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Abstract 

There is a near consensus among climate scientists that global temperatures are rising, 

climate variability will increase, and climate extremes will become more extreme. What is 

debated, however, is how terrestrial ecosystems and croplands will respond to these predicted 

changes in climate. The global carbon flux budget is largely driven by terrestrial photosynthesis 

and croplands are the foundation of global food security. Thus, the impact of changes in climate 

on terrestrial ecosystems and croplands has received considerable attention in recent decades. 

My overall objective was to identify how drought and pluvial events affect croplands in 

Oklahoma and the Amazon rainforest so that these responses can be incorporated into earth 

system models that simulate the impact on and feedbacks between climate and vegetation. 

In this study, I hypothesized that the responses of grassland, winter wheat (Triticum 

aestivum L.), other C3 cropland, and C4 cropland to drought and pluvial events are largely 

determined by their respective photosynthetic pathway and landowners’ ability or inability to 

irrigate. The specific objective was to analyze the response of gross primary production (GPP) 

for irrigated and non-irrigated grasslands, winter wheat, other C3 croplands, and C4 croplands in 

Caddo County, Oklahoma to the 2011 drought and pluvial 2015. For this analysis, we used four 

datasets each year from 2010 to 2016: (1) satellite-based GPP data from the Vegetation 

Photosynthesis Model (GPPVPM) (Jin et al. 2015; Zhang et al. 2017a); (2) the MODIS GPP 

product (GPPMOD17) (Running and Zhao 2015); (3) the Cropland Data Layer (CDL); and (4) 

irrigation permit data from the Oklahoma Water Resources Board (OWRB). Our analysis 

included three main steps: (1) compare GPP estimates at three eddy flux towers (GPPEC) placed 

in sites with native grassland, old world bluestem pasture (Bothriochloa caucasica C.E. Hubb.), 

and winter wheat in El Reno, Oklahoma, with GPPVPM and GPPMOD17; (2) compare 8-day, intra-
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annual GPPVPM estimates in 2011, 2013, and 2015 for eight 500 m pixels, one each for irrigation-

permitted and non-permitted grasslands, winter wheat, other C3 croplands, and C4 croplands in 

Caddo County; and (3) analyze the responses of each land cover type at the county scale to the 

2011 drought and pluvial 2015. 

I also sought to advance our scientific knowledge on how the Amazon rainforest responded 

to extreme climate events. I used monthly SIF data from GOME-2 and OCO-2, gross primary 

production estimates from the Vegetation Photosynthesis Model (GPPVPM), and MODIS-based 

vegetation indices for 2007-2017 to investigate 1) to what degree were the seasonality of SIF, 

photosynthesis, and greenness of moist tropical forests consistent with each other, and 2) how did 

dry-season SIF, photosynthesis, and greenness change during the strong El Niño (2010 and 2016) 

and La Niña years (2008 and 2011). I hypothesized that the forested Amazonian sites have 

increased SIF, photosynthesis, and greenness during the dry-season, and that dry-season SIF, 

productivity, and greenness are enhanced during the two El Niño years but reduced during the two 

La Niña years. The rationale is that leaf flush and phenology drive the dry-season greening of the 

moist tropical Amazon forest and that productivity will be enhanced in drier dry seasons due to 

increased sunlight and a lack of water limitation. To further investigate the seasonality of SIF in 

the Amazon, I also analyzed SIF data from the TROPOspheric Monitoring Instrument 

(TROPOMI), which launched in October 2017. The data from the satellite, also called the Sentinel-

5 Precursor, has a spatio-temporal resolution of 3.5 km by 7 km with near-daily global coverage. 

I also conducted a global comparison of SIF with GPP and vegetation indices to investigate if SIF 

better captures vegetation dynamics in some regions on Earth, and to determine which vegetation 

index best agrees with SIF in space and time. 
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Chapter 1: Introduction 

1.1 Background 

At the state level, the spatial impact of drought and pluvial events on croplands in 

Oklahoma is largely unknown because agricultural statistics are country-level at best. Moreover, 

the impact of climate extremes on Oklahoma’s irrigated croplands has not been studied. Thus, to 

address this lack of knowledge I aimed to address these state-level issues by determine the 

impact of drought, pluvial, and irrigation on the gross primary production of grasslands and 

croplands in Oklahoma. 

Globally, the Amazon rainforest is the largest contributor to global gross primary 

production (GPP), and the biomass of the high-latitude forests are the largest stores of terrestrial 

carbon. The impact of drought on the productivity of the Amazon and rising global temperatures 

on high-latitude forests are hotly debated topics. I contributed to these debates by 1) evaluating 

the seasonality of and determining the impact of La Niña and El Niño on dry-season solar-

induced chlorophyll fluorescence (SIF), photosynthesis, and greenness for moist tropical 

Amazon forests. 

1.2 Objectives 

Terrestrial ecosystems are the largest portion of the global carbon flux budget and are the 

largest contributor to terrestrial precipitation. However, what is not known is how terrestrial 

ecosystems will respond to future expected changes in climate. My long-term goal is to improve 

knowledge of how terrestrial ecosystems respond to extreme climate events. The overall objective of 

my research is to identify the roles of specific terrestrial ecosystems in biogeochemical cycling and 

the factors that drive and affect those roles, so that we can better understand how perturbations in one 

ecosystem may affect the global biogeochemical cycle. 
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My central hypothesis is that the impacts of drought, pluvial, and land-cover and land-use 

change on terrestrial ecosystems are highly variable and heterogenous across space and time. The 

rationale for my research is that a better understanding of how terrestrial ecosystems respond to 

perturbations in climate and how changes in land-cover affect the biogeochemical cycle is critical to 

forecasting the effect of climate change on these systems and to making informed decisions aimed at 

mitigating those effects. 

My specific objectives were to: 

1. Determine the impact of drought, pluvial, and irrigation on the gross primary production of 

grasslands and croplands in Oklahoma.  

2. Evaluate the seasonality of and determine the impact of La Niña and El Niño on dry-season 

solar-induced chlorophyll fluorescence (SIF), photosynthesis, and greenness for moist 

tropical Amazon forests.  

3. Assess the seasonality of TROPOMI SIF during the dry season in the Amazon.  

4. Determine where TROPOMI SIF is inconsistent with GPP and vegetation indices.  

1.3 Organization of the dissertation 

This dissertation consists of one introductory chapter, four main chapters, and one 

summary chapter. Chapters 2 and 4 have been published in peer-reviewed journals. Chapter 3 has 

been reviewed by two different journals and I am revising it for resubmission. Chapter 5 remains 

in preparation, but it will soon be submitted to a high impact journal.  

Chapter 2: Responses of gross primary production of grasslands and croplands under 

drought, pluvial, and irrigation conditions during 2010-2016, Oklahoma, USA 

For this study, I used irrigation data from the Oklahoma Water Resources Board (OWRB), 

eddy covariance towers El Reno, Oklahoma, Cropland Data Layer (CDL), Vegetation Photosynthesis 
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Model (VPM), and MODIS. I hypothesized that the responses of grassland, winter wheat, other C3 

cropland, and C4 cropland to drought and pluvial events are largely determined by their respective 

photosynthetic pathway and landowners’ ability or inability to irrigate. 

Chapter 3: Dry-season greenness, fluorescence, and photosynthesis of moist tropical forests in 

the Amazon 

I used SIF data from GOME-2 and OCO-2, the Vegetation Photosynthesis Model, vegetation 

indices derived from MODIS, and climate data from National Centers for Environmental Prediction 

(NCEP) Reanalysis 2 and the Tropical Rainfall Measuring Mission. I hypothesized that 1) SIF, 

photosynthesis, and greenness increases during the dry season for moist tropical Amazon forests; 2) El 

Niño enhances dry-season SIF, photosynthesis, and greenness; and 3) La Niña suppresses dry-season 

SIF, photosynthesis, and greenness. 

Chapter 4: TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence 

in the Amazon forest 

For this study, I collaborated with colleagues at NASA’s Jet Propulsion Lab and CalTech in 

Pasadena, California to evaluate data from a newly launched spaceborne platform, TROPOspheric 

Monitoring Instrument (TROPOMI), to investigate if there was a seasonality of TROPOMI SIF that 

matched previously published EVI and GPP data. I hypothesized that the seasonality of TROPOMI 

SIF would match GPP as estimated using eddy covariance flux data and spaceborne vegetation 

indices. 

Chapter 5: Inconsistencies between TROPOMI solar-induced chlorophyll fluorescence, 

gross primary production, and vegetation indices 

Using TROPOMI SIF data, I conducted global spatial and temporal comparisons of TROPOMI 

SIF with GPP from VPM, GPP as estimated by the Moderate Resolution Imaging Spectroradiometer 
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(MODIS) product, and three vegetation indices, near infrared reflectance of vegetation (NIRv), the 

enhanced vegetation index (EVI), and the normalized difference vegetation index (NDVI), to 

determine where GPP and VIs disagreed with TROPOMI SIF. I hypothesized that 1) TROPOMI SIF 

could better track the dynamics of vegetation function, especially in sparsely vegetated, wet, inundated, 

and/or cloudy regions; 2) NIRv is more consistent with SIF and GPP than EVI; and 3) bidirectional 

reflectance distribution function adjusted and non-adjusted surface reflectance have similar 

consistencies with SIF. 
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Chapter 2: Responses of gross primary production of grasslands and croplands under 

drought, pluvial, and irrigation conditions during 2010-2016, Oklahoma, USA 

Abstract 

To accurately estimate the terrestrial carbon cycle and food production, it is essential to understand 

how gross primary production (GPP) of irrigated and non-irrigated grasslands and croplands 

respond to drought and pluvial events. This study analyzed annual GPP of irrigation-permitted and 

non-permitted grasslands, winter wheat (Triticum aestivum L.), other C3 croplands, and C4 

croplands in Caddo County of western Oklahoma from 2010 through 2016, a period which 

consisted of extreme drought (2011) and pluvial events (2015). First, we compared GPP from the 

Vegetation Photosynthesis Model (GPPVPM) and GPP data from the Moderate Resolution Imaging 

Spectroradiometer (GPPMOD17) with GPP estimates from three eddy covariance towers (GPPEC) in 

Oklahoma. GPPVPM more accurately estimated mean daily GPPEC at each of the three sites than 

GPPMOD17. Second, we analyzed the seasonal and interannual dynamics of GPPVPM for eight pixels, 

one each for the four irrigation-permitted and non-permitted land types. The interannual variation 

of GPPVPM was due to the complexity of decision making and practice for irrigation, cropping 

intensity, and crop types. Finally, at the county scale, annual GPPVPM from the 2011 drought and 

pluvial 2015 were compared with mean annual GPPVPM from the other 5 years of the study period. 

The results show that for the 2011 drought: 1) non-permitted C4 croplands had the largest 

percentage decrease in GPP, but permitted C4 croplands had the smallest decrease; 2) regardless 

of water rights, GPP was significantly lower than the 5-year reference mean for grasslands, winter 

wheat, and other C3 crops; and 3) non-permitted lands were more affected by drought than 

irrigation-permitted lands, except for grasslands, which had similar percentage reductions in GPP. 

Results for the pluvial year 2015 show that: 1) GPP was significantly higher for grasslands, winter 
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wheat, and non-permitted C3 croplands than the 5-year reference mean, but there was no 

significant difference in GPP for irrigation-permitted C3 croplands or non-permitted C4 croplands; 

and 2) GPP for C4 irrigation-permitted croplands was lower than the 5-year reference mean. Crop-

specific responses to drought and pluvial events largely depend on a landowner’s ability to irrigate, 

and caution should be used when assessing or generalizing how crops respond to climate 

variability, drought, and pluvial conditions in the absence of irrigation-related data. 

2.1 Introduction 

Drought can severely reduce forage, hay, crop, and livestock production, resulting in economic 

losses, reduced employment, and increased commodity prices that have spillover effects into other 

non-agricultural markets (Ziolkowska 2016). Similarly, flooding and heavy precipitation events 

can cause crop damage and reduce yields (Rosenzweig et al. 2002). However, sustainable food 

production needs more knowledge about landscape-scale, crop-specific responses to drought and 

pluvial events and the role of irrigation in those responses to changes in climate. Recent studies 

have used MODIS and Landsat data products to estimate crop yield at large spatial scales 

(Doraiswamy et al. 2004; Xin et al. 2013), but they did not consider a water management 

component because it is largely unknown how crops respond to irrigation at the landscape scale 

(Yuan et al. 2015). More specifically, He et al. (2018) expected that more specific model 

calibrations for irrigated and non-irrigated crops would increase the precision of their crop yield 

estimates. 

Although national agricultural survey and economic data can give us insight into how 

extreme weather events and changes in climate have affected crop-specific yields and market 

prices, such data does not provide wisdom on the physiological responses of vegetation to drought 

and pluvial events at high temporal or spatial resolution. Similarly, meteorological drought indices, 
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such as the Palmer Drought Severity Index (PDSI) (Palmer 1965) and the Standardized 

Precipitation Index (SPI) (McKee et al. 1993), are widely used as indicators of drought, but they 

do not measure plant productivity. Agricultural drought indices, such as the Crop Moisture Index 

(CMI) (Palmer 1968), often use soil moisture to indicate drought, but they are not an explicit 

indicator of vegetation stress and fail to capture variances in soil moisture due to irrigation at the 

field scale. Satellite-based remote sensing vegetation indices (VIs), such as the greenness-related 

Enhanced Vegetation Index (EVI) (Huete et al. 2002; Huete et al. 1997a; Justice et al. 1998), and 

water-related VIs such as Normalized Difference Water Index (NDWI) (Gao 1996b) and Land 

Surface Water Index (LSWI) (Xiao et al. 2004; Zhou et al. 2017b), have been used as proxies for 

several biophysical and biochemical variables such as plant response to drought (Bajgain et al. 

2016; Bajgain et al. 2015; Wagle et al. 2014) and rainfall (Chandrasekar et al. 2010), leaf area 

index (Boegh et al. 2002), canopy chlorophyll content (Blackburn 1998; Gitelson et al. 2005), and 

gross primary production (the total amount of carbon fixed by plants) (Wagle et al. 2015). 

However, satellite-based remote sensing techniques have not yet been developed to capture 

landscape-scale irrigation activities with high accuracy at interannual timescales (Masoner et al. 

2003; Ozdogan et al. 2010). Thus, irrigated and non-irrigated crop-specific responses to drought 

and pluvial events remain unknown at large spatial scales. 

The response of vegetation to drought and pluvial events are not only determined by 

external factors such as temperature, precipitation, and sunlight, but also by the species’ 

photosynthetic pathways. Generally, plants with the C3 photosynthetic pathway are less drought-

resistant than plants that perform C4 photosynthesis (Nayyar and Gupta 2006; Tilman and 

Downing 1994). Previous studies have shown that C4 plants (1) have a higher quantum yield 

(Ehleringer et al. 1997), or light use efficiency (LUE) (Chen et al. 2011; Haxeltine and Prentice 
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1996; Xiao 2006), in that they can fix more CO2 per photon absorbed by chlorophyll than C3 

plants; and (2) have a higher water use efficiency (WUE) (Hsiao and Acevedo 1974; O'Leary 

1988), in that they can fix more CO2 per molecule of water than C3 plants.  Thus, the response of 

a monoculture to drought and pluvial events are expected to differ for C3 or C4 crop species 

(Chaves et al. 2003), and the response of grasslands depends upon the ratio of C3 to C4 species in 

the grassland community (Tilman and Downing 1994). 

In this study, we hypothesized that the responses of grassland, winter wheat (Triticum 

aestivum L.), other C3 cropland, and C4 cropland to drought and pluvial events are largely 

determined by their respective photosynthetic pathway and landowners’ ability or inability to 

irrigate. The specific objective of this study was to analyze the response of gross primary 

production (GPP) for irrigated and non-irrigated grasslands, winter wheat, other C3 croplands, and 

C4 croplands in Caddo County, Oklahoma (Fig. 2.1) to the 2011 drought and pluvial 2015. 

 

Figure 2.1| Location of Caddo County, Oklahoma, United States. 
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2.2 Materials and Methods 

For our analysis, we used four datasets each year from 2010 to 2016: (1) satellite-based 

GPP data from the Vegetation Photosynthesis Model (GPPVPM) (Jin et al. 2015; Zhang et al. 

2017a); (2) the MODIS GPP product (GPPMOD17) (Running and Zhao 2015); (3) the Cropland Data 

Layer (CDL); and (4) irrigation permit data from the Oklahoma Water Resources Board (OWRB). 

Our analysis included three main steps: (1) we compared GPP estimates at three eddy flux towers 

(GPPEC) placed in sites with native grassland, old world bluestem pasture (Bothriochloa caucasica 

C.E. Hubb.), and winter wheat in El Reno, Oklahoma, with GPPVPM and GPPMOD17; (2) we 

compared 8-day, intra-annual GPPVPM estimates in 2011, 2013, and 2015 for eight 500 m pixels, 

one each for irrigation-permitted and non-permitted grasslands, winter wheat, other C3 croplands, 

and C4 croplands in Caddo County; and (3) we analyzed the responses of each land cover type at 

the county scale to the 2011 drought and pluvial 2015. For steps 2 and 3, we determined which 

500 m GPPVPM pixels were suitable for study in each year 2010-2016 using the workflow 

illustrated in Fig. 2. 



11 
 

 

Figure 2.2 | The workflow used to determine which 500 m pixels were a majority irrigation-
permitted and non-permitted grasslands or croplands for each year 2010-2016. 

2.2.1 Study area 

The state of Oklahoma, located in the Southern Great Plains of the United States (US), has 

been characterized as being in a region with reoccurring periods of drought (Basara et al. 2013; 

Christian et al. 2015), heavy rainfall events (McCorkle et al. 2016), high variability in precipitation 

(Weaver et al. 2016), and increased climate variability (Flanagan et al. 2017b). For Oklahoma, a 

period of prolonged drought began in 2011 (Fernando et al. 2016; Flanagan et al. 2017a) and 

persisted for most of the state until May 2015 when it was broken by record amounts of 
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precipitation (Oklahoma Climatological Survey 2015). Thus, these dipolar climate events in 

Oklahoma provided a suitable region in which we were able to conduct our study. 

We selected a Caddo County, Oklahoma as our pilot study area because it has a high 

concentration of both irrigation-permitted and non-permitted land (Fig. 2.3(a)) and the county 

experienced the extreme climate events of 2011 and 2015. Apart from a brief break in the drought 

in the spring of 2012, no less than 60% of Caddo County was in climatological drought for 4.5 

years, from January 2011 to May 2015 (Fig. 2.4). Entering 2015, 100% of the county was in 

drought. However, 2015 became the wettest year on record for Caddo County with precipitation 

of 1285 mm as recorded by the Fort Cobb Mesonet station in Caddo County, beating the old record 

set in 1923 by 61 mm (Oklahoma Climatological Survey 2017a). 

 

Figure 2.3 | Spatial distribution of (a) irrigation-permitted land, (b) grass/pasture and winter wheat, 
and (c) C3 and C4 croplands in Caddo County. 
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Figure 2.4 | Drought severity for Caddo County and the Upper Washita River Watershed 2010-
2016. Adapted from United States Drought Monitor (2017). 

The predominant geologic formation in the study area is the Permian-age Rush Springs 

formation, which is composed of cross-bedded, fine-grained sandstone with some dolomite and 

gypsum beds ranging from 57 to 91 meters in thickness (Becker and Runkle 1998). Soils in Caddo 

County are characterized as dark and loamy with clayey to loamy subsoils developed on Permian 

shales, mudstones, sandstones and/or alluvial deposits under tall grasses (Carter and Gregory 

2008). 

Caddo County largely overlies the Rush Springs Aquifer, a bedrock aquifer that has 

provided adequate flow for irrigation in the northern portion of the county. The Rush Springs 

Aquifer is the second most developed aquifer in the state after the Ogallala Aquifer (Oklahoma 

Water Resources Board 2012). Some irrigation wells have been reported to produce over 3,785 

liters of water a minute, and daily crop irrigation water use (159 million liters) accounts for 77.8% 

of daily water withdrawals on average (Becker and Runkle 1998). Due to the accessibility of 

groundwater from the Rush Springs Aquifer and the high density of irrigation-permitted lands, 

Caddo County ranked third in the state of Oklahoma for area of land permitted for irrigation (438 

km2) as a proportion of the county’s total land area (13.1%) in 2016. There were 1062 active 

permits in the county for irrigation during the 2016 planting season. The total area of land in the 
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county dedicated to active irrigation permits was 43.5% of the county’s total cropland area (1006 

km2) (Oklahoma Water Resources Board 2017). 

Natural vegetation types in Caddo County are primarily tallgrass prairie dominated by little 

bluestem (Schizachyrium scoparium) and post oak-blackjack forest (Hoagland 2000; Johnson and 

Luza 2008). The grasslands classification used in our study includes native prairies, improved 

pastures, hay fields, and open herbaceous spaces as classified by the Cropland Data Layer (CDL). 

Average annual temperature and precipitation for Caddo County are 16 ℃ and 816 mm, 

respectively (Oklahoma Climatological Survey 2017a). Most of the precipitation falls in late spring 

and early summer, with May and June being the wettest months, and the average growing season 

is 208 days in length (Oklahoma Climatological Survey 2017b).  

 Caddo County has been an important contributor to Oklahoma’s agricultural industry. In 

2016, Caddo County ranked second among all counties in sheep inventory (2,000 head) and third 

in beef cattle (49,000 head) and hog inventories (60,000 head). The county ranked sixth in acres 

of cotton (12,600) and sorghum (9,900) planted, eighth in acres of alfalfa harvested (4,300), twelfth 

in acres of other harvested hay (50,000), and thirteenth in the number of acres planted for wheat 

(173,500) (United States Department of Agriculture National Agricultural Statistics Service 

Oklahoma Field Office 2017). 

2.2.2 Data and preprocessing methods 

2.2.2.1 Cropland Data Layer (CDL) 2010-2016 

The Cropland Data Layer (CDL) is produced annually by the United States Department of 

Agriculture (USDA) to provide acreage estimates to the Agricultural Statistics Board for the state's 

major commodities. The first CDL dataset became available for Oklahoma in 2007. The spatial 

resolution of the data layer was 56 m from 2007 to 2009, but beginning in 2010 the resolution was 
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30 m. Thus, this study uses CDL data from 2010 to 2016 so that interannual comparisons can be 

made at the same spatial resolution. The overall accuracy of the CDL dataset for Oklahoma ranges 

from 80.3% in 2014 to 92.2% in 2012, and annual crop-specific accuracies are reported for the 

dominant crops in Caddo County in Table 2.1 as published in the CDL metadata 

(https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php). For a 

complete list of crop type classifications, see Table S2.1. 

Table 2.1. Overall and crop-specific accuracies of the Oklahoma Cropland Data Layer (CDL) 
2010-2016 as reported in the CDL metadata. PA is producer’s accuracy, and UA is user’s 
accuracy rounded to the nearest 1 percent. 

 C3 Crops C4 Croplands  
Year Winter 

Wheat 
Cotton Canola Alfalfa Rye Corn Sorghum Overall 

PA UA PA UA PA UA PA UA PA UA PA UA PA UA 
2010 92 95 89 85 71 96 78 84 67 59 89 90 68 73 84 
2011 92 93 79 78 68 91 68 83 57 64 89 90 51 64 83 
2012 95 97 92 90 97 94 92 94 80 77 93 97 82 86 92 
2013 94 93 80 78 71 84 83 85 64 65 90 85 72 71 83 
2014 90 93 93 78 80 71 79 76 69 54 89 89 75 71 80 
2015 96 92 86 81 71 92 80 87 48 73 89 91 82 82 86 
2016 96 90 87 82 77 98 82 88 54 76 93 92 79 81 85 

 

The CDL dataset incorporates non-agricultural land cover types (e.g., grasslands) from the 

National Land Cover Database (NLCD), which is updated every 5 years. In 2014, all CDL datasets 

were recoded by combining Pasture/Grass, Grassland Herbaceous, and Pasture/Hay categories into 

a single category named Grass/Pasture (United States Department of Agriculture National 

Agricultural Statistics Service 2017) due to inconsistencies and large margins in error when 

attempting to break grasslands into different categories (Wickham et al. 2017; Wickham et al. 

2013). The CDL Grass/Pasture category for 2010-2013 was derived from the 2006 NLCD, and the 

Grass/Pasture category for 2014-2016 was derived from the 2011 NLCD (United States 

Department of Agriculture National Agricultural Statistics Service 2017).  
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For this study, we grouped the multitude of vegetative land cover types (Table S2.1) into 

four categories: grasslands, winter wheat, other C3 croplands, and C4 croplands. Pixels in which 

double-cropping occurred in a year were excluded from the study. Winter wheat was considered 

separately from the other C3 crops because winter wheat is the dominant cropland type in the 

region and the crop has a different growing season and irrigation regime relative to other C3 crops. 

More specifically, winter wheat was expected to respond differently to drought than crops planted 

in the spring and summer months, which are characterized by high temperatures and low amounts 

of precipitation. Crops with the C3 photosynthetic pathway were expected to respond differently 

to water and temperature stress than C4 crops given the greater LUE and WUE of C4 plants 

(Ehleringer et al. 1997; Epstein et al. 1997).  

The spatial distribution of grasslands, winter wheat, other C3 croplands, and C4 croplands 

for 2016 in Caddo County are illustrated in Fig. 2.3(b,c). According to the 2016 CDL, Caddo 

County was approximately 49% grassland, 31% cropland, 11% forest and shrubland, 6% 

developed, 2% fallow and barren, 1% open water, and 0.02% wetland. The county’s croplands 

were dominated by winter wheat, which constituted 85% of the total single-cropland area, with 

other C3 and C4 crops comprising 11% and 3.5% of the cropland area, respectively. Double-crop 

systems were 3.4% of the total cropland area. The predominant C3 crops among those classified 

by the CDL were cotton, canola, alfalfa, and rye. Corn and sorghum were the only C4 crops. 

2.2.2.2 Water rights data during 2010-2016 

The Oklahoma Water Resource Board (OWRB) provided a geospatial vector dataset that 

is updated monthly and documents all statewide groundwater and surface water rights permits. 

Applicants for any type of water right must declare whether water will be used for public water 

supply, recreation, livestock, irrigation, or some other use. Groundwater right applicants must 
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dedicate one acre to their water rights permit for each two acre-feet they wish to utilize each year 

but are not required to report where the water will be used. For groundwater irrigation permits 

issued after 1973, the well supplying the groundwater must be located on the dedicated land. Thus, 

it is generally assumed that the water will be used on the land dedicated to the water rights permit 

due to the added cost of transporting water from its source. 

Applicants seeking surface water rights for irrigation, on the other hand, must report the 

land boundaries in which the water will be used, and they cannot apply for more than 2 acre-

feet/year (0.25 hectare-meters/year) of water for each acre they intend to irrigate. Given these rules, 

we assume that the lands dedicated to a groundwater permit or lands reported as the area of use on 

a surface water permit accurately reflect the boundary in which irrigation is expected to occur. The 

OWRB does not actively monitor each permit in the field to assess whether a permit holder is 

exercising their right to withdraw water, nor do they meter water use due to the extensive cost of 

obtaining such data. Thus, there is no comprehensive information on who used water or how much 

water they used in a year. 

The OWRB’s geospatial vector (polygon) dataset was used to create annual datasets of all 

active irrigation permits for 2010-2016. For a permit to be listed in an annual dataset, it must meet 

the following conditions: 1) for new permits, the permit must be granted by the end of the planting 

season for all non-winter wheat crops (August 1st each year); 2) for existing permits, the permit 

must not have become inactive or have an expiration date prior to the end of the planting season 

for all non-winter wheat crops; 3) permits must have a valid issue date (not null); 4) inactive or 

expired permits must have a valid date of deactivation or expiration (not null); and 5) permits must 

not be temporary or special. Temporary permits are only valid for 90 days, and special permits are 

valid for 6 months and cannot be renewed for the same water-use purpose. Thus, these two permit 
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types were not considered to be reliable, consistent sources of irrigation at large spatial scales and 

were excluded from the study. 

After preprocessing, the annual active irrigation permit database was used to select 500 m 

pixels that were a majority (>50%) irrigation-permitted grassland, winter wheat, other C3 

cropland, or C4 cropland. Pixels representing non-permitted lands were defined as pixels that did 

not contain any irrigation-permitted land but were a majority (>50%) of one of the four land cover 

types. These two thresholds ensured that the 500 m pixels were mutually exclusive, and that the 

same pixel wasn’t representative of both irrigation-permitted and non-permitted land. The total 

number of pixels for each irrigation-permitted and non-permitted land cover type 2010-2016 used 

in our analyses is reported in Table 2.2. 

Table 2.2. The total number of 500 m pixels (samples) used in our study for each irrigation-
permitted and non-permitted land cover type 2010-2016. 

Cover Type 

2010 2011 2012 2013 2014 2015 2016 Total 
Obs. Perm. Non. Perm. Non. Perm. Non. Perm. Non. Perm. Non. Perm. Non. Perm. Non. 

Grassland 396 6,862 359 6,516 350 6,663 359 6,762 356 6,862 298 6,428 292 6,399 48,902 

Winter Wheat 471 1,840 504 2,148 417 2,277 528 2,269 509 1,908 585 2,302 570 2,261 18,589 

C3 Cropland 124 154 167 123 196 158 126 115 133 134 135 91 138 89 1,883 

C4 Cropland 4 18 12 29 5 32 54 90 15 56 16 48 18 50 447 

Total 995 8,874 1,042 8,816 968 9,130 1,067 9,236 1,013 8,960 1,034 8,869 1,018 8,799 69,821 

 

2.2.2.3 Climate data during 2010-2016 

The climate data used in this study originated from the Oklahoma Mesonet 

(https://www.mesonet.org), which is a world-class network of 121 automated environmental 

monitoring stations. There is at least one Mesonet observation tower in each of Oklahoma’s 77 

counties, three of which are in Caddo County.  We calculated the aridity index (AI) for each year 

from 1979-2016 using data gathered at the Fort Cobb Mesonet station (Brock et al. 1995; 

McPherson et al. 2007), which is near the geographic center of Caddo County, using the equation: 
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𝐴𝐼 ൌ ௉

௉ா்
                                                                    (1) 

where AI is aridity index, P is annual total precipitation, and PET is mean annual potential 

evapotranspiration (Middleton and Thomas 1992). Annual departures from mean annual 

precipitation and aridity index for 1979-2016 (Fig. 2.5), as recorded by the Ft. Cobb Mesonet 

station, illustrate the high variability in climate that is characteristic of our study area.  

 

Figure 2.5 | Annual precipitation and aridity index recorded at the Fort Cobb Mesonet station in 
Caddo County 1979-2016. The shaded area represents the study period 2010-2016 and the 
dashed lines are the means for their respective period. 

For our study period 2010-2016, we identified 2011 as the most arid year, 2015 as the most 

humid year, and 2013 as a relatively normal year. Thus, for our site level analyses, we defined 

2011 as the drought year, 2015 as the pluvial year, and 2013 as a normal year. For our county-
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level analyses, we considered the combination of 2010, 2012, 2013, 2014, and 2016 as a baseline 

to which the 2011 drought and pluvial 2015 could be compared. 

2.2.2.4 GPP simulations from the Vegetation Photosynthesis Model during 2010-2016 

The Vegetation Photosynthesis Model (Xiao et al. 2004) was used to estimate annual total 

gross primary production (GPPVPM) for 2010-2016 at 500 m spatial resolution. The model 

partitions the fraction of absorbed photosynthetically active radiation (fPAR) by vegetation into 

PAR absorbed by chlorophyll (fPARchl) and non-photosynthetic vegetation (fPARNPV) to estimate 

GPP of vegetation over the growing season. Thus, GPPVPM is a product of 𝑓𝑃𝐴𝑅௖௛௟, PAR, and 

light-use efficiency (𝜀௚): 

𝐺𝑃𝑃௏௉ெ ൌ 𝑓𝑃𝐴𝑅௖௛௟  ൈ 𝑃𝐴𝑅 ൈ 𝜀௚                                              (2) 

where 𝑓𝑃𝐴𝑅௖௛௟ value is estimated as a function of the Enhanced Vegetation Index (EVI), 

calculated from spectral data obtained from the space-borne Moderate Resolution Imaging 

Spectroradiometer (MODIS) platform (Zhang et al. 2016; Zhang et al. 2017a). 

The ratio of C3 to C4 plants affects primary production at any given location (Ehleringer 

et al. 1997; Epstein et al. 1997). Thus, this study calculated average GPPVPM at 8-day intervals for 

each 500 m MODIS pixel using the ratio of C3/C4 vegetation using the CDL and in-situ derived 

maximum light-use efficiencies of C3 (0.035 mol CO2 mol-1 PAR) and C4 (0.0525 mol CO2 mol-

1 PAR) plants as detailed by Zhang et al. (2017a). Thus, GPPVPM for each pixel was calculated as: 

𝐺𝑃𝑃௏௉ெ ൌ  ∑ 𝑓௜ ൈ 𝜀௜ ൈ 𝑓𝑃𝐴𝑅௖௛௟ ൈ 𝑃𝐴𝑅௜                                        (3) 

where fi and i  are the area fraction and light-use efficiency, respectively, for C3 and C4 

croplands. Annual GPPVPM was calculated from the 8-day dataset by multiplying each year’s 

multi-day average observation by the number of days observed and summing the totals. 
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2.2.2.5 MOD17 GPP dataset during 2010-2016 

 The 8-day, 500 m GPPMOD17 data used in this study was from the MOD17A2H version 6 

product (Running et al. 2004). The version 6 product has been improved by using updated Biome 

Property Look Up Tables (BPLUT) and an updated version of the daily Global Modeling and 

Assimilation Office (GMAO) meteorological data (Running and Zhao 2015). The GPPMOD17 

product also uses a LUE model to estimate GPP. The primary difference between GPPMOD17 and 

GPPVPM is that GPPMOD17 uses FPARcanopy, which is calculated as the fraction of photosynthetically 

active radiation absorbed by the canopy (Running et al. 2004), whereas GPPVPM uses FPARchl, 

which is the fraction of photosynthetically active radiation absorbed by chlorophyll (Xiao et al. 

2004). GPPMOD17 uses the FPARcanopy data product (MOD15A2H) and GPPVPM uses FPARchl 

estimated from the enhanced vegetation index (EVI).  

2.2.2.6 In-situ GPP data from eddy covariance towers 

 GPP data from two Integrated Grassland Observation Sites (iGOS), iGOS-East (35.54865° 

N, 98.03759° W) and iGOS-West (35.54679° N, 98.04529° W), and data from the Integrated 

Cropland Observation System (iCOS) (35.56850° N, 98.05580° W) were used to evaluate GPPVPM 

and GPPMOD17. These three flux towers are located at the United States Department of 

Agriculture’s Agricultural Research Service (USDA-ARS) Grazinglands Research Laboratory 

(GRL) in El Reno, Oklahoma. iGOS-East is a native tallgrass prairie, iGOS-West is an old world 

bluestem (Bothriochloa caucasica C. E. Hubb.) pasture that is bailed and grazed by cattle 

throughout the year (Zhou et al. 2017a), and iCOS is a single-crop winter wheat site. 

These three sites use Li-COR 7500 open path gas analyzer and a CSAT3 sonic-anemometer 

to measure the net ecosystem exchange of CO2 between land and the atmosphere (NEE). The 

measured NEE was first gap-filled and then partitioned into GPP and ecosystem respiration (ER) 
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based on the short-term temperature sensitivity of ER (Lloyd and Taylor 1994; Reichstein et al. 

2005). The partitioned half-hourly GPP data was summed to get daily GPP, which was converted 

into 8-day means to match the temporal resolution of GPPVPM and GPPMOD17 data. Our study 

utilized all years for which GPP data was available from the three towers (GPPEC). The GPPEC 

data were available for the entire years of 2015 and 2016 for iGOS-East; 05/08/2014 – 12/31/2014, 

01/08/2015 – 10/25/2015, and the entire year 2016 for iGOS-West; and the entire year 2015 and 

01/01/2016 – 9/30/2016 for iCOS. Simple linear regression analyses were conducted between 

GPPVPM and GPPEC, and between GPPMOD17 and GPPEC, for each tower site in each year to assess 

the accuracy of GPPVPM and GPPMOD17. 

2.2.3 Statistical Data Analyses 

 Eight 500 m pixels from the GPPVPM dataset were chosen from within the study area to 

illustrate field-scale seasonal dynamics and interannual variation of GPP during the 2011 drought, 

normal 2013, and pluvial 2015. One pixel was chosen for each of the irrigation-permitted and non-

permitted land cover types (grassland, winter wheat, other C3 croplands, and C4 croplands). We 

made these choices by first filtering potential sites by determining which lands had the same 

vegetative cover in each of the three years by using the CDL datasets for 2011, 2013, and 2015. 

Next, we calculated the percentage cover of each land type using a fishnet of 500 m pixels and 

selected those pixels that had the highest amount of cover. The irrigation-permitted C3 crop pixel 

was a cotton field, and the non-permitted C3 crop pixel was alfalfa. Both C4 pixels were corn 

fields. 

For each permitted and non-permitted land cover type, we computed the percentage 

departure of GPP during the 2011 drought and pluvial 2015 from the 5-year reference mean using 

the following steps. First, we calculated mean GPP for the reference years by averaging annual 
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GPP from 2010, 2012, 2013, 2014, and 2016. Second, annual GPP for the 2011 drought and pluvial 

2015 was calculated. Third, the 5-year reference mean was subtracted from mean annual GPP in 

2011 and 2015 to calculate the deviation from the mean. Finally, the resultant differences between 

annual GPP in 2011 and 2015 and the mean annual GPP during the reference years were divided 

by the 5-year reference mean to compute the percentage departure from the 5-year reference mean. 

Permitted and non-permitted sample sizes for each plant type in each year were 

independent, unequal, and assumed to have unequal variances. Thus, to determine whether the 

departure from the 5-year reference mean in 2011 or 2015 was statistically significant, a Welch’s 

two-sample t-test (Delacre et al. 2017; Ruxton 2006) was performed for each irrigation-permitted 

and non-permitted land cover type (Table S2.2). Welch’s two-sample t-tests were also conducted 

to explore whether there was a significant difference between GPP in the 2011 drought or pluvial 

2015 for irrigation-permitted and non-permitted lands of each land cover type (Tables S2.3, S2.4).  

2.3 Results 

2.3.1 A comparison of GPPVPM, GPPMOD17, and GPPEC at the three eddy flux tower sites 

during 2014-2016 

 GPPVPM more accurately estimated mean daily GPPEC at each of the three GRL sites than 

GPPMOD17. More specifically, GPPVPM had less underestimation and greater R2 values than 

GPPMOD17 (Fig. 2.6). The VPM model performed best at the native prairie site (iGOS-East), where 

GPPVPM slightly underestimated GPPEC in 2015 and 2016. Performance at the winter wheat site 

(iCOS) was similar with slight under estimations of GPPEC in both 2015 and 2016. GPPVPM had 

larger underestimations of GPPEC at the old world bluestem site (iGOS West) relative to the other 

two sites, but GPPVPM had a greater ability to predict GPPEC than GPPMOD17 at each site. The close 
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correlation between GPPVPM to GPPEC at eddy tower sites near our study area indicated that 

GPPVPM was suitable for use at larger spatial scales. 

 

Figure 2.6 | Simple linear regression of GPPEC/GPPVPM and GPPEC/GPPMOD17 at the old 
world bluestem (iGOS-West), native prairie (iGOS-East), and winter wheat (iCOS) sites in 
Oklahoma. 

The seasonal dynamics and interannual variations of GPPEC, GPPVPM, and GPPMOD17 were 

illustrated in Fig. 2.7. At the old world bluestem site, GPPVPM underestimated GPPEC throughout 
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most of the 2014, 2015, and 2016 growing seasons. GPPVPM underestimated GPPEC during the 

early growing season in 2015 at the native prairie site, but overestimated GPPEC during the early 

growing season in 2016. In both years, GPPVPM tended to overestimate GPPEC near the end of the 

growing season. At the winter wheat site, GPPVPM tracked GPPEC well in both years, but GPPVPM 

was phase shifted, which indicated that there might be some type of lag effect. This lag effect is 

evident to a greater degree for GPPMOD17, especially in 2016 when the peaks for both GPPMOD17 

and GPPVPM occurred well after the peak in GPPEC. 

 

 

Figure 2.7 | Eight-day seasonal dynamics and interannual variations of tower-based (GPPEC), 
VPM-modeled (GPPVPM), and MODIS-modeled (GPPMOD17) gross primary production at the 
old world bluestem (iGOS-West), native prairie (iGOS-East), and winter wheat (iCOS) sites 
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2.3.2. Seasonal dynamics and interannual variation of GPP at selected irrigation-permitted 

and non-permitted sites during 2011 drought, normal 2013, and pluvial 2015 

The seasonal dynamics and interannual variation of 8-day mean GPPVPM for eight selected 

pixels in pair-wise comparison (with irrigation permit, without irrigation permit) are illustrated in 

Fig. 2.8. For all eight pixels, regardless of water rights, the 2011 drought caused a shortened 

growing season with lower mean GPP relative to 2013. Conversely, the growing season of all the 

sites was prolonged in pluvial 2015 and had higher mean GPP than normal. 



27 
 

 

Figure 2.8 | Pixel-level, 8-day GPPVPM for irrigation-permitted and non-permitted (a) grasslands, 
(b) winter wheat, (c) other C3 croplands, and (d) C4 croplands in 2011 drought, normal 2013, and 
pluvial 2015. 

The irrigation-permitted grassland field had substantially higher mean GPPVPM during the 

growing season in 2011 and 2013 than the non-permitted grassland field, but the trends in GPPVPM 

for these two fields are extremely similar in pluvial 2015 (Fig. 2.8(a)). Irrigation clearly affects the 
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cropping intensity in the winter wheat pixels (Fig. 2.8(b)). For the pixel without an irrigation 

permit, only winter wheat crop was cultivated during the year, with a peak in GPPVPM in mid-April 

and a harvest in June. For the winter wheat pixel with an irrigation permit, a summer crop rotation 

was implemented. The seasonal dynamics of GPP also suggested that winter wheat was grown for 

grain production in 2013 and 2015 but might be grazed in 2011. As for other C3 cropland pixels, 

the irrigation-permitted cotton site had peak GPPVPM in mid-September with a growing season 

between mid-July and late October (Fig. 2.8(c)). GPPVPM in the non-permitted alfalfa field peaked 

in the spring. We expected a greater difference in the magnitude of GPPVPM for the two C4 

cropland pixels in 2011 and 2013 (Fig. 2.8(d)). The similarity in the trend and magnitude of 

GPPVPM at these two sites during the drought and normal year suggested that the farmer with an 

irrigation permit might not have irrigated in these years. In 2015, the irrigation-permitted C4 site 

had peaks in the spring and again in the fall, which suggested that the site was double cropped, 

whereas GPP for the non-permitted C4 site had a peak in mid-summer signaling a single crop. The 

interannual variation of GPPVPM over these eight pixels was clearly due to the complexity of 

decision making and practice for irrigation, cropping intensity, and crop types. 

2.3.3. County-scale responses of GPPVPM in drought and pluvial years during 2010-2016 

GPPVPM for all land cover types were significantly reduced by the 2011 drought, except for 

irrigation-permitted C4 croplands (Fig. 2.9). As for pluvial 2015, grasslands, winter wheat, and 

non-permitted C3 croplands experienced significant gains in GPPVPM relative to the 5-year 

reference mean, but the response of GPPVPM for permitted C3 croplands and non-permitted C4 

croplands was insignificant. Irrigation-permitted C4 crops were the only land cover type to have a 

significant reduction in GPP during pluvial 2015. Irrigation-permitted croplands (winter wheat, 

other C3 croplands, and C4 croplands) had significantly higher mean annual GPP than non-
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permitted croplands in the 2011 drought, pluvial 2015, and across all years in the study period 

(Fig. 2.10).  

 

Figure 2.9 | Percentage departure of GPPVPM from the 5-year reference mean for irrigation-
permitted and non-permitted grasslands and croplands during the 2011 drought and pluvial 2015 
in Caddo County. The percentage departure calculations and p-values for the 2011 drought and 
pluvial 2015 were reported in Table S2.3 and Table S2.4, respectively. *Not significant. 

 

Figure 2.10 | Mean annual GPP for (a) non-permitted and (b) irrigation-permitted grasslands and 
croplands in Caddo County 2010-2016. 

 For the 2011 drought, irrigation-permitted and non-permitted grasslands had similar 

significant negative departures from the 5-year reference mean (Fig. 2.11(a)). Likewise, irrigation-

permitted and non-permitted grasslands had similar gains in mean GPP for pluvial 2015 relative 

to the 5-year reference mean. These percentage gains in GPP for pluvial 2015 were the highest 
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among all land cover classes. Interestingly, non-permitted grasslands had slightly higher mean 

GPP in the 2011 drought (22 gC m-2 year-1), in pluvial 2015 (18 gC m-2 year-1), and for the entire 

study period (36 gC m-2 year-1) than grasslands permitted for irrigation (p < 0.05).  Fig. 2.11(a) 

also illustrates that GPP for non-permitted lands are relatively normally distributed, whereas GPP 

for irrigation-permitted grasslands tend to be right-skewed during the 2011 drought. 



31 
 

 

Figure 2.11 | Responses of GPP to the 2011 drought and pluvial 2015 in Caddo County for 
irrigation-permitted and non-permitted (a) grasslands, (b) winter wheat, (c) other C3 croplands, 
and (d) C4 croplands. All responses are significantly different (p < 0.05) from the 5-year reference 
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mean, except for C3 irrigation-permitted croplands in 2015, C4 non-permitted croplands in 2015, 
and C4 irrigation-permitted croplands in 2011 (Table S2.3, S2.4). 

 Reductions in mean annual GPP during the 2011 drought for irrigation-permitted winter 

wheat were significantly less than that of non-permitted winter wheat (Fig. 2.11(b)). For pluvial 

2015, non-permitted winter wheat had larger increases in GPP relative to the 5-year reference mean 

(8%) than irrigation-permitted winter wheat (6%). Like grasslands, Fig. 2.11(b) reflects a normal 

distribution of GPP for winter wheat, except for the 2011 drought when GPP is right-skewed for 

lands permitted for irrigation. 

 The 2011 drought had a significant impact on GPP for irrigation-permitted and non-

permitted C3 croplands relative to the 5-year reference mean (Fig. 2.11(c)), but the response of 

GPP for irrigation-permitted C3 croplands in pluvial 2015 was not significant and for non-

permitted the response was a marginal increase (5%). The distribution of GPP for irrigation-

permitted and non-permitted C3 croplands are relatively normal, except for non-permitted C3 

croplands during the 2011 drought which is right-skewed. This abnormal distribution could be 

caused by differences in how various C3 crop types, such as cotton and alfalfa, respond to drought 

and/or differences in their growing seasons. 

 GPP of irrigation-permitted and non-permitted C4 croplands responded very differently to 

the 2011 drought (Fig. 2.11(d)). Of all land cover types, non-permitted C4 croplands had the 

highest percentage drop in GPP from the 5-year reference mean during the 2011 drought, whereas 

irrigation-permitted C4 croplands had no statistically significant change in mean GPP. There was 

no significant difference between mean GPP in pluvial 2015 and the 5-year reference mean for 

non-permitted C4 croplands, but C4 irrigation-permitted croplands experienced a decrease in GPP.  
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2.4 Discussion  

2.4.1 Impacts of the 2011 drought on GPP for irrigation-permitted and non-permitted 

lands 

A majority of the irrigation permits in the study area were for groundwater, a water source 

that is buffered from the effects of drought relative to surface water resources. If our study areas 

had been in areas irrigated mostly or solely by surface water, then the buffering effect of irrigation 

during drought may have been muted. For Caddo County, all lands dedicated to irrigation permits 

tended to have higher productivity than non-irrigated lands during the 2011 drought, except for 

grasslands. 

Responses of GPP for irrigation-permitted and non-permitted grasslands to drought and 

pluvial conditions were extremely similar at the county scale (Fig 11(a)). These grasslands could 

be former croplands on which irrigation occurred in the past, or perhaps some landowners have 

incorporated pasture and/or grazing into their rotation. The similarity in mean annual GPP for 

irrigation-permitted and non-permitted grasslands, and the similar response to drought and pluvial 

conditions, could occur if many of the land owners did not exercise their right to irrigate. This 

hypothesis appears plausible, given that our site-level analysis demonstrated that GPPVPM captured 

increased GPP for the irrigation-permitted site during the 2011 drought and normal 2013, and that 

irrigation was unnecessary in 2015 given the record rainfall totals (Fig. 2.8(a)). 

There are a couple of possible explanations as to why landowners would not exercise their 

water right on grass or pasture lands. First, market prices could discourage irrigation in that it may 

not be profitable to irrigate grasslands because the cost of irrigation is not offset by added profits 

gained from enhanced grass (hay) production. Second, many of the landowners with irrigation 

permits for grasslands might be raising cattle on that land, which is an agricultural system that may 
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not benefit from irrigation. For instance, studies have shown that grazing cattle on irrigated lands 

necessitates intensive management (Volesky and Clark 2003), and that calf gain-weight is higher 

per acre for dry lot grazing than irrigated pasture grazing (Dunn and Olson 2009). 

As for winter wheat, some studies have shown that irrigation can boost winter wheat 

harvests, but only when applied in certain amounts shortly before or after planting and/or before 

harvest if the soil is dry (Eck 1988; Musick and Lamm 1990; Peck 1979). In fact, irrigation can be 

a risk to winter wheat productivity, especially in the winter months when the crop is dormant 

(Yonts et al. 2009). Over-irrigation can cause lodging, leaf rust, or mildew (Al-Kaisi and Shanahan 

1999; Bennett 1984; Roelfs 1992). Thus, it is possible that winter wheat croplands dedicated to 

irrigation permits are not necessarily irrigated every year. Rather, access to irrigation for these 

landowners may afford them an opportunity to double-crop in certain years when weather and 

commodity prices create favorable conditions (MacKown et al. 2007; Shapiro et al. 1992), or to 

boost winter wheat yields in years when soil moisture is low. 

Expectedly, irrigation-permitted C3 and C4 croplands had smaller reductions in mean 

annual GPP during the 2011 drought than their non-permitted counterparts. However, our results 

indicate that the percentage reduction in GPP in 2011 from the 5-year mean was greater for non-

permitted C4 croplands than non-permitted grassland, winter wheat, and other C3 croplands. This 

result was unexpected given, as previously discussed, that C4 plants have a higher light use 

efficiency, greater water use efficiency, and are more drought-resistant than C3 plants. However, 

although maize is a C4 plant, it has been shown to be sensitive to high temperature, particularly 

during tassel, pollination, and grain fill (Kim et al. 2007; Muchow 1990; Muchow et al. 1990). C4 

croplands may have suffered a greater reduction in mean GPP due to stressors in addition to the 
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drought. For example, management practices such as fertilization, planting date, or tilling may 

have exacerbated the impact of the drought for these non-permitted C4 croplands. 

As previously mentioned, the Oklahoma Water Resources Board (OWRB) does not require 

water meters for groundwater or surface water use. Thus, water managers don’t know exactly who 

has used water or how much water was used. However, future studies may be able to determine 

which lands were irrigated by monitoring intra-annual and interannual changes in GPP. We 

demonstrated in our study that the interannual changes in GPP were significantly different for 

irrigation-permitted and non-permitted croplands, especially during drought (Table S2.2). Thus, 

the irrigation-permitted pixels with substantially less annual total GPP than the mean might be 

considered as non-irrigated lands and those pixels with substantially more GPP than the mean 

might signal that a landowner was fully utilizing their water permit. Likewise, if the GPP of a pixel 

during drought is marginally or not significantly different than the GPP of that pixel during non-

drought years, then the marginal change in GPP could signal irrigation.  

2.4.2 Impacts of pluvial 2015 on GPP for irrigated and non-irrigated lands 

 It is not known why mean GPP for non-permitted grassland was slightly higher than 

irrigation-permitted grassland in 2011, 2015, and the entire study period (p < .05) (Table S2.2). 

Land management practices, such as grazing, bailing, fertilization, and burning can not only 

influence GPP directly (Fischer et al. 2012; Zhou et al. 2017a), but alter community species 

composition (Ewing and Engle 1988; Kelting 1954; Mitchell et al. 1996; Niu et al. 2013). As 

previously discussed, it is likely that non-permitted lands are more often grazed by livestock than 

those lands that are permitted for irrigation. However, it does not seem likely that grazing promoted 

GPP for these land types as several studies have shown grazing can inhibit overall GPP (Oates and 

Jackson 2014; Rogiers et al. 2005), that the effect of grazing on GPP is negligible (Senapati et al. 
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2014), or that increases in GPP are temporary (Zhang et al. 2015). Nevertheless, grasslands 

experienced the largest percentage gains in mean annual GPP than the other land cover types, 

which reflected the year-long growing season of grassland systems. 

 Irrigation-permitted C4 croplands were the only land cover type to exhibit a significant 

decrease in GPP during pluvial 2015. The decrease might be attributed to a saturation of soil water 

content above what is beneficial to the growth of C4 crops due to excessive rainfall, leaching of 

nitrates beyond the root zone, or the timing of rainfall. For example, a study of drip-irrigated corn 

(Zea mays L.) by Payero et al. (2008) found that over-irrigated treatments could dramatically 

reduce water use efficiency (WUE), aboveground dry biomass, and grain yield. Irrigation and 

fertilization techniques can minimize leaching of nitrates out of the root zone (Gheysari et al. 2009; 

Sexton et al. 1996), but with record-breaking rainfall in 2015 such techniques might not have been 

possible to implement. Also, persistent cloud cover may have reduced photosynthetically active 

radiation in the month of May, which would have interfered with the early growth of corn and 

sorghum. 

2.4.3 Implications of irrigation for carbon budgets and food security 

This study indicates that irrigation may buffer reductions in terrestrial carbon uptake due 

to drought and increased asynchronousity between precipitation and temperature. Results also 

indicate, at the landscape scale, that C4 croplands can respond differently to drought than 

grasslands, winter wheat, and other C3 croplands. Such drought responses could provide additional 

insight into why Wolf et al. (2016) found little annual change in the terrestrial uptake of carbon 

during the 2012 North American drought. In consideration of overall greenhouse gas (GHG) 

emissions, however, irrigation also plays a role in soil organic carbon fluxes, and the emission of 

methane (CH4) and nitrous oxide (N2O) (Lal 2004; Snyder et al. 2009; Trost et al. 2013). 
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Clearly, plants are more productive in arid conditions when they are irrigated. Although 

groundwater is often considered a renewable resource, Earth’s groundwater resources are being 

depleted faster than they are being recharged (Wada et al. 2010). For example, between 2001-2016 

the groundwater levels of the Rush Springs Aquifer and the Ogallala Aquifer (an important 

groundwater resource for 8 midwestern states) declined by 3 m and 5.8 m, respectively (Khand et 

al. 2017). Our analysis provides insight into how the productivity of irrigated grasslands and 

croplands, and how their responses to drought and pluvial events, may change in the future if 

groundwater resources were to become inaccessible due to depletion, pollution, or technological 

limitations. 

2.4.4 Socioecological insights 

Some farmers in the United States are uncertain about Earth’s changing climate. For 

instance, Arbuckle et al. (2013) reported that out of a survey of almost 5,000 corn farmers, 31% 

of respondents were uncertain if climate change is occurring. Using the same survey data, Mase et 

al. (2017) noted that only 16% of corn farmers report that changing weather patterns are hurting 

their farm operation. However, our results indicate that farmers’ experiences in a changing climate 

might be influenced by the type of crop they plant and their water rights. Farmers with groundwater 

irrigation rights may not be experiencing drought, pluvial conditions, increased climate variability, 

and a changing climate like those with no groundwater access. 

For instance, our study indicates that non-permitted C4 croplands experienced the largest 

percentage decrease in GPP during the 2011 drought compared to grasslands and other cropland 

types, but irrigation-permitted C4 crops did not experience a significant decline in GPP. Thus, 

generalizations about farmers that plant the same crop type, such as corn, or pooled responses from 

a diverse group of crop producers (Rejesus et al. 2013), might be an oversimplification. Ongoing 



38 
 

and future surveys of farmers would be more useful if land management practices, such as water 

use, grazing, fertilization, rotations, harvest, and burning, were paired with geospatial information 

like precipitation, temperature, and water availability. For example, such information may allow 

us to further understand why some farmers don’t ‘believe’ in climate change, although there is 

little disagreement on what science knows about climate change (Kahan 2015; Kahan et al. 2012). 

This additional survey data information can shed new insight into what has shaped farmers’ 

cultural identity in regards to climate change (Kahan 2016; VanWinkle and Friedman 2017). 

2.5 Conclusion 

 Gross primary production of grasslands and croplands respond differently to drought and 

pluvial conditions. How a certain crop type responds to drought depends on whether the land owner 

has access to irrigation. This study found that vegetation on irrigation-permitted lands in Caddo 

County had higher mean GPP during the drought and less variable, more stable GPP during the 

study period 2010-2016. Responses of GPP for irrigation-permitted and non-permitted grasslands 

to drought and pluvial conditions were extremely similar, indicating that landowners were likely 

not exercising their right to irrigate grasslands. Caution should be used when assessing or 

generalizing how a specific crop species responds to climate variability, drought, and pluvial 

conditions in the absence of irrigation-related data. Future research into the effect of a changing 

climate on terrestrial vegetation should not only consider the ratio of C3 and C4 species in 

grasslands or whether a crop species is C3 or C4, but also consider whether the vegetation is 

irrigated or not. Thus, it is important to gather geospatial information on irrigation permits, 

irrigation practices, and the amount of irrigation water used. 

2.6 Supplementary materials 

Table S2.1. Cropland Data Layer (CDL) crop type classifications for Oklahoma 2010-2016. The 
inclusion of a crop type classification on this list doesn’t necessarily indicate that the crop type 
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was detected. ‘Yes’ indicates that the crop type classification was included in the CDL that year, 
and ‘No’ indicates that the crop type classification was not included. 

Crop Type 
Photosynthetic 
Pathway 2010 2011 2012 2013 2014 2015 2016 

Corn C4 Yes Yes Yes Yes Yes Yes Yes 
Cotton C3 Yes Yes Yes Yes Yes Yes Yes 
Sorghum C4 Yes Yes Yes Yes Yes Yes Yes 
Soybeans  C3 Yes Yes Yes Yes Yes Yes Yes 
Sunflower C3 Yes Yes Yes Yes Yes Yes Yes 
Peanuts C3 Yes Yes Yes Yes Yes Yes Yes 
Sweet Corn C4 Yes Yes Yes Yes Yes Yes Yes 
Barley C3 Yes Yes Yes Yes Yes Yes Yes 
Durum Wheat C3 No Yes No Yes No Yes No 
Spring Wheat C3 No Yes Yes Yes Yes Yes Yes 
Winter Wheat C3 Yes Yes Yes Yes Yes Yes Yes 
Rye C3 Yes Yes Yes Yes Yes Yes Yes 
Oats C3 Yes Yes Yes Yes Yes Yes Yes 
Millet C3 Yes Yes Yes Yes Yes Yes Yes 
Speltz C3 No No No No No No Yes 
Canola C3 Yes Yes Yes Yes Yes Yes Yes 
Safflower C3 Yes Yes Yes Yes No No Yes 
Alfalfa C3 Yes Yes Yes Yes Yes Yes Yes 
Non-alfalfa Hay C3 No No No Yes Yes Yes Yes 
Dry Beans C3 Yes Yes Yes Yes No Yes Yes 
Potatoes C3 No No No Yes Yes No Yes 
Other Crops C3 Yes Yes Yes Yes Yes Yes Yes 
Watermelons C3 Yes Yes Yes Yes Yes Yes Yes 
Peas C3 Yes Yes Yes Yes Yes Yes Yes 
Herbs C3 Yes Yes Yes Yes Yes Yes Yes 
Clover/Wildflowers C3 Yes Yes Yes Yes Yes Yes Yes 
Sod/Grass Seed C3 No No No Yes Yes Yes Yes 
Switchgrass C4 Yes Yes Yes Yes No No No 
Fallow/Idle Cropland C3 Yes Yes Yes Yes Yes Yes Yes 
Peaches C3 Yes Yes Yes Yes Yes Yes Yes 
Christmas Trees C3 No No No No No No Yes 
Grapes C3 No No No Yes No No No 
Pecans C3 Yes Yes Yes Yes Yes Yes Yes 
Triticale C3 Yes Yes Yes Yes Yes Yes Yes 
Peppers C3 No No No No No No Yes 
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Cantaloupes C3 No No No No Yes No No 
Greens C3 Yes Yes Yes No Yes Yes No 
Vetch C3 Yes Yes Yes Yes No No No 
Turnips C3 No Yes No No No No No 
Radishes C3 No No Yes No No No No 
Pumpkins C3 No No No No No Yes Yes 
Blueberries C3 No No No No No Yes No 

 

Table S2.2. Differences in GPP for irrigation-permitted and non-permitted lands during 2011 
drought, 2013 normal year, pluvial 2015, and all years 2010-2016 using Welch’s t-test. 

Grass/Pasture Mean GPP (g C/m2/year)  

 Permitted Non-permitted Difference p-value 
Drought (2011) 691 713 -22 0.04 
Normal (2013) 1114 1143 -29 <.01 
Pluvial (2015) 1199 1217 -18 0.03 
All years (2010-2016) 1026 1063 -36 <.01 

     
Winter Wheat Mean GPP (g C/m2/year)  

Permitted Non-permitted Difference p-value 
Drought (2011) 689 593 96 <.01 
Normal (2013) 1025 962 63 <.01 
Pluvial (2015) 1049 1015 34 <.01 
All years (2010-2016) 959 902 58 <.01 

     
C3 Cropland Mean GPP (g C/m2/year)  
 Permitted Non-permitted Difference p-value 
Drought (2011) 940 715 226 <.01 
Normal (2013) 1227 1037 190 <.01 
Pluvial (2015) 1193 1100 92 <.01 
All years (2010-2016) 1148 1007 141 <.01 

     
C4 Cropland Mean GPP (g C/m2/year)  
 Permitted Non-permitted Difference p-value 
Drought (2011) 1263 777 486 <.01 
Normal (2013) 1504 1409 95 <.01 
Pluvial (2015) 1324 1276 48 <.01 
All years (2010-2016) 1417 1262 155 <.01 
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Table S2.3. Percentage departure calculations for the 2011 drought and p-values for irrigation-
permitted and non-permitted lands using Welch’s t-test. 

Land Cover 
GPP (g C yr-1 m-2) 

Change % p-value Drought (2011) 5-year Mean Difference 
C4 Non-perm 777 1316 -539 -41% <.01 
WW Non-perm 593 940 -347 -37% <.01 
GP Non-perm 713 1101 -388 -35% <.01 
GP Permitted 691 1066 -375 -35% <.01 
C3 Non-perm 715 1050 -335 -32% <.01 
WW Permitted 689 993 -304 -31% <.01 
C3 Permitted 940 1188 -248 -21% <.01 
C4 Permitted 1263 1452 -189 -13% 0.05079 

 

Table S2.4. Percentage departure calculations for pluvial 2015 and p-values for irrigation-
permitted and non-permitted lands using Welch’s t-test. 

Land Cover 
GPP (g C yr-1 m-2) 

Change % p-value Pluvial (2015) 5-year Mean Difference 
GP Permitted 1199 1066 133 12% <.01 
GP Non-perm 1217 1101 116 11% <.01 
WW Non-perm 1015 940 75 8% <.01 
WW Permitted 1049 993 56 6% <.01 
C3 Non-perm 1100 1050 50 5% 0.048 
C3 Permitted 1193 1188 4 0% 0.8 
C4 Non-perm 1276 1316 -40 -3% 0.28 
C4 Permitted 1324 1451.69 -127 -9% 0.02 
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Chapter 3: Dry-season greenness, fluorescence, and photosynthesis of moist tropical forests 

in the Amazon 

Abstract 

Photosynthesis of the Amazon Basin affects the global carbon cycle and climate. However, it has 

been intensely debated if the moist forest greens-up in the dry season and if El Niño drought 

decreases photosynthesis. For the first time, we analyze 11 years (2007-2017) of satellite-retrieved 

vegetation remote sensing data including greenness, solar-induced chlorophyll fluorescence (SIF), 

and gross primary production (GPP) for ten eddy flux tower sites, moist forest regions, and the 

entire Amazon Basin to investigate the seasonality of greenness, SIF, and GPP and the effect of El 

Niño and La Niña events on them. Our analysis included vegetation indices derived from MODIS 

surface reflectance data and bidirectional reflectance distribution function (BRDF) corrected 

MODIS data, which accounts for the effect of sun-sensor geometry on satellite-observed 

reflectance. We examine two hypotheses that address whether there is a dry-season green-up and 

the effect of ENSO events on photosynthesis: (1) greenness, SIF, and GPP show consistent 

temporal dynamics and (2) these data are anomalously low during El Niño dry seasons, but 

anomalously high during preceding La Niñas dry seasons. Our results accepted the first hypothesis 

as there is a consistent increase in greenness, SIF, and GPP during the dry season (June-October) 

for moist forests. Our results rejected the second hypothesis and indicated the contrary, with dry-

season greenness, SIF, and GPP lower than normal during the 2007-2008 La Niña and higher than 

normal during the 2009-2010 El Niño. For the 2010-2011 La Niña and 2015-2016 El Niño, our 

results were inconclusive but didn’t support our second hypothesis. We conclude that the dry-

season resistance of greenness, SIF, and GPP of the moist Amazonian forests to climate variability 
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should be considered in earth system models that estimate the impacts of climate variability on 

moist Amazon forests and/or its role in the variability of atmospheric CO2. 

3.1 Introduction 

The seasonal dynamics of forest canopy structure and function in the Amazon are critically 

important to the regional and global carbon cycles, but these dynamics have been the subject of 

intense debates over the last two decades (Galvão et al. 2011; Huete et al. 2006; Lee et al. 2013; 

Morton et al. 2014; Saleska et al. 2007; Saleska et al. 2016; Samanta et al. 2010; Xiao et al. 2006; 

Xiao et al. 2005). A limited number of field studies at the leaf (Albert et al. 2018; Wu et al. 2018) 

and stand (Restrepo-Coupe et al. 2013; Saleska et al. 2003) levels have assessed the seasonal 

dynamics of the tropical Amazon’s forest canopy structure and function, and have concluded that 

photosynthetic capacity increased in the dry season. Three studies analyzed reflectance-based 

vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) and in-situ 

leaf litterfall data, and suggested that leaf flush, queued by increases of sunlight after the wet 

season, drives dry-season green-up in the Amazonian forests (Huete et al. 2006; Xiao et al. 2006; 

Xiao et al. 2005). Conversely, two studies argued that sun-sensor geometry created artifacts in the 

MODIS surface reflectance data, which caused greenness to artificially increase during the dry 

season (Galvão et al. 2011; Morton et al. 2014). However, more recent studies have concluded that 

dry-season increases in greenness remained after correcting the MODIS data (Guan et al. 2015; 

Maeda et al. 2014; Saleska et al. 2016). 

It has also been debated whether drought years further increase dry-season photosynthesis 

in the Amazon or suppress it (Asner and Alencar 2010; Brando et al. 2010; Gatti et al. 2014; Huete 

et al. 2006; Khand et al. 2017; Liu et al. 2017; Samanta et al. 2010; Xu et al. 2011). Some field 

studies that have found decreased gross primary production (GPP) in moist Amazonian forest (> 
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2000 mm mean annual precipitation) during drought (Doughty et al. 2015; Gatti et al. 2014; 

Nepstad et al. 2004). More recent studies have analyzed spaceborne solar-induced chlorophyll 

fluorescence (SIF), which is a small amount of energy emitted by plants after its chlorophyll 

absorbs photosynthetically active radiation (PAR), from platforms such as the Greenhouse Gases 

Observing Satellite (GOSAT), the Global Ozone Monitoring Experiment-2 (GOME-2), and the 

Orbiting Carbon Observatory (OCO-2). Several such studies have contributed an increase in 

atmospheric CO2 to a large reduction in Amazonian SIF or GPP (Lee et al. 2013; Liu et al. 2017; 

Parazoo et al. 2013). Another study reported seemingly conflicting results in that GOME-2 SIF 

decreased but greenness increased during the 2015-2016 El Niño (Yang et al. 2018a), and another 

study found that the 2015-2016 El Niño suppressed SIF after a multi-step correction of the GOME-

2A data (Koren et al. 2018), which suffers from sensor degradation (Zhang et al. 2018a). 

The response of moist Amazon forests to drought is a debate because forests that are not 

water limited may have increased photosynthesis during a meteorological drought due to less cloud 

cover and increased sunlight (Bonal et al. 2008; Brando et al. 2010; Condit et al. 2004; Graham et 

al. 2003), and it is difficult to disentangle processes in the Amazon at the regional scale because 

frequent cloud cover obscures spaceborne measurements and installing a network of eddy 

covariance towers in the moist Amazonian interior is not feasible. Furthermore, it is challenging 

to generalize about how drought affects the Amazon, because meteorological drought severity is 

temporally and spatially heterogenous within and across drought events, which further complicates 

assessments of the impact of drought on Amazonian forests at both site and regional scales (Lewis 

et al. 2011; Marengo et al. 2008). For instance, the 2010 drought event mostly affected the western 

and southern Amazon Basin and was driven by an El Niño and North Atlantic warming (Marengo 
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et al. 2011), whereas the 2015-2016 ENSO-driven drought was unprecedented and largely affected 

the northern and southeastern regions (Jiménez-Muñoz et al. 2016). 

Furthermore, the legacy effects of drought on tree mortality (Doughty et al. 2015; Nepstad 

et al. 2007; Phillips et al. 2009), fire frequency and severity (Aragao et al. 2008; Aragao et al. 

2007), and canopy structure (Saatchi et al. 2013) may linger long after drought and can have 

positive feedbacks (Laurance and Williamson 2001). Thus, the impacts of drought at the landscape 

scale is a mosaic of localized responses driven by site-specific characteristics, history, and climate 

than a homogenous response. Nevertheless, it is vital to characterize how drought and pluvial 

events affect the productivity of the forest so that we can better understand and more accurately 

predict the effects of earth’s climate variability and human land management on atmospheric CO2 

concentrations.  

Here, we used monthly SIF data from GOME-2 and OCO-2, GPP estimates from the 

Vegetation Photosynthesis Model (GPPVPM), and MODIS-based vegetation indices for 2007-2017 

to investigate (1) to what degree the seasonality of greenness, SIF, and GPP of moist tropical 

forests were consistent with each other, and (2) how did dry-season greenness, SIF, and GPP 

change during the strong El Niño (2009-2010 and 2015-2016) and La Niña years (2007-2008 and 

2010-2011). We hypothesized that (1) the moist forests exhibit an increase in dry-season 

productivity through greenness, SIF, and GPP indicators, and (2) that September and dry-season 

greenness, SIF, and GPP is lower than normal during the two El Niño years and higher than normal 

during the two La Niña years. 

Our study was novel in two ways. First, we analyzed changes in greenness, SIF, and GPP 

at monthly (September) and the dry-season (June-October) scales, whereas previous studies have 

conducted analyses at annual, or drought- and El Niño-year, time scales. Second, we include two 
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La Niña events in our analyses, whereas previous studies have focused nearly exclusively on 

drought or El Niño events. The results from our study have significant implications for dynamic 

global vegetation models (DGVMs) as generally they have poorly represented the seasonal 

dynamics of photosynthesis in the Amazon (Restrepo‐Coupe et al. 2017), which has created large 

uncertainties in predicting how seasonally moist tropical Amazonian forests respond to climate 

variability and change. Furthermore, the inability for the models to capture the seasonality of 

photosynthesis in moist Amazon forests may lead to an improper prediction of how such 

photosynthesis responds to pluvial and drought events, which could yield an errant quantification 

of the impact of changes in photosynthesis on atmospheric CO2 concentration.  

3.2 Methods 

3.2.1 Study sites 

Our study was conducted for each of the nine eddy flux tower locations that were part of 

the Large-Scale Biosphere Atmosphere Experiment in Amazonia (LBA) (Keller et al. 2004), and 

for the Amazon Tall Tower Observatory (ATTO) (Fig. S3.1) (Andreae et al. 2015). Unless 

otherwise noted, we carried out data analysis at the spatial resolutions of 0.5° and 1.0° (latitude 

and longitude) to match the spatial resolutions of GOME-2 and OCO-2 SIF data, respectively. 

Two of the towers were in the same gridcell, giving us a total of nine gridcells for analysis (Fig. 

S3.2). The percentage of forest cover area within these gridcells ranged from 15% to 99% as of 

2017 (Table S3.1).  

3.2.2 Solar-induced chlorophyll fluorescence 

We used SIF retrievals from GOME-2 and OCO-2, which were available for 2007 – 2017 

and September 2014 – October 2017, respectively. All SIF data analyses were conducted using the 

data as provided, without removing outliers or negative values. The GOME-2 and OCO-2 SIF 
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datasets have been rigorously validated with eddy flux tower GPP and gridded GPP datasets (Li 

et al. 2018; Sun et al. 2018; Zhang et al. 2016; Zhang et al. 2018b). We used daily average SIF 

values (SIFdaily) provided in the Level 3 (monthly) GOME-2 SIF v27 product from the MetOp-A 

satellite (Joiner et al. 2013; Joiner et al. 2016) because SIFdaily has been shown to have a more 

consistent relationship with daily GPP than instantaneous SIF (SIFinst) (Zhang et al. 2018c). The 

sensor onboard GOME-2’s MetOp-A satellite has degraded significantly, thus it is not advisable 

to conduct long-term trend analyses (Zhang et al. 2018a). The GOME-2 SIF products are noisy 

due to sensor degradation and the inherently low-energy signal of SIF (Joiner et al. 2013). The 

seasonality of GOME-2 SIF for each tower site is illustrated in Figure S3.3. 

 The OCO-2 v8 SIF Lite data product (B8100) was provided in daily files (Frankenberg et 

al. 2014). Each file provided SIF retrievals at 757 nm (SIF757) and 771 nm (SIF771). We averaged 

the two bands together by first applying a wavelength correction factor of 1.5 to SIF771 (Sun et al. 

2018). To match the temporal resolution of the GOME-2 data, we averaged the SIF retrievals for 

each month. The OCO-2 data was provided pre-filtered to exclude poor quality data (Frankenberg 

2015). GOME-2 and OCO-2 SIF values in our study should not be directly compared due to several 

differences, including spatial resolution, overpass time, viewing zenith angle, and the wavelengths 

used to retrieve SIF. 

3.2.3 Vegetation Photosynthesis Model 

To estimate monthly GPP for the entirety of the study period (2007-2017), we used the 8-

day 500-m Vegetation Photosynthesis Model (GPPVPM) light-use efficiency model (LUE) (Xiao 

et al. 2004; Xiao et al. 2005; Zhang et al. 2017b). In this model, the fraction of absorbed 

photosynthetically active radiation (fPAR) by vegetation was partitioned into PAR absorbed by 
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chlorophyll (fPARchl) and non-photosynthetic vegetation (fPARNPV) to estimate GPP. Thus, 

GPPVPM was a product of 𝑓𝑃𝐴𝑅௖௛௟, PAR, and light-use efficiency (𝜀௚): 

𝐺𝑃𝑃௏௉ெ ൌ 𝑃𝐴𝑅 ൈ 𝑓𝑃𝐴𝑅௖௛௟  ൈ  𝜀௚                                              (1) 

where 𝑓𝑃𝐴𝑅௖௛௟ was estimated as a function of the Enhanced Vegetation Index (EVI), 

which was calculated using MODIS MOD09A1 V006 data product (Zhang et al. 2017b). 

Maximum LUE (𝜀଴) is higher for C4 plants than C3 plants (Ehleringer et al. 1997; Epstein et al. 

1997), so VPM incorporated global C4 vegetation percentage maps (Zhang et al. 2017b). The 

maximum light-use efficiencies used in the model were 0.035 mol CO2 mol-1 PAR for C3 and 

0.0525 mol CO2 mol-1 PAR for C4. Thus, GPPVPM for each gridcell was calculated using the area 

fraction and light-use efficiency for C3 and C4 vegetation. 𝜀௚ is regulated by temperature and 

water stress (Haxeltine and Prentice 1996). To account for these stresses, VPM used temperature 

(𝑇௦௖௔௟௔௥) and water scalars (𝑊௦௖௔௟௔௥) to downregulate 𝜀଴. 

We calculated monthly daily average GPPVPM by first determining the monthly total and 

dividing it by the number of days in that month. In Figures 4-7, and for the statistical analyses 

that accompany these figures, we aggregated the original 500-m GPPVPM product to 0.05 degree 

to match the spatial resolution of the MAIAC data. Previous studies have validated VPM in 

biomes around the world using data from the eddy flux tower sites (Doughty et al. 2018; Xiao et 

al. 2005; Xin et al. 2017; Zhang et al. 2016; Zhang et al. 2017b) and SIF (Cui et al. 2017; Ma et 

al. 2018) data. The seasonality of GPP for each tower site is illustrated in Figure S3.4. 

3.2.4 Vegetation indices 

The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 

(EVI) (Huete et al. 2002) was obtained from the MODIS MOD13C2 V006 monthly data product 

(Didan 2015), which had a spatial resolution of 0.05°. Prior to aggregating NDVI and EVI to 0.5°, 
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we removed all poor and marginal quality grid cells using the quality reliability flag (0 = good 

quality). We further filtered NDVI and EVI by using a minimum threshold of 0.6 and 0.3, 

respectively. Land Surface Water Index (LSWI) (Xiao et al. 2002) was calculated using the 

MOD09A1 V006 500 m 8-day land surface reflectance product (Vermote 2015). Missing LSWI 

values in 2000 and 2001 were gap-filled with the same day of year (DOY) values from the 

subsequent years, and gaps in 2016 were filled with values from the same DOY in 2015 (Zhang et 

al. 2017b). Boxplots of these EVI, NDVI, and LSWI data were provided in Figures S5-7. 

Previous studies have suggested that the bidirectional reflectance effect caused by sun-

sensor geometry was the source of seasonality in MODIS-derived NDVI and EVI (Morton et al. 

2014), and that surface reflectance data that is not corrected with the bidirectional reflectance 

distribution function (BRDF) is questionable (Hilker et al. 2015). However, several studies have 

shown that there is a dry-season increase in EVI and NDVI regardless of the MODIS surface 

reflectance product used, including MOD09, MOD13, MCD43, and MAIAC, although the 

frequency of good-quality data and the seasonal magnitudes of change vary among these products 

(Guan et al. 2015; Hilker et al. 2015; Maeda et al. 2014; Maeda et al. 2016; Saleska et al. 2016). 

Thus, we also incorporated BRDF-corrected EVI (EVIn) and NDVI (NDVIn) into our analysis, 

which was derived from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 

Version 6 MODIS product MCD19A1.006. The BRDF-corrected vegetation indices, EVIn and 

NDVIn, were provided as an 8-day, 0.05-degree product with global coverage in the Climate 

Model Grid (CMG) format and was accessed at 

https://portal.nccs.nasa.gov/datashare/maiac/DataRelease/. For Fig. 3.1, we aggregated the 

MAIAC data to 0.5-degree spatial resolution to match the spatial resolution of the other datasets 

used in the figure; 8-day values are shown. For Fig. 3.3, we aggregated the MAIAC data to monthly 
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values at 0.5-degree spatial resolution for consistency with the other datasets. For Figures 4-7, and 

all statistical analysis, we used the MAIAC data as provided in its original spatial and temporal 

resolution. 

3.2.5 Climate data 

We used air temperature (Fig. S3.8) and PAR (Fig. S3.9) data from the National Centers 

for Environmental Prediction (NCEP) Reanalysis 2 dataset, accessed at 

https://www.esrl.noaa.gov/psd/. These data were downscaled to 0.5° ൈ 0.5° using a non-linear, 

distance-weighted spatial interpolation technique (Zhang et al. 2016; Zhao et al. 2005). Monthly 

precipitation data (Fig. S3.10) was obtained from the Tropical Rainfall Measuring Mission’s 

(TRMM) Multi-Satellite Precipitation Analysis (TMPA) (Huffman et al. 2007). We aggregated 

the 3B43 v7 data product (Huffman et al. 2014, updated 2019b) to 0.5° ൈ 0.5° from its original 

spatial resolution of 0.25° ൈ 0.25°. Monthly ENSO indices in Figures 2 and S11 were provided 

by the Multivariant El-Niño Southern Oscillation Index Version 2 (MEI.v2) available at 

https://www.esrl.noaa.gov/psd/enso/mei/ (Wolter and Timlin 2011). 

3.2.8 Forest cover 

To determine changes in forest cover area during the study period (2007-2017), we 

mapped annual forest cover with a spatial resolution of 500-m using our previously published 

methods (Qin et al. 2016; Qin et al. 2019; Xiao et al. 2009). Only gridcells that were consistently 

forest and non-forest were used in our study, and moist forest were defined as those pixels that 

were consistent forest and had a mean annual precipitation (MAP) of more than 2000 mm as 

calculated using TRMM data for our study period of 2007-2017. 
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3.2.9 Statistical analyses  

We conducted ordinary least squares regressions to determine the relationship between 

monthly GPP and GOME-2 SIF at each site. Regressions were through the origin (intercepts 

were forced to zero) as predicted GPP was expected to be nil when observed SIF was zero. We 

used one-sample t-tests for SIF, GPP, EVIn, and NDVIn (Figures 4-7) to determine if the 

difference between normal September or dry-season SIF and September or dry-season SIF 

during the La Niñas and El Niños was significantly different than zero (Tables S3.2-5).  

3.3 Results 

3.3.1 Seasonality of Amazon forests 

GOME-2 and OCO-2 monthly SIF at the gridcells with forest eddy flux tower sites 

exhibited increases in the dry season and decreases during the wet season (Figs. S3.12-13). SIF 

data from both sources were highly correlated (Fig. S3.14) and exhibited remarkably similar 

seasonal dynamics over the life of OCO-2 (beginning Sept. 2014) at each site. GPP estimates were 

well correlated with SIF observations from GOME-2 and OCO-2 (Figs S3.15-16). Furthermore, 

the seasonality of the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), 

which respectively provide information on canopy chlorophyll and water content, were also similar 

to the seasonality of SIF and GPP (Fig. 3.1, Figs. S3.17-19). For the five gridcells dominated by 

forests (ATTO, K34, K77/K83, CAX, and RJA), SIF, GPP, EVI, and PAR increased during the 

dry season (July-December) and decreased during the wet season (January-June) (Fig. S3.20). 
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Figure 3.1 | Monthly dynamics of climate, SIF, photosynthesis, and greenness at the ATTO and 
K34 sites. Continuous data shown as lines. Shaded areas are months in which monthly total 
precipitation was less than 100mm. Shown are monthly total precipitation, photosynthetically 
active radiation (PAR), solar induced chlorophyll fluorescence (SIF; mw-2 m-2 nm-1 sr-1), gross 
primary production (GPP; gC m-2 day-1), land surface water index (LSWI), temperature, and 
enhanced vegetation index (EVI) and normalized vegetation difference index (NDVI) from 
MODIS and BRDF-corrected MAIAC (EVIn; NDVIn) products. 

 
At the basin scale, we found that SIF and GPP were most often higher during September 

(typically the driest month) than during March (typically the wettest month) for gridcells that had 

at least 80% forest cover and 2000 mm mean annual precipitation (Fig. 3.2; Fig. S3.21). For 

gridcells that had <80% forest cover, SIF and GPP were often higher in March. This phenomenon 

was also observed by a previous analysis that found that increases in dry-season EVI and SIF for 
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tropical forests was largely determined by whether the forest had a mean annual precipitation 

(MAP) threshold of 2000 mm a year (Guan et al. 2015). 

 
Figure 3.2 | The difference between mean September SIF or GPP and mean March SIF or GPP for 
each calendar year 2007-2017. Positive values indicate that GOME-2 SIF or GPP was higher 
during September, and negative values indicate that SIF or GPP was higher during March. Points 
were placed at the midpoint of each year, when ENSO typically oscillates. Bars are the 
Multivariate ENSO Index Version 2 (MEI.V2) values; red and blue bars indicate warm and cool 
periods, respectively. GOME-2 and GPP data in each panel represents the mean of gridcells with 
a percentage of forest cover ≥ or <80% and mean annual precipitation (MAP) ≥ or <2000 mm, 
as indicated by title above each panel. 

 
3.3.2 Greenness, SIF, and GPP during La Niña and El Niño  

To our surprise, at the two gridcells with the most forest cover (99% in ATTO and 96% in 

K34), dry-season greenness, SIF, and GPP during the 2009-2010 and 2015-2016 El Niño events 

were often higher than the multi-year mean and the preceding La Niña events (Fig. 3.3). At the 

gridcells containing eddy flux tower sites, there were no distinct changes in dry-season greenness, 
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SIF, or GPP because the gridcells were a mix of forests and other vegetation types or there was a 

substantial change in vegetative cover over time. However, dry-season GPP during the 2009-2010 

El Niño was higher than the multi-year mean and preceding 2007-2008 La Niña at all five forested 

gridcells (Fig. S3.22). Dry-season GPP during the 2015-2016 El Niño exhibited a similar increase 

at the forested gridcells relative to the multi-year mean and the preceding 2010-2011 La Niña (Fig. 

S3.23), except at K77/K83 where substantial deforestation has occurred. 

 
Figure 3.3 | ENSO year (July – June) seasonal dynamics of monthly mean SIF, photosynthesis, 
greenness, and climate at ATTO and K34. Symbols are monthly observations during La Niña (blue 
triangles) and El Niño (red circles) and bars are monthly means from 2007-2017 (excluding the 
La Niña and El Niño events). The left two panels show the 2007-2008 La Nina and 2009-2010 El 
Nino. The right two panels show the 2010-2011 La Nina and 2015-2016 El Nino. Illustrated are 
monthly mean SIF (mw-2 m-2 nm-1 sr-1), GPP (gC m-2 day-1), PAR (Wm-2), EVI, EVIn, LSWI, 
NDVI, NDVIn, total precipitation (mm), and temperature (°C). 
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We further investigated our hypothesis that September and dry-season greenness, SIF, and 

GPP were higher than normal during the two El Niños and higher than normal during the two La 

Niñas at the basin scale and for moist forests using BRDF-corrected vegetation indices, SIF 

observations, and GPP estimates. We found that September SIF, GPP, EVIn, and NDVIn during 

the 2009-2010 El Niño were significantly higher than normal, and lower than normal during the 

preceding La Niñas of 2007-2008 for both the basin and moist forests (Fig. 3.4; Table S3.2). For 

the basin, September SIF, GPP, EVIn, and NDVIn were about 12%, 4.1%, 2.8%, and 1.9% higher 

than normal during the 2009-2010 El Niño, and were about 11%, 3.7%, 3.9%, and 1.9% lower 

than normal during the 2007-2008 La Niña, respectively. For moist forests, September SIF, GPP, 

EVIn, and NDVIn were about 8.8%, 5.8%, 1.9%, and 0.7% higher than normal during the 2009-

2010 El Niño, and were about 6.7%, 6.3%, 3.9%, and 1.5% lower than normal during the 2007-

2008 La Niña, respectively.  



56 
 

 
Figure 3.4 | Difference between September SIF, GPP, EVIn, and NDVIn during the 2007-2008 La 
Niña and 2009-2010 El Niño and the mean of normal years in the Amazon. Differences calculated 
as the La Niña or El Niño September minus the mean of the normal years, thus negative values 
indicate lower than normal and positive values indicate higher than normal. Frequency histograms 
in each column (i-p) correspond to the maps (a-h) above them. We used a one-sample t-test at the 
95% level of confidence to test if the differences were significantly different from zero (Table 
S3.2). Moist forest gridcells were those with >80% forest cover and >2000 mm mean annual 
precipitation. 

For the 2010-2011 La Niña and 2015-2016 El Niño, September SIF, GPP, EVIn, and NDVIn were 

significantly higher during each El Niño than the La Niña that preceded for both the Amazon Basin 

and moist forests (Fig. 3.5; Table S3.3). At the basin scale, September SIF, GPP, EVIn, and NDVIn 

were lower than normal during the La Nina and higher than normal during the El Nino. Results 
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were similar for moist forests, except that September GPP during the La Nina was higher than 

normal during the La Nina and EVIn was lower than normal during the El Nino.  

 

 
Figure 3.5 | Difference between September SIF, GPP, EVIn, and NDVIn during the 2010-2011 La 
Niña and 2015-2016 El Niño and the mean of normal years in the Amazon. Differences calculated 
as the La Niña or El Niño September minus the mean of the normal years, thus negative values 
indicate lower than normal and positive values indicate higher than normal. Frequency histograms 
in each column (i-p) correspond to the maps (a-h) above them. We used a one-sample t-test at the 
95% level of confidence to test if the differences were significantly different from zero (Table 
S3.3). Moist forest gridcells were those with >80% forest cover and >2000 mm mean annual 
precipitation. 

 
As for the dry season, the differences between SIF, GPP, EVIn, and NDVIn during the 

ENSO events and normal were much more subtle than the differences observed when we looked 
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at only September. At the basin scale, dry-season SIF, GPP, EVIn, and NDVIn were about 6.7%, 

2.8%, 1.1%, and 0.8% higher than normal during the 2009-2010 El Niño, and were about 0.5%, 

3.4%, 2.5%, and 0.8% lower than normal during the 2007-2008 La Niña (Fig. 3.6; Table S3.4). 

Results for these two ENSO events were similar for moist forest except for dry-season SIF during 

the 2007-2008 La Niña, which was 0.7% higher than normal.  

 
Figure 3.6 | Difference between dry-season SIF, GPP, EVIn, and NDVIn during the 2007-2008 La 
Niña and 2009-2010 El Niño and the mean of normal years in the Amazon. Differences calculated 
as the La Niña or El Niño dry-season (Jun-Oct) minus the mean of the normal years, thus negative 
values indicate lower than normal and positive values indicate higher than normal. Frequency 
histograms in each column (i-p) correspond to the maps (a-h) above them. We used a one-sample 
t-test at the 95% level of confidence to test if the differences were significantly different from zero 
(Table S3.4). Moist forest gridcells were those with >80% forest cover and >2000 mm mean annual 
precipitation. 
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However, the results were inconsistent on whether dry-season SIF, GPP, EVIn, or NDVIn 

were higher or lower than normal, particularly for the 2015-2016 El Niño. Dry-season SIF, GPP, 

EVIn, and NDVIn at the basin scale during the 2010-2011 La Niña were slightly lower than normal 

by about 2.3%, 0.1%, 2.5%, and 1.9%, respectively (Fig. 3.7; Table S3.5). The moist forest had 

similar lower than normal values, except for GPP which had a marginal increase of < 0.1%. Dry-

season results were split for the 2015-2016 El Niño at the basin scale and for moist forest, with 

lower than normal SIF (3.6% and 4.4%) and EVIn (0.5% and 0.8%) and higher than normal GPP 

(2.2% and 2.7%) and NDVIn (0.3% and 0.1%). 
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Figure 3.7 | Difference between dry-season SIF, GPP, EVIn, and NDVIn during the 2010-2011 La 
Niña and 2015-2016 El Niño and the mean of normal years in the Amazon. Differences calculated 
as the La Niña or El Niño dry-season (Jun-Oct) minus the mean of the normal years, thus negative 
values indicate lower than normal and positive values indicate higher than normal. Frequency 
histograms in each column (i-p) correspond to the maps (a-h) above them. We used a one-sample 
t-test at the 95% level of confidence to test if the differences were significantly different from zero 
(Table S3.5). Moist forest gridcells were those with >80% forest cover and >2000 mm mean annual 
precipitation. 

 
3.4 Discussion  

Our findings on the dry-season increase of greenness, SIF, and GPP for forested sites in 

the Amazon are also consistent with the results reported for the LBA eddy flux towers (Restrepo-

Coupe et al. 2013), in situ observations of leaf flush, litterfall, and photosynthesis (Doughty et al. 
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2015; Rice et al. 2004; Saleska et al. 2003), prior satellite observations (Huete et al. 2006; Saleska 

et al. 2007; Xiao et al. 2005), and more recent in situ studies that observed greening and leaf flush 

using tower based cameras (Lopes et al. 2016; Wu et al. 2016). Importantly, the Vegetation 

Photosynthesis Model (VPM) was able to capture well the observed seasonality of photosynthesis, 

which has been poorly captured by several DGVMs (IBIS, ED2, JULES, and CLM3.5) that have 

simulated dry-season declines in GPP (Restrepo‐Coupe et al. 2017).  

The increase of SIF, GPP, EVIn, and NDVIn during the dry season can be explained by 

the shedding of lianas and old leaves (4 to 5 years old) in the forest canopy, the exposure of younger 

leaves, and new leaf flush (Brando et al. 2010; Xiao et al. 2005). The amount of litterfall during 

the dry seasons are more than compensated for by new leaf production (Wu et al. 2016). During 

severe drought (El Niño) years, the amount of litterfall during the season increased, and the canopy 

has more young and mid-age leaves to be exposed to sun lights and observed by satellites, which 

may lead to higher dry-season SIF, GPP, EVIn, and NDVIn than the normal. In addition, bud 

development is queued by the length of day (Rivera et al. 2002), but leaf flushing and development 

coincides with increased radiation (Wright and Van Schaik 1994) and water availability (Brando 

et al. 2010). For moist Amazon forest with relatively little water limitation due to high mean annual 

precipitation and deep root systems (Nepstad et al. 1994), it is likely that leaf flush and 

development are accelerated in drier years when PAR is higher and cloud cover is lower than 

normal (Saleska et al. 2007). Thus, trees will utilize their water and light resources to their full 

potential to maximize leaf development and photosynthetic capacity until they become resource 

limited. Our analysis supports this theory in that September greenness, SIF, and GPP are higher 

than normal during El Niño, but overall there is relatively little difference between dry-season 

greenness, SIF, and GPP during normal, dry, and wet years. It is likely that in dry years, the forest 
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reaches water limitation more quickly, offsetting increased productivity that occurred earlier. 

Similarly, a wetter dry season may suppress the fall of old leaves (litterfall) and new leaf 

development, which would cause photosynthesis to peak later in the dry season. Thus, our 

observation that the difference between September greenness, SIF, and GPP during an ENSO event 

and normal is larger than the dry-season difference provides additional evidence that the observed 

changes are driven by changes in the forest canopy and not sun-sensor geometry. 

Like the differences between September SIF, GPP, EVIn, and NDVIn during the El Niños 

and their preceding La Niñas, dry-season SIF, GPP, EVIn, and NDVIn was also higher during the 

El Niños that their preceding La Niñas except for SIF during the 2015-2016 El Niño (a comparison 

of which is perhaps inconsequential due to the sensor degradation that occurred between these two 

ENSO events). In each case, our results indicated that the differences between September or dry-

season SIF, GPP, EVIn, and NDVIn during the four ENSO events and normal did not support our 

hypotheses that dry-season SIF, GPP, EVIn, and NDVIn was higher than normal during the El 

Niño years and lower than normal during the La Niña years.  It is worth noting that changes in 

aboveground biomass (AGB) or net primary productivity (NPP) during a drought is a poor 

indicator of how drought affects GPP because both AGB and NPP often do not include the amount 

of litterfall. It has been suggested that during drought, trees may reduce plant respiration (Doughty 

et al. 2015). It has also been suggested that AGB may decrease despite increased GPP due to the 

allocation of carbon to belowground processes (Brando et al. 2010).  

3.5 Conclusions  

Our findings on the seasonality of greenness, SIF, and GPP of moist tropical forests in the 

Amazon during normal years and ENSO years could have profound implications on future studies 

of terrestrial carbon and water cycles and climate. The tropical forests play the largest role in the 
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seasonal dynamics and interannual variability of atmospheric carbon dioxide concentrations 

(Schimel et al. 2001). It has been estimated that about 22% of Amazonian rainfall is transpired by 

the forests within the basin (Staal et al. 2018). An inversion in the seasonality and reduction in 

transpiration is expected to increase the amplitude of droughts (Bagley et al. 2014) and affect the 

forest-rainfall cascades that are vital to Amazonian forests, particularly in the southwest where 

forests are more dependent on transpired water (Staal et al. 2018). Therefore, earth system models 

need to include variables that better track the canopy dynamics and phenology of evergreen 

tropical forests, which affects the seasonal dynamics of plant photosynthesis, transpiration, and 

their responses to changes in climate (Restrepo‐Coupe et al. 2017). 

Our study has shown the complexity of assessing the dry-season greenness, SIF, and GPP 

of tropical forests at coarse spatial resolutions (0.5 and 1.0 degree), which is to a large degree due 

to varying proportions of forests and other land cover types within individual gridcells (Fig. S3.21). 

Non-forest vegetation types have different seasonal dynamics of greenness, SIF, and GPP due to 

diverse human management practices, such as haying, grazing livestock, and the planting and 

harvesting of crops. Therefore, earth system models need to include accurate annual maps of land 

cover types in their simulations to better predict the seasonal dynamics of carbon and water fluxes 

in the Amazon Basin. The use of such maps has become a more urgently needed by the modeling 

community, as the Amazonian landscape is rapidly changing due to deforestation and agricultural 

expansion and intensification (Nepstad et al. 2014; Qin et al. 2019; Tyukavina et al. 2017). Thus, 

the remote sensing community must work together and produce accurate and updated annual maps 

of Amazonian land cover types (Richards et al. 2017). 

We also illustrated the potential of spaceborne GOME-2 and OCO-2 SIF data to provide new 

insight on the canopy structure and function of tropical forests, particularly during ENSO years. 
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Frequent cloud cover and aerosols in the Amazon have limited the number of good-quality SIF 

observations, which significantly hinder our progress in better understanding the seasonal 

dynamics of SIF. High-frequency in situ SIF observations have found that the relationship between 

SIF and GPP can change with environmental conditions and growth stage (Yang et al. 2018b). For 

example, it has been shown that SIF for taller and older Amazonian forests is less sensitive to 

precipitation variability than shorter and younger stands (Giardina et al. 2018). Therefore, it is 

important for us to integrate SIF data from other newly launched platforms (TROPOMI, OCO-3) 

and to-be-launched platforms such as FLEX and GeoCarb (Drusch et al. 2016; Polonsky et al. 

2014).  

3.6 Supplementary material  

The original, unfiltered GOME-2 SIF data (including negative values) were used in all data 

analysis and figures (other than Figures S1 and S12) as instructed in the GOME-2 Read Me file 

at: 

https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/README_GOME-F_v27.pdf. 

For better visualization of the GOME-2 SIF data in Figs. S1 and S12, we used three thresholds to 

exclude outliers most likely affected by noise: SIF must 1) not be less than 0.2 (0.2 ൑ SIF); 2) not 

be less than 50% of the previous and subsequent SIF value (SIFt-1 ൈ 0.5 ൑ SIFt ൒ SIFt൅1 ൈ 0.5); 

and 3) not be more than 150% of the previous and subsequent SIF value (SIFt-1 ൈ 1.5 ൒ SIFt ൑ 

SIFt൅1 ൈ 1.5). If SIFt could not be determined because SIFt-1 and/or SIFt+1 observations were poor 

quality or missing, then the nearest good observation was used in the threshold (e.g., SIFt-2 and/or 

SIFt+2).  
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Figure S3.1 | Study site locations and forest area percentage. (A) Eddy tower locations in South 
America used in this study. The white boxes are the 1° x 1° OCO-2 pixels used in the study (drawn 
to scale). Aerial imagery for each site is further depicted in Fig. S2. (B) Percentage of forest cover 
in each 0.5° GOME-2 pixel. 
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Figure S3.2 | Satellite imagery of the study sites. White boxes are 1° OCO-2 pixels, red boxes are 
0.5° GOME-2 pixels, and white dots are the approximate reported location the eddy covariance 
tower. The percentage of forest cover in each 0.5° pixel is reported in Table S3.1. Note: K77/K83 
exhibits a fishbone pattern of deforestation and CAX shows cloud streets (patterns like strings of 
pearls). 
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Figure S3.3 | Seasonality (July-June) of GOME-2 solar-induced chlorophyll fluorescence data for 
2007-2017. 

 

 

Figure S3.4 | Seasonality (July-June) of gross primary production estimated by the Vegetation 
Photosynthesis Model for 2007-2017. 
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Figure S3.5 | Seasonality (July-June) of the enhanced vegetation index for 2007-2017. 

 

 

 

Figure S3.6 | Seasonality (July-June) of the normalized difference vegetation index for 2007-2017. 
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Figure S3.7 | Seasonality (July-June) of the land surface water index from 2007-2017. 

 

 

Figure S3.8 | Seasonality (July-June) of temperature for 2007-2017. 

 



70 
 

 

Figure S3.9 | Seasonality (July-June) of photosynthetically active radiation for 2007-2017. 

 

 

Figure S3.10 | Seasonality (July-June) of precipitation for 2007-2017. 
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Figure S3.11 | Monthly Multivariate El Niño-Southern Oscillation Index for 2007-2017. 

 

 

 
Figure S3.12 | Monthly solar-induced chlorophyll fluorescence from GOME-2 and OCO-2 for nine 
gridcells in South America 2014-2017. Shaded areas are months in which total precipitation was 
100mm or less. SIF values are not comparable between the two platforms, but the seasonality of 
the data can be compared. Data for OCO-2 was available beginning in September 2014. 
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Figure S3.13 | Satellite imagery and observations of SIF for two Amazon forest gridcells during 
2014-2017. In (a) and (c), the white boxes are 1° OCO-2 gridcells, the red boxes are 0.5° GOME-
2 gridcells, and the white dots are the approximate locations of the eddy covariance towers. Shaded 
areas in (b) and (d) are dry months with <100 mm of precipitation. GOME-2 SIF data in the charts 
(b, d) were aggregated to 1° to match the footprint of OCO-2.  
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Figure S3.14 | Linear regression between monthly SIFGOME-2 and SIFOCO-2 for each site 
September 2014 – October 2017. SIFGOME-2 data was aggregated to one-degree spatial resolution 
to match that of SIFOCO-2. 

 
 
 

 

Figure S3.15 | Linear regressions between monthly GPPVPM, SIFGOME-2, and SIFOCO-2 for 
all sites and years. For the GPPVPM and SIFGOME-2 regression analysis, half-degree spatial 
resolution data were used for 2007-2017. For the GPPVPM and SIFOCO-2 regression analysis, one-
degree spatial resolution data were used for September 2014 – October 2017. 
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Figure S3.16 | Linear regressions between monthly GPPVPM and SIFGOME-2 for each site 2007-
2017. GPPVPM was aggregated to half-degree spatial resolution to match SIFGOME-2. 

 

 

Figure S3.17 | Monthly dynamics of climate, SIF, productivity, and greenness for ATTO, K34, 
and K77/K83 for 2007-2017. Continuous data shown as lines. All data was aggregated or 
resampled to 0.5° degree to match the GOME-2 SIF data. Shown are monthly precipitation (mm), 
photosynthetically active radiation (PAR; Wm-2), solar induced chlorophyll fluorescence (SIF; 
mw-2 m-2 nm-1 sr-1), gross primary production (GPP; gC m-2 day-1), land surface water index 
(LSWI), temperature (°C), and MOD13 enhanced vegetation index (EVI) and normalized 
vegetation difference index (NDVI). 
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Figure S3.18 | Monthly dynamics of climate, SIF, productivity, and greenness for CAX, RJA, and 
K67 for 2007-2017. Continuous data shown as lines. All data was aggregated or resampled to 0.5° 
to match the GOME-2 SIF data. Shown are monthly precipitation (mm), photosynthetically active 
radiation (PAR; Wm-2), solar induced chlorophyll fluorescence (SIF; mw-2 m-2 nm-1 sr-1), gross 
primary production (GPP; gC m-2 day-1), land surface water index (LSWI), temperature (°C), and 
MOD13 enhanced vegetation index (EVI) and normalized vegetation difference index (NDVI). 
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Figure S3.19 | Monthly dynamics of climate, SIF, productivity, and greenness for JAV, PDG, and 
FNS for 2007-2017. Continuous data shown as lines. All data was aggregated or resampled to 0.5° 
to match the GOME-2 SIF data. Shown are monthly precipitation (mm), photosynthetically active 
radiation (PAR; Wm-2), solar induced chlorophyll fluorescence (SIF; mw-2 m-2 nm-1 sr-1), gross 
primary production (GPP; gC m-2 day-1), land surface water index (LSWI), temperature (°C), and 
MOD13 enhanced vegetation index (EVI) and normalized vegetation difference index (NDVI). 
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Figure S3.20 | Seasonality (July – June) of SIF, photosynthesis, greenness, and climate for 2007-
2017 at nine 0.5° gridcells with 10 eddy flux tower sites. Bars are monthly means for the entire 
study period 2007-2017. Illustrated top to bottom are mean solar induced chlorophyll 
fluorescence (SIF; mw-2 m-2 nm-1 sr-1), gross primary production (GPP; gC m-2 day-1), 
photosynthetically active radiation (PAR; Wm-2), MOD13 enhanced vegetation index (EVI), 
land surface water index (LSWI), MOD13 normalized vegetation difference index (NDVI), 
precipitation (mm), and temperature (°C). 
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Figure S3.21 | The difference between mean September SIF and GPP and mean March SIF and 
GPP 2007-2017 for all gridcells in the Amazon Basin. Positive values indicate that SIF or GPP 
was higher on average in September. Negative values indicate that SIF or GPP was higher on 
average in March. Only gridcells that were consistently >80% or <80% were used. 
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Figure S3.22 | Seasonality (July – June) of SIF, photosynthesis, greenness, and climate for 2007-
2017, La Niña 2008, and El Niño 2010 at nine 0.5° gridcells with 10 eddy flux tower sites. 
Illustrated top to bottom are mean solar induced chlorophyll fluorescence (SIF; mw-2 m-2 nm-1 sr-

1), gross primary production (GPP; gC m-2 day-1), photosynthetically active radiation (PAR; Wm-

2), MOD13 enhanced vegetation index (EVI), land surface water index (LSWI), MOD13 
normalized vegetation difference index (NDVI), precipitation (mm), and temperature (°C). 
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Figure S3.23 | Seasonality (July – June) of SIF, photosynthesis, greenness, and climate for 2007-
2017, La Niña 2011, and El Niño 2016 at nine 0.5° gridcells with 10 eddy flux tower sites. 
Illustrated top to bottom are mean solar induced chlorophyll fluorescence (SIF; mw-2 m-2 nm-1 
sr-1), gross primary production (GPP; gC m-2 day-1), photosynthetically active radiation (PAR; 
Wm-2), MOD13 enhanced vegetation index (EVI), land surface water index (LSWI), MOD13 
normalized vegetation difference index (NDVI), precipitation (mm), and temperature (°C). 
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Table S3.1. Summary of nine study sites. The site name, latitude, and longitude of each eddy tower. 
The percentage of forest cover within each 0.5° (GOME-2) and 1.0° (OCO-2) pixel, and the net 
change in forest cover over the study period (2007-2017). 

Site Latitude Longitude 2017 Forest Cover 0.5° 
(% Δ 2007-17) 

2017  Forest Cover 1° 
(% Δ 2007-17) 

ATTO -2.1458 -59.006 99.3% (+0.1%) 99.2% (-0.2%) 
K34 -2.609 -60.209 96.2% (-0.1%) 88.4% (-0.3%) 
K77; 
K83 

-3.0202; 
-3.01700 

-54.8885; 
-54.97070 

91.3% (-6.3%) 90.3% (-8.0%) 

CAX -1.7483 -51.454 83.1% (-0.7%) 85.9% (-1.2%) 
RJA -10.078 -61.933 82.8% (-2.7%) 73.47% (+0.2%) 
K67  -2.857 -54.959 56.3% (-29.1%) 49.8% (-12.6%) 
JAV -9.8244 -50.159 52.3% (-5.6%) 32.0% (-19.6%) 
PDG -21.619 -47.65 19.8% (-9.7%) 14.4% (-30.2%) 
FNS -10.762 -62.357 14.3% (-31.8%) 21.1% (-26.9%) 

 

Table S3.2. One-sample t-test results for September in the 2008 La Niña and 2010 El Niño and the 
percentage difference between normal and ENSO event for SIF, GPP, EVIn, and NDVIn. One-
sample t-tests were conducted to determine if the difference between September SIF, GPP, EVIn, 
and NDVIn during the ENSO phases and the mean for all remaining Septembers was significantly 
different from zero. The distributions were illustrated in Fig. 4. 

Amazon Basin 
September ENSO Gridcells 

(n) 
Δ 95% CI t-value p-

value 
Norm % Δ 

2007 SIF 2007-
2008 
La 
Niña  

1960 -
0.045 

-0.05, -0.04 -15.70 <0.001 0.41 -
10.98% 

2007 GPP 195434 -
0.434 

-0.44, -0.43 -
250.57 

<0.001 11.84 -3.67% 

2007 EVIn 188637 -
0.017 

-0.018, -
0.017 

-
395.13 

<0.001 0.437 -3.89% 

2007 
NDVIn 

188639 -
0.014 

-0.014, -
0.014 

-202.4 <0.001 0.737 -1.90% 

2009 SIF 2009-
2010 
El 
Niño 
 

1967 0.049 0.04, 0.05 18.81 <0.001 0.41 11.95% 
2009 GPP 195436 0.49 0.49, 0.49 304.89 <0.001 11.84 4.14% 
2009 EVIn 193787 0.012 0.012, 0.012 250.07 <0.001 0.437 2.75% 
2009 
NDVIn 

193777 0.014 0.14, 0.14 195.16 <0.001 0.737 1.90% 

Gridcells >80% Forest and >2000mm MAP 
2007 SIF 2007-

2008 
La 
Niña 

1169 -
0.031 

-0.04, -0.02 -9.20 <0.001 0.466 -6.65% 

2007 GPP 109376 -
0.548 

-0.55, -0.54 -
253.94 

<0.001 8.68 -6.31% 
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2007 EVIn  108004 -
0.019 

-0.19, -0.19 -
501.46 

<0.001 0.487 -3.90% 

2007 
NDVIn 

108004 -
0.012 

-0.013, -
0.013 

-
229.79 

<0.001 0.818 -1.47% 

2009 SIF 2009-
2010 
El 
Niño 

1166 0.041 0.04, 0.05 13.24 <0.001 0.466 8.80% 
2009 GPP 109379 0.502 0.50, 0.51 252.05 <0.001 8.68 5.78% 
2009 EVIn 109120 0.009 0.009, 0.009 260.59 <0.001 0.487 1.85% 
2009 
NDVIn 

109120 0.006 0.006, 0.006 158.82 <0.001 0.818 0.73% 

 

Table S3.3. One-sample t-test results for September in the 2011 La Niña and 2016 El Niño and the 
percentage difference between normal and ENSO event for SIF, GPP, EVIn, and NDVIn. One-
sample t-tests were conducted to determine if the difference between September SIF, GPP, EVIn, 
and NDVIn during the ENSO phases and the mean for all remaining Septembers was significantly 
different from zero. The distributions were illustrated in Fig. 5. 

Amazon Basin 
September ENSO Gridcells 

(n) 
Δ 95% CI t-value p-

value 
Norm % Δ 

2010 SIF 2010-
2011 
La 
Niña  

1966 -
0.047 

-0.05, -0.04 -18.89 <0.001 0.41 -
11.46% 

2010 GPP 195434 -
0.025 

-0.029, -
0.022 

-13.90 <0.001 11.84 -0.21% 

2010 EVIn 193009 -
0.021 

-0.021, -
0.021 

-
395.20 

<0.001 0.437 -4.81% 

2010 
NDVIn 

193012 -
0.025 

-0.025, -
0.025 

-
325.26 

<0.001 0.737 -3.39% 

2015 SIF 2015-
2016 
El 
Niño 

1967 0.006 0.01, 0.01 3.01 <0.01 0.41 1.46% 
2015 GPP 195431 0.389 0.39, 0.39 218.16 <0.001 11.84 3.29% 
2015 EVIn 193639 0.002 0.002, 0.002 37.02 <0.001 0.437 0.46% 
2015 
NDVIn 

193633 0.008 0.007, 0.008 122.82 <0.001 0.737 1.09% 

Gridcells >80% Forest and >2000mm MAP 
2010 SIF 2010-

2011 
La 
Niña 

1164 -
0.045 

-0.05, -0.04 -15.38 <0.001 0.466 -9.66% 

2010 GPP 109378 0.107 0.102, 0.111 46.53 <0.001 8.68 1.23% 
2010 EVIn 108643 -

0.019 
-0.019, -
0.019 

-
441.16 

<0.001 0.487 -3.90% 

2010 
NDVIn 

108643 -
0.019 

-0.019, -
0.019 

-
373.66 

<0.001 0.818 -2.32% 

2015 SIF 2015-
2016 
El 
Niño 

1156 0.007 0.001, 0.01 2.74 <0.01 0.466 1.50% 
2015 GPP 109377 0.434 0.429, 0.439 183.64 <0.001 8.68 5.00% 
2015 EVIn 109092 -

0.002 
-0.002, -
0.002 

-60.80 <0.001 0.487 -0.41% 
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2015 
NDVIn 

109092 0.005 0.005, 0.005 136.17 <0.001 0.818 0.61% 

 

Table S3.4. One-sample t-test results for dry season during the 2008 La Niña and 2010 El Niño 
and the percentage difference between normal and ENSO event for SIF, GPP, EVIn, and NDVIn. 
One-sample t-tests were conducted to determine if the difference between dry-season (June 
through October) SIF, GPP, EVIn, and NDVIn during the ENSO phases and the mean for all 
remaining dry seasons was significantly different from zero. The distributions were illustrated in 
Fig. 6. 

Amazon Basin 
Dry Season ENS

O 
Gridcells 
(n) 

Δ 95% CI t-value p-
value 

Norm % Δ 

2007 SIF 2007-
2008 
La 
Niña  

1967 -0.002 -0.004, 0.001 -1.28 0.202 0.388 -
0.52% 

2007 GPP 195436 -0.231 -0.23, -0.23 -
209.02 

<0.001 6.824 -
3.39% 

2007 EVIn 194285 -0.011 -0.011, -0.011 -
339.39 

<0.001 0.445 -
2.47% 

2007 
NDVIn 

194012 -0.006 -0.006, -0.006 -
129.65 

<0.001 0.758 -
0.79% 

2009 SIF 2009-
2010 
El 
Niño 

1967 0.026 0.02, 0.03 21.61 <0.001 0.388 6.70% 
2009 GPP 195437 0.189 0.19, 0.19 178.75 <0.001 6.824 2.77% 
2009 EVIn 194279 0.005 0.005, 0.005 155.23 <0.001 0.445 1.12% 
2009 
NDVIn 

194226 0.006 0.006, 0.006 111.99 <0.001 0.758 0.79% 

Gridcells with >80% Forest and >2000mm MAP 
2007 SIF 2007-

2008 
La 
Niña 

1148 0.003 0.001, 0.006 -2.02 0.043 0.43 0.70% 
2007 GPP 109378 -0.321 -0.32, -0.32 -

235.23 
<0.001 7.777 -

4.13% 
2007 EVIn 109213 -0.013 -0.013,-0.013 -

515.31 
<0.001 0.487 -

2.67% 
2007 
NDVIn 

108946 -0.006 -0.006, -0.006 -
221.46 

<0.001 0.829 -
0.72% 

2009 SIF 2009-
2010 
El 
Niño 

1148 0.023 0.02, 0.03 15.50 <0.001 0.43 5.35% 
2009 GPP 109379 0.127 0.12, 0.13 100.58 <0.001 7.777 1.63% 
2009 EVIn 108808 0.004 0.003,0.004 146.21 <0.001 0.487 0.82% 
2009 
NDVIn 

108731 <0.001 <0.001, 
<0.001 

9.27 <0.001 0.829 0.12% 

 

Table S3.5. One-sample t-test results for dry season during the 2011 La Niña and 2016 El Niño 
and the percentage difference between normal and ENSO event for SIF, GPP, EVIn, and NDVIn. 
One-sample t-tests were conducted to determine if the difference between dry-season (June 
through October) SIF, GPP, EVIn, and NDVIn during the ENSO phases and the mean for all 
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remaining dry seasons was significantly different from zero. The distributions were illustrated in 
Fig. 7. 

Amazon Basin   
Dry Season ENSO Gridcells 

(n) 
Δ 95% CI t-value p-

value 
Norm % Δ 

2010 SIF 2010-
2011 
La 
Niña 

1967 -0.009 -0.01, -0.01 -7.70 <0.001 0.388 -
2.32% 

2010 GPP 195436 -0.005 -0.01, -0.01 -3.98 <0.001 6.824 -
0.07% 

2010 EVIn 194706 -0.011 -0.011, -0.011 -
286.27 

<0.001 0.445 -
2.47% 

2010 
NDVIn 

194767 -0.014 -0.014, -0.013 -
255.42 

<0.001 0.758 -
1.85% 

2015 SIF 2015-
2016 
El 
Niño 

1967 -0.014 -0.01, -0.01 -12.89 <0.01 0.388 -
3.61% 

2015 GPP 195432 0.151 0.15, 0.15 132.74 <0.001 6.824 2.21% 
2015 EVIn 193862 -0.002 -0.002, 0.001 -41.80 <0.001 0.445 -

0.45% 
2015 
NDVIn 

193764 0.002 0.002, 0.002 45.9 <0.001 0.758 0.26% 

Gridcells with >80% Forest and >2000mm MAP   
2010 SIF 2010-

2011 
La 
Niña 

1148 -0.006 -0.01, -0.01 -3.90 <0.001 0.43 -
1.40% 

2010 GPP 109379 0.006 0.003, 0.008 4.53 <0.001 7.777 0.08% 
2010 EVIn 109100 -0.009 -0.009, -0.009 -

361.62 
<0.001 0.487 -

1.85% 
2010 
NDVIn 

109087 -0.009 -0.009, -0.009 -
335.81 

<0.001 0.829 -
1.09% 

2015 SIF 2015-
2016 
El 
Niño 

1148 -0.019 -0.02, 0.02 -14.46 <0.001 0.43 -
4.42% 

2015 GPP 109379 0.211 0.21, 0.21 143.67 <0.001 7.777 2.71% 
2015 EVIn 108804 -0.004 -0.005, -0.004 -

185.03 
<0.001 0.487 -

0.82% 
2015 
NDVIn 

108618 <0.001 <0.001, 
<0.001 

7.05 <0.001 0.829 0.12% 
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Chapter 4: TROPOMI reveals dry-season increase of solar-induced chlorophyll 

fluorescence in the Amazon forest 

Abstract 

Photosynthesis of the Amazon rainforest plays an important role in the regional and global carbon 

cycles, but despite considerable in situ and space-based observations it has been intensely debated 

whether there is a dry-season increase in greenness and photosynthesis of the moist tropical 

Amazonian forests. Solar-induced chlorophyll fluorescence (SIF), which is emitted by 

chlorophyll, has a strong positive linear relationship with photosynthesis at the canopy scale. 

Recent advancements have allowed us to observe SIF globally with Earth observation satellites. 

Here we show that forest SIF did not decrease in the early dry season and increased substantially 

in the late dry season and early part of wet season using SIF data from the TROPOspheric 

Monitoring Instrument (TROPOMI), which has unprecedented spatial resolution and near-daily 

global coverage. Using in situ CO2 eddy flux data, we also show that cloud cover rarely affects 

photosynthesis at TROPOMI’s midday overpass, a time when the forest canopy is most often light-

saturated. The observed dry-season increases of forest SIF are not strongly affected by sun-sensor 

geometry, which was attributed as creating a pseudo dry-season green-up in the surface reflectance 

data. Our results provide strong evidence that greenness, SIF, and photosynthesis of the tropical 

Amazonian forest increases during the dry season. 

4.1 Main 

It has been heavily debated whether there is a dry-season green-up and increase in photosynthesis 

of the moist tropical Amazon forest (Huete et al. 2006; Morton et al. 2014; Myneni et al. 2007; 

Saleska et al. 2016; Xiao et al. 2006) among the remote sensing and ecological research 

communities. The answer to this question has important implications for understanding Earth’s 
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carbon fluxes and the impact of climate variability and climate change on those fluxes. However, 

a resolution to this debate has been delayed due to arguments that the geometry between the 

satellite sensors and the sun causes a pseudo-seasonality in the reflectance data (Galvão et al. 2011; 

Morton et al. 2014). 

Traditionally, spaceborne earth surface reflectance data over the terrestrial biosphere have 

been used to calculate vegetation indices, which are useful for observing changes in canopy 

“greenness” and estimating chlorophyll content at large spatial scales (Xiao et al. 2006; Xiao et al. 

2005). However, vegetation indices do not provide direct information on the fate of sunlight 

absorbed by chlorophyll (absorbed photosynthetically active radiation; APARchl), whose 

individual photons take one of three pathways: photosynthesis, heat dissipation, and chlorophyll 

fluorescence (Genty et al. 1989). Under favorable conditions, most APARchl is used for 

photosynthesis and a small amount (≤ ~2%) is emitted by chlorophyll as fluorescence in the red 

and far-red portion of the electromagnetic spectrum (~650 – 800 nm), which is created by the de-

excitation of absorbed photons in all living plants (Baker 2008).  

Recently, quantification of the emission of solar-induced chlorophyll fluorescence (SIF) 

has become feasible from space, providing ample new opportunities to investigate the functioning 

of the photosynthetic machinery from remote sensing platforms (Frankenberg et al. 2011; 

Frankenberg et al. 2014; Joiner et al. 2011). SIF retrievals require high spectral resolution and 

signal-to-noise ratio, and the only satellite instruments that have met these requirements were 

designed for atmospheric remote sensing, such as the Greenhouse Gases Observing Satellite 

(GOSAT), Global Ozone Monitoring Experiment 2 (GOME-2), and Orbiting Carbon Observatory 

2 (OCO-2) (Guanter et al. 2012; Joiner et al. 2016; Lee et al. 2013; Sun et al. 2018). Although the 

global SIF data sets developed from these satellite observations have provided valuable insight 
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into vegetation dynamics on Earth’s surface, their coarse spatial and temporal resolutions have not 

sufficiently resolved some important questions about the spatial distribution and temporal 

variability of SIF and photosynthesis on Earth. SIF is not a direct measure of photosynthesis, but 

satellite- and in situ-observed SIF has been shown to have a strong positive linear relationship with 

photosynthesis at the canopy scale (Guanter et al. 2012; Sun et al. 2018; Yang et al. 2018b), 

implying that changes in canopy SIF indicate changes in photosynthesis in the same direction 

(Porcar-Castell et al. 2014; Verma et al. 2017). The TROPOspheric Monitoring Instrument 

(TROPOMI), a spectrometer onboard the Sentinel-5 Precursor satellite launched in October 2017 

by the European Space Agency, enables a step-change in SIF research, providing unprecedented 

high spatial and temporal resolution SIF observations that can address many of these important 

questions (Zuromski et al. 2018). 

Here we report and analyze TROPOMI SIF data from March 2018 to June 2019 over the 

Amazon. TROPOMI’s high spatial and temporal resolution reveals previously unknown details on 

the spatial distribution of SIF in the Amazon (Fig. 4.1A-C) and enables us to track SIF for forests 

and non-forests over time (Fig. 4.2A, SI Appendix, Fig. 4.S1-4). We show new evidence that there 

is an overall dry-season increase in photosynthesis by Amazonian forests (Fig. 4.2A), where there 

was relatively little change in SIF in the early dry season (June – July), but a substantial increase 

in SIF in the late dry season (September – October) (Fig. 4.1A-C, Fig. 4.2A). Middle dry-season 

TROPOMI SIF in Fig. 4.1B, a point in time when the difference between forest and non-forest SIF 

is greatest, mimics the percentage of forest cover in each TROPOMI gridcell shown in Fig. 4.1F. 

The Amazon River and its tributaries in the northern part of the basin are also evident in Fig. 4.1A-

C where surface water induces low SIF values. Wet-season SIF for seasonally moist forests (<2000 

mm mean annual precipitation (MAP)) was higher than SIF for moist forests (<2000 mm MAP), 
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which indicated that perhaps the productivity of seasonally moist forests was water limited (Fig. 

4.2). The ~2000 mm MAP threshold has previously been found to determine whether water is a 

factor limiting photosynthesis in tropical forests (Guan et al. 2015). 

 
Figure 4.1 | Solar-induced chlorophyll fluorescence, forest cover, and precipitation in the Amazon 
Basin. SIF during the early (A), mid (B), and late (C) dry season. (D) Mid minus early dry-season 
SIF. (E) Late minus mid dry-season SIF. (F) Percentage forest cover in each TROPOMI 0.05° 
pixel. (G) Total precipitation March 2018 – February 2019. (H) Number of months with <100mm 
of precipitation. (I) First month with <100mm precipitation. (I) First month with <100mm 
precipitation.  
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Figure 4.2 | Amazon forest SIF, photosynthesis, PAR, precipitation, and temperature. (A) 
TROPOMI SIF for moist and seasonally moist forest (>2000 mm and <2000 mm mean annual 
precipitation), and five-year mean GPP at the K83 moist forest flux tower site. (B) TROPOMI 
SIF for moist and seasonally moist forest, and BRDF-corrected EVI from MCD43A4 for moist 
and seasonally moist forest. (C) Basin-wide PAR at the top of the atmosphere (TOA), top of the 
canopy (TOC), the difference between the two (∆PAR), and 5-year means of TOA, TOC, and 
∆PAR from the K83 flux tower site. (D) Basin-wide mean precipitation and temperature. Points 
are 16-day means. Shaded areas represent the early, middle, and late dry season. The dashed line 
approximates when TROPOMI’s phase angles are lowest. 

 



90 
 

For non-forest in the Amazon, SIF declined considerably in the early dry season (SI 

Appendix, Fig. S4.1, S4.4), especially in the cropland region of central Bolivia and in the arc of 

deforestation in the Brazilian states of Acre, Rondônia, and Mato Grosso (Fig. 4.1D). In the late 

dry season, non-forest SIF continually increased. There were some hotspots where SIF decreased 

during the late dry season, notably in the Serra do Cachimbo Mountain region, the plains of the 

Brazilian state of Roraima, and the deforested areas in the vicinity of Santarém and Altamira (Fig. 

4.1E).  

In forests, the dry-season increase in SIF can be attributed to the loss of old leaves, the 

flushing of new leaves, and an increase in canopy chlorophyll content, which has been observed 

using in situ litterfall traps, tower-based time lapse photography, and satellite-based vegetation 

indices (Lopes et al. 2016; Restrepo-Coupe et al. 2013; Xiao et al. 2006). For non-forest lands in 

the arc of deforestation, the decrease in SIF can be attributed to the harvest of crops and senescence 

of pasture, and the late dry-season increase in SIF is likely due to the early growth of pastures and 

crops such as maize, rice, sorghum, and soybean (Food and Agriculture Organization of the United 

Nations 2018). At the basin scale, late dry-season SIF for forest and non-forest increased through 

October despite decreased solar radiation in the canopy (PARTOC) (Fig. 4.2B) (Wright et al. 2017), 

which indicated that increased canopy chlorophyll content and photosynthesis drove dry-season 

increases in SIF and not PARTOC. TROPOMI SIF in the Amazon forest was remarkably consistent 

with in situ observations of increased dry-season photosynthesis in the moist tropical Amazon 

forest from the K83 CO2 eddy flux tower (Fig. 4.1A), which is representative of dry-season 

observations of photosynthesis from the other moist tropical forest eddy flux tower sites in the 

Amazon (Restrepo-Coupe et al. 2013).  
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Two previous studies claimed that the geometry between the satellite sensors and the sun 

affects the surface reflectance data and thus the green-up during the dry season as shown by 

vegetation indices is a data artifact inducing false seasonality (Galvão et al. 2011; Morton et al. 

2014). Is it possible that the seasonality of TROPOMI SIF in the Amazon is an artifact of sun-

sensor geometry? TROPOMI has a wide swath of 2600 km with daily, near-global coverage and 

the satellite has a 17-day repeat cycle, meaning that every 17 days the satellite’s nadir and swath 

footprint are nearly identical. The phase angle of each sounding, which is the angle between the 

axes from the sounding to the sun and to TROPOMI’s sensor, varies along the swath. Each 

sounding along the swath also has a different footprint size, with the smallest footprint at nadir 

(3.5 x 7 km) and the largest at the edges of the swath (14 x 7 km). 

SIF retrievals are sensitive to the phase angle, with higher SIF values at low phase angles 

when TROPOMI observes more directly illuminated parts of the canopy (Fig. 4.3) (Zuromski et 

al. 2018). TROPOMI’s viewing angle for any location is most comparable every 17 days when the 

footprint of the satellite track and local solar overpass time are nearly identical because of their 

vicinity to the equator. Thus, we investigated if TROPOMI SIF has seasonality when viewing 

angle is held relatively constant by evaluating SIF for each satellite track and found that each track 

has the same seasonal pattern (SI Appendix, Figs. S1-4). Although we are not able to account for 

changes in solar illumination with this strategy, we can assume that the viewing geometry alone 

does not alter the observed seasonality. One possible explanation for the observed seasonality in 

TROPOMI SIF is that the decreasing zenith angle of the sun in the dry season causes TROPOMI 

phase angles to likewise decrease (SI Appendix, Fig. S4.5). However, we found that SIF increased 

during the dry season across all phase angles and that the increase was larger than what could be 

explained by phase angle alone (Fig. 4.4, SI Appendix, S6-8). Furthermore, if phase angle was 
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driving the observed seasonality in SIF, then we would expect SIF to decrease after the phase 

angles of the TROPOMI soundings reached their minimum. However, SIF increased for several 

weeks after TROPOMI phase angles began increasing and despite increased cloud cover (Fig. 4.2). 

We also found a significant and strong relationship between TROPOMI SIF and BRDF-corrected 

enhanced vegetation index (EVI) from MODIS MCD43A4 for moist and seasonally moist forest 

(R2 = 0.82 and 0.93, respectively), and between TROPOMI SIF for moist forest and the K83 tower 

site (R2 = 0.66) (SI Appendix, Fig. S4.9). 

 

 
Figure 4.3 | Relationship between phase angle and TROPOMI SIFdaily. Points are 1,000,000 
random samples from all soundings (n = 22,876,383) in the Amazon Basin during March 7, 2018 
– June 29, 2019. 
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Figure 4.4 | TROPOMI SIFdaily and SIFinstant at different phase angles for the Amazon forest. 
Areas shaded in gray represent the early (E), mid (M), and late (L) dry seasons. The dashed line 
approximates when TROPOMI’s phase angles are lowest. These trends were also illustrated for 
moist and seasonally moist forest with greater than and less than 2000 mm mean annual 
precipitation and for non-forest in the Supplementary Information (Figs. S6-8). Dates represent 
the first day of TROPOMI’s 16-day revisit cycle. Tick marks are every 16 days and labels are 
every 32 days. The complete date range represented is March 7, 2018 – June 29, 2019. 

The seasonality of TROPOMI SIF agrees with in situ seasonality of photosynthesis and 

MODIS EVI (Fig. 4.2A, B), but to what extent do incoming solar radiation and cloud cover affect 

canopy photosynthesis and space-borne observations of SIF in the Amazon? The amount of 

photosynthetically active radiation reaching the top of the canopy (PARTOC) is determined by the 

difference between the amount of incoming PAR at the top of the atmosphere (PARTOA) from the 

sun and the amount of PAR reflected into space and absorbed by clouds, trace gases, aerosols, and 

particulate matter (∆PAR). Thus, seasonality in PARTOA (length of day and solar angle) and ∆PAR 

(mostly cloud cover/thickness) determine the amount and timing of instantaneous and daily 

PARTOC (PARTOC = PARTOA - ∆PAR), which drives photosynthesis and serves as a phenological 

queue for tropical tree species (Wright and Van Schaik 1994). 
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Diurnally, there is a tight relationship between PARTOC and photosynthesis in the morning 

and evening as they rise and fall in tandem (Malhi et al. 1998). At midday, the relationship between 

PARTOC and photosynthesis decouples as the canopy becomes light saturated (SI Appendix, Fig. 

S4.10). Using in situ data, we found that during TROPOMI’s early afternoon overpass time of 

12:45-2:30 local solar time (LST) over the Amazon (SI Appendix, Fig. S4.11), photosynthesis is 

nearly always light saturated (Fig. 4.5A-C) and that ∆PAR rarely impacts photosynthesis (Fig. 

4.5D-F). Dense clouds can block the emission of SIF into space, and TROPOMI soundings are 

prefiltered to remove soundings that are affected by high radiance levels due to cloud albedo and 

that have >80% cloud fraction. However, in situ data indicates that clouds cover rarely blocks 

enough solar irradiance at TROPOMI’s overpass time to induce light limitation of photosynthesis 

(Fig. 4.5). We cannot completely rule out that seasonal changes in cloud cover and optical 

thickness may affect SIF dynamics in the Amazon, but we did observe that the strongest increase 

in SIF occurred during the mid to late dry season despite reduced PARTOC and increased ∆PAR 

and cloud fraction (SI Appendix, Fig. S4.12), which suggested that changes in cloud properties 

during the dry season had an insignificant effect on SIF retrievals. The seasonality of forest SIF 

was most similar to PARTOA, indicating that perhaps the timing of leaf flush in the forest is 

photosensitive to the length of the day and/or responsive to herbivory, which are not necessarily 

mutually exclusive (Coley and Barone 1996; van Schaik et al. 1993; Xiao et al. 2006). 
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Figure 4.5 | Dry-season light and shade response of photosynthesis in the Amazon at TROPOMI 
overpass times (~12:45-2:30 LST) at K83 eddy tower. Light-response curves of photosynthesis 
and photosynthetically active radiation at the top of the canopy (PARTOC) in (A) early dry season, 
(B) mid dry season, and (C) late dry season. Shade-response curves of photosynthesis and the 
absorption and reflection of photosynthetically active radiation incoming from the top of the 
atmosphere (∆PAR) before reaching the canopy in (D) early dry season, (E) mid dry season, and 
(F) late dry season. 

 In summary, the dry-season increase of TROPOMI SIF in the Amazon mimics the dry-

season increase of photosynthesis as estimated from eddy flux data (Restrepo-Coupe et al. 2013), 

in situ observations by phenological cameras of seasonal canopy senescence and leaf flush (Lopes 

et al. 2016; Wu et al. 2016), and BRDF-corrected, reflectance-based satellite observations (Guan 

et al. 2015; Joiner et al. 2011; Saleska et al. 2007; Saleska et al. 2016). Our results not only help 

resolve the debate over whether there is a dry-season increase in photosynthesis in moist tropical 
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Amazon forest, but also indicate that changes in photosynthesis during the dry season is largely 

driven by land cover type and changes in the forest canopy.  

4.2 Methods 

4.2.1 TROPOMI observations 

We used daily-corrected ungridded TROPOMI SIF data for all data analysis (Figs. 1, S1-4) and 

daily-corrected gridded TROPOMI SIF data in 0.05° spatial resolution for visualization in Fig. 4.1 

(Zuromski et al. 2018). Gridded (0.20°) and ungridded data is available at 

ftp://fluo.gps.caltech.edu/data/tropomi/. It is also important to note that aerosols and clouds have 

different effects on SIF and reflected radiance at top-of-atmosphere (decreasing SIF, increasing 

reflectance), and cloud shadows reduce reflectance but not necessarily photosynthesis (Fig. 4.5), 

so any reflectance-based correction may introduce an artificial seasonality in the framework of our 

study (Zuromski et al. 2018). The data fields contain for each sounding the cloud fraction, daily 

correction factor, latitude and longitude of the center of the sounding, the latitude and longitude 

for each corner of the sounding footprint, viewing zenith angle, solar zenith angle, phase angle, 

instantaneous SIF and error, daily corrected SIF, and local solar time. Cloud fraction is calculated 

using the data from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite, which is an 

indicator of cloud cover but not cloud optical thickness. Daily mean SIF is estimated using a 

function that accounts for the measurement’s solar zenith angle, time of measurement, and length 

of day (Frankenberg et al. 2011; Zuromski et al. 2018). Error estimate methods and additional data 

processing details have been previously published (Zuromski et al. 2018).  

4.2.2 In situ eddy flux observations and MODIS data 

In our analysis, we used Tier 1 FLUXNET2015 eddy flux data from the tower site K83 (BR-Sa3; 

Santarem Km83), located in seasonally moist tropical Amazon forest near -3.0180, -54.9714 
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(latitude/longitude), for the years 2000-2004 (Saleska et al. 2003) 

(http://dx.doi.org/10.18140/FLX/1440033). The seasonality in GPP, PARTOA, PARTOC, and PAR∆ 

at K83 (Fig. 4.2A,B) was used in this manuscript as an example of observations from other eddy 

flux towers in the seasonally moist tropical Amazon forests (K34, K67, and CAX), which are in 

agreement and have been previously reported (Restrepo-Coupe et al. 2013). Prior to plotting the 

light- and shade-response curves (Fig. 4.5), which is half-hourly data, we filtered the data to 

include only the highest quality measured PAR (shortwave radiation incoming at the surface), 

thereby excluding gap-filled and ERA-Interim estimates. We also converted the local time of the 

eddy flux observations to local solar time (LST). TROPOMI overpass times in the Amazon ranged 

from about 12:45 to 2:30 LST (SI Appendix, Fig. S4.11), so we plotted EC data whose 30-minute 

timestamp range had midpoints between 1:00 and 2:15 LST. 

We used bidirectional reflectance distribution function (BRDF) corrected surface reflectance from 

the MODIS MCD43A4 data product (Schaaf and Wang 2015) to calculate EVI. We calculated 16-

day means of EVI from the daily data, which was available at 500-m spatial resolution, where EVI 

was calculated using bands 1 through 3: 

EVI ൌ 2.5 ∗
𝑏2 െ 𝑏1

𝑏2 െ 6 ∗ 𝑏1 ൅ 7.5 ∗ 𝑏3 ൅ 1
 

where b1 is the red band, b2 is the near infrared band, and b3 is the blue band (Huete et al. 1997a; 

Justice et al. 1998). 

4.2.3 Land cover, precipitation, and PAR datasets 

To determine forest and non-forest land cover, we used annual forest cover maps for 2008-2017 

for the Amazon Basin with a spatial resolution of 500 m (Qin et al. 2019; Qin et al. 2017). Only 

TROPOMI soundings that were in land cover map pixels that were consistently forest or non-

forest were used in the data analysis. To prevent the inclusion of mixed water/land TROPOMI 
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soundings from our analysis, we masked water from the TROPOMI data using the MOD44W 

Version 6 (Carroll et al. 2017) water mask with a 7km buffer. Implementing a similar buffer for 

forests to exclude TROPOMI mixed forest/non-forest soundings resulted in a near elimination of 

non-forest soundings due to the heterogeneity of non-forest area, thus we applied only a water 

mask to the TROPOMI data. Total annual and monthly precipitation (Fig. 4.1G-I) was derived 

using the monthly, 0.25° Version 7 Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite 

Precipitation Analysis (3B43) (Huffman et al. 2014, updated 2019b). For 16-day precipitation 

means (Fig. 4.2C), we used the TRMM Research Derived Daily Product (3B42) (Huffman et al. 

2014, updated 2019a). We calculated mean 16-day temperature (Fig. 4.2C) and 16-day PAR values 

(Fig. 4.2B) using daily mean downward shortwave radiation at the surface (PARTOC) and the top 

of the atmosphere (PARTOA) from the NCEP-DOE Reanalysis II data set (Kanamitsu et al. 2002). 

∆PAR was calculated as the difference between PARTOA and PARTOC. 

4.3 Supplementary material 

 
Figure S4.1 | Basin-wide mean daily SIF from TROPOMI March 2018 – June 2019. (A) The entire 
Amazon Basin. (B) All soundings in forests. (C) All soundings in non-forest. Soundings with 
footprints in water were masked out. Changes in mean daily and instantaneous SIF for the Amazon 
Basin, forest, and non-forest are further illustrated in figs. S2-4, and the standard errors of the 
means of the observations are listed in tables S4.1-S3. 
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Figure S4.2 | Amazon Basin mean daily and instantaneous SIF for each of TROPOMI’s tracks. 
Areas shaded in gray represent the early (E), mid (M), and late (L) dry seasons. The dashed line 
approximates when TROPOMI’s phase angles are lowest. Dates represent the first day of 
TROPOMI’s 16-day revisit cycle. Tick marks are every 16 days and labels are every 32 days. 
The complete date range represented is March 7, 2018 – June 29, 2019. 

 
Figure S4.3 | Forest mean daily and instantaneous SIF for each of TROPOMI’s tracks. Areas 
shaded in gray represent the early (E), mid (M), and late (L) dry seasons. The dashed line 
approximates when TROPOMI’s phase angles are lowest. Dates represent the first day of 



100 
 

TROPOMI’s 16-day revisit cycle. Tick marks are every 16 days and labels are every 32 days. 
The complete date range represented is March 7, 2018 – June 29, 2019. 

 

 
Figure S4.4 | Non-forest mean daily and instantaneous SIF for each of TROPOMI’s tracks. Areas 
shaded in gray represent the early (E), mid (M), and late (L) dry seasons. The dashed line 
approximates when TROPOMI’s phase angles are lowest. Dates represent the first day of 
TROPOMI’s 16-day revisit cycle. Tick marks are every 16 days and labels are every 32 days. 
The complete date range represented is March 7, 2018 – June 29, 2019. 

 

 
Figure S4.5 | The distribution of the phase angle of TROPOMI soundings in early, mid, and late 
dry season. Dashed line is the mean. 
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Figure S4.6 | SIFdaily and SIFinstant at different phase angles (PA) for Amazon forest with mean 
annual precipitation (MAP) > 2000 mm. Areas shaded in gray represent the early (E), mid (M), 
and late (L) dry seasons. The dashed line approximates when TROPOMI’s phase angles are 
lowest. Dates represent the first day of TROPOMI’s 16-day revisit cycle. Tick marks are every 
16 days and labels are every 32 days. The complete date range represented is March 7, 2018 – 
June 29, 2019. 

 

 
Figure S4.7 | SIFdaily and SIFinstant at different phase angles (PA) for Amazon forest with mean 
annual precipitation (MAP) < 2000 mm. Areas shaded in gray represent the early (E), mid (M), 
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and late (L) dry seasons. The dashed line approximates when TROPOMI’s phase angles are 
lowest. Dates represent the first day of TROPOMI’s 16-day revisit cycle. Tick marks are every 
16 days and labels are every 32 days. The complete date range represented is March 7, 2018 – 
June 29, 2019. 

 
 

 
Figure S4.8 | SIFdaily and SIFinstant at different phase angles (PA) for TROPOMI soundings of 
non-forest, non-water land cover in the Amazon. Areas shaded in gray represent the early (E), 
mid (M), and late (L) dry seasons. The dashed line approximates when TROPOMI’s phase 
angles are lowest. Dates represent the first day of TROPOMI’s 16-day revisit cycle. Tick marks 
are every 16 days and labels are every 32 days. The complete date range represented is March 7, 
2018 – June 29, 2019. 
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Figure S4.9 | Relationships between MODIS EVI, TROPOMI SIF, and GPP from the K83 eddy 
tower site.  
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Figure S4.10 | Diurnal GPP and PAR at K83. Mean half-hourly GPP and PAR from K83 eddy 
flux tower 2000-2004. 

 
 

 
Figure S4.11 | Frequency of the local solar time of TROPOMI soundings in the Amazon. 

 
 

 
Figure S4.12 | Frequency histograms of early, mid, and late dry season cloud fraction of 
TROPOMI SIF soundings. 

 
Table S4.1. Standard error of the mean of SIFinstant observations in the Amazon Basin (Fig. 
S4.1A). Column header is the track number.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

03/07 0.004 0.002 0.001 0.001 0.001 0.001 0.001 NA 0.001 0.002 NA 0.001 0.001 0.001 0.001 0.001 
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03/23 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 

04/08 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

04/24 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 0.001 NA 

05/10 0.001 0.001 0.001 0.001 NA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 

05/26 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

06/11 0.001 0.02 0.001 0.001 0.001 0.001 0.001 NA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

06/27 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

07/13 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

07/29 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 0.001 0.001 0.001 0.001 NA 0.001 0.001 

08/14 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

08/30 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

09/15 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

10/01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 NA 0.001 

10/17 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 NA 0.001 0.001 0.001 0.001 0.006 0.001 0.001 

11/02 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.015 0.001 0.001 0.001 0.001 0.046 0.002 0.002 0.001 

11/18 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.049 0.002 0.002 0.002 0.002 

12/04 0.001 0.001 0.002 0.002 0.002 0.001 NA 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

12/20 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

01/05 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 

01/21 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 

02/06 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.002 

02/22 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.045 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

03/10 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 

03/26 0.001 0.001 0.001 0.002 0.002 0.001 0.001 NA 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 

04/11 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

04/27 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

05/13 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

05/29 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

06/14 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Table S4.2. Standard error of the mean of SIFinstant observations in the Amazon forest (Fig. 
S4.1B). Column header is the track number.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

03/07 0.011 0.004 0.003 0.004 0.005 0.004 0.004 NA 0.004 0.006 NA 0.003 0.004 0.003 0.003 0.004 

03/23 0.004 0.004 0.007 0.005 0.004 0.003 0.003 0.004 0.004 0.004 0.003 0.003 0.004 0.004 0.005 0.004 

04/08 0.004 0.003 0.003 0.003 0.004 0.005 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

04/24 0.004 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.003 0.004 NA NA 0.002 0.002 NA 

05/10 0.003 0.003 0.003 0.002 NA 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.002 NA NA 0.002 

05/26 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.003 

06/11 0.003 NA 0.002 0.002 0.003 0.003 0.002 NA 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

06/27 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

07/13 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

07/29 0.002 0.002 0.002 0.002 0.003 0.003 NA NA 0.002 0.002 0.003 0.002 0.002 NA 0.002 0.002 
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08/14 0.003 0.003 0.002 0.002 0.002 0.003 0.004 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 

08/30 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 

09/15 0.004 0.004 0.003 0.002 0.003 0.003 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

10/01 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.005 0.005 0.003 0.003 NA 0.004 

10/17 0.004 0.004 0.008 0.005 0.005 0.005 0.007 0.006 NA 0.003 0.006 0.005 0.005 0.012 0.004 0.005 

11/02 0.005 0.005 0.006 0.004 0.005 0.008 0.005 0.022 0.004 0.004 0.005 0.006 0.053 0.007 0.006 0.005 

11/18 0.008 0.009 0.006 0.006 0.007 0.006 0.007 0.005 0.006 0.005 0.007 0.063 0.007 0.005 0.006 0.005 

12/04 0.004 0.005 0.007 0.009 0.006 0.005 NA 0.005 0.005 0.006 0.004 0.008 0.004 0.005 0.005 0.006 

12/20 0.006 0.007 0.005 0.005 0.007 0.006 0.006 0.006 0.007 0.005 0.006 0.007 0.006 0.005 0.005 0.006 

01/05 0.005 0.006 0.008 0.006 0.004 0.007 0.011 0.005 0.004 0.006 0.005 0.005 0.003 0.005 0.005 0.004 

01/21 0.004 0.005 0.003 0.004 0.005 0.005 0.006 0.005 0.007 0.005 0.005 0.009 0.007 0.004 0.004 0.004 

02/06 0.005 0.004 0.004 0.005 0.005 0.005 0.009 0.008 0.006 0.005 0.006 0.005 0.004 0.006 0.006 0.004 

02/22 0.004 0.003 0.004 0.005 0.006 0.006 0.006 0.059 0.004 0.004 0.004 0.005 0.004 0.003 0.003 0.005 

03/10 0.005 0.004 0.004 0.003 0.004 0.005 0.004 0.004 0.003 0.004 0.007 0.006 0.005 0.004 0.004 0.004 

03/26 0.005 0.005 0.005 0.005 0.005 0.003 0.005 NA 0.006 0.003 0.004 0.003 0.003 0.004 0.003 0.003 

04/11 0.003 0.003 0.004 0.003 0.003 0.006 0.005 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.003 

04/27 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.006 

05/13 0.005 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 

05/29 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 

06/14 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
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Table S4.3. Standard error of the mean of SIFinstant observations in Amazon non-forest (Fig. 
S4.1C). Column header is the track number.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

03/07 0.004 0.002 0.002 0.002 0.001 0.001 0.001 NA 0.001 0.002 NA 0.001 0.001 0.001 0.001 0.002 

03/23 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 

04/08 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

04/24 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 0.001 NA 

05/10 0.001 0.001 0.002 0.001 NA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 

05/26 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 

06/11 0.001 0.02 0.001 0.001 0.001 0.002 0.001 NA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

06/27 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

07/13 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

07/29 0.001 0.001 0.001 0.001 0.001 0.001 NA NA 0.001 0.001 0.001 0.001 0.001 NA 0.001 0.001 

08/14 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

08/30 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

09/15 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

10/01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 NA 0.001 

10/17 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.001 NA 0.001 0.001 0.001 0.001 0.006 0.001 0.001 

11/02 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.02 0.001 0.001 0.001 0.001 0.081 0.002 0.002 0.001 

11/18 0.001 0.002 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002 0.002 NA 0.002 0.002 0.002 0.002 

12/04 0.001 0.001 0.002 0.002 0.002 0.001 NA 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 

12/20 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

01/05 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.002 

01/21 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.003 0.002 0.001 0.002 

02/06 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.001 0.001 0.002 0.002 0.002 

02/22 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.067 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 

03/10 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 

03/26 0.001 0.001 0.002 0.002 0.002 0.001 0.001 NA 0.003 0.001 0.001 0.001 0.002 0.002 0.001 0.001 

04/11 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

04/27 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

05/13 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

05/29 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

06/14 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Table S4.4. Area of the Amazon Basin and land cover types used in our study. 
Region Area (km2) 
Amazon 5,974,715 
Forest 3,787,974 
Forest >2000mm 
MAP 

2,815,460 

Forest <2000mm 
MAP 

952,526 

Non-forest 698,303 
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Chapter 5: Inconsistencies between TROPOMI solar-induced chlorophyll fluorescence, 

gross primary production, and vegetation indices 

 

Abstract 

The newly launched TROPOspheric Monitoring Instrument (TROPOMI) provides near-daily 

global solar-induced chlorophyll fluorescence (SIF) retrievals at unprecedented spatial 

resolution. SIF and gross primary production (GPP) are linearly related at coarse spatiotemporal 

resolutions, but currently the spatiotemporal consistency between TROPOMI SIF, GPP 

estimates, and vegetation indices (VIs), which are often used to derive GPP estimates, is 

unknown. Here we report for all non-water landcover types on Earth the consistency in space and 

time between TROPOMI SIF, GPP from the Vegetation Photosynthesis Model (GPPVPM), GPP 

derived from the Moderate Resolution Imaging Spectroradiometer (MODIS; GPPMOD17), and 

bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard, non-

adjusted MODIS VIs (MOD09). We find that 1) SIF is highly consistent with GPP and VIs, 

except in evergreen broadleaf forest; 2) NIRv is not clearly more consistent with SIF than EVI; 

and 3) there is no notable difference in the consistency of BRDF-adjusted and non-adjusted with 

SIF, except in the evergreen broadleaf forest where non-adjusted VIs are substantially more 

consistent with SIF. Our results highlight the utility of TROPOMI SIF in areas of the world 

where modeled GPP and VIs have a relatively poor ability to capture vegetation dynamics, and 

have important implications on the application of SIF and VIs in modeling global GPP. 

Significance Statement 

Models of gross primary production (GPP) and space-borne vegetation indices (VIs) have 

provided insight into the seasonal dynamics of vegetation productivity and the response of 

vegetation to climate variability for decades, but such changes are difficult to validate at the 
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global scale with ground-based measurements. Retrievals from the newly launched 

TROPOspheric Monitoring Instrument (TROPOMI) of solar-induced chlorophyll fluorescence, 

which is emitted by plants during photosynthesis, gives us a better understanding of where and 

when GPP models and VIs are able and unable to capture changes in productivity. 

1. Introduction 

For decades, the monitoring of vegetation productivity, mapping of vegetation cover, and 

tracking land use change at the global scale have relied upon satellite observations of sunlight 

reflected by surfaces on Earth’s terrain. Vegetation indices (VIs), such as the Normalized 

Difference Vegetation Index (NDVI) (Rouse Jr et al. 1974) and Enhanced Vegetation Index 

(EVI) (Huete et al. 1997a), have been used to track the ‘greenness’ of vegetation by observing 

the high absorption of visible sunlight by chlorophyll and the high reflectance of near infrared 

energy by leaves. Other vegetation indices, such as the Normalized Difference Water Index 

(NDWI) (Gao 1996a) and Land Surface Water Index (LSWI) (Xiao et al. 2004), have been used 

to remotely sense vegetation water content by considering the high absorption of energy by 

liquid water in the shortwave infrared region of the electromagnetic spectrum. These VIs have 

been successfully used to not only map vegetation and determine vegetation cover types but also 

in models to estimate the gross primary productivity (GPP) of vegetation, or photosynthesis, and 

its responses to changes in human management and climate variability. Although VIs are 

invaluable tools and are the backbone of observing vegetation dynamics from space, they only 

provide auxiliary information on vegetation structure, such as chlorophyll content, water content, 

and leaf area. 

Recent scientific advancements now enable us to extract more direct information on 

photosynthesis, a vegetation function, from surface reflectance data by looking at parts of the far 
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red and near infrared spectrum where solar-induced chlorophyll fluorescence (SIF), which is 

emitted by plants during photosynthesis, is infilling an otherwise normal reflectance curve. SIF 

retrieval requires a high spectral resolution spectrometer to detect the infilling of fluorescence, 

which has only been satisfied by spaceborne platforms that target trace gases in the atmosphere. 

The first retrievals of SIF from spaceborne platforms were described in a series of papers in 2011 

and 2012 and were conducted using the Greenhouse gases Observing SATellite (GOSAT) 

(Frankenberg et al. 2012; Guanter et al. 2012; Joiner et al. 2011) and SCanning Imaging 

Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) (Joiner et al. 2012). 

More recently, the Global Ozone Monitoring Experiment–2 (GOME-2) (Joiner et al. 2013) and 

Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al. 2014) have been used to retrieve 

SIF. 

These early platforms have been valuable test beds for different SIF retrieval methods 

(Joiner et al. 2016; Köhler et al. 2015) and early investigations into the dynamics of 

photosynthesis (Guan et al. 2015; Porcar-Castell et al. 2014; Sun et al. 2017), but the inherent 

noisiness of the data and coarse spatiotemporal resolution of the SIF data products (monthly, 4 to 

0.5 degree) has limited finer-scale scientific inquiry. Excitingly, the newly launched 

TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite is 

providing SIF data with near-daily global coverage at much finer spatial resolutions than older 

platforms (3.5 x 7 km at nadir) (Köhler et al. 2018). The new TROPOMI SIF data has begun to 

provide valuable contributions to debates over the seasonality of terrestrial photosynthesis, which 

has important implications for understanding the inter- and intra-annual variability of Earth’s 

atmospheric carbon dioxide concentration (Doughty et al. 2019). 
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Currently, there are three pressing scientific questions in the field of remote sensing that 

TROPOMI SIF can help us answer. First, in what regions are modeled GPP, NDVI, and EVI 

inconsistent with SIF? Previous studies have shown that traditional VIs have a poor consistency 

with SIF and/or GPP in evergreen needleleaf forest (Magney et al. 2019; Walther et al. 2016), 

evergreen broadleaf forest (Morton et al. 2014), and wetlands (Taddeo et al. 2019) and have 

suggested that GPP models that use these vegetation indices are likely not accurately estimating 

observed seasonal changes in productivity. We suspect that modeled GPP and VIs are relatively 

inconsistent in these three landcover types because spaceborne SIF can better capture vegetation 

dynamics in evergreen ecosystems where chlorophyll content remains constant, in cloudy 

regions, and in regions where inundation is consistent or frequent because 1) spaceborne SIF is 

less affected by radiances from non-vegetation, such as soil characteristics (Huete et al. 1985; 

Wang et al. 2019a), standing water (Taddeo et al. 2019), and snow (Delbart et al. 2005; Jönsson 

et al. 2010; Walther et al. 2016); 2) spaceborne SIF is less affected by cloud cover than VIs 

(Frankenberg et al. 2012; Guanter et al. 2015); and 3) canopy SIF is highly responsive to short 

and long term environmental conditions whereas canopy vegetation indices are not. 

Second, does the near-infrared reflectance of terrestrial vegetation (NIRv), a new VI, 

have advantages over the traditionally used EVI and NDVI? Recently, a study has found that 

NIRv has a better relationship with modeled GPP (FluxCom) than SIF (GOME-2) and that NIRv 

could be a superior VI when used to model global GPP (Badgley et al. 2017). However, the 

relationship between NIRv and GPP and TROPOMI SIF has not been explored at the global 

scale. Furthermore, although Badgley et al. (2017) compared the differences between GPP vs. 

NDVI and GPP vs NIRv, no analysis was conducted with EVI. We anticipate that NIRv and EVI 
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have a similar consistency with TROPOMI SIF and modeled GPP, and that both have a better 

relationship with SIF than NDVI. 

Third, is there a disagreement between BRDF-adjusted and non-adjusted vegetation 

indices when compared to SIF? It has been strongly argued that BRDF-adjusted VIs should be 

used when monitoring changes in vegetation or estimating GPP, especially in the tropics, 

because the adjustment can help account for differences in viewing and illumination geometry 

between surface reflectance observations (Morton et al. 2014). Others have pointed out that 

BRDF-adjustment can have disadvantages (Huete et al. 2002) and that a BRDF-adjustment 

decreases the magnitude of change, but that the changes remain significant (Guan et al. 2015; 

Maeda et al. 2014; Saleska et al. 2016). We suspect that BRDF-adjusted NIRv and EVI have a 

better relationship with SIF in the tropics than non-adjusted VIs, but that the difference will be 

relatively negligible for vegetation cover at mid and high latitudes. 

Given these three questions and our hypotheses, our primary aims are to evaluate the 

spatial and temporal consistency between TROPOMI SIF, GPP, and VIs to 1) identify areas 

where the GPP models and VIs are inconsistent with SIF; 2) determine which VI is more 

consistent with SIF and GPP; and 3) ascertain the difference between BRDF-adjusted and non-

adjusted VIs when compared to SIF. In our analysis we use GPP from two models, the 

Vegetation Photosynthesis Model (GPPVPM) (Zhang et al. 2017b) and MOD17 (GPPMOD17) from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) product (Running and Zhao 

2015). We compare the three VIs, NIRv, EVI, and NDVI, to SIF as calculated using two 

different MODIS surface reflectance data products: the standard MOD09 and the MCD43 

bidirectional reflectance distribution function (BRDF) adjusted products. Our results have strong 

implications on future applications of SIF and VIs by highlighting the advantages of using SIF 
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for tracking vegetation dynamics and addressing some long-standing concerns over the effect of 

adjusting surface reflectance data for viewing and illumination geometry. 

2. Methods 

2.1 TROPOMI SIF retrievals 

We calculated daily-corrected SIF by multiplying the daily correction factor and instantaneous 

SIF as provided in the ungridded (vector) SIF data at ftp://fluo.gps.caltech.edu/data/tropomi. 

TROPOMI has a 16-day revisit cycle, meaning that the satellite’s overpass is slightly offset from 

the previous day and the footprint of any day’s swath will repeat after 16 days. Thus, the angle 

between TROPOMI’s sensor and any given point on Earth varies day-to-day. The angle at which 

SIF emission is observed from the vegetation canopy can affect the retrieved SIF value, so it is 

important to consider the viewing geometry when working with satellite-retrieved SIF data 

(Köhler et al. 2018). Currently, the relationship between viewing angle and observed SIF is not 

fully understood, so correcting the SIF data is not advisable and has not been performed for any 

of the SIF retrievals from previously launched satellites. 

In our previous study, we calculated 16-day mean SIF to account for the potential effect 

of viewing geometry on observed SIF, with the logic being that the viewing geometry over a 16-

day period is comparable to the subsequent 16-day periods (Doughty et al. 2019). Likewise, in 

this study we found that the viewing geometry over an 8-day period is comparable to the viewing 

geometry over the subsequent 8 days, as demonstrated in Fig. 5.1. This figure is an ideal 

scenario, but what is important is not that the viewing angles of each 8-day span are identical but 

that the distribution of the viewing angles in each 8-day span are relatively uniform across the 

range of viewing angles. We have demonstrated these distributions for two gridcells in Fig. 5.2. 
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Figure 5.1 | Viewing zenith angles of all TROPOMI soundings within a 0.05-degree gridcell in 
the Taklamakan Desert, China. The VZAs in the first 8 overpasses are opposite of those in the 
second 8 days, indicating that the VZAs from which SIF retrievals are made in each 8-day group 
are comparable. 
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Figure 5.2 | Frequency distribution of TROPOMI viewing zenith angles for a 0.05-degree 
gridcell in each the Sahara and Taklamakan Deserts. The distributions of all viewing zenith 
angles are shaded red for the first 8 overpasses and blue for the second 8 overpasses from all 16-
day spans during March 8th – December 20th, 2018. Each group has VZAs distributed 
complimentary to the other across the span of all VZAs. 

Coincidentally, 8-day mean SIF also affords us the opportunity to compare TROPOMI 

SIF to MODIS vegetation indices (VIs). Thus, we gridded TROPOMI SIF vector data into 8-day 

means starting on March 6th, 2018, which corresponds to the temporal resolution of the 8-day 

MODIS-based products. Each SIF gridcell value was the area-weighted mean of all soundings 

within the gridcell over an 8-day period. We filtered the soundings with thresholds of 60° for 

viewing zenith angle, 0.8 for cloud fraction, 70° for solar zenith angles, and 120° for phase 

angles as described by Köhler et al. (2018). We gridded the SIF data to 0.05 and 0.20 degrees for 

comparison to GPP and VIs at the same resolution and found that GPP and VIs were generally 
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consistent with SIF at 0.05 degree where the SIF data had not been heavily filtered due to zenith 

angles and clouds (Fig. S5.1). In short, a coarser spatial resolution of 0.20 degrees was needed to 

establish whether there was a good relationship between SIF, GPP, and VIs outside of the mid to 

high latitude regions due to a lack of TROPOMI data after filtering, gaps in TROPOMI’s 

coverage in the tropics, and the need to average soundings to reduce precision error and account 

for viewing geometry (Doughty et al. 2019; Frankenberg et al. 2014; Köhler et al. 2018). All 

results and analysis presented in this paper were produced using the 0.20-degree data.  

2.2 Gross primary production 

We compared two MODIS-derived GPP datasets to TROPOMI SIF, the Vegetation 

Photosynthesis Model (VPM) V02 and the MODIS MOD17A2H V006 products. Both datasets 

estimate GPP using the light use efficiency model (LUE) and are offered with a spatial and 

temporal resolution of 500 m and 8 days. We aggregated both datasets to 0.20-degree spatial 

resolution before we compared them with TROPOMI SIF. The VPM model uses EVI calculated 

from MOD09 surface reflectance as a proxy of the fraction of absorbed photosynthetically active 

radiation (PAR) by chlorophyll (𝑓𝑃𝐴𝑅௖௛௟) and biome-specific light-use efficiency (ε௚ሻ values to 

compute GPP as: 

𝐺𝑃𝑃௏௉ெ ൌ 𝑓𝑃𝐴𝑅௖௛௟  ൈ  PAR ൈ  ε௚ 

GPPMOD17 differs primarily from GPPVPM in that GPPMOD17 uses the fraction of PAR absorbed by 

the canopy (𝑓𝑃𝐴𝑅௖௔௡௢௣௬) rather than chlorophyll. Other global GPP datasets, such as 

FLUXCOM and the Breathing Earth System Simulator (BESS), were considered for use in this 

study but were not available for 2018. 
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2.3 Vegetation indices 

We calculated the near-infrared reflectance of terrestrial vegetation (NIRv) (Badgley et al. 2017), 

Enhanced Vegetation Index (EVI) (Huete et al. 1997a), and Normalized Difference Vegetation 

Index (NDVI) (Rouse Jr et al. 1974) from two commonly used MODIS products, MOD09A1 

V006 (Vermote 2015) and MCD43C4 V006 (Schaaf and Wang 2015). The MOD09 dataset is 

the standard MODIS surface reflectance product and the MCD43 surface reflectance dataset is 

adjusted for viewing geometry using the bidirectional reflectance distribution function (BRDF). 

The equations for MODIS NIRv, EVI, and NDVI are: 

NIRv ൌ
𝑏2 െ 𝑏1
𝑏2 െ 𝑏1

 ൈ 𝑏2 

EVI ൌ 2.5 ൈ  
𝑏2 െ 𝑏1

𝑏2 െ 6 ∗ 𝑏1 ൅ 7.5 ∗ 𝑏3 ൅ 1
 

NDVI ൌ
𝑏2 െ 𝑏1
𝑏2 െ 𝑏1

 

where 𝑏1 is the red band, 𝑏2 is the near infrared band, and 𝑏3 is the blue band. 

The MOD09 EVI data that we used in this study was the same EVI data that was 

prepared for input into VPM. We derived MOD09 NIRv and NDVI using the same methods that 

were used to derive the MOD09 EVI data. More specifically, poor quality data were identified, 

gaps were filled, and the data was smoothed using the Best Index Slope Extraction algorithm, 

linear interpolation, and the Savitzky-Golay filter as detailed by Zhang et al. (2017b). The native 

spatial and temporal resolution of these MOD09 VIs are 500 m and 8 day, so we aggregated 

these VIs to 0.05- and 0.20-degree spatial resolution using the mean of the 500-m gridcells that 

comprise each 0.05- and 0.20-degree gridcell. 

The MCD43C4 data we used to calculate VIs is a daily product, which we aggregated 

temporally to 8-day means. This dataset, which is provided in 0.05-degree spatial resolution, is 
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produced using 16 days of Terra and Aqua MODIS data, and is weighted to the ninth day of the 

retrieval period (Schaaf and Wang 2015). After calculating the VIs using the original MCD43C4 

data, we aggregated the VIs to 0.20 degree by calculating the mean of the 0.05-degree gridcells 

in each 0.20-degree gridcell. The methods used to derive the MCD43 dataset are intended to 

remove the effects of viewing angle and directional reflectances, so the surface reflectance in this 

dataset approximates what the reflectance would be if it were observed at nadir during the local 

solar noon (Schaaf and Wang 2015). The Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) (MCD19) vegetation indices were considered for use in this study but were 

not available for 2018. 

2.4 Land cover 

The land cover classes for 2018 used in our study were determined using the MCD12C1 V006 

dataset. This MODIS product is provided annually at 0.05-degree spatial resolution and used the 

majority method when aggregating to 0.20-degrees. We used the corrected version published on 

or about August 12, 2019, which was revised to correct land cover classification errors that 

occurred when the data were originally produced. We used the International Geosphere-

Biosphere Programme (IGBP) classifications from the first layer of the MCD12C1 data file, 

which attributes land cover classification based on the majority of land cover in each gridcell. 

3. Results 

3.1 Spatial inconsistencies between SIF, GPP and VIs 

Latitudinally, we found annual mean GPP and VIs to be most inconsistent with TROPOMI SIF  

in the equatorial region where high quality satellite observations are plagued by frequent cloud 

cover (Fig. 5.3). GPPMOD17 had dramatically lower estimates of GPP than GPPVPM, which 

seemed to underestimate GPP in the Amazon, Southeast Asia, and Western Europe, and 
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overestimated GPP in tropical Africa when compared to SIF. NDVI was relatively inconsistent 

with SIF across the latitudinal gradient, with NIRv and EVI being comparable and more 

consistent with SIF, especially in the equatorial region. At the global scale, GPPVPM was more 

consistent with SIF (R2 = 0.85) than GPPMOD17 (R2 = 0.77) (Fig. 5.4). We also found no notable 

difference between BRDF-adjusted and non-adjusted NIRv and EVI when compared to SIF, but 

BRDF-adjusted NDVI was more consistent with SIF (R2 = 0.68) than non-adjusted NDVI (R2 = 

0.60). 

 

Figure 5.3 | Global comparison of mean 2018 TROPOMI SIF with GPP, NIRv, EVI, and NDVI. 
Inset graphs are significant (p<0.05) R2 values (x axis) from linear regressions by latitude (y 
axis) with TROPOMI SIF. Spatial resolution is 0.20 degrees. 
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Figure 5.4 | Linear regression of mean 2018 TROPOMI SIF with GPP, EVI, and NDVI at 0.05 
degree. 
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For each land cover type, we found GPPVPM to be substantially more consistent with SIF 

than GPPMOD17, especially in evergreen broadleaf, deciduous needleleaf, and deciduous broadleaf 

forests, wetlands, urban areas, and cropland/natural vegetation mosaics (Fig. 5.5). Relative to 

NIRv and EVI, which had very similar consistencies with SIF, NDVI was highly inconsistent 

with SIF for each land cover type and the inconsistencies were most notable across all forest 

types. BRDF-adjusted and non-adjusted VIs were comparable for each land cover type, except in 

deciduous needleleaf forest where non-adjusted VIs were slightly more consistent with SIF and 

in wetlands where BRDF-adjusted VIs were slightly more consistent. 

 

Figure 5.5 | R2 values from spatial linear regression of TROPOMI SIF with GPP, NIRv, EVI, 
and NDVI by land cover type in 2018. All linear regressions had a significant relationship 
(p<0.05). ENF=Evergreen Needleleaf Forests; EBF=Evergreen Broadleaf Forests; 
DNF=Deciduous Needleleaf Forests; DBF=Deciduous Broadleaf Forests; MF=Mixed Forests; 
CSH=Closed Shrublands; OSH=Open Shrublands; WSA=Woody Savannas; SAV=Savannas; 
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GRA=Grasslands; WET=Permanent Wetlands; CRO=Croplands; URB=Urban and Built-up 
Lands; CNV=Cropland/Natural Vegetation Mosaics. 

3.2 Temporal inconsistencies between SIF, GPP and VIs 

Temporally, we generally found GPPMOD17 to be less consistent with SIF than GPPVPM, 

especially in evergreen broadleaf forest, savannas, and cropland/natural vegetation mosaics (Fig. 

5.6). Both GPP models performed relatively poorly in the evergreen broadleaf forest and in 

wetlands, with GPPMOD17 having no significant relationship with SIF in evergreen broadleaf 

forest. NDVI was not as consistent with SIF as NIRv and EVI and had especially low or no 

significant consistency in evergreen forests and wetlands. The consistencies of NIRv and EVI 

with SIF were largely comparable across land cover types, except in closed and open shrublands 

where BRDF-adjusted EVI was less consistent. The consistency of BRDF-adjusted NIRv and 

EVI with SIF was substantially lower than non-adjusted NIRv and EVI in the evergreen 

broadleaf forest. Overall, both GPP models and all adjusted and non-adjusted VIs had poor 

consistency with SIF in wetlands. 
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Figure 5.6 | R2 values from linear regression of 8-day TROPOMI SIF with GPP, NIRv, EVI, and 
NDVI at 0.05 degree by land cover type in 2018. High R2 values indicate a strong correlation in 
the seasonality of the variable and SIF for the respective land cover type. All linear regressions 
had a significant relationship (p<0.05) except for GPPMOD and both NDVIs in evergreen 
broadleaf forest and NDVIMCD43 in wetlands. 

When looking at the distribution of R2 values from gridcell-level (0.20 degree) 

regressions (Fig. 5.7), we found NDVI to be the most inconsistent with SIF and that both BRDF-

adjusted and non-adjusted NIRv and EVI were highly consistent and comparable. Overall, 

GPPVPM had higher consistency than GPPMOD17 and all VIs, but the R2 maps show that GPPVPM 

was less consistent with SIF in the equatorial region and Southeast Asia than the VIs but was 

more consistent at mid and high latitudes. GPPMOD17 was also highly inconsistent with SIF in the 

equatorial region and Southeast Asia, but also had relatively poor consistency in eastern and 

southern South America and South Africa. Both GPP models and all VIs had little to no 

significant relationship with SIF in Southeast Asia. 
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Figure 5.7 | R2 values from pixel-based, time-series regression results for GPP versus SIF and 
SIF versus vegetation indices in 2018. High R2 values signal a strong correlation with 8-day SIF 
from March through December 2018. Shown are only R2 values from linear regression results 
with a significant p-value of <0.05. Spatial resolution is 0.20 degrees. 

4. Discussion 

4.1 Potential advantages and disadvantages of SIF 

Before we discuss the results of our study, it is important to note that there are some 

trade-offs when using SIF and VIs when tracking vegetation dynamics and understanding these 

trade-offs will help us interpret our results. Spaceborne SIF is considered to have may 
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advantages over vegetation indices. SIF is sensitive to changes in leaf physiology, leaf function, 

and canopy structure. For instance, SIF is sensitive to xanthophylls and carotenes, which are 

pigments that help protect photosystems from degradation by dissipating energy away from 

chlorophyll and into heat (non-photochemical quenching). Carotenoids are produced by the 

leaves of evergreen needleleaf species in the winter, a time when photosynthesis is limited by 

freezing temperatures. Thus, the rapid creation or destruction of these pigments during the 

transition into and out of winter, which directly impact the amount of energy entering the 

photosystems for photosynthesis, affect retrieved SIF values whereas changes in carotenoids may 

not have a notable impact on vegetation indices (Magney et al. 2019; Nakaji et al. 2007; 

Stylinski et al. 2002). 

SIF is also not as affected as traditional VIs by non-vegetation radiances, such as soil 

characteristics (Huete et al. 1985), open water (Taddeo et al. 2019), snow (Delbart et al. 2005; 

Jönsson et al. 2010; Walther et al. 2016), cloud cover (Frankenberg et al. 2014; Guanter et al. 

2015), and where the land surface is heterogenous, such as urban areas (Wang et al. 2019b). SIF 

does not saturate when leaf area is high, unlike NDVI. TROPOMI SIF compares very well to 

tower based GPP estimates at Niwot Ridge, CO. SIF/GPP relationship remains strong under 

clear and diffuse sky conditions (Magney et al. 2019).  

The performance of vegetation indices varies widely within and among ecosystem types. 

For example, EVI-based start of the growing season (SOS) was found to be late for boreal 

evergreen needleleaf forest (Walther et al. 2016), but was early in Alaskan tundra (Luus et al. 

2017). A synthesis of six vegetation indices found a wide performance across and within 

vegetation indices for several wetland ecosystem types (Taddeo et al. 2019). In short, a host of 

environmental and physiological factors that determine canopy photosynthesis affect retrieved 
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SIF but may not substantially affect VIs. SIF is more immediately responsive to any factor that 

may inhibit or amplify photosynthesis. 

However, the use of spaceborne SIF to track changes in photosynthesis is currently 

limited in three ways. For these reasons, it is advantageous to develop methods and analyses that 

utilize both SIF and VIs. First, SIF is a very low amount of energy emitted by plants and the 

retrieved SIF values tend to be inherently noisy due to detector noise. Thus, it is generally 

advised not to use single SIF values for analysis. Rather, to properly exploit the data one should 

average several soundings over space and/or time to reduce the precision errors in the mean of n 

samples by 1/√𝑛 (Frankenberg et al. 2014; Köhler et al. 2018). 

Second, viewing and illumination geometry must be considered when working with 

spaceborne SIF data (Köhler et al. 2018). Day-to-day changes in cloud-free SIF are largely 

driven by noise, as previously discussed, and the viewing angle of the satellite – not actual 

changes in SIF (Porcar-Castell et al. 2014). Thus, it is advisable to average SIF values across 

space and/or time to not only reduce the precision error but also to account for the effect of 

different viewing geometries on retrieved SIF (Doughty et al. 2019). Ideally, any given number 

of SIF values that comprise a mean would be uniformly distributed among TROPOMI’s viewing 

angles. It is also important to note that low phase angles, which is the angle between the satellite 

and the sun, can effect retrieved SIF values by altering the ratio of sunlit to shaded leaves 

observed by the satellite (Doughty et al. 2019; Köhler et al. 2018; Porcar-Castell et al. 2014). 

Thus, even if one accounts for viewing geometry, there is the potential that the seasonal variation 

in the solar zenith angle may influence the seasonality of SIF values. 

Finally, although the spatial and temporal resolution of TROPOMI SIF soundings are a 

substantial improvement over preceding spaceborne platforms from which SIF has been 
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retrieved, the spatial resolution remains much coarser than the spatial resolution of platforms that 

have traditionally been used for deriving vegetation indices, such as MODIS (500 m) and 

Landsat (30 m). Also, TROPOMI has daily coverage at high and low latitudes, but in the 

equatorial region the revisit frequency is 13 out of 16 days. Unfortunately, these gaps in 

TROPOMI’s coverage occur in Earth’s cloudiest region where a high observation frequency is 

most needed, and data is most lacking. However, a new geostationary spaceborne platform, 

GeoCarb, is planned to launch as early as mid-2022 and will have the ability to provide daily and 

potentially sub-daily scans of most of North, Central, and South America (Polonsky et al. 2014). 

4.2 Evergreen needleleaf forest 

Evergreen needleleaf forest (ENF) is the largest forest type on Earth and plays an 

important role in the global water and carbon cycles (Myneni et al. 2001). This forest type is 

mainly restricted to high latitude and/or high elevation regions that experience prolonged, cold 

winters and snow fall. Thus, seasonal changes in VIs in these regions are largely driven by 

changes in snow cover (Delbart et al. 2005; Jönsson et al. 2010; Walther et al. 2016) and not 

changes in leaf-level chlorophyll content, which hasn’t been found to vary significantly (Magney 

et al. 2019). The relatively small change in canopy chlorophyll and snow cover have been cited 

as possible reasons why EVI and NDVI have been found to perform poorly when deriving the 

start and end of the growing seasons as estimated using eddy flux towers (Karkauskaite et al. 

2017) and GOME-2 SIF (Walther et al. 2016). 

Although we found the seasonality of EVI and NIRv to be highly consistent with SIF at 

the landscape scale (R2 = 0.86-0.91) and at the gridcell level (Fig. 5.7), there was a delay in the 

start of the season (SOS) EVI relative to SIF (Fig. 5.8). We noted a rapid increase in SIF 

beginning on April 7th, but non-adjusted EVI and NIRv did not have a notable increase until the 
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next 8-day period (Fig. 5.8) and surprisingly BRDF-adjusted EVI decreased from April 7th to 

April 15th (Fig. 5.9). Conversely, BRDF-adjusted NIRv had a notable increase beginning on 

April 7th and was most consistent with SOS SIF. As expected, NDVI had poor seasonal 

consistency with SIF, as also observed in situ by (Magney et al. 2019) at an evergreen needleleaf 

forest site at Niwot Ridge, Colorado, because of NDVI’s long-known tendency to saturate when 

leaf area index is high (Huete et al. 1997b; Lüdeke et al. 1991). However, the SOS 

inconsistencies between the VIs and SIF did not carry over to the GPPVPM and GPPMOD17 

estimates (R2 = 0.97 and 0.90, respectively), which indicated that the models’ climate parameters 

and structure were able to accurately model photosynthesis despite a late increase in VIs relative 

to SIF (Fig. 5.10). 
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Figure 5.8 | Seasonality of 8-day TROPOMI SIF, and non-adjusted NIRv, EVI, and NDVI from 
MOD09 by land cover type in 2018. 
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Figure 5.9 | Seasonality of 8-day TROPOMI SIF, and BRDF-adjusted NIRv, EVI, and NDVI 
from MCD43 by land cover type in 2018. 
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Figure 5.10 | Seasonality of 8-day TROPOMI SIF, GPPVPM, and GPPMOD17 by land cover type in 
2018. 

Our findings on EVI agree with Walther et al. (2016) who found that start of the season 

(SOS) EVI occurred later than SIF, albeit the delay of SOS EVI we noted was not as long. Also, 

we did not observe a mismatch between end of season (EOS) SIF and EVI (or NIRv) as Walther 

et al. (2016) noted. Our findings likely differ because we looked at one year rather than several, 

and also because the GOME-2 data used by Walther et al. (2016) had a coarser spatial resolution 

and thus the gridcells were more likely to be mixed. Our findings indicate that although the 

overall consistency of EVI and NIRv with SIF (R2 = 0.91 and 0.86 for BRDF-adjusted and non-
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adjusted, respectfully) are statistically comparable, BRDF-adjusted NIRv best mimicked SOS 

SIF. 

The start and end of the growing season is of particular interest in high latitude and high 

elevation forests because increasing global temperatures are expected to lengthen the growing 

season (Jarvis and Linder 2000) and their enormous spatial coverage on Earth’s surface means 

that small increases in the duration of the growing season can have sizable impact on 

atmospheric carbon dioxide and methane concentrations (Kasischke and Stocks 2012; Ma et al. 

2017). Thus, the ability to accurately monitor the start and end of the growing season for ENF is 

of extreme importance for informing models that project how these dates will change in the 

future under warming scenarios, and how longer growing seasons impact the carbon and water 

cycles, fire frequency, climate feedbacks, forest health, and forest community and ecosystem 

succession (Flannigan et al. 2000; Randerson et al. 2006; Soja et al. 2007). 

4.3 Evergreen broadleaf forest 

At the landscape level, we found that the seasonality of NIRv and EVI were both 

significantly consistent with SIF (R2 = 0.47 to 0.81) in evergreen broadleaf forest (EBF), but 

NDVI and GPPMOD17 were not significantly consistent due to the tendency of NDVI tendency to 

saturate when leaf area index is high and the reliance of the GPPMOD17 model on NDVI as a 

proxy of the fraction of photosynthetically active radiation absorbed by the canopy (fPARcanopy) 

(Huete et al. 2010; Propastin et al. 2012). GPPVPM was moderately consistent with SIF in EBF 

(R2 = 0.34) and increased with SIF in the during the dry season (~June-October). At the gridcell 

level, there was a lack consistency between VIs and GPP in the wettest and most cloudy regions 

of the Amazon and tropical Africa, and a near complete lack of consistency in Southeast Asia 

(Fig. 5.7). Although the GPP models were more consistent with SIF at mid to higher latitudes, 
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we noticed that they were less consistent with SIF than VIs in the tropics and subtropics. The 

inconsistencies of GPP and VIs with SIF in the tropics is driven by two main factors: 1) frequent 

cloud cover, which reduces the quantity and quality of surface reflectance observations and SIF 

retrievals and makes it highly likely that cloud conditions are different between the differing 

TROPOMI and MODIS overpass times; 2) the stronger effect of clouds on VIs than SIF; and 3) 

gaps in TROPOMI’s coverage in the tropics. In Southeast Asia, the apparent underestimation of 

GPP and unexpectedly low VI values relative to the high values of SIF indicates that cloud cover 

is likely strongly affecting VIs in this region, and the heterogenous mixture of forest, croplands, 

other land cover types, and complex topography likely further complicate the relationship 

between spaceborne SIF and VIs.  

Surprisingly, we found that the seasonality of non-adjusted NIRv and EVI in EBF were 

substantially more consistent with SIF (R2 = 0.81 and 0.80) than their BRDF-adjusted 

counterparts (R2 = 0.47 and 0.53) at the landscape scale. We suspect that the difference is likely 

driven by the BRDF algorithm used to correct the surface reflectance data for the seasonality of 

illumination geometry (lower phase angles during the fall equinox), which coincides with leaf 

flush and an increase in photosynthesis in the tropics (Lopes et al. 2016; Myneni et al. 2007; 

Restrepo-Coupe et al. 2013; Wu et al. 2016). This difference suggests the question of whether 

SIF needs to be adjusted for illumination geometry or if non-adjusted VIs should be preferable to 

those that are BRDF-adjusted. 

There are some hurdles to adjusting SIF data and skepticism about whether it should be 

done, and if so how. First, SIF is emitted energy, not reflected, so traditional BRDF-adjustment 

algorithms are not directly applicable to SIF. Second, there is a lack of knowledge on the 

scattering of SIF within the canopy and its escape, which is highly dependent on vegetation type, 
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density, and structure, and retrieved SIF depends on sun-sensor geometry (Porcar-Castell et al. 

2014). The most recent proposed method for adjusting SIF suggests the use of NIRv to estimate 

the fraction the SIF escape ratio (Zeng et al. 2019). However, the application of this method to 

spaceborne SIF retrievals appears impractical because: 1) the use of NDVI in the calculation of 

NIRv, which is much more sensitive to cloud cover than SIF, would negate the benefit that SIF 

provides in cloudy regions (Frankenberg et al. 2014; Guanter et al. 2015); 2) background 

radiance from non-vegetation surfaces, such as soil, may affect NIRv (Wang et al. 2019a) which 

would otherwise be absent from retrieved SIF values; and 3) NDVI, and hence NIRv, can’t be 

computed from spaceborne platforms that provide SIF retrievals. Thus, one would have to rely 

on estimating the escape fraction of spaceborne SIF using a sensor on a different platform that 

has different sun-sensor geometry, overpass time, atmospheric conditions, detector error, and 

spatiotemporal resolution than the SIF retrievals. 

Third, a past study has shown that BRDF-adjustment of the surface reflectance data does 

not change the seasonality of vegetation indices in the tropics and only reduces the magnitude of 

seasonal change (Guan et al. 2015). Likewise, it is likely that an adjustment of the SIF data 

would be relatively inconsequential, particularly since it has been shown that vegetation 

dynamics are driving seasonal changes in GPP (Lopes et al. 2016; Restrepo-Coupe et al. 2013; 

Wu et al. 2016; Wu et al. 2018) in Amazonian forests and that BRDF-adjusted EVI was found to 

be highly consistent with TROPOMI SIF for moist and seasonally moist forests in the Amazon 

(R2 = 0.83 and 0.91, respectively) (Doughty et al. 2019). 

4.4 NIRv 

 Recent studies have reported a strong correlation between NIRv and GPP, and that 

perhaps this relationship is stronger than the relationship between SIF and GPP, and thus NIRv 
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might be the preferred VI in modeling global GPP (Badgley et al. 2017; Dechant et al. 2019). 

However, an analysis of GPP at six eddy covariance sites (GPPEC) in Australia by Wang et al. 

(2019a) found that OCO-2 SIF better captured the SOS and EOS GPPEC than EVI or NIRv 

because SIF values are not contaminated by background soil and different plant species 

contribute to the SIF signal additively. Similarly, Li et al. (2018) found that OCO-2 SIF had a 

stronger relationship with GPPEC than EVI and NIRv using 64 eddy flux sites across the globe, 

and that the EVI and NIRv performed very similarly. A study in the circumpolar region indicated 

a closer agreement between SIF and GPP estimates than NIRv, EVI, and NDVI (Walther et al. 

2018), and another study found NIRv, NDVI, and two-band EVI to perform relatively poorly in 

estimating the SOS and EOS for tundra and grassland ecosystems (Yang et al. 2019). 

 In our analysis, we found the consistency of NIRv and EVI with SIF to be relatively 

indistinguishable, spatially and temporally, across all land cover types. Our results, and the few 

studies that compare NIRv, EVI, SIF, and GPP, suggest that NIRv does not have a clear 

advantage over EVI. As discussed, we found that BRDF-corrected NIRv may better capture the 

SOS SIF in evergreen needleleaf forests at the global scale, but further analysis at a finer 

spatiotemporal resolution needed to determine if there is a clear advantage. At the very least, we 

did not find any evidence which suggests that NIRv is more consistent with GPP than SIF. 

4.5 BRDF-adjusted and non-adjusted VIs  

Apart from the evergreen broadleaf forest as discussed, we did not find either BRDF-

adjusted or non-adjusted NIRv or EVI to be clearly more consistent with SIF. BRDF-corrected 

NIRv and EVI were slightly more consistent with SIF in evergreen needleleaf forest, deciduous 

broadleaf forest, woody savannas, cropland, urban, and cropland/natural mosaics, but non-

adjusted NIRv and EVI were more consistent with SIF in evergreen broadleaf forest, open 
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shrublands, savannas, and wetlands. The remaining landcover types, deciduous needleleaf forest, 

closed shrublands, and grasslands, exhibited mixed results. Our results suggest that the use of 

BRDF-adjusted or non-adjusted NIRv or EVI in modeling global GPP would only have notable 

differences for evergreen broadleaf forest. Nevertheless, BRDF-adjustment would not change the 

seasonality of tropical GPP estimates, only the magnitude (Guan et al. 2015; Saleska et al. 2016) 

of the seasonality. 

5. Conclusion 

Here we compared GPPVPM, GPPMOD17, and BRDF-adjusted and non-adjusted NIRv, EVI, and 

NDVI to global TROPOMI SIF observations for 2018. We found GPPVPM to be substantially 

more consistent with TROPOMI SIF than GPPMOD17, most notably in evergreen broadleaf forest, 

savannas, and cropland/natural vegetation mosaics. Both GPP models performed poorly in the 

tropics relative to NIRv and EVI when compared to SIF, but GPPVPM had an overall better 

consistency with SIF than VIs due to its strong relationship at mid and high latitudes. NDVI was 

found to be most inconsistent with SIF, which was true across all land cover types. SOS BRDF-

adjusted NIRv was more consistent with SOS SIF than the other vegetation indices, and non-

adjusted NIRv and EVI were much more consistent with SIF than their BRDF-adjusted 

counterparts. We did not find a notable difference between NIRv and EVI compared to SIF, and 

apart from evergreen broadleaf forest there was not a substantial difference between BRDF-

adjusted and non-adjusted NIRv and EVI. The inconsistencies of GPP and VIs relative to SIF 

indicate where GPP models may be improved, where more observations are needed, and 

highlight the advantages of using SIF to track vegetation dynamics.  
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Supplementary material 

 

Figure S5.1 | R2 values from pixel-based, time-series regression results at 0.05 degrees for GPP 
versus SIF and SIF versus vegetation indices in 2018. High R2 values signal a strong correlation 
with 8-day SIF from March through December 2018. Shown are only R2 values from linear 
regression results with a significant p-value of <0.05. Spatial resolution is 0.05 degrees. 
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Chapter 6: Conclusions and perspectives 

Advancement of knowledge 

 My research has advanced our knowledge in the field of remote sensing of vegetation in 

two main ways. First, we demonstrated the ability to track the seasonality and magnitude of C3 

and C4 cropland productivity in Oklahoma over many years using satellite-based data and the 

Vegetation Photosynthesis Model (VPM). Further, we analyzed the impact of pluvial and 

drought periods on the productivity of irrigation-permitted and non-permitted croplands. This 

ability to measure the impact of irrigation and pluvial and drought events on the productivity of 

croplands at regional scales is not only important for understanding annual changes in carbon 

cycle fluxes, but has important implications for monitoring food production and understanding 

how anthropogenic activity may help mitigate or enhance the impacts of pluvial and drought 

events. 

 Second, we have made a considerable contribution to the debate on whether there is a 

dry-season increase in the productivity of Amazon forests. We show that all indicators of 

productivity, such as the Enhanced Vegetation Index (EVI), solar-induced chlorophyll 

fluorescence (SIF), and gross primary productivity (GPP), agree that there is a dry-season 

increase. Furthermore, we refuted the argument head-on that sun-sensor geometry was driving 

the changes in EVI, SIF, and GPP using BRDF-adjusted vegetation indices (MCD43 and 

MAIAC), non-adjusted vegetation indices (MOD09 and MCD13), and several satellite platforms 

(GOME-2, TROPOMI, and MODIS). We further extended our analyses to show how greenness, 

SIF, and GPP greenness deviated from normal during two La Nina and El Nino periods.  

The remote sensing community has been energized by the discovery that solar-induced 

chlorophyll fluorescence (SIF) can be detected using the high spectral resolution surface 
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reflectance data from satellites that are intended to measure trace gasses in Earth’s atmosphere. 

In the last few years, site-level SIF experiments have been established in a variety of land cover 

types, including grasslands, forests, and croplands, and more sites are planned. Until the launch 

of TROPOMI, scientific inquiry into global SIF retrievals was limited by the coarse spatial 

and/or temporal resolution SIF data. The new data from TROPOMI is now helping answer some 

long-standing debates over the seasonality of photosynthesis in the tropics, as demonstrated in 

Chapter 4. 

In the future, we expect TROPOMI to provide detailed insight into the regional and 

global impacts of El Niño, La Niña, and flash drought, which are currently rather limited by the 

coarse spatiotemporal resolution of GOME-2 SIF data and GOME-2 sensor degradation (Chapter 

3). The new, relatively high resolution TROPOMI data has not yet been used to evaluate the 

impacts of drought and climate variability on vegetation, but the consistency between the global 

TROPOMI SIF dataset, GPP models, and vegetation indices (Chapter 5) indicates that SIF will 

be a useful tool in the future for monitoring croplands and forest health because SIF is less 

affected by cloud cover and background radiances than vegetation indices and SIF is directly 

related to the partitioning of energy within the leaf. 

Spaceborne SIF data, especially at high spatiotemporal resolution, also provides a form of 

validation for global GPP products that have previously been limited to validation via eddy flux 

towers, most of which are part of the FLUXNET network. The traditional method used to 

validate GPP products was to compare site-level (gridcell) GPP estimates to eddy flux tower 

GPP measurements. Although the global network of eddy flux towers has been an invaluable 

tool for understanding global carbon fluxes and validating models, most of these towers are at 

mid northern latitudes and are a rough sample of the carbon dynamics of Earth’s ecosystems 
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over space and time. The only way to investigate phenological changes and carbon fluxes in 

remote areas, such as the Amazon, is with satellite observations. Now, high resolution and high 

frequency spaceborne SIF data is giving us information in every pixel on the function (light 

absorption and emission) of vegetation, which can be compared with model estimates. 

SIF: Current limitations and opportunities for future research 

Although TROPOMI has unprecedented spatial and temporal resolution, there are gaps in 

TROPOMI’s coverage in the equatorial region which bar us from observing as many as 3 days in 

each of TROPOMI’s 16-day revisit cycle. These gaps in the data occur in the tropical region 

where cloud cover most often prohibits good observations and where more frequent observations 

are most desperately needed. The upcoming launch of the geostationary GeoCarb platform, a 

joint project between NASA and the University of Oklahoma, will fill these voids by providing 

daily scans of North, Central, and South America. 

Traditional, space-based light-use efficiency models (LUE) estimate gross primary 

production (GPP) using a known quantity of sunlight, a vegetation index as a proxy of the 

fraction of sunlight absorbed by chlorophyll or the canopy, and a maximum LUE value that is 

downregulated by factors limiting photosynthesis, such as temperature and water. These models 

perform extremely well, especially GPPVPM, in most parts of the globe when compared to eddy 

flux towers (Chapter 2) and TROPOMI SIF (Chapter 5). Future applications of SIF will 

undoubtedly involve the incorporation of SIF into GPP modeling, but SIF will never be a perfect 

solution because of the rather complex relationship between the fixation of carbon, which occurs 

during the dark reaction (Calvin Benison Cycle), and SIF, which is emitted from the leaf during 

the light reaction. In short, the relationship between the number of carbon molecules fixed in the 

dark reaction and the number of photons emitted as SIF is not linear under extreme 
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environmental conditions and the slope of their relationship is expected to differ over time for a 

single land cover type and across ecosystems. Also, the scattering, reabsorption, and emission 

(escape ratio) of SIF from a vegetation canopy is largely dependent on canopy structure, which is 

extremely heterogenous across space and time. 

However, the benefit to SIF is not so much that it is a proxy of the amount of carbon 

fixed by photosynthesis, but that it is a better proxy for changes in photosynthesis than 

vegetation indices, a direct indicator of the fate of absorbed energy, and a better indicator of 

changes in plant function. Future avenues of research will focus on resolving some existing 

challenges in the application of SIF data. First, single SIF retrieval error can be sizable, so it is 

necessary to average soundings over space and/or time to reduce precision error, which reduces 

the spatial and temporal resolution of the dataset. Future technological advances in sensor design 

and SIF retrieval may help reduce precision error.  

Second, differences in viewing and illumination geometry affect retrieved SIF values, 

and currently there is no accepted method for estimating the fraction of SIF that escapes the 

canopy (at different angles) that could be used to adjust retrieved SIF values, and it is somewhat 

debated whether adjustment should be done. Nevertheless, more knowledge is needed to 

understand the emission of SIF from canopies for Earth’s different ecosystems, and how viewing 

and illumination geometry affect spaceborne SIF retrievals. In Chapters 4 and 5, I average 

TROPOMI soundings over 8- and 16-day windows to account for differences in viewing 

geometry. However, with GeoCarb we will not have the luxury to average soundings over a 

range of viewing angles because the platform will be geostationary. Thus, for a given location 

we will have a superb record of SIF retrievals that is not subject to daily changes in viewing 

angle, but it might be difficult to directly compare changes in SIF at one location to changes in 
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SIF at another location because the relative magnitude of change will be a function of sun-sensor 

geometry. 

One potential way to gather the data needed to understand the angular characteristics of 

SIF emission would be to use the Orbiting Carbon Observatory-3 (OCO-3) on the international 

space station, and while in targeting mode make several overlapping scans of a small area, called 

Small Area Maps (SAMs). As the space station scans, the viewing geometry will change because 

the station is moving. The soundings with overlapping footprints should give insight into 

changes in retrieved SIF due to differences in viewing geometry while other factors are relatively 

constant, such as illumination geometry, atmospheric and environmental conditions, and 

photosynthesis. Although it may remain unwise to adjust retrieved SIF values for viewing and 

illumination geometry after such an analysis, the knowledge we gain could allow us to create 

quality flags for SIF data products according to viewing and illumination geometry or inform us 

on whether we should avoid retrievals from certain angles. 

GPP: Current limitations and opportunities for future research 

 Eddy covariance GPP (GPPEC) is used as the in-situ litmus test to determine if modeled 

GPP is performing well. However, such comparisons are not perfect because GPPEC is itself not 

observed and is instead partitioned from net carbon exchange using one, several, or a 

combination of models. Eddy covariance systems can’t account for the entire energy budget, can 

experience instrument error and downtime, and are high maintenance. Thus, we don’t expect 

GPPEC and modeled GPP to ever achieve a perfect correlation and is never the goal. 

Nevertheless, EC towers can give us an idea of where modeled GPP works well and where it 

does not. 
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The high correlation between GPPVPM and GPPEC at most sites indicates that the model 

performs very well, but the model results can be further improved with better input data. 

Namely, the VPM model uses a relatively course and static C3/C4 vegetation map for 

simulations, but the C3/C4 ratio is constantly changing in grassland ecosystems and in croplands. 

Also, VPM and many other GPP models use light-use efficiency values from the Biome 

Properties Lookup Table, which are biome-scale, static light-use efficiency values that may not 

capture the diversity and variability of light-use efficiency values within biomes. Better input 

temperature data would also be useful, as the current input temperature data has a very coarse 

resolution (~2 degrees). Currently, VPM does not account for the carbon fertilization effect, 

which would likely affect global interannual trends in GPP. Lastly, a linear function of EVI is 

used as a proxy of the fraction of the amount of photosynthetically active radiation absorbed by 

chlorophyll, but this relationship might be non-linear. 

Conclusion 

The ability to monitor changes in photosynthesis and vegetation cover on Earth’s surface 

is vital to understanding how photosynthesis and vegetation respond over time to changes in the 

environment, climate, and human activity. These responses are fundamental in understanding the 

role of vegetation in atmospheric CO2 and CH4 concentrations, the water cycle, and nutrient 

cycling. Without this basic knowledge, our projections of future atmospheric carbon 

concentrations, climate, climate variability, and the feedback processes between them will be 

highly uncertain.  
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