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ABSTRACT . 
 

A significant portion of hydrocarbon and geothermal resources in the world, and 

especially in the United States, is unconventional.   Some of the unconventional resources 

have special geological structures so that their pores are either very small or very limited 

and unconnected making them nearly impermeable in comparison to traditional 

hydrocarbon resources.   Hydraulic fracturing is one of the prominent stimulation 

techniques to improve and enhance unconventional reservoir matrix permeability.   The 

major goal in this research is to develop a semi-analytical method to model/simulate 

hydraulic fracturing based on closed-form solution of an elastic dislocation problem.  Our 

approach is essentially a simplified form of the Boundary Element Method (BEM).   The 

solution is then used to treat the problems of single and multiple -fractures in infinite and 

semi-infinite reservoirs.   The formulation computes displacements and displacement 

derivatives caused by a dislocation in a finite rectangular source.   The results are compared 

to benchmark solutions previously published.   The model is used to analyze pressurized 

penny-shaped fractures, stress, and displacement distributions around them.  This is done 

using the stress and displacement derivatives at specified grid nodes (field points) in the 

domain to calculate Cauchy strains and stresses.   The stress components at grid nodes are 

used to calculate principal stress values and directions.   The model is verified by 

comparison with well-known solutions including the pressurized penny-shaped horizontal 

fracture.       
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CHAPTER  1.    
Introduction 

Hydraulic fracturing (HF) technology in horizontal well completions can be helpful 

in developing low-permeability hydrocarbon and geothermal reservoirs (see Figure 1.1).   

HF is critical to enhance the productivity of geothermal reservoirs.   Exploration and 

production in low-permeability reservoirs such as shale or tight formations has attracted 

many companies and investors in recent decades.     Increasing interest to develop these 

kinds of reservoirs have brought many challenges for designers, evaluators and researchers 

(Sesetty and Ghassemi 2015). 

 
Figure 1.1—A Schematic of Hydraulic Fracturing Development  

in a Gas Shale Reservoir (Hussain et al. 2017) 
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The main purpose of HF technique is to enhance the connectivity between the 

hydrocarbon-bearing rock formation and the well which leads to improved production 

performance.   Historically, the attempt to model HF comes back to Grebe and Stoesser in 

1935. 

Early investigations of hydraulic fracturing considered 2D geometries 

(Khristianovich and Zheltov, 1955; Geertsma and de Klerk, 1969 (KGD Model) and then 

Perkins and Kern, 1961; Nordgren, 1972 (PKN Model).  The leak-off and storage effects, 

then, were added to PKN model in 1972 by Nordgren (Economides Michael J. and Nolte 

2000).   As mentioned, these classic methods are limited to 2D separate fractures and do 

not include 3D effects and interactions between multiple HFs.   Moreover, the state of stress 

is absent in these models.   When it comes to effect of natural fractures in HF modeling 

and design, the classical models are invalid.   For simplicity, characteristics of some 

traditional HF models is shown in Table 1.1. 

Table 1.1—Characteristics of Some Traditional HF Models (Xiang 2011) 

Model Assumptions Shape Application 

PKN Fixed Height, Plain 
Strain in Vertical 
Direction 

Elliptical Cross 
Section 

Length >> Height 

KGD Fixed Height, Plain 
Strain in Horizontal 
Direction 

Rectangle Cross 
Section 

Length << Height 

Radial Propagate in a Given 
Plane, Symmetrical to 
The Wellbore 

Circular Cross 
Section 

Radial 
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Exerting forces to any solid (such as reservoir rock) leads to deformation and, 

hence, strains and stresses.   External forces may be fluid-driven such as injecting or 

extracting fluid, or heat-driven which can create temperature gradient.   Change in state of 

stress has several influences in a reservoir.   It may lead to rock failure, disturb the field of 

in-site principal stresses, activate existing faults and fractures, and even change 

permeability.   These are some of the most important factors to plan a successful stimulation 

strategy.   The need to model stress changes and natural fractures’ interactions between 

HFs is essential to predicting “Frac Hits” and helping optimize stimulation. Stress analysis 

is also very important to predicting rock failure and fracture propagation (for instance, 

stress intensity factor).    

Many other analytical methods have been proposed to assess different aspects of 

HF process but all of them lack the capability or flexibility to involve different changing 

factors.   Therefore, researchers and engineers have been more interested in robust 

numerical methods that are able to accurately include the effect of all involving factors 

such as geometries and physical parameters.   One of the most popular numerical approach 

to model HF process is Finite Element Method (FEM) which for first time was, probably, 

introduced by Courant in 1942, Argyris in 1956, and Clough in 1956 (Gupta and Meek 

1996).   It allows a HF modeler to include and consider all involving parameters and their 

ranges so easily.  Moreover, this method is capable to capture any irregularity in the model 

such as anisotropy and inhomogeneity.   To satisfy boundary conditions, discontinuities 

and singularities at fracture faces and tips other variations of FEM such as Extended FEM 

(XFEM) have been proposed by defining Enrichment Functions to avoid high mesh density 

at the boundaries (Moës et al. 1999).   Higher mesh density increases the number of degrees 



4 

of freedom (DOF) in the model which leads to a larger system of simultaneous equations.  

In methods such as FEM and XFEM, both the domain (reservoir) and boundaries 

(fractures) must be discretized appropriately to yield acceptable results.   Moreover, 

domain and boundary mesh must be conformable. The other well-known numerical method 

is Boundary Element Method (BEM) which was, likely, introduced by Tottenham in 1960s 

(Brebbia 2017).   Unlike FEM, which approximates differential equations solution, BEM 

deals with integral Equations form of the same differential equations (Ghassemi et al. 

2013), (Kumar and Ghassemi 2016).   In terms of computer performance, it is an efficient 

numerical method when surface-to-volume ratio in a model is relatively small (Katsikadelis 

2016).   Some popular BEM methods are Displacement Discontinuity Method (DD), which 

is an indirect type of BEM ( Crouch and Starfield, 1980; Verde and Ghassemi 2015), and 

Fictitious Stress Method (FSM).   The DDM is particularly good for modeling fractures 

(Crouch and Starfield, 1980). 

1.1.   Motivation, Problem Statement and Objectives 

Almost all of the numerical methods mentioned above end up with very large 

number of DOFs, since the size of elements ought to be reasonably small to obtain 

acceptable results.   In most cases, simulation time for mid-sized models takes days to 

weeks even with computers with powerful resources (hours for the DD method).   This is 

the motivation for use a semi-analytical method to reduce the volume of numerical 

computations and mostly the number of DOFs.   The proposed method in this research 

utilizes a closed-form solution of a theory of elasticity problem, namely, a rectangular 

dislocation in a semi-infinite medium (Volterra 1907), further developed by (Steketee 

1958), (Chinnery 1961), (Okada 1985), (Okada 1992).   Okada solution provides a set of 
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closed-form analytical formula to compute displacement field components and their 

derivatives due to a dislocation (such as SSL, DSL, TL) in a finite/semi-infinite space.   Our 

proposed method just discretizes the boundaries (fractures) and does not require domain 

(reservoir) discretization.   Our method is similar to Displacement Discontinuity Method.   

DDM  which represents the crack as a series of dislocation dipoles whose densities 

represent the displacement jump across the crack surfaces.    Our method, however, uses 

the analytical solution to a simplified problem (Volterra type dislocation which will be 

discussed in CHAPTER 2).   The dislocation density represents the displacement 

discontinuity gradient. Our method, then, applies Okada solution to each and every RABEs 

and uses superposition rule to analyze displacements and displacement derivatives due to 

fracture(s) dislocation(s) at any field point.         However, this method has some limitations.   

For example, shape of boundary elements must be rectangular, because Okada solution is 

based for a rectangular fault in a half-space (Okada 1985), (Okada 1992).   Therefore, some 

trade-offs have to be made between the modeling accuracy and efficiency.     

1.1.1.   Okada Solution 

Okada solution for a pressurized rectangular dislocation provides the displacement 

field components, iu , and their derivatives , = ∂ ∂i j i ju u x .   It assumes that: 

 The model domain (reservoir) is a linear elastic homogeneous and isotropic half-

space with the stress-free boundary parallel to datum (Ground Surface).    

 The BEs are rectangular and regardless of the number of fractures in the model. 

 Pressure due to injection throughout the BE surface is constant. 
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 One of the axes in local coordinate system of BEs (let say ξ ) must be parallel to 

that of global coordinate system (let say 1x ).   If not, coordinate system conversion 

is required (See Figure 2.3). 

 The stress convention used in this research is positive sign for compression and 

negative sign for tension. 

1.2.   Thesis Organization 

Chapter 1 (current chapter) briefly introduces hydraulic fracturing technique and 

its application and importance to develop hydrocarbon or geothermal reservoirs.   Further, 

it expresses some traditional methods and their disadvantages to model a HF.   Then, it 

mentions more advanced methods of HF modeling, simulation and their advantages or 

disadvantages.   It finally mentions the motivation to carry out current research to overcome 

a shortcoming of advanced methods.   A brief explanation of the methodology is also 

provided in this chapter. 

Chapter 2 presents Theory of Dislocation and introduces Volterra-type dislocation, 

its assumptions and the theory behind it.   Then, Okada formulation which is the most 

comprehensive solution to a Volterra-type dislocation is discussed.   It consequently 

provides all the required mathematical equations to derive and compute all the components 

of displacements’ and displacement derivatives’ fields.   All the involved variables and 

parameters to compute components are given in Appendix A. 

Chapter 3 presents classical and widely-recognized type of Boundary Element 

Method.    
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Chapter 4 briefly presents how to implement the methodology in a computer code.   

It also addresses some of the findings during computer code development and 

shortcomings of our method.   Further, this chapter compares our method to the Finite 

Element Method to provide some tips and recommendations to overcome weaknesses and 

improve numerical performance, especially when the number of DOFs is too high.   That 

said, our proposed method and its corresponding computer code is compared and verified 

by several well-recognized problems and solutions which may be found in published 

papers. 

Chapter 5 summarizes the research process conducted in this thesis and addresses 

some of the findings during research and computer code development.   It finally gives 

some idea and recommendations for improvements in future studies.    

Appendix A introduces and defines all auxiliary variables and parameters involved 

in proposed formulation. 

Appendix B, finally, shows capabilities of the developed computer code and 

simulator (HiFrac 3D) based on our proposed formulation and method. 
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CHAPTER  2.    
Theory of Dislocation 

Dislocation theory in the field of Theory of Elasticity was, for first time, introduced 

by Vito Volterra (Volterra 1907).   The main goal was to solve elasticity problems which 

had different types of defects in the body or boundaries of an elastic domain.   For this 

sake, he defines a Dislocation Function as Equation (2.1) to include a surface in a 

continuous elastic domain that shows discontinuity in displacement components across it 

(Steketee 1958): 

( ) ( ) ( )22 2

T

i i j j k kr x x xξ ξ ξ


∆ = + ×

 = −

 = − + − + −

u U Ω r
Ω Ω  (2.1) 

Equation (2.1) represents a rigid body displacement which means both surfaces of the 

discontinuity remain straight before and after domain deformation (i.e., no curvature on 

fracture faces).   Let 1 2 3Ox x x  be a Cartesian coordinate system with unit vectors 

1 2 3, , ande e e  along positive 1 2 3, , andx x x axes, respectively.   The displacement field at 

point 1 2 3( , , )Q x x x  in an infinite elastic medium due to a Unit Force 1. k=F e  at the same 

point in presence of a discontinuous surface, Σ , can be obtained by Volterra Equation  

(2.2). 
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1 2 3
1( , , )

8
k

ku x x x d
πµ Σ

= ∆ Σ∫∫ uT  (2.2) 

Equation (2.2) is valid in an infinite elastic medium.   Static equilibrium dictates that the 

unit force F  must be compensated by uniformly distributed forces at infinity.   In this 

equation, kT  is a traction vector at point 1 2 3( , , )P ξ ξ ξ  which belongs to discontinuous 

surface, Σ .   In other words, 
k

iT  is ith component of the force per unit area on a differential 

element dΣ  due to a unit force in kth direction at point 1 2 3( , , )Q x x x .   And   1 2 3( , , )ku x x x  

is kth component of displacement field at point 1 2 3( , , )Q x x x .   Moreover, + −∆ = ∆ − ∆u u u  

is Dislocation Vector which is assumed known. 

 
Figure 2.1—A Discontinuous Source in an Elastic Medium 
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To obtain kT , we use: 

( ) ( ) ( ) ( )

( )( )( )

1 2 3 1 2 3

3 3 3

5

.

( , , ; , , )

2 1

6

k k

k
ij

j jk k i i
ij jk ik

i i j j k k

x x x

xx x
r r r

x x x
r

σ ξ ξ ξ

ξξ ξ
µ α δ δ δ

ξ ξ ξ
αµ

 =


 =

  − − −

 − − −    


− − − −

T σ ν

 (2.3) 

In Equation (2.3), 
2

1
2

s

p

v
v

λ µα
λ µ

 +
= = −  +  

 and ( ) ( ) ( )22 2
i i j j k kr x x xξ ξ ξ= − + − + − .   

Moreover, 1 2 3 1 2 3( , , ; , , )k
ij x x xσ ξ ξ ξ  represents stress tensor at point 1 2 3( , , )P ξ ξ ξ , due to a 

unit force 1. k=F e  at point 1 2 3( , , )Q x x x .   In other words, 1 2 3 1 2 3( , , ; , , )k
ij x x xσ ξ ξ ξ =

( ; )k
ij P Qσ .   By substituting Equation (2.1) into (2.2), we obtain: 

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

( , , )

( , , ; , , )
8

( , , ; , , ) ( , , ; , , )
8

k

ki
ij j

ij k k
j il i jl l

u x x x
U x x x d

x x x x x x d

σ ξ ξ ξ ν
πµ

ξ σ ξ ξ ξ ξσ ξ ξ ξ ν
πµ

Σ

Σ

=

Σ

Ω
 + − Σ 

∫∫

∫∫

 (2.4) 

Where, in this equation, and i ijU Ω  are 1 2 3 12 23 31, , ,  and , ,U U U Ω Ω Ω , respectively.   

Equation (2.4) consists of six integrals.   It needs to be mentioned that this equation follows 

indicial notation convention, i.e., , , , 1, 2, 3i j k l =  and if a dummy index is repeated, it 

means summation is implied.   It can be inferred that to compute the displacement field 

components 1 2 3( , , )ku x x x  due to dislocation ∆u , a unit force 1. k=F e  is applied at the 
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same point 1 2 3( , , )Q x x x .   Then the stresses 1 2 3 1 2 3( , , ; , , )k
ij x x xσ ξ ξ ξ  at points 1 2 3( , , )P ξ ξ ξ  on 

Σ  due to the applied unit force have to be computed.    Having all these parameters on 

hands, integrals in Equation (2.4) over Σ  have to be obtained.   These integrals were 

resolved in detail (Chinnery 1961; Steketee 1958) for both infinite and semi-infinite elastic 

media to obtain displacement fields in an elastic medium (i.e., formation) and its free 

boundary (i.e., ground surface).   However, the solution has been developed and published 

by other researchers for specific cases, such as horizontal, vertical, or inclined fault cases 

and/or different dislocation types.   A list of some of the most prominent published 

solutions is provided in Table 2.1 and Table 2.2.   Table 2.1 lists solutions for the case of 

point source (negligible size and shape) and Table 2.2 for the case of a finite rectangular 

source.   It can be seen from the tables that the solutions by Okada (1985 and 1992) are the 

most comprehensive for both the point source and finite rectangular source cases.   

Moreover, it yields both internal and surface deformations with their derivatives.   We 

abbreviate Displacement/Displacement Derivative as DDDv in this context. 

 

2.1.   Description of Okada Solution 

The proposed solution to analyze DDDv by Okada has overcome all types of 

singularities near fracture surface, fracture tips, or points outside fracture surface but at the 

same plane.   However, for more efficiency and reliability we will avoid those singular 

zones when Implementing the solution.   Let 1 2 3( , , )P x x x  be an observation point at which 

displacement/displacement-derivative is being analyzed and 1 2 3( , , )F ξ ξ ξ  be a point that a 

point force F  is being exerted in Figure 2.2. 
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Table 2.1—Brief History of Published Closed Form Analytical Solutions for the Case of Point Source 
 Source 

Orientation 
Dislocation 

Type 
Material 
Behavior 

Displ’nt 
Field 

Displacement Derivatives Field 

 Ver. Hor. Incl. SSL DSL TL λ µ=   λ µ≠  1u   2u  3u  1

1

u
x
∂
∂

 2

1

u
x

∂
∂

 3

1

u
x

∂
∂

 1

2

u
x
∂
∂

 2

2

u
x
∂
∂

 3

2

u
x
∂
∂

 1

3

u
x
∂
∂

 2

3

u
x
∂
∂

 3

3

u
x
∂
∂

 

 Steketee (1958)                     
 Maruyama (1964)                     
 Yamazaki (1978)                     
 Iwasaki & Sato (1979)                     
 Okada (1985)                     

 
Table 2.2—Brief History of Published Closed Form Analytical Solutions for the Case of Finite Rectangular Source 

 Source 
Orientation 

Dislocation 
Type 

Material 
Behavior 

Displ’nt 
Field 

Displacement Derivatives Field 

 Ver. Hor. Incl. SSL DSL TL λ µ=   λ µ≠  1u   2u  3u  1

1

u
x
∂
∂

 2

1

u
x

∂
∂

 3

1

u
x

∂
∂

 1

2

u
x
∂
∂

 2

2

u
x
∂
∂

 3

2

u
x
∂
∂

 1

3

u
x
∂
∂

 2

3

u
x
∂
∂

 3

3

u
x
∂
∂

 

 Chinnery (1961 & 63)                     
 Mansinha & Smylie 
(1971) 

                    

 Converse (1973)                     

 Iwasaki & Sato (1979)                     
 Okada (1992)                     
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Figure 2.2—A Schematic of a Cartesian frame containing 

an Observation Point, a Point Force, and an  
Imagery Point Force 

The aim is to obtain 1 2 3 1 2 3( , , ; , , )j
iu x x x ξ ξ ξ  which is the ith component of the displacement 

at P  due to jth component of the point force F .   Okada shows that j
iu  can be decomposed 

to four terms as below. 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 3 1 2 3 1 2 3

( , , ; , , ) ( , , ; , , ) ( , , ; , , )

( , , ; , , ) ( , , ; , , )

j j j
i i A i A

j j
i B i C

u x x x u x x x u x x x

u x x x x u x x x

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= − − −

+ +
 (2.5) 

Equation (2.5), which is superposition rule in linear elasticity, is proven by Mindlin 

(Mindlin 1936).   Part A of this equation has two terms.   Term 1 is the displacement field 
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at image point  1 2 3( , , )P x x x−  due to a point force at 1 2 3( , , )F ξ ξ ξ  in an infinite elastic 

medium.   Term 2 is the displacement field at the observation point  1 2 3( , , )P x x x  due to an 

image point force at 1 2 3( , , )F ξ ξ ξ− .   The aim in Part A is to eliminate the influence of the 

upper half-space on the lower one to satisfy the free surface requirements (traction free).   

But elimination of the upper half-space makes the system unstable because the top surface 

of the medium is stress-free.   To make the top surface stress-free, Parts B and C have to 

be added to the equation.   It is clear that Parts B and C are surface-dependent and depth-

dependent, respectively. 

 
Figure 2.3—A rectangular source with three types of dislocations.   Any  

dislocation at this source can be decomposed to these  
three dislocation types. 



15 

If the source is small enough, it can be assumed a point source.   However, if the source is 

large enough or it is shallow, the influence of point sources on displacement field have to 

be integrated throughout the surface.   According to Figure 2.3, if the source is rectangular, 

has a dip angle of δ  with respect to 1 2Ox x  plane, length L along 1x  axis, and width W  on 

the other edge, all the displacement field components can be derived for three types of 

dislocations: Strike-Slip-Like, Dip-Slip-Like, and Tensile-Like.   The reason for adding the 

suffix “Like” is that these terminologies are popular in geology, geophysics, and 

seismology.   Here, we use the same nomenclature to model and simulate HF process. 

To obtain DDDv components, integrals in the form of (2.6) have to be resolved for every 

part and term in Equation (2.5). 

1

1
1 2 3 0 0

( , , ) ( , ) ( , )
L W x L p W

x p
F x x x f d d f d dξ η ξ η ξ η ξ η

− −

Σ ′ ′ ′ ′= =∫ ∫ ∫ ∫  (2.6) 

It needs to be noted that all integrals are carried out in a local coordinate frame attached to 

the rectangular source ξ η′ ′  but, for simplicity, they are converted to another coordinate 

frame attached to the point of interest (or observation point) Pξη  which is parallel to the 

image rectangular source plane.   For better understanding, both local coordinate frames 

ξ η′ ′  and Pξη  are illustrated in Figure 2.4 and also Appendix A.   The process has been 

discussed in detail in Appendix A.   In addition, all the variables in Table 2.3 to Table 2.6 

have been defined in the same appendix.   All geometrical variables and parameters are, 

also, illustrated in Figure 2.4. 
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Figure 2.4—Side view of A finite rectangular source with its image pair.   Axes 

1x , ξ , and ξ ′  are perpendicular to the page.   Axes 1x  and ξ ′are 

outward, but axis ξ at observation point is inward. 

2.2.   Kinematic Equations for the Case of  

Finite Rectangular Source 

Deriving the integrals in (2.4), (2.5), and  general form of (2.6) lead to 9 set of 

functions of form ( )3, ,M
if xξ η  to compute displacement field components for each 

dislocation type. 
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Table 2.3—All required functions to analyze displacement field components due to 

 a rectangular source dislocation in a half-space  
(Okada-1992, with some modifications) 

Disl. Type 1 2 3, , and A A Af f f  1 2 3, , and B B Bf f f  1 2 3, , and C C Cf f f  

 

11

2
11

2 2

2
1 ln( )

2 2

qY

q
R

R q Y

α ξ

α

α αη

Θ
+

−
+ −

 

411

2
11 3

1 sin

1 sin

1 sin

IqY

q y
R R d

q Y I

α δξ
α
α δ

α
α δ

α

−
−− −Θ

−
− +

+
−

−




 

11 32

11 3

2
11 3 11 323

(1 ) cos

cos(1 ) 2 sin

(1 ) cos

Y qZ

cqqY
R R

cqY x Y Z
R

α ξ δ αξ

δα δ α

ηα δ α ξ

− −

 − + − 
 

 − − − + 
 





 

 
11

2
11

2

2 2
1 ln( )

2 2

q
R

qX

R q X

α

α η

α αξ

Θ
+

−
+ −

 

2

11

2
11 1

1 sin cos

1 sin cos

1 sin cos

q I
R

qX
R d

q X I

α δ δ
α
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α
α δ δ

α

−
+−

−
− −Θ −

+
−
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( )

11 3

11 32

2
11 11 11 32

cos(1 ) sin

(1 )

sin

cqqY
R R

yX c qX

dX Y c X q X

δ αα δ

α α η

ξ δ α

−− −

− −

− − − −



 

 

 

 ( )

2
11

2
11

11 11

1 ln( )
2 2

1 ln( )
2 2

2 2

R q Y

R q X

q X Y

α αη

α αξ

α η ξ

−
− + −

−
− + −

Θ
− +

 

( )

22
211

2 2
11

2
11 11 1

1 sin

1 sin

1 si

1
1

n

Iq Y

q X
R d

q X Y I

α δ
α
α ξ δ

α
αη ξ δ

α

−
−

−
+

+
−+ −Θ−


 

( )

( )

( )

( )

2
11 3 11 32

2
11 11 11 32

32 3211 11

1

1

sin(1 ) cos

(1 )2 sin

(1 ) cos

qY x Y q ZR

Y dX c X q Z

q c X ZyX Y

δα δ α

α ξ δ α

α η ξα ξ δ

 − − +  − −
 

− + − −

+ +− +
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Table 2.4—All required functions to analyze 1x -derivative of displacement field components due to 
 a rectangular source dislocation in a half-space  

(Okada-1992, with some modifications) 

Disl. Type 1,1 2,1 3,1, , and A A Af f f  1,1 2,1 3,1, , and B B Bf f f  1,1 2,1 3,1, , and C C Cf f f  

 

2
11 32

3

2
11 32

1
2 2

2

1
2 2

1 1
1 1

qY qY

q
R

Y q Y

α α ξ

α ξ
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23
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1 sin
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ξ α δ
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αξ δ
α

−
−

−
−

−
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0 0

323 5

32 3 32 32 05

(1 ) cos

cos 3(1 ) 2 sin

3(1 ) cos

1 1
1 1Y qZ

c qqY
R R

cqY x Y Z Z
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α δ α

δ ξα ξ δ α

ηα ξ δ αξ
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 − − + − − − 
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2
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 − + − 
 



 

 

 

 

2
11 32

2

3

3
11 32

1
2 2

1 1
2 2

1
2 2

1 1
1 1

Y q Y

q
R R

qY q Y

α αξ ξ

α α

α α

−
− +

−
− +

−
− −

 

2 2
32 4

2
2

53

3 2
32 6

1 sin

1 sin

1 sin

1 1
1 1

q Y J

q J
R

q Y J

αξ δ
α

α δ
α

α δ
α

−
− −

−
− −

−
−

 

( ) ( )2
3 32 53323

2

0 3 3 2

0 03 5

(1 ) sin cos

32(1 ) sin 1

3(1 ) cos

1
1

x Y q ZqY
R

d c qY
R R R

y c qY qZ
R R

ξ αξα δ ξ δ

α δ α

ηα δ α

+ −− +

 
− − + − 

 

   − − − − −     

 

 

 

  



19 

Table 2.5—All required functions to analyze 2x -derivative of displacement field components due to 
 a rectangular source dislocation in a half-space (Okada-1992, with some modifications) 

Disl. Type 1,2 2,2 3,2, , and A A Af f f  1,2 2,2 3,2, , and B B Bf f f  1,2 2,2 3,2, , and C C Cf f f  

 

11 11

11

1 sin
2 2 2

2

1 cos sin
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Table 2.6—All required functions to analyze 3x -derivative of displacement field components due to 
 a rectangular source dislocation in a half-space (Okada-1992, with some modifications) 

Disl. Type 1,3 2,3 3,3, , and A A Af f f  1,3 2,3 3,3, , and B B Bf f f  1,3 2,3 3,3, , and C C Cf f f  
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The index i = 1, 2, and 3, and the index , , and  M A B C=  which were explained in 

reference to Equation (2.5).   Functions ( )3, ,M
if xξ η  in Table 2.3 are indefinite integrals.   

To compute the value of a displacement component, they have to be acquired in upper-

bounds and lower-bounds of the domain.   Therefore, Equation (2.7) is used to obtain the 

value at an Obs. Point. 

( ) ( )
( ) ( )

1

1
3

1 3 1 3

1 3 1 3

( , , )

, , , ,

, , , ,

p Wx LM M
i i x p

M M
i i

M M
i i

u x

x L p W x x p x

x L p x x p W x

f

f f
f f

ηξ

ξ η
ξ η

= −= −

= =
=

= − − +

− − − −

 (2.7) 

To analyze derivatives of displacement field components, Equation (2.8) is required.   Note 

that, definite integrals in Equation  (2.7) are with respect to ξ  and η  while derivatives in 

Equation (2.8) are with respect to ix . 

( ) ( )
( ) ( )

1

1

3
,

, 1 3 , 1 3

, 1 3 , 1 3

( , , )

, , , ,

, , , ,

p Wx L
M

M i
i j

j x p

M M
i j i j

M M
i j i j

xu
x

x L p W x x p x

x L p x x p W x

f

f f
f f

ηξ

ξ η

ξ η
= −= −

= =

∂
=

∂

= − − +

− − − −

 (2.8) 

Therefore, chain rule technique needs to be applied.   The summary of results of form 

( ), 3, ,M
i jf xξ η  are  in Table 2.4, Table 2.5, and Table 2.6.   All involving variables and 

parameters in these tables are explained in detail in Appendix A.   Since integrals are in 
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local coordinate frame, the results will, also, be in the same frame.   The results M
iu  and 

,
M
i ju  have to be converted to global coordinate frame thereupon.   Therefore, 

( ) ( )

( )
( )

( )

( )
( )

( )

1 1 2 3 1 1 1 3 1

2 2 2 3 2

2 1 2 3

3 3 3 3 3

2 2 2 3 2

3 1 2 3

3 3 3 3 3

ˆ, ,
2

ˆ cos ...
, ,

2 ˆ... sin

ˆ sin ...
, ,

2 ˆ... cos

A A B C

A A B C

A A B C

A A B C

A A B C

Uu x x x u u u x u

u u u x uUu x x x
u u u x u

u u u x uUu x x x
u u u x u

π
δ

π δ

δ

π δ

= − + +

 − + +
 =
 − − + + 
 − + −
 =
 + − + − 

 (2.9) 

And, 

( ) ( )

( )
( )

( )

( )
( )

1, 1 2 3 1, 1, 1, 3 1,

2, 2, 2, 3 2,

2, 1 2 3

3, 3, 3, 3 3,

2, 2, 2, 3 2,

3, 1 2 3

3, 3,

ˆ, ,
2

ˆ cos ...
, ,

2 ˆ... sin

ˆ sin ...
, ,

2 ˆ...

A A B C
j j j j j

A A B C
j j j j

j A A B C
j j j j

A A B C
j j j j

j A A
j j

Uu x x x u u u x u

u u u x uUu x x x
u u u x u

u u u x uUu x x x
u u u

π
δ

π δ

δ

π

= − + +

 − + +
 =
 − − + + 

− + −
=

+ − +( )3, 3 3, cosB C
j jx u δ

 
 
 − 

 (2.10) 

Here, ˆ A
iu  and ,ˆ A

i ju  are contribution of the image rectangular source on displacement and 

displacement derivative field components in Equations (2.9) and (2.10), i.e., the value of 

3x  has to be substituted by 3x− . 

By all the material-property-related and geometry-related values on hand in a HF 

model, all the variables and parameters given in Appendix A can be computed and plugged 

into equations of forms ( )3, ,M
if xξ η  and ( ), 3, ,M

i jf xξ η  in Table 2.3 to Table 2.6.   All 

displacement and displacement derivative fields’ components, now, can be obtained by 
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substituting ( )3, ,M
if xξ η  and ( ), 3, ,M

i jf xξ η  in Equations (2.7) and (2.8) respectively.   

Consequently,  variable M
iu  and ,

M
i ju  from Equations (2.7) and (2.8) have to be substituted 

in Equations (2.9) and (2.10).   To obtain equations of forms ˆM
iu  and ,ˆM

i ju , the coordinate 

value 3x  has to be substituted by 3x− .   By all displacement field components on hand, 

deformation of the domain (reservoir) is achievable.   Furthermore, by all displacement 

derivative fields’ components and material properties on hand, both Cauchy strain and 

stress components will be analyzed by Equation (2.11) which is given below. 

( ), ,
1
2

2

ij i j j i

ij kk ij ij

u uε

σ λε δ µε

 = +

 = +

 (2.11) 

In Equation (2.11), µ  and λ  are Lamé constants.   And in this equation, ijδ  is called 

Kronecker delta and defined as, 

0 if   
1 if   ij

i j
i j

δ
≠

=  =
  (2.12) 

In Linear Algebra, it is equivalent to 3 3×  Identity Matrix 3 3×I  .   If Poisson’s Ratio, 

Normal and Shear Elastic moduli are given instead, we have, 

   and   
(1 )(1 2 )

E Gνλ µ
ν ν

= =
+ −

 (2.13) 
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2.3.   The Case of Multiple Discontinuities 

in an Elastic Half-Space Medium 

The solution discussed in section 2.2.  is for just one rectangular discontinuity (let 

say fracture or fault in a reservoir).   Since material behavior is linear and elastic, 

superposition rule can be applied to model multiple rectangular discontinuities.   All we 

need is to compute all the components of DDDv for each discontinuity and then combine 

values. 

 

2.4.   Model Development 

The above formulations have been coded into algorithms by Okada (2001).   In this work 

we use his DC3D for a finite rectangular source.    The Okada sub-programs were 

overhauled and improved to make it compatible with PGI Visual FORTRAN 18.5 and Intel 

Parallel Studio XE 2019 standards.   All required input parameters and their corresponding 

descriptions are given in Table 2.7.   Input variables are illustrated in Figure 2.5.   

Dislocation types SSL, DSL, and TL in Figure 2.5 show positive sign conventions.   It is 

obvious that output variables are scalar components of DDDv fields.   The unit of iu is the 

same as that of dislocations.   However, the unit of ,i ju  is: 

 

Unit of Dislocation
Unit of Xi

  (2.14) 
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Table 2.7—Input Variables and Their Descriptions 
Input Arguments 

(64-bit Types) 
Description 

ALPHA 
Medium Constant 

2

1
2

s

p

v
v

λ µ
λ µ

 +
= = −   +  

 

  and  
(1 )(1 2 ) 2(1 )

E EGνλ µ
ν ν ν

= = =
+ − +

  

1, 2, 3X X X   Field Point P. Note: 3 0X ≤   

DEPTH 
Depth of the Reference Point (Midpoint of Rectangle) which is 
greater than 0. 

DIP Dip Angle 0 90δ° ≤ ≤ °   

AL1, AL2 Extent of Rectangle in ξ ′  or 1x  direction (Strike Direction) 

AW1, AW2 Extent of Rectangle in η′  direction (Dip Direction) 

DISL1 Strike-Slip-Like Dislocation Value (Left-Lateral-Like, Positive) 
DISL2 Dip-Slip-Like Dislocation Value (Reverse-Like, Positive) 
DISL3 Tensile-Like Dislocation Value (Perpendicular to BE Plane) 

 
Figure 2.5—Input Variables to Define RABE.   Parameters 1iAW  and  

2iAW  are measured Assuming 0iDip = ° . 
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2.5.   Locus of Singularities 

At any field point where the denominator of functions in Table 2.3 to Table 2.6 

become zero (Division by Zero) is/are locus of singularities which should be avoided.   The 

sub-program DC3D has a controlling output IRET which is to identify whether the 

computation is singular or not.   Our simulator always checks IRET to possibly relocate 

field point (say grid-nodes) by 510−  unit to avoid singularity.   It is obvious that at the edge 

and plane of the rectangular source, the solution is singular. 
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CHAPTER  3.    
Boundary Element Procedure to Model and 

Simulate a Hydraulic Fracture 

Before proposing our new boundary element procedure to model a HF problem, it 

is a good idea to discuss about conventional BEM and then compare it with our approach.   

As mentioned in introductory chapter, Boundary Element Methods, unlike Finite Element 

Methods, deal with Integral Equations.   But most physical problems are known by partial 

differential equation representation.   Some of the well-known continuum mechanics 

problems such as Navier-Cauchy equation (in solid mechanics) or diffusivity equation (in 

reservoir fluid transportation modeling) are just a few examples.   Therefore, boundary 

element methods are not directly applicable to solve those problems and the field equation 

for mentioned problems should be first represented in an integral form.   Here, we attempt 

to explain a conventional boundary element method by means of a well-known elastostatic 

problem. 

3.1.   Two-Dimensional Plane-Strain  

Problem in Elasticity (Katsikadelis 2016) 

Suppose an elastic body in a Cartesian coordinate frame 1 2 3Ox x x  with unit vectors 

ie  (Figure 3.1).   Note that i is an indicial notation which summation applies if repeated.   

The body is under influence of body force b b
i iF=F e , a concentrated force i iF=F e  at 

point 1 2( , )Q ξ ξ .   The locus of the force F is, also, showed as i iξ=Q e .   The goal is to 
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obtain displacement field components iu  and their derivatives ,i ju  at an arbitrary point 

1 2( , )P x x , where i ix=P e  .   According to Equations (2.11) to (2.13), ,i ju is required to 

compute the components of strain and stress tensors. 

  
Figure 3.1—A Schematic of a 2D Elastic Body Subjected to  

a Force F Exerted at Point Q 

   If the dimension of the body along 3x  is long enough, it can be inferred that, 

3

12 12

13 23

0

0

iε
σ µε
σ σ

=
 =
 = =

 (3.1) 

It needs to be mentioned that the aim to assume a 2D plane-strain behavior is to reduce the 

volume of equations here.   The process can, easily, be extended to General 3D linear elastic 

problem.   The constitutive relation which dictates static equilibrium of the body is called 

Navier-Cauchy (or Navier-Lamé) Equation. 
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, ,

2

1Indicial Form:        0
1 2
1Classical Form:   

1 2

b
i

i kk k ki

b

Fu u
ν µ

ν µ

+ + =
−

∇ + ∇∇⋅ + =
−

Fu u 0
 (3.2) 

As evident, Navier equation has a form of Partial Differential Equation.   For the system to 

be in equilibrium, Equation (3.2) must satisfy a set of boundary conditions.   Boundary 

conditions may be of type Essential or Geometrical (Dirichlet type).  They may, also, be 

of type Natural or Force (Neumann type).   Combination of these two types of boundary 

conditions is like the following. 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

(i) ,
(ii) ,

     on     
(iii) ,
(iv) ,

E E

E N

N E

N N

u u u u
u u t t
t t u u
t t t t

 = =


= =


= =
 = =

Γ   (3.3) 

Essential and Natural boundary condition types are specified by superscripts E and N 

respectively in Equation (3.3).   In this equation, i it=T e  is a load (traction) on the whole 

or part of Γ . 

The relation between essential boundary conditions and Navier equation is explicit.   

However, it is not the same for natural boundary conditions.   It is possible by means of 

relation between stress components near the boundary and tractions. 

i ij jt nσ=  (3.4) 

In Equation (3.4), 1 1 2 2n n= +n e e  is a normal vector of the boundary Γ  and in  is a 

direction cosine of n .   By substituting Equation (2.11) in Equation (3.4), we have, 
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( ), , ,i j j i j i j i k kt u n u n u nλ µ= + +   (3.5) 

Note that, ,
i

i k k
uu n ∂

=
∂n

is a directional derivative of the displacement component iu . 

3.1.1.   Transformation to a Boundary Integral Equation  

(Katsikadelis 2016; Youn 1993) 

Before getting to a boundary integral equation, it is a good idea to briefly mention 

a well-known theorem called Maxwell-Betti Reciprocal Work Theorem or, in a shorter 

form, Reciprocal Identity.   The foundation of the identity is based on state of stresses, 

tractions, body forces and strains in two separate states.   Suppose state (P) in which the 

state of stresses and their resultant strains are ijσ  and ijε  respectively, and likewise, State 

(Q) with *
ijσ  and *

ijε .   Reciprocal Identity says that the work done by ijσ  as a result of *
ijε  

is the same as the work done by *
ijσ  as a result of ijε  in an elastic domain Ω . Hence, 

* *
ij ij ij ijd dσ ε σ ε

Ω Ω
Ω = Ω∫ ∫   (3.6) 

Equation (3.6) can, also, be rewritten based of body forces, tractions and displacements 

based on two separate states.  Therefore, we have: 

* * * *b b
i i i i i i i iF u d t u d F u d t u d

Ω Γ Ω Γ
Ω + Γ = Ω+ Γ∫ ∫ ∫ ∫  (3.7) 

Hence, 

* * * *b b
i i i i i i i iF u d F u d t u d t u d

Ω Ω Γ Γ
Ω − Ω = Γ − Γ∫ ∫ ∫ ∫  (3.8) 
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Body forces are obtained from Navier Equation.   Therefore, 

, ,
1

1 2
b

i i kk k kiF u uµ
ν

 = − + − 
 (3.9) 

As mentioned above, a concentrated force F  is exerted to the elastic body in Figure 3.1.   

To take its effect into account, it is combined with body force by means of Dirac’s Delta 

function as the following equation. 

( )bc
i iF Fδ= r   (3.10) 

In this equation, bc
iF  means body force resulted by a concentrated Force.   For the 

simplicity of the solution, it can be assumed a unit force 1=F .   The best idea before 

obtaining the boundary integral equation, is to further simplify Navier Equation.   One of 

the most well-known methods is to utilize Galerkin Vector i iφ=Φ e .   Components of 

Galerkin vectors are biharmonic if body force b b
i iF=F e  is a constant vector.   Hence, we 

have, 

4 0iφ∇ =  (3.11) 

A particular solution to PDE in Equation (3.11) is, 

21 ln
8 (1 )

bc
i iF r rφ

π ν
= −

−
 (3.12) 

Now, a particular solution to obtain iu  is to substitute Equation (3.12) in the following 

equation. 
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( ), , ,

2 1 2

1 2

1Indicial:   2
2

or

1Classical:   2
2

i i jj j j i

i i
i

u

u
x x x

νµ φ φ

φ φνµ φ

−
= −

 ∂ ∂− ∂
= ∇ − + ∂ ∂ ∂ 

  (3.13) 

3.1.1.1.   Displacement Field Components due to a  

Unit Concentrated Force 

To reach to a boundary integral equation, we need to solve Equation (3.13) for 

separate cases as the following, 

1 1

2 2

1 0
Case 1:         ;        Case 2: 

0 1

bc bc

bc bc

F F
F F

 = = 
 

= =  
  (3.14) 

For every case, we need to obtain iu ’s due to exertion of a unit force 1bc
jF = .   Remember 

the problem is of type 2D plane-strain, so , 1 or 2i j = .   Therefore, we have a set of four 

equations in the form of mnU  which , 1 or 2m n = .   The first index m is corresponding to 

direction of displacement component and the second index n is corresponding to direction 

of unit force.   Based on Equations (3.12) to (3.14) we will have, 

2

11
1

21
1 2

12 21
1 2

2

22
2

1 7 8(3 4 ) ln
8 (1 ) 2

1
8 (1 )

1
8 (1 )

1 7 8(3 4 ) ln
8 (1 ) 2

rU r
x

r rU
x x

r rU U
x x

rU r
x

νν
πµ ν

πµ ν

πµ ν

νν
πµ ν

   ∂ −  = − − − + − ∂    
  ∂ ∂

= ⋅  − ∂ ∂  


 ∂ ∂ = ⋅ =  − ∂ ∂ 
   ∂ −  = − − − + − ∂    

  (3.15) 
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In Equation (3.15) and all forthcoming equations, 

1 1 2 2
,1 ,2

1 2

2 2
1 1 2 2

   and   

( ) ( )

x xr rr r
x r x r

r x x

ξ ξ

ξ ξ

− −∂ ∂ = = − = = −∂ ∂
 = − + −

  (3.16) 

Equation (3.15) may, also, be rewritten in indicial form as, 

, ,
1 7 8(3 4 ) ln

8 (1 ) 2mn mn m n mnU r r r νδ ν δ
πµ ν

 −  = − − − ⋅ +   −   
 (3.17) 

Equation (3.17) is, indeed, components of a 2 2×  matrix as the following, 

11 12

21 22

( , ) ( , ) mn

U U
P Q Q P U

U U
 

= = =  
 

U U  (3.18) 

It is evident from Equation (3.15) that the matrix U is symmetric.   According to Figure 

3.1, point P is observation point at which displacement, displacement derivative, and 

stresses are going to be computed.   Point Q is the source point at which unit forces are 

going to be exerted.   It can be inferred from Equation (3.15) that the role of these two 

points is exchangeable.   It is one of the characteristics of Maxwell-Betti Reciprocal Work 

Theorem. 

3.1.1.2.   Stress Field components Due to a  

Unit Concentrated Force 

By means of Hooke’s law mentioned in Equation (2.11) and substituting 

components from Equation (3.15) in it, stress components are obtained as following. 



34 

3

111
1 1

2

221
1 1 2

2

121
2 1 2

112
2 1

1 (1 2 )
4 (1 )

1 (1 2 )
4 (1 )

1 (1 2 )
4 (1 )

1 (1 2 )
4 (1 )

r r
r x x

r r r
r x x x

r r r
r x x x

r r
r x x

ν
π ν

ν
π ν

ν
π ν

ν
π ν

  ∂ ∂ Σ = − − +  − ∂ ∂   
   ∂ ∂ ∂ Σ = − − − +   − ∂ ∂ ∂    
    ∂ ∂ ∂ Σ = − − +    − ∂ ∂ ∂     

∂ ∂
Σ = − − − + − ∂ ∂

2

2

3

222
2 2

2

122
1 1 2

1 (1 2 )
4 (1 )

1 (1 2 )
4 (1 )

r
x

r r
r x x

r r r
r x x x

ν
π ν

ν
π ν














    ∂    ∂     


   ∂ ∂ Σ = − − +  − ∂ ∂    


    ∂ ∂ ∂ Σ = − − +    − ∂ ∂ ∂       (3.19) 

In Equation (3.19), stress components due to a unit point force are in the form of ijkΣ .   

Indices i and j are component indicators, and the third index k is the indicator of unit force 

direction.   Stress components in Equation (3.19) are rewritten in indicial form as 

following. 

( ), , , , , ,
1 (3 4 ) 2

4 (1 )ijk ik j jk i ij k i j kr r r r r r
r

ν δ δ δ
π ν

 Σ = − − + − + ⋅ ⋅ −
 (3.20) 

3.1.1.3.   Boundary Traction components Due to a  

Unit Concentrated Force 

Equation (3.4) expresses the relation between internal stress components near 

boundary and components of the traction at the boundary.   Since stress components are on 

hand in Equation (3.19), we are able to obtain equations for traction components due to a 

unit point force. 



35 

2

11 1 2
1 1 2

2 1
1 2

21

1 2
1 2 1 2

2
1 2

12

1 (1 2 ) 2
4 (1 )

(1 2 )
1

4 (1 )
2

(1 2 )
1

4 (1 )

r r rT n n
r x x x

r rn n
x x

T
r r r r rn n

x x x x

r rn
x x

T
r

ν
π ν

ν

π ν

ν

π ν

    ∂ ∂ ∂
 = − − + +   − ∂ ∂ ∂     
  ∂ ∂

− − +  ∂ ∂  = −  −    ∂ ∂ ∂ ∂ + +   ∂ ∂ ∂ ∂     

∂ ∂
− − − +

∂ ∂
= −

−



1

1 2
1 2 1 2

2

22 1 2
2 1 2

2

1 (1 2 ) 2
4 (1 )

n

r r r rn n
x x x x

r r rT n n
r x x x

ν
π ν













  
  

  
     ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂      


     ∂ ∂ ∂
 = − − + +    − ∂ ∂ ∂      



 (3.21) 

Just like before, Equation (3.21) is written as indicial form.   That is, 

( ){ }, , , , ,
1 (1 2 ) 2 (1 2 )

4 (1 )ij ij i j k k i j j iT r r r n r n r n
r

ν δ ν
π ν

 = − − + ⋅ + − − −
 (3.22) 

3.1.1.4.   Final Step to express Integral form of the Solution 

By Equations (3.15) and (3.21) on hand and imposing Betti-Maxwell Reciprocal 

Identity, an integral form of Navier equation is obtained.   By imposing State (1) and, then, 

State (2) of the unit force mentioned in (3.14) in point Q of the Figure 3.1 we can get 

displacement components iu  at point P.   It needs to me noted that, Point P is Field Point 

and Point Q is Source Point in our assumption.   To represent the unit concentrated force, 

Dirac’s Delta in Equation (3.10) has to be used, since Navier Equation (3.2) is established 

based on a body force distributed continuously in domain Ω .   Therefore, 

( ) ( )
QP bc P Q

i i i i iu F u uδ
Ω Ω

= − =∫ ∫ P Q  (3.23) 
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As evident from Equation (3.23), field point P has been switched to source point Q which 

is the characteristic of Reciprocal Identity.   In other words, point Q, now, is field point and 

point P is source point.   It can be inferred that; field points and source points are 

interchangeable.   As mentioned above, a unit concentrated force was exerted to a source 

point.   To obtain displacement field due to a distributed body force and/or distributed 

traction, the Integral of Equation (3.23) through the domain Ω  and boundary ∂Ω = Γ  

needs to be computed.   Therefore, 

1 111 12

12 222 2

111 12

12 22 2

111 12

21 22 2

( )
( )

P B Q

QP B Q

q

qq

q

qq

u FU U
d

U Uu F

tU U
d

U U t

uT T
d

T T u

Ω

Γ

Γ

       = Ω    
       

    + Γ  
    
    − Γ  
    

∫
∫
∫

    (3.24) 

Note that   and  q Q∈Γ ∈Γ .   In Equation (3.24), the components ijU  and ijT  are the same 

as Equations (3.15) and (3.21) respectively.    Equation (3.24), in a short indicial form, is 

rewritten as, 

( )P B
i ji j ji j ji ju U F d U t T u d

Ω Γ
= Ω+ − Γ∫ ∫   (3.25) 

The above integral is singular when source and field points are the same.   Moreover, when 

field point is at the boundary, Equation (3.25) becomes singular.   It is proven that, 

( )P B
ij i ji j ji j ji ju U F d U t T u dα

Ω Γ
= Ω+ − Γ∫ ∫  (3.26) 



37 

Where for the case of smooth boundary, 1
2ij ijα δ= .   Equation (3.26) is the Integral 

Equation of the problem. 

3.1.1.5.   Integral Equations of the Stress Components 

The equations to compute stress components at field points can be derived by means 

of Hooke’s law in Equation (2.11), displacement components in Equation (3.24), and stress 

components in Equation (3.19).   Thus, we have, 

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

11 111 1 112 2 111 1 112 2

111 1 112 2

22 221 1 222 2 221 1 222 2

221 1 222 2

12 121 1 122 2 121 1 122 2

121 1 122 2

b b

b b

b b

F F d t t d

u u d

F F d t t d

u u d

F F d t t d

u u d

σ

σ

σ

Ω Γ

Γ

Ω Γ

Γ

Ω Γ

Γ

 = Σ +Σ Ω+ Σ +Σ Γ

 − Σ +Σ Γ



= Σ +Σ Ω+ Σ +Σ Γ

 − Σ +Σ Γ



= Σ +Σ Ω+ Σ +Σ Γ

 − Σ +Σ Γ

∫ ∫
∫
∫ ∫
∫
∫ ∫
∫







  (3.27) 

In indicial form, Equation (3.27) becomes, 

b
ij ijk k ijk k ijk kF d t d u dσ

Ω Γ Γ
= Σ Ω+ Σ Γ − Σ Γ∫ ∫ ∫   (3.28) 

In Equation (3.28), ijkΣ  are mentioned in Equation (3.19).   Furthermore, ijkΣ  are the 

following. 
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2

1 2
1 1 2 1

111 2 2

1
1

2

1 2
1 2 1 2

112 2

1 2

2 1 4
2

4 (1 )
2 1

8
2

4 (1 )
2

r r r rn n
x x x x

r r n
x

r r r rn n
x x x x

r r r
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3.1.2.   Discretization of the Boundary Integral Equations 

The boundary integral equations (3.26), and (3.29) are applicable to solve a simple 

2D plane-strain problem.   Therefore, its application is so limited.   In order to use the 

abovementioned Boundary Integral Equations to solve a general 2D plane-strain problem 

with arbitrary domain geometry and boundary conditions, both Ω  and Γ  have to be 

discretized.   Discretization can help us approximate integrals numerically.   If the boundary 
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is discretized into N separate elements, for every Boundary Element i, Equation (3.26) may 

be rewritten as, 

1 1

1 ˆ
2

N N
ij ij

i j j i
j j= =

+ = +∑ ∑u K u G t F  (3.30) 

Where, 

{ } { }1 2 1 2;
T Ti i i i

i iu u t t= =u t  (3.31) 
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K
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  (3.32) 

And, 

( )

( )
11 1 21 2

12 1 22 2

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

b b
i i Q

i

b b
i i Q

U Q p F Q U Q p F Q d

U Q p F Q U Q p F Q d

Ω

Ω

 + Ω 
=  
 + Ω
 

∫
∫

F  (3.33) 

To distinguish whether field or source point is in domain or boundary, we denote them by 

uppercase or lowercase letters respectively.   That is, ,  and ,p q P Q∈Γ ∈Ω . 

By applying, Equation (3.30) to all boundary elements, we end up to a system of 

2 N×  linear equations as following. 
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1ˆ;
2

= +Ku = Gt + F K K I  (3.34) 

All known and unknown displacements and tractions at the boundary need to be rearranged 

to facilitate the numerical process.   By solving the system of linear equation in (3.34) we 

will have 2 N×  known displacements and tractions at the boundary.   By having all those 

variables, all unknown displacements and stresses in domain can be obtained easily.   It is 

noted that to get the components of matrices K and G and vector F, 2 2 2 2N N N× × +  

28 2N N= +  integrations are required.   Depending on interpolation functions, all functions 

have to be computed in Gauss integration points and then combined by their corresponding 

weights.   Since matrices K and G are symmetric, the number of numerical integrations 

can be reduced to (2 3)N N + .   To reach a relatively accurate results, if using lower number 

of Gauss integration points, the number of boundary elements, N, have to be increased 

significantly. 

3.1.3.   Calculation of displacement Field Components 

at Interior Field Points 

Now that all the unknown displacement field components in the boundary are at 

hand by solving Equation (3.34), we are able to compute them at any interior field points 

as well. 

1 1

ˆ
n n

i ij j ij j i

j j= =

= − +∑ ∑u G t K u F   (3.35) 
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In Equation (3.35), jt  and ju  are known.   However, to compute ijG and ˆ ijK , and iF

Equations (3.32) and (3.39) are used based of coordinates of the field point.   In other 

words, they have to be recalculated for each and every field point. 

3.1.4.   Calculation of Stress Components 

at Interior Field Points 

Stress field components are computed by the following equation.   Note that, jt  

and ju  are known, now. 

1 1

n n
i i j i j b
mn mnk k mnk k mnk k

j j

t u F dσ Ω

Ω
= =

= Σ − Σ + Σ Ω∑ ∑ ∫   (3.36) 

In Equation (3.36), parameters i
mnkΣ  and i

mnkΣ  are computed based on field point 

coordinates and Equations (3.29), however, third term is a domain integral.   So, mnk
ΩΣ  has 

to be calculated for all field points in the domain. 

3.1.5.   Converting domain integrals to boundary integrals 

It is evident in Equations (3.28), (3.33), and (3.36) that some of the integrals are 

still domain integrals.   Therefore, both domain and boundary shall be discretized.   

Discretization of both domain and boundary of the elastic medium, impacts the 

performance of the method.   The major goal in BEM is to limit numerical analysis 

procedure in the boundary and avoid volume integrals.   One method to do so is to use 

Potential function which is, sometimes, called Harmonic function.   If body force field is 

of type Gravitational, it follows the property of Harmonic function. 
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2 0V∇ =  (3.37) 

Thus, body force can be rewritten as, 

,
b

i i
i

VF V
x
∂

= =
∂

  (3.38) 

 

It can be proven that domain integral (3.33), can be converted to the following form. 

,1 ,1 , 1

,2 ,2 , 2
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k k k k k k

V n V n U n ds
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ν φ φ
π ν µ
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−  − +  − =  −  − +  − 

∫
∫

F  (3.39) 

In Equation (3.39), k is an indicial notation and φ  is a Galerkin vector, 21 ln
4

r rφ = . 

3.2.   Boundary Element Method Based on  

Okada Formulation 

A classical Boundary Element Method was discussed in Section 3.1.  by an example 

of an elastic Two-Dimensional plane-strain problem which represented by famous Navier-

Cauchy partial differential equation.   Then, the governing PDE was converted to a set of 

boundary integral forms by means of Maxwell-Betti Reciprocal Identity to obtain relations 

between known displacements, tractions, and body forces with unknown displacement and 

stress fields in elastic domain and its boundaries.   Since the boundary integral equations 

were limited to a very simple known conditions, they were discretized both in domain and 
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boundary to generalize the solution to virtually any given conditions.   Finally, to improve 

performance of the solution, all domain integral equations were converted to equivalent 

boundary integral equations.   This conversion is necessary in presence of body forces 

distributed in the volume of the body, in whole or in part.   If the effect of body forces is 

seemed to be negligible, the final part can be canceled out.   Like other methods, the 

explained BEM, is a numerical approximation to a real problem.   Therefore, to achieve 

results within an acceptable range, the number of discretizations (size of BEs) has to be 

adjusted.   To obtain stiffness and traction matrices K and G,  (2 3)N N +  or (2 1)N N +  

numerical integrations, with or without presence of body forces, are required for a 2D 

problem.   For general 3D problems, they will be 9 ( 1)
2

N N +  or 3 (3 1)
2

N N +  respectively.   

Gauss Integration is used most often.   Each integration, based on the number of Gauss 

integration points, needs several arithmetic operations by computers.   The most laborious 

part of abovementioned equations is to compute ln r  at Gauss integration points which 

needs Taylor expansion. 

3.2.1.   Philosophy of the Method 

It is useful to develop a boundary element method which does not need numerical 

integration.   Since Okada proposed a closed-form solution to a finite rectangular 

dislocation problem, its exact functions can be used as interpolation functions.   

Conventional BEM discussed above can also produce exact results for finite rectangular 

source.    Our  proposed method is a specific type of sub-parametric formulation, since the 

order of functions to interpolate fracture geometry is zero, however, the order of functions 

in Table 2.3 to Table 2.6 can mathematically be assumed infinity in terms of Taylor 
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expansion.   Our method is new-of-a-kind, since no research article has been published 

which is similar to it. 

3.2.2.   Description of the Method 

As mentioned above, Okada’s solution is valid for a single rectangular 

discontinuous source, however in reality, hydraulic fractures may have complicated 

geometries especially when it comes to model natural fractures and faults.   Moreover, 

hydraulic fractures initiate from a small perforated spot in boreholes and when fluid 

injection pressure is increasing the reservoir rock around perforation begins to fail.   By the 

initiation of rock failure, an initial fracture plane is created.   When fluid injection pressure 

is increasing continuously, hydraulic fracture propagates.  Therefore, all the fractures 

(hydraulic, natural, faults, etc.) shall be discretized.   The approximation of the fracture 

geometry is going to be carried out by simple rectangular boundary elements.   In this 

study, penny-shaped (circular) and rectangular fractures are going to be simulated.   Since 

the reservoir rock is assumed linear elastic, Superposition rule can be applied to obtain 

system of equilibrium equations.   By separately analyzing a HF domain with on-by-one 

of those RABEs and, then, combining all the analysis results we expect to achieve a final 

result which approximates the ideal result.   And, we believe by increasing the number of 

RABEs the numerical results will approach and converge to an ideal model, i.e., better 

approximation of a fracture geometry ends up to better approximation of analysis results.   

our workflow is so simple.   It is summarized as below. 

1. Discretize an either single/multiple fractures by having all required data on hand. 

2. Define a grid of field point (grid-nodes) throughout the reservoir.   Grid-nodes are 

essentially independent from fracture meshes, but matching grid-nodes with 
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RABE meshes is recommended.   Grid-nodes in the vicinity of RABEs have to be 

at middle point of them.   The reason is discussed in section 3.2.3.  It improves 

the quality of graphical illustrations.   The grid of field nodes can, also be modified 

after fracture dislocation analysis in next steps. 

3. Compute components of the stiffness matrix for each and every RABEs. 

4. Pressurize the fracture model.   Generally, fault/fracture walls are not smooth and 

might have cohesive sediments such as calcite.   Any amount of slip might create 

cohesion/friction.   Now, Obtain Load matrix for each and every RABEs 

5. Assemble all matrices and vectors to get the system of equilibrium equation as 

(3.34). 

6. Analyze the system of equilibrium equation to obtain dislocations in each of the 

RABEs. 

7. By having all RABE dislocations at hand, analyze displacement filed components 

due to each of the dislocation components obtained from step 6 at grid-nodes and 

apply superposition. 

8. If necessary, modify the field grid.   Increase/decrease density of the nodes.   Or 

change distribution.   Grid-Node distribution may be uniform, exponential, or 

logarithmic.   For instance, grid-nodes near fracture tips can be denser due to 

dramatic gradient of parameters. 

9. Compute Cauchy Strain Tensor, Cauchy Stress Tensor, Principal Stresses, 

Principal Directions by DDDv components at all grid-nodes.   As a preliminary 

failure criteria, Maximum Shear Stresses, and Maximum Shear Directions in a 

defined Grid-nodes will be analyzed. 
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10. Due to high volume of analysis data, illustrate all above-mentioned parameters 

graphically. 

11. If results are acceptable it is done.   If not, go to Step 1 and modify shape and size 

of RABEs and/or field grid. 

The abovementioned steps are summarized in the following flowchart. 

 
Figure 3.2—Workflow of the BEM Simulation 

3.2.3.   Representation of System of Equilibrium Equation 

According to Figure 3.2, first parameter(s) to obtain is fracture aperture for each of the 

RABEs.   We also call it dislocation(s).   To compute dislocation components we need 

stiffness matrix K and G which was mentioned in Equation (3.34).   In most research 

articles, body force is not the case and can be neglected.   So, we don’t need to obtain vector 

F.   Since it is assumed that pressure, cohesion, or friction on fracture face is constant, 

matrix G will be an Identity matrix.   But the major obstacle is to compute matrix K.   Our 

method to compute matrix K is to apply unit dislocation 1m
kU =  to iDOF in RABE m.   

therefore, m is the identifier of RABE and 1,  2,  3,  ,  nRABEm =  .   The index k, 

however, is 1 for SSL, 2 for DSL, and 3 for TL dislocation types.   Therefore, nDOF=3×  

nRABE.   Some of these degrees of freedom can be constrained if we decide, but it is 
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recommended that all of DOFs remain open.   But to obtain matrix K, superposition rule 

dictates that all DOFs become constrained except for 1m
kU = ,  i.e., all RABEs must be kept 

inactive except for one.   To keep all-but-one RABEs closed and inactive, a stress must be 

exerted because they are active in reality.   Exerted stresses to all-but-one RABEs will keep 

them closed.   Moreover, the stress to have a unit dislocation at iDOF has to be computed 

as well.   All the exerted stress components to keep all-but-one RABEs inactive can be 

computed by Equations, (2.8), (2.10), and (2.11).   The exerting stress on RABE m  to 

create unit dislocation 1m
kU =  can, also, be computed by the same equations.   Figure 3.3 

illustrates a schematic of an arbitrary HF with two RABEs m and n.    RABE m experiences 

a unit TL dislocation that creates stresses in the vicinity of both RABEs. 

 
Figure 3.3—A Schematic of a discretized HF.   In this figure, mth RABE  

undergoes a unit TL dislocation.   It generates stress  
in the same RABE and nth RABE 

The state of stress in the vicinity of the RABE faces are, also, depicted in Figure 3.3.   It 

needs to be mentioned that, stress components in the vicinity of RABE faces are not 
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uniform.   To get better results, average of stresses can be computed.   But it is so time-

consuming and makes our method disadvantageous with respect to other methods.   To 

overcome this problem, we assume average of stresses is at the middle point of the RABEs.   

Although inexact, the assumption can come true by reducing the size of the RABE.   By 

redoing the process to all DOFs we will have all required stress components.   Now, fluid 

injection pressure or possible frictions/ cohesions (tractions) at fracture face and internal 

stress components in the vicinity of the fracture face due to SSL, DSL, and TL dislocations 

must be in equilibrium in the open iDOF in RABE m .   Equilibrium Equation (3.5), now, 

is rewritten as, 

( ) 0m
in situ ij j jj

pσ σ ν− + − =   (3.40) 

In Equation (3.40), ( ) max1in situ HSσ − = , ( ) min2in situ HSσ − = , and ( )3in situσ − = Overburden 

stress.   They are, indeed, far-field stress components.   In addition, m
ijσ is components of 

Cauchy stress at mid-surface of RABE m .   Moreover, jp  is force per unit area that can 

be due to friction/cohesion or injection pressure.   Some useful information such as our 

convention for positive stress are illustrated in Figure 3.3.   Remember that these stresses 

can be negative in Equation (3.40).   For example, 22σ  in Figure 3.3 is positive (tension 

stress) but it does not comply with positive 2x  direction and, hence, is negative in above 

equation.   Now, by all stress components at hand, we may release all RABEs.   Since the 

system is assumed linear, all the strains and stresses are proportional to dislocation values.   

If we apply arbitrary dislocation values n
kU  to all DOFs, we can obtain stress components 

at any DOF.   For example, 
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 (3.41) 

In this equation, mnk
ijσ  is a stress component at midpoint of RABE m  due to unit 

dislocation in kth DOF of RABE n .   By substituting Equation (3.41) in (3.40) we get, 

( )pq q q in situ qq
k U P Pσ −= − = ∆  (3.42) 

Indices p and q are indicial notations. Equation (3.42) in matrix form is represented as,  

in situ−= − = ∆KU P σ P  (3.43) 

Equation (3.43) is similar to equilibrium equation in Finite Element or other numerical 

Methods .   Components of stiffness matrix pqk  are stress values in DOF p  due to unit 

dislocations at DOF q .   Stiffness component ppk  which relies at diagonal of stiffness 

matrix is stress value required to create unit dislocation in DOF p.   Vector U  comprises 

dislocation at DOF q  which is unknown.   Vector P  consists of cohesions/ frictions and 

injection pressure at fracture surface.   Vector in situ−σ , has in-situ stress values at DOF q. 

The effective load which opens the fracture is ∆P .   If fluid injection pressure is 

less than minimum in-situ stress, fracture aperture will remain zero.   Moreover, if shear 

stress is less than cohesion, no SSL or DSL dislocation will happen.   In our model, DOF1 

to DOF3 in RABE m correspond to SSL, DSL, and TL dislocation types respectively.   By 

solving the system of linear equations in Equation (3.43), all the values of dislocation will 
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be obtained.   It is a good idea to remember famous Betti-Maxwell theorem.   In Theory of 

Elasticity.   The Maxwell-Betti Reciprocal Work theorem dictates that stiffness matrix K, 

become symmetric.   If for any reason, the matrix K is not symmetric, the system is 

unstable.   So, this property is one of the criteria to verify the integrity and correctness of 

the process. 

3.2.4.   Analysis of Displacement and Displacement  

Derivative Fields 

By solving the system of equilibrium equation (3.43), all the values of dislocations 

in active degrees of freedom will be obtained.   Having dislocation values, functions in 

Table 2.3 to Table 2.6, and Equations (2.7) to (2.10) will give us a path to compute DDDv 

field components at any point away from locus of singularities discussed in section 2.5.  .   

Since the domain is linear elastic, all components obtained from each and every dislocation 

component can be combined linearly. 

3.2.5.   Analysis of Strain and Stress 

Since displacement derivative field components are available, all the strain 

components are computed at any grid-node by means of Equation (2.11).   Equations (2.11) 

and (2.13), along with strain components, will result stress components at any field point 

generated by a grid in the domain. 

3.2.6.   Analysis of Principal Strains, Principal  

Stresses, and their directions 

Both strain and stress follow tensor properties.   So, there are always three planes 

with strain/stress components perpendicular to them.   In other words, there will be no 
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shearing strain/stress components on those planes.   These normal strain/stress components 

are called principal strains/stresses.   The corresponding normal vectors of those planes are 

called principal directions.   In the presence of in-situ stresses, principal directions for strain 

and stress may be different, since in-situ stresses are far-field stresses and don’t create 

strains.   Strains are generated in the reservoir due to its disturbance such as hydraulic 

fracturing.   To obtain principal values and directions, eigenpair analysis of strain and stress 

tensors are required.   That is, 

   and   i i i i i i
ε ε σ σε σ= =εn n σn n   (3.44) 

Here in Equation (3.44), i is not an indicial notation.   Both strain and stress tensors have 

three distinct eigenpairs (eigenvalues and eigenvectors).   There are numerous methods to 

get eigenpairs.   However, for our study, Jacobian Iterative method is suitable. 

3.2.7.   Analysis of Maximum Shearing Strain and  

Stress and their corresponding directions 

Maximum shearing strains and maximum shearing stresses take place in a plane 

passing normal vectors corresponding to minimum and maximum principal strains and 

stresses.   The values of maximum shearing strain and stress is as the following. 

max max min

max max min

1 ( ) ( )
2
1 ( ) ( )
2

p p

p p

γ ε ε

τ σ σ

  = − 

  = − 

  (3.45) 



52 

There are two perpendicular directions for maximum shearing strain and stress.   One of 

them is bisector of normal vectors corresponding to maximum and minimum principal 

values, and the other one is perpendicular to that.   So, 

max min max min

max min max min

1 1   or   
2 2

1 1   or   
2 2

p p p p

p p p p

ε ε ε ε
γ γ

σ σ σ σ
τ γ

    = − = +    

    = − = +   

n n n n n n

n n n n n n
  (3.46) 

Assessing and Understanding Maximum shearing strain and maximum shearing stress 

fields is helpful to approximately estimate and localize rock failure and find their 

orientations.   It is obvious that more comprehensive failure analysis is required, because 

rock failure is complicated in nature.   Other factors can influence rock failure such as poro-

elastic transitions, thermo-elastic effects, presence of micro-fractures and so on (Huang et 

al. 2013). 

3.3.   Comparison of the classical BEM to Our Proposed BEM 

As explained in both sections 3.1.  and 3.2.  in order to reach an acceptable 

approximation of a model, the boundary of the model domain has to be discretized into 

smaller elements.   To obtain the system of equilibrium equation for a 2D problem in 

classical method at least (2 1)N N +  often numerical integration is required.   For a 3D 

problem (without presence of body forces), this number will be 3 (3 1)
2

N N + .   Moreover, 

to compute displacement field and stress field components at an interior field point, 

according to Equations (3.35) and (3.36), 20 additional integrations are required.   Since if 

integrations are carried out numerically (let say Gauss integration), the value of all 
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abovementioned complicated functions has to be computed at Gauss integration points.   

The minimum recommended number of integration points for 1D an 2D boundary elements 

is at least 3 and 8 respectively (Youn 1993). 

In this work, numerical integration is not needed.    Moreover, our method needs 

fewer number of discretizations; therefore, it can reduce the rank of stiffness matrix K and 

analyze a model much faster.   Based on functions in Table 2.3 to Table 2.6 and Appendix 

A, the only laborious and time-consuming factor which can impact performance of our 

method is calculation of functions sinδ , cosδ , ln( )R ξ+ , ln( )R η+ , and ln( )R d+  .   

These functions need Taylor expansion to be calculated accurately by computers.   These 

functions need to be calculated twice; one for real source and the other for image source. 

Figure 3.4 depicts the difference between boundary element shapes for our method and 

other classical methods.   It is clear that with classical methods, geometry of a field 

boundary can be approximated better. 

 

 
Figure 3.4—Comparison of Boundary Element Shapes 
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Another major advantage of our method is that the utilized formulation already 

includes half-space condition of the boundaries, therefore the accuracy of the model is 

totally independent from size and extent of the domain encompassing the hydraulic 

fracture(s) we choose.   However, classical BEMs still need modeling of the boundary 

surrounding the domain in addition to fracture(s).   For a classical BEM to be satisfactory, 

the surrounding boundary shall be large and, also, far enough from main boundaries 

(fractures).   Selecting a large domain and its surrounding boundary, needs quite larger 

number of boundary elements which tremendously increases the rank of stiffness matrix 

K. 
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CHAPTER  4.   Implementation of the BEM in a  

Computer Code 

In this chapter, a computer program is developed in FORTRAN90 and compiled 

by Intel® Parallel Studio XE 2019 update 4.   We call our simulator HiFrac 3D.   Our 

model is capable to model both 2D and 3D fractures as shown below.    

4.1.   Discretization of a Fracture 

Currently, only horizontal or vertical fractures can be treated.   Moreover, according 

to Figure 2.3, local x-axis is, always, parallel to global 1x -axis.   More developments are 

required to overcome these limits. 

 
Figure 4.1—Radial and Sequential BE Mesh Generation  

in a Penny-Shaped Fracture 

To model a penny-shaped fracture, all we need is coordinates of its center  in a global 

Cartesian frame and the radius.   There are two ways to generate boundary elements, 



56 

sequential or radial.   The difference is illustrated in Figure 4.1. Although sequential 

method is very easy, but we prefer the radial method.   The radial method has a difficult 

algorithm especially in terms of number of discretization in both x- and y- directions.   

Depending on whether discretization is Odd×Odd , Odd×Even , Even×Odd , or 

Even×Even , the algorithms are slightly different.   The reason to choose this method is 

that it makes stiffness matrix organized, so that larger values are located around the 

diagonal of the matrix, and the smaller influences farther from diagonal.   In addition, by 

adding fracture propagation capability to simulator, more boundary elements need to be 

added automatically to the model.   Therefore, the size of stiffness matrix will increase both 

in row and column directions.   Since, mesh generation is radial, the stiffness matrix will 

grow in size from the right and bottom edges and adding rows and columns between 

existing ones won’t be required.   Therefore, radial mesh generation method will make 

simulator development in future a lot easier. 

Mesh generation for a rectangular fracture is so similar to that of penny-shaped one, 

except for the condition to when/where to change BE row or BE column.   Instead of radius, 

this shape needs half-length in both x- and y- directions.   Two methods for generate mesh 

are shown in Figure 4.2. 
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Figure 4.2—Radial and Sequential BE Mesh Generation  

in a Rectangular Fracture 

 

4.2.   Generation of Field Points in a HF Domain 

Although domain discretization is not required in BEM, we still need field points 

throughout the domain to compute all necessary variables such as displacement field, strain 

and stress fields, etc. to have a deep insight about any HF model.   Therefore, we need to 

generate a grid inside HF domain, which is a part of a reservoir around a drilled well.   Field 

points, which we call them grid-nodes, are located at intersection of an orthogonal 

gridlines.   The grid may be defined as uniformly spaced, or exponential/logarithmic-

spaced.   It needs to be reminded that the grid spacing inside the fracture is always uniform.   

Grid-nodes in the vicinity of the fracture have to be at mid-point of boundary elements.    

For instance, for a penny-shaped fracture in Figure 4.3, the grid outside of the 

fracture is uniformly spaced.   Since the formulation is singular at any boundary element 

face and edges, grid-nodes must have a small gap with them to avoid singularity.   Figure 

4.4 is an example of a fracture model with non-uniform grid spacing outside of it.   Another 
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example in Figure 4.5 is a rectangular fracture with either uniform or non-uniform grid 

spacing. 

  

 
Figure 4.3—An Example of a 15 15×  Penny-Shaped Fracture and its  

corresponding grid of field-points.   Upper-Left is Top View,  
Upper-Right is Side View, and the Lower One is Front View.  

Grid Spacing Outside of the Fracture is Uniform. 
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Figure 4.4—The Same 15 15×  Penny-Shaped Fracture and its  

corresponding grid of field-points.   Grid Spacing Outside  
of the Fracture Varies Exponential/Logarithmic. 
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Figure 4.5—A 15 3×  Rectangular Fracture and its  

corresponding grid of field-points.   Grid Spacing Outside  
of the Fracture is uniform for Top Figure and Exponential/ 

Logarithmic for Bottom Figure. and Validation of the Method 

In previous chapter we implemented our proposed method to a simulator and named 

our simulator HiFrac 3D.   Moreover, we discussed about its capabilities and, also, showed 

its overall performance by modeling two hydraulic fracturing examples, one single-frac 

and one two-stage multi-frac problem.   However, we did not discuss about its performance 

in detail.   Now, in this chapter, we try to explain the performance of our method more 
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precisely.   Moreover, we try to model several well-known problems and compare our 

results with those published data. 

4.3.   Comparison of the Method and Finite Element Method 

One of the Fundamentals of FEM is to constrain all-but-one available degrees of 

freedoms either in discretized domain or discretized boundary, and then apply unit 

displacements or rotations to the open DOF.   All equivalent nodal forces/stresses can, then, 

be obtained by integrating throughout each finite element and assembling them to a global 

frame to obtain the system of equilibrium equations.   Since all DOFs in both analysis 

domain and boundary are constrained, equivalent nodal forces/stresses won't be transferred 

to nodes that well away from current DOF.   Therefore, coefficient matrix of the 

equilibrium equation (say stiffness matrix) won't be filled completely by non-zero values.   

In other words, stiffness matrix will be banded.   All non-zero components of the stiffness 

matrix will be concentrated around diagonal of it.   Any component beyond that zone will 

be zero.   In addition, according to Maxwell-Betti’s reciprocal Work Identity, stiffness 

matrix obtained by FEM will always be symmetric.   These characteristics can significantly 

increase numerical performance of the solution.   On the other hand, our method which is 

a specific type of BEM, is based on discretization of just boundary of the domain.   

Therefore, constraining of a DOF won’t completely block force/stress transformation to 

other DOFs, since the domain is completely free to move.   This characteristic will lead to 

a stiffness matrix, totally filled by non-zero components.   In addition, in some special 

cases, it was noticed that the stiffness matrix is not perfectly symmetric.   These 

characteristics can negatively impact numerical performance of our proposed method.   For 

better comparison between two methods, Figure 4.6 is provided below. 
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Figure 4.6—A Schematic of Stiffness Matrices Obtained from FEM and BEM. 

 

4.4.   Verification of the Method 

All black dots in Figure 4.6 represent symmetric non-zero values.   Red dots 

represent non-symmetric values.   Although a fully non-zero matrix is not a serious 

numerical issue according to available computers in the market, non-symmetrical 

characteristic is, indeed, a serious problem.   Most numerical algorithms to solve a system 

of linear equations are developed for the case of symmetric coefficient matrix.   This issue 

occurred in the example of two-stage multi-fracture in Appendix B, section 9.   However, 

it never happened for the case of single fracture in section Appendix B, section 8.   Non-

symmetrical case is so evident when the dimensions of RABEs are significantly large.   

Also, it happened again when RABE sizes were small but aspect ratio of them in 

neighboring fractures were different.   Numerous tries and errors were carried out and it 

was realized that when aspect ratio of RABEs (longer edge to shorter edge) were less than 

2.00, the stiffness matrix was perfectly symmetric up to 5 decimal digits.   For aspect ratio 

of less than 1.50 it was symmetric up to 9 decimal digits.   Moreover, if the ratio of longer 

edges of RABEs in different fractures were less than 1.20, stiffness matrix was symmetric.   
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It is recommended that aspect ratio of RABEs not to exceed 2.00.   Also, if the size of the 

longer edge of RABE is less than half of fracture spacing, the stiffness matrix will be 

perfectly symmetric even though the ratio of longer edges in different fractures exceed 

1.20.   The best recommendation is to keep the size of longer edge of RABEs less than 0.45 

times the smallest spacing between fractures.   In our research process, it was also realized 

that if boundary elements are well farther from each other, components of the stiffness 

matrix will be so close to zero.   In other words, the farther from matrix diagonal, the 

smaller the component.   By adding a condition to the computer code, we can make most 

of the stiffness matrix components zero.   But, in practice, we did not apply this condition 

and left all the components unchanged. 

Now that we overcame some shortcomings of our method, it would be a good idea 

to validate out method.   We have selected several well-known problems to compare our 

results with. 

4.5.   Comparison with Okada Example (Okada 1992) 

This example deals with a field measurement on a fault with tiltmeter.   The paper 

does not mention real magnitude of dislocations but provides graphs based on magnitude 

of 50 cm for three separate dislocation types.   It, also, approximates the real fault with a 

rectangular shape.   A DDDv analysis is carried out with the model by just one RABE and 

initial specifications as Table 4.1.   Since based on the published paper, the fault is assumed 

rectangular, using one RABE makes sense.   Both measurement data and our analytical 

results are depicted in Figure 4.7.   Curves corresponding to analytical and measured data 

are solid and dashed lines respectively. 
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Table 4.1—Fault Specification in Okada (1992) 

Assumed Material Properties    and   0.25λ µ ν= =   

Fault Size 12 km   and   8 kmL W= =  
Depth of the Fault Origin 50 kmc =  

Fault Dip Angle δ = 40  

Coordinates of the Observation Point 1 225km   and   15 kmx x= =  

Slip 50 cmU =  

 

 
Figure 4.7—Comparison of Field Measurements and Model Results 

Figure 4.7 shows a very good agreement between both data.   Parameter ∆  In Figure 4.7 

is defined as, x yu x u y∆ = ∂ ∂ + ∂ ∂ .   Other measured parameters are, xu z∂ ∂  and zu x∂ ∂

.   This comparison validates that HiFrac 3D computes DDDv’s reliably and accurately.   

But this validation is just based on one RABE.   In next sections, we try to validate our 

simulator for different cases. 
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4.6.   Verification by Fialko’s Solution 

Fialko et al., 2001 provided the exact expressions to solve a problem of horizontal 

circular crack due to intrusion of magma.   They assume the domain is an elastic half-space 

and pressure inside the crack in constant.   Although our simulator is currently developed 

based on constant pressure at both walls of the fracture, but it is easily capable to be 

developed for variable fluid injection pressure as well.   Fialko solution gives horizontal 

and vertical displacements at any point in the domain and free surface.  However, graphs 

in their published paper just illustrates these field variables at free surface.   In this problem, 

R and H  are radius and depth of the circular fracture respectively.   Moreover, h  is 

normalized depth with respect to R .   Figure 4.8 illustrates a schematic view of a horizontal 

crack in Fialko problem. 

In first step, we try to compare horizontal displacement field results from HiFrac 3D to 

those of Fialko model.   Figure 4.9-Left depicts our numerical fracture model for the case 

of 1.20H R = .   The Black curve represents Fialko et. Al. results.   Red and green curves 

are our results for the cases of 5 5×  and 15 15× mesh sizes respectively. 

 
Figure 4.8—A Cross-Sectional View of a Penney-Shaped Horizontal  

Fracture in an Elastic Half-Space (Fialko et al. 2001) 
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As evident, there is a great agreement between our study and Fialko et. Al. closed-form 

research.   During simulation, we intended to include a numerical result based on 25 25×

mesh size but since we reached a good match with the case of 15 15× mesh size, we 

preferred not to include it.   The mesh size of 15 15× is adequate to obtain acceptable 

results. 

In the next step, we try to validate vertical displacement field.   Results from both Fialko 

model and our simulation are found in Figure 4.10.      Like Figure 4.9, black curves 

represent Fialko results and red and green curves come from the model.   It is clear that 

black curve has almost been covered by red and green ones which, again, is a proof of 

accuracy of our simulator.   Now, we can be confident that our procedure produces great 

results for displacement field components resulting from a single penny-shaped fracture. 

 

  
Figure 4.9—Left side shows our horizontal circular fracture at depth 1.2 and  

radius 1.0.   Right side shows Horizontal Displacement Field at Free  
Surface of an Elastic Half-space 
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Figure 4.10—Vertical Displacement Field at Free Surface of an Elastic Half-space 

 

4.7.   Verification by Pollard Solution 

The problem is a closed-form analytical solution to find interaction between earth’s 

horizontal free surface and a uniformly pressurized rectangular fracture in a linear elastic 

half-space (Pollard and Holzhausen 1979).   According to Figure 4.11, it is assumed that 

the model follows 2D Plane-Strain behavior and the fracture may have any inclination (dip 

angle β ).   In addition to deformation of horizontal free surface, the solution, also, gives 

set of equations to analyze stress components in the model domain and Mode I / Mode II 
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Stress Intensity Factors IK  and IIK  which is useful to model fracture propagation due to 

increase in fluid injection pressure. 

 
Figure 4.11—A Rectangular Fracture in a Linear Elastic Half-Space. 

Axes 1x  and x  Are Perpendicular to Figure Surface.   Fracture  

Length along x − Axis Is Long Enough to Simulate a  
2D Plane-Strain Problem. 

Stress Intensity Factor analysis is currently outside of scope of our research, although it 

can be easily added in future developments to our simulator.   The same problem has, also, 

been modeled numerically by FEM (Fu 2014).   Although Fu’s FEM model is 3D, he 

defined the fracture length along x − axis 3 times the width of it (i.e. a ) and constrained 

displacements in 1x − direction to approximate a 2D case.   It is easy to realize that 

constraining displacement field 1u  makes strain components 11 12 13, , andε ε ε  equal to zero 

and converts a general 3D model to a 2D plane-strain.   However, since our method is a 

boundary element method, we have no control over model domain.   Therefore, we choose 
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half-length along x − axis 8 times that of y − axis in HiFrac 3D.   All model specifications 

are given in Table 4.2. 

Table 4.2— Initial Values and Properties Simulate Pollard-Fu Problem 

Parameter or Property Value Unit 

Elastic Modulus 61.00 10E = ×  psi 

Poisson’s Ratio 25ν = 0.  Unitless 

Min./Max. Hor. In-Situ Stress min max 0H HS S= =  psi 

Depth of Injection Point 4.10d =  ft. 

Dip Angle 0   or  90β = ° °    

Half-Lengths of HF hf hf 25.00 3.28x yL L× = ×  ft.×  ft. 

RABE Mesh Size in Case 1 35 5×   

RABE Mesh Size in Case 2 105 15×   

Extent of the Model Domain 60 25 15× ×  ft. 

No. of Grid Spacing Outside Fracs. 20  

Injection Pressure at Depth 1p∆ =  Psi 

 

It needs to be mentioned that the ratio of depth to half-width, according to Pollard problem, 

is 1.25 (i.e., 1.25d a = ). 

Figure 4.12 and Figure 4.13 depict the geometry of the model after exerting pressure into 

the fracture for dip angle β = 0° .   Mesh sizes for Case 1 and Case 2 are 35 5×  and 

105 15×  respectively.   Furthermore, Figure 4.14 and Figure 4.15 depict the model 

geometry except that dip angle 9β = 0° . 
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Figure 4.12—Geometry of the Simulation Model for Case 1. 

Mesh Size is 35 5×  and β = 0°   
 

 

 
Figure 4.13—Geometry of the Simulation Model for Case 2. 

Mesh Size is 105 15×  and β = 0°   
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Figure 4.14—Geometry of the Simulation Model for Case 1. 

Mesh Size is 35 5×  and 9β = 0°   
 
 
 

  
Figure 4.15—Geometry of the Simulation Model for Case 2. 

Mesh Size is 105 15×  and 9β = 0°   

Huang, also, verified his finite element formulation (Huang 2015).   His model comprises 

about 127’000 3D EPM elements which certainly has a very high number of degrees of 

freedom. 
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Figure 4.16—Comparison of Normalized Vertical Displacement 3u  Results at  

Horizontal Free Surface, Obtained from HiFrac 3D to Those of Fu-2014 and  
Pollard-1979.   Black Curves Are Corresponding to Case 1 with the 

Mesh size of 35 5× . 
 

 
Figure 4.17—Comparison of Normalized Horizontal Stress 22σ  Results Near  

Horizontal Free Surface, Obtained from HiFrac 3D to Those of Pollard-1979. 
Black Curves Are Corresponding to Case 1 with the 

Mesh size of 35 5× . 
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Figure 4.16 compares the results of normalized vertical displacement 3u  at free horizontal 

surface with respect to normalized distance 2x .   Vertical displacement and distance are 

normalized with respect to maximum field displacement δ∞  and fracture half-width 

3.28ft.a =  respectively.   The parameter δ∞  is calculated by the following equation. 

 ( )1 /p aδ ν µ∞ = ∆ ⋅ −  (5.1) 

In this model, 57.74900 10 in.δ −
∞ ×= .   Mesh size in Figure 4.16 is 35 5× .   Further, in 

Figure 4.17, the results of normalized horizontal stress 22σ  from HiFrac 3D and Pollard-

1979 are compared.   Horizontal stresses are normalized with respect to injection pressure 

p∆  which is 1.00 psi. 

 
Figure 4.18—Comparison of Normalized Vertical Displacement 3u  Results at  

Horizontal Free Surface, Obtained from HiFrac 3D to Those of Fu-2014 and  
Pollard-1979.   Black Curves Are Corresponding to Case 2 with the 

Mesh size of 105 15× . 
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In case 2, which mesh size is 105 15×  the same comparisons are carried out.   Graphical 

comparisons are showed in Figure 4.18 and Figure 4.19. 

According to Figure 4.16 and Figure 4.17, it is inferred that the mesh size of 35 5×  does 

not result a good agreement.   However, Figure 4.18 and Figure 4.19 represent a very good 

agreement between HiFrac 3D and other results with the mesh size of 105 15× .   In other 

words, the model becomes less sensitive to mesh size if greater than 105 15× .   In terms 

of performance, general simulation data are provided in Table 4.3 and Table 4.4.   The 

analysis time for the Case 2, which is highly accurate, is more than one hour. 

 
Figure 4.19—Comparison of Normalized Horizontal Stress 22σ  Results Near  

Horizontal Free Surface, Obtained from HiFrac 3D to Those of Pollard-1979. 
Black Curves Are Corresponding to Case 2 with the 

Mesh size of 105 15× . 
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Table 4.3— General Information About a Single-Fracture  
Pollard’s  Solution Model - Case 1: Mesh Size 35 5× . 

Parameter or Property Value 

Total No. of RABEs 175 

Total No. of Grid Nodes 80’934 

Total No. of Degrees of Freedom 525 

Dislocation Analysis Time ( = ∆KU P ) 0.021 min. 

DDDv Analysis Time (Okada’s Formulation) 1.198 min. 

Strain/Stress Analysis in Stage 1 ≈ 0.000 min. 

Total Analysis Time 1.228 min. 

 

Table 4.4— General Information About a Single-Fracture  
Pollard-Fu Model - Case 2: Mesh Size 105 15× . 

Parameter or Property Value 

Total No. of RABEs 1’575 

Total No. of Grid Nodes 265’734 

Total No. of Degrees of Freedom 4’725 

Dislocation Analysis Time in Stage 1 ( = ∆KU P ) 6.006 min. 

DDDv Analysis Time (Okada’s Formulation) 60.024 min. 

Strain/Stress Analysis in Stage 1 0.027 min. 

Total Analysis Time 66.278 min. 

 

Fu-2014 and Pollard-1979 did not provide data such and displacement field or stress 

contours.   To compare our results, we use illustrations in Huang-2015 dissertation.   We 

only compare results from Case 2 which seems very accurate and don’t illustrate results 

from Case 1. 
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Figure 4.20—Comparison of Vertical Displacement 3u  Results at  

Horizontal Free Surface, Obtained from HiFrac 3D (Left)  
to That of Huang-2015 (Right).   Dip Angle is 0°  and  

Mesh size is 105 15× . 
 
 
 
 

  
Figure 4.21—Comparison of Vertical Stress 33σ  Results Near  

Horizontal Free Surface, Obtained from HiFrac 3D (Left)  
to That of Huang-2015 (Right).   Dip Angle is 0°  and  

Mesh size is 105 15× . 
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Figure 4.22—Comparison of Vertical Displacement 3u  Results at  

Horizontal Free Surface, Obtained from HiFrac 3D (Left)  
to That of Huang-2015 (Right).   Dip Angle is 90°  and  

Mesh size is 105 15× . 
 
 
 
 

  
Figure 4.23—Comparison of Vertical Stress 33σ  Results Near  

Horizontal Free Surface, Obtained from HiFrac 3D (Left)  
to That of Huang-2015 (Right).   Dip Angle is 90°  and  

Mesh size is 105 15× . 
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As mentioned above, Huang used roughly 127’000 3D EPM elements to model Pollard’s 

problem.   Analysis of a model with 127’000 elements with regular PC can take days or 

weeks.   Using a super-computer can reduce analysis time down to a few hours which is 

still too long. 

 

4.8.   Verification of Displacement Derivatives 

Since a well-known multiple cluster penny-shaped or rectangular hydraulic 

fracturing was not found in published research articles, we take another way to validate 

HiFrac 3D for this case.   According to sections 4.5.  to 4.7.  , We are certain that 

displacement field analysis and simulation is valid; however, to carry out strain and stress 

analysis, we need reliable values for displacement field derivatives.   Okada formulation, 

which is the foundation of our BEM, is able to give us derivatives of displacement filed 

components by set of functions that were discussed in Chapter 2.   The other way to obtain 

displacement derivatives is to use Finite Difference Method which is a pure numerical 

method.   Since we trust displacement field analysis of our simulator, we can trust 

numerical derivation of those components as well.   Therefore, we try to illustrate 

derivatives obtained from two totally different methods.   The best way to illustrate is to 

use gradient of every single displacement component.   Displacement components are our 

scalar properties.   Gradient of any scalar function will give a vector function as the 

following equation. 

1 2 3 ,
2 3

i i i
i i j j

i

U U UU U
x x x

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂
e e e e


 (5.2) 



79 

By obtaining scalar components ,i jU  from both our simulator and FDM, we can establish 

and illustrate those vectors simultaneously.   If set of vectors from two methods match 

reasonably, we can claim that our simulator is able to analyze reliable displacement 

derivatives for the case of Multi-Cluster fracture stage.   To reach this goal we define an 

arbitrary stage with 3 fractures.   Then we apply an arbitrary injection pressure.   To make 

the model asymmetric, we also exert arbitrary frictions to fracture walls.   Initial values to 

define a single-stage multi-cluster fracture are outlined in Table 4.5. 

Table 4.5— Initial Values and Properties for a Single-Stage Multi-HF Model 

Parameter or Property Value Unit 

Elastic Modulus 67.4404 10E = ×  psi 

Poisson’s Ratio ν = 0.26  Unitless 

Min. Hor. In-Situ Stress min 1000.00HS = −  psi 

Max. Hor. In-Situ Stress max 2000.00HS = −  psi 

Average Specific Density of Rock  0.00γ =  pcf 

Depth of Injection Point 7500.00D =  ft. 

Radius of HFs 15.00fR =  ft.  

RABE Mesh Size 15 15×   

Frac. Spacing 20.00s =  ft. 

Number of HFs 3n =   

Extent of the Model Domain 50 60 50× ×   ft. 

Fracture Orientation Vertical ( 90δ = ° )  

No. of Grid Spacing Outside Fracs. 5  

Injection Pressure at Depth 2100 ( 1100.00p∆ = ) psi 

Friction at Frac Walls (Strike and Dip) 110.00f =  psi 
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Figure 4.24— 3D (Left) and Top (Right) View Geometries of an Arbitrary  

Multi-Cluster Hydraulic Fracture After Fluid Injection. 
 

 

 
Figure 4.25— Gradient Vectors of Displacement Field Component 1u  
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Figure 4.24 shows deformed shape of the model.   Distortion is so evident in top view due 

to exertion of frictions (tangential forces).   In Figure 4.25 to Figure 4.27, displacement 

gradient vectors are illustrated for scalar components 1 2 3,  ,  and u u u .   Gray vectors are 

computed based on our semi-analytical procedure.   Black vectors are based on FDM 

computations.   FDM computation was carried out by MATLAB. 

 

 
Figure 4.26— Gradient Vectors of Displacement Field Component 2u  

MATLAB gradient computation is limited to uniformly spaced grid of field points.   We 

tried to make the domain grid as uniform as possible.   But the generated grid is not 
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perfectly uniform especially near fracture tips.   In all mentioned figures, displacement 

filed components are shown by contours.   To save space, just top and sides views are 

shown.   Our simulator is able to show any arbitrary cross-section of the model.   A great 

agreement is crystal clear between black and grey vectors in most grid-nodes.   Grey vectors 

have been covered by black vectors in most of grid-nodes which is an evidence of validity 

of semi-analytical procedure.   In a very limited number of points, a slight discrepancy is 

noticed, especially near fracture tips which is obvious. 

 

 
Figure 4.27— Gradient Vectors of Displacement Field Component 3u  
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Since variation rate of displacement components are too high near fracture tips, a smaller 

and finer grid spacing is required to approximate derivatives by means of FDM.   FDM 

usually has less tendency to approach exact results.   However, direction of grey and black 

vectors is in an acceptable agreement.   The great match between grey and black vectors, 

indeed, validates our simulator to model multi-cluster fracture stages. 

If displacement derivatives are valid, strain analysis and, hence, stress analysis will also be 

valid.   Now, we can trust our simulator for both single-cluster and multi-cluster hydraulic 

fracture modeling and analysis. 
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CHAPTER  5.   Conclusion and Recommendations 

5.1.   Conclusion 

In modern era, analysis and simulation of displacement field is perhaps the first and 

most important step to model, simulate and, finally, design a good hydraulic fracturing 

system to plan and develop an unconventional hydrocarbon reservoir or even geothermal 

reservoir.   Displacement field analysis helps engineers to know the geometry of a hydraulic 

fracture such as shape and aperture.       Fracture aperture, along with the shape, is 

also important to estimate productivity of a fractured well.   Lack of understanding about 

fracture geometry may be source of some problems such as frac hit and production 

interaction especially in the case of narrow and dense well spacings.   And knowing 

hydraulic fracturing geometry is required to figure out Stimulated Volume of the reservoir 

(SRV).   Effective permeability of a fractured well is a function of fracture geometry.   The 

second most vital step to modern and sophisticated analysis and design of a hydraulic 

fracturing treatment is Stress analysis.   Understanding state of stress is a key to include 

reservoir rock failure and, hence, estimate fracture growth and propagation as a function 

of fluid injection pressure and many other parameters.   In this study, we used a semi-

analytical boundary element method to deal with displacement field and stress analysis.   A 

classical BEM, as a full numerical method, was briefly described to understand basics of 

the method.       Full closed analytical methods are applicable to just very simple cases such 

as penny-shaped, elliptical-shaped, and rectangular-shaped fractures.   For some of these 

cases, fracture must be either horizontal or vertical.   Moreover, for the case of multi-cluster 
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fractures when there are interactions between clusters, analytical methods come short.   Our 

method, on the other hand, is not fully numerical as well since it does not need numerical 

integrations to establish a system of equilibrium equations.   We used Okada Dislocation 

formulation which is a closed-form analytical solution for a finite rectangular source.   We 

approximated the geometry of fracture(s) by discretization of it/them into finite number of 

RABEs.   Since we use closed-form analytical equations we don’t need a very fine mesh 

to approximate fracture geometry.   However, the method has some drawbacks too.   The 

proposed boundary element must be rectangular, but in classical BEM, the element may 

have more flexible shapes such are tetragon or triangle.   So, there should be some trade-

offs between analytical performance and approximation of fracture geometry.   As 

illustrated in previous chapters, discretized fracture geometry looks coarse, however, 

displacement and stress field analyses have fantastic accuracy which are so important.   To 

propose our procedure, Okada’s dislocation theory and formulation was discussed to 

understand its advantages and disadvantages.   Its advantage is accuracy, but equations are 

so complicated which makes it so difficult to find and fix possible errors during computer 

code development.   Moreover, there is no equation to compute the average stresses 

throughout rectangular element faces.   This made computer code development very 

difficult and time-consuming.   To analyze displacement, strain, and stress fields 

components, if a field point (say grid-node) is close to a rectangular source (say boundary 

element)  it must be placed near the middle point of the element since equilibrium equation 

is established on that point not the whole element.   Establishing equilibrium equation for 

whole element needs analysis of average stresses which is so laborious and makes the 

formulation worthless.   Another shortcoming of our method emerges when dealing with 
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multiple fractures.   The aspect ratios of elements should not exceed 1.20.   Moreover, ratio 

of longer edge of a boundary element in fracture i  to the same edge in fracture j  should 

not exceed 1.1.   And if fractures are too close to each other, the longest edge of boundary 

elements should be less than half of smallest fracture spacing.   Our recommendation is 

maximum 40% of minimum fracture spacing.   If these ratios are not followed, the stiffness 

matrix becomes asymmetric which impacts numerical performance of our procedure.   As 

mentioned, asymmetric stiffness matrix is a sign of lack of equilibrium in the model and 

should be avoided.   These conditions make computer programing so difficult.   But the 

silver bullet in our proposed method is having high accuracy in a very short amount of 

time. Finally, the numerical method was used to solve some examples and was verified 

using some well-known problems. 

5.2.   Findings During Simulator Development 

At least two phenomena were discovered during procedure and computer code 

developments 

 Displacement Field Interaction: in the example of 2-Stage multi-cluster fracture, 

it was discovered that fractures push each other during pressurization.   Mid-planes 

of fractures don’t remain straight especially when cluster spacing is relatively low.   

Moreover, fractures in the middle of the stage experience significantly less aperture 

(opening) comparing to outer fractures.   This phenomenon has been pointed out in 

numerous research papers. 

 Stress Shadowing Effect: It was also found out that pressurization of multi-stage 

multi-cluster fractures can significantly disturb reservoir stress field by deviating 
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direction of minimum and maximum in-situ stresses.   This was carried out by 

eigenpair analysis and finding direction and magnitude of principal stress vectors.   

Since fracture is propagated along with two maximum principal stresses, this 

interaction can significantly impact direction and shape of fractures if they are 

within stress shadow window. 

5.3.   Some Recommendations for Future Developments 

   Here, we itemize some recommendations for future work: 

1. Initial shape of fracture(s) is either horizontal or vertical.   An improvement is 

required to model and simulate inclined fractures.   It is crucial to deal with natural 

fractures and faults. 

2. Local z − axis of fractures is parallel to global 2x − axis.   To deal with natural 

fractures and faults an improvement is inevitable. 

3. Implement non-uniform pressure using fluid flow equation 

4. All reservoirs have very complicated natural fracture and fault networks.   

Interaction of hydraulic and natural fractures has significant effects on fracture 

design and well productivity. 
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Nomenclature (English) 
. .EB C    = Essential, or Geometrical Boundary Condition 

. .NB C    = Natural, or Forced Boundary Condition 

c     = Depth of a Reference Point in a Boundary Element 

dΣ     = Differential Element in a Boundary Element Surface 

ie    = Unit Vectors corresponding to Cartesian Frame Axes 

E    = Normal Elastic Modulus 

F     = Magnitude of Force Vector F  
bc

iF     = Body Force Equivalent Concentrated Force 

F     = Force Vector 
bF     = Vector Representing Body Force 

G    = Shear Elastic Modulus 

G     = Loading Matrix 

,i jf    = i

j

f
x

∂
∂  (i, j=1, 2, 3) 

,i if    =
3

1

i

ii

f
x

=

∂
∂∑  

ˆ and K K  = Stiffness Matrix 

L    = Length of a Rectangular Discontinuous Source 

 and inn   = Normal Vector of a Surface Element 

NBE   = Total Number of BE’s in the model 

jp    = jth component of Traction at RABE Surface 

r    = Position Vector 

R     = Radial Distance 

it     = Traction Component i  

it     = Traction Vector of BE i  

T    = Traction Vector 
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kT    = Traction Vector due to a unit force along kx  direction 

u    = Displacement Field Vector 

U    = Dislocation Vector 
m
iU    = Dislocation value in RABE m, in DOFi (i=1, 2, and 3) 

iU    = Dislocation value in DOFi (i=1, 2,  , nDOF) 

ku    = kth component of displacement field (k=1, 2, 3) 

k
iu    = iu due to kth component of Force Vector F   

iu     = Displacement Vector of BE i  

 and p sv v  = P-Wave and S-Wave Velocities of the Medium 

V     = Potential Function 

 and iW W   = Width of a Rectangular Discontinuous Source 

ix    = Cartesian Coordinates of a point in a domain 

Nomenclature (Greek) 
α    = Medium Constant 

δ    = Dip Angle of a Discontinuous Plane 

ijδ    = Kronecker Delta 

∆u    = Displacement Discontinuity Vector 

 and ijεε   = Strain Tensor 

iΦ     =Scalar Components of Galerkin Vector 

Φ     = Galerkin Vector 

Maxγ     = Maximum Shearing Strain 

Γ = ∂Ω    = Boundary of the Model Domain Ω  

 and µ λ   = Lamé Constants 

ν    = Poisson’s Ratio 

π     = Pi number ( 3.14159462 )=   

Ω     = Model Domain 
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Ω    = Dislocation Matrix 

 and iνν   = Normal Vector of a Surface Element 

 and ijσσ  = Stress Tensor 

k
ijσ    = ijσ due to kth component of Force Vector F   

( )in situ j
σ −  = jth component of In-Situ Stress 

Σ     = Boundary Element Surface 

Maxτ     = Maximum Shearing Stress 

iξ    = Cartesian Coordinates of a point in a fracture plane/surface 

iΨ     =Scalar Components of Galerkin Vector 

Ψ     = Galerkin Vector 

Abbreviations . 
BE   = Boundary Element 

BEM   = Boundary Element Method 

DD   = Displacement Discontinuity 

DDDv   = Displacement/Displacement Derivative 

DDM   = Displacement Discontinuity Method 

DOF   = Degree of Freedom 

DOFi   = ith Degree of Freedom (i=1, 2, and 3) 

DSL   = Dip-Slip-Like 

iDOF   = ith Degree of Freedom in the model (i=1, 2,   ,nDOF) 

jDOF   = jth Degree of Freedom in the model (j=1, 2,   , nDOF) 

nDOF   = Number of available DOFs in the model 

EGS   = Enhanced Geothermal System 

FDM    = Finite Difference Method 

FEM   = Finite Element Method 

FSM   = Fictitious Stress Method 

KGD   = Khristianovich-Geertsma-de Klerk Model 

RABE   = Rectangular Boundary Element 
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RSOLE   = Real System of Linear Equations 

XFEM   = Extended Finite Element Method 

HF   = Hydraulic Fracturing 

Obs.   = Observation 

Obs. P.   = Observation Point (Same as PoI) 

PDE   = Partial Differential Equation 

PKN   = Perkins-Kern-Nordgren Model 

PoI    = Point of Interest (Same as Obs. P.) 

RABE   = Rectangular Boundary Element 

SER   = Strain Energy Release 

SIF   = Stress Intensity Factor 

SSL   = Strike-Slip-Like 

TL   = Tensile-Like 
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Appendix A: Explanation of Parameters and  
Variables Involved in Equations  
Which Are Given in Table 2.3 to 
Table 2.6 

For better understanding of all parameters and variables that are included in 

equations, Figure A. 1is illustrated.   It shows a side view of a rectangular source with its 

image pair.   It needs to be mentioned that axis ξ  is perpendicular to the page at 

observation point and it is inward.    

 
Figure A. 1—Side view of A finite rectangular source with its image pair. 

Axes 1x , ξ , and ξ ′  are perpendicular to the page.   Axes 1x  and 

ξ ′are outward, but axis ξ at observation point is inward. 
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However, axis ξ ′  is perpendicular at 3x c= − .   Axis 1x  is perpendicular at origin of global 

coordinate system 1 2 3Ox x x .   Both ξ ′  and 1x  are outward.   To find the influence of 

rectangular source at observation point, the influence of a differential source has to be 

integrated along the rectangular source.   Namely, 

1

1
1 2 3 0 0

1

2

2

3 3

( , , ) ( , ) ( , )

cos sin
sin cos
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 (A.1) 

In Figure A. 1, and Table 2.3 to Table 2.6 we have, 

1 2 3

3

2

2

3
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2 2 2 2 2 2
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sin cos

cos
( )cos cos sin
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= + = −
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 (A.2) 

Variables in (A.2) are Cartesian-Coordinate related.   They are derived to convert Cartesian 

frame from Global 1 2 3Ox x x  to Local Pξη  which is attached to point of interest (say 

observation point) and parallel to discontinuous rectangular image source.   This 

conversion simplifies the analysis significantly and eliminates most of the negative signs.   
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To condensate long equations in above-mentioned tables, some other parameters are 

introduced below which are either material-related or Geometry-related.   All the variables 

and parameters in Equations (A.1) and (A.2) are required in all tables.   Moreover, To 

compute functions in all tables, parameters , ,i i iX Y Z , , , and mn mn mnX Y Z  need to 

be calculated from Equation (A.3). 

 (A.3) 

To compute parameters iI  in Table 2.3, Equations in (A.4) are required. 
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( )3 2

4 1
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I R d I

I I
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ξ δ δ
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 (A.4-Continued) 

Before computing parameters iJ , iK , and iL , some intermediate parameters are necessary 

to be calculated.   These are: 

( )
2
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Parameters iJ  in Equations (A.6) have to be calculated and, then, be substituted in Table 

2.4.  

1 2 3 2 1 4 3 2 52 2
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 (A.6) 

Moreover, parameters E  to Q , and iK , can be calculated by means of Equations (A.7) to 

use in Table 2.5. 
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And finally, before computing equations in Table 2.6, parameters iE′  to iH ′  along with 

iL  have to be obtained from Equations (A.8). 
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Appendix B: Capabilities of HiFrac 3D 

B.1.  Discretization of Fracture(s) 
Since Okada solution is valid for just rectangular element, fractures of arbitrary 

shapes have to be discretized into Rectangular Boundary Elements (RABEs).   In other 

words, a mesh of BEs at fracture surfaces is required to be generated.   Along the thesis, 

Mesh Generation means Fracture Discretization or, shortly, Discretization.   To define an 

agreeable discretization, some assumptions ought to be made. 

 Fracture(s) is/are circular (penny-shaped) or Rectangular shapes.   However, it is 

not an inherent shortcoming and they can be of any shape.   Penny-shaped or 

Rectangular fracture(s) are just our case studies for verification and validation 

purposes. 

 Fracture plane is either horizontal or vertical, but it is not a theoretical mandate.   

By conducting some simple improvements in our tools, oblique fractures can be 

modeled. 

 Pressure due to fluid injection throughout each individual fracture is constant, 

however it is not a theoretical limit.   Variable pressure profile can be applied by 

some simple improvements in our research tools. 

 There is no limit for number of individual fractures or group of fractures (Frac 

Stages).   Furthermore, Fractures may have any arrangements (such as sequential-

frac or zipper-frac).   However, their initial planes must be parallel. 
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B.2.  Grid Generation in the Model Domain 
Since our method does not need domain discretization it, indeed, needs a domain 

grid to obtain all geometrical parameters (such as displacements) and mechanical 

parameters (such as stresses) at points.   For simplicity, these points are located at 

intersection of gridlines which are called Grid-Points or Grid-Nodes.   Grids are 

independent from discretizations, but for better graphical illustrations it is preferred that 

the grids become conformable with BE Meshes in the vicinity of fracture surfaces. 

B.3.  Analysis of Dislocations 
The term dislocation is defined as magnitude of relative displacements between two 

separate fracture surfaces.   It can, also, be called Fracture Aperture.   All dislocation 

components have to be analyzed in order to carry out displacement and displacement 

derivative (DDDv) fields computations at grid-nodes by means of Okada formulation.   

They are required to obtain fracture geometry during pressurizing and next upcoming steps.   

Because of mesh and grid independency, the grid can be altered without need to perform 

new analysis.   Nevertheless, any change in BE mesh will mandate a fresh analysis. 

B.4. Analysis of Displacement/Displacement  
Derivative Fields 

Analysis of displacement and displacement derivative fields is fundamental part of 

our method in that we need to monitor geometry and morphology of fracture(s) during fluid 

injection to detect possible fracture hit in the case of multiple fracture process.   Moreover, 

fracture geometry, i.e. dimensions and aperture, is necessary to analyze and estimate 

productivity and performance of a fractured well.   In addition, according to Equation 
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(2.11), derivative of displacement field components are required to compute strain and 

stress components.   HiFrac 3D is able to compute all the required DDDv components at 

each and every grid-node.   It needs to be reminded that all partial derivatives are computed 

based on closed-form analytical functions discussed in CHAPTER  2.  Hence, we don’t 

need to compute them numerically by using Finite Difference Method or similar methods.   

The only numerical step of our method is discretization of the fracture(s) to approximate 

its/their geometry. 

B.5. Strain and Stress Analysis 
By all displacement derivative field components on hand that obtained from above 

step, all the Cauchy Strain components are computed.    These components along with 

material properties of the domain (reservoir rock) give all the Cauchy Stress components. 

B.6.  Principal Strains, Principal Stresses, and 
Maximum Shear Strain/Stress  

The next step is to analyze and obtain values of principal strains and stresses and 

their corresponding directions.   The values and directions of principal strain/stress are 

resulted to Maximum Shear Strain/Stress.   They are very useful to analyze and locate rock 

failure as a preliminary assessment.   For more accurate rock failure analysis, more 

advanced and comprehensive failure criteria need to be utilized.  

B.7.  Use of Tools 
A computer code to implement the proposed formula is discussed.   For the sake of 

honesty and copyright laws all the utilized tools, codes and softwares are introduced here. 
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First part of the computer code, which is called “HiFrac 3D” was developed in PGI 

FORTRAN 18.5 which supports “New Generation FORTRAN” standards.   Due to end of 

support for integration with Microsoft Visual Studio, the code was transferred to “Intel 

Parallel Studio XE 2018 and 19” for compilation.   Its programming standards are slightly 

different from PGI FORTRAN.   To solve a Real System of Linear Equations (RSOLE), 

LAPACK package was used which consists of hundreds of useful sub-programs for 

numerical analysis.   LAPACK, which stands for Linear Algebra PACKage was developed 

in C, C++, and FORTRAN languages by “The University of Tennessee”, “The University 

of California, Berkeley”, “The University of Colorado, Denver”, and “Numerical 

Algorithms Group (NAG) Ltd.”.   Moreover, to carry out Eigenpair Analysis (Eigenvalues 

and Eigenvectors), Jacobi method was used.   The computer code for Eigenpair analysis 

was developed by John Burkardt at Florida State University.   And finally, Okada, has 

developed a code for his formulation which computes components of displacement and 

displacement derivatives fields for one single finite rectangular source.   His code was 

developed in FORTRAN 77 language.   For the sake of consistency and compatibility, it is 

converted to new generation FORTRAN (FORTRAN 90-2013) in our code. 

Second part of HiFrac3D, is developed in MATLAB for the purpose of Data 

Visualization.   MATLAB, which is a comprehensive package for analysis, visualization 

and simulation, has thousands of sub-programs and toolboxes.   It is widely used by 

researchers and companies. 

The formulation and computer codes are new-of-a-kind, so further developments 

will be necessary to overcome limitations and create more sophisticated models. 
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B.8.  An Example of a Single-Fracture Model 
To show the capabilities of HiFrac 3D, a few examples are provided here.  First, 

we assume input values according to Table B. 1.   It needs to be mentioned that the values 

in Table B. 1 do not belong to a real field data but they were picked so that do not violate 

basics of rock properties.   For instance, in-situ stresses and average rock specific density 

(to calculate overburden stress) are selected carefully. 

 

Table B. 1— Initial Values and Properties for a Single HF Model 

Parameter or Property Value Unit 

Elastic Modulus 60.3404 10E = ×  psi 

Poisson’s Ratio ν = 0.26  Unitless 

Min. Hor. In-Situ Stress min 2600HS = −  psi 

Max. Hor. In-Situ Stress max 2725HS = −  psi 

Average Specific Density of Rock  85γ =  pcf 

Depth of Injection Point 4760D =  ft. 

Radius of Hydraulic Fractures 60R =  ft. 

Extent of the Model Domain 240 240 240× ×  ft. 

Fracture Orientation Vertical (δ = 90° )  

RABE Mesh Size 15 15×   

No. of Grid Spacing Outside Frac. 9  

Injection Pressure at Depth 2720 ( 120p∆ = ) psi 

 

All the graphical results are illustrated in Figure B. 1 to Figure B. 13. 
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Figure B. 1—Geometry of the Fracture After Fluid Injection 

 

  
Figure B. 2—Displacement Field 1u  in Model Domain and Its Gradient 

 

  
Figure B. 3—Displacement Field 2u  in Model Domain and Its Gradient 
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Figure B. 4—Displacement Field 3u  in Model Domain and Its Gradient 

 

  
Figure B. 5— Normal Stress Field 11σ  in Model Domain 

 

  
Figure B. 6— Normal Stress Field 22σ  in Model Domain 
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Figure B. 7—Normal Stress Field 33σ  in Model Domain 

 
 
 

  
Figure B. 8—Shear Stress Fields 12σ , 23σ  in Model Domain 
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Figure B. 9—Shear Stress Fields 13σ  in Model Domain 

 
 

  
Figure B. 10—Principal Stress Field 1pσ in Model Domain 
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Figure B. 11—Principal Stress Field 2pσ in Model Domain 

 
 
 

  
Figure B. 12—Principal Stress Field 3pσ in Model Domain 
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Figure B. 13—Maximum Shearing Stress Field Maxτ in Model Domain and Its 

Orientation 
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It needs to be mentioned that, in Figure B. 5,  Figure B. 6,  and Figure B. 7, which illustrate 

stress field components 11σ , 22σ , and 33σ  respectively, some grid-nodes are selected 

either at fracture face or well further from it for verification purposes.   For instance, 11σ  

in Figure B. 5 which is aligned with maximum in-situ stress, the value well matches with 

it.   Or take a look at Figure B. 6 to see stress field component, 22σ .   The value at fracture 

face is exactly equal to fluid injection pressure; however, the other grid-node outside of 

fracture is in a great match with minimum in-situ stress in Table B. 1.   In addition, all the 

principal stress vectors have, also, been illustrated in Figure B. 10  to  Figure B. 12.   They 

are all the same for these figures.   However, the contour is different and corresponds to 

labels mentioned on top of them.   Some of the general information is given about the 

model simulation in Table B. 2. 

 

Table B. 2— General Information About a Single-Fracture Model 

Parameter or Property Value 

Total No. of RABEs 177 

Total No. of Grid Nodes 24’500 

Total No. of Degrees of Freedom 531 

Dislocation Analysis Time in Stage 1 ( = ∆KU P ) 0.199 min. 

DDDv Analysis Time (Okada’s Formulation) 0.501 min. 

Strain/Stress Analysis in Stage 1 0.002 min. 

Total Analysis Time 0.528 min. 
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B.9. An Example of a Multiple Hydraulic  
Fractures in Two Separate Stages 

If fractures are far apart their interactions need not be considered. But often 

fractures do interact, for example in a hydraulic fracture stage.   Currently, according to 

Figure B. 14,  Stage 1 and Stage 2 can be simulated sequentially because of no interactions 

between them.  However, it cannot simulate Stage 1 and Stage 3 sequentially, because they 

are so close and might interact to each other.   For the case of zipper-frac, fractures in Stage 

1 and stage 2, have to be outside of stress-shadow margin to be simulated perfectly.   If 

fractures are within stress-shadow, our simulation might not be accurate enough. 

 
Figure B. 14—A Schematic to Two Types of Hydraulic Fracture Configurations. 

Now, we are going to simulate a two-stage multi-fracture project to show the 

capabilities of our simulator.   Fractures are assumed to be rectangular.   Initial data to 

define the model are based on Table B. 3. 
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Table B. 3— Initial Values and Properties for a Two-Stage Multi-HF Model 

Parameter or Property Value Unit 

Elastic Modulus 60.3404 10E = ×  psi 

Poisson’s Ratio ν = 0.26  Unitless 

Min. Hor. In-Situ Stress min 2600HS = −  psi 

Max. Hor. In-Situ Stress max 2725HS = −  psi 

Average Specific Density of Rock  85γ =  pcf 

Depth of Injection Point 4760D =  ft. 

Half-Lengths of HFs in Stage 1 hf hf 60 15x yL L× = ×  ft.×  ft. 

RABE Mesh Size in Stage 1 17 5×   

Frac. Spacing in Stage 1 20s =  ft. 

Number of HFs in Stage 1 4n =   

Half-Lengths of HFs in Stage 2 hf hf 70 17x yL L× = ×  ft.×  ft. 

RABE Mesh Size in Stage 2 19 7×   

Frac. Spacing in Stage 2 25s =  ft. 

Number of HFs in Stage 2 3n =   

Distance Between Stages 65 ft. 

Extent of the Model Domain 280 315 80× ×  ft. 

Fracture Orientation Vertical (δ = 90° )  

No. of Grid Spacing Outside Fracs. 9  

Injection Pressure at Depth in Stage 1 2720 ( 120p∆ = ) psi 

Injection Pressure at Depth in Stage 2 2735 ( 135p∆ = ) psi 

 

Figure B. 15  and  Figure B. 16 both illustrate the geometry of the model after fluid 

injection.   Top and left figures in abovementioned figures show the geometry based on 
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dislocation components obtained by analysis od system of equilibrium equations.   In 

addition, bottom and right figures show deformed shape of the fractures by applying 

displacement field components near boundary element faces.   Because of interaction 

between fractures in each stage, the results are different.   Moreover, middle fractures have 

less apertures than those of side fractures.   Some researchers have addressed this 

phenomenon in literatures (Abbas et al. 2014).   It is obvious that deformed shape based 

on displacement field components is more accurate and applying analyzed dislocations to 

boundary elements is not a good idea. 

 

 
Figure B. 15— 3D View Geometry of Two-Stage Multi-Fracture Problem  
After Fluid Injection.   Top Figure is Based on BE Dislocations.   Bottom  

Figure is Based on Displacement Field Near BE Faces. 
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Figure B. 16— Top View Geometry of Two-Stage Multi-Fracture Problem  

After Fluid Injection.   Left Figure is Based on BE Dislocations.   Right  
Figure is Based on Displacement Field Near BE Faces. 

 

Now that there are interactions between fractures in each stage, it is better to 

investigate mid-planes of the fractures after fluid injection.    

 
Figure B. 17—Mid-Planes of fractures after Deformation 
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As it is seen in Figure B. 17, mid-planes of the fractures have been deviated from straight 

surface prior to pressurization.   For relatively long fractures, frac hit is likely.   These two 

issues, may have negative impact on productivity of fractured wells (King et al. 2017; 

Rainbolt and Esco 2018). 

 

 
Figure B. 18—Displacement Field 2u  and its gradient 



118 

Like the case of single fracture problem in section B.8, we illustrate displacement field and 

its gradient for better understanding of the state of displacement.   Here, we just show 

displacement component 2u  which can be found in Figure B. 18.   Stress components 11σ

, and 22σ  are illustrated in Figure B. 19.   The values shown in sample grid-nodes at or 

outside fracture faces are in perfect match with in-situ stress and injection pressure values 

mentioned in Table B. 3. 

And finally, state of principal stresses and maximum shearing stress including their 

corresponding orientations are depicted in Figure B. 20  and  Figure B. 21. 

As a result, in this specific problem, it is clear that maximum shearing stress below 

hydraulic fracture zone is high due to increasing overburden stress.   Therefore, existence 

of natural fractures is more likely below fractures than other zones. 

Now that the analysis and simulation is complete, it is a good idea to take a look at 

general information in Table B. 4.   Total number of degrees of freedom in this model is 

2’217 and the analysis took about 5.748 min.   Total number of grid-nodes is 57’798.   If 

we were to simulate the same problem with FEM or any similar method, it would have 

about 173’400 degrees of freedom. 
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Figure B. 19—Stress Field Components 11σ , and 22σ .   Sample  

grid-nodes are selected for verification purposes. 
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Figure B. 20—Principal Stress Components and Their Corresponding  

Vectors Around Fractures. 



121 

 

 
Figure B. 21—Maximum Shearing Stress Field and Its Orientation. 

Therefore, a system of 173’400 equilibrium equations must be solved to obtain all 

unknowns.   Dealing with that system would require us to use supercomputers.   Without 

using supercomputers, the solution could take days or even weeks by regular PCs or 

laptops.   But in our method, we just need to deal with a system of 2’217 equilibrium 

equations.   Our proposed method can save a lot of time and money.   We will verify and 

validate out model in next chapter.   During verification and validation, the accuracy of our 

methods will be cleared. 
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Table B. 4— General Information About a Two-Stage Multi-Fracture Model 

Parameter or Property Value 

Total No. of RABEs 739 

Total No. of Grid Nodes 57’798 

Total No. of Degrees of Freedom in Stage 1 1’020 

Dislocation Analysis Time in Stage 1 ( = ∆KU P ) 0.766 min. 

DDDv Analysis Time (Okada’s Formulation) 3.033 min. 

Strain/Stress Analysis in Stage 1 ≈ 0.000 min. 

Total No. of Degrees of Freedom in Stage 2 1197 

Dislocation Analysis Time in Stage 2( = ∆KU P ) 0.121 min. 

DDDv Analysis Time (Okada’s Formulation) 2.248 min. 

Strain/Stress Analysis in Stage 2 ≈ 0.000 min. 

Total No. of Degrees of Freedom in the Model 2’217 

Dislocation Analysis Time in the Model ( = ∆KU P ) 0.197 min. 

DDDv Analysis Time (Okada’s Formulation) 5.508 min. 

Strain/Stress Analysis in the Model ≈ 0.000 min. 

Total Analysis Time 5.748 min. 
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