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Abstract 

Geoscientists have used machine learning for at least three decades and the applications 

spam many fields, from seismic processing and interpretation, to remote sensing classification, to 

analysis of well log data, among many others. More popular in some fields (e.g. seismic 

interpretation, remote sensing analysis) than others (e.g. paleontology), machine learning tools 

can leverage research in different areas of geoscience. Although machine learning is becoming 

more popular in different fields of geoscience, some concepts of more modern applications, 

convolutional neural networks in particular, are still vaguely understood by non-practitioners. I 

present some of the key concepts of machine learning with more details on the foundations of 

convolutional neural networks and some techniques that can help better understand 

convolutional neural networks behavior. I then present five case studies, mostly using 

convolutional neural networks and transfer learning. Transfer learning is a methodology that 

allow us to repurpose filters created by convolutional neural networks on a primary task to 

perform a secondary task. The five case studies start with a broader application of convolutional 

neural networks for different geoscience images, including thin-sections and core photographs.  

Then I present a how to perform core classification using convolutional neural networks. Next, 

how microfossils can be classified by the same methodology. I present a more detailed analysis 

of transfer learning using different remote sensing datasets. In the final case study, I show 

applications of supervised learning techniques to help forecast Megaelectron-Volt electrons 

inside Earth’s outer radiation belt. I conclude the dissertation with a summary and comments on 

the expectation of future research. 
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Introduction 

This dissertation compiles the work I developed during my years as a PhD student at the 

University of Oklahoma and also includes some of the research I conducted during an internship 

at the Los Alamos National Laboratory in Los Alamos, NM. This dissertation is organized in 

different chapters that are independent among themselves, but connected by the machine 

learning methodologies, used to address different research questions. The machine learning 

method used for the great majority of applications I present in this dissertation is convolutional 

neural network. All chapter topics are of interest to some field of geoscience, however the scale 

changes greatly: from the identification of microfossils using thin-section images to the forecast 

of space weather storms, including topics in core analysis and seismic facies classification. 

During the past few years, I had the grateful opportunity to collaborate with several amazing co-

authors. Thus, as the chapters are organized based on journal papers published/submitted, most 

of the dissertation maintains first person plural. Despite great help from all co-authors, I was 

responsible for the totality of study design, implementation development, as well as the great 

majority of writing and figure creation.  

Chapter 1 serves as an introduction to the topic of machine learning, especially 

convolutional neural networks, for the field of geosciences. This chapter presents the main 

terminology used in machine learning as well as the fundamentals of neural networks and 

convolutional neural networks.   

Chapter 2 is presented as it was published in The Sedimentary Record (Pires de Lima et 

al., 2019a), which itself was based on an EAGE expanded abstract (Pires de Lima et al., 2019e). 

This chapter shows the results of the application of transfer learning to different sets of 

geoscience images, without delving into the details and challenges encountered in each one of 
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the tasks. The application presented in chapter 2 shows the potential of the use of convolutional 

neural networks for different fields of geosciences. This chapter is also presented in my Data 

Science and Analytics Master’s Thesis (Pires de Lima, 2019).  

Chapter 3 is presented as it was published in Interpretation (Pires de Lima et al., 2019f). 

A preliminary piece was published in AAPG’s Explorer (Pires de Lima et al., 2018). This 

chapter shows the results of the application of transfer learning to classify lithofacies from a core 

from the Mississippian limestone and chert reservoirs in the Anadarko Shelf, Grant County, 

Oklahoma.  

Chapter 4 chapter was reworked and is presented here as and it was when resubmitted for 

publication in a sedimentary geology journal. This study was originated by a questioning from 

Dr. Lynn Soreghan during Murphy Cassel’s Master’s Thesis defense about fossil attributes. High 

quality thin-sections of Fusulinid specimens are hard to obtain and can provide invaluable 

information that can be used for dating through biostratigraphy as well as paleoenvironmental 

conditions, yet access to experts to experts can lead to an overlook of such microfossils. The 

results presented in this chapter show that convolutional neural networks can be used to classify 

Fusulinid thin-sections.  

Chapter 5 presents more details of the use of transfer learning making use of remote 

sensing data. I use different network structures, optimizers, and datasets to evaluate the 

performance of transfer learning versus training randomly initialized weights. This chapter will 

be submitted to a remote sensing journal. 

Chapter 6 shows some of the research I develop during my internship at the Los Alamos 

National Laboratory. The work in chapter 6 aims to forecast relativistic electrons inside Earth’s 

outer radiation belt. Relativistic electrons are high energy and have the potential to destroy 
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satellite electronics. I use different supervised learning models to forecast the behavior of 1.0 

Megaelectron-volt (MeV) trapped inside Earth’s outer Van Allen belt. Interestingly, the results 

show how linear models are well capable to model most of the 1.0 MeV fluctuation. The work 

presented in this chapter was submitted to a space weather journal and the preliminary results are 

published as abstract in Pires de Lima et al. (2019b). The pre-print version is already available 

(Pires de Lima et al., 2019c). Unrelated to space weather, the work I developed during my 

internship at Los Alamos National Laboratory using simulation data for CO2 capture studies was 

published as two expanded abstracts (Pires de Lima et al., 2019d; Pires de Lima and Lin, 2019). 
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Preface 

Although geoscientists have been using machine learning for decades, non-practitioners might 

feel discouraged use machine learning to facilitate their tasks due to a lack of familiarity with the 

process. In this first chapter I present some fundamental naming convention of machine learning 

elements as well as how deep neural networks, with details on convolutional neural networks, 

transform the data. This chapter will be submitted to a geoscience journal in the near future.  
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Abstract 

Although machine learning is being marketed as a new solution to a wide range of 

problems, geoscientists have used use of machine learning for over three decades. Machine 

learning has been used to map seismic facies seen in 3D data, to predict missing well logs from 

those available, and to correlate well log data with seismic data. Driven by the rapid progress in 

computer vision coupled with the availability of affordable computer graphics processing units, 

deep neural networks techniques such as convolutional neural network (CNN) algorithms 

promise to help accelerate seismic interpretation, with applications ranging from semiautomated 

fault prediction to volumetric mapping of salt diapirs. In part due to its computational 

complexity, and in part due to a desire to aggressively market a new technology, CNN has 

generated perceptions ranging from “black box” to “magic”. Our goal in this paper is lift the veil 

shrouding CNN and provide a tutorial that explicitly defines the assumptions and 

implementational details of CNN for the geoscience audience. Indeed, convolution forms the 

basis of most seismic processing algorithms while the closely related correlation process forms 

the basis of many well log analysis processes.  We describe how the input geological and 

geophysical measurements are transformed by CNN to predict a known output for problems 

ranging from seismic facies analysis to core analysis.  Rather than provide detailed case studies, 

we provide a broader description of the assumptions made, nonlinear processes used, promises 

for future applications, and potential pitfalls in CNN analysis.  
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Introduction 

Machine learning (ML) techniques have been used by geoscientists for a variety of tasks. 

Lim et al. (1989) provided an early application applying both supervised and unsupervised 

machine learning techniques to synthetic aperture radar (SAR) to identify different Earth terrain 

components. Baldwin et al. (1990) used neural networks to classify lithofacies from well logs. 

Brown and Poulton (1996) used neural networks to detect objects and estimate their depth using 

electromagnetic and magnetic data. Cracknell and Reading, (2014) presented a comparison of 

ML techniques for geological mapping using remote sensing data. The list of applications of ML 

using seismological data is vast (e.g DeVries et al., 2018; Perol et al., 2018; Sinha et al., 2018; 

Ren et al., 2019), as is the list of applications using seismic data. Many authors used ML applied 

to seismic attributes to highlight seismic facies (e.g. de Matos et al., 2007, 2011; Roden et al., 

2015; Qi et al., 2016; Zhao et al., 2016, 2018; Lubo-Robles and Marfurt, 2019) with a recent 

increase in the use of DNNs and CNNs to highlight seismic facies, to invert for impedance, to 

denoise data and others (e.g. Di et al., 2018; Li et al., 2018; Waldeland et al., 2018; Alfarraj and 

AlRegib, 2019; Di et al., 2019a; Mustafa et al., 2019; Pham et al., 2019; Zhao et al., 2019). Much 

like in other fields of science, geoscientists now are witnesses to an increase use of deep neural 

networks (DNN) and convolutional neural networks (CNN) applications.  

LeCun et al. (2015) provided details of DNNs and CNNs. They reported that the work 

presented by Krizhevsky et al. (2012) was a breakthrough that caused the rapid embracing of 

DNNs and CNNs by the computer vision community. Krizhevsky et al. (2012) used CNN in a 

structure commonly referenced to as AlexNet on the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC, Russakovsky et al., 2015), achieving new state-of-the-art accuracy levels. 
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The advent of DNN, CNN, and backpropagation allowed researchers to use “raw” data instead of 

features, commonly named attributes when referring to seismic data, as input to ML models. In 

their earlier work, Zhao et al., (2015) used seismic attributes to help recognize seismic facies in 

3D seismic data volume acquired over the Canterbury Basin, offshore New Zealand. More 

recently,  Zhao (2018) applied CNN directly to the seismic amplitude volume to define seismic 

facies in the F3 seismic survey acquired in the North Sea, offshore Netherlands. Wu (2017) 

developed a directional structure-tensor-based coherence algorithm to highlight faults and 

channels in seismic data; whereas Wu et al. (2019) used a 3D CNN model to identify faults. 

Other examples of the use of DNN or CNN for seismic data include Araya-Polo et al. (2017) 

who used DNN to learn a mapping relationship between the synthetic seismic shots input and the 

spatial points indicating fault presence. Waldeland et al. (2018) used a 3D CNN model to map 

salt bodies. Wang et al. (2019) used CNN for seismic data interpolation. Yang and Ma (2019) 

used CNN to invert pre-stack seismic data for velocity.  

DNN and CNN has increased in geoscience applications beyond seismic interpretation. 

Wang et al. (2018) used a CNN to reconstruct high-resolution porous structures based on low-

resolution micro X-ray computed tomography images and high-resolution scanning electron 

microscope (SEM) images. Pires de Lima et al.(2019a) used CNN to classify images of core 

data. Valentín et al. (2019) used ultrasonic and micro resistivity borehole image logs as input to a 

CNN models to predict the probability that any given sample belongs to one of their lithofacies 

classes. Pires de Lima et al. (2019b) and Ran et al. (2019) used CNN to classify rock images, 

among other geoscientific images. Duarte-Coronado et al. (2019) used CNN to classify the level 

of porosity of thin-sections images from the Mississippian strata in the Anadarko basin, 

Oklahoma.  
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 The AAPG and SEG journal Interpretation and the SEG journal The Leading Edge 

recently held special ML issues (Di et al., 2019b; Jayaram et al., 2019; Shaw et al., 2019), while 

a special issue of Geophysics also addresses ML applications (Hu et al., 2019). This level of 

activity reflects the increased promise of ML techniques in addressing geoscience problems. In 

spite of these recently publications, we have found that many key aspects of ML terminology are 

only vaguely understood by those of us not in direct contact with ML procedures. Rather than 

showing a new application of some ML methodology, in this tutorial paper our goal is to define 

concepts that will allow the geoscience community to better understand the naming conventions 

as well as some of the assumptions, methods, and limitations of recent ML applications, with a 

focus on CNNs.  

We begin our paper by defining the most common terms used by the machine learning 

community. We then define the components of a neuron and how multiple neurons can be linked 

to form a DNN layer, as well as how convolutions can be combined to form a CNN layer which 

in turn are linked to form a network. Next, we describe what happens to the input data during 

training in a simple CNN model with only a few layers, focusing on some key techniques that 

provide insight into how CNNs generate their results. With this background, we apply the CNN 

workflow to a seismic classification problem from the Gulf of Mexico. We conclude with a 

summary of the strengths and limitations of the method. 

Terms commonly used in machine learning literature 

This section aims not to be exhaustive, but rather to provide the reader with the necessary 

key terms often used in ML studies. We refer the reader to Google's “Machine Learning 

Glossary" (https://developers.google.com/machine-learning/glossary, accessed November 2019) 
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as well as Pedregosa et al.'s (2011) scikit-learn website for a much more extensive glossary of 

terms as well as information about many other ML methodologies.  

Chapelle et al. (2006) break ML into two large families: supervised learning and 

unsupervised learning. Ayodele (2010) expands these two categories by adding reinforcement 

learning and semi-supervised learning among others. As most applications of ML in geoscience 

rely on either unsupervised or supervised learning, these are the techniques we address here.  

Chapelle et al. (2006) define a set  𝐗𝐗 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) of 𝑛𝑛 samples, or examples, where 

𝑥𝑥𝑖𝑖 ∈ 𝜒𝜒 for all 𝑖𝑖 ∈ {1, 2, … ,𝑛𝑛}. It is generally assumed that the samples are drawn independently 

and identically distributed (i.i.d.) from a common distribution in 𝜒𝜒 . It is often convenient to 

define the (𝑛𝑛 × 𝑑𝑑) matrix 𝐗𝐗 = (𝑥𝑥𝑖𝑖𝑇𝑇)𝑇𝑇𝑖𝑖∈𝑛𝑛 that contains the samples as its rows where 𝑑𝑑 is the 

dimension of the vectors 𝑥𝑥. The goal of unsupervised learning is to find meaningful structures in 

the data 𝐗𝐗. In other words, in unsupervised learning, we provide the ML algorithm with input 

data, also referred to as features, but with no defined target 𝐘𝐘. Practices of dimensionality 

reduction such as principal component analysis (PCA, e.g. Guo et al., 2009; Hu et al., 2017; 

Pires de Lima and Marfurt, 2018) and independent component analysis (ICA, e.g. Honório et al., 

2014; Lubo-Robles and Marfurt, 2019) are unsupervised learning practices. Kohonen's (1990) 

self-organizing maps (SOM, e.g. Coléou et al., 2003; de Matos et al., 2007; Cracknell et al., 

2015; Zhao et al., 2016, La Marca-Molina et al., 2019) and Bishop et al.'s (1998) generative 

topographic mapping (GTM, e.g. Roy et al., 2014; Qi et al., 2016) can also be interpreted as a 

dimensionality reduction technique. In practice users usually interpret the map projected in the 

lower dimensional to generate clusters.  
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Chapelle et al. (2006) further state that, the goal of supervised learning is to learn a 

mapping from 𝑥𝑥 to 𝑦𝑦, given a training set made of pairs (𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖). Note both input features 𝑥𝑥 as 

output 𝑦𝑦 can be multidimensional. Like in unsupervised learning, a standard requirement is that 

the pairs (𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖) are sampled i.i.d. from some distribution spamming over 𝑋𝑋 × 𝑌𝑌 space. 𝑦𝑦 are 

called the labels or targets of the samples. When the labels are continuous, the ML task is called 

regression. When the labels belong to a finite discrete set, the ML task is called classification. An 

example of regression is the inversion of seismic amplitude data to estimate velocity (e.g. Yang 

and Ma, 2019). An example of classification is the estimation of a seismic facies from seismic 

amplitude data (e.g Waldeland et al., 2018; Wu et al., 2019) 

Algorithms that use only samples 𝑿𝑿 are defined as unsupervised learning. A common 

output of unsupervised methods is a colored volume where different colors are assigned to 

different clusters. Then after the clusters have been generated, the interpreter uses well data or 

principals of seismic geomorphology to assign a particular color to a specific geologic class. In 

contrast, algorithms that use a set of inputs paired with their labels, (𝒙𝒙𝑖𝑖,𝒚𝒚𝑖𝑖), fall under the realm 

of supervised learning. Chapelle et al. (2006)  describes semi-supervised learning algorithms 

which require more details to be defined. 

The main characteristic of ML algorithms is their ability to improve their performance, 

e.g., to classify each sample based on the features provided to the ML algorithm, through 

automatic analysis of data. Such automated analysis is often called “training” with the data used 

during this analysis called “training data”. Training finds the most appropriate weights or internal 

parameters for the ML model. Note that both unsupervised and supervised ML models need to be 

trained, and generally will attempt to either minimize a loss (the sum of errors of the training 
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data) or maximize an expectation function, called the “objective function”. The internal variables 

of a ML model are named “parameters”, or “weights”, and are automatically updated during the 

training process. In contrast “hyperparameters” are defined by the user. For example, in K-means 

clustering (Hartigan and Wong, 1979) the number of clusters K is a hyperparameter, as well as 

the number of iterations the model is allowed to update itself. The cluster centers or means of the 

samples of each cluster are parameters. The user can choose the number of clusters, but the 

clusters centers are updated automatically by the model. In SOM and GTM the number of 

neurons and the dimensionality of the latent space are hyperparameters.  

 One common problem of ML models is their tendency to overfit the training data. 

Overfitting essentially means the model matches the training data so closely that it fails to 

perform correct predictions of new data not used in the training step. Thus, ML users habitually 

separate the data into three data sets: training, validation, and test data sets. Validation sets are 

sometimes called “development” or “dev sets”, validation and test sets are sometimes called 

“holdout” sets. Holdout sets are useful to determine if the ML model is overfitting the training 

data and if so, the level of overfitting. Validation sets are used during hyperparameter tuning, i.e. 

the process of choosing the hyperparameters that generate the best results. Ideally the test set is 

used only when the entire training and hyperparameter tuning process has been completed. Some 

ML users employ k-fold cross-validation in their analysis. In k-fold cross-validation, different 

subsets of the training data are selected to be used as the validation set (e.g. Hampson et al., 

2001; Russell, 2004). For example, 5-fold cross-validation fits a ML model five different times 

using different subsets of training and validation data. The test set provides the most important 

metrics for ML models as they represent data unseen by the model.  
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The performance of the ML model is evaluated with different metrics depending on the 

ML model’s task. Unsupervised learning clustering tasks use both internal validation metrics and 

external validation metrics (Palacio-Niño and Berzal, 2019). Internal validation metrics focus on 

measuring the cluster’s cohesion (how similar the samples inside the cluster are to each other) 

and separation (how different clusters are from each other). External validation metrics use extra 

information to evaluate the quality of the clustering, for example how well the clusters align with 

known classes. Although dimensionality reduction techniques can be evaluated based on their 

ability to reconstruct the data, Palacio-Niño and Berzal (2019) find that determining the quality 

of the results of other clustering algorithms to be a very difficult problem. Kleinberg (2003) 

defined essential properties a clustering algorithm should satisfy; he then proved that no 

clustering algorithm can simultaneously satisfy all of them. In spite of these theoretical 

challenges, geoscientists still make use of imperfect clusters as a tool in a larger interpretation 

workflow.  

In contrast to unsupervised learning, supervised learning models are relatively easier to 

have their performance assessed. Metrics for regression tasks include the common mean squared 

error, and the R2 score. R2 is given by:  

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 (𝟏𝟏) 

where 𝑦𝑦𝑖𝑖  is the true target value, 𝑦𝑦� is the mean of 𝒚𝒚, and 𝑓𝑓𝑖𝑖 is the value provided by the ML 

model. R2 does not have a lower bound, and have a maximum (perfect) score of 1.0, meaning all 

of the variance of the predicted value was explained by the input data and the model, or that   

𝒇𝒇 = 𝒚𝒚.  



14 

Metrics for classification tasks generally include counting the number of total and 

incorrect predictions performed by a ML model. Many users define true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) to compute metrics. These are binary, 

positive and negative, but can also be generalized for multi-class problems. TP corresponds to a 

sample in which the model correctly predicted the positive class. TN corresponds to a sample in 

which the model correctly predicted the negative class. FP corresponds to a negative sample that 

the model incorrectly predicted as positive. FN corresponds to a positive sample that the model 

incorrectly predicted as negative. This information can be used to compute other metrics. For 

example, the precision, given by  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
  

 shows the frequency in which the model correctly predicted the positive class. Recall  

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

 shows the proportion of TP correctly predicted. The accuracy and the confusion matrix are 

perhaps the easiest metrics to understand. The accuracy is given by the ratio of correct 

predictions over the total number of predictions. The confusion matrix is a table that summarizes 

the classification results comparing each one of the classes simply by using one axis of a matrix 

as the label that the model predicted, and the other axis as the actual label (the “true” value”). 

Note all these metrics, both for unsupervised and supervised learning, can be applied to 

any of the sets (training, validation, test); however, the most important results are usually the 

ones from the test set.  
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Convolutional layers  

The fundamental element of DNNs is the neuron. Neurons are systems that accept one or 

more input values and outputs a single value based on a function applied on the weighted sum of 

the inputs. The function applied on the weighted sum is generally referred to as activation 

function and is typically nonlinear in ML applications. A bias term is always added to the 

weighted sum, but we omit them for simplicity in this manuscript. Neurons can be organized into 

layers. DNNs are usually defined as multilayer neural networks with two or more hidden layers. 

Hidden layers are the layers between the input and output layers. Kim and Nakata (2018) and 

Russell (2019) discussed the similarities and differences between DNNs and geophysical 

inversion problems such as the computation of deconvolution operators.  

Despite several variations on CNN architectures, all CNNs rely on the fundamental 

convolutional kernel. Convolution operates on two functions, one generally interpreted as the 

“input”, and the other as a “filter”.  The filter is also referred to as “kernel”. The values of the 

kernels are the weights or parameters of a CNN. The kernel is applied to the input, producing an 

output. Just like neurons, a set of convolutional kernels can be combined into layers. Figure 1 

provides a visual representation of DNNs and CNNs. Convolutions in ML are actually referred 

to as cross-correlations in signal processing, and such subtle difference is in fact irrelevant to the 

end results. In signal processing, the difference between convolution and cross-correlation is 

simply due to the fact that a convolution is actually cross-correlation with the reversed kernel, 

and cross-correlation works essentially as a sliding dot product of the input with the kernel. 

During the training stage, the values of kernels are updated in such a way that the output 
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generated by the CNN is more similar to the desired label, thereby minimizing the objective 

function. 

 

Figure 1: Visual representation of a DNN and a CNN showing the main elements of each 
structure. (a) Cartoon showing a single neuron that applies an activation function to the weighted 
sum of the inputs and produces an output. We can then organize layers with multiple neurons, 
each neuron generally applying different weights to the set of inputs and producing different 
outputs. The output of a neuron can then be passed to the following layer, which can be either the 
next hidden layer or the final output. H1 and H2 represent the first and second hidden layers in 
this toy example. (b) Visual representation of a 2D CNN. Starting with the linear component, a 
convolution is applied to an input and produces an output. Next, an activation is applied to the 
output. Note that the number of convolutional kernels is equal to the number of input channels. 
Just like the neurons in (a), convolutional kernels can be organized in layers. Again, H1 and H2 
represent respectively the first and second hidden layers in this toy example. For classification 
and regression tasks, the final layers of CNNs are usually the same as the ones used in DNNs, 
with layers containing neurons. The final layers of CNNs used for segmentation tasks are usually 
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convolutional layers as well. Note we choose to represent 2D CNNs as they are more common, 
however the idea is the same for 1D or 3D CNNs as well. Seismic facies classification is usually 
performed using 3D CNNs. 

Note, as Figure 1 shows, that the CNN kernel applies different convolutional kernels to 

each one of the input channels. We use Figure 2 to illustrate the concept of a channel in ML 

using a color image  of a Triticites tomlinsoni from the Waddell (1966) collection stored at the 

Sam Noble Museum - Oklahoma’s Museum of Natural History. Colors in 2D images are often 

represented as a combination of red, green, and blue channels. Figure 2 shows the intensity for 

each one of the color components. Although our example is a 2D image, the concept expands to 

1D and 3D as well. For example, a 3D CNN for facies segmentation using seismic amplitude and 

the envelope seismic attribute input volumes would be a two channel input data. Figure 3 shows 

how different convolutional kernels affect the input image. Other examples of the same concept 

are provided in the supplemental material.  

 

Figure 2: Decomposition of a RGB image into its red, green, and blue components. For red, 
green, and blue, low values are white and high values are black. Each one of the color 
components is referred to as a “channel”. Each channel is composed of 299 x 299 pixels. 
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Figure 3: Representative  output of different kernels applied to the three-channel input image 
shown in the previous figure. Each of the convolutional kernels (top row) needs to be three 
channels deep. The bottom row shows the result of the original image with each one of the 
convolutional kernels displayed on the top row. For the sake of visualization, we keep the 
outputs of each one of the channels separated; usually CNNs would sum the three channels into a 
single channel output. Note the images are not to scale – 3 x 3 pixels in the top row are much 
smaller than 299 x 299 pixels in top and bottom rows. Sobel-Feldman and edge enhance kernels 
have the same value for the three-different channels, thus we provide the numbers that compose 
the filters in the image. The red blur kernel weights the red channel by a fraction of its inputs 
(1/9) while the other channels remain unchanged – the center pixel is 1.0 whereas the outer 
pixels are zero, thus the cyan color in the center and the almost black color outline. The random 
kernel is generated with 5 x 5 x 3 random samples extracted from a random distribution, thus the 
colors are a combination of such random values applied to the three-channels. For visualization, 
all values are linearly scaled to range from 0-255.  

Springenberg et al. (2014) observed that CNNs frequently use alternating convolution 

and max-pooling layers followed by a small number of fully connected layers. Moreover, CNNs 

are typically regularized during training using dropout layers. Max-pooling are simple down-

sampling steps in which the maximum value for each sub-window (containing multiple values) 

of a feature is used to represent the entire sub-patch, effectively reducing the feature size, Figure 

2 shows a visual representation of max and average pooling. Dropout layers randomly select a 

percentage of their inputs to be ignored during the training phase, helping to prevent overfitting. 

Not specific to CNN models, Srivastava et al. (2014) showed that dropout improves the 

performance of neural networks on many supervised learning tasks such as speech recognition, 
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and computer vision. 

 

Figure 4: A representation of the max and average pooling operation, where the output is simply 
the maximum value of a subset of the input. Colors are used to facilitate visualization. Different 
strides and padding techniques can be used with pooling layers, as well as different statistics 
(minimum, average, median, or other statistical measures). We represent the pooling applied 
with a 2D input; however, the same technique can be applied to 1D or 3D inputs as well.  

 

Backpropagation and training a simple CNN 

LeCun et al. (2015) reported that the goal of  researchers has been to replace hand-

engineered features with trainable multilayer networks since the early days of pattern recognition 
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(Rosenblatt, 1957; Selfridge, 1958). However, in spite of its simplicity, the mathematical 

gradient descent solution technique was only recognized in the mid-1980s. LeCun et al. (2015) 

showed how backpropagation can be used to calculate the gradient of an objective function with 

respect to the inputs of multilayer neural architectures through the use of chain rule for 

derivatives.  

We propose a simple experiment to further illustrate some of the key concepts of ML, to 

show how CNNs transform the data, and how backpropagation updates the weights in CNN. We 

create a simple dataset composed of 2D RGB images with three very different classes easily 

separable based on their image content. Each class is composed of only 16 samples. Samples for 

class “fossil” are images from Waddell (1966), samples for class “oil well” are images from 

PatternNet (Zhou et al., 2018), and samples for class “seismic” are created from inline, crossline, 

and time-slices of the Kora Survey (e.g Bischoff et al., 2017; Infante-Paez and Marfurt, 2017; 

Morley, 2018). To create the “RGB” seismic data, we simple select inline, crossline, and time 

slices. Figure 5 shows examples of the toy dataset we use. We rescale the images to 100 x 100 

pixels, where we note the fossil class gets distorted as it was originally rectangular. The 

similarity between inline and crossline is so small that the images appear almost gray, time slices 

show slightly larger variation with some color highlighting some channels. Our goal is to train a 

CNN to be able to distinguish such toy data. Here we do not separate the data into training, 

validation, and test set, as we are mostly interested in observing how CNN changes the data 

rather than in properly training a model to classify images.  

The CNN model we use is also simple. It is composed of an input layer receiving images 

with the shape 100 x 100 x 3, followed by a convolutional layer with eight filters of size 3 x 3, a 
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max pooling layer with size 2 x 2 and stride two, another convolutional layer with 16 filters of 

size 3 x 3, a max pooling layer with size 2 x 2 and stride two, a convolutional layer with 32 

filters of size 3 x 3, a max pooling layer with size 2 x 2 and stride two, and finally a fully 

connected neural layer with three outputs. The activation function of the convolutional layers is 

the rectified linear unit (ReLU), which is simply the half-wave rectifier 

𝑓𝑓(𝑧𝑧)  =  𝑚𝑚𝑅𝑅𝑥𝑥(𝑧𝑧, 0). 

 The activation of the last layer with three outputs uses the softmax activation 

𝑓𝑓(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖
∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑛𝑛
𝑗𝑗=1

. 

 Figure 6 shows a visual representation of the simple CNN we use. Dumoulin and Visin, (2016) 

presents details of the arithmetic useful for CNNs. Note we use “valid” padding, meaning we can 

only apply the filters where there is an input and we do not change the size of the filters, 

therefore the shape of the channels is reduced after each one of the convolutions. Max pooling 

with size 2 x 2 and stride two should reduce the shape of the channel exactly in half, but because 

the inputs are odd the last value is dropped. We use TensorFlow (Abadi et al., 2016) to 

implement the CNN model. 
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Figure 5: Examples of the toy dataset we use to illustrate CNN models. (a) shows examples of 
the class “fossil” coming from Waddell's (1966) collection, (b)  shows examples of the class “oil 
well” coming from Zhou et al.'s (2018) PatternNet, and (c) shows examples of the class 
“seismic”, coming from the Kora 3D seismic survey. (c) shows color for the leftmost image as 
that is composed of a time slice whereas the other examples are vertical slices. The seismic data 
changes more rapidly in the vertical direction, therefore the changes are more visible when 
composing a three-channel image. Note the vertical slices are in fact colored and composed of 
three-channels, but the colors are almost imperceptible as the vertical slices present very similar 
content in their vicinities.   
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Figure 6: A representation of the simple CNN model we use. Numbers on top of the vertical bar 
indicate the number of channels whereas number on the side indicate the shape of each one of 
the channels for each particular layer. Pooling layers are operations that reduce the shape of the 
channel and do not need to be trained. Note in practice we flatten the 10 x 10 x 32 array into a 
32,000 x 1 array to be used as input for the final layer. 
 

With data and model ready, we need to specify the loss function and the optimizer to 

train the model. The loss function provides the model with a measure of how good or bad the 

model is performing. The optimizer is the algorithm to be used to reduce the loss, very generally 

a variation of stochastic gradient descent. We chose Kingma and Ba's (2014) Adam optimizer 

with the parameters defined by the authors. We use cross-entropy as the loss function. When we 

minimize the cross-entropy, we incentivize the CNN to increase the probability the sample has to 

be assigned to the class aligned with the label provided to that sample. We train the model for 25 

epochs. An epoch is one pass in all data being used, 48 samples in this toy example case. The 

weights of the CNN model are randomly initialized with Glorot Uniform distribution (Glorot and 

Bengio, 2010), and our expectation is that training will modify the weights in such a manner that 
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the CNN will predict the correct class for the samples we provide. Figure 7 shows one oil well 

sample and the output of each one of the convolutional layers, as well as the resulting 

classification provided by the CNN on the last layer. Figure 8 shows the results obtained after 

training the model for 25 epochs. The supplemental material contains extra examples for a fossil 

sample as well as one seismic sample. Video versions showing the evolution of the data 

transformation epoch-by-epoch is provided on online the online version of this manuscript.  
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Figure 7: Example of how the data a transformed for different layers in our simple CNN model. 
When the model starts, the weights are randomly generated and the CNN assigns a fairly 
balanced probability the image can belong to each one of the classes. The image on top shows 
the input to the CNN. The first row shows the results of the first layer consisting of eight 
convolved outputs. The second row shows the results of the 16 filters of the second 
convolutional layer, after the first max pooling layer. The third row shows the results of the 32 
filters of the third convolutional layer. The fourth row shows the flattened vector. Finally, the 
fifth and last row shows the results for each one of the three neurons on the final layer. Images 
not to scale.  We refer the reader to the online version containing a video showing the evolution 
of these images for each epoch. Blue is used for small values and yellow for large. Images not to 
scale. This image shows the output of different filters, not the filters themselves.  
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Figure 8: Same image as Figure 7 after the model is trained for 25 epochs. We refer the reader to 
the online version for a video showing the epoch-by-epoch evolution. The model assigns the 
sample to the correct class with a high probability. Blue is used for small values and yellow for 
large values. Images not to scale.   

Despite Figure 8 showing how the data are transformed by CNN from the input to the 

final decision, it still hard to understand what leads the model to make the classification. There 

are many techniques that can be used to better understand CNN behavior.  DNN interpretability 

is a research topic by itself (e.g. Simonyan et al., 2013; Zhou et al., 2016; Olah et al., 2017, 2018; 

Carter et al., 2019). We chose two techniques to help uncover what parts of the images are 

important for the final classification: saliency maps (Simonyan et al., 2013) and class activation 

mapping (CAM, Zhou et al., 2016). Both saliency maps and CAM are based on a similar 

principle based in the backpropagation concept. Saliency maps use backpropagation to calculate 

what regions of the input sample would create a larger difference in the final output, i.e. compute 

the gradient of the output (or an internal neuron) with respect to the input sample. Saliency maps 

can be improved with the implementation of guided-backpropagation (Springenberg et al., 2014). 

The idea of guided-backpropagation is to simply set the negative gradients to zero; saliency maps 
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with guided-backpropagation usually produce more aesthetically pleasing results. CAM produces 

a heatmap showing what regions of the sample are most important for the final decision. CAMs, 

however, use the results of the last convolutional layer. The choice to use the last convolutional 

layer is to be able to utilize spatial information that gets lost in the final fully connected portion 

of a CNN. CAM averages the gradient of the filters on the final convolutional layer with respect 

to the input sample. We implement grad-CAM (Selvaraju et al., 2017) to show what areas are 

important for the classification performed by our CNN model on examples of our toy dataset. 

Grad-CAM is a CAM implemented with guided-backpropagation. Figure 9 shows the saliency 

map and grad-CAM computed for one sample of each one of the classes in our toy dataset.  

To further illustrate the usefulness of saliency maps and grad-CAM, we now abandon our 

toy dataset and CNN model and use VGG16 (Simonyan and Zisserman, 2014) trained with the 

ILSVRC dataset. VGG16. VGG16 is a CNN model with 13 convolutional layers and three fully 

connected layers. Figure 10 show the saliency map and grad-CAM for two images never seen by 

the CNN model before. Note the model focused on the places useful to provide the classification 

for each one of the images, however due to the unusual cat pose, it fails to correctly identify the 

animal in Figure 10b. Visualization of saliency maps, grad-CAM and other variations can be 

very helpful to understand CNNs behavior. Zech et al. (2018) trained CNN models to identify 

patients with pneumonia based on their radiographies. The authors noted that the CNN learned to 

identify a metal token that radiology technicians place on the patient and actually focused on that 

information to provide the classification. CNN models then can actually use such information to 

predict disease such tokens strongly correlate with disease prevalence.  
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Figure 9: Samples from our small dataset, saliency map and grad-CAM generated with our 
simple model. (a), (b), and (c) show original image, saliency map computed with 
backpropagation, and grad-CAM. Saliency map shows gradient are spread for (a) and (c) and 
more focused on (b). Grad-CAM for (a) and (b) highlight areas that very clearly dominate the 
class in the picture. Note how the shadow of the oil well is important for its classification. 

The dataset and the CNN we use to show the key components of CNN are small and 

simple. Compare our toy dataset composed of 48 samples with the MNIST dataset (LeCun, 

1998) with tens of thousands of samples, or the previously referenced ILSVRC with hundreds of 

thousands of samples. Although greater development of DNN and CNN occurred concomitantly 

with the increase of available samples, research is also conducted with the objective to create 
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robust CNN models using relatively few samples (e.g. Koch, 2015; Schroff et al., 2015; Rostami 

et al., 2019).  

As our toy dataset is simple, a CNN with only three convolutional layers and one fully 

connected layer is enough to correctly classify all the samples. Compare this simple structure 

with VGG19 (Simonyan and Zisserman, 2014) that contains a CNN model with 16 convolutional 

layers and three fully connected layers, or Inception V3 (Szegedy et al., 2014, 2015) that uses 

blocks of convolutional layers with different filter sizes (5 x 5, 3 x 3, and 1 x 1), implements 

concatenation, and ends up being more than 40 layers deep. ResNets (He et al., 2016) and 

DenseNets (Huang et al., 2016) are hundreds of layers deep. Waldeland et al's. (2018) CNN 

model for seismic facies classification contains five convolutional layers. Wu et al's. (2019) 

FaultSeg, based on Ronneberger et al.'s (2015) U-net, used for seismic fault segmentation has 

tens of convolutional layers.  

Activation maximization (e.g Olah et al., 2017) provides another way to try to understand 

what a CNN expects. Again making use of backpropagation, the activation maximization idea is 

to create an input to the CNN such that the output of a given neuron is maximized. In practice, 

we use an objective function to maximize the mean of a selected neuron’s output. The CNN then 

starts classifying a random noise image. Then, we compute the gradients using backpropagation 

to perform gradient ascent on the random noise image. Iteratively, we build an input that 

maximizes the neuron’s output. Figure 11 shows examples of activation maximization performed 

using VGG16 for the “ourzel” and “trilobite” classes. The online version of this manuscript 

contains videos showing how the images change from the starting noise to the final output. We 

implement a simple version that only tries to improve the visualization using total variation (TV) 
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regularization. The choice of TV regularization is justified as activation maximization based on 

the optimization of an objective function that maximizes the output of a selected neuron as we 

implement can be highly affected by high frequency artifacts. In fact, generating appropriate 

activation maximization results is somewhat challenging. Olah et al. (2017) provided details on 

different approaches to generate better visualizations, such as regularizations, upscaling, and 

randomly shifting the image during the optimization process.  
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Figure 10: A picture of a dog, picture of a cat, saliency maps, and grad-CAM generated with 
VGG16. (a) and (b) show original image, saliency map, and Grad CAM. The original image (a) 
was classified as a Rhodesian ridgeback (0.21), whereas the second highest class for (a) was a 
redbone (0.16), two different dog breeds. Note ILSVRC has 1,000 classes and the probability to 
all classes sums to 1.0. The original image in (b) was classified as a spider monkey (0.69), the 
second highest class for (b) was a howler monkey (0.08). Saliency maps compute the gradient of 
the image with respect to the class assigned by the CNN model. We rescale the gradients from 0 
to 255 to present them as color images. Grad-CAM is also based on gradients and computes the 
importance of the output filters towards the final decision. Grad-CAM implements guided 
backpropagation, in which negative gradients or gradients associated with a negative value of the 
filter are zeroed, rejecting elements that act negatively towards the decision, thus highlighting the 
most relevant zones for the model. Although the CNN model focuses on the areas in which the 
animals are located to provide the final classification, it is incapable of noticing the details of (b). 
This is very likely due to the fact that ILSVRC contains many pictures of monkeys on trees and 
few (if any?) pictures of cats on trees. 
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Figure 11: Results of activation maximization for ILSVRC for classes (a) “ourzel” and (b) 
“trilobite”. The input in this case are random values and the algorithm uses backpropagation to 
update the input in such a way that the output of a particular neuron is maximized. Note how the 
activation maximization of (a) seems to compose beak-like shapes whereas the activation 
maximization of (b) seems to be composed of “trilobite” textures. 
 

CNN as a seismic facies classification tool 

We now provide a simple application of CNN to classify seismic facies. We use the CNN 

model described by Waldeland et al. (2018) that uses as input 3D seismic volumes of 65 x 65 x 

65 and outputs a single categorical value. Hence, we say this is a classification task. The 

objective of the CNN model is to use the input information, i.e. the mini 3D seismic cube, and to 

classify the label of the center voxel. Strictly speaking, the model will attempt to learn the 

mapping function of the input data to whatever we ask it to classify. Thus, the quality of the 
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labels is very important now, as the labels are what the model needs to learn. For this task, we 

use a 3D seismic data acquired by PGS using towed streamer acquisition with two sources and 

three receiver cables with a maximum offset of 6000 m along the current offshore Louisiana 

shelf edge. The data map several salt diapirs and minibasins and we select a small subsection 

containing for our experiment. The volume we use for this experiment has a sample increment of 

4 ms, with 37.5 m between lines and 12.5 m between CDPs, with respective dimensions of 1,996 

x 326 x 682. The labels we provide for the CNN model are: conformal sedimentary layers (CSL), 

salt, and mass transport deposits (MTD). Figure 12 shows the total number of labeled samples 

for each one of the classes. To create this dataset, we simply selected examples of each one of 

the three classes from 21 different inlines. This “interpretation” process took roughly 20 minutes. 

For training, we select 20% of the data to be validation. We train the model for 15 epochs using 

Adam to minimize the cross-entropy loss. Our implementation was not optimized for data input-

output management, but the training was completed in roughly one hour using a GeForce RTX 

2060. Figure 13 shows how the accuracy and loss change for every training epoch. To obtain a 

seismic facies volume, we use the trained model to classify every fifth trace and we use bilinear 
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interpolation on the time slices. Figure 14 shows examples of the labeled data we use to train the 

model as well as the classes provided by the CNN for the whole volume.  

 

Figure 12: Histogram showing the number of samples for each one of the three target classes: 
salt, conformal sedimentary layers (CSL), and mass transport deposit (MTD). Note we tried to 
provide a somewhat balanced number of samples per class.  
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Figure 13: Model accuracy and loss evolution for 15 epochs of training. Note the accuracy for 
both training and validation sets reaches 1.0 at epoch four, whereas the loss continues to slowly 
decrease. The loss is plotted using logarithmic scale.   

 



36 

 

Figure 14: Human interpretation and CNN classification results. (a) shows seismic amplitude and 
examples of interpretation of conformal sedimentary layers (CSL), salt, and MTD in different 
inlines. The black polygons show the interpreted seismic facies that will be used to train the 
CNN; the yellow arrows in each one of the panels show examples of the same seismic facies 
present in that class not interpreted, therefore not using for training or validation. (b) The 
resulting interpretation of the trained CNN model away from the training data overlaid on 
seismic amplitude. Seismic interpreters will quickly notice areas wherein they agree with CNN 
provided facies, as well as many areas in which they would disagree. Green arrows indicate 
locations in which the model seems to correctly classify the seismic image as most interpreters 
would; red arrows indicate locations in which CNN provided facies predictions that needs to be 
improved. It is evident that the CNN is overpredicting the distributions MTD, very likely due to 
an insufficient number of training samples. 
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Limitations and suggestions for further study 

Although we believe appropriate training data will allow CNN models to generate better 

results, and despite our decent results using very few training data for 3D CNN seismic facies 

classification task, at this moment we are unsure when should interpreters apply supervised 

learning in contrast to unsupervised learning algorithms. We hypothesize unsupervised learning 

techniques are more appropriate during exploration stages, when the interpreter is still unsure on 

what to expect of the data. Unsupervised learning methods can help provide a better overview of 

the data, highlighting different architectural elements “without being specifically asked to do so”. 

Then, for more detailed interpretation, supervised learning techniques including CNNs, random 

forest (e.g. Kim et al., 2019), probabilistic neural networks (e.g. Russell, 2004; Lubo-Robles et 

al., 2019), among others, are likely to provide more details for specific regions of interest. 

Our implementation of saliency maps with simple backpropagation and Grad-CAM 

produced results too close to zero for the 3D CNN seismic classification example, which might 

be an indication of vanishing gradients. Currently we are unsure whether this unsatisfactory 

result, with gradients too close to numerical precision, is caused to our poor training data or due 

to some detail missing in our implementation. Nonetheless, such techniques can be useful to help 

interpreters understand why their models succeeds or fails in different contexts. Other 

estimations of uncertainty and interpretability can be even more helpful. For example, 

Wickstrøm et al. (2018) used measures of uncertainty based on dropout to map areas of low 

confidence during segmentation of polyp images. We believe the application of a similar 

methodology can be incorporated in many CNN models used for seismic facies classification, 

helping interpreters define areas of high and low confidence.  
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In this manuscript, our goal was to provide insight into CNN used in classification. Many 

applications of CNN with seismic datasets are actually based on CNNs using a 3D or 2D input to 

output a 3D or 2D output. In contrast, Waldeland et al.’s (2018) CNN used for 3D input and 3D 

convolutions to predict a single categorical output. Zhao (2018) compared results of seismic 

facies segmentation using a classification CNN that uses as input 2D data and outputs a single 

pixel answer, and a seismic segmentation that uses 2D data as output and outputs 2D data as 

well. Zhao (2018) found better results for the 2D input-2D output, with more continuous and less 

noisy results. Wu et al.'s (2019) and Shi et al.'s (2019) CNN for seismic facies segmentation, for 

example, are based on 3D input and 3D outputs 

Conclusions 

Despite the recent increase in interest in ML applications, the complexity and 

unfamiliarity with the technology has limited its acceptance by many practicing geoscientists.  

Geoscientists and engineers have years of training in deductive, physics-based reasoning. The 

classic approach is to apply a physics-based model to a process (e.g. wave propagation in the 

case of seismic observations), and find the parameters for the model (e.g. subsurface velocity) 

that predict the measured results. ML applications in general, and CNNs in particular, update 

their own internal parameters in the form of weights and non-linear components. These model 

parameters are generally based on statistics rather than on principals of physics and geology. Our 

objective in this tutorial has been to remove some of the black-box component from ML and 

show that the estimation of unknown parameters is closely related to the estimation of the 

deconvolution operators routinely used by seismic processors.  We have shown step-by-step how 

a CNN transforms the data from input to output. We also show that with only a small amount of 
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interpretation training data, that a CNN can provide useful results. These results will improve 

with better model architectures, better labels, and more experience.   
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Preface     

This chapter is presented as it was published in The Sedimentary Record (Pires de Lima et al., 

2019a), which itself was based on an EAGE expanded abstract (Pires de Lima et al., 2019b). 

This chapter shows the results of the application of transfer learning to different sets of 

geoscience images, without delving into the details and challenges encountered in each one of 

the tasks. The application presented here shows the potential of the use of convolutional neural 

networks for different fields of geosciences. This chapter is also presented in my Data Science 

and Analytics Master’s Thesis.  
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Abstract 

A convolutional neural network (CNN) is a deep learning (DL) method that has been 

widely and successfully applied to computer vision tasks including object localization, detection, 

and image classification. DL for supervised learning tasks is a method that uses the raw data to 

determine the classification features, in contrast to other machine learning (ML) techniques that 

require pre-selection of the input features (or attributes). In the geosciences, we hypothesize that 

deep learning will facilitate the analysis of uninterpreted images that have been neglected due to 

a limited number of experts, such as fossil images, slabbed cores, or petrographic thin sections. 

We use transfer learning, which employs previously trained models to shorten the development 

time for subsequent models, to address a suite of geologic interpretation tasks that may benefit 

from ML. Using two different base models, MobileNet V2 and Inception V3, we illustrate the 

successful classification of microfossils, core images, petrographic photomicrographs, and rock 

and mineral hand sample images. ML does not replace the expert geoscientist. The expert defines 

the labels (interpretations) needed to train the algorithm and also monitors the results to address 

incorrect or ambiguous classifications. ML techniques provide a means to apply the expertise of 

skilled geoscientists to much larger volumes of data 

 

Introduction 

Machine learning (ML) techniques have been successfully applied, with considerable 

success, in the geosciences for almost two decades. Applications of ML by the geoscientific 

community include many examples such as seismic-facies classification (Meldahl et al., 2001; 

West et al., 2002; de Matos et al., 2011; Roy et al., 2014; Qi et al., 2016; Hu et al., 2017; Zhao et 

al., 2017), electrofacies classification (Allen and Pranter, 2016), and analysis of seismicity 
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(Kortström et al., 2016; DeVries et al., 2018; Perol et al., 2018; Sinha et al., 2018), and 

classification of volcanic ash (Shoji et al., 2018), among others. Conventionally, ML applications 

rely on a set of attributes (or features) selected or designed by an expert. Features are specific 

characteristics of an object that can be used to study patterns or predict outcomes. In 

classification modeling, these features are chosen with the goal of distinguishing one object from 

another.      

Typically, feature selection is problem dependent. For example, a clastic sedimentary 

rock is most broadly classified by its grain size; therefore, a general classification for a rock 

sample (data) is sandstone if its grain sizes (features) lie from 0.06 mm to 2.0 mm following the 

Wentworth size class. In this example, a single feature is used to classify the sample, but more 

complex and/or detailed classification often requires analysis of multiple features exhibited by 

the sample. An inefficiency of traditional ML approaches is that many features may be 

constructed while only a subset of them are actually needed for the classification.     

The use of explicitly designed features to classify data was the traditional approach in 

ML applications within the geosciences as in many other research areas. This classification 

approach works well when human interpreters know and can quantify the features that 

distinguish one object from another. However, sometimes an interpreter will subconsciously 

classify features and have difficulty describing what the distinguishing features might be, relying 

on “I’ll know what the object is when I see it”. In contrast to feature-driven ML classification 

algorithms, deep learning (DL) models extract information directly from the raw unstructured 

data rather than the data being manually transformed.   

Because of their greater complexity (and resulting flexibility and power) convolutional 

neural networks (CNN) usually requires more training data than traditional ML processes. 
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However, when expert-labeled data are provided, non-experts can use the CNN models to 

generate highly accurate results (e.g. TGS Salt Identification Challenge | Kaggle, 2019).      

DL applications in the geosciences require experts to first define the labels used to 

construct the necessary data sets as well as identify and address any ambiguous results and 

anomalies. In order to bring awareness and provide basic information regarding CNN models, 

DL techniques, and the necessity of expert-level knowledge needed to utilize these 

advancements, we applied these methods to four different geologic tasks. Figure 1 shows 

samples of different types of data that can be interpreted and labeled by experienced geologists. 

We use such interpretations to train our models. In this manuscript, we show how CNN can aid 

geoscientists with microfossil identification, core descriptions, petrographic analyses, and as a 

potential tool for education and outreach by creating a simple hand specimen identification 

application. 



52 

 

Figure 15: Examples of the data used in this study. A) Three of the seven Fusulinids groups 
(Beedeina (1), Fusulinella (2), and Parafusulina (3)). B) Three of the five lithofacies 
(bioturbated mudstone-wackestone (1), chert breccia (2), and shale (3)). C) Reservoir quality 
classes (high (1), intermediate (2), and low (3)) D) Three of the six rock sample groups (basalt 
(1), garnet schist (2), and granite (3)). Samples were interpreted by professionals working with 
each separate dataset. 

 

Convolutional neural networks and transfer learning 

Recent CNN research has yielded significant improvements and unprecedented accuracy 

(the ratio between correct classifications and the total number of samples classified) in image 
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classification and are recognized as leading methods for large-scale visual recognition problems, 

such as the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC, Russakovsky 

et al. (2015)). Specific CNN architectures have been the leading approach for several years now 

(e.g., Szegedy et al., 2014; Chollet, 2016; He et al., 2016; Huang et al., 2016; Sandler et al., 

2018). Researchers noted that the parameters learned by the layers in many CNN models trained 

on images exhibit a common behavior – layers closer to the input data tend to learn general 

features, such as edge detecting/enhancing filters or color blobs, then there is a transition to more 

specific dataset features, such as faces, feathers, or object parts (Yosinski et al., 2014; Yin et al., 

2017). These general-specific CNN layer properties are important points to be considered for the 

implementation of transfer learning (Caruana, 1995; Bengio, 2012; Yosinski et al., 2014). In 

transfer learning, first a CNN model is trained on a base dataset for a specific task. The learned 

features (model parameters) are repurposed, or transferred, to a second target CNN to be trained 

on a different dataset and task (Yosinski et al., 2014).      

New DL applications often require large volumes of data, however the combination of 

CNNs and transfer learning allows the reuse of existing DL models to novel classification 

problems with limited data, as has been demonstrated in diverse fields, such as botany (Carranza-

Rojas et al., 2017), cancer classification (Esteva et al., 2017), and aircraft detection (Chen et al., 

2018). Analyzing medical image data, Tajbakhsh et al. (2016) and Qayyum et al. (2017) found 

that transfer learning achieved comparable or better results than training a CNN model with 

randomly initialized parameters. As an example, training the entire InceptionV3 (Szegedy et al., 

2015) with 1000 images (five classes, 50 original images for each class, four copies of each 

original image) with randomly initialized parameters can be 10 times slower than the transfer 

learning process (11 minutes vs 1 minute on average for five executions) using a Nvidia Quadro 
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M2000 (768 CUDA Cores). On a CPU (3.60 GHz clock speed), training the entire model can 

take up to 2 hours whereas transfer learning can be completed within a few minutes. We also 

noticed that transfer learning is easier to train. During the speed comparison test, transfer 

learning achieved high accuracies (close to 1.0) within 5 epochs (note the dataset is very simple 

with most of the samples being copies of each other). Successful applications of computer vision 

technologies in different fields suggest that ML models could be extremely beneficial for 

geologic applications, especially those in the category of image classification problems. 

For the examples we present in this paper (Figure 1), we rely on the use of transfer 

learning (Yosinski et al., 2014) using the MobileNetV2 (Sandler et al., 2018) and InceptionV3 as 

our base CNN models. Both MobileNetV2 and InceptionV3 were trained on ILSVRC. 

Therefore, the CNN models we used were constructed based on inputs of 3-channels (RGB) of 

2D photographic images. We randomly select part of the data to be used as a test set maintaining 

the same proportion of samples per class as in the training set. The data in the test set is not used 

during the computational process for model training; rather, it is used to evaluate the quality and 

robustness of the final model. Due to limited space, we refrained showing the CNN mistakes and 

many of the steps necessary for data preparation.  

 

CNN-Assisted fossil analysis 

Biostratigraphy has become a less common focus of study in the discipline of 

paleontology (Farley and Armentrout, 2000, 2002), but the applications of biostratigraphy are 

necessary for understanding age-constraints for rocks that cannot be radiometrically dated. 

Access to a specific taxonomic expert to accurately analyze fossils at the species-level can be as 

challenging as data acquisition and preparation. Using labeled data from the University of 
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Oklahoma Sam Noble Museum and iDigBio portal, we found that Fusulinids (index fossils for 

the Late Paleozoic) can be accurately classified with the use of transfer learning. Accurate 

identification of a Fusulinid depends on characteristics that must be observed and exposed along 

the long axis of the (prolate spheroid-shaped) Fusulinid. We used a dataset of 1850 qualified 

images including seven different Fusulinid genera. After retraining the CNN model, we obtained 

an accuracy for the test set (10% of the data) of 1.0 for both retrained MobileNetV2 and 

InceptionV3 (Table 1). Figure 2 shows a schematic view of the classification process. 

 

Figure 16: An example of the classification process. In this example, a thin-section image that 
should fit one of the seven Fusulinid genera is analyzed by the model. The model outputs the 
probability assigned to each of the possible classes (all probabilities summing to 1.0). The term 
“classes” here is used in the ML sense rather than the biological one. In the example provided, 
our model provided a high probability for the same class as the human expert. Note that in the 
implementation we use the model will classify any image as one of the seven learned classes – 
even if the image is clearly not a fossil. This highlights the importance of a domain expert 
intervention. 
 

Table 1: Summary of test accuracy for the examples in this study. 
Dataset Number 

of training 
samples 

Number 
of test 
samples 

Number 
of output 
classes 

MobileNetV2 
Accuracy 

InceptionV3 
Accuracy 

Microfossils 
(Fusulinids) 

1480 184 7 1.00 1.00 

Core 227 28 5 1.00 0.97 
Petrographic 
thin-sections 

194 31 3 0.81 0.81 

Rock 
samples 

1218 151 6 0.98 0.97 
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CNN-Assisted core description 

Miles of drilled cores are stored in boxes in enormous warehouses, many of which have 

either been neglected for years or never digitally described. Core-based rock-type descriptions 

are important for understanding the lithology and structure of subsurface geology. Using several 

hundred feet of labeled core from a Mississippian limestone in Oklahoma (data from Suriamin 

and Pranter, 2018 and Pires de Lima et al., 2019), we selected a small sample of 285 images 

from five distinct lithofacies to be classified by the retrained CNN models. Pires de Lima et al. 

(2019) describes how a sliding window is used to generate CNN input data, cropping small 

sections from a standard core image. We used 10% of the data as the test set and achieved an 

accuracy of 1.0 using the retrained MobileNetV2 and an accuracy of 0.97 using the retrained 

InceptionV3 (Table 1).  

 

CNN-Assisted reservoir quality classification using petrographic thin sections 

Petrography focuses on the microscopic description and classification of rocks and is one 

of the most important techniques in sedimentary and diagenetic studies. Potential information 

gained from thin section analysis compared to hand specimen descriptions include mineral 

distribution and percentage, pore space analysis, and cement composition. Petrographic analyses 

can be laborious even for experienced geologists. Using a total of 161 photomicrographs of 

parallel Nicol polarization of thin sections from the Sycamore Formation shale resource play in 

Oklahoma, we classified these images as representatives of high, intermediate, and low reservoir 

quality depending on the percent of calcite cement and pore space. We used 20% of the images 

in the test set and obtained a test set accuracy of 0.81 for both the retrained MobileNetV2 and the 

retrained InceptionV3 (Table 1). 



57 

 

CNN-Assisted rock sample analysis 

By creating a simple website, the general population could have immediate access to a 

rock identification tool using transfer learning technology. For this work in progress, we used 

smartphones to acquire 1521 pictures of six different rock types, using five different hand 

samples for each one of the rock types. We took pictures with different backgrounds, as visually 

depicted in Figure 1, however all pictures were taken in the same classroom. After retraining the 

CNN models, we obtained an accuracy for the test set (10% of original data) of 0.98 using the 

retrained MobileNetV2 and 0.97 using the retrained InceptionV3 (Table 1). We note that our 

model does not perform well with no-background images (i.e., pictures in which the rock sample 

is edited and seems to be within a white or black canvas) as such images were not used in 

training. 

 

Conclusions and future work 

Although gaining popularity and becoming established as robust technologies in other 

scientific fields, transfer learning and CNN models are still novel with respect to application 

within the geoscience community. In this paper, we used CNN and transfer learning to address 

four potential applications that could improve data management, organization, and interpretation 

in different segments of our community. We predict that the versatile transfer learning and deep 

learning technologies will play a role in public education and community outreach, allowing the 

public to identify rock samples much as they currently can use smart phone apps to identify 

visitors to their bird feeder. Such public engagement will increase geological awareness and 

provide learning opportunities for elementary schools, outdoor organizations, and families. 
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For all of our examples, we were able to achieve high levels of accuracy (greater than 

0.81) by repurposing two different CNN models originally assembled for generic computer 

vision tasks. We note that the examples and applications demonstrated here are curated, and 

therefore we expected highly accurate results. We presented demonstrations with limited classes 

and relatively well-controlled input images, so near perfect accuracies cannot necessarily be 

expected in an open, free-range deployment scenario. Regardless, the ability to create distinctive 

models for specific sets of images allows for a versatile application. 

The techniques we have shown could greatly improve the speed of monotonous tasks 

such as describing miles of core data with very similar characteristics or looking at hundreds of 

thin sections from the same geologic formation. While the tasks are performed by the computer, 

the geoscience expert is still the most important element in every analysis in order to create the 

necessary datasets and provide quality control of the generated results. In the end, the expert 

validates the correctness of the results and looks for anomalies that are poorly represented by the 

target classes. We believe ML can help maintain consistency in interpretations and even provide 

a resource for less common observations and data variations, such as previously overlooked 

fossil subspecies and unique mineralogical assemblages in small communities and private 

collections, thereby building and reconciling a more complete international database. By 

combing expert knowledge and time efficient technology, ML methods can accelerate many data 

analysis processes for geologic research. 
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Preface 

This chapter is presented as it was published in Interpretation (Pires de Lima et al., 2019). A 

preliminary piece was published in AAPG’s Explorer (Pires de Lima et al., 2018). This chapter 

shows the results of the application of transfer learning to classify lithofacies from a core from 

the Mississippian limestone and chert reservoirs in the Anadarko Shelf, Grant County, 

Oklahoma.  
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Abstract 

Artificial intelligence methods have a very wide range of applications. From speech 

recognition to self-driving cars, the development of modern deep learning architectures is 

helping researchers achieve new levels of accuracy in different fields. Although deep 

convolutional neural networks (a kind of deep learning technique) have reached or surpassed 

human-level performance in image recognition tasks, little has been done to transport this new 

image classification technology to geoscientific problems. We present what we believe to be the 

first paper using convolutional neural networks to identify lithofacies in cores. We use highly 

accurate models (trained with millions of images) and transfer learning to classify images of 

cored carbonate rocks. We show that different modern convolutional neural network 

architectures can achieve high levels of lithological image classification accuracy (~90%) and 

can be used to aid in the core description task. This core image classification technique has the 

potential to greatly standardize and accelerate the description process. We also provide the 

community with a new set of labeled data that can be used for further geologic/data science 

studies.  

Introduction 

Advances in deep learning and artificial intelligence promise to not only drive our cars 

but also taste our beer (Daily et al., 2017; Gardner et al., 1994). Specifically, recent advances in 

the architecture of deep learning convolutional neural networks (CNN) have brought the field of 

image classification and computer vision to a new level. Very deep convolutional neural 

networks emerged in 2014 and have achieved new levels of accuracy in several artificial 

intelligence classification problems (Szegedy et al., 2014). The current benchmark in object 



64 

category classification and detection, named ImageNet, consists of hundreds of mixed-object 

categories and millions of images (Deng et al., 2009; Russakovsky et al., 2015) and it is 

commonly used to train CNNs. Current CNN models are able to differentiate the image of a 

leopard from that of a container ship, but moreover can differentiate images of leopards from 

their biological cousins -cheetahs and snow leopards (Krizhevsky et al., 2012).  

Although machine learning has been significantly used in geoscience fields, the 

application of this technique in core-based lithofacies identification, a key component to better 

understand oil and gas reservoirs, is still limited. Machine learning techniques have been 

intensely used to aid seismic-facies classification (de Matos et al., 2011, 2007; Qi et al., 2016; 

Qian et al., 2018; Roy et al., 2014; Zhao et al., 2017, 2016), electrofacies classification (Allen 

and Pranter, 2016); lithofacies classification from well logs (Baldwin et al., 1990; Bestagini et 

al., 2017; Zhang et al., 1999), to predict permeability in tight sands (Zhang et al., 2018), and 

even for seismicity studies (Kortström et al., 2016; Perol et al., 2018; Sinha et al., 2018; Wu et 

al., 2018). Cored wells are important as they are the only data that provide the ground-truth of 

subsurface reservoirs including the lithofacies variations. The goals of core-based rock-type 

descriptions are to identify key lithofacies and facies associations, evaluate facies stacking and 

identify stratigraphic surfaces, interpret depositional environments, evaluate relationships among 

porosity, permeability, and lithofacies, and help operators to identify optimal zones for designing 

completions. Traditional core-based lithofacies identification is challenging as it is costly, time 

consuming, and subjective (e.g. different geologists describe the same core may yield different 

results).  To address some of the core-based lithofacies identification challenges, we evaluate 

whether a CNN can help a specialist on their image-recognition task. 
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 CNN goes hand-in-hand with the construction and archival of digital data bases. Many 

museums are now busy digitizing and sharing their collections (Blagoderov et al., 2012; Ellwood 

et al., 2015) With the exception of core measured by deep sea drilling projects and the like (e.g. 

NOAA, 2016), core images are not readily available. As an example, more than 100 miles of 

cores are stored in the Oklahoma Petroleum Information Center (OPIC), managed by the 

Oklahoma Geologic Survey. Other states and countries have similar repositories (USGS Core 

Research Center, 2018). Further digitization of this valuable resource resulting in core images 

will not only facilitate access to data for traditional analysis but also provide the information 

needed to build and calibrate innovative machine learning algorithms. The work we use here has 

the potential to organize many miles of slabbed cores into a reliable and coherent system easily 

accessible to a variety of users.  

In this paper, we provide one of the first attempts to conduct automated core lithofacies 

classification using CNN. We begin with an overview of the methodology, which includes data 

preparation and transfer learning. The details of the CNN method are summarized in tutorial 

form in Appendix A. Next, we apply CNN to our core data set, and use confusion matrices, both 

test and validation accuracies, as well as a precision, recall, and F1 score (Fawcett, 2006) 

computed with the final-test set as means to analyze our results.  We conclude with a summary 

of our findings and suggestions on how our workflow can be extended and improved. 

Methodology 

The deep learning methodology and CNN techniques are now very well disseminated in 

diverse fields. LeCun et al. (2015) presented details in the construction of and showed the value 

of deep learning.  Dumoulin and Visin (2016) gave details on convolutions and other arithmetic 
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steps used in deep learning algorithms. Although carefully constructed interative papers have 

been published detailing CNN image transformations and image understanding (e.g. Olah et al., 

2017, 2018), CNN may appear to be “magic” and therefore somewhat suspect to the practicing 

geoscientist. For this reason, Appendix A provides a tutorial that looks under the covers, 

providing a simple CNN application to classify images into three groups. The work for this paper 

was developed using open-source computational packages described by  Hunter (2007), Chollet 

et al. (2015), and Abadi et al. (2016)  

When used for image recognition tasks, CNN models need examples (images) to 

understand the properties of each “class” they try to discriminate. Part of the parameters learned 

for a primary task (such as the ImageNet classification) can be transferred to a secondary task 

(e.g. lithofacies classification) through the use of transfer learning (Oquab et al., 2014; Pan and 

Yang, 2010; Yosinski et al., 2014). Our work focuses on using transfer learning of complex 

CNN architectures to serve our specific image recognition task. The following subsections detail 

how we prepared our datasets and give a brief explanation of transfer learning.  

Data Preparation 

We used core described using traditional methods published by Suriamin and Pranter 

(2018),  capturing images using modern photographic equipment to generate the set of labeled 

data to feed our CNN. The total section used for this project consists of approximately 700 feet 

from one core from the Mississippian limestone and chert reservoirs in the Anadarko Shelf, 

Grant County, Oklahoma. The set of core images shown in Table 1 includes 17 different 

lithofacies. Two pairs of lithofacies exhibit similar lithology and appearance; we grouped these 

into a single class for this project (Figure 3). We carefully cropped the images in a standardized 
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fashion, providing consistent input to the CNN. We used a sliding window technique to extract 

consistent squared cropped sections from the original core images (Figure 1), generating 180 by 

180 pixel images representing roughly 2 by 2 inches of cored rock. Note in Figure 3 that the 

heavily damaged rock is not present in the images used for training/test. We chose to eliminate 

these images as they would increase variability within class. Ideally, more core data would 

provide sufficient images to define damaged classes. The sliding window cropping process 

augments the number of images of our initially small collection, thereby further generalizing the 

CNN. Some classes contained less than 300 images. In order to augment representation of those 

classes, we doubled the number of input images by flipping the image horizontally. Next, we 

select approximately 2% of the original data for each class to serve as test data.  During training, 

5% of the total training data is randomly selected to be part of training-test. The training-test set 

is used for an overall performance evaluation. We provide more detailed analysis using the test 

set. The selection of images to be part of the test has a higher standard than the images selected 

to be part of the training-test. As each image selected to be part of the test set force us to discard 

its neighbors (Figure 1), we select only 2% of the original data.  

Even after image augmentation, Table 2 shows that some classes have a significantly 

larger number of images than others. This difference in amount of labeled data for different 

classes is referred as class imbalance (Buda et al., 2018; Japkowicz and Stephen, 2002) and can 

cause undesirable effects when training classifiers. In this study, we did not notice a significant 

bias caused by such class imbalance. Therefore, although we did not augment it, we chose to 

retain all of the images in the most common 13-14 Spiculitic mudstone-wackestone class. In 
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contrast, we removed from analysis classes represented by less than 30 images where initial 

testing indicated that these under-sampled classes were reducing CNN accuracy.  

  



69 

 
Class Lithofacies Training set Test set 
01 Chert breccia in greenish shale matrix *218 3 
02 Chert breccia *236 3 
03 Skeletal mudstone-wackestone *258 4 
04 Skeletal grainstone *160 3 
05 Splotchy packstone grainstone *344 4 
06 Bedded skeletal peloidal packstone-grainstone *416 4 
07 Nodular packstone-grainstone 445 11 

08 Skeletal peloidal packstone-grainstone not used not 
used 

09 Bioturbated skeletal peloidal packstone-grainstone 795 19 
10 Bioturbated mudstone-wackestone *150 4 

11 Brecciated spiculitic mudstone not used not 
used 

12 Intraclast spiculitic mudstone not used not 
used 

13 Spiculitic mudstone-wackestone 3077 79 14 Argillaceous spiculitic mudstone-wackestone 

15 Glauconitic sandstone not used not 
used 

16 Shale 789 17 17 Shaly claystone 
Total number of images in each set 6888 151 

Table 2: Class number assigned to each lithofacies in the core used in this study. Highlighted 
classes 13-14 and 16-17 exhibited similar lithology and appearance so combined to into two 
classes instead of four. During training, the training set data is further split: 10% are randomly 
selected to be part of a validation set and 5% are randomly assigned as training-test set. The 
proportion used for validation and test splitting are commonly dependent on the number of 
samples available and the type of machine learning model being trained. CNN models usually 
improve with more examples; therefore, we selected a smaller percentage to be part of the 
validation and test sets. Asterisks (*) indicate classes that were augmented using horizontally 
flipping the images. The last column of this table (Test set) comprises the selected images 
described in Figure 3 and is the test set used for further analysis in this paper. Classes with less 
than 30 original images were not used in this study (Modified from  Suriamin and Pranter, 2018). 
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Figure 17: Figure showing image augmentation of a photographed core the core using a sliding 
window of cropped image. This approach provides the CNN with a greater amount of training 
data. The blue rectangle shows images that were never used during training (the test data). The 
cropped images crossed were discarded from the datasets (damaged rocks). The green arrow 
indicates a random image that could have been selected to be part of the test set. When an image 
like this is selected, the overlapping neighboring images are also removed from the training set. 
The separation of test data was the same for all classes in this project. 

 

Transfer Learning  

Transfer learning is a powerful technique that can be used to address the shortage of 

sufficient domain-specific training data (Carranza-Rojas et al., 2017). In transfer learning, the 

learned parameters of a base model trained on a base dataset are applied to  a different task 

(Yosinski et al., 2014). In our application, we use  a CNN model trained to identify the images of 

the ImageNet challenge to classify lithofacies in core (Figure 4). ImageNet is a dataset consisting 

of thousands of classes ranging from biological and household images to vehicles and bridges; to 
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our knowledge no rock or core images were included in its construction. Another advantage of 

using transfer learning is to reduce the training computation time by using the trained layers as 

feature extractors (Appendix A) and rather training only a new classification layer. Examples of 

transfer learning include Carranza-Rojas et al. (2017) for herbarium specimens, Esteva et al. 

(2017) for skin cancer classification, and Gomez Villa et al. (2017) for camera-trap images. 

Tajbakhsh et al.  (2016) used different medical imaging applications and performed a 

comparison between CNNs trained from scratch with the pre-trained CNNs. The authors found 

that the using a pre-trained CNN frequently outperforms a CNN model trained from scratch 

especially when limited training data are available. 

When CNNs are trained with natural images, the first layers of the deep neural network 

learn features that are useful to identify textures or colors. This behavior is quite common in 

CNN models; the analysis is reevaluated if the initial layers learn image properties other than 

color or texture. Because of this CNN characteristic, models with good performance trained on 

the ImageNet challenge (e.g. Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy 

et al., 2014, 2015; He et al., 2016; Zoph and Le, 2016; Zoph et al., 2017; Sandler et al., 2018) 

can be successfully retrained for new, field-specific classification problems (e.g. Tajbakhsh et 

al., 2016; Carranza-Rojas et al., 2017; Esteva et al., 2017; Gomez Villa et al., 2017; 

Norouzzadeh et al., 2018).  

In this project, we evaluate transfer learning using four different trained models: 

InceptionV3 (Szegedy et al., 2015) consisting of 48 layers, ResNetV2 – implemented with 50 

layers (He et al., 2016), MobileNetV2 (Sandler et al., 2018) with 20 layers, and NASNet (Zoph 

et al., 2017; Zoph and Le, 2016) with 20 layers. These models and the learned parameters are 
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publicly available and can be downloaded from the TensorFlow Hub (2018) website. Each one 

of the CNN models require different sized images as input: 299 by 299 pixels for InceptionV3, 

224 by 224 pixels for ResNetV2, 224 by 224 pixels for MobileNetV2, and 331 by 331 pixels for 

NASNet. Because our images are 180 by 180 pixels in size, we use simple bilinear interpolation 

to conform to the size of the transfer learning model used. As described in Appendix A, all 

subsequent layers are dependent on the size of the input data.  Appendix A shows how transfer 

learning is achieved by simply using the convolutional layers as feature extractors for our core 

images thereby facilitating the training of a densely connected classification layer. 

Carranza-Rojas et al. ( 2017), Esteva et al. (2017), and Gomez Villa et al.  (2017) each 

used some 100,000 images in their datasets to perform transfer learning.  Although we have a 

significantly smaller dataset consisting of less than7000 images, we still achieved a high-level 

accuracy as presented in the next section. We use confusion matrices, test and validation 

accuracy, and precision, recall, and F1 score (Fawcett, 2006) computed with the final-test set as 

means to analyze our results.  
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Figure 18: Flowchart summarizing the workflow used in this paper. We begin with photographic 
images of the slabbed core, followed by simple image processing and data augmentation to 
generate our core image database. The CNN models we use as feature extractors were previously 
trained using millions of images on the ImageNet challenge. We then use transfer learning and 
re-use the ImageNet dataset classification CNN weights. Finally, we train the last layer to 
provide the desired core image classification. 
 

Results 

In this section we present the overall results we obtained as well as examples of the 

classifications performed by the retrained CNNs. Because the results of the four chosen CNNs 

are similar, we show in this section details of the ResNetV2 retrained CNN (apart from training-

test set in Table 3). Plots and tables regarding the other three CNNs are presented in Appendix B.    

The results for the training-test dataset are presented in Table 3.  
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Model Training-test 

Accuracy 

InceptionV3 0.95 

ResNetV2 0.95 

MobileNetV2 0.95 

NASNet 0.90 

Table 3: Training-test set data results for the different models used for transfer learning.  
 

These training-tests accuracies were achieved after 5000 iterations using a gradient 

descent algorithm. Figure 3 shows the training and validation accuracy result for each step of the 

gradient descent. The CNN quickly reaches satisfactory levels of accuracy.  After performing 

feature extraction, only the last classification layer needs to be trained. The training time in a 

single core CPU with 3.60 GHz maximum speed does not exceed one hour for our dataset for 

any of the four CNN models used. Access to graphical processing units (GPUs) provides even 

greater computation speeds. 

Figure 6 shows representative images from the test dataset classified using the retrained 

ResNetV2. Although the CNN provides different levels of probability when assigning the classes 

allowing one to define an acceptable threshold to accept a given prediction, we simply assigned 

the image to the CNN class exhibiting the highest probability. Because the CNN provides 

different levels of probability when assigning the classes, we can define an acceptable threshold 

to accept a given prediction. Choosing different values for this threshold value is also a 

commonly used tool to analyze the performance of a classifying algorithm.  Ferri et al. (2003), 

Everson and Fieldsend (2006), and Fawcett (2006) give details of the receiver operating 
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characteristics graphs that arise when performing such analysis. In this paper, we choose the 

threshold to be 0.30; this means that we accept the image classification given by the CNN when 

any possible class receives a probability higher than 0.30. This value was chosen so that all 

images would be classified, even if the CNN is not very confident. Such threshold value is 

enough for our model to assign a class for each one of the images in the test set. Figure shows 

the confusion matrix generated when the test set is classified by the retrained ResNetV2. 

Precision, recall, F1 score, and support as well as weighted precision, recall, and F1 score are 

presented in Figure 5. All these metrics range from 0 (poor performance) to 1 (good 

performance). Precision and recall indicate how often the model was correct predicting the 

analyzed class. Precision is defined as ratio of true positives and the sum of true positives and 

false positives. Recall is defined as ratio between true positives and the sum of true positives and 

false negatives). F1 is the harmonic average of precision and recall.  

 

Figure 19: Validation and training accuracy for the ResNetV2 training. Note that after 
approximately 1000 iterations the gains are marginal. Because the cost of training the 
classification layer is inexpensive compared to training the entire model, we can afford to let the 
model train for many steps.  
 



76 

 

Figure 20: Examples of the classification performed by the retrained ResNetV2. (a)The CNN 
very confidently assigned the image to the correct class (class 07, Nodular packstone-
grainstone). (b)Again the CNN provides a high level of confidence to assign the image to the 
correct class (class 10, Bioturbated mudstone-wackestone). (c) The CNN still assigns the image 
to the correct class, but with lower confidence (class 01, Chert breccia in greenish shale matrix is 
the correct class). (d) The image shows an example in which the CNN failed to correctly assign 
the class. The CNN assigned a higher confidence for class 03 (Skeletal mudstone-wackestone, 
with 0.45 probability) whereas the correct class is actually class 06 (Bedded skeletal peloidal 
packstone-grainstone, 0.29 probability, yellow arrow in the image). Setting a confidence 
threshold of 0.50 or greater would identify this classification as “ambiguous”, calling for human 
intervention. 
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Figure 21: Normalized confusion matrix of the retrained ResNetV2 applied to the test set. Refer 
to Table 2 for class lithofacies and number of images for each class.  
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Class Precision Recall F1 score Support 

01 1.00 1.00 1.00 3 

02 1.00 0.33 0.50 3 

03 0.80 1.00 0.89 4 

04 1.00 1.00 1.00 3 

05 0.67 1.00 0.80 4 

06 0.75 0.75 0.75 4 

07 0.89 0.73 0.80 11 

09 0.90 0.95 0.92 19 

10 0.57 1.00 0.73 4 

13-14 0.99 0.95 0.97 79 

16-17 0.94 0.94 0.94 17 

weighted 0.93 0.92 0.92  

Table 4: Precision, recall, F1 score and support for the classification performed by the retrained 
ResNetV2. The last row shows the weighted values for each one of the metrics.   
 

Discussion 

To our knowledge this is the first study conducted using slabbed core image classification 

using CNNs. With comparable metrics for all the CNN architectures tested, we observe a high 

level of concordance (and confidence) between the expert labeled data and the classifications 

suggested by the CNNs. Using the methodology we presented in this paper, a user can obtain the 

probability that a standardized picture of a core belongs to one of the described lithofacies even 

if the user has little experience with core description. This capability can not only accelerate the 

interpretation of large data volumes by using non-expert technologists, but also identify 
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inconsistencies in the interpretation between different experts working on the same data. This 

potential inconsistency suggests that we construct a human interpreter confusion matrix 

comparing multiple interpretations of the same core. This confusion matrix can then be 

constructed from a single interpreter and the CNN. Identification of such inconsistencies within 

teams composed of members with different backgrounds promises to facilitate data 

comprehension and accelerate project advancement. Even though we use a relatively small 

database of images, Figure 5 and Table 3 show the retrained ResNetV2 achieved high levels of 

accuracy.  The remaining three architectures (InceptionV3, MobileNetV2, and NASNet) results 

also show high levels of accuracy (Appendix B).  

When performing core description, a human interpreter relies on texture, structures, and 

pattern analysis to define the lithofacies being analyzed. In this manner, the classification 

performed by CNNs are somewhat mimicking human classification. Nonetheless, when a 

geologist is describing a rock, other rock properties (not visual properties) can be analyzed by the 

interpreter. Does the mineral react with acid? How hard is the mineral? Therefore, when using 

CNN models, the user needs to remember that the best result the CNN can provide is only the 

best result achieved by a visual (and strictly non-tactile) analysis of an image. We can, however, 

modify the deep learning architectures to be multidimensional. Specially, the digital images can 

be augmented by measures of resistivity, density, X-ray fluorescence, Fourier transform infrared 

spectroscopy, and other measures to produce an even more powerful tool.  

In the architecture we used here, any image used as input to the CNN classifier will 

predict that the image belongs to one or more of the CNN’s learned classes. This means that the 

CNN will never declare the image to be none of the pre-defined classes. Figure 8 shows the 
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picture of a carpet classified by the retrained ResNetV2. Although there are visual similarities 

between the carpet and the images in the training set, the resulting classification demonstrates the 

necessity of quality controlling CNNs output.  

Because the CNN models are trained with expert labeled data, such expertise is abstractly 

maintained in the different parameters optimized in the CNN. Consequently, we can absorb 

interpretations performed by different specialists and save them in unique CNN models. Such 

data capture would provide a way of sharing geological knowledge great distances. Geoscientist 

working in challenging (or simply unfamiliar) geological settings can access the knowledge of a 

wide range of experts through the use of properly trained CNNs.  

Human geoscientists will not be replaced by machine learning. Clearly, expert 

geoscientists are required to construct the labeled training data. Expert scientists are also required 

to quality control the prediction, perhaps manually examining all predictions that exhibit less 

than a threshold confidence. Emulating the approach of human geoscientists who subliminally 

apply models of deposition and diagenesis while examining core, will be very difficult. Linking 

different lithologies within a parasequence is part of human interpretation. At present, computers 

have a difficult time with such geoscientific image segmentation problems. 
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Figure 22: (a) A photographic image of a carpet classified by the ResNetV2, and (b) examples of 
images from the class 4 training dataset. The CNN is 70% confident that the carpet belongs to 
class 4 - Skeletal grainstone.  
 

Suggestions for further study 

During the course of the work we had access to pictures of a single core and we presented 

the results we obtained using modern CNN models for classification for that single interpreted 

core. We envision the process used in this paper can be used to greatly accelerate the 

interpretation of multiple cores. Users can achieve such multi-core interpretation result with a 

more iterative approach: an experienced expert labels the key lithofacies of the region; the CNN 

is then trained and classifies the remaining cores. The results of such classification are then 

evaluated by the expert -  a form of active learning (Sener and Savarese, 2018; Settles, 2012). If 

necessary, the user can retrain the CNN with a now increased set of labeled images (the 
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originally expert-labeled images and the new CNN-labeled images). In this manner, many miles 

of core can be interpreted with lower effort. Several new challenges can arise when working with 

historical data of lesser quality, different formats, with different interpretations, and from 

different well locations sampling different geology. This paper shows one successful application 

of a growing technology, however different evaluations need to be addressed for every specific 

task. When these extra variables, such as poor-quality data or multiple wells with inconsistent 

interpretations, it is likely that the performance will be negatively affected.  

For this project we relied on standardized core pictures and a simple sliding window to 

extract images. Therefore, it is reasonable to assume that some images will show more than one 

lithofacies. Different ways of data acquisition can further improve the results of CNN models.  

Conclusions 

In this paper, we provide one of the first attempts to conduct automated core lithofacies 

classification using CNNs. The methodology we use does not depend on specialized bench work 

and can be applied to existing images of slabbed cores.  

Efforts in data digitization are important initiatives to preserve scientific knowledge and 

the approach we use here can be improved with information generated from such endeavors. The 

development of customized core-databases can be of extreme value for companies and 

researchers that have work dependent on core description. When operators need to reevaluate 

prospective plays -due to new acreage acquisition or to update the geological knowledge with 

modern geological information- thousands of feet of expensive slabbed core might be overlooked 

due to time and personnel constraints. Further development of the project we present here will 
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ultimately speed up the process of core description with the use of slabbed core specific CNN 

models. 

Using the technology we applied in this paper, an experienced geologist describes a small 

percentage of the core using traditional, careful, and standardized “visual and tactile” lithologic 

description and then uses such information to train a CNN. The trained CNN can then classify 

the remaining core -the geologist can quality control the results and will have more time to work 

on the necessary details. The methodology we used here can be used to standardize interpretation 

in large collections of core data. As interpretation might be subjective, teams can choose to 

maintain “the best” interpreter knowledge abstractly captured by a CNN trained with data 

labeled by the most experienced geologist, or to train a CNN using only new concepts. A task 

that would be infeasible now (having different specialists interpreting miles of core) can be 

achieved with the help of CNN models. 
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Appendix A 

Convolutional neural networks intuitions 

Although deep learning and convolutional neural networks (CNN) seem to have become 

buzzwords, the intuition of how these techniques work might be obscured for some of us. 

Although CNN models are becoming increasingly complexes, the building blocks are very 

familiar to us geoscientists. Convolutions – whereas performed in one, two, three, or n-

dimensions - are the same operations we become familiarized when dealing with a seismic 

wavelet convolving with the Earth’s reflectivity series. Many seismic attributes are also based on 

convolutions. Innumerous apps and software offer the user the option to extract the edges of an 

image – or to blur such image. These are just a few of many convolution operations we 

commonly encounter. Our objective with this appendix is to give a short and informal overview 

of the essentials of CNNs.  

When using CNNs for image classification tasks, the models use the resulted filtered 

image (an image convolved with a convolution kernel) as input to another operation (or the next 

layer). The deep learning nomenclature comes from this pattern – the input of a layer is used as 

input to the next one.  

In this appendix, we have an easy task for a CNN: to classify three classes of very distinct 

images (Figure A- 1). Each class has 10 examples of RGB images 180 x 180 pixels that were 

extracted from pictures of a slabbed core in the Mississippian limestone and chert reservoirs. 

Geologists can easily tell the difference between the classes and could probably correctly name 

the lithofacies even with these low-resolution images. The CNN actually needs the interpreter 
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(the domain expert) to correctly label the images and separate them – in our simple example we 

are simply calling the lithofacies class 1, class 2, and class 3.  

We design a not-so-deep CNN showed in Figure A- 2. This CNN is composed of six 

layers: convolution, max pooling, convolution, max pooling, flatten, and dense layers. The 

pooling layer extracts statistics of submatrices of the input data. In this case, we are using 

maximum (max), therefore these operations look at a submatrix of the input and keeps the 

maximum value of that submatrix to be the input for the next layer. The flatten layer simply 

restructures the data to be a single column vector. The dense layer is the traditional neural 

network composed a linear transformation followed by a nonlinear transformation (softmax in 

this case) densely connected, i.e. each one of the elements is connected to each one of the 

neurons in the upcoming neuron. The output of the dense layer is the probability an image 

belongs to classes 1, 2, or 3.  

During training all the randomly started parameters are optimized to reduce the cost 

function. The cost function is commonly defined as the sum of the loss/error of an image being 

assigned in the wrong class in the training set. This simple example has only a training set, we 

did not set validation and test set as would be appropriate for a real machine learning 

methodology. Therefore, after training we have this set of parameters that can take an image, 

perform different operations on such image and come up with a value of how probable the image 

belongs to one of the training classes. This image transformation is displayed in Figure A- 3. 

Note the CNN very confidently sets the image as belonging to class 3 (with 1.00 confidence). 

This result can be achieved because the classes are very well defined, and the images have low 

variance (all images in the same class are very similar to each other). As can be seen in Figure A- 
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3, this small CNN trained convolutional kernels that are very good to detect edges. If we wanted 

to use transfer learning with this CNN, we would “delete” the last layer (softmax, gold hexagon 

d) and add a new classification layer.  

 

Figure A- 1: Our very simple set of images used in toy CNN example. We highlighted the image 
in class 3 that is used as example in Figure A- 3. As all images are very similar in their set, this is 
an easy task for CNN models and we can achieve high accuracy with a simple network. 
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Figure A- 2: A simple convolutional neural network. The golden hexagons show images 
displayed in figure next. In this toy example, a set of images with size 180 x 180 pixels is input 
to a CNN with six layers. The first layer is a set of six convolution kernels with size 3 x 3 x 3. 
The value of the third dimension is the same as the value of the number of channels of the 
previous layer. Note that after the first convolution the object reduces in height and width, but its 
number of channels increases. For the next step, a max pooling (an operation in which we extract 
the maximum value of a submatrix of the input) further reduces the height and width. This 
“thinner” object is then input to another convolution layer following by another max pooling. 
After the last max pooling, the layer is then flattened, meaning all its values are stored as a single 
vector. The last layer uses as input all the values of the flattened vector to compute the 
probability that the input image belongs to one of three classes. Note that with this architecture 
whatever is used as input will output some probability of belonging to one of the three classes. 
The kernels of the convolutional layers and the softmax of the last layer are the parameters that 
need to be trained for this neural network. In this example, we need to train a total of 16977 
parameters. For Convolution 1, we need to train 3 x 3 x 3 x 6 + 6 (bias) = 168 parameters. For 
Convolution 2, 165 parameters. The dense layer is responsible for 16644 parameters that need 
training. These ratios (convolution and dense parameters) should not be used as comparison with 
more complexes CNNs as the one we used in the main body of this study, truly deep CNN will 
have many more convolution parameters to be optimized.  
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Figure A- 3: Simplified workflow and resulting images extracted from different layers when the 
figure on top left is input to the CNN showed in Figure A- 2 after training. The golden hexagons 
can be used for easier reference between this figure and Figure A- 2. Note how the set of weights 
(the convolutional kernels) learned by this CNN learns how to identify edges in the input image. 
This is a common behavior in CNN when used with natural images (Yosinski et al., 2014). In a 
sense, much as a trained geologist, the CNN learns how to identify different patterns. Note the 
image in frame a is a simple decomposition of the original image, therefore we choose to display 
them as red-green-blue color. The images in frames b and c are results of different “filters” 
applied in different steps of the CNN and are composed of single channel (the convolution 
kernels have different sizes as showed in Figure A- 2) . We choose to display these images as 
grayscale. 
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Appendix B 

Inceptionv3, mobilenetv2, and nasnet metrics 

In this appendix we show the metrics for the retrained CNN models not presented in the 

main text.  

InceptionV3  

Train and validation accuracy result for each step of the gradient descent are presented in 

Figure B- 1. Figure B- 2 shows the confusion matrix generated when the test set is classified by 

the retrained InceptionV3. Precision, recall, F1 score, and support as well as weighted precision, 

recall, and F1 score are presented in Table B- 1.  

 

Figure B- 1: Validation and train accuracy for the InceptionV3 training. Note that after 
approximately 2000 iterations the gains are marginal. As the cost of training the classification 
layer is inexpensive, we can afford to let the model train for many steps. 
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Figure B- 2: Normalized confusion matrix of the retrained InceptionV3 applied to the test set. 
Refer to Table 2in main text for class lithofacies and number of images for each class.  
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Table B- 1: Precision, recall, F1 score and support for the classification performed by the 
retrained InceptionV3. Last row shows the weighted values for each one of the metrics.   
 

Class Precision Recall F1 score Support 

01 0.75 1.00 0.86 3 

02 0.33 0.33 0.33 3 

03 0.50 0.75 0.60 4 

04 0.67 0.67 0.67 3 

05 0.60 0.75 0.67 4 

06 0.50 0.75 0.60 4 

07 0.82 0.82 0.82 11 

09 0.75 0.79 0.77 19 

10 0.80 1.00 0.89 4 

13-14 0.96 0.86 0.91 79 

16-17 0.88 0.88 0.88 17 

weighted 0.85 0.83 0.84  

 
MobileNetV2 

Train and validation accuracy result for each step of the gradient descent are presented in 

Figure B- 3. Figure B- 4 shows the confusion matrix generated when the test set is classified by 

the retrained MobileNetV2. Precision, recall, F1 score, and support as well as weighted 

precision, recall, and F1 score are presented in Table B- 2.  
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Figure B- 3: Validation and train accuracy for the MobilNetV3 training. Note that after 
approximately 1000 iterations the gains are marginal. As the cost of training the classification 
layer is inexpensive, we can afford to let the model train for many steps. 
 

 

Figure B- 4: Normalized confusion matrix of the retrained MobileNetV2 applied to the test set. 
Refer to Table 2 in main text for class lithofacies and number of images for each class.  
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Table B- 2: Precision, recall, F1 score and support for the classification performed by the 
retrained MobileNetV2. Last row shows the weighted values for each one of the metrics.   
 

Class Precision Recall F1 score Support 

01 1.00 0.67 0.80 3 

02 0.40 0.67 0.50 3 

03 0.75 0.75 0.75 4 

04 0.67 0.67 0.67 3 

05 0.75 0.75 0.75 4 

06 0.57 1.00 0.73 4 

07 0.90 0.82 0.86 11 

09 0.75 0.79 0.77 19 

10 0.80 1.00 0.89 4 

13-14 0.96 0.91 0.94 79 

16-17 0.94 0.88 0.91 17 

weighted 0.89 0.87 0.87  

 
NASNet 

Train and validation accuracy result for each step of the gradient descent are presented in 

Figure B- 1. Figure B- 6 shows the confusion matrix generated when the test set is classified by 

the retrained NASNet. Precision, recall, F1 score, and support as well as weighted precision, 

recall, and F1 score are presented in Table B- 3.  
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Figure B- 5: Validation and train accuracy for the NASNet training. Note that this architecture 
takes longer to increase its accuracy.  
 

 

Figure B- 6: Normalized confusion matrix of the retrained NASNet applied to the test set. Refer 
to Table 2 in main text for class lithofacies and number of images for each class.  
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Table B- 3: Precision, recall, F1 score and support for the classification performed by the 
retrained NASNet. Last row shows the weighted values for each one of the metrics.   
 

Class Precision Recall F1 score Support 

01 0.75 1.00 0.86 3 

02 0.67 0.67 0.67 3 

03 0.50 0.75 0.60 4 

04 0.60 1.00 0.75 3 

05 0.43 0.75 0.55 4 

06 0.50 0.75 0.60 4 

07 0.69 0.82 0.75 11 

09 0.77 0.68 0.72 19 

10 0.80 1.00 0.89 4 

13-14 0.93 0.81 0.87 79 

16-17 0.81 0.77 0.79 17 

weighted 0.82 0.80 0.80  
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Preface 

This chapter was reworked and is presented here as and it was when resubmitted for publication 

in a sedimentary geology journal. This study was originated by a questioning from Dr. Lynn 

Soreghan during Murphy Cassel’s Master’s Thesis defense about fossil attributes. High quality 

thin-sections of Fusulinid specimens are hard to obtain and can provide invaluable information 

that can be used for dating through biostratigraphy as well as paleoenvironmental conditions, yet 

access to experts to experts can lead to an overlook of such microfossils. The results presented in 

this chapter show that convolutional neural networks can be used to classify Fusulinid thin-

sections.  
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Abstract 

Accurate taxonomic classification of microfossils in thin-sections is an important 

biostratigraphic procedure. As paleontological expertise is often restricted to specific taxonomic 

groups and experts are not present in all institutions, geoscience researchers often suffer from 

lack of quick access to critical taxonomic knowledge for biostratigraphic analyses. Moreover, 

diminishing emphasis on education and training in systematics poses a major challenge for the 

future of biostratigraphy and on associated endeavors reliant on systematics. Here we present a 

machine learning approach to classify and organize fusulinids—microscopic index fossils for the 

Late Paleozoic. The technique we employ has the potential to use such important taxonomic 

knowledge in models that can be applied to recognize and categorize fossil specimens. Our 

results demonstrate that, given adequate images and training, convolutional neural network 

models can correctly identify fusulinids with high levels of accuracy. Continued efforts in 

digitization of biological and paleontological collections at numerous museums and adoption of 

machine learning by paleontologists can enable the development of highly accurate and easy-to-

use classification tools and, thus, facilitate biostratigraphic analyses by non-experts as well as 

allow for cross-validation of disparate collections around the world.  

Plain Language Summary 

This research focuses on the applications of convolutional neural networks (CNN) as a 

means to facilitate fossil classification. CNN is an artificial neural network architecture 

commonly used for image classification tasks. By using test-case thin-sections of fusulinids we 

found that CNN can categorize images of fossilized specimens with a high level of accuracy.  

We present one of the few applications of CNN using bisected fossil specimens identified 

specifically through 2D thin-sections to perform genus and species identification. 
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Introduction 

Biostratigraphy is a critical approach for dating and correlating sedimentary successions, 

particularly given the common absence of material appropriate for radioisotopic dating of 

sedimentary strata.  Biostratigraphy hinges on detailed analysis of extracted fossils, or thin-

sections of fossils, to identify specimens to the genus and species levels. In addition to their 

utility for dating, fossil assemblages shed light on paleoenvironmental conditions; foraminiferal 

assemblages, for example, can yield information critical for reconstructing histories of 

paleoclimatic and palaeoceanographic conditions (e.g., Gooday, 1994; Culver, 2003; Kucera, 

2007; Roozpeykar and Moghaddam, 2016). Commonly, biostratigraphy relies on species-level 

identification of well-established microfossil groups such as foraminifera, conodonts, and 

palynomorphs. The complex morphology of fossil organisms has required the use of specialists 

for reliable and correct systematics, especially for the generation of detailed and accurate 

biostratigraphic correlation. Unfortunately, education and training in the identification of fossil 

taxa is diminishing, greatly crippling future capacity in this area (Farley and Armentrout, 2000, 

2002).  

Although the largest investment of resources, both time and financial, for biostratigraphic 

studies may be for data acquisition and sample preparation, not every institution has the 

necessary expert to make accurate species-level identification for biostratigraphic analyses. Both 

old and new paleontological collections of significant biostratigraphic value may be overlooked 

or ignored because no one is available to perform the necessary taxonomic identifications. 

Because of this paucity of experts, a procedure is needed that can help facilitate the access of 

existing taxonomic knowledge to a broader audience. If a tool with reliable accuracy can be used 
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to identify different taxonomic groups, a wider range of geoscientists can rely on years of 

accumulated, but difficult-to-access, paleontological knowledge.  

The ongoing revolution in big data and statistical analysis is enabling the possibility of 

accelerating and standardizing fossil characterization and identification with machine learning 

techniques. In deep learning, machine learning models consisting of more than one artificial 

neural network layer, have the ability to learn representations of data with different levels of 

abstraction (LeCun et al. 2015). Recent advances in the architecture of deep learning 

convolutional neural networks (CNN) have greatly improved the fields of image classification 

and computer vision. LeCun et al. (2015) provided details on deep learning and showed some of 

the breakthoughs achieved by such technology. Dumoulin and Visin (2016) showed details on 

convolutions and arithmetic for deep learning procedures. We provide in the Appendix 1 the 

very basics of artificial neural networks and CNNs. Our material is built on images and examples 

to provide the reader with an intuitive understanding of the mechanics of deep learning and 

CNNs without delving into the details of the mathematical computations.  

CNN models increase the levels of accuracy in numerous image classification tasks. For 

example, current CNN models can differentiate not only the image of a leopard from that of a 

mite or a container ship (objects with significantly different characteristics), but can differentiate 

images of leopards from their biological cousins –jaguars, cheetahs and snow leopards (objects 

with very similar characteristics; e.g. Krizhevsky et al., 2012). Szegedy et al.’s (2015) Inception 

V3 CNN architecture reached a 3.5% top-5 error (frequency in which the model cannot predict 

the correct class as one of the top five most probable guesses) and 17.3% top-1 error in the 

classification of the ImageNet Large-Scale Visual Recognition Challenge (Russakovsky et al. 
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2015). The training data for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

is a subset of ImageNet containing the 1000 mixed-object categories and 1.2 million images.  

A currently underutilized application of machine learning is fossil identification - a key 

component of biostratigraphy. Ranaweera et al. (2009) used a computer-aided approach in which 

they applied clustering techniques followed by expert labeling for identification of foraminifers. 

Recently work has been done with the objective to generate a foraminiferal identification 

pipeline that uses CNN and other machine learning methods and compares such results to 

classifications performed by human experts (Zhong et al., 2017). Kong et al. (2016) show a 

novel technique that can be used for fossil pollen identification, by our understanding, the first 

application of CNN image classification techniques applied to fossil specimens. Kong et al. 

(2016) select patches of fossil pollen grains in microscopy images and use a pretrained CNN 

model to extract features for pollen species identification. Pollen researchers have been working 

on automated identification for a long time and are currently experimenting with CNN models as 

well (e.g. Sevillano and Aznarte 2018). Given the current proliferation of efforts to digitize 

biological specimens, both modern and fossil,  (e.g. Blagoderov et al. 2012; Ellwood et al. 2015), 

successful application of CNN methods could greatly facilitate research that relies upon fossil 

identification and biostratigraphy.  

We provide, to our knowledge, a novel attempt to conduct automated fossil classification 

using CNN models, and the first attempt on a fossil group (late Paleozoic fusulinids) identified 

specifically through 2D thin-section analysis. This methodology does not depend on specialized 

bench work and can be applied to existing photomicrographs in legacy collections –indirectly 

capturing the knowledge of the researchers that performed the classification or labeling of these 

collections. Our test case analyses provide proof-of-concept verification as highly accurate 
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results were obtained with significantly smaller domain-specific training data when compared to 

traditional CNN applications. Although researchers are working with CNN models to perform 

image recognition using only a few examples, sometimes a single example per class is used for 

training (e. g. Koch 2015; Lake et al. 2015; Santoro et al. 2016), most of the CNN applications 

use hundreds to hundreds of thousands of examples per class. With the additional imaging of the 

numerous specimens in the large legacy collections of fusulinids in North America, automated 

classification can potentially organize a large volume of taxonomic and biostratigraphic 

information into a reliable and coherent system easily accessible to a variety of users, including 

both specialists and non-specialists. Our methodology uses data coming from traditional 

paleontology field and laboratory work and is dependent on specimen quality, but it does not aim 

to diminish the importance of current paleontology techniques. Our objective here is not only to 

help accelerate and spread fossil classification knowledge, but also to make fossil classification 

accessible to research groups with appropriate data, but little or no access to expert 

paleontologists.  

 

Short Glossary  

Because machine learning, and CNN in particular, may be unfamiliar to many 

paleontologists, we provide this simple glossary to define some of the technical terms used in the 

manuscript. More detailed machine learning definitions can be found in the list of references as 

well as online  under “Machine Learning Glossary  |  Google Developers”. 

Accuracy –The ratio between the number of correct classifications and the total number 

of classifications performed. Values range from 0.0 to 1.0 (equivalently, 0% to 100%). A perfect 
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score of 1.0 means all classifications were correct whereas a score of 0.0 means all 

classifications were incorrect. 

Class – The name, or category assigned to each data sample. In this paper we use “class” 

in the machine learning sense rather than in the biological sense.  

Classification – The process of assigning data to a particular class.  

Convolution – A mathematical operation that uses two functions, one generally 

interpreted as the “input”, and the other as a “filter”.  The filter is commonly referred to as the 

“kernel”. The kernel is applied on the input, producing an output image or signal. In machine 

learning applications, a convolutional layer uses the convolutional kernel and the input data to 

train the convolutional kernel weights. 

Cross entropy loss – a measure of the difference between the model’s predictions are 

from the provided label. Specifically, cross-entropy measures the difference between two 

probability distributions. 

Convolutional Neural Network (CNN )– A neural network architecture in which at least 

one layer is a convolutional layer. Some authors also use ConvNets as a shorter term. 

Deep neural network – An artificial neural network that uses more than one hidden layer. 

The process of using deep neural networks is sometimes referred to as deep learning.  

Epoch – Generally used to depict a single pass through the full training set during the 

training stage. Not to be confused with a geological time epoch.  

Fine Tuning – Execute a secondary training to further adjust the weights of an already 

trained model so the model can better achieve a secondary task. 

Hyperparameter – The available “options” a user can change for different attempts to 

train a model. Hyperparameters contrast with weights/parameters that are automatically updated 
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by the model, following the model’s algorithm. For example, the number of epochs used to train 

a model a hyperparameter.  

Labels – Names applied to an instance, sample, or example (for image classification, an 

image) associating it with a given class. In this paper the labels are the names of the target genus 

analyzed. 

Loss – A measure of the model’s performance, or how far the predictions are from the 

desired output.  

Machine learning – a collection of approaches in which models improve their 

performance through automatic analysis of data. 

Natural Images – A term commonly used in computer vision literature and without a 

strict definition. In a broad sense, the resulting color photograph taken with an ordinary camera. 

Pooling – A filter that reduces the size of the input data, for example, replacing the value 

of four adjacent pixels with its maximum or mean. 

Softmax – A function that provides the probability a sample belongs to each possible 

class.  

Test data, test set – Samples not used in training but held aside to test the performance of 

the trained model. Ideally, the test set is used to evaluate only the final model, unlike the 

validation set that can be used to tune the model during training.  

Training – An iterative process that determines the ideal parameters of a machine 

learning model.  

Training data, training set – The subset of the data used for training.  
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Transfer Learning – A technique that uses information learned in a primary machine 

learning task (e.g. bird classification) to perform a secondary machine learning task (e.g. fossil 

classification).  

Validation data, validation set – The subset of the data used to evaluate the training 

model during model construction. 

Weights/parameters – The coefficients of a machine learning model. In a simple linear 

equation, the slope and intercept are the weights of the model. In CNNs, the weights are the 

convolutional kernel values. The training objective is to find the ideal weights of the machine 

learning model. 

 

Methods 

In the realm of machine learning techniques, the task investigated can generally be 

divided into unsupervised or supervised learning. In unsupervised learning, the user provides 

data to the algorithm and the algorithm tries to identify patterns present in the data. In supervised 

learning, the user provides data and corresponding labels and the algorithm tries to learn a 

function or a relationship to map the data to the labels. In this paper we use supervised learning 

problem - we provide data (thin-section images) and labels for training and expect the CNN to 

provide a relationship between the data and the labels (the expert defined fusulinid genus or 

species). 

In general, the reliability of CNN results is directly related to with the amount of labeled 

data used during training. With more examples provided to the CNN, the weights used by the 

model are improved, generating higher-accuracy and more reliable results. The CNN needs 

examples to recognize the features of each class it tries to differentiate. The work here focuses on 
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assembling fusulinid thin-section data, and using transfer learning (Pan and Yang, 2010) to 

generate a CNN model to classify fusulinids. Figure 23 shows a simple representation of the 

transfer learning process. We provide more details of transfer learning in the next subsection.  

 

Figure 23: Visual representation of the transfer learning process. A CNN is trained on the 
primary task, generally containing many (millions) of samples. We generically represent 
convolutional and pooling layers with gray and golden rectangles whereas green circles represent 
densely connected neurons, commonly used in the classification layers. “Primary task” (a.) in 
this case represents an image from the ImageNet dataset going through a generic CNN model 
(convolutional layers and classification layers) trained on the same dataset. The CNN model then 
outputs the probability of the image belonging to one of the thousands of classes of the 
ImageNet. For “secondary task” we use the weights learned by the convolutional layers on 
primary task using the blue rectangle to represent weights learned on the primary task. We then 
train a new classification model. 

 

Accurate identification of a fusulinid relies on attributes observable from an oriented 

section exposed along the long axis of the (prolate spheroid-shaped) fusulinid, bisecting the 

center. A transverse section is useful, but the longitudinal section is essential (Figure 24). Both 

sections reduce the complex internal morphology of fusulinids to two-dimensional views that can 

be easily imaged. Because fusulinid workers have used these oriented sections for years, an 

extremely large number of specimens oriented in the same manner exist in legacy collections in 
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museums, although access to such images is not always easy. Thin-section collections, however, 

commonly consist not only of individual specimens of well-oriented longitudinal sections, but 

also thin-sections of fossil-bearing rocks in which cuts through specimens are randomly oriented 

and thus yield apparently different sizes and shapes. In this initial work, the training set 

contained only those thin-sections with well-oriented longitudinal cuts. 

 
Figure 24: Thin-sections with different orientations from the analyzed collection: 1. Beedeina 
mutabilis with a longitudinal cut, and 2. B. mutabilis with a transverse cut. 

 

Our fusulinid dataset comprises original fusulinid thin-sections from Waddell (1966) 

housed at the Sam Noble Museum at the University of Oklahoma (OU) imaged through modern 

digital photography. The Waddell collection comprises four different Pennsylvanian fusulinid 

genera: Beedeina (Fusulina), Wedekindellina, Triticites, and Fusulinella. Samples from the 

American Museum of Natural History (AMNH) acquired through the iDigBio portal, an 

important initiative in digital access to biological collections, provided three additional Permian 

genera: Parafusulina, Pseudofusulina, and Schwagerina. Figures from Thompson (1954) and 

Walhman (2019) provide additional samples of Beedeina (Fusulina), Fusulinella, 

Pseudofusulina, Pseudoschwagerina, Schwagerina, Wedekindellina, and Triticites. We also 
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extracted data from Williams (1963), Stevens and Stone (2009), Kobayashi (2012), Kossovaya et 

al. (2016) Kobayashi and Furutani (2019) Barrick and Wahlman (2019), and Wahlman (2019). 

Differences in thin-section image properties (e.g., background color), and data quality increased 

the difficulties encountered for training. Table 5 shows the data sources and Table 6 shows the 

data available for the fusulinid experiment. More details on the data used are provided in the 

supplemental material.  

Table 5: Genus and source for the images used in this experiment. 
Genus Source 

Beedeina                        Alexander (1954), Waddell (1966), Barrick and 

Wahlman (2019), Wahlman (2019)  

Fusulinella                     Waddell (1966), Wahlman (2019)  

Parafusulina                    iDigBio, Stevens and Stone (2009),  

 Kobayashi (2012),  

Pseudofusulina                  iDigBio, Kossovaya et al. (2016), Kobayashi and 

Furutani (2019), Thompson (1954)  

Pseudoschwagerina               Thompson (1954), Williams (1963), Wahlman (2019), 

Schwagerina                     iDigBio, Williams (1963), Stevens and Stone (2009), 

Wahlman (2019) 

Triticites                      iDigBio, Williams (1963), Waddell (1966), Kobayashi 

and Furutani (2019), Wahlman (2019),  

Wedekindellina                  Waddell (1966), Barrick and Wahlman (2019), 

Wahlman (2019) 

 



113 

Table 6: Number of samples per class in each set. Note "class" here is used in the machine 
learning not the biological sense. 

Class Training Validation Test Total 

Beedeina                        61 9 18 88 

Fusulinella                     10 2 3 15 

Parafusulina                    14 3 5 22 

Pseudofusulina                  28 5 9 42 

Pseudoschwagerina               17 3 5 25 

Schwagerina                     42 6 12 60 

Triticites                      49 7 14 70 

Wedekindellina                  14 2 4 20 

 

 

Transfer learning and data augmentation 

Transfer learning can be used to address the shortage of sufficient domain-specific 

training data (Carranza-Rojas et al. 2017). In transfer learning, the learned characteristics of a 

base model trained on a primary dataset and task are reused for a secondary task (Yosinski et al. 

2014). Therefore, layers previously trained with a substantial volume of labeled data can be used 

to address different objectives. Thus, a CNN model trained to identify the images of the ILSVRC 

can be used to classify fusulinid thin-sections with the help of transfer learning (Figure 23). In a 

study analyzing medical image data, Tajbakhsh et al. (2016) found that using transfer learning 

achieved results comparable to, or better than, training a CNN model from scratch (with 

randomly initialized weights). Yosinski et al. (2014) concluded that using transfer learning on 

subsets of ILSVRC classes perform better than training CNN models from scratch. Examples of 

transfer learning include Carranza-Rojas et al. (2017) for herbarium specimens, Esteva et al. 
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(2017) for skin cancer classification, Gomez Villa et al. (2017) for camera-trap images, and Pires 

de Lima et al. (2019a) for lithofacies classification. Pires de Lima et al. (2019b) showed 

examples of transfer learning using different geological images.  

Deep neural networks have a cascading pattern in which the output of one processing 

layer is used as input to the next layer of the model. When trained on datasets of natural images, 

the first layers of CNN models learn features that resemble either color blobs or some variation 

of textures. This behavior is so common in CNN models that the analysis is reevaluated every 

time the initial layers learn any other image characteristics (other than colors or texture) resulting 

in a transition from general to specific features learned by the model (Yosinski et al. 2014). This 

behavior is why CNN with good performance on the ILSVRC (e.g. Krizhevsky et al., 2012; 

Simonyan and Zisserman, 2014; Szegedy et al., 2014, 2015) can be successfully retrained for 

new, field-specific classification problems (e.g. Carranza-Rojas et al., 2017; Esteva et al., 2017; 

Gomez Villa et al., 2017; Norouzzadeh et al., 2018). As the layers become more specific the 

deeper they are in the model (i.e., closer to the output of the CNN than the input), some workers 

find it useful to extract only these more general image features. Kong et al. (2016) studied where 

the features of an ILSVRC pretrained model can be used without modifications to extract 

features from pollen data. Another powerful approach is to fine tune the ILSVRC model weights 

updating them with training data from the secondary task. Here, we apply three training modes: 

feature extraction, fine tune, and randomly initialized weights. Feature extraction “locks” (or 

“freezes”) the pre-trained layers extracted from the primary models. Fine tuning starts as feature 

extraction, with the primary model frozen, but eventually allows the all the layers of the model to 

learn. Randomly initialized weights mode starts the entire model with randomly initialized 

weights and all the weights are updated during training. Randomly initialized weights is not a 
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transfer learning process, just the ordinary training. For the sake of standardization, all modes 

train the model for 100 epochs. In fine tuning, where part of the model is frozen, we first train for 

50 epochs. Then we allow all layers of the model to be free to learn for another 50 epochs. We 

use five different well known CNN models: VGG19 (Simonyan and Zisserman, 2014), 

InceptionV3 (Szegedy et al., 2015), MobileNetV2 (Sandler et al., 2018), ResNet50 (He et al., 

2016), and DenseNet121 (Huang et al., 2016) originally trained on ILSVRC. We use complete 

CNN models, substituting their last fully connected classification layers with our “top model”. 

The top model is composed of an average pooling, followed by one fully connected layer with 

512 neurons, a dropout layer (Srivastava et al., 2014) used during training, and a final fully 

connected layer with a softmax output where the number of neurons is dependent of the number 

of classes for the task (eight genus, eight neurons). The models are trained using Keras (Chollet 

et al. 2015), with TensorFlow as its backend (Abadi et al., 2016). When kernels are initialized, 

we use the Glorot uniform (Glorot and Bengio, 2010) distribution of weights. The models are 

optimized using a stochastic gradient descent with a learning rate of 1.0e-3 and momentum of 

0.9 to minimize the categorical cross entropy loss. Rather than trying to find the best accuracy 

possible, our objective is to show the behavior of different CNN models and training modes 

using thin-section fusulinid data. Therefore, we choose to keep the hyperparameters fixed, as 

described for all experiments. We use a NVIDIA GeForce RTX 2060 for the experiments. Even 

though transfer learning provides a powerful approach to address the problem of an insufficient 

amount of training data, and has been successfully implemented in different fields, the relatively 

small number of digitized thin-sections available for this work created challenges in assembling 

the training set. Recent examples using transfer learning for image classification employed 

training datasets of 105 images (Esteva et al., 2017; Gomez Villa, et al. 2017; Carranza-Rojas et 
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al., 2017). In contrast, we relied upon 102 original images of fusulinid specimens, three orders of 

magnitude smaller than other studies using transfer learning. 

Owing to this limited dataset for training the CNN, we used a common bootstrap process 

to generate pseudo-samples using the available images. The population was augmented by 

simple data rotation. Each longitudinally aligned original image was rotated through a range of 

angles ±5°about the horizontal axis, as well as flipped about the horizontal and vertical axes to 

expand the training data set. Such approaches increase the number of images that could be used 

for training and help in the generalization of the model. Therefore, to facilitate training and 

reduce the chance of overfitting, we augment the training and validation data using Bloice et al's. 

(2019) Augmentor tool, as well as Kera’s generators pipelines.  

 

Results 

We fit five different models using three different training modes, effectively performing 

15 experiments. Figure 25 shows an example of the loss and accuracy evolution during fine tune 

training of InceptionV3. Plots like Figure 25 are useful to investigate whether or not the models 

are overfitting the training data. Because of the many parameters CNN usually have, it is 

possible for the model to simply remember all the training data and have a poor generalization 

performance, i.e. poor performance when the model classifies new data. Ideally, the training and 

validation set curves should be close to each other, although in the great majority of cases the 

models have a better performance on the training set than on the validation set. Figure 25 shows 

that the model starts to overfit in the first training stage, when part of the model is frozen, and 

validation accuracy only starts to increase on the second stage of fine tune training, when all the 

layers in the model are allowed to change their weights. The results in Figure 25 show that the 
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model is in fact overfitting the training set. The accuracy for the training set is 1.0 on the final 

epochs and the loss is very close to zero, whereas validation set metrics are not perfect. With the 

current implementation, more data would help prevent overfitting.  

 

Figure 25: Loss and accuracy evolution of train and validation set during training InceptionV3 in 
the fine tune mode.  

 

Because the validation set is used during training, a better evaluation of the model’s 

generalization is obtained using the test set. The test set is never used during training and 

provides the expected performance of the model on data of the same quality, but that were never 
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seen by the model. Figure 26 shows the test set accuracy of all the models and training modes 

analyzed. Finer details for the best performances for each one of the models are presented in 

Table 7. Although the models are overfitting the training data, their performance on the 

validation and test set is appropriate, producing high levels of accuracy.  

 

Figure 26: Test set accuracy for the five different models using three different training modes.  

 

Figure 27 shows the confusion matrix computed on the test set using InceptionV3 trained 

on the fine tune mode. Confusion matrices are helpful to summarize the differences between the 

classifications performed by the model and the classification performed by the paleontologists.  

Figure 28 shows examples of fine tuned InceptionV3 classification of images in the test set and 

provide more details of the strengths and weaknesses of the mode. The loss and accuracy 

evolution during training, the confusion matrix, and the classification of the test set of all models 

and training modes are available in the supplemental material. 



119 

Table 7: Accuracy for the highest performing training mode for each one of the models.  
Model Mode Accuracy 

VGG19 feature extraction 0.81 

InceptionV3 fine tuning 0.89 

MobileNetV2 fine tuning 0.87 

ResNet50 fine tuning 0.80 

DenseNet121 fine tuning 0.87 

 

 

Figure 27: Confusion matrix for InceptionV3 trained in the fine tune mode. The confusion matrix 
shows the expert provided labels vs the model predicted labels. A perfect agreement between 
model and expert yields a matrix with values only on the main diagonal. Zero values are omitted. 
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Figure 28: Examples of images in the test set classified by InceptionV3 trained on the fine tuning 
mode. The titles of each of the images are the classification provided by the paleontologists in 
their original publication, while the text boxes inside the thin-section images are the 
classification provided by the CNN model. The text box is green when the model assigned the 
same class (biological genus) as the paleontologist, and red otherwise. The value in the text box 
shows the probability assigned by the CNN model for that class.  
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Discussion 

Despite the difference between the classification of ILSVRC’s natural images and the 

thin-section fusulinid classification task, the CNN models trained on ILSVRC learned to extract 

features that are useful for fossil classification. Figure 26 and Table 7 show how different 

training modes can affect the model’s performance and how fine tuning a model previously 

trained on a large and complex dataset such as the ILSVRC outperformed other training modes. 

Loss and accuracy for training and validation figures in the supplemental material show that, in 

general, the feature extraction training mode seems to overfit the data very quickly. Randomly 

initialized weights validation metrics apparently starts plateauing with a high level of overfitting 

as well. Thus, updating the initial ILSVRC-based weights on the CNN models with fine tuning is 

more effective than training a model with randomly initialized weights, except for VGG19 in our 

case. As the ILSVRC is a complex task in which samples in the same class are very different 

from each other, the models need to learn very effective transformations to properly differentiate 

the classes. Because thin-sections have specific characteristics that differ from more common 

natural images, such transformations need to be updated for a proper thin-section classification. 

Curiously, fine tuning VGG19 with our choice of hyperparameters led the model to a local 

minimum and degraded highly accurate results found using feature extraction for such a model. 

It is likely that both a hyperparameter search or more samples could help prevent degrading of 

results for the model, but such analysis is beyond the scope of this study.   

To our knowledge this is the first paper providing details on the use of thin-sections, 

commonly used in fusulinid biostratigraphy, as input for a CNN model that can be used to 

identify microfossils. Our dataset comprises thin-section images from different sources and with 

different quality. In the approach we use here, the final user can simply provide an adequate 
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image and the CNN model would output the probability of assignment of the specimen to a 

fusulinid genus – given that the model can only choose from the classes (biological genus in this 

case) on which it was trained. This study differs from Kong et al. (2016) because we use 2D thin-

section images (not 3D stacked images), and our process uses the complete image during training 

and testing (not selected patches). Biological complications aside, we also achieved similar 

accuracy (87%) in our best performing results, differentiating more classes (eight genera) than 

Kong et al. (2016) (three species). Even lacking an extensive database of images, the 

methodology we applied achieved high levels of accuracy. Although we present only 

classification of genera, we are certain that classification of fusulinids to species using the 

methods we propose is possible. Groves and Reisdorph (2009) used multivariate morphometry to 

show that the Beedeina species separation is statistically significant. With appropriate data and 

more samples per species, our CNN methodology should able to achieve high levels of accuracy 

because these are clearly morphologically distinct species.  

Unlike a human interpreter who relies upon a defined set of morphological measurements 

to perform taxonomic classifications, the CNN operates from no knowledge of specific attribute 

analysis and performs the classification based on image characteristics alone. This observation 

also implies that a CNN model, at least with this current implementation, cannot be used to 

define a new taxonomic division (e.g., a new species), although it may help separate out 

specimens that do fit into existing species. The set of transformations created by the CNN are 

abstract and do not rely on specific phylogenetic systematics measurements; rather, the rules are 

akin to a cascading set of filters. These filters perhaps are generating rules that approximate their 

behavior to the measurements used during taxonomy studies. But because the CNN models have 

many such filters, it is often difficult to discuss the interpretability of CNN models. CNN 
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interpretability by itself is a topic in research (e. g. Olah et al. 2017, 2018). When analyzing a 

new image, the CNN model, as implemented in this study, will always generate a set of 

probabilities that such image belongs to the CNN’s learned classes, never declaring the image is 

none of the pre-defined classes. Nonetheless, the methodology we implemented in this project 

can easily be generalized and will improve as new images are digitized and made available to the 

scientific community. Considering that different taxonomic divisions request different attribute 

analysis – e.g. during the interpretation of conodonts, specimen surface texture is not as 

important as caudal point and rostral point (e.g. Hogancamp and Manship 2016) – we envision 

that CNN techniques will go through more significant modifications as they are applied to other 

taxonomic groups.  

Although our approach is similar to recent studies employing transfer learning in image 

classification (e.g. Carranza-Rojas et al., 2017; Esteva et al., 2017; Gomez Villa et al., 2017), the 

work we presented achieves highly reliable fossil classification using a limited domain-specific 

dataset three orders-of-magnitude smaller than used in these referenced studies. Kong et al. 

(2016) used data acquired with a fluorescence microscope with a form of structured illumination 

to produce high-resolution, 3D image stacks. In contrast, the data we used in this study was 

acquired through photomicrographs (2D) taken with an inexpensive and easily available 

consumer camera and lens, as well as many samples simply obtained by searching published 

literature. We assume preparation of the fusulinid samples in all original studies was done by 

standard methods that have been in use for decades by paleontologists. Because we used such 

standard image data, we predict the methodology used in this paper has potential for wide 

applicability and rapid deployment with minimal start-up costs. As more image data are 

digitized, the technique we use can be applied without the need for laboratory-specific tools and 
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knowledge, which represents a significant improvement over previous approaches requiring 

specialty image acquisition for CNN (e.g., Zhong et al., 2017). In fact, many of our samples were 

simply extracted from online versions of published literature, making our dataset significantly 

more irregular.  

As digitization of legacy data accelerates, the approach presented here will improve with 

more detailed image processing. Image segmentation techniques can be used to clip the thin-

sections containing significant presence of biotic or abiotic components (noise) besides the 

organism being analyzed; this will help both in the CNN training and in sequential sample 

classification. With more data available, object detection, the computer vision task to detect 

occurrences of objects of different classes (Szegedy et al., 2013; Zhao et al., 2018; Agarwal et 

al., 2018), can be applied, increasing the potential of paleo-tailored CNN’s in the identification 

of varying taxa captured in the same sample. The technique we demonstrated in this paper is 

very general and can easily be modified to suit the identification of different fossil groups, such 

as conodonts, ostracods, ammonites, and others, as long as the specimen can be classified with a 

2-dimensional representation (thin-section or comparable digital image).  

However, we acknowledge that CNNs may be harder to apply to other fossil groups. For 

example, in trilobites it is unusual to find a complete specimen; in most cases the membrane 

connecting the thorax, cephalon, and pygidium will deteriorate, causing the exoskeleton to fall 

apart. This leads to paleontologists having to make identifications using fragmented and isolated 

sclerites. Using trilobite sclerite images as a means of training and classification would likely not 

work as well as a dataset with complete specimens, such as those that can be obtained for other 

fossil groups.  
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As the CNN models are trained with expert labeled data, such expertise is captured in the 

model’s weights in the deep neural network. Therefore, a CNN model, trained on different 

collections and having input from different paleontologist experts, provides a means of sharing 

collections and interpretations across great distances. A fusulinid expert working in the US can 

help train a CNN fusulinid classifier and such a model (and an abstract form of the expert 

knowledge) can be used in Asia with no significant cost; in the meantime, researchers working 

with Saccorhytus fossils in China (Han et al., 2017) can train another CNN to classify their data. 

Such ease in the exchange of knowledge can help validate interpretations of data spread around 

the world.  

If we are able to capture and mix different paleontological expertise (training CNNs to 

identify a wide range of taxa), such models can be helpful to identify specimens that might have 

previously been misclassified. The combination of CNN as an easy-to-use but highly accurate 

tool and the digitization of stored paleontological samples can provide a rapid method to bring 

collections residing in museum drawers for decades to light. With easy access to this valuable 

data, the community can then apply modern statistics to better analyze spatial and temporal 

distributions, construct more precise assemblages, or simply track evolutionary trends more 

effectively. We should not discount the “discovery” component; museums commonly have a 

special exhibition of a fossil or bone that was collected decades ago and was only now identified 

as a new genus/species.  

 

Conclusion 

The most evident drawback of the methodology we apply here is its current dependency 

on a large amount of data to generate robust classification models. The dataset we use was 
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created with relatively few original images, even though it uses images from different sources. 

Notwithstanding, our tests show that CNNs can correctly identify fusulinid specimens to genus 

level with a significantly high probability when compared to the other taxonomic classification 

options. With access to more labeled data, training can be improved, enabling the generation of a 

model sufficiently robust to overcome complications such as the presence of more than one 

specimen, geologic noise, among others. The move towards digitization of biological and 

paleontological collections at numerous museums will provide the big data enhancement to 

enable assessment of the CNN methodology for examples of fossils from around the world, and 

ultimately identification to species level.  

Efforts in data digitization are important initiatives to protect scientific knowledge and 

the approach documented here contributes to such endeavors, and aids the use of biostratigraphic 

data in the scientific community. Biological variation, differences in specimen size, different 

imaging techniques, and other considerations will complicate the automation of the classification 

process, but can ultimately lead to deeper understanding, and significant enhancement for all 

work that relies upon fossil identification. 
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Appendix 1. Basics of deep convolutional neural networks 

In this section we provide the reader with an overview of the essentials of image 

convolution, deep learning, and convolutional neural networks (CNNs). We avoid detailed 

mathematical explanation but rather build the fundamental intuition necessary for CNNs 

comprehension and usage through figures and examples. LeCun et al. (2015) provide a 

comprehensive description of deep learning, with information about the building blocks and 

techniques common to several artificial intelligence applications. Dumoulin and Visin (2016) 

showed details on convolutions and arithmetic for deep learning procedures. Krizhevsky et al.'s 

(2012) work is considered a breakthrough that used CNNs to reduce the error rate for object 

recognition tasks by almost 50%, leading to the subsequent adoption of deep learning in multiple 

fields of study. 

Images and convolution 

Images can be digitally stored in several different ways. Raster images (as opposed to 

vector graphics) are built upon the characteristics of single points (pixels - short for Picture 

Element). Each pixel has attributes that comprise the data necessary to represent that part of the 

picture. An image is a grid or matrix of such pixels.  

Although there are different ways for the pixels to be archived, one of  the most common 

methods of storage is to use different levels of red, green, and blue (RGB) to represent a wide 

range of colors, such that an image file then can be split into its three building bands or channels 

(Figure A. 1). Therefore, images are digitally stored as a 3D volume, defined by a height, a 

width, and a “depth” of the three channels. This matrix structure is amenable to diverse image 

processing techniques, such as convolutions, that are essential for the image recognition tasks 

performed by CNNs.  
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Convolutions are oftentimes considered to be the most important operation in signal 

processing. Convolutions are a linear operation in which an input is filtered by a function (or 

kernel) generating an output; such operations can be generalized to n-dimensional spaces. 

Convolutions are related to cross-variance and are used in different fields with slightly different 

definitions, all essentially depicting the same operation. Here, to continue developing the 

essential intuition of how CNNs operate for image recognition tasks, we use 2D convolutions 

applied to each color image, one at a time. In our images, the kernel slides from left-to-right then 

top-to-bottom. 

Figure A. 2 shows how convolutions are performed using 2D matrices and a 3 by 3 

kernel. The kernel slides through an input and generates an output. The computation performed 

at each step is a simple convolution, or sum of the values of the input aligned and weighted by 

the values of the kernel themselves. Special care needs to be taken for image borders. The stride 

of the computation can be every pixel, every second pixel or some other multiple (Dumoulin and 

Visin, 2016). Note the output in Figure A. 2 does not have the same size as the input. Kernel 

sizes other than 3 x 3 can be used with the same essential technique.  

In Figure A. 3 we show the results of image convolutions. The convolution of a three-

channel image with a three-channel kernel results in a three-channel output (CNN layers 

eventually sum the results of such convolutions collapsing them into a single channel output, 

thereby generating a single channel “grayscale” image). In the example we provide, the red 

kernel is set in a way in which the resulting output will highlight horizontal changes. The green 

and blue kernels are set as the identity, so there are no changes in the output when compared 

with the original bands. Several results can be obtained using these convolutions with different 

size kernels and different weights (the values for each one of the elements in the kernels). In 
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CNN applications, the values for each one of the kernels are randomly initialized and, during the 

training process, they are modified iteratively in a way that their outputs will help differentiate 

the analyzed classes. Figure A. 4 shows familiar examples of processed images that can be 

obtained with filters based on convolutions, most of which are available in common image 

processing software.  

 

Figure A. 1: Decomposition of an image into its three RGB channels.  
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Figure A. 2: Visual representation of a 2D convolution. The input (left) is filtered by the kernel 
(center) generating the output (right). This operation can be visualized as a sliding window of 
operation; the kernel slides over the input computing the output as a dot product between the 
values of the input (seen by the kernel window) with the values of the kernel themselves. In our 
example, the borders of the input are all zeroes and the kernel slides with stride one; after the 
first value (22) is computed, the kernel slides one pixel to the right and performs the operation 
again. Different strides and padding strategies can be used to generate different outputs.   
 

 

Figure A. 3: Convolution of images. Top panel (1.) represents the convolution of the input with 
RGB kernels and the resulting image. 2. Values of RGB kernels.  Red channel in input is 
convolved with the red kernel, green channel with green kernel, blue channel with blue kernel. 
The resulting image shows the horizontal edges in the red channel, while the green and red 
components remain unchanged. 
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Figure A. 4: Original image and result of different image processing techniques. All the 
processed images are results of various types of convolutions.  
 

Single neuron and an overview of artificial neural networks  

A single artificial neuron is a linear transformation like those shown in Figure A. 4, 

followed by a nonlinear transformation, traditionally called the “activation function”. An 

artificial neural “network” then is composed of multiple neurons, each one with different 

weights. 
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The very first steps in artificial neural networks modeling are the same as linear fitting 

statistics frequently used in many fields. The refinement and improved power of artificial neural 

networks comes from the addition of the activation functions that modify the linear (e.g. 

convolutional) transformation to a nonlinear transformation. There are several activation 

functions traditionally used when building artificial neural networks. Functions like the sigmoid, 

hyperbolic tangent (tanh), rectified linear units (ReLu), and leaky ReLu are very common 

choices as activation functions (Figure A. 5). In CNNs, ReLu are very frequently used in the 

hidden layers whereas the sigmoid and softmax 𝑆𝑆(𝒙𝒙𝒊𝒊) given by 

𝑆𝑆(𝒙𝒙𝒊𝒊) =
𝑃𝑃𝑥𝑥𝑖𝑖

∑ 𝑃𝑃𝑥𝑥𝑗𝑗  𝑘𝑘
𝑗𝑗=1

 

are used in the classification step (the last layer).  

Figure A. 6 shows a visual representation of the computations performed in neural 

networks. A single neuron receives data from different inputs and processes such data generating 

an output. Each neuron has its own set of weights (these are the values that are modified during 

the training step) and an activation function that has its behavior independent of the input data. 

The combination of neurons receiving the same input is commonly called a layer. When more 

than one layer exists in a neural network, such layers are often called hidden layers. The layers of 

Figure A. 6b are “fully connected” having connections to all elements in the previous layers.  



134 

 

Figure A. 5: Examples of commonly used activation functions. Note the sum of softmax is 1, so 
its appearance varies according to the horizontal axis (range and sample rate).  

 

 

Figure A. 6:  Visual representation of neuron (1.) and an artificial neural network (2.). The 
number of neurons and layers in 2. are arbitrary (as well as the number of inputs). Consider, for 
example, that each one of the circles in the input represents RGB colors for an image plus a bias 
term. Next, assume that three RGB images and a bias are sufficient to differentiate objects and 
assign them to classes 0 and 1. The neuron then iteratively modifies the values of the weights 
that when applied to the input and fed to the activation function successfully assigns the input to 
class 0 or to class 1.   
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(Deep) Convolutional neural networks 

Given these simple principles of digital images, convolution, and neural networks, we 

now continue our intuitive analysis of how CNNs work. The prefix “deep” is sometimes used 

when referring to CNNs. Until recently, many neural networks have been built on handcrafted 

features, whereas now most of the feature transformation is performed by CNN models. In this 

section, we use the terms described before to show how an image changes when going through 

the layers of CNNs.  

Figure A. 7 shows the flowchart of the operations described in this section. These layers 

(convolutions, pooling) are very common in CNNs. In the example we give, the convolution 

layer weights (the values for each one of the elements in the kernel) were set according to our 

choice. In CNN model training, these weights are initialized with random values and are 

iteratively updated. Interestingly, as observed by Yosinski et al. (2014), the first layers of a CNN 

will have weights that act as edge or color detection kernels – much like the ones we chose in 

this section. As the kernel values change according to the necessity of the CNN to reduce the 

error (difference between the predicted class and the true class), different transformations are 

applied to  the images (such as in  Figure A. 4).  

Figure A. 8 shows a visual representation of the 3 x 3 convolution layer operations as 

well as the resulting image for the same fusulinid image we have been using in this section. The 

resulting image is then input to a pooling layer. Pooling layers reduce the height and width of 

images with simple statistics and are commonly used in CNNs. Pooling layers can have different 

sizes (height, width) and different strides. Figure A. 9 shows an example of max pooling, which 

captures the maximum value of a subset of the input for a small submatrix. In Figure A. 10 we 
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show the resulting max pooling of the output of the 3 x 3 convolution (output of Figure A. 8) 

continuing the flowchart depicted in Figure A. 7. 

We provided the elements necessary for an overall awareness of how CNNs operate and 

the results of a very small (and “incomplete”) CNN.  We believe this material can be used as a 

quick reference for some of the common terms used in deep learning techniques. Understanding 

how an image is transformed through convolutions and pooling can help demystify the results 

obtained by CNN applications. With the information given in this section, we believe the reader 

can quickly grasp the differences in architecture of robust CNN models, as well as imagine how 

the data are transformed as they go through the models.  

 

Figure A. 7: A simple flowchart representation of the operations performed with the input image. 
Note that the 3 x 3 convolution block also accounts for the activation function. In the max 
pooling process, the maximum value of a subset of the input is stored and the image’s size 
(height and width) is reduced. Here we represent the resulting image as a composition of RGB 
channels which, during CNN applications such result will eventually be stacked into a single 
channel.  Figure A. 9 shows how a max pooling layer works.  
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Figure A. 8: Visual representation of the image transformation occurring when an image goes 
through one convolution neuron. In this example, the image is convolved with the same kernel 
presented in Figure A. 3. The result of the convolution then goes through the activation function 
in which every pixel has its values scaled. Note how the resulting image after the activation 
function is similar to the one  in Figure A. 3; this is a simple (but nonlinear) rescaling process. In 
general, the resulting process is a single channel (grayscale) image as the three bands are 
stacked, we choose to represent the fusulinid in RGB for better visualization.  

 

Figure A. 9: A representation of the “max pooling” operation, where the output is simply the 
maximum value of a subset of the input. Colors are used to facilitate visualization. Different 
strides and padding techniques can be used with pooling layers, as well as different statistics 
(minimum, average, median, or other statistical measures). In this example, the stride is two in 
each direction such that the windows do not overlap.  
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Figure A. 10: Max pooling of the image result shown in Figure A. 8. Note that the image is 
essentially the same, but that the colors are slightly different and that the image size (height and 
width) has been reduced.   
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Preface 

Here I show more details of the use of transfer learning making use of remote sensing data. I use 

different network structures, optimizers, and datasets to evaluate the performance of transfer 

learning versus training randomly initialized weights. This chapter will be submitted to a remote 

sensing journal.  
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Abstract 

Remote sensing image scene classification can provide significant value, ranging from forest fire 

monitoring to land use and land cover classification. Beginning with the first aerial photographs 

of the early 20th century to the satellite imagery of today, the amount of remote sensing data has 

increased geometrically with a higher resolution. The need to analyze these modern digital data 

motivated research to accelerate remote sensing image classification. Fortunately, great advances 

have been made by the computer vision community to classify natural images or photographs 

taken with an ordinary camera. Natural image datasets can range up to millions of samples, and 

are therefore amenable to deep learning techniques. Many fields of science, remote sensing 

included, were able to exploit the success of natural image classification by convolutional neural 

network models using a technique commonly called transfer learning. We provide a systematic 

review of transfer learning application for scene classification using different datasets and 

different deep learning models. We evaluate how the specialization of convolutional neural 

network models affect the transfer learning process by splitting original models in different 

points. As expected, we find the choice of hyperparameters used to train the model have a 

significant influence on the final performance of the models. Curiously, we find transfer learning 

from models trained on larger more generic natural images datasets outperformed transfer 

learning from models trained directly on smaller on remote sensing dataset. Nonetheless, results 

show that transfer learning provides a powerful tool for remote sensing scene classification. 

 

Keywords 

Remote sensing, convolutional neural networks, transfer learning 
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Glossary 

This short glossary provides common denominations in machine learning applications and used 

throughout the manuscript. Please refer to Google’s machine learning glossary for a more 

detailed list of terms (Google, 2019). 

• Accuracy: the ratio between the number of correct classifications and the total number of 

classifications performed. Values range from 0.0 to 1.0 (equivalently, 0% to 100%). A 

perfect score of 1.0 means all classifications were correct whereas a score of 0.0 means 

all classifications were incorrect.  

• Convolution: a mathematical operation that combines input data and a convolutional 

kernel producing an output. In machine learning applications, a convolutional layer uses 

the convolutional kernel and the input data to train the convolutional kernel weights. 

• Convolutional Neural Networks (CNN): a neuron network architecture in which at least 

one layer is a convolutional layer.  

• Deep neural networks (DNN): an artificial neural network model containing multiple 

hidden layers. 

• Fine Tuning: a secondary training step to further adjust the weights of a previously 

trained model so the model can better achieve a secondary task.  

• Label: the names applied to an instance, sample, or example (for image classification, an 

image) associating it with a given class. 

• Layer: a group of neurons in a machine learning model that processes a set of input 

features. 

• Machine Learning (ML): a model or algorithm that is trained and learns from input data 

rather than from externally specified parameters. 
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• Softmax: A function that calculates probabilities for each possible class over all different 

classes. The sum of all probabilities adds to 1.0. The softmax equation 𝑆𝑆(𝒙𝒙𝒊𝒊) computed 

over 𝑘𝑘 classes is given by: 𝑆𝑆(𝒙𝒙𝒊𝒊) = 𝑒𝑒𝑥𝑥𝑖𝑖

� 𝑒𝑒𝑥𝑥𝑗𝑗  
𝑘𝑘

𝑗𝑗=1

 

• Training: the iterative process of finding the most appropriate weights of a machine 

learning model.  

• Transfer Learning: a technique that uses information learned in a primary machine 

learning task to perform a secondary machine learning task. 

• Weights: the coefficients of a machine learning model. In a simple linear equation, the 

slope and intercept are the weights of the model. In CNNs, the weights are the 

convolutional kernel values. The training objective is to find the ideal weights of the 

machine learning model.  
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1. Introduction 

Over the past decades, remote sensing has experienced dramatic changes in the data 

quality, spatial resolution, shorter revisit times, and area covered available. Emery and Camps 

(2017) reported that our ability to observe the Earth from low Earth orbit and geostationary 

satellites have been continuously improving. Such an increase requires a significant change in 

the way we use and manage remote sensing images. Zhou et al. (2018a) noted that the increased 

spatial resolution makes it possible to develop novel approaches, providing new opportunities for 

advancing remote sensing image analysis and understanding, thus allowing us to study the 

ground surface in greater detail. However, the increase in data available has resulted in important 

challenges of how to properly manage the imagery collection.  

One of the fundamental remote sensing tasks is scene classification. Cheng et al. (2017) 

defined scene classification as the categorization of remote sensing images into a discrete set of 

meaningful land cover and land use classes. Scene classification is a fundamental remote sensing 

task and important for many practical remote sensing applications, such as urban planning (e.g. 

Xiao and Zhan, 2009), land management (e.g. Skidmore et al., 1997), and to monitoring and or 

characterizing wild fires monitor or characterize wild fires (e.g. Lentile et al., 2006; Daldegan et 

al., 2019), among other applications. Such ample use of remote sensing image classification led 

many researchers to investigate techniques to quickly classify remote sensing data and accelerate 

image retrieval. 

Conventional scene classification techniques rely on low-level visual feature to represent 

the images of interest. Such low-level features can be global or local. Global features are 

extracted from the entire remote sensing image, such as color (spectral) features (e.g. Sebai et al., 

2015; Bosilj et al., 2016), texture features (e.g. Shao et al., 2014), and shape features (e.g. Scott 
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et al., 2011). Local features, like Scale Invariant Feature Transform (SIFT) (Lowe, 2004) are 

extracted from image patches that are centered about a point of interest. Zhou et al. (2018a) 

observed that the remote sensing community makes use of the properties of local features and 

proposed several methods for remote sensing image analysis. However, these global and local 

features are hand-crafted. Furthermore, the development of such features is time consuming and 

oftentimes depend on ad-hoc or heuristic design decisions. For these reasons, the extraction of 

low-level global and local features are suboptimal for some scene classification tasks. Hu et al. 

(2015) remarked that the performance of remote sensing scene classification has only slightly 

improved in recent years. The main reason remote sensing scene classification only marginally 

improved due to the fact that the approaches relying on low-level features are incapable of 

generating sufficiently powerful feature representations for remote sensing scenes. Hu et al. 

(2015) concluded that the more representative and higher-level features, which are abstractions 

of the lower-level features, are desirable and play a dominant role in scene classification task. 

The extraction of high-level features promises to be one of the main advantages of deep learning 

methods. As observed by Yang et al. (2018), one of the reasons for the attractiveness of deep 

learning models is due the models’ capacity to discover effective feature transformations for the 

desired task. 

Recently, the deep learning methods (LeCun et al., 2015) are being applied in many 

fields of science and industry. Current progress in deep learning models, specifically deep 

convolutional neural networks (CNN) architectures, have improved the state-of-the-art in visual 

object recognition and detection, speech recognition and many other fields of study (LeCun et 

al., 2015). The model described by Krizhevsky et al. (2012), frequently referenced to as AlexNet, 

is considered a breakthrough and influenced the rapid adoption of DL in the computer vision 
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field (LeCun et al., 2015). CNNs currently are the dominant method in the vast majority image 

classification, segmentation, and detection tasks due to their remarkable performance in many 

benchmarks, e.g. the MNIST handwritten database (LeCun, 1998) and the ImageNet dataset 

(Russakovsky et al., 2015), a large dataset with millions of natural images. In 2012 AlexNet used 

a five-layer deep CNN model to win the ImageNet Large Scale Visual Recognition Competition. 

Now, many CNN models use twenty to hundreds of layers. Huang et al. (2016) proposed models 

with thousands of layers. Due to the vast number of operations performed in deep CNN models, 

it is often difficult to discuss the interpretability, or the degree to which a decision taken by a 

model can be interpreted. Thus, CNN interpretability itself remains a research topic (e. g. 

Simonyan et al., 2013; Olah et al., 2017, 2018; Yin et al., 2017).  

Despite CNNs’ powerful feature extraction capabilities, Hu et al. (2015) and others found 

that in practice it is difficult to train CNNs with small datasets. However, Yosinski et al. (2014) 

and Yin et al. (2017) observed that the parameters learned by the layers in many CNN models 

trained on images exhibit a very common behavior. The layers closer to the input data tend to 

learn general features, resulting in convolutional operators akin to edge detection filters, 

smoothing, or color filters. Then there is a transition to features more specific to the dataset on 

which the model is trained. These general-specific CNN layer feature transition lead to the 

development of transfer learning (Caruana, 1995; Bengio, 2012; Yosinski et al., 2014). In 

transfer learning, the filters learned by a CNN model on a primary task are applied to an 

unrelated secondary task. The primary CNN model can be used a as feature extractor, or as a 

starting point for a secondary CNN model.  

Even though large datasets help the performance of CNN models, the use of transfer 

learning facilitated the application of CNN techniques to other scientific fields that have less 
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available data. For example, Carranza-Rojas et al. (2017) used transfer learning for herbarium 

specimens classification, Esteva et al. (2017) for dermatologist-level classification of skin cancer 

classification, Pires de Lima et al. (2019d) for oil field drill core images, Duarte-Coronado et al. 

(2019) for the estimation of porosity in thin section images, Pires de Lima et al. (2019c) and 

Pires de Lima et al. (2019a) for the classification of a variety of geoscience images. Transfer 

learning is also widely used in the remote sensing field. For example, Hu et al. (2015) performed 

an analysis of the use of transfer learning from pretrained CNN models to perform remote 

sensing scene classification. Chen et al. (2018) used transfer learning for airplane detection, 

Rostami et al. (2019) for classifying Synthetic Aperture Radar images, Weinstein et al. (2019) 

for the localization of tree-crowns using Light Detection and Ranging RGB images.   

Despite the success of transfer learning in applications in which the secondary task is 

significantly different from the primary task(e.g. Esteva et al., 2017; Huot et al., 2018; Pires de 

Lima et al., 2019b), the remark that the effectiveness of transfer learning is expected to decline 

as the primary and secondary tasks become less similar (Yosinski et al., 2014) is a question 

commonly raised and still very present in many research fields. Although Yosinski et al. (2014) 

concluded that using transfer learning from distant tasks perform better than training CNN 

models from scratch (with randomly initialized weights), it remains unclear how the amount of 

data or the model used can influence the models’ performance.  

Here we investigate the performance of transfer learning from CNNs pre-trained on 

natural images for remote sensing scene classification versus CNNs trained from scratch only on 

the remote sensing scene classification dataset themselves. We evaluate different depths of two 

popular CNN models –VGG 19 (Simonyan and Zisserman, 2014), and Inception V3 (Szegedy et 

al., 2015) – using three different sized remote sensing datasets. Section 2 describes the datasets, 
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section 3 provides details on the methods we apply for analysis. Section 4 shows the results 

followed by a discussion in section 5. We summarize our findings in section 6. 

 

2. Data 

This section provides some details about the datasets we use in our experiments as well 

as the number of samples for each one of the datasets. We use a 70%-10%-20% split between 

training, validation, and test sets.  

2.1 UCMerced: UC Merced dataset 

Introduced by Yang and Newsam (2010), the UC Merced dataset (UCMD) is a land use 

image dataset containing 21 classes, each class with 100 samples. The images are 256 × 256 

pixels, with a spatial resolution of 0.3 m per pixel. The images were manually cropped from the 

publicly available images USGS National Map Urban Area Imagery collection for various urban 

areas around the United States. Zhou et al. (2018) observed that the UCMD dataset has many 

similar or overlapping classes, e.g. sparse residential, medium residential, and dense residential. 

This similarity combined with the small number of samples per class makes the UCMD a 

challenging dataset for machine learning classification. Table 8 shows the data split between 

training, validation, and test sets, as well as the total number of samples for all classes in the 

UCMD dataset. The dataset is available for download at 

http://weegee.vision.ucmerced.edu/datasets/landuse.html 

 

  

http://weegee.vision.ucmerced.edu/datasets/landuse.html
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Table 8: number of samples for training, validation, and test used for the UCMD dataset. 
Class Training Validation Test Total 

Agricultural 70 10 20 100 
Airplane 70 10 20 100 

Baseball diamond 70 10 20 100 
Beach 70 10 20 100 

Buildings 70 10 20 100 
Chaparral 70 10 20 100 

Dense residential 70 10 20 100 
Forest 70 10 20 100 

Freeway 70 10 20 100 
Golf course 70 10 20 100 

Harbor 70 10 20 100 
Intersection 70 10 20 100 

Medium residential 70 10 20 100 
Mobile home park 70 10 20 100 

Overpass 70 10 20 100 
Parking lot 70 10 20 100 

River 70 10 20 100 
Runway 70 10 20 100 

Sparse residential 70 10 20 100 
Storage tanks 70 10 20 100 

Tennis court 70 10 20 100 
 

2.2 AID: Aerial Image Dataset  

Xia et al. (2017) presented the Aerial Image Dataset (AID), a remote sensing dataset with 

10,000 images. The dataset comprises 30 classes, the number of samples of each range from 220 

to 420. The images are 600 x 600 pixels, with a spatial resolution varying from 0.5 to 8 m per 

pixel.  The images in AID were extracted from Google Earth imagery, coming from different 

remote imaging sensors. Unlike the UCMD, the images from AID are chosen from different 

countries and regions around the world, mainly in China, the United States, England, France, 

Italy, Japan, and Germany. Table 9 shows the data split between training, validation, and test 

sets, as well as the total number of samples for all classes in the AID dataset. The dataset is 

available for download at http://captain.whu.edu.cn/WUDA-RSImg/aid.html. 

http://captain.whu.edu.cn/WUDA-RSImg/aid.html
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Table 9: number of samples for training, validation, and test used for the AID dataset. 
Class Training Validation Test Total 

Airport 252 36 72 360 
Bare land 217 31 62 310 

Baseball field 154 22 44 220 
Beach 280 40 80 400 
Bridge 252 36 72 360 
Center 182 26 52 260 
Church 168 24 48 240 

Commercial 245 35 70 350 
Dense residential 287 41 82 410 

Desert 210 30 60 300 
Farmland 259 37 74 370 

Forest 175 25 50 250 
Industrial 273 39 78 390 
Meadow 196 28 56 280 

Medium residential 203 29 58 290 
Mountain 238 34 68 340 

Park 245 35 70 350 
Parking 273 39 78 390 

Playground 259 37 74 370 
Pond 294 42 84 420 
Port 266 38 76 380 

Railway station 182 26 52 260 
Resort 203 29 58 290 

River 287 41 82 410 
School 210 30 60 300 

Sparse residential 210 30 60 300 
Square 231 33 66 330 

Stadium 203 29 58 290 
Storage tanks 252 36 72 360 

Viaduct 294 42 84 420 
 

2.3 PatternNet 

Described by Zhou et al. (2018), PatternNet is a large-scale  high-resolution remote 

sensing dataset. PatternNet contains 38 classes, each class with 800 samples. The images are 256 

x 256 pixels, with a spatial resolution varying from 0.062 to 4.7 m per pixel. The PatternNet 

images were collected from Google Earth imagery or via the Google Map API for US cities. 

Table 10 shows the data split between training, validation, and test sets, as well as the total 
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number of samples for all classes in the PatternNet dataset. The dataset is available for download 

at https://sites.google.com/view/zhouwx/dataset.  

Table 10: number of samples for training, validation, and test used for the PatternNet dataset. 
Class Training Validation Test Total 

Airplane 560 80 160 800 
Baseball field 560 80 160 800 

Basketball court 560 80 160 800 
Beach 560 80 160 800 
Bridge 560 80 160 800 

Cemetery 560 80 160 800 
Chaparral 560 80 160 800 

Christmas tree farm 560 80 160 800 
Closed road 560 80 160 800 

Coastal mansion 560 80 160 800 
Crosswalk 560 80 160 800 

Dense residential 560 80 160 800 
Ferry terminal 560 80 160 800 
Football field 560 80 160 800 

Forest 560 80 160 800 
Freeway 560 80 160 800 

Golf course 560 80 160 800 
Harbor 560 80 160 800 

Intersection 560 80 160 800 
Mobile home park 560 80 160 800 

Nursing home 560 80 160 800 
Oil gas field 560 80 160 800 

Oil well 560 80 160 800 
Overpass 560 80 160 800 

Parking lot 560 80 160 800 
Parking space 560 80 160 800 

Railway 560 80 160 800 
River 560 80 160 800 

Runway 560 80 160 800 
Runway marking 560 80 160 800 

Shipping yard 560 80 160 800 
Solar panel 560 80 160 800 

Sparse residential 560 80 160 800 
Storage tank 560 80 160 800 

Swimming pool 560 80 160 800 
Tennis court 560 80 160 800 

Transformer station 560 80 160 800 
Wastewater treatment plant 560 80 160 800 

https://sites.google.com/view/zhouwx/dataset
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3. Methods 

To better understand the effects of different approaches and techniques used for transfer 

learning with remote sensing datasets, we perform two major experiments using the models 

presented in section 3.1. The first experiment in section 3.2 compares different optimization 

methods. The second experiment in section 3.3 aims to investigate the sensitivity of transfer 

learning to the level of specialization of the original trained CNN model. The experiment in 

section 3.2 also compares the results of transfer learning and training a model with randomly 

initialized weights.   

The choice of hyperparameters can have a strong influence in CNN performance. 

Nonetheless, our main objective here is to investigate transfer learning results rather than 

maximize performance. Therefore, unless otherwise noted, we maintain the same 

hyperparameters specified in Table 11 for all training in all experiments. The models are trained 

using Keras (Chollet and others, 2015), with TensorFlow as its backend (Abadi et al., 2016). 

When kernels are initialized, we use the Glorot uniform (Glorot and Bengio, 2010) distribution 

of weights.  
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Table 11: Training hyperparameters 
Optimizer Stochastic gradient descent 

Kernel initializer Glorot uniform 

Batch size 32 

Epochs 100 

Loss function Cross entropy 

 

3.1 Model split 

To evaluate the transfer learning process from natural images to remote sensing datasets, 

we use VGG19 and Inception V3 models and train a small classification network on top of such 

models. We refer to the original CNN model structure, part of VGG19 or part of Inception V3, as 

the “base model”, and the small classification network as the “top model” (Figure 1). The top 

model is composed of an average pooling, followed by one fully connected layer with 512 

neurons, a dropout layer (Srivastava et al., 2014) used during training, and a final fully connected 

layer with a softmax output where the number of neurons is dependent on the number of classes 

for the task (i.e., 21 for UCMerced, 30 for AID, 38 for PatternNet). The dropout is a simple 

technique useful to avoid overfitting in which random connections are disabled during training. 

Note the top model will be specific to the secondary task and for each one of the datasets, 

whereas the base model, when containing the weights learned during training for the primary 

task, will have its layers presenting the transition from general to specific features. The models 

we used were primarily trained on the ImageNet dataset and are available online (e.g. through 

Keras or TensorFlow websites). We evaluate how dependent the transfer learning process is on 

the transition from general to specific features by extracting features in three different positions 

for each one of the retrained models and we denominate them “shallow”, “intermediate”, and 
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“deep” (Figure 2). The shallow experiment uses the initial blocks of the base models to extract 

features and adds the top model. The intermediate experiment extracts the block somewhere in 

the middle of the base model. Finally, the deep experiment uses all the blocks of the original 

base model, except the original final classification layers.  

 

Figure 29: Visualization of the models used. (a) shows a sample image from UCMerced, the base 
model, and the top model. (b) provides more details for the top model. The base model is 
dependent on the CNN architecture used for transfer learning and it is detailed in Figure 10. Top 
model is the same for all experiments. Note the pound sign “#” represents the number of classes, 
which depends on the dataset used.  
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Figure 30: Visual representation of the models used. In both panels, data flows from left to right. 
Both panes use the same color code for layer representation. (a) shows the VGG19 shallow, 
intermediate, and deep models – based on the naming convention we are using. (b) shows the 
Inception V3 shallow, intermediate, and deep models. For easier reference, we wrote the layer 
names (as implemented in Keras) for each one of the layers we used to split the original CNN 
models. Note for each one of the depth levels (shallow, intermediate, deep), we simple use the 
model up to the detour and connect it with our top model (e.g., when training VGG19 shallow, 
the data goes through two convolutional layers, one max pooling layers, and exits into our top 
model). Please refer to Simonyan and Zisserman (2014) and Szegedy et al. (2015) for details on 
VGG19 and Inception V3 respectively.  
 

3.2 Stochastic gradient descent vs adaptive optimization methods  

In the search for the global minima, optimization algorithms frequently use the gradient 

descent strategy. To compute the gradient of the loss function, we sum the error of each sample. 

Using our PatternNet data split as example, we first loop through all training set containing 

21,280 samples before updating the gradient. Therefore, to move a single step towards the 

minima, we compute the error 21,280 times. A common approach to avoid computing the error 

for all training samples before moving a step is to use stochastic gradient descent (SGD).  
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The SGD uses a straightforward approach; instead of using the sum of all training errors 

(the loss), SGD uses the error gradient of a single sample at each iteration.  Bottou (2010) 

observes that SGD show good performance for large-scale problems. SGD is the building block 

used by many optimization algorithms that apply some variation to achieve better convergence 

rates (e.g. Duchi et al., 2011; Tieleman and Hinton, 2012). Kingma and Ba (2014) note that SGD 

has a great practical importance in many fields of science and engineering and propose Adam, a 

method for efficient stochastic optimization. Ruder (2016) recommends using Adam as the best 

overall optimization choice.  

However, Wilson et al. (2017) reported that the solutions found by adaptive methods (such 

as Adam) have a worse generalization than SGD, even though solutions found by adaptive 

optimization methods have a better performance on the training set. Our optimization experiment 

is straightforward: we compare the training, validation losses and the test accuracy for the 

UCMerced dataset using different optimization methods: SGD, Adam, and Adamax – a variant 

of Adam that makes use of the infinity norm, also described in Kingma and Ba (2014). We 

perform such analysis using the shallow-intermediate-deep VGG19 and shallow-intermediate-

deep Inception V3 to fit the UCMerced dataset starting the models with randomly initialized 

weights.  

 

3.3 General to specific layer transition of CNN models 

As mentioned before, many CNN models trained on natural images show a very common 

characteristic. Layers closer to the input data tend to learn general features, then there is a 

transition to more specific dataset features. For example, a CNN trained to classify the 21 

UCMerced dataset has in its final layer 21 softmax outputs, with each output specifically 
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identifying one of the 21 classes. Therefore, the final layer in this example is very specific for the 

UCMerced task; the final layer receives a set of features coming from the previous layers and 

outputs a set of probabilities accounting for the 21 UCMerced classes. These are intuitive notions 

of general vs specific features that are sufficient for the experiments to be performed. Yosinski et 

al. (2014) provide a rigorous definition of general and specific features.  

To observe how the transition from general to specific features can affect the transfer 

learning process of remote sensing datasets, we use the shallow, intermediate, and deep VGG19 

and Inception V3 described in section3.1. Three training modes are performed: feature 

extraction, fine tuning, and randomly initialized weights. Feature extraction “locks” (or 

“freezes”) the pre-trained layers extracted from the base models. Fine tuning starts as feature 

extraction, with the base model frozen, but eventually allows all the layers of the model to learn. 

The randomly initialized weights mode starts the entire model with randomly initialized weights 

after which all the weights are updated during training. Randomly initialized weights is the 

ordinary CNN training, not a transfer learning process. For the sake of standardization, all modes 

train the model for 100 epochs. In fine tuning, the first step (part of the model is frozen) is 

trained for 50 epochs, and the second step (all layers of the model are free to learn) for another 

50 epochs.  

 

4. Results 

 

4.1 Stochastic gradient descent vs adaptive optimization methods  

We train the shallow, intermediate, and deep VGG19 and Inception V3 models using the 

UCMerced dataset with different optimizers. Table 5 shows the naming convention we use here. 
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Figure 3 shows the accuracy per epoch for each one of the trained models, with each one of the 

optimizers. Figure 4 shows the accuracy on the test set obtained by each one of the models, with 

each one of the optimizers. Figure 5 shows the difference in accuracy between the training set 

and the test set. Table 6 shows a summary of optimizer performance on the test set with the 

computation of a simple average and median of the accuracy across all tests performed. This test 

was run using a batch size of 16 on a NVIDIA Quadro M2000.  

 

Table 12: Naming convention and optimizer details 
Name  Optimizer details 

SGD (1e-2) SGD optimizer with learning rate of 0.01 
SGD (1e-2) momentum 
0.9 

SGD optimizer with learning rate of 0.01 and momentum 
0.9 

SGD (1e-3) SGD optimizer with learning rate of 0.001 
SGD (1e-3) momentum 
0.9 

SGD optimizer with learning rate of 0.001 and momentum 
0.9 

Adam (1e-2) Adam optimizer with learning rate of 0.01 and default 
parameters as described in Kingma and Ba (2014) 

Adamax (2e-3) Adamax optimizer with learning rate of 0.01 and default 
parameters as described in Kingma and Ba (2014) 

 

Table 13: Optimizer performance summary.  
Optimizer Average 

accuracy 
Median 
Accuracy 

SGD (1e-2) 0.82 0.80 
SGD (1e-2) momentum 
0.9 

0.53 0.66 

SGD (1e-3) 0.74 0.75 
SGD (1e-3) momentum 
0.9 

0.81 0.82 

Adam (1e-2) 0.59 0.81 
Adamax (2e-3) 0.59 0.85 
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Figure 31: Accuracy per epoch for training and validation sets for different models and 
optimizers trained on the UCMerced dataset. The left column shows results for VGG19 models. 
The right column shows results for Inception V3 models. The first row shows shallow models, 
center shows intermediate, bottom shows deep models. Different colors represent different 
optimizers. Different and line style represent different datasets (solid for training, dashed for 
validation). 
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Figure 32: Test set accuracy obtained by the models using different optimizers training on the 
same UCMerced dataset. The left panel shows VGG 19 results, right panel shows Inception V3 
results.  
 

 

Figure 33: Difference between training set and test set accuracy obtained by the models using 
different optimizers training on the same UCMerced dataset. The left panel shows VGG 19 
results, right panel shows Inception V3 results. Note, as shown in Figure 4, that SGD (1e-2), 
Adam (1e-2), and Adamax (2e-3) results of theVGG19 intermediate and deep models remained 
stuck on local minima.  
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4.2 General to specific layer transition of CNN models 

This section shows the results of transfer learning, both feature extraction and fine tuning 

modes, as well as training the models with randomly initialized weights. Table 7 shows a 

summary of the best performance Inception V3 and VGG19 trained using SGD (1e-3) 

momentum 0.9. We chose SGD (1e-3) momentum 0.9 as it is the optimizer with the second-best 

median in Table 6, and did not become stuck in local minima. The table shows, for each dataset 

and for each model, which depth and training mode achieved the highest accuracy in the test set. 

We select AID trained on Inception V3 intermediate, one out of the 54 experiments (three 

datasets, two models, three depths, three training modes), to provide more details of the training 

loss-accuracy and the confusion matrix computed for the test set. Figure 5 shows the training and 

validation loss and accuracy through the training epochs. Figure 6 shows the correspondent 

confusion matrix computed on the AID test set.  

Figure 8 shows an overview of the complete experiment on the test set. The figure shows 

the test set accuracy for all the datasets, for all the models’ depths and training mode. This test 

was run on a NVIDIA GeForce RTX 2060 and it took roughly six days to complete. 

We then select all the six models trained on PatternNet with randomly initialized weights 

and we perform transfer learning, using the same methodology as before. Thus, we first train 

CNN models on PatternNet and then apply transfer learning to train on AID and UCMerced. 

Note this is slightly different than the transfer learning performed before, where we split a single 

model in three different parts. Here we use the model in their original form (shallow, 

intermediate, or deep). Loss decays and confusion matrix figures, as well as the complete table 

with all test accuracies are provided in the supplemental materials. Table 8 shows the best 

performing Inception V3 and VGG19 for each one of the datasets. 
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We repeat transfer learning tests with Adamax (2e-3), the optimizer with best median 

performance on Table 6, although falling in local minima in some tests. Table 9 shows a 

summary of the best performing Inception V3 and VGG19 trained using Adamax (2e-3) for the 

three datasets used. Figure 9 shows an overview of the complete experiment on the test set. We 

did not repeat the PatternNet to AID-UCMerced transfer learning using Adamax (2e-3) as results 

in Table 14 are generally better than results in Table 16. 

Table 14: Best test set accuracy for Inception V3 and VGG19 version for each Dataset using 
SGD (1e-3) momentum 0.9 optimizer. 

Dataset model depth mode accuracy 

PatternNet Inception V3 intermediate fine tune 0.997 
VGG19 deep fine tune 0.995 

AID Inception V3 intermediate fine tune 0.950 
VGG19 deep fine tune 0.936 

UCMerced Inception V3 intermediate fine tune 0.983 
VGG19 deep fine tune 0.981 

 

Table 15: Best test set accuracy for Inception V3 and VGG19 version for each Dataset using 
SGD (1e-3) momentum 0.9 optimizer to perform transfer learning on models initially trained on 
PatternNet. 

Dataset model depth mode accuracy 

AID InceptionV3 deep 
fine 
tune 0.838 

VGG19 intermediate 
fine 
tune 0.833 

UCMerced InceptionV3 intermediate 
fine 
tune 0.948 

VGG19 deep 
fine 
tune 0.886 
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Table 16: Best test set accuracy for Inception V3 and VGG19 version for each Dataset using 
Adamax (2e-3) optimizer. 

Dataset model depth mode accuracy 
PatternNet 
 

InceptionV3 intermediate fine tune 0.993 
VGG19 deep feature extraction 0.983 

AID 
 

InceptionV3 intermediate fine tune 0.941 
VGG19 deep feature extraction 0.889 

UCMerced 
 

InceptionV3 deep fine tune 0.910 
VGG19 deep feature extraction 0.943 

 

 

Figure 34: Train and validation loss and accuracy for the Inception V3 intermediate in the fine 
tune mode trained on the AID dataset using SGD (1e-3) momentum 0.9.   
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Figure 35: Confusion matrix for the test set of AID dataset for the Inception V3 intermediate in 
the fine tune mode using SGD (1e-3) momentum 0.9.  
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Figure 36: Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets 
using SGD (1e-3) momentum 0.9. Left panel shows VGG 19 results, right panel shows Inception 
V3 results. Note VGG19 shallow and intermediate feature extraction and fine tune versions were 
trapped in local minima.  
 

 

Figure 37: Test set accuracy for all VGG19 and Inception V3 versions trained with all datasets 
using Adamax (2e-3). Left panel shows VGG 19 results, right panel shows Inception V3 results. 
Note VGG19 shallow and intermediate feature extraction and fine tuning versions were trapped 
in local minima.  
 

5. Discussion 

Unlike the poor generalization performance of adaptive methods compared to SGD 

optimizers reported by Wilson et al. (2017) , our results do not find significant differences in 

performance for the optimizers tested. In fact, results in Figure 5 indicate that for our task, SGDs 

had a slightly worse performance. SGD (1e-3) momentum 0.9 and SGD (1e-2) had the larger 
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difference between accuracy in training and test set for VGG19 intermediate and deep models.  

SGD (1e-2) momentum 0.9 had the worst performance for Inception V3 shallow. However, 

Table 7 showing a summary of SGD (1e-3) momentum 0.9 results are slightly better than the 

Adamax (2e-3) summary in Table 9. Figure 5 also presents some cases in which the accuracy in 

the test set was higher than the in the training set, e.g. SGD (1e-3) for Inception V3 shallow 

model. Validation and test set metrics better than training set metrics can be caused by the 

dropout layer, as during training less information is available for the model, or simply because of 

the data split; the training set is generally larger than validation and test sets and can incorporate 

a higher complexity in its samples.  

Even though we selected SGD (1e-3) momentum 0.9 as the optimizer for the transfer 

learning experiments due to the its performance on the optimizer tests, some models still fell into 

local minima. This failure shows how the choice of hyperparameters can strongly affect the 

performance of deep learning models. Neither training from random initial weights (Figure 4) 

nor transfer learning techniques (Figure 8) are exempt from the possibility to present a poor 

performance if suboptimal hyperparameters are used. More than a marginal increase in 

performance, the results show that the models can completely fail when used with inappropriate 

hyperparameters, even if the task is appropriate for the model.  

Using ImageNet data, Yosinski et al. (2014) found that transfer learning, even when applied 

to a secondary task not similar to the primary task, perform better than training CNN models 

with randomly initialized weights. Using medical image data, Tajbakhsh et al. (2016) found that 

fine tuning achieved results comparable to or better than results from training a CNN model with 

randomly initialized weights. Our results align with their findings. Both Figure 8 and Table 7 

show the fine tuning mode of training outperforming randomly initialized weights when using 
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SGD (1e-3) momentum 0.9. Results in Figure 9 and Table 9 show that transfer learning is the 

best performing with the Adamax (2e-3) optimizer. However, it seems that the step size (2e-3) is 

too large for fine tuning in the VGG19 model, such that the VGG19 intermediate and deep 

models trained on fine tune and randomly initialized weights modes fall in local minima. The 

primary task (ImageNet, composed of natural images) is not very similar to the secondary task 

(remote sensing scene classification). While there is a similarity in primary and secondary tasks 

datasets, such as the number of channels (red-green-blue components), images are from the 

visible spectra, and some objects might be present in both tasks (e.g. airplanes), the tasks are 

fundamentally different. Figure 5, however, shows how feature extraction can be limited by the 

difference in tasks. When the initial layers are frozen, the model cannot properly learn and the 

model starts to overfit. With the layers unfrozen, the overfitting reduces and accuracy increase. 

We observed a similar behavior for most of fine tuning tests (all of the loss and accuracy per 

epoch can be accessed in the supplemental material). Despite feature extraction limitations, the 

results show that transfer learning is an effective deep learning approach that should not be 

discarded if the secondary task is not similar to the primary task. In fact, Table 8 presents 

striking results. Fine tuned models initially trained on PatternNet underperformed fine tuned 

models trained on ImageNet. Perhaps the first explanation for such underperformance would be 

that the models are overfitting the PatternNet dataset. However, PatternNet models performed 

well on the PatternNet test set, which indicates they are not overfitting the training data. We 

hypothesize that the weaker performance is due to the complexity of the datasets. PatternNet is a 

dataset created with the objective to provide researchers with clear examples of different remote 

sensing scenes, whereas the ImageNet is a complex dataset where the intra class variance, i.e. 

how a single class contains very different samples, is very high. As observed by Cheng et al. 
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(2017) many remote sensing scene classification datasets have a lack of intraclass sample 

variations and diversity. These limitations severely limit the development of new approaches 

especially deep learning-based methods. Thus, CNN models trained on the ImageNet need to 

develop more generic, perhaps robust, filters to be able to properly identify ImageNet’s classes.  

 

6. Conclusions 

Our objective with this paper was to investigate the use of transfer learning in the 

analysis of remote sensing data, as well as how the CNN performance depends on the depth of 

the network and on the amount of training data available. Our experiments, based on three 

distinct remote sensing datasets and two popular CNN models, show that transfer learning, 

specifically fine tuning CNNs is a powerful tool for remote sensing scene classification. Much 

like the findings in other experiments, the results we found show that transfer from natural 

images (ImageNet) to remote sensing imagery is possible. Despite the relatively large difference 

between primary and secondary tasks, transfer learning training mode generally outperformed 

training a CNN with randomly initialized weights and achieved the best results overall. 

Curiously, fine tuning models primarily trained on the generic ImageNet dataset overperformed 

fine tuning models primarily trained on PatternNet dataset. As expected, our results also indicate 

that for a particular application, the amount of training data available plays a significant role on 

the performance of the CNN models. We generally observed a larger accuracy difference 

between transfer learning and training with randomly initialized weights using the smaller 

UCMerced dataset, whereas accuracy differences were smaller when using the larger PatternNet 

dataset. Model robustness is also clear on the results. On several instances the VGG19 ended up 

stuck on local minima, both during optimization testing and during transfer learning testing. The 
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VGG19 shallow and intermediate models’ results exhibit a performance degradation caused by 

splitting the primary trained CNN model between co-adapted neurons on neighboring layers. 

VGG19 shallow and intermediate on randomly initialized mode, however, performed 

satisfactorily. In spite of our simplistic model split without detailed attention to co-adaption of 

neurons between layers, Inception V3 passed all experiments without falling into local minima.  

The results seem to corroborate that feature extraction or fine tuning well-established 

CNN models offer a practical way to achieve the best performance for remote sensing scene 

classification. Although fine tune the originally more complex deep models might present 

satisfactory results, splitting the original model can perhaps improve performance. Note fine 

tuning Inception V3 intermediate model outperformed Inception V3 deep model. With datasets 

large enough, randomly initialized weights are also an appropriate choice for training. However, 

it is often hard to know when a dataset is large enough. Our recommendation is to start from the 

deep models and try to reduce model’s size as it is easier to overfit models with too many 

weights.  

 

7. Data and materials availability 

Data associated with this research are available online. The UC Merced dataset The 

dataset is available for download at http://weegee.vision.ucmerced.edu/datasets/landuse.html. 

AID is available for download at for download at http://captain.whu.edu.cn/WUDA-

RSImg/aid.html. PatternNet dataset is available for download at 

https://sites.google.com/view/zhouwx/dataset. The Python scripts used for the analysis of the 

datasets, as well as the generation of most images, and the supplemental figures are available at 

https://github.com/raplima/remote_sensing-transfer_learning.  

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://captain.whu.edu.cn/WUDA-RSImg/aid.html
http://captain.whu.edu.cn/WUDA-RSImg/aid.html
https://sites.google.com/view/zhouwx/dataset
https://github.com/raplima/remote_sensing-transfer_learning
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Preface. 

In the last chapter of my dissertation I present some of the research I developed during my 

internship at the Los Alamos National Laboratory. The work in chapter 6 aims to forecast 

relativistic electrons inside Earth’s outer radiation belt. Relativistic electrons are high energy and 

have the potential to destroy satellite electronics. I use different supervised learning models to 

forecast the behavior of 1.0 Megaelectron-volt (MeV) trapped inside Earth’s outer Van Allen 

belt. Interestingly, the results show how linear models are well capable to model most of the 1.0 

MeV fluctuation. The work presented in this chapter was submitted to a space weather journal 

and the preliminary results are published as abstract in Pires de Lima et al. (2019a). The pre-print 

version is already available (Pires de Lima et al., 2019b). Unrelated to space weather, the work I 

developed during my internship at Los Alamos National Laboratory using simulation data for 

CO2 capture studies was published as two expanded abstracts (Pires de Lima et al., 2019c; Pires 

de Lima and Lin, 2019). 
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Abstract 

Here we present the recent progress in upgrading a predictive model for Megaelectron-

Volt (MeV) electrons inside the Earth’s outer Van Allen belt. This updated model, called 

PreMevE 2.0, is demonstrated to make much improved forecasts, particularly at outer Lshells, by 

including upstream solar wind speeds to the model’s input parameter list. Furthermore, based on 

several kinds of linear and artificial machine learning algorithms, a list of models was 

constructed, trained, validated and tested with 42-month MeV electron observations from Van 

Allen Probes. Out-of-sample test results from these models show that, with optimized model 

hyperparameters and input parameter combinations, the top performer from each category of 

models has the similar capability of making reliable 1-day (2-day) forecasts with Lshell-averaged 

performance efficiency values ~ 0.87 (~0.82). Interestingly, the linear regression model is often 

the most successful one when compared to other models, which indicates the relationship 

between 1 MeV electron dynamics and precipitating electrons is dominated by linear 

components. It is also shown that PreMevE 2.0 can reasonably predict the onsets of MeV 

electron events in 2-day forecasts. This improved PreMevE model is driven by observations from 

longstanding space infrastructure (a NOAA satellite in low-Earth-orbit, the solar wind monitor at 

the L1 point, and one LANL satellite in geosynchronous orbit) to make high-fidelity forecasts for 

MeV electrons, and thus can be an invaluable space weather forecasting tool for the future.  

 

1. Introduction 

Man-made satellites operating in medium- and high-altitude Earth orbits are continuously 

exposed to hazardous space radiation originated from different sources. Among them, one major 

contributor is the relativistic electron population—with energies comparable to and/or larger than 
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their rest energy of 0.511 Megaelectron-volt (MeV)—trapped inside Earth’s outer Van Allen 

belt. Owning to their high penetration capability, these MeV electrons are difficult to be fully 

stopped by normal shielding. Particularly, during MeV electron events when electron intensities 

across the outer belt are greatly enhanced to sustaining high levels, space-borne electronic 

systems with inadequate hardening are susceptible to deep-dielectric charging and discharging 

phenomenon caused by those electrons (Lai et al., 2018), and thus may suffer severe damage or 

even stop functioning. Therefore, protecting critical space infrastructures from harsh space 

weather conditions– including MeV electron events – has high priority for stakeholders such as 

the space industry, service providers and government agencies.  

Similar to terrestrial weather services, real-time monitoring and model forecasting are the two 

principle ways of mitigating risks from outer-belt MeV electrons. Given the successful NASA 

Van Allen Probes mission, previously known as RBSP (Mauk et al., 2013), quickly approaches 

its end, the need of reliable forecasting models for MeV electrons becomes compelling once 

again due to the coming absence of in-situ measurements. Indeed, forecasting models have been 

developed including such as SPACECAST framework (Horne et al., 2013) for the whole outer 

radiation belt, and Relativistic Electron Forecast Model (based on Baker et al. (1990)) currently 

operated by NOAA specifically for electrons at geosynchronous (GEO) orbit. Recently, Chen et 

al. (2019) has developed and verified a new predictive MeV electron model called PreMevE to 

forecast MeV electron events throughout the whole outer radiation belt, using linear filters with 

inputs from low-Earth-orbit (LEO) observations. In this work, we further improve PreMevE 

model by applying and testing several supervised machine learning algorithms with optimized 

selection of input parameters.  
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Machine learning (ML) has been a topic in consideration for more than half a century (e.g., 

Minsky, 1961; Hartigan & Wong, 1979; Hopfield, 1982), and its popularity increased 

significantly in the last decade with numerous applications in various research fields. Examples 

of success include seismicity studies (e.g., Kortström et al., 2016; Perol et al., 2018; Sinha et al., 

2018; Ren et al., 2019; Wang et al., 2019), geological mapping (e.g. Cracknell & Reading, 2014; 

Pires de Lima & Marfurt, 2018), optical/electrical geoscientific images classification (e.g. 

Duarte-Coronado et al., 2019; Pires de Lima et al., 2019a; Pires de Lima et al., 2019b; Valentín 

et al., 2019), medical image segmentation and classification (e.g., Ronneberger et al., 2015; 

Tajbakhsh et al., 2016; Qayyum et al., 2017), speech recognition (e.g., Graves & Schmidhuber, 

2005; Graves et al., 2013), and etc. Among them, as observed by LeCun et al. (2015), the work 

of Krizhevsky et al. (2012) was the breakthrough responsive for the rapid adoption of deep 

learning by the computer vision and others communities. 

Meanwhile, the application of ML also has gained momentum in the space weather community. 

An early use of artificial neural networks to predict the flux of energetic electrons at 

geosynchronous (GEO) orbit was presented by Stringer et al. (1996) in which GOES-7 data were 

used to make one-hour nowcasts of hourly-averaged fluxes of electrons at energies of 3-5 MeV. 

Later, Ukhorskiy et al. (2004) and Kitamura et al. (2011) used artificial neural networks to 

develop one-day forecasts of daily averaged electron fluxes at GEO. More recently, Shin et al. 

(2016) used a neural network scheme with solar wind inputs to predict GEO electrons over a 

wide energy range and different time resolutions. Wei et al. (2018) also successfully improved 

the one-day forecasts of >2 MeV electron fluxes at GEO by applying deep learning algorithms.  

For a review,  Camporeale (2019) has summarized the recent progresses and opportunities of 

applying  ML for space weather forecasting problems, including predicting geomagnetic indices, 
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relativistic electrons, solar flares occurrence, coronal mass ejection propagation time, solar wind 

speed and etc. 

The purpose of this work is to present how PreMevE has been upgraded with ML algorithms to 

make improved predictions of MeV electron flux distributions. With no requirement of in-situ 

MeV electron measurements except for at GEO, this unique model has shown its great potential 

of meeting the predictive requirements for outer-belt electrons during the post-RBSP era. Section 

2 briefly describes the data and parameters used for this study, and the selected ML algorithms 

and their implementations are explained in Section 3. Section 4 compares and summarizes the 

prediction performance of different models, followed by detailed discussions in Section 5. This 

work is concluded by Section 6 with a summary of our findings and possible future directions. 

 

2. Data and Input Parameters 

Electron data used in this work include observations made by particle instruments aboard a 

RBSP spacecraft, one Los Alamos National Laboratory (LANL) GEO satellite, and one NOAA 

Polar Operational Environmental Satellite (POES) in a period ranging from February 2013 to 

August 2016, as shown in Figure 24. Electron data used here are the same as in Chen et al. 

(2019) in which detailed descriptions of the original data and their preparation can be found, and 

here is a brief recap. First, trapped 1 MeV electrons across a range of L‐shells (L ≤ 6) are in situ 

measured by the Magnetic Electron Ion Spectrometer (MagEIS) instrument (Blake et al., 2013) 

on board RBSP-a, and the spin‐averaged fluxes are plotted in Panel A as a function of Lshell and 

time. Here we use McIlwain's L values (McIlwain, 1966) calculated from the quiet Olson and 

Pfitzer magnetic field model (Olson & Pfitzer, 1977) together with the International 

Geomagnetic Reference Field model. At GEO,  we use observations from the Synchronous Orbit 
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Particle Analyzer (SOPA; Belian et al., 1992) instrument carried by the GEO satellite LANL‐

01A. For simplicity, all GEO fluxes are put on the fixed L = 6.6 and plotted in the top of Panel 

A. Then, precipitating electrons are monitored by the Space Environment Monitor 2 (SEM2) 

instruments on board NOAA POES satellites in low-Earth-orbits (LEOs, Evans et al., 2000), and 

the count rates from the 90° telescopes on NOAA‐15 are presented for three energy channels as 

in Panels B, C and D. Here L values for NOAA-15 are calculated from the International 

Geomagnetic Reference Field model. Additionally, upstream solar wind (SW) speeds in Panel E 

are downloaded from CDAweb site and added to models’ inputs. All RBSP-a, LANL‐01A, and 

POES‐15 electron fluxes as well as solar wind speeds in Figure 24 are binned by 5 hours to allow 

for RBSP's full coverage on the outer belt for each time bin. Lshell bin size for electrons is 0.1.  

Throughout this work, we refer to POES electron fluxes at > 100 keV, > 300 keV, and > 1000 

keV as E2, E3, and P6 respectively. Logarithmic values of E2, E3, and P6, along with 

standardized scaled values of SW speeds form the input data sets, or the predictors, being used to 

forecast the logarithm of 1 MeV trapped electron fluxes, sometimes also referred to as “target”. 

The standardized of SW is done by subtracting the mean and dividing by the standard deviation 

(both the mean of 404.8 km/s and standard variation of 86.8 km/s are computed with the training 

set as defined in Section 4). Hereinafter, when we refer to 1 MeV target, E2, E3, and P6 fluxes, 

we are actually referring to their logarithmic values. Lshell coverage of this study is confined to 

2.8 – 6 (the range of RBSP) and 6.6 (LANL GEO), while fluxes at other Lshells can be derived 

by interpolation or extrapolation (Chen et al., 2019).   
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3. Supervised Learning Algorithms  

ML can be described as a collection of techniques in which systems improve their performance 

through automatic analysis of data. The power of ML models lies in their capacity to extract 

statistical information (patterns and features) from ample data with no requirement of hypothesis, 

in a sharp contrast to physics-based models in which researchers manually select parameters to 

be used as input for models with specific governing physics. ML models are capable of 

extracting signature and correspondence that might be overlooked by traditional methods, e.g., 

nonlinear relationship, and can be relatively easier to use with multiple input sources. Therefore, 

under certain circumstances, ML models can outperform traditional ones. For example, 

Tajbakhsh et al. (2016) found that deep neural network models outperformed handcrafted 

solutions in medical image analysis tasks. One of major drawbacks of ML models, particularly 

deep neural networks, is its incomplete capability in interpretability (“how”) and explainability 

(“why”) (Murdoch et al., 2019). Thus, sometimes ML models can be complicated to explain, 

hindering our ability to propose new theories based on ML results. 

Common ML algorithm types include supervised, unsupervised, semi-supervised, and 

reinforcement learning (Ayodele, 2010). The algorithms used here fall under the category of 

supervised learning as they make use of input sample data paired with an appropriate label. The 

label here refers to 1 MeV electron flux at different Lshells, the target value to be forecasted. 

Moreover, the models implemented here can be classified as regressions, as the labels are 

specified scalar values.  

As explained by Camporeale (2019), supervised regressors try to find the mapping relationship 

between a set of multidimensional inputs 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁) and its corresponding scalar output 

label 𝑦𝑦, under the general form 
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𝑦𝑦 = 𝑓𝑓(𝒙𝒙) + 𝜖𝜖, (1) 

where 𝑓𝑓: ℝ𝑁𝑁 → ℝ is a linear or nonlinear function and 𝜖𝜖 represents additive noise. All methods 

used to find the unknown function 𝑓𝑓 can be seen as an optimization problem, where the objective 

is to minimize a given loss function. The loss function is a function that maps the distance 

between all the predicted and target values into a real number, therefore providing some "cost" 

associated with the prediction. The following four subsections provide more details in each one 

of the supervised regressor models used in this study. A comprehensive discussion on artificial 

neural networks and deep learning models can be found in LeCun et al. (2015), with information 

about techniques common to several artificial intelligence applications. To exemplify the 

supervised learning problem as a flux forecasting task, consider predicting the 1 MeV electron 

fluxes at time 𝑡𝑡 at GEO shell using the past values of 1 MeV electrons at GEO. Suppose we use 

𝑀𝑀 training samples to perform the analysis, and the number of past values we wish to use for 

each time step is four (𝐹𝐹 = 4). That is, we have 𝑀𝑀 pairs of (𝒙𝒙𝑡𝑡,𝑦𝑦𝑡𝑡) training samples, or 

{(𝒙𝒙1,𝑦𝑦1), (𝒙𝒙2,𝑦𝑦2). . . , (𝒙𝒙𝑀𝑀,𝑦𝑦𝑀𝑀)} where 𝒙𝒙𝒕𝒕 = (𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2, 𝑥𝑥𝑡𝑡−3, 𝑥𝑥𝑡𝑡−4)𝑇𝑇 ∈ ℝ𝑁𝑁=4 and 𝑦𝑦𝑡𝑡 ∈ ℝ. We 

can rewrite the predictors 𝒙𝒙𝒕𝒕 as a matrix 𝑋𝑋 ∈ ℝ𝑁𝑁𝑥𝑥𝑀𝑀, where each column of the matrix X 

represents one 𝒙𝒙𝒕𝒕 training sample vector. The 𝑦𝑦𝑡𝑡 samples can also be defined as a single row 

matrix 𝑌𝑌 ∈ ℝ1𝑥𝑥𝑀𝑀. The goal of ML training is to optimize the internal parameter values of the 

given mapping function f—a specified ML algorithm—by minimizing the loss function 

associated with the noise matrix 𝜖𝜖 after inserting X and Y back into Eq. (1). Here we use the past 

values of multiple input data, including E2, E3, P6, and solar wind speed, to forecast 1 MeV 

electron fluxes at each individual L-shell. Next, we describe the four selected algorithms 

including linear regression, multilayer perceptron, convolutional neural networks, and long 

short-term memory methods. 
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3.1 Linear Regression 

Linear regression is the simplest supervised learning method, while sometimes it is also 

interpreted as the simplest ML algorithm. This algorithm has a vast range of applications and 

constitutes a basic building block for more complex algorithms. The linear regression equation is 

given by 

𝑓𝑓(𝒙𝒙𝒊𝒊) = 𝒘𝒘𝑻𝑻𝒙𝒙𝒊𝒊 + 𝒃𝒃, (2) 

where 𝒘𝒘 is a vector containing weights and 𝒃𝒃 is the bias term. In a predictive problem, 𝑦𝑦 as in 

Eq. (1) represents the label, or target, to be predicted (the 1 MeV electron flux), 𝒙𝒙 represents the 

input data (e.g. past values of precipitating electron fluxes) and 𝒘𝒘 represents the set of linear 

coefficients that minimize the loss, or the sum of the errors of all true values of 𝑦𝑦 and the 

predicted 𝑓𝑓(𝒙𝒙𝒊𝒊). From the optimization perspective, the weights 𝒘𝒘 can be obtained using a 

simple ordinary least squares method. Linear models are simple models generally very useful as 

baselines, and their selection for this work is also due to the success of previous work by Chen et 

al. (2019).   

 

3.2 Multilayer Perceptron  

Starting from the linear model, a single neuron can be defined as 

𝑓𝑓 = 𝑅𝑅(𝒘𝒘𝑻𝑻𝒙𝒙𝒊𝒊 + 𝒃𝒃), (3) 

where 𝑅𝑅(. ) is an element-wise activation function. The activation function is responsible to 

introduce non-linearity to the model. Some of the most common activation functions are the 

Rectified Linear Unit (ReLU, Hahnloser et al., 2000; Nair & Hinton, 2010) and the Exponential 



187 

Linear Unit (ELU, Clevert et al., 2015). ReLU is a piecewise linear function that outputs the 

input for positive values, zero otherwise. ELU outputs the identity for positive values as well, 

however ELU uses a logarithm curve for negative values (𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑡𝑡𝑅𝑅𝑛𝑛𝑡𝑡(𝑃𝑃𝑥𝑥𝑒𝑒(𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑡𝑡) − 𝟏𝟏)). A 

hidden layer is a set of neurons, or units, that take in a set of inputs (𝒙𝒙) and produce an output 𝑓𝑓. 

If we use the 𝑓𝑓𝑖𝑖
[𝑙𝑙] notation to represent the output of the neuron 𝑖𝑖 at layer 𝑅𝑅, we can write Eq. (3) 

for the following layer as 𝑓𝑓𝑙𝑙+1 = 𝑅𝑅�𝒘𝒘𝑻𝑻𝒇𝒇[𝒍𝒍] + 𝒃𝒃� to represent the inputs for layer 𝑅𝑅 +1 depend on 

the output of layer 𝑅𝑅. Figure 25 illustrates a single neuron in the left and how sets of neurons can 

be combined to form layers and neural networks in the right. Here the information flows from 

left (the input) to right (the output). This structure is a class of Feedforward Networks, 

sometimes named multilayer perceptron (MLP). Loosely defined, an artificial neural network 

(NN) is a model consisting of connected neurons. The term deep model or deep learning is 

generally used for neural networks containing more than one hidden layer. When all neurons in a 

layer receive input from all elements in the previous layer (e.g. the hidden layers in Figure 25b), 

they are also called fully or densely connected layers.  

 

3.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are powerful and influential deep learning model 

architectures. The computer vision field strongly adopted CNNs as their workforce after the 

CNN described in Krizhevsky et al. (2012) and achieved new levels of accuracy in the popular 

ImageNet Large Scale Visual Recognition Competition (Russakovsky et al., 2015). All CNNs 

make use of the fundamental convolutional kernel. Convolution operates on two functions, one 

generally interpreted as the “input”, and the other as a “filter”.  The filter is commonly referred 

to as “kernel”. The kernel is applied on the input, producing an output image or signal. During 
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the training stage, the values of kernels are updated in such a way that the output generated by 

the CNN is more similar to the desired label, i.e., minimizes the cost. Just like the neurons 

described in subsection 3.2, a set of convolutional kernels can be combined into layers. 

Dumoulin & Visin (2016) showed details on the arithmetic of convolutions for deep learning. 

Here, we provide only the essential equation for 1D convolution. An 1D convolution of the input 

vector 𝒙𝒙 and the kernel 𝒈𝒈 of length 𝑚𝑚 is given by 

(𝑥𝑥 ∗ 𝑔𝑔)(𝑖𝑖) = �𝑔𝑔(𝑗𝑗)𝑥𝑥 �𝑖𝑖 − 𝑗𝑗 +
𝑚𝑚
2
�

𝑚𝑚

𝑗𝑗=1

. (4) 

A CNN unit in deep learning models is a composite of  activation function and the convolution 

term in Eq. (4), i.e., 𝑓𝑓(𝑖𝑖) = 𝑅𝑅((𝑥𝑥 ∗ 𝑔𝑔)(𝑖𝑖)). 

Springenberg et al. (2014) observed that CNNs commonly use alternating convolution and max-

pooling layers followed by a small number of fully connected layers. The models are typically 

regularized during training using dropout. Max-pooling are simple down-sampling steps in 

which the maximum value for each patch (containing multiple values) of a feature is used to 

represent the entire patch, effectively reducing the feature size. Dropouts layers randomly select 

a percentage of their inputs to be ignored during the training phase. Dropouts are useful to avoid 

overfitting. Dropout is a general approach and not specific for CNN models. Srivastava et al. 

(2014) showed that dropout improves the performance of neural networks on many supervised 

learning tasks such as speech recognition, document classification, vision and computational 

biology.  
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3.4 Long Short-term Memory 

Long short-term memory (LSTM) networks are a popular recurrent neural network (RNN) 

structure introduced by Hochreiter & Schmidhuber (1997). RNN is a class of artificial neural 

networks in which neurons can be connected to form a directed graph along a temporal sequence 

(Figure 26). Different from traditional feedforward NNs, LSTM has internal loops to allow to 

retain information from previous times and decide its usage for predictions. Indeed, the LSTM 

basic unit is called memory cell inside which internal components can decide when to keep or 

override information in the memory cell, when to access the information in memory cell, and 

when to prevent other units from being perturbated (Hochreiter & Schmidhuber, 1997). Olah 

(2015) provides a detailed walkthrough of the LSTM components. LSTMs are constantly used in 

speech recognition problems (e.g. Graves et al., 2013; Graves & Schmidhuber, 2005) as well as 

forecasting (e.g. Kong et al., 2019). Here LSTM was selected for testing as a representative of 

RNNs.  

 

4. Testing Algorithms and Model Performance 

Following ML best practices, we split the data into training, validation, and test sets. The training 

set is the data effectively used for model optimization. The validation set is used to tune model 

hyperparameters, such as the number of neurons/layers or optimization options. Finally, the test 

set is reserved for model performance evaluation on the final stage. Here, the training data set 

consists of observations in the first 4,008 time bins (roughly 835 days, or 27.4 months, 65% of 

the whole data set), the validation set has observations for the next 841 time bins (roughly 175 

days, or 5.8 months, 14% of the data), and the test set is for the final 1,280 time bins (roughly 

267 days, or 8.8 months, 21% of the data). Observational data are split in such a manner so that 
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the major observational gap over days 840 – 850 is in between the sets, thus the models are 

always trained, validated, and tested in segments containing real continuous observations.  

The optimization goal for all the models is to reduce the root-mean-square error (RMSE) 

between the real value 𝒚𝒚 and the predicted value 𝒇𝒇, both with the size 𝑀𝑀. RMSE is defined as 

�∑ (𝑓𝑓𝑗𝑗−𝑦𝑦𝑗𝑗)2𝑀𝑀
𝑗𝑗=1

𝑀𝑀
. In this study, linear models minimize the error using the ordinary least squares, 

while artificial neural network models use Adam optimization as defined by Kingma & Ba 

(2014).  

Chen et al. (2019) has demonstrated that E2 fluxes can be used for predicting the onset timing of 

MeV electron events, and here we also computed the normalized temporal derivatives of E2 

fluxes, naming it dE2, and tested by adding it to the input data sets. The dE2 at time bin t for E2 

is defined as 𝑑𝑑𝑑𝑑2𝑡𝑡 = 𝐸𝐸2𝑡𝑡− 𝐸𝐸2𝑡𝑡−1
𝐸𝐸2𝑡𝑡−1

. The temporal correlation between E2, dE2, and trapped MeV 

electron fluxes can be recognized from Figure 27.  

 

4.1 Test Input Parameter Combinations 

Our first experiment tests different combinations of input parameters with the objective to 

find the set of input data that can best predict 1 MeV electrons. Specifically, we use Linear and 

LSTM models to evaluate what combination of input parameters yields the highest Performance 

Efficiency (PE). PE provides a measure of quantifying the accuracy of predictions by comparing 

to variance of the target. Naming y as the true value (the logarithm of the target 1 MeV electron 

flux) and f as the predicted value, both with size M, PE is defined as 
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𝑃𝑃𝑑𝑑 = 1 −
∑ �𝑦𝑦𝑗𝑗 − 𝑓𝑓𝑗𝑗�

𝟐𝟐𝑴𝑴
𝒋𝒋=𝟏𝟏

∑ �𝑦𝑦𝑗𝑗 − 𝑦𝑦��
𝟐𝟐𝑴𝑴

𝒋𝒋=𝟏𝟏

, (5) 

where 𝑦𝑦� is the mean of 𝒚𝒚. PE does not have a lower bound, and the perfect score is 1.0, meaning 

all predicted value perfectly match observed data, or that 𝒇𝒇 = 𝒚𝒚.  

To make 1-day (25 hours) forecasts of MeV electrons for a single Lshell, our models ingest the 

past values of the input data at the same L-shell. The only exception is at GEO, where the model 

inputs include the MeV past of GEO from measurements. Additionally, as Chen et al. (2019) 

found E2, E3, and P6 values at GEO have relatively weak correlations with 1 MeV electrons, E2, 

E3, and P6 channels at L-shell of 4.6 are used instead for model inputs. The term “window size” 

refers to how many five-hour time bins of input data are needed by the models. Chen et al. 

(2019) found a window size of 15 time bins (equivalent to 75 hours) to be effective for the 

forecast of MeV electrons. Adhering to the “power of two” ML convention, we used a window 

size of 16. The “power of two” rule is based on the fact that CPUs and GPUs memory 

architecture are usually organized in powers of two, thus using power of two data organization 

can be beneficial for computation efficiency. For naming convention, when a LSTM model has 

one layer with 128 memory cells, we use LSTM-128 as the name for this model; the linear 

models are referred to as LinearReg throughout the manuscript. Results from the submodel 1 and 

2 of previous PreMevE in Chen et al. (2019) are cited as linear1 and linear2 for a baseline 

comparison through the manuscript. Note in this work all PE values and fluxes from linear1 and 

linear2 are for 1-day forecasts only. 

Table 17 summarizes the overall PE values (averaged over all Lshells) for twenty tests 

performed for 1-day predictions. For each of the two categories of models, ten input parameter 

sets are tested, starting from each single parameter to various combinations. Here we focus on 
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the out-of-sample PE values, i.e., those in the column of PE val+test, to judge model 

performance. The general trend is that more parameters lead to better performance. For example, 

the last LinearReg model with all parameters as input (the 10th model) has not only the overall 

highest PE value of 0.861 but also at GEO (0.587). These two values are higher than those for 

linear2 (0.797 and 0.352), which indicates significant improvements. (The linear1 was designed 

for capturing onset timings of MeV electron events and thus its PE is always lower than that of 

linear2 (Chen et al., 2019).) Interestingly, the last two LSTM models (19th and 20th) have the 

highest overall PE values for this category, but still slightly lower than those of the 10th 

LinearReg model.  

In this step, we also confirmed that adding SW speeds to the input list improves model 

performance, which was not tested previously in Chen et al. (2019). In Table 17, the overall PE 

for the 1st model by using SW speed as the sole input parameter is 0.518, which indicates this 

simple model can predict MeV electrons over the whole outer belt to some degree but not as well 

as the linear2, although the PE of 0.557 at GEO is much higher than that of linear2 (0.352). In 

comparison, PE values from the 11th model show that using SW speed as the sole parameter for 

LSTM model is not as good as for LinearReg particularly for GEO. When comparing models 

with and without SW speeds, e.g., the 2nd vs 7th (12th vs 17th) and 8th vs 9th (18th vs 19th), the 

improvements in overall PE are 0.009 (0.017) and 0.005 (0.013), while the improvements in PE 

at GEO are more significant up to 0.11. We also tested the dE2 and its addition to the input has 

not effects as significant as SW speeds when comparing the PE values of the 10th (20th) model to 

those of the 9th (19th).  

Details of how model PEs improve as a function of Lshell are presented in Figure 28. For models 

in both categories, the top performer has much higher PE values than those of linear2 across the 
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whole belt, with the most significant improvements at Lshells > ~ 4.5 and the maximum 

difference > 0.4 with L ~ 5.5. It can be clearly seen from the green curve in Panel A that SW 

speeds are a very helpful predictor for outer L-shells especially for LinearReg models, but 

inefficient for inner Lshells. This can be explained by the fact that in the large-Lshell region 

particle dynamics are more controlled by adiabatic effects, and is also consistent with the 

experience from predictive models for electrons at GEO (e.g., Baker et al., 1990). However, as in 

Panel B, the LSTM model using SW speeds as the sole predictor has only a few L-shells with PE 

values greater than zero.  In summary, results in both Table 17 and Figure 28 suggest that the 

model PE values are higher with the use of more input data from multiple precipitating electron 

channels as well as the SW speeds. Therefore, tests in the rest of this study use the parameter 

combination including all inputs. 

 

4.2 Model Selection and Metrics Evaluation 

We then advanced to test a list of models built upon different algorithms with varying model 

hyperparameters (e.g., the window size and number of neurons). There are four different 

categories of models—Linear, MLP, LSTM, and CNNs—as described in Section 3, and here are 

how these models and test runs were set up. First, to account for cross-shell information as in 

Chen et al. 2019, some tests include E2 data at the L-shell of 4.6 as input for all other L-shells. 

Second, the MLP models presented here are composed of two hidden layers, the first one has 64 

neurons, the second has 32 neurons, and the neurons use ELU as the activation function. In our 

early testing, we discovered ELU achieving marginally better performance than the most adopted 

ReLU activation function. A dropout layer that randomly selects 50% of the input to be 

inactivated after each one of the activation functions is included to help prevent overfitting. The 
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output layer consists of a single neuron without an activation function. The dropout layer, used 

during training and deactivated during prediction, and the output layer are not accounted as 

hidden layers, but are also part of the model. We name such models MLP-64-32-elu. Then, CNN 

models with a window size 16 are composed of two convolutional layers, the first convolutional 

layer contains 64 kernels followed by a Max-pooling layer with size and stride equal two, and 

the second convolutional layer contains 32 kernels followed by a Max-pooling layer with the 

same size and stride. The CNN models with a window size 4 are composed of a single 

convolutional layer with 64 kernels followed by a Max-pooling layer. The kernels are one-

dimensional with a size of three and are use ReLU as activation function. The convolutional 

layers are finalized with 50% dropout. The output layer consists of a single neuron without an 

activation function. Those CNN models are named Conv-64-32 and Conv-64, respectively. 

Finally, LSTM models follow the same structure as the ones described in Section 4.1.  

Model performance is again evaluated by PE values by comparing forecasts to the target data. 

Table 18 presents the overall PE values for 24 test runs performed for 1-day predictions, and 

Table 19 presents PE values for the same test runs for 2-days predictions. Inside each category, 

the effects of window size, neuron/layer numbers and input parameters are tested and compared, 

and Table 17 and 18 only show results of models with good performance. For 1-day forecasts as 

in Table 18, the 6th LinearReg model has the high overall PE of 0.872 for out-of-sample test and 

0.587 at GEO. Top models in the other three categories have similar overall and GEO PE values. 

All those values are higher than the overall PE of 0.797 and GEO PE of 0.352 from linear2 for 1-

day forecasts. For 2-day forecasts in Table 19, top performers are the same as for 1-day 

predictions except for the MLP category. Here, the 6th LinearReg model has the highest overall 

PE of 0.827 for out-of-sample test and 0.333 at GEO. Again, top performers have overall PEs 
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~0.82 for 2-day predictions, which is lower than the ~0.87 for 1-day predictions but higher than 

the ~0.80 of linear2 for 1-day forecasts. (Chen et al. (2019) has shown that linear1 and linear2 

have lower PE for 2-day forecasts than 1-day.) Their PEs at GEO are mostly above 0.33, 

comparable to linear2. Note for the MLP category, the 9th model is the top performer in Table 

19, with no E2 at L=4.6 for input—instead of the 11th in Table 17. All CNN models in Table 19 

cannot make 2-day forecasts at GEO very well. 

Figure 29 plots PE curves for both 1- and 2-day forecasts as a function of Lshell, which further 

confirm our models’ performance are more robust than previous results published in Chen et al. 

(2019). First, the PE curves for all four top models cluster together, with values at outer L-shells 

(minimum > ~0.3) lower than those at inner L-shells (maximum > 0.8 in left panel and >0.7 for 

right). All PE curves for both 1-day and 2-day are well above that from linear2 (1-day) expect at 

low Lshells for 2-day forecasts. The most significant improvements in PE are at Lshells > 4.5. 

For 1-day forecasts, the 6th model of LinearReg in Table 18 (green thick line in Figure 29A) can 

be seen to outperform with higher overall PE than the 10th model in Table 17 with the addition of 

E2 at L=4.6 to the parameter list. In addition, the performance of LinearReg models is 

persistently good for both 1- and 2-day forecasts, particularly at GEO where other top models 

degrade quickly.   

It is striking how the models (LinearReg, MLP, LSTM, CNN) show very similar forecasting 

ability when using similar input data. Plus, the linear models seem to have leading performance 

for the forecasting in many scenarios, particularly for 2-day predictions. Two main observations 

should be taken for such behaviors. The first one is that a great part of the interplay between 

trapped 1 MeV electrons and input parameters (precipitating electrons and SW speeds) appear to 

be mainly linear. Previous PreMevE in Chen et al. (2019) has shown high PE using linear filters 

mailto:E2@4.6
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to forecast MeV electrons, and our findings corroborate previous results. The second observation 

is that artificial NNs, as depicted in Section 3, have their linear component. As a linear model 

achieves good results, artificial neural networks are expected to do at least the same. Thus, the 

dominance of linear components explains why the top models from all four categories of 

algorithms have very similar predictive performance. In addition, the secondary role from non-

linear components make CNN models having the best overall PE for validation and test set 

combined in Table 18, as well as MLP and LSTM models having the best PE at GEO (Tables 18 

and 19). Therefore, this new PreMevE 2.0 model will indeed include all four algorithms, which 

form an ensemble of predictive models whose relative weights are left to future work. In next, 

we take a closer look at predicted results from all four algorithms.   

 

5. Detailed Predictions and Discussions 

An overview of the 1-day forecasted flux distributions is exhibited in Figure 30 compared to the 

1 MeV flux target. Visually, forecasted distributions from the four top performers as in Table 18 

(Panels B-D) resemble the observations (Panel A) very closely. Portions of data used for 

training, validation, and test are marked out by color bars in the bottom of the figure. It can be 

seen that the flux enhancement, elevated flux levels (red regions), and decay afterwards during 

each individual MeV electron event are reproduced very well, although the dropouts of MeV 

electrons (blue strips) at large Lshells are often not well captured (e.g., the one on ~ day 1080) or 

even totally missed (e.g., the one on ~ day 870). It is deemed acceptable at this stage since 

PreMevE model mainly aims to forecast high flux levels of MeV electrons. Similarly, Figure 31 

compares 2-day forecasted results to target data and shows an akin resemblance, confirming the 

stable predictive performance of PreMevE 2.0 with a longer lead time.    
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Furthermore, Figure 32 shows more details how closely the 1-day forecasted fluxes are 

compared to the targets over combined validation and test period for selected L-shells. Here flux 

curves from the same models as in Figure 30 as well as linear2 model are plotted. The four 

PreMevE 2.0 model curves pack together tightly and follow the target curve closely, particularly 

during decays of high intensity events. The closeness between the target (black) and each 

forecasted curve depicts the performance of each model. A close inspection reveals that the 

linear2 curve (yellow) is often the one farthest away from the target, showing as almost the 

envelop line of the predictions, while the LinearReg curve (green) appears the closest tracer of 

target at L=4.5 and the MLP curve (red) is the winner for other two Lshells. Nevertheless, it can 

be seen that the forecasted values often lag behind the target at onsets of MeV electron events, 

e.g., the ones on ~ day 988 and 1093 at L = 4.5. 

Figure 33 illustrates how well the onsets of MeV electron events at L=4.5 are captured by 

models. Here forecasts from linear1 is also plotted in blue for comparison. (Linear1, or the 

submodel 1, in Chen et al. (2019) is specifically designed to predict the onsets.) We selected 16 

major events in which MeV electron fluxes increase by > ~10 times, marked out by the vertical 

gray boxes in Figure 33. Linear1 (the blue curve) successfully predicts the onsets of all major 

MeV electron events at this Lshell, indicated by the leading edges of significant sudden 

increments in fluxes fallen within the boxes with a width of 25 hours (also called prediction 

windows). In comparison, although the four models (particularly the LinearReg model in green) 

often predict onsets earlier than linear2, they only successfully predict eight of them (those 

marked with green letter Y), failed seven, and another barely making inside the prediction 

widow. In other words, 1-day forecasts from PreMevE 2.0 predict the onsets at L =4.5 with a 

success rate below 50%, which is better than linear2 but far behind linear1.  
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Two-day forecasts are also presented as in Figure 34 and 35. Again, forecasted results at three 

Lshells in Figure 34  closely trace the target, similar to Figure 32. Interestingly, for all 16 

selected major MeV electron events in Figure 35, the onsets of 11 events are successfully 

predicted by the four models at L = 4.5, while the failed events decrease to 4. This increases the 

success rate of onset prediction to ~70%. From this sense, this new PreMevE 2.0 model is able to 

combine the advantages of both linear1 and linear2 by not only predicting the arrivals of new 

MeV electrons but also specifying evolving flux levels closely, which is a very encouraging 

progress.   

Results from LinearReg and LSTM models at GEO are specifically presented in Figure 36 for 

both 1- and 2-day predictions. For 1-day forecasts in the top three panels, it can be seen that 

fluxes from LinearReg (green) and LSTM (purple) trace observations (black) more closely than 

linear2 (yellow), consistent with their higher PE values as shown in Table 18. Also, forecasts 

from LinearReg and LSTM appear to predict the onsets of MeV electron events about the same 

time as linear1, by comparing the leading edges of spikes of those flux curves. For 2-day 

forecasts, LinearReg PE value in Table 19 suggests that 2-day forecasts from LinearReg model 

are close to 1-day forecasts from linear2, which can be seen from entangled LinearReg and 

linear2 curves as in Panels D-F. Forecasts from the LSTM model is not as good, although they 

still capture the general trend of 1 MeV electrons at GEO.  

Despite Chen et al.’s (2019) and our time window selection, the question of for how long history 

of each particle population affects each other remains open. Figure 37 shows the Spearman 

correlation of the input data (E2, E3, P6, SW speed) and the target (1 MeV electrons) for three 

selected L-shells using different time lags. Spearman correlation does not assume that the data 

follows a particular distribution, so it is a non-parametric measure of monotonic relationship. 
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The results in Figure 37 show that the Spearman correlation between input and target decays 

with longer time lags. The correlation remains stronger for longer periods in inner L-shells (i.e., 

longer memory) and decays faster for outer L-shells (shorter memory). We also note the 

correlation between SW and target gets more significant when moving to outer L-shells, which is 

consistent from our discussions in Section 4.1. Curiously, the shape the correlation curve of E3 is 

similar to the shape of P6, whereas the shape of E2 is similar to the shape of SW. All these 

suggest more robust models can be elaborated with a variation of inputs (window sizes and 

parameter combinations) for different L-shells. In fact, Figure 28 shows that E2+SW are 

apparently the best combination of input for outer shell prediction, whereas other combination of 

input presents stronger values of PE for inner shells. Given a threshold value of ~0.4 for 

significant correlation, it is seen from Figure 37 that a fixed window size for all Lshells may 

range from ~14 (to include the maximum correlation values) up to ~20 (to avoid too long 

history). 

Previously Chen et al. (2019) used 300 time bins to train linear1 and linear2 models to forecast 

MeV electrons. Table 17 shows that linear1 and linear2 models have a weaker forecasting 

performance than the linear models trained with the similar inputs. The difference in 

performance can be explained by the fact that a much larger training set incorporate wider flux 

variations that can be helpful to train the models. Besides, the addition of SW speeds definitely 

helps improve the performance of linear models at large Lshells. 

In this work, we have performed tests on number of units, types of activation functions, and 

number of layers, though it is still possible that a more intensive artificial NN architecture testing 

will find a more appropriate model for the MeV forecasting. Moreover, we hypothesize that 
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more data can be useful to improve models’ performance. We plan to test with observations over 

longer period as well as for higher energy electrons in the next step. 

 

6. Summary and Conclusions 

This new PreMevE 2.0 model aims to forecast MeV electron distributions even with no 

in-situ measurements available, e.g., during the post-RBSP era, and it is designed to be driven by 

easily accessible inputs from long-standing satellite constellations in LEO and GEO as well as at 

the Lagrangian 1 point of Sun-Earth system. Meanwhile, deep learning algorithms have recently 

achieved new state-of-the-art accuracy in many problems partially due to the increase in 

available data. Therefore, it is reasonable for us to foresee an increase in both performance and 

use of deep learning model for MeV electron forecasting as more space weather data has been 

accumulated and made available.  

In this work, we have tested (1) different model input parameter combinations and (2) 

four categories of supervised machine learning algorithms, aiming to upgrade our predictive 

model for MeV electrons inside the Earth’s outer radiation belt. This new PreMevE 2.0 model 

has been demonstrated to make much improved forecasts, particularly at large Lshells, by 

including upstream solar wind speeds to the model’s inputs. Additionally, based on four 

categories of linear and artificial machine learning algorithms, a list of models was constructed, 

trained, validated and tested with 42-month MeV electron observations from NASA Van Allen 

Probes mission. Model predictions over the 14-month long out-of-sample test show that, with 

optimized model hyperparameters and input parameter combinations, the top performer from 

each category of models has the similar capability of making reliable 1- and 2-day forecasts with 
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Lshell-averaged performance efficiency values of ~ 0.87 and ~0.82, respectively. Interestingly, 

the linear regression model is often the most successful one when compared to other models, 

which indicates the relationship between 1 MeV electron dynamics and precipitating electrons is 

dominated by linear components. It is also shown that PreMevE 2.0 can predict the onsets of 

MeV electron events in 2-day forecasts with a reasonable success rate of ~70%. This improved 

PreMevE model is driven by observations from longstanding space infrastructure (a NOAA LEO 

satellite, the solar wind monitor at L1 point, and one LANL GEO satellite) to make high-fidelity 

forecasts for MeV electrons, and thus can be an invaluable space weather forecasting tool for the 

community.  
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Figures 

 

Figure 38: Overview of electron observations and solar wind speeds used in this study. All 
panels present for the same 1289-day interval starting from 2013/02/20. Panel A shows the flux 
distributions of 1 MeV electrons, the variable to be forecasted (i.e., targets). Similarly, B, C, and 
D show count rates of precipitating electrons measured by NOAA-15 in a low-Earth-orbit, for 
E2, E3, and P6 channels respectively. E plots the solar wind speeds upstream of the 
magnetosphere as in the OMNI data set for the period. Data in Panels B-E are model inputs (i.e., 
predictors). 
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Figure 39: Visual generic representation of a single neuron and an artificial neural network. a) 
shows a single neuron that can be split into linear and nonlinear components, as well as the input 
and output data. In the case of a forecasting problem, the inputs can be data representing past 
times 𝑡𝑡−1, 𝑡𝑡−2, 𝑡𝑡−3, 𝑡𝑡−4, and the output is prediction at current time 𝑡𝑡0 or even some future time. b 
shows how a set of neurons constitutes a layer and how the output of a layer can be used as input 
for the next layer.   
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Figure 40: Representation of a recurrent neural network. In LSTM models, the basic unit 𝒉𝒉 is 
also called a memory cell. The input vector 𝒙𝒙 at an arbitrary time 𝒕𝒕 is processed by a memory 
cell 𝒉𝒉 and produces an output 𝒇𝒇(𝒙𝒙). The output produced by 𝒉𝒉𝒕𝒕−𝟏𝟏 is also part of the input for 𝒉𝒉𝒕𝒕. 
Thus, events at time 𝒕𝒕 are processed with information from the previous steps. The output 
produced by 𝒉𝒉 can be used as input to the next layer just like the described for the previous 
models. 
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Figure 41. Temporal correlation between E2, dE2, and 1 MeV electrons fluxes in the first year of 
the interval. Note the leading edges of E2 increments (green) and the spikes in dE2 (yellow) 
generally precede the onsets of MeV electron events with a significant one-to-one temporal 
relationship.   
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Figure 42. PE values for the combined validation and test sets are presented as a function of 
Lshell for different models and input parameters as in Table 17. A. LinearReg models and B. 
LSTM models. PE curve for linear2 model (dashed) is plotted for comparison. The model with 
the best performance—highest overall PE—for each category is highlighted with thick line. 
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Figure 43. Model PE values over the combined validation and test data sets are presented as a 
function of Lshell for the top performers in Table 18 and 17. A. Top performer of each category 
for 1-day forecasts. PE curve of linear 2 for 1-day forecasts is plotted in dashed line for 
comparison. B. Top performer of each category for 2-day forecasts. Note the dashed line is still 
linear2 for 1-day forecasts. LinearReg models are highlighted in thick lines in both panels. 
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Figure 44. Overview of target and 1-day forecasted fluxes across all Lshells. A shows the 
observed flux distributions to be forecasted for 1 MeV electrons. B, C, D, and E show, 
respectively, predictions from the models with the highest PE including linear regression model, 
MLP, LSTM, and CNN models.  
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Figure 45. Overview of target and 2-day forecasted fluxes across all Lshells. All panels are in the 
same format as in Figure 24. 
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Figure 46. One-day forecasts compared to target fluxes at three selected Lshells over the 
combined validation and test period. A, B, and C are for Lshells of 3.5, 4.5, and 5.5, respectively.  
The measured 1 MeV electrons (black) are compared to predictions from the LinearReg, MLP, 
LSTM, and CNN models with highest PE in each category (Table 17) as well as linear2 model 
(yellow). 
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Figure 47. One-day forecasts are compared to target fluxes at one single Lshell (L=4.5) over the 
validation and test period. The time period is separated into three panels to show more details. 
Vertical gray boxes mark out 16 major MeV electron events—the left sides coincide the start of 
incoming MeV electron events and the width is 25 hours—and are also called prediction 
windows. A successful (failed, unclear) prediction of sudden MeV electron increment falls 
within (outside, on the edge) the prediction window and is marked with a green (red, blue) letter 
Y (N, ?).  
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Figure 48. Two-day forecasts are compared to target fluxes at three selected Lshells over the 
combined validation and test period. Same format as Figure 32. Note here linear2 is for 1-day 
forecasts instead of 2-day. 
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Figure 49. Two-day forecasts are compared to target fluxes at one single Lshell (L=4.5) over the 
combined validation and test period. Same format as Figure 33. The gray vertical boxes have a 
prediction window width of 50 hr. Note here linear1 and linear2 are for 1-day forecasts instead 
of 2-day. 
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Figure 50. One-day forecasts (A, B and C) and 2-day forecasts (D, E, and F) are compared to 
target fluxes at GEO over the validation and test period. Same format as Figure 34. Here only 
results from LinearReg and LSTM models are shown for clearness. Note here linear1 and linear2 
are all for 1-day forecasts. 
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Figure 51. Spearman correlation between target and input variables for multiple L-shells. A, B, 
and C show, respectively, L=4.5, L=5.5, and at GEO the values of the Spearman correlation of 
E2, E3, P6, and the solar wind speed with the target 1 MeV electrons for different time lags. 
Each time lag corresponds to 5 hours. The top of each gray area corresponds to correlation value 
~0.4. 
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Tables  

Table 17. Test input parameter combinations for 1-day (25 hours) forecasts. Columns of PE 
values (averaged for all Lshells) are for training data, validation data, test data, validation and 
test data together, and all data, respectively. The last column shows PE for validation and test 
data at GEO only. The 10th model with the highest PE values is highlighted in red. 
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Table 18. Performance of models in four categories for 1-day (25 hours) forecasts. Same format 
as Table 1. PE values for the top performer of each category are highlighted in red, also the top 
performers have their model index numbers marked with asterisk. E246 in the input list indicates 
E2 fluxes at L = 4.6. 
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Table 19. Performance of models in four categories for 2-day (50 hours) forecasts. Same format 
as Table 2. Note the PE values for linear 1 and linear2 are for 1-day forecasts instead of 2-day.  
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Conclusions and final remarks 

I started this dissertation with a chapter that explains the more important concepts of 

machine learning, in general, adding greater details on the internal components of convolutional 

neural networks. The following chapters showed different applications of convolutional neural 

networks ranging from core analysis, fossil identification, and remote sensing analysis, many 

times relying on transfer learning, to exploit tools that can help geoscientists working on 

different fields. Despite my evident predilection to convolutional neural networks, the results in 

chapter 6 show that simpler models should not be overlooked when a new analysis starts. 

Simpler models, including linear regression, are often easier to explain and should serve as a 

starting point in many different tasks.  

This dissertation heavily focused on applications of classification with supervised 

learning, with some applications of regression in the final chapter. I briefly mention other 

machine learning types in chapter 1 that are likely more appropriate for 3D seismic volumes, 

such as convolutional neural networks used for segmentation tasks. As such models have a 

higher dimensional output, e.g. a 2D plane or 3D volume instead of a single scalar, and are the 

basis for many applications of machine learning for seismic facies classification and seismic 

inversion. Also briefly mentioned in the first chapter, reinforcement learning is one of the 

machine learning types producing some of the most curious results, such as beating professional 

players in games highly dependent on strategy. Although I have spoken with researchers 

evaluating the use of reinforcement learning techniques on geoscience problems, I could not find 

any references on the subject. There are many research areas to be explored.  
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