for all x, y £ N.
Hence, a' * x = x * @' = x for all x € N, Define

g:(N, +, *, 1)=»(N,+,%,a")::x —p a'x, Then g is a
mapping and if g(x) = g(y) we have a'x = a'y, Sox =
aa'x = aa'y = y, Thus g is 1 - 1, Let n € N, Then
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g(an) = a'an = n, So g is onto, Nowg(x +y) =a'(x+y) =
a'x + a'y = g(x) + g(y) and g(xy) = a'xy = (a'aa')xy =
a(a'x)(a'y) = ag(x)g(y) = g(x) * g(y). Thus g is an iso-
morphism between (N,+,°,1) and (N,+,*,a').

(g) implies (a). If (N,+,*,a') is isomorphic to

(N,+,°,1) then clearly (N,+,*) has an identity.

The next four results relate to the question of
distributive generation. A theorem of Frohlich [ﬁ]
states in part that a distributively generated near-ring
(R,+,°) with identity is a ring if and only if (R,+)
is abelian, With the aid of a pair of simple lemmas it
is elementary to show that an arbitrary distributively
generated near-ring (R,+,¢) is a ring if and only if

(R,+) is abelian,

LEMMA 2.7, Let (R,+,°) be an abelian near-ring.
Then -(x + y) = (-x) + (-y) for all x, y € R.

PROOF, In any group - (x+y) = (=¥y) + (-x). Since
(R,+) is abelian the result follows.

LEMMA 2.8, Let (R,+,°) be an abelian near-
ring. If z € R is right distributive then -z is right
distributive.

PROOF, Suppose z € R is right distributive.
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Then for all x, y € R,(x +y)(-2) = -[(x + Y)z] =

Bz +yz] =[] + [-02)] = x(-2) +3(-2).
Thus -z is right distributive.

Ligh [13] has used the name gf near-ring to
describe a near-ring with the property that the negatives
of right distributive elements are right distributive.
The above result shows that any abelian near-ring is an aor

near-ring.

THEOREM 2.9, Let (R,+,°) be a distributively

generated near-ring. Then (R,+,°) is a ring if and only if
(R,+) is abelian.

PROOF . Clearly, if (R,+,°) is a ring then (R,+)
is abelian. Conversely, suppose (R,+) is abelian. Let
X, ¥y, ZER. Then z =27 +... +2, vhere either z; is
right distributive or z{ is the negative of a right distribu-
tive element for each i £ {1,2,...,!\} . By Lemma 2.8, 2z is
right distributive for 1 € {1,2,...,n} . Thus (x + y) z =
(x +y)(2] +... +21) @« (X 7)) + ... + (x + y)zn -
(x2y +y21) + ... + (X2 4+ y2p) = '

(x2y +... +x2) +(y2] +... +y2,) = xz +yz.
Thus, the right distributive law holds and (R,+,°) is a ring.

THEOREM 2.10, Let (N,+,*) be a special near-ring
determined by a. Then (N,+,*) is distributively generated
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if an only if (N,+,*) is a ring.

PROOF. If (N,+,*) is a ring then it is distribu-

tively generated. Conversely, suppose (N,+,*) is distri-
butively generated. Since (N,+) is abelian we have by
Theorem 2.9 that (N,+,*) is a ring.

If (N,+,*) is a special near-ring determined by
an element a, it is natural to ask under what conditions
an element in N will be right distributive. The next

two theorems relate to this question,

THEOREM 2.11. Let (N,+,°,1) be a commutative ring
with identity. Let a be a regular element in Nand b =
l] - a'a, Then N = aN @ bN,

PROOF, It is well-known that aN and bN are ideals

of (N,+,°,1). Now let x £aN{V bN. Then x = an and x = bm
for some n, m € N, So we have x = an = (aa'a)n = (aa')an =
(aa')bm = a'(ab)m =~ a'0m = 0. Thus aN /\bN = 0. Clearly
aN @ bNC N. Let x € N. 'l‘henx==x1-x(a'a+b)'-

aa'x + bx € aN @ DbN. So NCaN @ bN., We conclude that
N =aN @ DN,

THEOREN 2.12, Let (N,+,*) be a special near-ring

determined by a, Let z€N. Then z is right distributive
if and only if z £ aN.
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PROOF, Suppose z &€ aN. Then z=an for some
n € N. So (1 - a'a)z = (1 - a'a)an = (a - aa'a)n =
Oon = 0, Thus (x +y) *z=a(x +y)z + (1 - a'a)z =
axz + ayz = axz + (1 - a'a)z + ayz+ (1 « a'a)z =
X *z +y * 2z, Sowe have established the fact that
z is right distributive. Conversely, suppose z is
right distributive, Then 0 = 0 * z = a0z + (1 - a'a)z =

z - a'az, So z = a(a'z) § aN.

Before turning to a discussion of the ideal structure
of special near-rings in general and special regular near-
rings in particular we consider some examples. Let (N,+)
be the Klein 4-group and let (N,+,-,c) be the representative
given for class (4) in the list of Clay [5] . Then
(N,+,°,c) is_a commutative ring with identity element c.

It is not regular, The regular elements are, in Clay's

==

notation, 0, b and ¢. The element 0 determines a near-
ring in class (23) which is a 2-near-ring. The element b
determines a near-ring isomorphic to the base ring. The
element ¢ determines the base ring. As another example
consider (26,+,-,1) from Clay's class (27) . This is

a commutative regular ring with identity. For each

x £ Zg, x3 = x and x'x = x2, We obtain the following

special regular near-rings,
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If (a,b) = (1,0) then x * y = xy. This produces the

base ring.
I1f (a,b) = (0,i) then x * y = y. This produces class (48).

1f (a,b) = (2,3) then x * y = 2xy + 3y. This produces
class (35).

If (a,b) = (3,4) then x * y = 3xy + 4y, This produces
class (52).

If (a,b) = (4,3) then x * y = 4xy + 3y. This produces
class (35).

If (a,b) = (5,0) then x * y = 5xy, This is isomorphic
to the base ring.

There are regular near-rings which are not special regular
near-rings. An example is found in Clay's class (8) where

the additive group is (25, +).

3. Some Structure Theorems

In this section we consider the ideal structure of
special near-rings. For any regular element t in a
commutative ring with identity (N,+,-,1) we define the
set P(t) = '{x € N:xt't = x.} . This set apparently
depends on t' as well as t but the dependence is super-
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ficial as shown by Theorem 1.5. If t is idempotent then

we see from Theorem 1.6 that P(t) = {_xEN:xt = x} .

THEOREM 2.13. Let (N,+,-,1) be a commutative ring
with identity and let t be regular in N. Then P(t) is
an ideal of (N,+,-,1) with identity element t't, Further-

more, if t is idempotent the identity in (P(t),+,°)
is t.

PROOF. Let x, y¢ P(t). Then x = t'tx and
y=t'ty. Thus x - y =t'tx - t'ty =t't(x - y).
Hence, x - y€P(t). So (P(t),+) is a normal subgroup of
(N,+). Let n € N. Then nx = n(xt't) = (nx)t't.
Thus P(t) is an ideal. The remaining assertions are
obvious.

Let (N,+,°,1) be a conmutative ring with identity.

Let t be a regular element in N and L a subset of N.
Now define L(t) -{x € N:x =gt't for some g € L}. As
before the dependence on t' is superficial and if t is
idempotent L(t) = {x € N:x = gt for some S€ L; .

TUEOREM 2,14, Let (N,+,-,1) be a commutative
ring with 1dentity and t regular in N,
(a) If (L,+) is a subgroup of (N,+) then (L(t),+) is
a subgroup of (N,+).
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(b) If (L,+,+) is a subring of (N,+,°) then (L(t),+,°)
is a subring of (N,+,°).
(c) 1f (L,+,*) is an ideal of (N,+,-) then (L(t),+,°)

is an ideal of (N,+,.).

PROOF, (a) Suppose (L,+) is a subgroup of

(N,+) and x, y £ L(t). Then x = s3t't and y = spt't
for some sy, S, € L. So x -y = (57 - sz)t't.
Since (L,+) is a subgroup 8; - 8o £ L.
Thus x - y g L(t) and (L(t),+) is a subgroup
of (N,+).

(b) Suppose (L,+,°) is a subring of
(N,+,°). Then by part (a) (L(t),+) is a subgroup of
(N,+). I1f x, y€ L(t) then x = syt't and y = spt't
for some sy,s,& L. Thus xy = slscz('l:'t)2 = 8;8,t't € L(t)
since s,;s, € L. Hence, (L(t),+,°) is a subring of
(N,+,°).

(c) Suppose (L,+,°) is an ideal of
(N,+,°). Let x&€L(t) and ng N, Then x = gt't for
some sgL. Thus nx = nst't EL(t) since ns gL.
Hence (L(t),+,°) is an ideal of (N,+,°).

THEOREM 2.15, Let (N,+,-,1) be a commutative
ring with identity. Let t be regular in N and L a sub-
set of N, Then L(t) C P(t).
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PROOF, Let x £ L(t). Then for some s ¢ L, x =

st't. Hence xt't = (st't)t't = s(t't)? = st't = x.
Thus x & P(t).

THEOREM 2.16, Let (N,+,*) be a special near-
ring determined by a., Let N, denote the maximal sub-2Z-
ring of (N,+,¥) and let N, denote the maximal sub-C-ring

of (N,+,%), Then N, = P(1 - a'a) and N, = P(a).

PROOF, Recall that P(t) is defined only in the

event that t is regular, Since (1 - a'a)2 = 1 - a'a,
then 1 - a'a is regular in (N,+,°,1). Thus P(1 - a'a)
is defined. From Berman and Silverman [2] we know
that N, = {x €N:n * x = x for all nEN} and N, =

{xt N:0 * x = 0} . It is immediate that 0 is in both

Nz and N, and is the only such element. Since 1 - a'a
is idempotent P(1 - a'a) = {xtN:x(l - a'a) = x}.

Let x€N;. Then n * x = x for all néN., So 0 * x = x,
Thus x = 0 * x = a0x + (1 - a'a)x = (1 - a'a)x = x(1 - a'a),
Hence, x€P(1 - a'a) and N,CP(1 - a'a). Now let x be any
element in P(1 - a'a). Then x = x(1 - a'a), So for
any n€éN, n * x = anx + (l-a’a)x = anx(l1 - a'a) +

(1 - a’a)x = nx(a - aa'a) + x = x. Thus x€N, and

P(1 - a'a)CNz. The two inclusions show P(1 - a'a) =

Nz. Now we show that P(a) = N,. Let x€N,. Then

0=0%*x=a0x + (1 ~a'a)x = x -« a'ax, Sox =a'ax =
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xa'a and x§ P(a). Thus N.CP(a). Conversely, suppose
x€P(a). Then x = xa'a and 0 = x - a'ax = (1 - a'a)x.
So 0 * x =a0x + (1 - a'a)x = 0, Therefore, x € N, and

P(a) CN.,. The two inclusions show that P(a) = N..

THEOREM 2.17. Let (N,+,*) be a special near-

ring determined by a. If t is regular in N then (P(t),+,%)
is an ideal of (N,+,%).

PROOF. By Theorem 2.13 we know that (P(t),+) is
a subgroup of (N,+). Let n € N and xgP(t). Then x =
xt't., So (n * x)t't =Enx + Q1 - a'a)x]t't = an(xt't) +
(1 - a'a)(xt't) = anx + (1 - a'a)x =n * x, Thus
n* xgP(t). Now let n, m€ N and x EP(t). Then
[('n +x)*m- n*m]t't -[anm + axm - annﬂt:'t = (axm)t't =
an(xt't) =amx = axm = (n +x) * m - n * m, Thus
(h +x) *m-n* meP(t) and (P(t),+,*) is an ideal.

It should be noted, in particular, that (P(a),+,*)

and (P(1-a'a),+,*) are ideals of (N,+,*).

THEOREM 2.18. Let (N,+,*) be a special near-ring
determined by a and let t be regular in N,
(a) 1f (L,+,*) is a left ideal of N,+,*) then
(L(t),+,*) is a left ideal of (N,+,*).
(b) If (L,+,*) is a right ideal of (N, +,*) then
(L(t),+*) is a right ideal of (N, +%*).
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(c¢) 1If (L,+,*) is an ideal of (N,+,*) then
(L(t),+*) is an ideal of (N, +%*).

PROOF. (a) Let (L,+,*) be a left ideal of

(N,+,*). Let néN and x £ L(t). Then x = st't for
some s€L, Son*x=anx+ (1 - a'a)x =

anst't + (1L - ata)s t't = ‘_ans + (1 - a'a)s] t't =
(n * s)t't, Now n * sg L since L is a left ideal.
Thus n * x EL(t). So (L(t),+,*) is a left ideal.

(b) Let (L,+,*) be a right ideal of
(N,+,*). Letm, neéN and xE§ L(t). Then x = st't for
some s ¢ L. Since (L,+,*) is a right ideal
(m+8) *n-m+*n=a(m+s)n+ (1L ~-a‘'a)n-amn - (1 - a'a)n =
asn £ L. Thus (m + xXx) *n-m*n=a(m+ x)n + (1 - a'a)n -
amn - (1 - a'a)n = axn = a(st't)n = (asn)t't € L(t). Hence,

(L(t),+,*) is a right ideal of (N,+,*).

(c) This result follows immediately
from parts (a) and (b).

In particular, the above theorem gives the result
that (L(a),+,*) and (L(1 - a'a),+,*) are ideals (left,
right) of (N,+,*) whenever (L,+,*) is an ideal (left, right)
of (N,+,*)., Actually, weaker hypotheses guarantee that

(L(1 - a'a),+,*) is an ideal of (N,+,*) as the next theorem

shows,
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THEOREM 2.19. Let (N,+,*) be a special near-ring
determined by a and let (L,+) be a subgroup of (N,+).

Then (L(1 - a'a),+,*) 1is an ideal of (N,+,¥%) .

PROOF, By Theorem 2,14, (L(1 - a'a),+) is a sub-
group of (N,+). let n £E Nand xEL(1 - a' a). Since
L(1 - a'a)CP(1 - a'a) = Nz,n *x =x € L(1 - a'a),.

Hence, (L(1 - a'a),+,*) is a left ideal. Now let m, ng N
and x € L(1 - a'a),. Then x = s(1 - a'a) for some sg L.
Thus (m + Xx) * n -m*n=a(m+ x)n + (1 - a'a)n - amn -
(1 - a'a)n = axn = as(1 - a'a)n = s(a - aa'a)n =

sOn = 0 €EL(1 - a'a). Hence, (L(1 - a'a),+,*) is a right

ideal and, therefore, an ideal of (N,+,*).

THEOREM 2,20, Let (N,+,*) be a special near-

ring determined by a.

(a) (P(a),+*) is a subring of (N, +*).

(b) If (L,+,*) is a left ideal of (N, +,*) then
(L.(a),+,*) is a subring of (N, +,%*).

PROOF, By Theorem 2.17 (P(a),+,*) is an ideal
of (N,+,*), Let x, y, 2z £ P(a). Then x * y g P(a).
Since z€P(a), z = za'a and (1 - a'a)z = 0O, Thus
(x +y) *z=a(x+y)z + (1 ~a'a)z = axz + ayz =

axz + (1 - a'a)z + ayz + (L -a'a)z =x *xz +y * z,
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(b) Suppose (L,+,*) is a left ideal
of (N,+,¥*). Then by Theorem 2.18, (L(a),+,*) is a left
ideal of (N,+,*), Now let x, y, z€L(a)., Then
x *y £ L(a). Also z = sa'a for some s £ L. So
(1 - ata)z = (1 - a'a)sa'a =0, Therefore, (x + y) * z =
a(x + v)z + (1 - a'a)z = axz + ayz = axz + (1 - a'a)z + ayz +

(l-a'a)z=xX*2z2 +y * 2z,

THEOREM 2.21, Let (N,+,*) be a special near-
ring determined by a, If (L,+,*) is a left ideal of
(N,+,*) then L = L(1 -~ a'a) ¢ L(a), a direct sum of
left ideals of (N,+,*). Conversely, if RCp(1 - a'a)
and SCpP(a)are left ideals of (N,+,*) then (R @ S,+,%*)
is a left ideal of (N,+,*).

PROOF. Let (L,+,*) be a left ideal of
(N,+,*), Then by Theorem 2,18 (L(1 - a'a),+,%*)
and (L(a),+,*) are left ideals of (N,+,*). Also by
Theorem 2,15 L(1 - a'a)CP(1 - a'a) and L(a)CP(a).
So, L(1-a'a)L(a)C P(1-a'a)N\P(a) = N,MNN, =0. We
now show that L(1 - a'a) ® L(a) = L. To this end let
Xx€EL(1 - a'a). Then x = s(1 - a'a) for some s€EL. Then
(1-a'a)*s=a(l-a'a) s+ (1-a'a)s=(l1-a'a)ss=
x €L since L is a left ideal, Hence L(1 - a'a)CL. Now

suppose x€ L(a). Then x = sa'a for some sEL. Thus x =
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sa'a =g - (1 - a'a)s =g - (a(l-a'a)s + (1-a'a)s) =
8 - (l-a'a)*s € L since L is a left ideal. Thus L(a)CL.
Since L(1 - a'a) and L(a) are both subsets of L we have
L(l - a'a)@ L(a)CL. Now let s ¢ L, Then s = s(1 - a'a) +
sa'a. Clearly, s(l - a'a) £ L(1 - a'a) and sa'a€L(a).
Thus 8 € L(1 - a'a) @®L(a). Hence, LCL(1 - a'a) @ L(a)
and by double inclusion we have L =L(1 - a'a) @ L(a).

Now conaider the converse. Let RC P(l - a'a) and
S cP(a) be left ideals of (N,+,*). Then as in the first
part RNScP(l - a'a) N\ P(a) = 0. SoR@®S is a direct sum
of left ideals. Letn £Nand x =r +s8 & R®S. Then
n*x=n*(r+8)=n*r +n* gER @S since R and S
are left ideals of (N,+,*). Thus (R ®S,+ *) is a left
ideal of (N,+.%).

COROLLARY 2.22. Let (N,+*) be a special near-
ring determined by a. If (L,*+,*) is an ideal of (N,+,%)
then L = L(1 - a'a) ®L(a), a direct sum of ideals.
Conversely, if RC P(1 - a'a) and S CP(a) are ideals of
(N,+,*) then (R @ S,+,*) is an ideal of (N,+,%).

PROOF. Let (L,+,*) be an ideal of (N,+,%).
By Theorem 2,18, (L(1 - a'a),+,*) and (L(a),+,*) are
ideals of (N,+,*), By Theorem 2,21, L. =L(1 - a'a) ®L(a).
Hence, L is a direct sum of ideals, Conversely, suppose

RCP(1 - a'a) and S CP(a) are ideals of (N,+,*).
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Then by Theorem 2.21, (R ®S,+,*) is a left ideal of (N,+,*).
let mnEN and x =r + sER@P@S. Then (m + X) * n - wn =

axn = a(r + s)n = arn + asn = [(m +r)*n -m*n] +

[(m +8) *n-em* n]. Since R and S are right ideals
mMm+r)*n-m*né€ERand (m+ 8) *n-m*ngs§S, Hence
m+x)*n-m*nRBS, We conclude that the left ideal

R @s is also a right ideal and, therefore, an ideal of (N,+,%).

THEOREM 2,23, Let (N,+,*) be a special near-ring
determined by a and let LCP(a) be a left ideal of
(N,+,*). If t € L is regular in (N,+°,1) then P(t)C L.

PROOCF, Let (L,+,*) be a left ideal of (N,+,*%)
such that LC P(a). Let t £ L be regular in (N,+,°,1)
and x £ P(t). Then x =xt't, Since t € P(a) we have t =
ta'a, So x = xt't = xt'(ta'a) = (xt't)a'’a = xa'a. Hence,
(a'xt') * t = aa'xt't + (1 - a'a)t = (xa'a)t't + (1 - a'a)ta’a =
xt't + (1 - a'a)ata' = x +0 = x £ L since L is a left
ideal. Thus P(t)CL. )

We note, in particular, that if LCP(a) is a left
ideal of any special regular near-ring determined by a then
for every t€éL, P(t)CL.

THEOREM 2.24, Let (N,+,*) be a special near-
ring determined by a and L CP(a). Then (L,+,*) is an
ideal of (N,+,*) is and only if (L,+,*) is a left ideal
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of (N,+,¥*).

PROOF . If L is an ideal it is a left ideal,.

Consider the converse. Suppose (L,+,*) is a left

ideal of (N,+,%*). Then y * s £§L for all y €N and s gL.
Let x, y€N and s €L, Then s €P(a) so 8 = sa'a and

(1 - atays = 0, Thus (x + 8) * y =X *y =

a(x + s)y + (1 - a'a)y - axy - (1 - a'a)y =

asy = ays + (1 - a'a)s =y * s €L since L is a left ideal.
Therefore, the left ideal L is also a right ideal and,

hence, an ideal of (N,+,%).

THEOREM 2,25, Let (N,+,*) be a special near-
ring determined by a and LC_ P(1 - a'a). Then the

following statements are equivalent:

(a) (L,+,*) is an ideal of (N,+,*),
(v) (L,+,*) is a left ideal of (N,+,*),

(c) (L,¥ 1is a subgroup of (P(1 - a'a),+).

PROOF, Clearly (a) implies (b) and (b) implies
(c). To show that (c) implies (a), let (L,+) be a sub-
group of (P(1 - a'a),+). Ilet x, y £ N and s€L, Since

s €EP(1 - a'a), s = s8(1 - a'a), Sox*s=axs + (1 - a’a)s =
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axs(l - a'a) + (1 - a'a)s =0 + (1 - a'a)s =s g¢ L. Thus
L is a left ideal. Also (x +8) * y = x * y =
a(x+s8)y +(1 -a'a)y - axy - (1 - a'a)y =asy =

as(l - a'a)y =0 € L, So the left ideal (L,+%*) is also
a right ideal and, hence, an ideal of (N,+,*).

THEOREM 2,26, Let (N,+,*) be a special near-
ring determined by a. Then (I,+,*) is an ideal of

(N,+,*) if and only if (I, +*) is a left ideal of
(N, +,%),

PROOF, If I is an ideal then I is a left
ideal so consider the converse. Let (I,+,*) be a left
ideal of (N,+,*)., By Theorem 2.21, I =I(1 - a'a) ®1(a)
where (I(1 - a'a),+,*) and (I(a),+,*) are left ideals of
(Ny+,%).

By Theorem 2,15, I(1 - a'a) C P(1 - a'a) and
I(a)C P(a). By Theorem 2.25, (I1(1 - a'a),+,*) is an
ideal of (N,+,*)., By Theorem 2.24, (1(a),+,*) is an
ideal of (N,+,*). Then by Corollary 2.22, I(1 - a'a) @ 1(a) =
I is an ideal of (N,+,*%).

LEMMA 2,27, Let (N,+,*) be a special near-ring.

If x, y, 2EN, then (x+ y) ¥z - y* 2z -x %z = - bz,
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PROOF , Let x, y, z £ N. Then
+ty)*z-y*kz-x%kz =

a(x + y)z + bz - axz - bz - ayz - bz = - bz,

The next lemma contains some well-~known results

which will be useful in subsequent work,

LEMMA 2,28, Let (N,+,.) be an arbitrary near-
ring and (I,+,°) any ideal of (N,+,¢). Let N/I be the
factor near-ring., Then for any x, y, 2 £ N the following

statements are equivalent:

(a) G+FPNZ=%% +5z.

(b) G +YZ =Xz +yz.

(¢) & +7y)z =%z +yz.

(d) x+y)z -yz -x2 €1,

THEOREM 2,29, Let (N,+,*) be a special near-

ring and (I,+%*) an ideal of (N,+,*), If z € N then the

statement

(e) -bz 1 £1s equivalent to each of (a), (b),
(¢), (d), of Lemma 2,28,
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PROOF. Since the addition in (N,+,*) is commu-

tative statement (d) of Lemma 2.28 is equivalent, in the
present context, to the statement that (x + y) * 2z - x ¥ z -~
y * z§£T fr all x, y, z E N, But by Lemma 2.27 for any

X, V, Z2EN, (x+y) 2 -x%2z2 -y *x2z =-bz, Thus
statement (e) is equivalent to statement (d) and, hence,

to the other statements of Lemma 2,28.

THEOREM 2,30, Let (N,+,*) be a special near-
ring determined by a and let (I,+,*) be an ideal of

(N,+,¥), Then N/I is a ring if and only if P(1 - a'a) C 1I.

PROOF. Let N/I be a ring and let z EP(1 - a'a).

The right distributive law holds in N/I so for all

X, V, ZEN/I, (X+y) *zZ=X*2zZ+y*z, Since
b=1-a'a, by Lemma 2,28 and Theorem 2.29, -bz =

-(1 - a'a)z € I. Since (I,+) is a subgroup of (N,+),

(1 - a'a)z £€1, But z = (1 - a'a)z since z € P(1 - a'a).

Thus z € I and P(1 - a'a) C 1I. Conversely, suppose

P(1 -a'a) C 1. Forallz €N, - (1 -a'a)z £EP(1 -a'a)C1I.
So by Theorem 2,29, (X +y) *Z =X *Z + Yy * Z for

all x, y, z EN. Thus N/I is a ring.

COROLLARY 2,31, lLet (N,+,*) be a special regular
near-ring determined by a and let (I,+,*) be an ideal of
(N,+,*), Then N/I is a regular ring if and only if
P(1 - a'a) C 1.
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PROOF. The result follows from Theorem 2.30 and
the fact that for any regular near-ring R and any ideal
A of R, R/A is regular. To see the latter assertion
let z € R/A. Since z is regular in (R,+,) then 2Z'Z =

zZzZ'2" Z.

The next theorem states conditions under which two

special regular near-rings are isomorphic.

THEOREM 2,32, Let (N,+,°,1) be a commutative
regular ring with identity and let a and ¢ be regular
in N. Let (N,+,*a) and {N,+,*c) be the special regular
near-rings determined by a and c¢ respectively. 1f
there is an automorphism of (N,+,°*,1) which maps a to

c then (N,+,*3) and (N,+,*;) are isomorphic.

PROOF, Let £ denote an automorphism of (N,+,-,1)
which has the property that f(a) = ¢ and let c¢' denote
any regularity companion of c. Let x, y EN. From
the hypotheses we have f£(x + y) = £(x) + £(y). Since
£(a) = c, we obtain ¢ = f(a) = £(a'a2) = f£(a')f(a2) =
1.‘(:\')(1(&1))2 - f(a')cz. By Theorem 1.5, £(a')c = c'c.
So f(x *3 y) = f(axy + (1 - a'a)y) = f(axy) + £{1 - a'a)y) =
f(a)t(x)£(y) + £(1-a'a)f(y) = cf(x)L(y) + (£(1) -~ £(a'a))f(y) =
cf(x)f(y) + (1 - 2(a")2(a))2(y) = ci(x)1(y) + (1-2(a')c)f(y) =
£(x) *c £(y). Hence, (N,+,*;)is isomorphic to (N,+,*%3).
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THEOREM 2.33. Let (N,+,°,1) be a commutative
ring with identity and let (A,+,°) be an ideal of
(N,+,°,1). Then A is a direct summand of N if and only

if A = P(u) for some regular u in N,

PROOF, Let A = P(u) where u is regular in

N. Since N = P(1 - u'u) @ P(u), A = P(u) is a direct
summand of N. Conversely, let A be a direct summand

of N. Then N = A ® B, where (B,+,°*) is also an ideal.

> 2

Now 1 EN=A®Bsol =u+vwhere u€ A and v £ B.

i

Then u = ul = u(u + v) = u2 + uv. Since uve A\ B = o,
uv = 0, Thus u = u? and u is regular in N. If x € A,
then x = x 1 =x(u + V) =xu+ xv =2xu + 0 = xu, Thus
x & P(u) and A C P(u). If y EP(u) then y = yuEA since
A is an ideal. Therefore, P(u) (C A and we conclude that
A = P(u).

THEOREM 2,34. let (N,+,*) be a special near-
ring determined by a and let (B,+,*) be an ideal of
(N,+,%¥), Then B is a direct summand of N if and only
if B(a) and B(1l - a'a) are direct summands of P(a) and
P(1 - a'a) respectively,

PROOF, Suppose B (a) is a direct summand of

P(a) and B(1 ~ a'a) is a direct summand of P(1 - a'a),
Then P(1 ~ a'a) = A@ B(1 ~ a'a) and P(a) = B(a) @ C

for some ideals A and C, Since (B,+,*) is an ideal
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B =B - a'a) @ B(a). Hence N = P(1 - a'a) @ P(a) =
A®B(1 -a'a) @Ba) C=A@B@®C. Thus B is a
direct summand of N. Conversely, suppose B is a

direct summand of N, Then N = B @ C for some ideal

C. Since B=B(l1 - a'a) &B(a) and C = C(1 - a'a) @ C(a)
it follows that N=B@®C =

B(l1 - a'a) @®B(a) @ C(1 - a'a) ® C(a) =

B(l - a'a) C(1 - a'a) @ B(a) @ C(a). By Theorem 2,15,
B(l1 - a'a) and C(1 - a'a) are subsets of P(1 - a'a)

and B(a) and C(a) are subsets of P(a). Hence,

B(l - a'a) @C(1 - a'a) ¢ P(1 - a'a) and

B(a) @ C(a) C_ P(a). Let x € P(a). Then x = Xa'a.
Since x § N=B@®C, x=Db + c where b€e€B and c&C,

So x = xa'a = (b + c)a'a = ba'a + ca’'a. But

ba'a £€B(a) and ca'afC(a). Hence x £ B(a) @ C(a)

and we conclude that P(a) ¢ B(a) @ C(a). By

double inclusion we have that P(a) = B(a) @ C(a).

In a similar manner we may show that P(1 - a'a) =

B(l1 -a*a) ®@C(1 - a'a),

REMARK, The proof of the second half of the
theorem shows that if (N,+,*) is a special near-ring
determined by a and N is a direct sum of ideals, say
N =B@C, then P(a) = B(a) @ C(a) and
P(1 - a'a) = B(1 -a'a) @C(1 - a'a),
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THEOREM 2.35. Let (N,+,*) be a special near-
ring determined by a. 12t (I,+,*) be an ideal of
(N,+,%). If I is a direct summand of N then there
is a regular t & P(a) such that I = P(t) © M where
P(t) c P(a) is an ideal and M C P(1 - a'a) is an

ideal.

PROOF. If I is a direct summand of N then
N =1I@L where L is an ideal, From previous work
we know that I = I(a) ® I(1 - a'a) where 1I(a) and
I(1 - a'a) are ideals, By Theorem 2.34, I(a) is a
direct summand of P(a). Since (P(a),+,°,a'a) is a
commutative ring with identity and I(a) is an ideal
of P(a) which is a direct summand of P(a) we know
by Theorem 2,33 that I(a) = P(t) for some t regular
in P(a). Thus I = I(a) @ I(1 - a'a) = P(t) @I(1 -~ a'a).
Clearly P(t) = I(a).c_. P(a) is an ideal and
1(1 - a'a) < P(1 - a'a) is an ideal.

We are able to establish the converse
of Theorem 2.35 for a certain class of special near-
rings determined by elements, namely that class in
which the additive group of any member has the property

that each of its subgroups is pure and bounded.

THEOREM 2,36, Let (N,+,*) be a special near-
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ring determined by a. Let I be an ideal of (N,+,*). If there
is a regular element t £P(a) such that I=P(t)@E M where
P(t)C P(a) is an ideal and (M,+) is a pure and bounded sub-

group of (P(1 - a'a),+) then I is a direct summand of N.
PROOF . By previous work we know that P(a)= P()® A

for some ideal A. Kaplansky [1(_)] proves that a pure and bounded
subgroup is a direct summand. Thus P(1 - a'a) =M@B for some
ideal B, Then N = P(A)® P(1 - a'a)= P(t)® AOMPB =

P() PMPOADB =1HASB.

4, Some Decomposition Theorems

As mentioned earlier, any field is a commutative regular
ring with identity, Therefore, any field may be used as the
base ring in which we define a new multiplication to obtain a
special regular near-ring, It is natural to ask what types of
near-rings are obtained in this case.

THEOREM 2.37. Let (F,+,°,1) be a field and ag F. Let
(F,+,*) be the special regular near-ring determined by a §¢F.
Then either x * ysy for all x, y€F or (F,+,*,a'1) is
isomorphic to (F,+,°,1).

PROOF : If a =0 then x * y maxy+ (1 - a'a)y =y
for all x, yeF. If a ¥ O then a has a multiplicative inverse
which we denote by a']_-. In this case a~l is the unique
regularity companion of a. Then x * y = axy +(1 - a"la)y -
axy = ayx + (1 - a~layx =y * x for all x, ygF. Note that
a1l y = aa~ly =y for all ygF. Since * is commutative,

a~l is the identity in (F,+,*). Also, F ¢ 0 so by Theorem 2,6,
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(F,+,*, a'l) is isomorphic to (F,+,-,1).
Theorem 2.37 leads to a decomposition theorem for special
regular near-rings. In order to obtain such a theorem we make

use of the following which may be found in McCoy [14] .

THEOREM 2.38. Every commutative regular ring of
more than one element is isomorphic to a subdirect sum of
fields.

Theorem 2,38 restricts the following discussion to
special regular near-rings of more than one element but this

restriction is not significant,

THEOREM 2.39, Let (N,+,*) be a special regular
near-ring determined by a. Then (N,+,*) is isomorphic to a
subdirect sum of near-rings Nj where each Nj is one of the
following two types:

(a) Nj is a field,
~(b) the additive group of (Nj,+,*{) is that of a

field and xj *; y; = yj for all x4, yi & Nj.

PROOF, By Theorem 2,38, the commutative regular
ring with identity, (N,+,.,1) is isomorphic to a sub-
direct sum of fields Fj where i is in some index set I.
Hence, there is some subring, say S, of the direct sum of the

Fi, which is isomorphic to N.
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Denote the isomorphism by <. let a & N. Then X(a) =
[ai]iel where a; £ N; and N; = F;. Then a determines
a near-ring (N,+,*) and 0{(a) determines a near-ring (S,+,%*).
It is straightforward to show that (N,+,*) is isomorphic
to (S,+,*) under o, Now each N; is the near-ring
(Fi,+,*1) where the multiplication #; is determined
by xi*iyi = (x*y); where the ith components of x and y
are xj and Yi respectively. Hence, (N,+,*) is isomorphic
to a subdirect sum of near-rings Ny where each Ni
is (Fy,+,%3).

Let a = [agitl and b -[bgitl where
b=1-a'a. Since b2 =Db and by is in the field
Fi’bi must be either 0 or 1 for each i €1, Since
ab = 0, a; = 0 when bj = 1. Also since b + a'a =1,

(a'a)1 =0 if by = 1 and (a'a)i =1 if b, = O, Let

i

i €1 and consider N;. 1f b1 = 0 then (a'a); = 1.

Now a; ¥ 0 for, otherwise, (a'a):l = aja; = a'iO = (

which contradicts the fact that (a'a); = 1, For

X = [xi] 181 and y = [yij i€1 elements of N, x * y =
(x*y)J . Then (x * y). = a,x;y. +

( 1€1 g %Yy

[1 - (a'a)ﬂ ¥y = ayx.V¥,. By the same kind of

argument used in the proof of Theorem 2.37, Ny

is isomorphic to (Fy,+,°,1). Thus Nij is a field.

If by = 1, then a; = 0 as stated above, Then

Xy *31y3 = (x*y) =ayxy; + [1 - (a'a),]yi = ¥y
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Thus the additive group of (Nj,+,*;) is the additive

group of the field F; and x_ *

1 *i yi =¥ for all

xi, vj € Nj.

The near-rings Ni in the above decomposition
theorem are not necessarily subdirectly irreducible.
We can obtain a decomposition into subdirectly
irreducible near-rings by appealing to a result of
Ligh [11] . First we need to recall the following
definitions. A near-ring (N,+,°) is small if and
only if for each x € N either xy = y for all y &N
or xy = Oy for all y €N. A near-ring (N,+,¢)

is called a A near-ring if it is weakly commutative

2

and x“ = x for all x € N. Any B near-ring is a

regular near-ring. The next theorem is due to

Ligh [11] .

THEOREM 2.40. Every Pnear-ring (N,+,")
is isomorphic to a subdirect sum of subdirectly
irreducible near-rings Ni where each Ni is either

a two element field or a small near-ring.

THEOREM 2.41, Let (N,+,*) be a special
regular near-ring determined by a. Then (N,+,%*)
is isomorphic to a subdirect sum of subdirectly

irreducible near-rings Ni where each N; is either
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a field or a small near-ring,

PROOF, Consider a decomposition guaranteed
by Theorem 2,39, I1f Ni is a field it is clearly a sub-
directly irreducible near-ring. If Ni is the second
type of near-ring mentioned in Theorem 2.39 then it is
easily shown to be a p near-ring, and, hence, by
Theorem 2,40 it is isomorphic to a subdirect sum of
subdirectly irreducible near-rings which are either

fields or small. The conclusion then follows,

o. The Set 2£_Distributors

lLet (N,+,+) be an arbitrary near-ring. Then
any element of the form (x + y)z - yz - xz, for

X, ¥, 2 € N is called a distributor [4] . The set

D = {(x +y)z -yz - xz2:X, §y, Z N}' is called
the seit of distributors. In case D is an ideal it
will be called the distributor ideal.

THEOREM 2,42, Let (N,+,°) be a near-ring

of prime order. Then either D = 0 or D = N,

PROOF . Suppose D ¥ 0, Let 4 be a nonzero
element of D, Then d = (x + y)z - yz - xz for some

X, ¥y, 2 EN, Let k be a positive integer, Then,

kd = [:(x-l-y)z-yz-xz] +...+[(x+y)z-yz-x7;|
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where there are k terms in the sum, Since (N,+) is
abelian kd = [(x +y)z + ... + (x + y)z] -
[&z + ... + yz] - [xz + c.0 + xz] =
= (x + y)[z t eeo + z} - [y(z + ...+ z)]-
[xz + ... +2)] = x + &) - yx2) - x(k2) € D.
Since N is of prime order N has no non-trivial subgroups.
Thus D = N.

For each of the examples in the list of Clay (5] ,
D is a subgroup. Class (33) where the additive group
is (83,+) provides us with the only examples in Clay's
list where D is not a normal subgroup. This same

example shows that D is not always an ideal,

THEOREM 2,43, Let (N,+,°) be a near-ring.
If the set D of distributors is a normal subgroup,

then D is a left ideal.

PROOF. Suppose (D,+) is a normal subgroup
of (N,+) and let d € D, Thend = (x + y)z - y2 - Xz
for some x, y, z £ N. Let n £ N, Then nd =
n Bx + y)z - yzZ -~ xz] = n(x +y)z +n [—(yz)] +
rn[-(le] = (nx + ny)z - (ny)z - (nx)z £ D, Thus,
(D,+,°) is a left ideal of (N,+,°).

THEOREM 2,44, Let (N,+,+) be an arbitrary
near-ring and D the set of distributors, I£f D is a
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normal subgroup then D is an ideal if and only if dn € D

for all d € D and n € N.

PROOF . Let D be a normal subgroup of N,

Then by Theorem 2.43, D is a left ideal,. Thus we

need to show that D is a right ideal if and only if

dn €D for all d €D and n € N, Suppose D is a right

ideal and let d €D and n € N. For all x €N, (x + d)n -
dn - xn £ D, But (x + d)n ~ dn - xn = (X + d)n - Xn +

xn - dn - xn € D. Since D is a right ideal (x + d)n - xn§E D.
Thus we have xn - dn - xn § D, Since D is normal -dn £ D
and since D is a group dn &£ D. Now consider the converse.
Suppose for all d €D and n € N, dn £ D, As above,

for any x € N, (x + d)n - dn - xn = (x + d)n - xn + xn -

dn - xn £ D. Since dn € D, -dn € D and since D is

normal xn - dn - xn £ D, Thus we conclude that for all

Xx, n €N, d€D, (x+d)n - xn €D, Therefore, D is a
right ideal,

THEOREM 2.45, Let (N,+,*) be a special near-

ring. Then the set D of distributors is an ideal.

PROOF. By Lemma 2.27, D {-bz:zen}.
let ¢, 4 & D. Then ¢ = -bn and d = -bm for some n,mEN,
So ¢c-d = -b(n-m)€ D, Thus D is a normal subgroup.

Let x¢N., Then dx = - b(mx) € D. Thus by Theorem 2,44,
D is an ideal,
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THEOREM 2.46. Let (N,+,°) be an abelian near-
ring, If the set D of distributors is an ideal then

N/D is a ring.

PROOF. Since N is an abelian near-ring, N/D

is an abelian near-ring. Thus we need only show that
the right distributive law holds in N/D., Let x, y, z & N/D,

Then since (x + y)z — yz - xz € D, (x + y)z - ;E - Xz =

x+y)z ~yz - xz =D, Hence, (X + ¥)Z = XZ + y2

and N/D is a ring.

COROLLARY 2.47. Let (N,+,*) be a special near-

ring and let D be the distributor ideal., Then N/D is

a ring.

PROOF. Since (N,+) is abelian, the result is

immediate from Theorem 2.46,

We remark that this corollary could be obtained for special
near-rings determined by single elements through an
application of Theorem 2.30 since P(1 -~ a‘'a) C D,

As a matter of fact, in the setting of a special near-

ring determined by a we have D = P(1 - a'a).



CHAPTER III

SPECIAL f NEAR-RINGS

1. Definition and Examgles

In Chapter II we began with a commutative ring,
(N,+,°,1), with identity and used an arbitrary regular
element, a, of N to define a new multiplication * on N
such that (N,+,*) was a near-ring. To define this
new multiplication we used a polynomial in two variables
with the fixed coefficients of the terms of the polynomial
determined by the fixed element a. In the present chap-
ter we use a different technique to obtain a near-ring
dependent in some sense upon a certain type of ring,
namely a commutative regular ring with identity.

The technique used is similar to the one employed in
Chapter II, but differs from it in that the polynomial
used to define the new multiplication has coefficients

which are dependent upon the factors being multiplied

as well as upon a fixed constant,
Because the coefficients are not constants, the

50
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multiplication formula of the current chapter is much
more difficult to work with than the formula of Chapter
II. Therefore, the results we are able to obtain here
are not as extensive as those in Chapter 1II. The

multiplication formula which we shall use is presented

in the first theorem.

THEOREM 3.1, Let (N,+,°,1) be a commutative
regular ring with identity. Let a, b be fixed elements
of N such that ab = 0 and b2 = b, Define *:NxN —» N::
(x,y)=--> x * y = a'ax'xy + by. Then (N,+,*) is a

weakly commutative near-ring,

PROOF. We need to show that * is associative

and distributes over + from the left. To this end,
let x, y, z £ N. Notice first that (x * y)2y' =
(a'ax'xy + by)2y' = [(a'a)z(x'x)zy2 + bzyg] y' =

2 + byz)y' = avaxvxyzyv + byzy' =

(a'ax'xy
a'ax'xy + by = x * y, Thus by Theorem 1.5, (x * y)'(x * y) =
y'(x * y). Now we demonstrate that * is associative.

First, (x * y) * z = a'a(x * y)'(x * y)z + bz =

a'ay'(x * y)z + bz = a'ay'(a'ax'xy + by)z + bz =

a'ax'xy'yz + bz, Now x * (y * z) =

a'ax'x(y * z) + b(y * z) = a'ax'x(a'ay'yz + bz) +

b(a'ay'yz + bz) = a'ax'xy'yz + b2z = a'ax'xy'yz + bz,
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Thus (x * y) * z = x * (y * z) and * is associative.
From x * y * z = a'ax'xy'yz + bz we observe that -
interchanging x and y will not affect the product.
Hence, x * y ¥ z =y % x * z and (N,+,*) is weakly
commutative,. Since the expression for x * y is
linear in the second variable, the left distributive

law holds. Thus the conclusion follows,

THEOREM 3.2, Let (N,+,°*,1) be a commutative
regular ring with identity and let a be a fixed ele-
ment of N, Let b=1 - a'a, Define *:N x N—"N::
(x,y)—-»x * y = a'ax'xy + by. Then (N,+,*) is a

4 near-ring,

PROOF. Since b = 1 - a'a, ab =a(l - a'a) =

a~aa'a=0and b2 =(1 -a'a)2=1-a'a-a'a+ (a'a)Z =
l1-a'a-a'a+a'a=1-a'a=b, Thus by Theorem 3.1,
(N,+,*) is a weakly commutative near-ring. Let x E N,

Then x * x = a'ax'xx + (1 - a'a)x = a'ax + X - a'ax = X,

A near-ring (N,+*) is a special 4 near-ring if

and only if there exists a commutative regular ring
with identity (N,+,°,1) such that for some a &£ N,
X *y=a'ax'xy + (1 - a'a)y for all x, y € N. We
say that the special g near-ring is determined by a.

Before proceeding to study some of the properties
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of the class of special g near-rings we consider some
examples. First, recall Ratliff's [18] definition
that a p-near-ring (N,+,*) is an («,8) p-near-

ring if and only if there exists a p-ring with

identity (N,+,*,1) and, o,feN  such thatofi= 0,82 =p
and x * y = (1 - olp-l -p)xp"]'y +oxy +fBy for all

x, y € N, It is clear that the class of special

p near-rings includes those (of,) p-near-rings

for which & =0 and 8 =1 - a'a for some a & N,
Near-rings in Clay's [5] class (8) where the additive

group is (Z5,+) are examples of this situation.

Consider the near-rings defined on the cyclic
group of order 6. Those in class (27) are commutative
regular rings each of which has an identity element,
Thus, we may use a ring in class (27) to determine
some special pnear-rings. Since the ring we are
congidering is of order 6 it is not a p-ring. Hence,
the near-rings we obtain will be special £ near-rings
which are not &,8) p-near-rings. The ring under con-
sideration is (Z6,+,°,1) where the addition and multi-

plication are, as usual, modulo 6. In this ring

3

x* = x for all x £ Zg, So for any x € ZG one regularity

companion for x is x itself, We now list the possible

choices for a, the resulting multiplications and the
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near-rings thus obtained.

class

class

duces

If (a,b) = (0,1) then x * y =y, This produces
(48).

If (a,b) = (1,0) then x * y = x2 y. This produces
(53).

¥ (a,b) = (2,3) then x * y = 4x2y + 3y. This pro-
class (49).

If (a,b) = (3,4) then x * y = 3x2y + 4y. This

produces class (52).

If (a,b) = (4,3) then x * y = 4x2y + 3y, This

produces class (49).

If (a,b) = (5,0) then x * y = x2y. This produces

class (53).

Classes (49) and (53) provide examples of speciaJ.ﬂnear—

rings which are not special regular near-rings. Classes

(48) and (52) provide examples of near-rings which are

both special p near-rings and special regular near-rings.

Classes (27) and (35) provide examples of special regular

near-rings which are not special p'near-rings. Those

near-rings in class (7) where the additive group is

(Z5,+) provide examples of regular near-rings which are
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neither special regular near-rings nor special B near-

rings.

2., Basic Results

We now begin a study of some of the properties of the

class of special 2 near-rings.

THEOREM 3. 3. Let (N,+,*) be a special @ near-
ring determined by a, Then the following statements are

equivalent:
(a) (N,+,*) is commutative,
(b)) a =1 and x% =x for all x £ N,

(c) 1 is a right identity, hence the identity in
(N’+,*),

(d) (N,+,%,1) is isomorphic to (N,+,-,1).

PROOF, (a) implies (b). If (N,+,%*) is
commutative then x * y =y * x for all x, y € N,
So 0 =1*%*0=0%*1=a'a0'0lL + (1L - a'a)l =
1l -a'a, Hence a'a = 1, Thenx * y =

a'ax'xy + (1 - a'a)y = x'xy for all x, y € N. Also
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y * x = y'yx for all x, yEN. Thus x'xy = y'yx for all
X, YEN. Choose y = 1, Then x'x = x for all x & N,
Since x'x = x we have x = xX(X'x)= xx = x2 for all x € N.

2

In particular a? = a and a = a'a2 =3%'3 =1,

(b) implies (c). Suppose a = 1 and

]

x for all x &N, Then 1 = a = a'a2 = a'aa =

a'al = a'a. Let x &N, Then x * 1 = a'ax'x]l + (1 - a'a)l =
x'x = x'x2 = x for all XgN., Thus 1 is a right identity

for (N,+,%*). Also 1 * x = a'al'lx + (1 - a'a)x =

a'ax + x - a'ax = x. Thus 1 is a left identity in

any special @8 near-ring. Hence, in this case, 1 is

the identity for (N,+,%*).

(¢) implies (d). Suppose 1 is the
identity in (N,+,%*). Then 0 = 0 * 1 = a'a0'0l +
(1 - a'a)l =1 - a'‘a, So a'a = 1. Then x * y =
a'ax'xy + (1 - a'a)y = x'xy for all x, y¢EN. It then
follows that x = x * 1 = x'x]1 = x'x for all x in N
and x * y = x'xy = (x'x)y = xy for all x, yE&EN.

Hence, (N,+,*,1) is isomorphic to (N,+,°,1).
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(d) implies (a). Suppose (N,+,*,1) is isomorphic to

(N,+,°,1). Then * is commutative since ° is commutative,

THEOREM 3.4. Let (N,+,*) be a special @ near-
ring determined by a, Then (N,+,*) is a C-ring if and

only if a'a = 1.

PROOF. Suppose (N,+,*¥) is a C-ring. Then

0=1*%*0=0%1=a2a'a0'01 + (1 - a'a)l =1 - a'a,
Thus a'a = 1, Conversely, suppose a‘'a = 1, Then
O*x =a'a0'Ox + (1 - a'a)x = 0 for all x € N, Hence,
(N,+,*%) is a C-ring,

THEOREM 3.5, Let (N,+,*) be a special g@near-
ring determined by a, Then (N,+,*) is distributively

generated if and only if (N,+,*) is a ring,

PROOF, 1f (N,+,%*) is a ring then (N,+,*) is
distributively generated. So consider the converse,
Suppose (N,+,*) is distributively generated. Recall
that (N,+) is abelian, Then by Theorem 2.9, (N,+,*)

is a ring.

THEOREM 3.6. Let (N,+,*) be a special g
near-ring determined by a, Then P(1 - a'a) is the
maximal sub-Z-ring, N,, and P(a) is the maximal sub-

C-ring, Nc.
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PROOF ., Recall N, ={x E N:n *x = x for all n & N}

and N, ={x & N:0 * x =0} We first show P(1 - a'a) = Nj.
Let x £ P(1 - a'a), Then x = (1 - a'a)x, For any n £€ N,
n*x =a'an'nx + (1 - a'a)x = a'an'n(l - a'a)x + x = x.
Thus x € N, and P(1 - a'a) ¢(C N,. Now let x be any element
in N,. Then for alln € N, n* x =x, So taken =1 - a'a,
This produces x = (1 - a'a) * x =a'a(l - a'a)'(1 - a'a)x +
(1 - a'a)x, Since (1 - a'a)2 = (1 - a'a), (1 - a'a)'(l - a'a) =
(1 - a'a). Then x = (1 - a'a) * x = a'a (1 - a'a) x+(1 - a'a)x=
(1 - a'a)x., Thus, x £ P(1 - a'a). Hence, N, CP(1 - a'a).
Therefore, by double inclusion P(1 - a'a) = N,.

Now we show P(a) = N.,. Let x &€ P(a). Then
x =a'ax. So 0* x =a'a0'0Ox + (1 - a'a)x =x - a'ax = x-x =0,
So x &€ Ng and P(a) CC N.. Now let x be any element in Nc.
Then 0 * x =0, S0 0 =0*x = a'a0'Ox + (1 - a'a)x. Thus
x = a'ax. Therefore, x £ P(a) and N, < P(a). Hence, by

double inclusion P(a) = N,.

LEMMA 3.7. Let (N,+,*) be a special g near-
ring determined by a. If t £ N then (P(t),+*) is a left
ideal of (N,+,%).

PROOF . From previous results we know that

P(t),+) is a normal subgroup of (N,+). Let x & P(t)
and n € N. Then since x = t'tx we have (n * x)t't =
[a'an'nx + (1 - a'a)x]t't = a'an'nxt't + (1 - a'a)xt't =

a'an'nx + (1 - a'a)x = n * x. Thus, n * x §P(t)
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and (P(t),+,*) is a left ideal of (N,+,*).

LEMMA 3.8. Let (N,+,*) be a special B near-
ring determined by a. If (S,+,*%) is a left ideal of
(N,+,*) then for any t &€ N, (S(t),+,%¥) is a left ideal
of (N,+,%).

PROOF. From previous results we know that

(s(t),+) is a normal subgroup of (N,+). Let x € S(t)

and n &€ N, Then x = st't for some s & S. Since

S is a left ideal of (N,+,*), n * s = a'an'ns + (1 - a'a)s
belongs to S. Hence, n * x = a'an'nx + (1 - a'a)x =
a'an'nst't + (1 - a'a)st't = [a'an'ns + (1 - a'a)s]t't =
(n * s)t't belongs to S(t). Thus (S(t),+,*) is a left
ideal of (N,+,%*).

THEOREM 3.9, Let (N,+,*) be a special p near-
ring determined by a, If (S,+,%¥) is a left ideal of
(N,+,*) then S = S(1 - a'a) @ S(a), a direct sum of left
ideals of (N,+,%), Conversely, if UCC P(1 -~ a'a) and
V < P(a) are left ideals of (N,+,%¥) then U@V is a
left ideal of (N,+,%).

PROOF, Let (S,+,*) be a left ideal of (N,+,%).

Then by Lemma 3.8, (S(1 - a'a),+,*) and (S(a),.+,*) are
left ideals of (N,+,*). Now we have the result that
S(1 - a'a) () S(a) C_ P(1 - a'a) () P(a) = 0.
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Let x € S(1 - a'a). Then x = 8(1 - ata) for some s g S.
Since (S,+,*) is a left ideal of (N,+,*),0 * s =

(1 - ata)s = x & S. Thus S(1 - a'a) C S.

Now let x be any element of S(a). Then x = sa'a
for some s & S. Now s - (1 - a'a) * s € S since
(S,+,*) is a left ideal of (N,+,%*). But (1 - ata) * s =
a'a(l - a'a)'(1 - ata)s + (1 - a'a)s = a'a(l - a'a)s + (1 - a'a)s
since (1 - a'a)' (1 - a'a) =1 - a'a, Thus (1L - a'a) * s=
- a'as +§s = =X + S. Hence, x = s - (1 - a'a) * 3 £€ S,
Therefore, S(a) . S. Clearly, then, S(1 - a'a) & s(a) C S.
We now show these two sets are actually equal by showing
the complementary inclusion. To this end let s £ S.
Then s = (1 - a'a)s + a'as, Now (1 - a'a)s € S(1 - a'a)
and a'as £S(a). Hence, s € S(1 -~ a'a) @ S(a) and
S — S(1 - a'a) ®s(a). The two inclusions show that
S =5( - a'a) 9S(a), a direct sum of left ideals of
(N, +,%),

Conversely, suppose U < P(1 - a' a) and V < P(a)
are left ideals of (N,+,*). Then we have the result
UM VCPA-a'a)(VYP@@a) =0. So U@V is at least
a direct sum of left ideals. Now let n &€ N and
x=u+v £ U @V where u £ U and vE V. Then n * x =
n*¥ (W+v) =n*u+n*vegu @V since (U, +,*)
and (V,+,*) are left ideals of (N,+,%*). Therefore,

(U® V,+,%) is a left ideal of (N,+,*),
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THEOREM 3.10. Let (N,+,*) be a special pgnear-
ring determined by a. let (R,+,*) and (S,+,*) be
ideals of (N,+,%). Then N =R ®S if and only if

P(1 - a'a) = R(1 - a'a) @ S(1 - a'a) and P(a) = R(a) & S(a).

PROOF, If P(1 - ata) = R(1 - a'a) @ S(1L - a'a)

and P(a) = R(a) #S(a) then N = P(1 - a'a) @P(a) =
R(1 - a'a) ¢ S(1 - a'a) @R(a) g S(a) =
R(1 - a'a) @gR(a) §S(1 - a'a) @S(a) = R @S.

Conversely, suppose N = R @ S where R and S
are ideals of (N,+,%*). Then N = R(1 - a'a) @
R(a) @ S(1 - a'a) #S(a) =R(1 - a'a) @S(1 - a'a) @
R(a) @ sS(a). From Chapter II, we know that
R(1 - a'a) cC P(1 - a'a) and S(1 - a'a) c P(1 -~ a'a),
Thus R(1 - a'a) @S(1 - a'a) < P(1 - a'a). Also
R(a) ¢ P(a) and S(a) C P(a) so R(a) @ S(a) C. P(a).
Now let x £ P(a). Thenx EN=R@S sox=r +s
where r £ R and s £ S. Thus x = ya'a = (r + s)a'a =
ra'a + sa'a £ R(a) @ S(a). Hence, P(a) < R(a) @ s(a).
The two inclusions show P(a) = R(a) @ s(a). Similarly,
suppose x € P(1 - a'a). Then x = x(1 ~ a'a). Since
XEN=RPS, x=r + s wherer & R and s€ S,
Then x = x(1 - a'a) = (r + s)(1 ~a'a) =

r(1 -a'a) +s(l -a'a) € R(1 ~a'a) @sS(1 - a'a).
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Hence, P(1 - a'a) CR(1 - a'a) @ S(1 - a'a). The two

inclusions show P(1 ~ a'a) = R(1 - a'a) ® S(1 - a'a).

3. Two Decomposition Theorems

In this section we present two decomposition
theorems for special Iﬂnear-rings. In the first
theorem we do not claim that the component near-rings
in the decomposition are subdirectly irreducible,

We do, however, show explicitly the multiplication
in the component near-rings. In the second theorem

the component near-rings are subdirectly irreducible.

THEOREM 3.11. Let (N,+,*) be a special Fnear-—
ring determined by a where the base ring has at least two
elements. Then N is isomorphic to a subdirect sum of
near-rings N; each of which is one of the following two
types:

(a) (Ni!+’*i) is a small
near-ring where (Ni,+) is the additive group of a field
and 0 *; y; = 0 for all v € N; and x4 *i Vi = ¥4 for
all A &Ny if x4 # 0,

(b) (Ni’+r*1) is a small
near-ring where (Ni,+) is the additive group of a

field and x; *; Vi = ¥4 for all yiﬁ Nj.



63

PROOF, Let (N,+,*) be a special f near-ring
determined by a where the base ring (N,+,°,1) is a
commutative regular ring with at least two elements,
Then by Theorem 2.38 N is isomorphic to a subdirect
sum of fields F; for i in some index set I. If
x £ N then x = in]is I where x; &€ Nj and N; = Fy.
Hence, (N,+,*) is isomorphic to a subdirect sum of near-
rings N; where i £ I and each N; is the near-ring
(Fi, +, *{) where *; is some multiplication determined
by * as in the proof of Theorem 2,39. Let a =

[ai]iEI and b = (.bi]iz § Where b =1 - a'a,
Since b2 = b and b; is in the field F; for each i £ I,
b; must be 0 or 1 for each i £ I. Since ab = 0,
(ab); = ajb; = 0 for all i € X. Thus a; = 0 if

b; = 1. Also since b + a'a =1, (a'a); = aja, =1

if bi = 0 and aiai =0 if bi 1.

Let i £ I and consider Nj. There
are two cases corresponding to bj =0 and»bi =1, First
suppose bj = 0. Then a;_ai =1l, For x = E&i]j_;_l and
y =[yi]i.‘.l elements of N, x * y = E(X * Y)gj i€l
Then x; *; y, = (x * y); = afa;xfxyy, + (1 - afay)y, =
x{xiyi. If x4 = O then x; ¥ y3 = 0. If we denote the
near-ring Nj by (N;,+,*;) then 0 *; yy = 0 for all yié N,.
If x; # 0 then x{ = xi-l. Thus xix; = 1. So x; *; vy <

x{x3y; = y; for all y; £ N.. Note that (N;,+,*y)is a small
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near-ring.

Now consider the case bi = 1. Then,
as stated above, a; = 0. So x; *; vy = (x * y)i =
a{aix;xiyi + (1 - ai'ai)yi = yj for all y; £ N;. Again
we note that (Nj, +, *;) is a small near-ring.

The second decomposition theorem to

which we have reference has been stated earlier as

Theorem 2,40, It is due to Ligh [}1] .



CHAPTER 1V

WEAKLY COMMUTATIVE REGULAR NEAR-RINGS

1. Introduction

In this chapter we study the class of weakly
commutative regular near-rings. The special regular
near-rings of Chapter II and the special p near-rings
of Chapter III were weakly commutative regular near-
rings. Thus the results of this chapter apply to
those classes of near-rings studied in Chapter II
and Chapter ITI, Ratliff {18] studied a class of
near-rings which he called Vnear-rings. A near-
ring N is a JL near-ring if and only if for every
X €N there exists an integer n(x) 2> 1 such that
M(*) = x and for allx, y, z € N, xyz = yxz.

Every pnear-ring is a V near-ring and, thus, Ratliff's
work generalized some of the results of Ligh [ii].

Any \) near-ring is a weakly commutative regular near-
ring and so the results which we obtain here generalize
corresponding results for \)near-rings established by

Ratliff (18] .

65
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Discussions in this chapter, unlike those in earlier
chapters, will involve only one mathematical system and,
hence, only one multiplication, For this reason we
shall use the abbreviated notation N to denote a near-
ring (N,+,°) without ambiguity. Also the letter "a"
will not have the special significance here that it had
in earlier chapters, We shall continue to use the

prime notation to denote a regularity companion of a

given element.

2. Main Results

Let N be a near-ring and x€&€ N. Define
Ay = {a € N:xa = 0}. Thus Ay is the set of right
annihilators of x in N. The set Ax is always a right
ideal [18] . The first theorem is due to Szeto [ﬁQ] .

THEOREM 4.1, If N is a weakly commutative
near-ring and x &€ N then A, is an ideal of N.

LEMMA 4.2, Let N be a near-ring and e € N,
If e is regular and Ae = 0 then e'e is a left identity.

PROOF, Let x € N. Then e(e'e x - x) =
ee'ex - e X = ex - ex = 0, Thus e'ex - x £‘Ae.
Since A, = 0, e'ex - x = 0 and e'ex = x for all

x € N. Hence, e'e is a left identity.
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THEOREM 4.3, Let N be a regular near-ring.

If e € N is a right identity then e is an identity.

PROOF, Let x & Ae. Then ex = 0 and X = XX'x =

xX(x'e)x = xx'(ex) = xx'0 = 0, Thus A, = 0. By Lemma 4,2,
e'e is a left identity. But since e is a right identity
e'e = e', Thus e' is a left identity. Then e'e = e,

Hence, e is a left identity and, therefore, the identity
in N.

THEOREM 4.4, Let N be a subdirectly irre-~
ducible regular near-ring. 1f Ax is an ideal for every

xE&N, then N has a left identity.

PROOF. If N = 0, the result follows. Suppose
N # 0, Define R={x€N:Ax7‘0}. If R is empty

then Ay = 0 for every x £ N. Thus by Lemma 4.2, for

every x € N, x'x is a left identity and the proof is
complete, Therefore, suppose R is not empty. Then
define A = f\{hx : X E.R} . Now A is nonzero since
N is gubdirectly irreducible. Let x £€ A such that

X ¥ 0, Assume that R is all of N, In that case

x £Ay for all y € N. In particular, x € Ayxt. Thus
X = xx'x = 0 which contradicts the fact that x was
chosen to be nonzero. Hence R must not be all of N.

There must exist some e £ N such that A, = 0, Since
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e is regular we have by Lemma 4.2 that e'e is a left identity.

COROLLARY 4.5. Any subdirectly irreducible

weakly commutative regular near-ring N has a left identity.

PROOF. By Theorem 4.1, A, is an ideal for every

x £ N, Then by Theorem 4,4, N has a left identity.

THEOREM 4.6, Let N be a subdirectly irreducible
weakly commutative regular near-ring and let a be a non-

zero element of N, If A, # 0 then ay = Oy for ally €N

and A, = AO'

PROOF. Let R = {x £ N : A, # 0} and define

a=(\{a, :x € Rf. Note that R is not empty since,

by hypothesis, a € R, Also A # 0 since N is subdirectly
irreducible, Let w be a nonzero element of A, Since
w € A, for all x € R, xw = 0 for all x &R and, in
particular, aw = 0, If Ay # 0 then w £ A and A C Ay.
Now by Theorem 4.1, A, is an ideal. So w'w € A, if

w & A, . Hence w = w(w'w) = 0. This contradicts the
fact that w was chosen to be nonzero. Therefore, it
must be that A, = O, Then by Lemma 4.2, w'w is a left
identity. Also aw'w = w'aw = w'0 = 0, Now let y & N.
Then ay = a(w'wy) = (aw'w)y = Oy. Since ay = 0 if and
only if Oy = 0, it is clear that A, = Ao.
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COROLLARY 4.7. Let N be a subdirectly irreducible
weakly commutative regular near-ring such that ON = O,
Then (a) For every nonzero x & N, Ax = 0 and, hence,

x'x is a left identity, (b) N has no nonzero zero divi-

sSors.

PROOF, If N = 0 the conclusions are obvious.

Suppose N # 0. Let x be any nonzero element of N.
If A, # 0 then by Theorem 4.6, xy = Oy for all y & N.
But ON = 0. Thus Oy = 0 for all y € N and so xy = 0
for all y in N, Choose y = x'x. Then x = x(x'x) = 0
which contradicts the fact that x was chosen to be
nonzero. Hence A, = 0 and by Lemma 4.2, x'x is a
left identity.

Now let a, b £ N such that ab = 0,
If a # 0 then the preceding argument shows a'a is a
left identity. Thus b = (a'a)b = a'(ab) =
a'0 = 0, So there are no left zero divisors, On
the other hand, if b # 0 then b'b is a left identity.
Thus a = b'ba = b'baa'a = b'aba'a = b'0a'a = 0, So

N has no nonzero zero divisors.

The following theorem is due to FrUhlich(b].

THEOREM 4.8, Let N be a distributively
generated near-ring with identity, Then each of the
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following conditions is necessary and suftficient for N 1o

be a ring:

(a) N is distributive,

(b) (N,+) is commutative,

THEOREM 4.9. Let N be a subdirectly irreducible
weakly commutative regular near-ring such that ON = O,
If there is a nonzero element, e, in N such that for

every nonzero x € N, x'x = e, then N is a field.

PROOF, Let x and y be nonzero eiements of N,

Then xy = x(yy'y) = xy(y'y) = xye = yxe = yx(x'x) =
y(xx'x) = yx, Since 0x = 0 for all x £ N, it is clear
that if either x or y is zero then xy = yx. Thus (N, -)
is commutative and the right distributive law holds in N.
Hence, N is distributively generated, By Corollary 4.7,
N has a left identity which, by commutativity, is a right
identity. This identity is x'x where x is any nonzero
element, But since x'x = e for every nonzero x, the
identity is e, Thus N is a distributively generated

near-ring with identity which is distributive. Then
by Theorem 4.8, N is a ring,

By Corollary 4,7, N has no nonzero zero
divisors. Thus N is an integral domain with identity e.

Also, every nonzero x has a multiplicative inverse, namely x',
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since x'x = e, So N is a field.

The following theorem due to Fain [7} is

stated here for future reference.

THEOREM 4.10. Every near-ring N is isomorphic

to a subdirect sum of subdirectly irreducible near-rings Ni'

The following definition is due to Ratliff [18] .

A near-ring N is almost small if and only if the set

{Ax : x ¢ N} contains at most two distinct elements.

THEOREM 4.11, Every weakly commutative regular
near-ring N is isomorphic to a subdirect sum of subdirectly
irreducible weakly commutative regular near-rings N; where

each N; is one of the following two types:

(a) N; is a field,

(b) N; is almost small,

PROOF, By Theorem 4,10, N is isomorphic to a

subdirect sum of subdirectly irreducible near-rings Ni‘
Each N; is a homomorphic image of N, It is immediate
that weak commutativity and regularity are preserved
under near-ring homomorphisms. Thus each Nj is a
weakly commutative regular near-ring, We consider three
cases,

(1) ONj = 0 and there is a nonzero

e £ Nj such that for every nonzero x £ Ny, x'x = e,
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Then by Theorem 4.9, Ni is a field.

(2) ONj = 0 and there does not exist

a nonzero e £ Nj such that for every nonzero x & Ny» X'x = e.

Since ON; = 0 we have Ag = Ni‘ By Corollary 4.7, for

every nonzero x & N;, A

x =0 s {a_:x€N] -{o, ng.

Thus, N is almost small,
i

(3) ONj # O. Let x & N, . If x = 0,

f

then Ay = Ag. If x # O then either Ay = 0 or A, # 0. If

Ay # 0 we have by Theorem 4.6 that A, = A Thus if x # 0

0.

then either A, = 0 or A, = Ap. In either case we conclude

that Njy is almost small,

THEOREM 4.12, Let N be a subdirectly irreducible
weakly commutative regular near-ring with a nonzero right

distributive element r. Then N is a field.

PROOF, Let r be a nonzero right distributive

element in N, Then Oxr = (0 + 0) r = Or + Or. Hence,
Oor = 0, If A, # 0 then by Theorem 4.6, ry = Oy for all
y €N, Then r = r(r'r) = 0r'r =r'Or = r'0 = 0 which
contradicts the fact that r is nonzero. Thus A, = 0
and by Lemma 4.2, r'r is a left identity.

Define L, = '{a EN : ar = 0}. Then
Ly is the set of left annihilators of r. We know L,
is not empty since 0 € L,. Let x, y £ L, and m, n§N,

Then (x - y)r = xx + (~y)r =xr + (-y)r + yr - yr =
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Xr + (-y + y)r —-yr =xr + Or — yr = xr - yr = 0 - 0 =0,
Thus x ~ y &€ Ly and (L,,+) is a subgroup of (N,+). Also
(-n+x+nr =(-n)r + xr +nr = (-n)r + 0 + nr =
(-n)r + nr = (.n + n)r = 0Or = 0§ L,.. Thus-—n-|~x+n&Lr
and (L,,+) is a normal subgroup of (N,+). Now (nx)r =
n(xr) = n0 =0 & L. So L. is a left ideal. Finally,
[(m + x)n - mn]r = (m + x)nr + (-mn)r = n(m + x)r + (-mn)r =
n(mr + xr) + (-mn)r = n(mr + 0) + (-mn)r = nmr + (-mn)r =
(mn)r + (-mn)r = (mn - mn)r = Or = 0 £ Lr' So (m + xX)n ~
mn € Ly, and L, is an ideal.

Now define R = {x EN: A, # 0}.
Since Or = 0, r ¢ AO' Thus Ao contains a nonzero element
so Ay # 0. Hence, 0 £ R so R is not empty. Define
A= n{Ax : X & R} . Since N is subdirectly irreducible
A ¥0. Assume A /YL, # 0. Let w be a nonzero element
of A L,. Now A N L, is an ideal so w'w £ A N L..
Either Ay=0 or Ay ¥ 0. We shall show that either case
leads to a contradiction and, hence, that A () L. = O,
Suppose A, # 0. Then A CA,. Sow'wé& A_,. Thus
w = ww'w = 0 which is a contradiction. Suppose Ay = 0.
Then by Lemma 4.2, w'w is a left identity. Thus r = w'wr = 0.
since w'w £ L... Again we have reached a contradiction
so we are forced to conclude that AML, =0, If L. # 0
then since A # 0, AN L, # 0 because N is subdirectly

irreducible, But AV L, = 0. Hence, we must have L, = 0,
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Now let y &€ N. If y = 0 then yr = 0, Conversely, if

yr = 0 then y € L.. Hence y = 0. Therefore, yr = 0

if and only if y = 0. Now let x by any element in N,
Then (xr'r - xX)r = Xr'rr - Xr = Xrr'r - xr = xr - xr = 0,
So xr'r - x = 0 and xr'r = x for all x & N. Hence, r'r
is a right identity. Since r'r is also a left identity,
r'r is the identity element in N, Now let x, Yy &€ N.
Then xy = xyr'r = yxr'r = yx, Thus (N,-) is commutative,
This implies that N is distributive and, therefore,
distributively generated. Then by Theorem 4.8, N is a
ring and, hence, a commutative ring with identity. Since
N is distributive ON = 0. Then by Corollary 4.7 N has

no nonzero zero divisors and is, therefore, an integral
domain with identity. Since r # 0, r'r # 0 for otherwise
r =r(r'r) =r0 =0, Now let x be any nonzero element

of N. By Corollary 4.7, x'x is a left identity. Hence

x'x =r'r, Then by Theorem 4.9, N is a field.

COROLLARY 4.13. Let N be a subdirectly irredu-
cible weakly commutative regular near-ring with a nonzero

right identity e. Then N is a field.,

PROOF, The result follows from Theorem 4,12

since e is a nonzero right distributive element.
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THEOREM 4,14, Let N be a weakly commutative
regular near-ring. N is a commutative ring if and only
if every nonzero homomorphic image of N contains a non-

zero right distributive element.

PROOF. If N = 0, the conclusion follows.

Suppose N # O. If N is a commutative ring then every
nonzero homomorphic image of N is commutative:and, thus,
contains a nonzero right distributive element. Conversely,
suppose every nonzero homomorphic image of N contains a
nonzero right distributive element. Then by Theorem 4.11,
N is isomorphic to a subdirect sum of subdirectly irrednunc-
ible weakly commutative regular near-rings Ni' By hypo-
thesis each Ni contains a nonzero right distributive element.
Then by Theorem 4,12 each Ny is a field. Hence, the
direct sum of the N; is a commutative ring. Since N

is isomorphic to a subring of this direct sum, N is a

commutative ring.
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