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Abstract 

Mass spectrometry imaging (MSI) is becoming a powerful tool in the bioanalytical studies owing 

to its unique capability to sensitively map the spatial distribution of broad ranges of molecules on 

biological samples. Due to the large size and complex structure of the image datasets, conventional 

analysis methods, such as directly mapping the selected ions, is insufficient to achieve 

comprehensive data analysis. To increase the data analysis efficiency and fully extract the 

information contained in MS image data, advanced data analysis methods are needed. This 

dissertation focuses on the studies using the combined Single-probe MSI method, an ambient MSI 

technique, with advanced data analysis, including multivariate curve resolution (MCR), machine 

learning (ML), and multi-modal imaging fusion. MCR is a technique to decompose the 

hyperdimensional dataset into major components, which possess similar spatial distributions, and 

extract molecules from each component. ML is becoming increasingly popular for analyzing MSI 

data due to its superior capability to deal with big data. Here, both supervised and unsupervised 

ML methods were used to segment the MSI data, providing fast and accurate approaches to image 

segmentation. In addition, image fusion technique was applied to enhance the MSI data analysis, 

in which microscope images and MS images were fused together to increase the spatial resolution 

and correlate the spatial information of protein biomarkers and metabolites. The integration of the 

Single-probe MSI experimental techniques and advanced data analysis methods can potentially 

benefit fundamental research and broad types of applications such as in drug discovery and studies 

of disease.  
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Chapter1. Introduction  

1.1. Background 

Over the past decade, mass spectrometry imaging (MSI) is an emerging technique to visualize the 

spatial distribution of molecules on the biological sample surface1. The MSI techniques can 

provide rich molecular information that cannot be obtained from traditional imaging methods such 

as MRI (Magnetic Resonance Imaging), PET (positron emission tomography), and fluorescence 

imaging, and can tremendously benefit biological, biochemistry and pharmaceutical studies2, 3. 

MSI has the advantage of imaging thousands of molecules including lipids, peptides, proteins, and 

metabolites without labeling4. The chemical information is usually collected by mass spectrometer 

via spot-to-spot analysis or rastering on the defined sample surface5. Then, MSI software is utilized 

to generate ion maps by using m/z (mass to charge ratio) values of target ions and their ion 

intensities, which are illustrated using color scales. To fully understand the MSI data, advanced 

data analysis methods were also developed to segment the image into different regions (e.g., tumor 

region and healthy region) basing on the differences of the mass spectrum profile6.  

1.2. Mass spectrometry imaging technique 

To date, a variety of MSI methods have been developed, and they can be divided into two general 

categories basing on the sampling and ionization environment: ambient and non-ambient 

techniques.  

1.2.1. Ambient ionization technique 

1.2.1.1. DESI: desorption electrospray ionization 

DESI was first developed by Takáts et al7 in 2004, and it opens the gate of directly detecting 

analytes on a biological sample surface under the ambient condition. DESI uses high voltage to 
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generate the organic solvent spray (with the assist of nebulizer gas) on the sample surface, and the 

desorbed ions (e.g., lipids, peptides, proteins, and metabolites) are then transferred by the spray 

droplets towards the inlet of the mass spectrometer (Figure 1-1).  The advantage of DESI is that it 

requires less sample preparation and no need for using matrix molecules. However, due to the size 

of spray, the spatial resolution of this technique is relatively low (about 150-250 µm)8.  

Figure 1-1. Schematic of typical DESI experiment 

The sample solution was deposited from solution and dried onto a PTFE surface, and methanol-

water (1:1 containing 1% acetic acid or 0.1% aqueous acetic acid solution) was sprayed at a flow 

rate of 3 to 15 µL/min under the influence of a high (4 kV) voltage. The nominal linear velocity 

of the nebulizing gas was set to 350 m/s (Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G., 

Science 2004, 306 (5695), 471). 
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1.2.1.2. Nano-DESI: Nano desorption electrospray ionization.  

Julia Laskin’s group developed the Nano-DESI technique,9 which uses the liquid bridge between 

two capillaries to extract analytes on the substrate as shown in Figure 1-210.  During the sampling 

process, the primary capillary maintains the flow to the liquid bridge and the Nano-spray capillary 

transfers the liquid with analytes to the MS inlet. Instead of using gas jet in the DESI, Nano-DESI 

using a small liquid bridge to desorb the analyte, allowing for higher spatial resolution (up to 12 

µm as reported) because of the small contact area between liquid and sample surface. 

Figure 1-2. Schematic drawing of the nano-DESI ion source. 

(Laskin, J.; Heath, B. S.; Roach, P. J.; Cazares, L.; Semmes, O. J., Anal. Chem. 2012, 84 (1), 141-

8). 

 

1.2.1.3. LMJ-SSP: liquid micro junction surface sampling probe 

LMJ-SSP was first introduced by Gary J. Van Berkel11. The schematic illustration of this technique 

was shown in Figure 1-3. LMJ-SSP uses two coaxial tubings to transfer liquid to the sampling 
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analyte when the probe touches the sample surface. As illustrated in Figure 1-3 (b) and (c), the 

channel between the inner and outer tubing is utilized to provide the sampling solvent, and the 

inner tubing is used to aspirate the solvent and connect to ionization interface including ESI12 and 

APCI13. Due to the large size of the liquid junction, the resolution is generally low (around 500-

1000 µm).8 

Figure 1-3. Schematic illustration of the liquid micro-junction surface. 

Schematic illustration showing the close probe-to-surface spacing and narrow liquid micro-

junction used for spot sampling. (Van Berkel, G. J.; Kertesz, V.; King, R. C., Anal. Chem. 2009, 

81 (16), 7096-7101) 

1.2.1.4. LAESI: laser ablation electrospray ionization 

LAESI was developed by Nemes et al 14 in 2007 which is an ionization technique combining the 

infrared laser ablation and electrospray ionization together. Similar to other ambient ionization 

methods, it does not need any sample preparation or pretreatment and the large mass coverage (up 

to 66kDa) is also one of the major advantages. 
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The Schematics of LAESI was shown in Figure 1-4. A mid-infrared laser source was chosen 

because most targets are water-rich molecules and -OH vibration has strong absorption in this 

wavelength region15. Under laser ablation, the analytes on the sample surface were converted to 

gas-phase neutrals and mixed with the orthogonal electrospray. Then, the charged electrospray 

droplet carries the analytes towards MS inlet.  

Figure 1-4. Schematics of laser ablation electrospray ionization. 

(C, capillary; SP, syringe pump; HV, high-voltage power supply; L-N2, nitrogen laser; M, mirrors; 

FL, focusing lenses; CV, cuvette; CCD, CCD camera with short-distance microscope; CE, counter 

electrode; OSC, digital oscilloscope; SH, sample holder; L-Er:YAG, Er:YAG laser; MS, mass 

spectrometer; PC-1 to PC-3, personal computers). The cone-jet regime is maintained through 

monitoring the spray current on CE and adjusting the spray parameters. Black dots represent the 

droplets formed by the electrospray. Their interaction with the particulates and neutrals (red dots) 

emerging from the laser ablation produces some fused particles (green dots) that are thought to be 

the basis of the LAESI signal. (Nemes, P.; Vertes, A., Anal. Chem. 2007, 79 (21), 8098-8106). 
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1.2.1.5. Single-probe imaging technique 

 The Single-probe was a multifunctional sampling probe developed by Zhibo Yang’s group in 

2014. So far, the Single-probe has been applied in many research fields including single cell 

analysis16, mass spectrometry imaging,17 and detection of the extracellular metabolites in 

spheroid18.   

Figure 1-5. Schematic of Single-probe mass spectrometry imaging. 

(a) Diagram and photograph of the Single-probe showing the various features of the device. (b) 

Photography of the general setup of the Single-probe during MSI measurement. (c) Schematic of 

the Single-probe MSI system. (Rao, W.; Pan, N.; Yang, Z. B., J. Am. Soc. Mass Spectrom. 2015, 

26 (6), 986-993.) 
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The working principle of the Single-probe MSI is illustrated in Figure 1-5. In general, during the 

sampling, the sampling solvent is continuously delivered from one channel to form a liquid surface 

junction between the probe tip and sample surface, where the liquid junction extracts the analytes. 

The extracted molecules are delivered to the nano-ESI emitter through the other channel for MS 

analysis. The highest spatial resolution can be obtained this technique is 8.5 µm17. It worths to note 

that the tip size is adjustable according to different experiments. The tip size is usually smaller 

than 10 µm in the single cell analysis to allow the tip insert into an individual cell; in the imaging 

experiment, the tip size is about 50 µm to eliminate the clogging issue.  

1.2.2. Non-ambient ionization technique 

1.2.2.1. MALDI: matrix-assisted laser desorption ionization 

MALDI, one of the most popular non-ambient ionization techniques due to the ability to measure 

intact masses of a wide molecular mass range of biological molecules19, was first named by Franz 

Hillenkamp 

Figure 1-6. Diagram for an automated MALDI-IMS system used for direct analysis of 

pharmaceuticals in tissues 

 (Hsieh, Y.; Chen, J.; Korfmacher, W. A., J. Pharmacol. Toxicol. Methods 2007, 55 (2), 193-200). 
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and Michael Karas 20 in 1985. The first MALDI mass spectrometry imaging was conducted by 

Richard M. Caprioli to locate the peptide and protein on the biological sample surface21.  

The schematic of the MALDI is shown in Figure 1-6.  The matrix crystal absorbs the laser beam 

energy, resulting in the desorption and ionization of the analytes embedded into the crystals 21, 22. 

1.2.2.2. SIMS: secondary ion mass spectrometry 

SIMS is another well-known non-ambient ionization technique, and the first development of this 

technique is mainly contributed by Benninghoven in 1970s23. As shown in Figure 1-7, SIMS uses 

the primary ion beam (e.g. He+, Ne+, and C60
+) to bombard the sample surface, and the secondary 

ions (fragments) are generated if the kinetic energy is high enough (e.g., higher than the bond 

energies of analytes) 24. Due to the extremely small size of the ion beam, SIMS has the highest 

spatial resolution (nm level) as reported25  

Figure 1-7.A schematic drawing of the secondary ion emission process initiated by the impact 

of a primary ion. 

Extensive fragmentation occurs near the collision site producing mainly atomic particles. Away 

from the point of impact collisions become less energetic resulting in the emission of larger 

molecular fragments. (Belu, A. M.; Graham, D. J.; Castner, D. G., Biomaterials 2003, 24 (21), 

3635-3653). 
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1.3. MSI Application  

Due to the increasing amounts of demands in biological research, a number of MSI methods have 

been developed for broad ranges of applications. So far, MSI techniques play important roles in 

many research fields (e.g. metabolomics26, 27, proteomics28, natural product29, and drug discovery30) 

mainly due to its unique capability of localizing molecules on the biological sample.  

1.3.1. Metabolomics 

Metabolomics is the systematic study focusing on small molecules (< 1500 Da) in biological 

samples. As the endpoint of “omics cascade”, metabolites can directly reflect the status of a cell, 

tissue, organ, and whole-body under the different environments31, and they become the interest of 

biology and biochemistry studies. Although, to date, the mainstream of metabolomics methods are 

still dominated by MS31 (Mass Spectrometry), especially LC-MS (Liquid Chromatography Mass 

Spectrometry) and GC-MS (Gas Chromatography Mass Spectrometry), imaging techniques (e.g. 

NMR (Nuclear Magnetic Resonance), PET (Positron emission tomography), and fluorescence 

microscopy) also serve as indispensable tools in the metabolomics study, mainly because that the 

spatial distribution of molecules within the organism is essential to decode the complex 

biochemistry process26. However, these above imaging techniques have low coverage of molecule 

even though with high sensitivity of mapping molecules location32. MSI, with high detection 

sensitivity and broad molecular coverage, becomes a powerful platform to study metabolomics. 

For example, DESI was implemented to determine the spatial distribution of fatty acids and 

phospholipid in mouse brain33. Although MALDI is rarely used for low-molecule-weight (<500) 

metabolites because of the matrix effect, it was still utilized to map some lipids molecules34.  
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1.3.2. Proteomics 

Proteomics focuses on the large-scale study of proteins or peptides in biological samples35, and it 

is a very important platform for biological and biochemistry studies36. Like metabolomics, the 

conventional methods almost based on mass spectrometry coupled with some prior separation 

techniques, such as GC-MS, LC-MS, and CE (capillary electrophoresis)-MS37. However, due to 

the homogenized sample preparation process, these methods lack the protein spatial information, 

which is also very significant in the proteomics study38. MSI, as the MS-based method, has the 

intrinsic advantages over the traditional protein imaging methods on chemical specificity and 

coverage. For example, immunohistochemistry (IHC) and fluorescence microscope image need 

target proteins prior to experiments28.  

So far, there are many proteomics studies using MSI technique especially MALDI MSI due to its 

ability of detecting peptides and proteins. For example, Groseclose et.al28 used MALDI MSI to 

determine proteins’ expression and relative quantification of multiple lung cancer patient tissues. 

The comparison of protein profiles may provide important information of different disease status 

and evaluation of clinical treatment effectiveness.  

1.3.3. Natural product and drug discovery 

Plants, microbes, and animals are always the main sources of natural products in drug discovery. 

Since 1994, more than half of the discovered drugs belong to natural products or their derivatives 

39, 40. Traditionally, drug discovery from natural product requires complex sample preparation, 

such as multiple times extraction from bulk sample, concentration, and separation basing on 

molecules’ different properties (e.g., affinity, polarity), before determining the structure of 

compounds.29 Recently, MSI becomes increasingly more important in drug screening and 

detection of drug metabolites in tissue.  Compared with conventional methods, MSI has unique 



11 

 

advantages such as less sample preparation process26 and determining the spatial distribution of 

natural products or drugs on tissue41 as mentioned in section 1.2.   To date, a number of studies 

have been done using MSI to achieve drug distribution in animal samples. For example, MALDI 

MSI was implemented to determine the spatial distribution of Raclopride, a dopamine D2 receptor-

selective antagonist42, in multiple organs of dosed mice43. The results of MALDI MS images 

provide detailed information on Raclopride accumulated differently at different organs, which can 

potentially benefit early drug development. Another example is using DESI imaging to identify 

the distribution of Clozapine and its metabolites in mice after oral dose (50mg/kg)44. From these 

studies, Clozapine was found exist in whole body, however, the N-dimethyl metabolites of 

Clozapine were only observed in the lung sections, indicating the unique ability of MSI in the 

pharmaceutical research.  

1.4. Data analysis 

MSI data generally contain large data size and high dimensional structure due to their inherent 

complex chemical and special information5. To comprehensively analyze the MSI data and extract 

the hidden information, many methods and software packages are developed.  

1.4.1. Methods 

MSI data contain rich chemical information (e.g., m/z values and intensities of large numbers of 

ions) and spatial information (e.g., 2D or 3D coordinates). The most common method to construct 

an ion image is to select a certain m/z value and generate its spatial distribution along with its 

intensity7. However, this method needs prior knowledge to select the target ions. In addition, is 

relatively time-consuming to generate every ion’s image in order to fully achieve the analysis of 

MSI data45. To overcome this drawback, multivariate analysis has been utilized to mine MSI data. 

Among them, the most commonly used is the Principle Component Analysis (PCA)46.  In PCA 
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results, most information of the image can be represented by the score images of first a few 

components.  For example, Allison L. Dill et al47 used PCA to successfully differentiate the bladder 

cancer tissue from normal tissue in the DESI imaging data. However, the intrinsic disadvantage of 

PCA is that the negative value in the score plot does not have any physical meaning6. Probabilistic 

latent semantic analysis (pLSA) was utilized to solve this problem; however, it needs define the 

numbers of the component before analysis48. In addition to PCA and pLSA, other clustering 

methods (Hierarchical Clustering49, k-means50, and fuzzy c-means51) are used to segment the tissue 

according to the mass spectra profiles, which are very important for MSI data analysis. Recently, 

Machine learning methods, including both supervised and unsupervised algorithms, have also been 

implemented to MSI data analysis due to their advantage of dealing big data. Unsupervised 

machine learning is used to cluster imaging pixels into different groups according to their 

similarity and does not require any prior knowledge52. For supervised machine learning, training 

data are needed to train and optimize the machine learning model, prior to predicting large 

unknown datasets. For example, Zhou et al53 using supervised machine learning to differentiate 

the fingerprints of Chinese male and India female from 194 samples with about 90% accuracy. 

1.4.2. Commercial and in-house developed software packages  

So far, a number of software packages focusing on MS imaging data analysis have been developed 

and they can be generally divided into commercialized software packages or in-house developed 

data analysis methods. Commercialized software is usually developed by companies. For example, 

BioMaps, a free commercial imaging data analysis software (https://ms-imaging.org/wp/biomap/), 

was first developed by Novartis to analyze MRI data since 199654. After decades of modification, 

it was also utilized to process different types of imaging data such as optical, PET, CT (Computed 

tomography), NIRF (Near-infrared Fluorescence Imaging) and MSI. Besides generating the target 
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ion map, BioMaps has other important functions, including Coregistration, analysis spectra 

difference among different ROI (region of interest), and database searching. FlexImaging is an 

instrument software developed by Bruker to acquire and process MALDI imaging data such as 

data classification in proteomics researches.28 Other instrument manufacturers also developed 

software packages compatible with their own instruments. For example, Shimadzu and Thermo 

Fisher developed Axima 2 Analyze and ImageQuest, respectively55. Generally, all these software 

packages have ion image reconstruction functions and some common data analysis methods. 

In-house developed tools are also commonly used for MSI data analysis. A number of research 

labs utilize their own in-house developed script, which is written in MATLAB, R and Python 

languages, to process the MSI data. For example, MCR-ALS (multivariate curve resolution 

alternating least squares), a multivariate data analysis in Bioinformatics ToolBox of MATLAB, is 

developed by Tauler et al56 in 2005 and it has been applied to analysis MSI data57.  The merits of 

this method are that it not only extracts the major component of the image but also group the ions 

in each component which has a similar distribution. In addition, some data segmentation methods, 

which are also known as unsupervised machine learning (e.g., k-means50 and Hie                                                         

rarchical Clustering49), were coded in R or MATLAB to process the MSI data.   
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Chapter2. Towards Enhanced Metabolomic Data Analysis of 

Mass Spectrometry Image: Multivariate Curve Resolution and 

Machine Learning 

 

This project was a collaborative work that consists of the following authors: Tian, Xiang; Zhang, 

Genwei; Shao, Yihan; Yang, Zhibo  

Genwei Zhang conducted the machine learning analysis in Figure 2-4 and Figure 2-5 

2.1.  Abstract 

Large amounts of data are generally produced from mass spectrometry imaging (MSI) experiments 

obtaining the molecular and spatial information of biological samples. Traditionally, MS images 

are constructed using manually selected ions, and it is very challenging to comprehensively 

analyze MSI results due to their large data sizes and highly complex data structures. To overcome 

these barriers, it is obligatory to develop advanced data analysis approaches to handle the 

increasingly large MSI data. In the current study, we focused on the method development of using 

Multivariate Curve Resolution (MCR) and Machine Learning (ML) approaches. We aimed to 

effectively extract the essential information present in the large and complex MSI data and enhance 

the metabolomic data analysis of biological tissues. Multivariate Curve Resolution-Alternating 

Least Squares (MCR-ALS) algorithm was used to obtain major patterns of spatial distribution and 

grouped metabolites with the same spatial distribution patterns. In addition, both supervised and 

unsupervised ML methods were established to analyze the MSI data. In the supervised ML 

approach, the Random Forest method was selected, and the model was trained using the selected 

datasets based on the distribution pattern obtained from MCR-ALS analyses. In the unsupervised 
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ML approach, both DBSCAN (Density-based Spatial Clustering of Applications with Noise) and 

CLARA (Clustering Large Applications) were applied to cluster the MSI datasets. It is worth 

noting that similar patterns of spatial distribution were discovered through MSI data analysis using 

MCR-ALS, supervised ML, and unsupervised ML. Our protocols of data analysis can be applied 

to process the data acquired using many other types of MSI techniques, and to extract the overall 

features present in MSI results that are intractable using traditional data analysis approaches. 

Figure 2-1. Graphic abstract 

 

2.2.  Introduction 

MS imaging (MSI) is a powerful tool to construct the spatial distribution of wide ranges of 

molecules in biological tissue samples. Among all MSI methods that have been developed, matrix-

assisted laser desorption ionization (MALDI) and secondary ion MS (SIMS) are the most widely 

used sampling and ionization approaches in non-ambient methods 1. MALDI has broad detection 

ranges of molecular weight (>500,000 Da)2, whereas SIMS provides the highest spatial resolution 

(<700 nm) 3. Ambient MSI methods, such as DESI (desorption electrospray ionization) and LAESI 
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(laser ablation electrospray ionization), require minimum or no sample-preparation, and they can 

be conveniently used in atmospheric pressure conditions 4. MSI experiments provide rich chemical 

information of the biological sample surface, and the experimental datasets generally have very 

large sizes and complex high-dimensional data structures 5, 6. For example, depending on the 

spatial resolution (100 ̶ 5 µm), a 1 mm2 MADLI MS image is composed of pixels ranging from 

100 to 4x104 7.  Particularly, each pixel represents a complex chemical profile with the specific 

spatial information, and the size of a MS image can range from hundreds of megabytes to several 

gigabytes8. Conventional data analyses are typically carried out by focusing on the selected ions 

among all species detected from samples. However, it is extremely difficult to manually conduct 

a comprehensive analysis to extract overall features from MSI data through traditional approaches.  

To effectively extract essential chemical and spatial information from large and complex MSI data, 

a number of statistical analysis methods, such as Principal Component Analysis (PCA)9, 10, 

clustering8, and other multivariate analysis11, 12, have been utilized in previous studies. PCA can 

be used to determine the major molecular components contributing to the differences of spatial 

distributions. However, the applications of PCA to MSI data analysis are limited due to same 

drawbacks: the negative values of PCA score plots have no physical meaning (i.e., the mass 

intensity cannot be negative), incapability to define the region of interest, and inconsistence with 

the corresponding loading plot 13, 14. To overcome these drawbacks, other methods such as 

probabilistic latent semantic analysis (pLSA) and non-negative parallel factors analysis (NN-

PARAFAC), can be applied to achieve non-negative components decomposition; however, the 

number of components needs to be specified prior to analysis1, 15. Unsupervised clustering methods, 

such as Hierarchical Clustering 16, k-means 17, fuzzy c-means 18, and Iterative Self-Organizing 

Data Analysis Technique (ISODATA) 19, share a common drawback: they cannot yield the spectra 
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(i.e., molecular information) in each cluster8. In contrast, Multivariate Curve Resolution (MCR) 

algorithms, a family of methods for analyzing mixtures, have been proven as effective approaches 

to overcome this limitation. MCR techniques resolve mixed datasets by obtaining the number of 

components, and the signal profile and abundance of each component 11. The first application of 

MCR was to investigate two-compound mixtures in UV spectroscopy 20. Then, a number of MCR 

algorithms have been developed to analyze complex data. For example, Multivariate Curve 

Resolution-Alternating Least Squares (MCR-ALS), one of the most popular MCR methods 

utilizing ALS algorithm, has been used in many research fields 21 such as analyzing data from LC-

MS 22, fluorescence 23, and MSI experiments 12. Among all these applications, MCR-ALS has been 

successfully used to group major chemical components possessing similar spatial distributions 

from MSI studies 11. This method can significantly improve the data analyzing efficiency, and 

potentially provide more information for a better understanding of biologically relevant 

metabolites in terms of their spatial distributions in tissues 24, 25. However, due to relatively 

intensive computation needed, MCR-ALS is unlikely to be the most efficient approach for the 

analyses of large sizes of MSI results 11. For example, MCR needs to be separately performed to 

analyze individual sets of data obtained from multiples slices of the same tissue (i.e., 3D MSI), 

which share a large amount of similarities.  

Due to the rapid growth of applications of AI (Artificial Intelligence) in a broad range of areas, 

using ML approaches to analyze MSI data has become an emerging trend 26-29. ML uses 

computational approaches to learn from complex instance data, identify patterns and relationships 

present within the instance data, and achieve predictive data mining 30. ML has been applied in 

many branches of biomedical research, including cancer prediction and prognosis 31, genetics and 

genomics 32, proteomics 33, and medical imaging 34. However, due to the large size and high 
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complexity of MSI data as well as the infancy of ML applications, this promising data analysis 

method has only been utilized in a very few MSI studies 26-29.  

In general, ML methods can be divided into two categories: supervised ML and unsupervised ML. 

Supervised ML predicts features of a dataset after the model is trained using the labeled training 

data (i.e., datasets of ions with assigned tissue types or regions). Data analysis using supervised 

ML usually involves three steps: training data selection, model optimization/validation, and 

prediction of new dataset. Supervised ML has been used in MSI data analysis such as in DESI 

MSI studies to define the histological subtypes and estimate tumor cell abundances in a gliomas 

tissue 26. Most importantly, a trained ML model can be employed to rapidly process 3D MSI data 

collected from a series of sections of the same tissue, eliminating time-consuming procedures 

needed in the multivariate analysis of individual MS images. Multiple supervised ML methods, 

such as support vector machines (SVM)35 and Random Forest36, have been developed for data 

analysis. In our study, the Random Forest algorithm was selected as the supervised ML tool 

because of its robustness of classification without over-fitting issues37, high prediction accuracy, 

and capability of handling a large number of input variables38. Compared with supervised ML, 

unsupervised ML (i.e., unsupervised clustering) methods can be used to directly cluster data into 

major components without known sample labels in advance, suggesting they are appropriate 

approaches to analyzing MSI experimental results without labels. Common unsupervised ML 

methods include k-means, PAM (Partitioning Around Medoids), CLARA (Clustering Large 

Applications), and DBSCAN (Density-based Spatial Clustering of Applications with Noise). k-

means is one of the most widely used methods, but it is sensitive to anomalous data points and 

outliers (i.e., data points that are distant from the mass of data)39. Compared with k-means, PAM 

is a more robust method to process data containing outliers. As an extension of PAM, CLARA has 
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been developed to effectively analyze big data (e.g., more than several thousands of observations), 

and it is superior to other methods for its capability of self-optimizing the number of major 

components 40. With its superior capability of picking up system outliers, DBSCAN has also 

become one of the most cited data clustering algorithms 41.  

Generally, unsupervised ML approaches are more likely to be suitable to analyze large sizes of 

MSI data. However, due to the intrinsic high-dimensionality of MSI datasets, which contain both 

spatial (i.e., x, y-coordinates) and molecular (i.e., m/z values with their intensities) information of 

each pixel, these methods cannot be directly applied to process the raw MSI data. Instead, the 

dimensionality reduction of MSI data is needed before unsupervised ML can be conducted. The 

common dimensionality reduction techniques include the aforementioned PCA, SOM (Self-

Organized Maps), and t-SNE (t-distributed Stochastic Neighbor Embedding). Among these 

techniques, PCA, as a common tool for linear dimensionality reduction, is widely used to extract 

key information from complex data, and to visualize them in low-dimensional score plots of top 

major components. However, the drawbacks of the PCA score plot as mentioned above indicate 

that it is an inadequate tool for the dimensionality reduction of MSI data. SOM reduces the 

dimensionality of imaging data by projecting each intensity imaging to a fixed grid (hexagonal or 

rectangular topology), resulting in a loss of the variants relationship (i.e., spatial information of 

clusters) 28, 42. As a nonlinear dimensionality reduction technique, t-SNE is particularly suitable 

for clustering and visualizing highly complex multi-dimensional data 43. With crucial information 

in the high-dimensional datasets retained in the low-dimensional datasets upon dimensionality 

reduction 28, 44, t-SNE shows a more desirable dimension-reducing ability.  

The potential applications of MCR and ML methods to a variety of areas, such as 

pharmacometabolomics, biomarker discovery, disease diagnosis, and clinic efficacy monitoring, 
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have been reported 45-49. Particularly, MCR-ALS 11 and ML 27, 29 techniques have been recently 

applied to MSI data analysis. In the current study, we used MCR-ALS and ML (both supervised 

and unsupervised ML) approaches to carry out enhanced metabolomics analysis of high-spatial 

resolution (8 ± 2 µm) MSI data of mouse kidney sample. The datasets analyzed in this study were 

adopted from our previously published work using the Single-probe MSI method 50, which is a 

versatile technique that has been used in a variety of studies such as MS imaging 50, 51, live single 

cell analysis 52, 53, and extracellular metabolites measurement in live multicellular spheroids54. In 

the current study, MCR-ALS was first utilized to group the molecular species possessing similar 

spatial patterns within MS images. Then, to establish an efficient platform for more comprehensive 

analysis, we performed both supervised and unsupervised ML studies. The Random Forest method 

was used in the supervised ML approach after MCR-ALS analysis, whereas DBSCAN and 

CLARA were utilized to cluster datasets upon dimensionality reduction using t-SNE. Our 

application of machine learning methods can be greatly helpful to reveal the hidden information 

present in large amounts of MSI data, which can potentially benefit biochemical and medical 

studies.   

2.3.  Data Pre-Processing and Analysis 

The experimental data used in the current study were obtained from our previous work50, which 

describes detailed experimental protocols of the Single-probe fabrication, tissue sample 

preparation, and MSI data collection. A brief description of experimental protocols is provided in 

the Supporting Information.    

2.3.1.  Flow of MSI Data Analysis 

As summarized in Figure 2-2, the complete procedures of our MSI data analysis include four major 

steps: data pre-processing, MCR-ALS analysis, supervised ML, and unsupervised ML. 1) Data 



23 

 

Pre-processing. We carried out the pre-processing of MSI raw data to obtain datasets that are 

suitable for the subsequent analyses. 2) MCR-ALS analysis. MCR-ALS algorithm was used to 

analyze datasets upon accomplishing the pre-processing step. 3) Supervised ML. We labeled 

partial MCR-ALS results, and used them as the training data (Training Data Selection) for the 

optimization of the supervised ML model (Random Forest). The trained model was then used to 

classify the entire histological regions of MSI data (Tissue label prediction). The spatial 

distribution of clusters was constructed using the classified datasets according to their tissue labels. 

Supervised ML results were compared with manually assigned tissue labels under the assistance 

of parametric t-SNE (henceforth referred visualization). 4) Unsupervised ML. We used t-SNE 

algorithm to reduce the dimensionality of the high-dimensional datasets obtained from the pre-

processing step, and then used unsupervised ML (CLARA and DBSCAN clustering) to analyze 

the lower-dimensional datasets. Similarly, the spatial distribution of clustered datasets was 

constructed according to their tissue labels. 

Figure 2-2. Flow chart of MSI data analysis 
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2.3.1.1.  MSI Data pre-processing 

In the data pre-processing step, the original MSI data were converted into a format that is suitable 

for subsequent processing. Technical details of the data pre-processing were provided in the 

Supporting Information. To import the MSI data into the pre-processing platform in MATLAB, 

the original MSI data (.raw) was converted to the imzML format using imzMLconverter software 

55. Data pre-processing (Figure. 2-2), including smoothing, peak identification, noise removal, 

peak alignment, and normalization, was carried out using the built-in functions of MATLAB 

Bioinformatics Toolbox by following the general procedures described by Robert C. Glen et al. 28. 

Specifically, Savitzky-Golay filtering was used to perform the smoothing of spectral profiles. Peak 

picking was conducted using the ‘mspeaks’ function, and the peak assignment was determined by 

the sign changes of the first derivatives of the spectral profiles. Noise signal was labeled through 

median absolute deviation (MAD) estimation and removed by setting the threshold of noise as the 

signal-to-noise ratio (S/N) less than five (S/N<5). For peak alignment, the ‘mspalign’ command 

was applied to the spectra obtained from the previous steps. The default estimation method, 

histogram (kernel density function), was used to determine the peak locations (i.e., m/z values). 

For the comparison of relative ion intensities among different MS scans, peak intensities were 

normalized to the total ion current (TIC). Upon accomplishing the data pre-processing, an aligned 

data matrix (14,100 × 182) was obtained for subsequent MCR-ALS analysis: one dimension of the 

matrix is the number of aligned m/z values (182), and the other is the number of pixels (188 pixel 

x 75 line =14100). 

2.3.1.2.  MCR-ALS analysis 

To conduct MCR-ALS analysis, Multivariate Curve Resolution Toolbox, developed by Tauler et 

al.56, running under MATLAB environment was used to analyze the data matrix obtained from the 
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pre-processing step. To better differentiate low intensity ions in the MCR plots, a logarithmic 

transformation (log2(x)) of ion intensities in the data matrix (182 x 14100) was conducted prior to 

the MCR-ALS analysis. The Singular Value Decomposition (SVD) approach was used to estimate 

the appropriate number of eigenvalues (i.e., components), and each component represents a unique 

pattern of the spatial distribution of a group of ions. Ions with similar spatial distribution were 

assigned to the same group. Five major components (explained variance of 97.7%) were found to 

be an optimal number of coexisted patterns. The spatial distribution of each component was 

exported from the MCR-ALS through a user-friendly interface, and the corresponding ions were 

shown as mass spectra using R language (details are provided in the SI).  

Figure 2-3. MSI data analysis using selected ion or MCR methods 

(A) Optical image of a mouse kidney illustrating three histological regions: inner medulla, outer 

medulla, and cortex. (B) An example of MS image constructed using the selected ion ([PC (38:5) 

+ Na]+; m/z 814.5726). (C) An example of spatial distribution pattern obtained from MCR-ALS 

analysis. (D) The mass spectrum of the grouped molecules possessing the same pattern of spatial 
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distribution shown in C. Note: Figs. A and B are adapted from “High Resolution Tissue Imaging 

Using the Single-probe Mass Spectrometry under Ambient Conditions,” by Wei Rao, Ning Pan, 

and Zhibo Yang, 2015, Journal of the American Society of Mass Spectrometry, 26, 986-993 [50]. 

Copyright 2015 by The American Society of Mass Spectrometry. 

 

2.3.1.3. Supervised Machine Learning (ML): Random Forest 

Training data and testing data (Training Data Selection; Table S2-1) were manually selected from 

three classified histological regions of mouse kidney (Figure 2-4A) determined by MCR-ALS 

analysis to provide input features (intensities of ions) and output labels (inner medulla, outer 

medulla, or cortex). The Random Forest approach provided in R language was trained using the 

selected training data. To validate this supervised ML model, testing data were used to test the 

accuracy of prediction. Three trails have been executed, and the average prediction accuracy is > 

99% (Table S2-2). Then, the optimized model (Optimized Decision Forest) was used to process 

the rest of the datasets for tissue label prediction, i.e., to classify ions in the MSI data into each of 

three regions. To provide clear physical meanings of the overall results obtained from the 

supervised ML approach, the predicted tissue labels (Figure 2-4B) were transformed into 

histological tissue distribution using the R language. 

The supervised ML results were verified through t-SNE visualization. t-SNE has become a popular 

method to transform the high-dimensional structures of data into two- or three-dimensional 

formats that can be conveniently visualized. In our studies, we used t-SNE, which is provided as a 

built-in function in Statistics and Machine Learning Toolbox of MATLAB, to visualize the results 

from both manually assigned tissues labels (Figure 2-4A) and ML-generated (Figure 2-4B) upon 

finishing the dimensionality reduction (Figure 2-4C and 2-4D). As a validation of t-SNE results, 

the OPTICS (Ordering Points To Identify the Clustering Structure) approach was also used to 
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index the data points in order to identify the clustering structure (Figure S2-2B). The optimized 

parameters of t-SNE and OPTICS were detailed in the Supporting Information.  

2.3.1.4 Unsupervised machine learning (ML): CLARA and DBSCAN 

We performed CLARA analysis using R, provided within package ‘cluster’, with six optimal 

clusters and the sample size equals to 50. CLARA results were visualized using the R language 

(Figure 2-5A). DBSCAN, another popular unsupervised ML method with an excellent capability 

of picking up system outliers, was used to perform a comparison with CLARA. Similarly, 

DBSCAN results were visualized using the R. Finally, to interpret the physical meanings of all the 

clustered data from CLARA and DBSCAN analyses, the classification maps of mouse kidney 

tissue were constructed using the R (all packages can be found at https://cran.r-

project.org/web/packages). As a comparison of t-SNE results, PCA was also used to reduce the 

dimensionality of the MSI data; however, the boundaries among clusters (Figure S2-7) are not as 

clear as those from t-SNE results (Figure 2-4C), indicating that PCA is inadequate to visualize 

high dimensional MSI dataset. 

2.4.  Results and Discussion 

2.4.1. MCR-ALS approach grouped molecules with similar spatial distribution pattern from MS 

images. 

Figure 2-3A and 2-3B, which are adopted from our previous publication 50, illustrate the optical 

image of kidney slice (with the analyzed area in MSI experiments) and the MS image of a selected 

ion ([PC(38:5) + Na]+, m/z 814.5726), respectively. Three different histological regions (i.e., inner 

medulla, outer medulla, and cortex) can be generally observed from the optical image. Using the 

high-spatial resolution (8.5 μm) of our Single-probe MSI techniques, 14100 pixels (equivalent to 

https://cran.r-project.org/web/packages
https://cran.r-project.org/web/packages
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14,100 mass spectra) were obtained from the MS image with an area of ~1.0 x 1.0 mm2 (Figure 2-

3A). Data analysis was carried out using a Dell Precision T5500 work station (processor: dual Intel 

(R) Xeon(R) CPU X5650 2.66 GHz; memory (RAM): 72.0 GB). 182 common ions were generated 

from pre-treatment for the subsequent analysis as outlined in Method 2.1.2. A complete MCR 

analysis of the pretreated MSI data took about 20 minutes to accomplish. MCR-ALS approach was 

used to determine the number of major components present in the data matrix. Using the Singular 

Value Decomposition (SVD) method (Figure S2-5), we concluded that five eigenvalues (i.e., 

components) were sufficient to represent the majority information (explained variance of 97.7%, 

Figure S2-6 and Table S2-7) of the entire MSI dataset. Species in each component (i.e., m/z values 

with their corresponding relative intensities) were extracted from the data matrix. For example, a 

component obtained from MCR-ALS analysis (Figure 2-3C) exhibits very similar spatial features 

as a MS image constructed using a selected ion (m/z 814.5726) within outer medulla (Figure 2-

3B) 50. In fact, this selected ion is among many others with very similar spatial features as 

summarized in Figure 2-3D. It is very likely that compounds present similar spatial distribution 

have correlated metabolomic functions. For example, previous studies indicate that PC (40:6) and 

PC (36:4) have high abundances in the kidney outer medulla, and they both are upregulated in 

response to cisplatin treatment by shaping membrane-protein function57, 58. The MCR-ALS 

classification can potentially benefit the future discovery of the metabolomic pathways among 

species possessing similar patterns of spatial distribution. We summarized the top 15 most 

abundant ions grouped in the component 1 in Table 2-1, and included m/z values from MCR 

analysis, experimental m/z values, and tentatively assigned metabolites acquired from METLIN 

(https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage).59 In addition, the loading 

scores were provided to illustrate the relative contribution of each metabolite to component 1. 

https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
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Using similar approaches, the other four major components representing the spatial and molecular 

features of the MS images for the inner medulla and cortex regions were provided in the Supporting 

Information (Figure S2-1 and Table S3-S6). 

 

Figure 2-4. MSI data analysis using supervised ML method. 

(A) Training data for supervised ML were manually selected from three regions (inner medulla, 

outer medulla, and cortex) based on the MCR-ALS results. (B) Histological tissue distribution 

constructed using supervised ML (Random Forest) results. (C) The clustering capability of MCR-
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ALS method was evaluated using t-SNE. (D) The clustering capability of the supervised ML 

method was evaluated using t-SNE. 

 

Figure 2-5. MSI data analysis using unsupervised ML methods. 

(A) CLARA was used to cluster the MSI data into six major groups upon optimization. (B) 

Histological tissue distribution constructed using CLARA results. (C) DBSCAN was applied to 

cluster the MSI data into seven major groups. (D) Histological tissue distribution constructed using 

DBSCAN results. 
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2.4.2. Supervised ML utilized MCR-ALS results and improved the discovery of subtle features 

from MSI data. 

Since the quality of training data can significantly affect the ML prediction capability, it is crucial 

to carefully select the appropriate training datasets representing characteristics of the overall data. 

We selected the datasets according to results obtained from the MCR-ALS analysis, and divided 

them into training and testing datasets (Table S2-1), which are grouped m/z values of species 

present on each of those three regions on the tissue slice (i.e., inner medulla, outer medulla, and 

cortex) (Figure 2-4A). A Random Forest classification model was trained using the training 

datasets. We evaluated the accuracy of this trained model using the testing datasets and achieved 

a high predictive accuracy (> 99%; details are provided in Table S2-2). This trained Random Forest 

model was then applied to the rest of the MSI datasets to predict their tissue labels, i.e., to classify 

the detected molecules to each of those three physiological regions on tissue slice. To interpret the 

physical meanings of the supervised ML results, classified data were used to generate the tissue 

classification map, in which three different colors represent three physiological regions on tissue 

(Figure 2-4B). Because the training datasets were selected based on MCR-ALS results, the 

supervised ML generally reproduced the overall features of three histological regions. Particularly, 

the spatial distribution of molecules in the inner medulla exhibited similar features that can be 

observed in a spatial pattern obtained from MCR-ALS analysis (Figure 2-4A). Moreover, our 

supervised ML analysis enhanced some subtle features in MS images, and generated clearer 

boundaries between different regions.  

To verify that the supervised ML method provides more capability of classification than MCR-

ALS approach, t-SNE has been employed to process the MCR-ALS results. Since t-SNE requires 

tissue labels to be known prior to plotting the t-SNE clustering results, three types of tissue labels 
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(i.e., inner medulla, outer medulla, and cortex) were assigned to the 14,100 scans based on the 

MCR-ALS results (Figure 2-4A). Using the t-SNE to cluster these labels, overlapped color dots 

were observed between the outer medulla and inner medulla or cortex (Figure 2-4C), indicating 

unclear assignments of boundary labels can arise from manually assigned tissue labels solely based 

on the MCR-ALS results. In contrast, for tissues labels predicted from the supervised ML analysis, 

an improved t-SNE cluster map was generated (Figure 2-4D), implying less biased determination  

of boundary pixels was achieved using supervised ML rather than human intuition. More 

importantly, the established ML models can be directly used for efficient analyses of many other 

MS images obtained from the same tissues such as slices used in 3D MSI studies of a given tissue.  

Table 2-1. Top 15 most abundant ions grouped in component 1 (Fig. 2-3D) 

 *PC: Phosphatidylcholines, PE: Phosphatidylethanolamine, SM: Sphingomyelin, PG: 

Phosphatidylglycerol 

 

2.4.3. Unsupervised ML extracted more molecular and spatial information from MSI data. 

Supervised ML requires training data to optimize the model prior to any applications. However, 

additional experiments, such as MCR-ALS or H&E staining, are needed to provide histological 

MCR (m/z)      Experiment(m/z)         Tentative assignment*        Exact (m/z)            ppm      Loading Score 

792.5428 792.5911 PC(18:1/20:4) 792.5902 1 0.6251 
786.6442 786.6018 PC(18:1/18:1) 786.6007 1 0.3268 
793.6425 793.5951 PG(22:0/15:0) 793.5953 0 0.3146 
834.6404 834.6015 PC(20:4/20:2) 834.6007 0 0.2185 
818.6404 818.6063 PC(18:1/22:5) 818.6058 0 0.1934 
814.5414 814.5729 PC(18:1/20:4) 814.5721 0 0.1878 
758.5451 758.5705 PE(22:2/15:0) 758.5694 1 0.1588 
810.6423 810.6019 PC(20:3/18:1) 810.6007 1 0.1511 
830.5394 830.5464 PC(22:5/16:0) 830.5460 0 0.1276 
768.5447 768.5550 PE(22:4/16:0) 798.5538 1 0.1262 
703.5506 703.5757 SM(18:1/16:0) 703.5749 1 0.1206 
808.5428 808.5864 PC(20:4/18:1) 808.5851 1 0.1086 
819.3422 819.6100 PG(21:0/18:1) 819.6110 1 0.1037 
815.5661 815.5763 PG(18:0/19:0) 815.5773 1 0.0939 
824.5409 824.5578 PC(18:2/18:0) 824.5566 1 0.0824 
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information for selecting the training data. In contrast, such training data selection is not required 

for unsupervised ML methods. To generate datasets with suitable size and structure, t-SNE 

algorithm was utilized to reduce the high-dimensional MSI data. Notably, directly applying 

unsupervised ML (without t-SNE processing) to analyze our original MSI dataset cannot produce 

any optimal clusters through parameter-changing attempts (Figure S2-4), indicating that using t-

SNE for dimensionality reduction is a key step to obtain the classification of high-dimensional 

MSI dataset. To support the effectiveness of t-SNE for dimensionality reduction, OPTICS 

algorithms were used to generate the point reachability plot of the lower-dimensional datasets 

(Figure S2-3B), in which the reachability indicates the extent of separation in the t-SNE plot 

(Figure 2-4) (details of OPTICS are in the Figure S2-2B)  

Two unsupervised ML approaches, CLARA and DBSCAN, were chosen to perform the 

classification. CLARA is suitable to deal with big dataset and capable of optimizing the number 

of clusters, whereas DBSCAN has the advantage of picking up system outliers. The results of 

CLARA and DBSCAN were shown in Figure 2-5A and 2-5C, respectively. The physical meanings 

of the unsupervised ML-generated data clusters were further investigated through reconstructing 

their spatial distributions (Figure 2-5B and 2-5D). Interestingly, without given information of 

tissue distribution patterns, the CLARA approach generated an optimal number (six) of clusters 

possessing spatial distributions that are relevant to the histological regions shown on the optical 

image (Figure 2-3A). These six optimal clusters coexist in our dataset, and two sub-regions were 

discovered in both the inner and outer medulla regions (Figure 2-5A and 2-5B). DBSCAN analysis 

also discovered similar cluster patterns as well as several minor sub-regions that are comparable 

to CLARA results. In addition, another advantage of using DBSCAN was to identify the system 

outliers, labeled as the black dots in Figure 2-5C and 2-5D, that were absent from the CLARA 
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analysis. Noteworthy, clusters assigned with red color from both CLARA and DBSCAN results 

are basically classified as margins of the tissue slice (Figure 2-5).  

The reconstructed histological tissue distributions were obtained from both supervised (Figure 3B) 

and unsupervised (Figure 2-5B and 2-5D) ML approaches, and similar features of spatial 

distributions were obtained. In supervised ML method, a portion of MCR-ALS results was used 

as the training data to optimize the model, which was further used to reproduce all three clusters. 

In unsupervised ML methods, including CLARA and DBSCAN, the t-SNE results were used to 

perform the tissue classification (i.e., to allocate the spatial locations of the detected molecule). 

Encouragingly, two different approaches led to similar results, indicating that the clusters we 

identified and the analysis protocols in use were reliable.  

Although both supervised and unsupervised ML methods have been successfully applied to our 

MSI data analyses, they have their own inherent advantages and disadvantages. Previous studies 

indicate that supervised ML is a suitable tool to identify different tissue features or potentially 

distinguish pathological cells (e.g., cancer cells) from normal cells in MSI data analysis 60. 

Although supervised ML algorithm shows adaptability for rapid prediction of unknown MS 

images, careful selection of training data, which requires additional information, is critical for the 

optimization of models. This type of training process is obligatory before supervised ML can be 

applied for any MSI data analysis. In contrast, unsupervised ML can be conveniently utilized to 

analyze MSI data without model training. However, the results need to be validated by comparing 

with those obtained from other labeling studies or techniques such as tissue staining 28, 61. 

Nevertheless, it is still possible that some subtle physical or chemical features can be overlooked, 

or experiments cannot be performed due to limitations of available techniques or samples. 

Therefore, to significantly increase the data-analyzing efficiency while minimizing uncertainties 
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during the MSI data analyses, we suggest using a combined method including both supervised and 

unsupervised ML approaches. 

2.5. Conclusion 

As an emerging molecular imaging technique used for biological tissue analysis in fundamental 

research and biomedical applications, MSI experiments usually generate huge amounts of data. 

Traditionally, MSI data analysis is generally carried out for manually selected ions. Due to the 

large size and high-dimensionality of MSI datasets, it has been very challenging to conduct 

comprehensively data analysis to extract overall features representing essential molecular and 

spatial information present in biological tissues14. Therefore, advanced data analysis methods are 

needed to perform a more efficient analysis of large sizes of MSI data 62.  

MCR-ALS is a multivariate analysis method that can decompose the complex MSI dataset into 

major components with spatial distribution patterns and grouped ions 11, 12. The application of 

MCR-ALS can enhance MSI data analysis without tissue-histological knowledge 63. To further 

increase the efficiency of data mining from larger sizes of MSI results, machine learning (ML) 

methods are likely to be more efficient approaches. In the current study, both supervised and 

unsupervised ML methods have been utilized to distinguish histological regions from the high-

spatial resolution MS images of mouse kidney slice. Two programming languages, R and 

MATLAB, were cooperatively used to implement the methods for MSI data processing. 

Regardless of the type of ML approach used in the analysis of MSI data, reducing the 

dimensionality of target datasets was an obligatory step. As a prevailing dimensionality reduction 

tool, t-SNE was employed in both supervised and unsupervised ML studies. In supervised ML (i.e., 

Random Forest) studies, the histological regions determined by MCR-ALS analysis were used as 

a guide to select the defined training datasets, and the t-SNE algorithm was utilized to reduce the 
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high-dimensional datasets allowing us to visualize the results obtained from Random Forest 

analyses. In unsupervised ML studies (CLARA and DBSCAN), t-SNE has been proven as an 

effective approach to process the pre-treated MSI datasets and ensure them to be suitable for 

subsequent unsupervised ML processes. Both supervised and unsupervised ML approaches are 

effective for MSI data analysis. However, combined supervised and unsupervised ML studies are 

likely to be more effective to extract the overall chemical and spatial features from complex MSI 

data with minimum overlooked information. Our studies indicate that advanced data analysis 

methods, including MCR-ALS and ML approaches, are efficient tools for comprehensive analysis 

of large amounts of high-spatial resolution MS images obtained using our Single-probe MSI 

techniques. These emerging methods can be broadly utilized for many other MSI studies 

conducted using different techniques, and to promote the growth of data-analyzing tools needed 

for big data science.  

 

 

 

The material in chapter 2 is adapted from Tian, X.; Zhang, G.; Shao, Y.; Yang, Z., Anal. Chim. 

Acta 2018, 1037, 211-219. Copyright permission is obtained from Elsevier.  
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Chapter3. Anticancer Drug Affects Metabolomic Profiles in 

Multicellular Spheroids: Studies Using Mass Spectrometry 

Imaging Combined with Machine Learning 

 

This project was a collaborative work that consists of the following authors: Tian, Xiang; Zhang, 

Genwei; Zou, Zhu and Yang, Zhibo. 

Genwei Zhang conducted some data analysis in Figure 3-6 

Zhu Zou conducted the contour map in Figure S3-2 and determined the morphology change in 

spheroids in Figure S3-3  

3.1. Abstract 

Multicellular spheroids (hereinafter referred to as spheroids) are 3D biological models. The 

metabolomic profiles inside spheroids provide crucial information reflecting the molecular 

phenotypes and microenvironment of cells. To study the influence of anticancer drugs on the 

spatially resolved metabolites, spheroids were cultured using HCT-116 colorectal cancer cells, 

treated with anticancer drug Irinotecan under a series of time- and concentration-dependent 

conditions. The Single-probe mass spectrometry imaging (MSI) technique was utilized to conduct 

the experiments. The MSI data were analyzed using advanced data analysis methods to efficiently 

extract metabolomic information. Multivariate Curve Resolution Alternating Least Square (MCR-

ALS) was used to decompose each MS image into different components with grouped species. To 

improve the efficiency of data analysis, both supervised (Random Forest) and unsupervised 

(Cluster Large Application (CLARA)) machine learning (ML) methods were employed to cluster 
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MS images according to their metabolomic features. Our results indicate that the anticancer drug 

significantly affected the abundances of a variety of metabolites in different regions of spheroids. 

This integrated experiment and data analysis approach can facilitate the studies of metabolites in 

different types of 3D tumor models and tissues, and potentially benefit the drug discovery, 

therapeutic resistance, and other biological research fields. 

 

 

Figure 3-1. Graphic abstract 

 

3.2. Introduction 

Spheroids, the spherical aggregates of tumor cells, fill the gap between the simplified 2D cell 

culture models and very complex real tissues.1 Compared with common 2D-cultured cells, 
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spheroids provide more vivid and cost-efficient models with a higher degree of relevance to 

clinical and biological applications.2 Particularly, the 3D-structured spheroids can mimic the 

microenvironment of cells with higher fidelity.3, 4 For example, the gradients of nutrients, oxygen, 

and pH value result in different proliferation status of cells from the inside to the outside regions 

of spheroids.5 Spheroid has become an important platform for broader ranges of  in-vitro studies 

such as proteomics,6 drug screening7, and metabolomics.8, 9 Among these applications, 

metabolomics focuses on small molecules (e.g., M.W. <1500 Da),10 with both endogenous and 

exogenous origins, in the biological samples such as cells, tissues, and biofluids.11 The changes of 

metabolites can rapidly and directly reflect the state of biological systems affected by a variety of 

factors, including microenvironment perturbation, genetic mutation, kinetic activity of enzymes, 

and changes in metabolic reactions.12-14 Metabolomics studies utilizing spheroids have a broad 

influence on drug discover, toxicology, and disease diagnosis.7, 15  

Current metabolomics studies of biological tissues are primarily carried out using lysates prepared 

from samples, and measurements are conducted using mass spectrometry (MS), which is usually 

coupled to liquid chromatography (LC) or gas chromatography (GC) separation techniques,16 or 

nuclear magnetic resonance (NMR), typically 1H NMR.17 However, because lysates need to be 

prepared from homogenized samples,18 the spatial distribution of metabolites, which is critical to 

understand the complex biological process and the pathophysiology, is inevitably lost.19, 20 To 

obtain the spatially resolved metabolites, molecular imaging techniques, such as positron emission 

tomography (PET), magnetic resonance imaging (MRI), and MS imaging (MSI), have been 

developed. PET can locate tumor areas using certain target molecules (e.g., radiolabeled glucose 

(2-[18F]fluoro-2-deoxy-D-glucose (FDG)) owing to their accumulations in tumors.21 MRI can 

diagnose many types of cancers by visualizing certain metabolomic biomarkers.22, 23 However, the 
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broader applications of PET and MRI are largely limited by their relatively low coverage of 

molecular types24. MS imaging (MSI), with high sensitivity and wide ranges of molecular coverage, 

is a powerful technique to visualize the distribution of metabolites on tissue slices.20 MSI has been 

applied to numerous metabolomics studies of plants,25  drugs,26 and diseases such as cancers.27, 28 

Among all developed MSI techniques, vacuum based sampling and ionization techniques, such as 

matrix assist laser desorption ionization MS (MALDI-MS) and secondary ion MS (SIMS), provide 

superior sensitivity and excellent spatial resolution,29 whereas ambient MSI techniques, such as 

desorption electrospray ionization (DESI)30 and laser ablation electrospray ionization (LAESI)31, 

require minimum sample preparation and allow for experiments to be conducted under convenient 

conditions.32 Particularly, the absence of matrix molecules in sample preparation enables ambient 

MSI techniques to effectively detect small molecules such as metabolites.33 

In addition to the rapid development of MSI experimental techniques, advanced data analysis 

methods become increasingly important to effectively extract chemical information from a large 

amount of MSI data (e.g., several to hundred GB can be typically generated from MALDI MSI 

experiments34). Although the traditional methods, such as Principle Component Analysis (PCA)35 

and Partial Least Squares Discriminant Analysis (PLS-DA),36 have been applied to the analysis of 

MSI data, they have some intrinsic limitations4. For example, the negative values in PCA and PLS-

DA score plot have no physical meaning (i.e., ion intensities in mass spectra cannot be negative).37, 

38 In contrast, Multivariate Curve Resolution (MCR-ALS), a multivariate data analysis method, 

has the advantages of not only decomposing the image data into major components but also 

extracting the ions contributing to each component.39, 40 However, because of intensive computing 

is needed during the MCR-ALS analysis, this method is less than ideal when analyzing large 
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amounts of MSI data, particularly for samples possessing similar features such as slices obtained 

from the same tissue. 

Machine learning (ML) methods, including unsupervised and supervised ML, are powerful tools 

for efficient MSI data processing.41, 42 Unsupervised ML is utilized to cluster MS image data into 

different groups of molecules according to their similarities of MS profiles without any prior 

knowledge.38 Common unsupervised ML algorithms include hierarchical clustering, k-means, and 

Cluster Large Application (CLARA).34 These common ML methods have been employed for MSI 

data analysis. Hierarchical clustering is an algorithm to build hierarchical cluster tree, and each 

branch is split and followed down to individual groups of data such as mass spectra in MS imaging 

datasets.43 K-means is a widely used method; however, it is sensitive to outliers,  thus small 

numbers of pixels (i.e., potential outliers) in MS image data might be unnecessarily grouped into 

clusters34. CLARA is superior to other unsupervised ML methods for MSI data analysis due to its 

capability of optimizing the cluster numbers of MS image data.40, 44 On the other hand, supervised 

ML methods, including Supporting Vector Machine (SVM) and Random Forest, can be employed 

to classify MS image data into several predefined groups after model training.45 SVM is used to 

find a hyperplane that can separates one or more classes based on their mass spectrum.46 Random 

Forest has less over-fitting issue, and it is efficient in analyzing large dataset.47, 48 Both 

unsupervised and supervised ML methods can facilitate the analysis of metabolites in MS imaging 

data.  

Here we used the Single-probe MSI technique to measure the spatial distributions of metabolites 

in spheroids, which were cultured using HCT-116 colorectal cancer cells and treated with 

anticancer drug Irinotecan. The Single-probe is a multifunctional sampling and ionization device 

that has been applied into many research fields, including high resolution MSI,49, 50 live single cell 
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analysis,51-56 and the measurement of extracellular metabolites in live spheroids.9 MSI data were 

then analyzed using MCR-ALS, unsupervised ML (CLARA), and supervised ML (Random Forest) 

methods. MCR-ALS was used to decompose the MS images into major components with grouped 

molecules, whereas Random Forest and CLARA were utilized to efficiently classify the MS 

images into different regions in spheroids. In addition, we investigated the metabolites altered by 

anticancer drug treatment in different regions of spheroids. Our studies provided a combined MSI 

experiment and advanced data analysis to effectively analyze metabolomics and investigate the 

influence of microenvironment on metabolite change in tissues. This comprehensive method can 

potentially benefit the biomarker discovery and metabolomics studies. 

3.3.  Experimental section 

3.3.1.  Chemicals and materials 

Chemicals used in the experiments include reagents, such as methanol, water, agarose (Sigma-

Aldrich, St. Louis, MO, USA), and anticancer drug Irinotecan (Thermo Scientific, Ward Hill, MA, 

USA). Materials needed to fabricate the Single-probe include fused silica capillary (O.D. 105 µm; 

I.D. 40 µm, Polymicro Technologies, Phoenix, AZ, USA) and dual-bore quartz tubing (O.D. 500 

µm; I.D. 127 µm, Friedrich & Dimmock, Inc., Millville, NJ, USA). Reagents used to culture HCT-

11 cells and spheroids (ATCC, Manassas, VA, USA) include McCoy’s 5A cell culture media, FBS 

(fetal bovine serum), and Pen Strep (Life Technologies, Grand Island, NY, USA). 

3.3.2.  The Single-probe fabrication and experimental setup 

The detailed fabrication protocols are described in our previous work,50 and only the outlined 

procedures are provided here. The Single-probe (Figure S3-1) has three components: a laser-pulled 

dual-bore quartz needle, a fused silica capillary (solvent-providing capillary), and a nano-

electrospray (nano-ESI) emitter. A Sutter P-2000 laser micropipette puller (Sutter Instrument, 
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Novato, CA, USA) is used to prepare the dual-bore needle and nano-ESI emitter. A Single-probe 

is fabricated by embedding within a dual-bore quartz needle with one fused silica capillary and 

one nano-ESI emitter. The experiment setup is largely adopted from our previous MS single cell 

and MSI studies49, 50 (Figure 3-2). To precisely control the movement of tissue slice, the sample 

was attached to a XYZ-translational stage system (CONEX-MFACC, Newport Co., Irvine, CA, 

USA) controlled using a LabView software package.57 A digital microscope was placed next to 

the Single-probe to adjust the distance between the Single-probe tip and tissue slice surface, and 

to monitor the sampling process. MS spectra were collected using a Thermo LTQ XL mass 

spectrometer (Thermo Scientific, Waltham, MA, USA) with the following parameters: mass 

resolution 60,000 (m/Δm), 4.5 kV ionization voltage (positive ion mode), 1 microscan, 100 ms 

max injection time, and AGC on. The sampling solvent (i.e., 85% methanol/15%water (v/v)) was 

continuously delivered (flowrate 200 nL/min) by a syringe pump (PHD ULTRA, Harvard 

Apparatus, Holliston, MA, USA). The MS images were generated using MSI QuickView 

software.58 
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Figure 3-2. The Single-probe MSI setup. 

 

3.3.3. Spheroids culture and sectioning 

The colon carcinoma cell line HCT-116 was used to culture spheroids. Cells were maintained in 

McCoy’s 5A cell culture media containing 10% FBS and 1% Pen Strep. Cells were grown in an 

incubator (HERA cell, Heraeus, USA) under well controlled conditions (5% CO2 at 37 °C), and 

cell passage was performed every two days. Spheroids were cultured using the modified protocols 

based on previous publications59, 60. Briefly, 60 µL agarose gel (1.7% agarose in plain McCoy’s 

culture media) was used to coat wells in a U-bottom 96-well plate (VWR, Radnor, PA, USA), and 

about 10,000 HCT-116 cells were seeded into each agarose coated well. To improve the success 

rate of spheroid culture, we used the U-bottom 96-well plates to promote the accumulation of cells 
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during spheroid growth. Cells were incubated for 2-3 days to allow them aggregating into solid 

spheroids. Culture medium was changed every two days, and spheroids were harvested after being 

cultured for 10 days. Spheroids were treated using Irinotecan under a series of conditions (i.e., 5 

µM for 1 h, 10 µM for 1 h, 20.6 µM for 1 h, 20.6 µM for 10 h, and 20.6 µM for 24 h), and rinsed 

twice using PBS (phosphate-buffered saline) to remove the drug residue on spheroid surface. 

Spheroids were then embedded in 10% HMPC ((Hydroxypropyl)methyl cellulose, Sigma-Aldrich 

St. Louis, MO)) and frozen on dry ice. Depending on their sizes, spheroids were sectioned into 20 

to 30 slices (~15 μm thickness for each slice) using a cryotome (American Optical 845 Cryo-cut 

Mictorome, Southbridge, MA, USA) at –15°C. To better represent the symmetric histological 

structures of spheroids (e.g., inner region and outer region), slices in the middle part of well-

aligned spheroids (e.g., slice number ~10 to ~15) were selected and inspected using microscope. 

The selected slices were attached onto plastic microscope slides (VWR, Radnor, PA, USA), dried 

in air, and stored at –80°C before usage. The optical images of slides were taken using a PathScan 

Enabler IV histology slide scanner (Meyer Instruments, Houston, TX, USA). 

3.3.4. Data Analysis 

3.3.4.1.  Data pre-processing. 

Before conducting the MCR-ALS analysis, MSI data (.raw) need to be converted into an 

appropriate format that can be input into a home-built MATLAB processing platform. First, 

MSConvert (a tool in ProteoWizard) was used to convert the data format from .raw to .mzML, 

which was further converted into .imzML format using imzML Converter61. Second, data pre-

processing, including smoothing, noise removal, peak alignment, peak picking, and insensitivity 

normalization, was executed using Bioinformatics Toolbox, a built-in function of MATLAB. 

Third, each set of MS imaging data was exported as a data matrix with high dimensionalities (Table 
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S3-1). For example, the data matrix of the MS image of a control sample slice is composed of 7840 

X 307, i.e., 7840 pixels (196 (scans/line) X 40 lines) with 307 aligned common ions, and each 

aligned peak stands for a dimension of the dataset. The number of pixels (ranging from 6,000 to 

10,000) of each MS image depend on the size and the spatial resolution of the MS image. A log-

transformation (log 2) was applied to the data matrix produced from the pre-processing step to 

better represent features of low-intensity ions. The details of data pre-processing are provided in 

the Supporting Information. 

3.3.4.2. MCR-ALS analysis 

Multivariate Curve Resolution Toolbox, developed by Tauler et al.62, was utilized to group the 

ions with similar spatial distribution patterns in MS images. Singular Value Decomposition (SVD) 

was used to determine the number of major components, which usually represent the majority of 

variations (> 80%) in the data matrix. The spatial distribution of each component was carried out 

using a user-friendly interface, and the mass spectrum of each component was generated using R 

(Supporting Information). 

3.3.4.3.  Unsupervised ML (CLARA). 

CLARA was used as an unsupervised algorithm to analyze the MSI datasets. To generate datasets 

that are suitable for CLARA model, t-SNE (t-Distributed Stochastic Neighbor Embedding) was 

used to reduce the high dimensionality of the data matrix generated from the pre-processing into 

2D space (parameters are listed in the Supporting Information). CLARA (provided within ‘cluster’ 

package63) was then used to analyze the datasets with 2D space, and the optimal numbers of 

clusters were determined using the average silhouette width. To illustrate the CLARA results 

according to the spatial distribution of ions in each group, their histological distributions were 

reconstructed using a homebuilt R program. 
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3.3.4.4. Supervised ML (Random Forest). 

Random forest provided in R language (the package ‘randomForest’64) was used a supervised ML 

algorithm to classify the MSI datasets. Based on MCR-ALS results, data were selected from each 

region (i.e., inner or outer) of spheroid to serve as the training data and testing data. The training 

data were used to train the Random Forest model (details are provided in the Supporting 

Information), whereas the testing data were utilized to evaluate prediction accuracy (Table S3-2). 

Once the prediction accuracy was satisfactory (> 90%), the optimized model was employed to 

predict the rest of the dataset. To visualize overall results obtained from the supervised ML 

approach, the predicted spatial distribution features of the metabolites on spheroid slices were 

constructed using R language. (All packages used in ML models can be found at https://cran.r-

project.org). 

3.4. Results and discussion 

3.4.1. Mass spectrometry images of spheroids 

Irinotecan is a common anticancer drug that has been widely used in clinic treatment of broad 

ranges of cancers (e.g., colorectal, pancreatic, and lung cancers) and fundamental research. This 

drug compound was selected to treat spheroids cultured using a colorectal cancer cell line (HCT-

116). To investigate the influence of treatment time and concentration on the change of metabolites, 

experiments were conducted using spheroids in three different groups: control (no drug treatment), 

concentration-dependent treatment, and time-dependent treatment. In concentration-dependent 

experiments, the treatment time was fixed at 1 hour, whereas three different concentrations (5.0, 

10.0, and 20.6 µM) were selected. In the time-dependent experiment, the concentration was 20.6 

µM, which is the IC50 of Irinotecan for HCT-116 spheroids8, whereas the treatment time was varied 

(1, 10, and 24 h). MSI experiments were carried out using the Single-probe MSI technique, and 

https://cran.r-project/
https://cran.r-project/
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MS images of selected ions were constructed (Figure 3-3). Because phosphatidylcholine (34:1) 

(PC(34:1)) is a very common and abundant lipid (with the ion intensity ~107), its MS image was 

used to represent the shape of the spheroid slice. The MS images of this representative 

phospholipid ([PC(34:1) + H]+, Figure 3-3A) and the drug compound ([Irinotecan + H]+, Figure 

3-3C) were shown along with the corresponding optical images of the spheroid slices (Figure 3-

3B), indicating a generally good match of spatial features obtained from both techniques. It is 

worth noting that all spheroids were cultured under the same conditions and their slices were 

prepared using the same protocols; however, the shapes of slices can be slightly different, likely 

due to the variance in multiple factors such as the number of cells seeded for spheroid culture, 

orientation of spheroids in bedding material, and sectioning positions in spheroids. Interestingly, 

the morphology of spheroids was not obviously changed within our drug treatment time (24 h) as 

shown in Figure S3-2. 

Figure 3-3. MS and optical images of spheroid slices. 

(A) A common ion [PC(34:1) + H]+ (m/z 760.5964) illustrating shapes of MS images of spheroid 

slices in the control and drug treatment groups. (B) Optical images of the corresponding spheroid 

slices. (C) MS images of [Irinotecan + H]+ (m/z 587.2923) in drug-treated spheroids. 
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As expected, Irinotecan was detected in spheroids subjected to the treatment using this drug 

compound, but not observed in the control sample. In the concentration-dependent experiments 

(Figure 3-3C), Irinotecan was only detected in a thin layer of the spheroid for 1 h treatment; the 

drug penetration depth was slightly increased as the concentration was increased from 5.0 to 20.6 

µM. Alternatively, a contour plot (Figure S3-3) provides a more quantitative description of 

Irinotecan distribution of the same sample. 

In the time-dependent experiments, this drug compound was observed in much deeper regions as 

the treatment time was increased. For example, Irinotecan mainly distributed in the outer region 

of the spheroid for 10 h treatment, whereas it was detected in the inner region after 24 h treatment. 

The distribution patterns of Irinotecan can likely be attributed to the mechanisms of molecular 

diffusion in tissues. Due to the lack of developed blood vascular systems inside tumors, molecules 

(e.g., nutrients and drugs) penetrate tumors mainly through molecular diffusion mechanism, which 

is primarily determined by drug concentration65 and other factors such as drug molecular weight, 

cell density in tumors, and cells’ microenvironment.66 Similar to tumors, the 3D structure of 

spheroids possesses histological heterogeneity due to heterogeneous distribution of nutrients, 

oxygen, carbon dioxide, wastes, etc. For example, nutrients and oxygen can be absorbed more 

efficiently by the cells in the outer region than those in the inner region, whereas wastes and carbon 

dioxide are more abundant in the inner region than the outer region.2, 67  
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Figure 3-4. MS images of spheroid slices from control and drug-treated samples. 

(A)MS images of representative metabolites primarily present in the outer region. (B) The 

influence of anticancer drug treatment on the spatial distribution of a selected metabolite 

GlcCer(38:1). 

 

The heterogeneous cell microenvironment inside spheroids can affect the cell metabolic pathways 

and result in metabolites changes in different regions. To illustrate the heterogeneity of spatial 

distribution of molecules in spheroids, we constructed the MS images of a number of 

representative lipids (e.g., PC, phosphatidylethanolamine (PE), and phosphatidylglycerol (PG)) 

that are more abundant in the outer regions (Figure 3-4A). In addition, we investigated the 

influence of anticancer drug treatment on the spatial distribution of metabolites such as 

glucosylceramides [GlcCer(38:1) + H)]+ (Figure 3-4B). Previous studies indicate that the 

upregulation of GlcCer in cancer cells is attributed to their hypoxia environment, in which the 

glucosylceramide synthase (GCS) possesses higher activities transferring ceramides to 

glucosylceramides.68,69 Our results (Figure 3-4B) indicate that GlcCer(38:1) has relatively higher 

abundances in the inner regions of spheroids, in which cells are in hypoxia environment. Compared 
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with cells in the outer regions, Irinotecan treatment has less influence on the metabolism and 

microenvironment of cells in the inner regions.   

3.4.2.  Multivariate Curve Resolution analysis 

It is expected that there are large numbers of grouped metabolites possessing the similar spatial 

distributions, whereas manual selection approach is unlikely to be effective to acquire all 

metabolites in each group. For more comprehensive and efficient data analysis, MCR-ALS was 

employed to classify ions into different groups according to their spatial distribution features. The 

data generated from the pre-processing step (see Data Pre-processing) was directly analyzed 

using MCR-ALS algorithm. The MSI data of drug-treated samples (5 µM Irinotecan, 1 h) were 

decomposed into three major components, which represent the majority molecular information 

present in the MSI data, i.e., >80% of variance was explained (Figure S3-4). These three 

components (i.e., grouped ions) represent species in the outer region, the inner region, and the 

background, respectively (Figure 3-5). The alternative contour plots of Figure 3-5 were 

constructed based on the MCR analysis results (Figure S3-5). The top-ten abundant ions in each 

component were summarized in Table S3-3 and Table S3-4. Similarly, the MSI data obtained from 
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spheroids under other treatment conditions were also decomposed into these three groups (Figure 

S3-6).   

Figure 3-5. Results of MCR-ALS analysis of MSI data obtained from Irinotecan treated 

spheroid (5 µM, 1 h). 

(A) The spatial distribution patterns and the corresponding ions of (A) component 1 (outer region 

of spheroid), (B) component 2 (inner region of spheroid), and (C) component 3 (background).  

 

The spatial distribution patterns of metabolites are likely related to the inherent heterogeneity of 

spheroids. Previous studies indicate that spheroids can be divided into two major regions: non-

viable and viable regions.70 In the non-viable region, nutrients, and oxygen are insufficient to 

sustain cells’ viability. Because cells in this region undergo necrosis and apoptosis due to the 

hypoxia microenvironment, the non-viable region can be further divided into quiescent layer and 

necrotic core.66 In contrast, cells in the viable region can acquire adequate nutrients and oxygen 
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for proliferation. Due to the diffusion-limited transport of oxygen,2 the thickness of viable region 

generally ranges from 150 to 200 µm, which is similar to the thickness of the outer region measured 

from MS images of spheroids in the present study (Figure 3-5A). Therefore, those two regions in 

spheroids obtained from MCR-ALS analysis (Figures 3-5A and 3-5B) are very likely to be the 

viable (outer) and non-viable (inner) regions, respectively. However, we were unable to 

differentiate the quiescent layer and necrotic core in the non-viable region in the current MSI 

studies. Similar results were obtained from spheroids in the control and other drug-treated groups 

using higher drug concentrations and longer treatment times (Figure S3-6). 

3.4.3. ML: CLARA and Random Forest 

For more efficient data analysis, the unsupervised ML was applied to classify the MSI data. First, 

t-SNE was used to reduce the high dimensionality of the pre-processed data matrix into a 2D space 

(Figure S3-7B) along with the optimal number (i.e., three) of clusters (Figure S3-7A); the same 

number of grouped ions obtained from MCR-ALS analysis. In fact, the 2D t-SNE shows a highly 

stable performance for dimensionality reduction, indicated by a narrow range (0.85 - 0.91) of the 

calculated Adjusted Rand Index (Figure S3-8). We also tested the 3D t-SNE and obtained similar 

result as the 2D t-SNE (Figure S3-9). Second, we utilized CLARA, a common classification 

method primarily used for grouping large datasets with optimal numbers of clusters44, to analyze 

the MSI data. Third, to clearly illustrate the spatial locations of clustered ions on spheroid slice, 

we assigned a color to each cluster (i.e., color coding), and reconstructed MS images (Figure 3-

6A) using these clustered species (Figure 3-6B), in which green, yellow, and purple represent the 

outer region, the inner region, and the background, respectively. As a popular method, PCA has 

been utilized for the analysis of MS images.4, 35 We tested PCA for dimensionality reduction of 

our MSI datasets, and then performed CLARA. The results are not satisfactory: only two major 



56 

 

components (i.e., the entire spheroid and the background) can be obtained, whereas the inner and 

outer regions of the spheroid cannot be distinguished (Figure S3-10). 

Figure 3-6. MSI data analysis using ML methods for an Irinotecan treated spheroid (5 µM, 

1 h). 

(A) Classification of MSI data obtained from unsupervised ML (CLARA). (B) Three clustered 

MSI data from CLARA analysis were color-coded to reconstruct their spatial distributions 

representing the inner region (yellow), the outer region (green), and the background (purple), 

respectively. (C) The selection of the training data for supervised ML (Random Forest) was based 

on MCR-ALS results. (D) Color-coded spatial distributions obtained from Random Forest are 

similar to CLARA results shown in 5B.  

 

Supervised ML (Random Forest) was also used to classify the MS images of spheroid slices. The 

selection of training data was based on the MCR-ALS results (Figure 3-6C, details are provided 

in Table S3-5), and the color-coded spatial distributions (Figure 3-6D) were reconstructed using 
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the same approach as mentioned above. Similar to CLARA results, we were able to predict all 

MSI data and classify them into those three regions using Random Forest (Figure S3-11B). 

Interestingly, as shown in all six color-coded classification images generated using unsupervised 

(Figure S3-11A) and supervised (Figure S3-11B) ML methods, the thickness of outer region of 

spheroids are not significantly affected by the drug treatment. This observation is similar to the 

results obtained from MCR-ALS analysis.  

Because training data selection may affect the prediction accuracy of supervised ML, we compared 

the performance of MCR-ALS with the other two common methods: k-means and hierarchical 

clustering. Our results indicate the training data selection based on three different methods (i.e., 

MCR-ALS, k-means, and hierarchical clustering) resulted in very similar prediction of MSI data 

(Figure S3-12).  

3.4.4.  Changes of metabolites inside spheroids induced by Irinotecan treatment 

Anticancer drug treatment can change the microenvironment of cells, affect metabolomic 

pathways, and result in changes of metabolites. To obtain metabolites altered by Irinotecan inside 

spheroids, we generated two averaged mass spectra representing metabolites in the inner and outer 

regions of spheroids in both control and treatment groups. Specifically, according to results 

obtained from unsupervised and supervised ML models, mass spectra representing inner and outer 

regions, respectively, were averaged to generate these two mass spectra, and the intensity of each 

ion was then normalized to TIC (total ion current). By conducting t-test of species in the averaged 

spectra, metabolites with significantly changed abundances can be determined (details are 

provided in the Supporting Information). 

For the time-dependent experimental results, supervised ML analyses provided a number of 

metabolites with relatively higher abundances (i.e., upregulation) in the drug-treated spheroids 
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than those in the control sample. For example, the relative intensities of [PC(32:1) + H]+ (m/z 

732.5483) and [PE(O-35:0) + H]+ (m/z 720.5908) in the inner and outer regions of the drug-treated 

spheroids are about 10 and 3─4 times higher, respectively, than those in the same regions in the 

control (Figures 3-7A and 3-7B). Similarly, in the concentration-dependent experiments, a group 

of metabolites possess significantly different abundances in the outer and inner regions between 

the drug-treated and control samples. For example, the relative ion intensity of [PC(34:2) + H]+ 

(m/z 758.5685) is about five times higher in the inner region of the control than that in the treated 

spheroid (20.6 µM Irinotecan). Similar trends were obtained from unsupervised ML analysis 

(Figure 3-7G) with most metabolites were upregulated due to the drug treatment. Because the 

comparison of ion intensities (Figure 3-7) was based on the grouped data (i.e., pixels in inner and 

outer regions) from the supervised and unsupervised ML methods (e.g., Figures 3-6B and 3-6D), 

minor changes of data grouping using different approaches may lead to variances in relative ion 

intensities. For example, the supervised ML results (Figure 3-7C) indicate that the relative intensity 

of [PC(34:2) + H]+ in the outer region of the spheroid increased as the drug concentration was 

increased (from 5 µM to 10 µM), whereas this order was reversed in the unsupervised ML results 

(Figure 3-7G).  

All ions significantly altered by the drug treatment in the outer or inner region are summarized in 

Table S3-6 and Table S3-7. The identifications of all ions were carried out using tandem MS 

(MS/MS) measurements (Figure S3-13), and these spectra were compared with online database 

Metlin71. To further confirm the metabolites’ structures, MSn analysis can be carried out using 

standard compounds for comparison. For example, the detection of [PC (34:1) + H]+ from spheroid 

slice was confirmed by comparing its MS3 spectra with those obtained from the standard 

compound (Figure S3-14). 
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Figure 3-7. Representative common metabolites in the inner and outer regions upregulated 

by Irinotecan treatment. 

Results were obtained from (A)-(D) supervised ML (Random Forest) and (E)-(H) unsupervised 

ML (CLARA) analyses. (*** p < 0.001). 
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Large numbers of phospholipids were observed in our experiments. Phospholipids are structural 

building blocks of cell membranes. In addition, they have important biological functions (e.g., 

signaling, energy storage, and disease biomarker72), and play key roles in the cell motility, invasion, 

and metastasis.73, 74 The composition of phospholipids can be affected by the extracellular stimuli 

such as growth factor, oncogene, and hypoxia conditions.75 In our study, the relative abundances 

of a series of phospholipids, including [PC(32:1) + H]+ (m/z 732.5483) and [PC(34:2) + H]+  (m/z 

758.5692), were significantly higher in the Irinotecan treated groups compared with the control. 

Previous studies indicate that tumor cells can alter their metabolisms to reinforce drug resistance.76 

For example, nuclear receptor PXR (Pregnant X receptor) in cancer cells is activated upon their 

exposure to Irinotecan, resulting in an overexpression of CYP3A4, which is an oxidizing enzyme 

for xenobiotics such as drug molecules. Overexpressed CYP3A4 further reduces the abundance of 

Irinotecan inside cells and lead to strengthened drug resistance.77 Meanwhile, the de novo 

lipogenesis is enhanced the by the activated PXR to increase the level of phospholipids,78 which 

are also believed to promote the cell survival.79, 80 Similarly, our previous studies of the 

extracellular species in spheroids indicate that a large number of phospholipids (e.g., PC, PE, and 

PA) are increased by Irinotecan treatment.9 Therefore, the increased levels of phospholipids are 

very likely attributed the metabolomic response of cancer cells to the anticancer drug in the 

microenvironment inside spheroids.   

3.5. Conclusion 

In this study, we cultured HCT-116 spheroids as tumor models and treated them using anticancer 

drug Irinotecan. Experiments were carried out using the Single-probe MSI technique. Advanced 

data analysis methods, including MCR-ALS and ML, were employed to analyze spatially resolved 
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metabolites on spheroid slices, particularly for those significantly regulated by the drug compound. 

MCR-ALS algorithm was utilized to decompose each MS image data into three major components: 

the inner region, the outer region, and the background. Both unsupervised (Random Forest) and 

supervised (CLARA) ML algorithms were employed to classify each MS image, and similar 

results were obtained. We further compared the metabolites between the inner and outer regions 

for each set of MS image data obtained from spheroids in the control and drug treatment groups. 

We acquired the grouped species in both inner and outer regions that were significantly regulated 

by the anticancer drug. Compared with conventional methods based on bulk analysis, our method 

can potentially extract crucial metabolomic information from MSI data, and provide spatially 

resolved metabolites and biomarkers reflecting the influence of drug treatment. The fully 

established methods may benefit the drug screening, therapeutic resistance, and biomarker 

discovery. 

 

 

 

The material in chapter 3 is adapted from Tian, X.; Zhang, G.; Zou, Z.; Yang, Z., Anal. Chem. 

2019, 91 (9), 5802-5809. The copyright permission is obtained from ACS.  
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Chapter4. Multimodal Imaging of Amyloid Plaques: Fusion of 

the Single-probe Mass Spectrometry Image and Fluorescence 

Microscopy Image 

This project was a collaborative work that consists of the following authors: Tian, Xiang; Xie, 

Boer; Zou, Zhu; Jiao, Yun; Lin, Li-En; Chen, Chin-Lin; Hsu, Cheng-Chih.; Peng, Junmin; Yang, 

Zhibo  

Boer Xie and Yun Jiao conducted the animal experiments. 

Zhu Zou conducted some data analysis using Molecular Image Fusion software.  

Li-En Lin, Chin-Lin Chen, and Cheng-Chih Hsu assisted the data preprocessing of using the 

Molecular Image Fusion software. 

4.1. Abstract 

Alzheimer’s Disease (AD) is one of the most common neurodegenerative diseases. The formation 

of amyloid plaques by aggregated amyloid beta (Aβ) peptides is a primary event in AD pathology. 

Understanding the metabolomic features and related pathways are critical for studying plaque-

related pathological events (e.g., cell death and neuron dysfunction). Mass spectrometry imaging 

(MSI), due to its high sensitivity and ability of obtaining spatial distribution of metabolites, has 

been applied to AD studies. However, limited studies of metabolites in amyloid plaques were 

performed due to the drawbacks of commonly used techniques such as matrix-assisted laser 

desorption/ionization (MALDI) MSI. In the current study, we obtained high spatial resolution (~17 

µm) MS images of AD mouse brain using the Single-probe, a microscale sampling and ionization 

device, coupled to a mass spectrometer under ambient conditions. The adjacent slices were used 

to obtain a fluorescence microscopy images to locate amyloid plaques. MS image and fluorescence 
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microscopy image were fused to spatially correlate histological protein hallmarks with 

metabolomic features. The fused images produced significantly improved spatial resolution (~5 

µm), allowing for the determination of fine structures in MS images and metabolomic biomarkers 

representing amyloid plaques.    

 

 

 

 

Figure 4-1. Graphic abstract. 

 

4.2. Introduction 

Alzheimer’s disease (AD) affects more than 5.3 million Americans, and it is the most common 

neurodegenerative disease causing cognitive impairment.1 There are two major pathologic features 

of AD: intracellular neurofibrillary tangles (NFT), which are composed of hyperphosphorylated 
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tau proteins, and extracellular plaques, which contain the aggregated β-amyloid peptide (Aβ).2 

Although the mechanisms of plaque formation are still unclear, the most commonly accepted 

hypothesis is that Aβ is secreted into the extracellular space and aggregated to form amyloid 

plaques.3 Aβ plaques are believed toxic to neuron cells, both in vitro and in vivo,4 causing the 

symptom of AD such as cognitive impairment, oxidative damage, and inflammation.5, 6  In the past 

decades, a large number of studies focus on the Aβ plaques using genomics,7 proteomics,8 and 

metabolomics9-12. At gene-level, the gene of β-Amyloid precursor protein (APP) on chromosome 

21 are highly expressed in Down’s syndrome patients (trisomy 21)13, and the duplication of the 

APP gene induces early onset of AD.14 At protein-level, soluble oligomerized Aβ are regarded as 

the main cause of synaptic dysfunction instead of Aβ monomer or larger aggregates.8 In addition, 

studying metabolomics, which directly reflects the status of cells15, is essential to the research of 

AD. For example, certain metabolites, such as lipids9, neurotransmitters,10 fatty acids11, and 

glucose12, are highly correlated with AD pathology, and they may play important roles in the 

development of the disease. The metabolomics studies in AD can significantly benefit the 

understanding of physiopathology, drug discovery, and related metabolite pathways. 

High resolution mass spectrometry (MS), with high sensitivity and wide ranges of molecular 

coverage, is one of the most important analytical methods to detect large numbers of metabolites 

from samples when coupling with separation technique such as liquid chromatography (LC), gas 

chromatography (GC), and capillary electrophoresis (CE).16 However, because lysates need to be 

prepared from homogenized samples, the spatial distribution of metabolites, which is critical to 

understand the complex biological process and the pathophysiology, is inevitably lost.17, 18 Mass 

spectrometry imaging (MSI) is a powerful technique to achieve the spatial information of 

metabolites on biological sample surface.18 Different MSI techniques, such as matrix-assisted laser 
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desorption/ionization (MALDI),19 desorption electrospray ionization (DESI),20 secondary ion MS 

(SIMS),21 and nanospray desorption electrospray ionization (nano DESI),22 have been applied to 

study the metabolomics. Among these developed MS imaging methods, MALDI and SIMS are 

non-ambient techniques, which have excellent spatial resolution and sensitivity, whereas DESI 

and nano-DESI belong to ambient sampling and ionization techniques, which require less or no 

sample preparation. Particularly, MALDI has been implemented to analyze proteins, peptides, and 

metabolites in AD studies.9, 23-28 However, due to the complex background of MALDI mass spectra 

at low-mass range (< 500 Da),29 this technique is generally less effective to measure small but 

important molecules, including neurotransmitters30, fatty acids,11 and phospholipids.24  In addition 

to MS imaging techniques, laser capture microdissection (LCM) coupled with MS has been used 

to isolate the region of interest in tissue and to determine the metabolites profiles.27  

Here, we utilized the Single-probe MSI technique to study the metabolites in both Aβ plaques and 

their surrounding regions. The Single-probe is a micro-scale sampling and ionization device that 

can be directly coupled with mass spectrometer to conduct research in multiple fields, including 

live single cell analysis31-38, extracellular metabolites in spheroids,35 and MSI of biological 

tissues.39-42 Because the Single-probe MSI technique is based on micro-liquid extraction without 

using matrix (e.g., molecules involved in MALDI-MSI technique), relatively clean background, 

particularly at low-mass range, facilitates MSI studies of small molecules such as metabolites. To 

spatially correlate the metabolites with Aβ plaques, image fusion method developed by Caprioli et 

al for MALDI-TOF MSI43, which  has recently been implemented to DESI and nano-DESI MSI,44 

was applied to fuse the images of the Single-probe MSI and fluorescence microscopy in this study. 

This combined method takes the advantages of both techniques, i.e., rich chemical information 

from MSI and high spatial resolution from fluorescence microscopy image, to provide the 
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metabolomic information correlated to Aβ plaques, and improve our understandings of the 

pathways and functions of metabolites related to AD. 

4.3. Experimental section 

4.3.1.  Chemicals and materials 

Chemicals used in the experiments include methanol, water (Sigma-Aldrich, St. Louis, MO), 

ethanol (Pharmco-AAPPER, Shelbyville, KY), xylene (Sigma-Aldrich, St. Louis, MO), and 

thioflavin S (Chem Cruz, Dallas, TX). Materials needed to fabricate the Single-probe include the 

fused capillary (O.D. 105 µm; I.D. 40 µm, Polymicro Technologies, Phoenix, AZ, USA) and dual-

bore quartz tubing (O.D. 500 µm; I.D. 127 µm, Friedrich & Dimmock, Inc., Millville, NJ, USA).  

The detailed fabrication protocol of the Single-probe was described in our previous work32, and 

only the outlined procedures are provided here. The Single-probe has three components: a laser-

pulled dual-bore quartz needle, a fused silica capillary (solvent-providing capillary), and a nano-

electrospray (nano-ESI) emitter. A Sutter P-2000 laser micropipette puller (Sutter Instrument, 

Novato, CA, USA) is used to prepare the dual-bore needle and nano-ESI emitter. A Single-probe 

is fabricated by embedding within a dual-bore quartz needle with one fused silica capillary and 

one nano-ESI emitter.  

4.3.2. The Single-probe MSI setup 

The experiment setup is largely adopted from our previous MS single cell and MSI study45 (Figure 

S4-1). To precisely control the movement of tissue slice, the sample was attached to a XYZ-

translational stage system (CONEX-MFACC, Newport Co., Irvine, CA, USA) controlled using a 

LabView software package46. A digital microscope was placed next to the Single-probe to adjust 

the distance between the Single-probe tip and tissue slice surface, and to monitor the sampling 
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process. MS spectra were collected using a Thermo LTQ XL mass spectrometer (Thermo 

Scientific, Waltham, MA, USA) with the following parameters: mass resolution 60,000 (m/Δm), 

4.5 kV ionization voltage (both positive and negative ion mode), 1 microscan, 100 ms max 

injection time, and AGC on (5 X 105). The sampling solvent (i.e., 85% methanol/15%water (v/v)) 

was continuously delivered (flowrate 200 nL/min) by a syringe pump (PHD ULTRA, Harvard 

Apparatus, Holliston, MA, USA). Ions of interest were identified using tandem MS (MS2) directly 

on tissue slices, and results were compared with database METLIN. The MS images of selected 

ions were generated using MSI QuickView software46. More experimental details related to the 

current study were provided in the Supporting Information. 

4.3.3. Animal sample preparation 

Animals used in this study were treated in accordance with the NIH Guide for the Care and Use 

of Laboratory Animals, all protocols were approved by the St Jude Children’s Research Hospital 

ACUC under IACUC protocol. Experiments were carried out in accordance with The Code of 

Ethics of the World Medical Association (Declaration of Helsinki) for animal experiments.  

Two pairs of control (wild type) and 5xFAD mice (Tg (APPSwFlLon, PSEN1*M146L*L286V) 

6799Vas) obtained from Jackson Laboratory (Bar Harbor, ME, USA) were used in this study. Mice 

were housed in a temperature and humidity-controlled room with a 12:12 h reversed light/dark 

cycle. Food and water were available ad libitum. All mice used in this study were sacrificed at 10–

12 months old with weight between 23–25 g by cervical dislocation and decapitation. Brains were 

rapidly removed from the calvarias, and immediately frozen on dry ice, then stored in 2 ml 

Eppendorf tubes at –80°C until further experiments. Approximately 5 mins per mouse were 

required for the brain collection.  
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Mouse brain was embedded in 10% HPMC ((hydroxypropyl)methyl cellulose, Sigma-Aldrich, St. 

Louis, MO), frozen on dry ice, sectioned into slices (~15 μm in thickness) using a cryotome 

(American Optical 845 Cryo-cut Mictorome, Southbridge, MA, USA) at –15°C, and attached onto 

a microscope slide (VWR, Radnor, PA, USA). The mouse brain slices were dried in air and stored 

at –80°C before usage. The bright-field optical images of slices were taken using a PathScan 

Enabler IV histology slide scanner (Meyer Instruments, Inc. Houston, TX, USA) prior to MSI 

experiment. One tissue slide of each mouse brain sample was reported in each MSI study. 

4.3.4. Fluorescence microscopy image. 

The mouse brain slice adjacent to the one used for MSI measurement of each brain sample was 

thawed at room temperature for 20 mins before usage. The slices were fixed (in 75% ethanol for 

1 min), stained (in 1% thioflavin-S aqueous solution for 1 min), and differentiated (in 75% ethanol 

for 1 min) to remove excess fluorochrome. After that, the slides were dehydrated in a series of 

graded ethanol (95% ethanol twice, 100% ethanol twice, and 3-5 sec for each step), cleared (in 

xylene for 5 mins), and dried in the air. The stained slices were kept in a dark environment, and 

fluorescence microscope images were immediately taken using a Nikon Eclipse Ti-S fluorescence 

microscope (Melville, NY, USA). 

4.3.5.  Data pre-processing.   

Before conducting the image fusion, the MSI data (.raw) need to be converted into an appropriate 

format that can be utilized in the Molecular Image Fusion software. The data pre-processing 

method is adopted from our previous publication,39 and a brief outline is provided here. First, the 

MSI data format was converted from .raw to .mzML using MSConvert (a tool in ProteoWizard), 

and further converted into .imzML format using imzML Converter47. Second, a built-in function 

of MATLAB, Bioinformatics Toolbox, was implemented to achieve data pre-processing, 
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including smoothing, noise removal, peak alignment, peak picking, and insensitivity 

normalization. Third, a data matrix was generated to represent the MS imaging data. For example, 

the data matrix of the positive MS image is composed of 2115 X 996, i.e., 2115 pixels 

(141(scans/line) X 15 lines) with 996 aligned common ions. The number of pixels of each MS 

image depends on the size and the spatial resolution of the MS image. The details of data pre-

processing are provided in the Supporting Information. 

4.3.6.  Image fusion. 

The image fusion was conducted using Molecular Image Fusion software43, 44. Six files, including 

microscope image data, microscope image information (pixel size, pixel number, and spatial 

resolution), MS image data, MS image information (pixel size, pixel number, and spatial 

resolution), fusion parameters, and registration information, were needed to conduct the image 

fusion. Among them, the MSI data matrix was achieved using data pre-processing as mentioned 

above, whereas the microscopy image data matrix and registration information were generated 

using in-house developed MATLAB script (details were provided in the Supporting Information). 

4.3.7. Averaged MS spectra and t-test.  

Based on the fused image, the pixels representing Aβ plaques and their surrounding regions were 

manually selected from MSI dataset, and averaged into two mass spectra, respectively, using in-

house developed R script. To obtain the metabolites with significant differences between two 

regions, a t-test was carried out using GraphPad.  

4.4.  Results and discussion 

4.4.1. Fluorescence microscopy imaging of mouse brain 

As a common fluorescence dye binding to Aβ plaques,48 Thioflavin S was utilized to stain brain 

slices obtained from 5xFAD mice and in the littermate control group. Although Thioflavin S labels 
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both amyloid plaques and tau tangles, they can be readily distinguished based on their 

morphologies. Aβ plaques are extracellular, and they are larger with round structures; tangles are 

intraneuronal, and they are smaller with flame shape.49 The fluorescence microscopy image shows 

the Aβ aggregated areas are clearly illustrated as bright green dots on the slice of 5xFAD mouse 

brain (Figure 4-2A), but they are not observed in the control sample (Figure 4-2B). Previous 

studies indicate that the plaque size generally ranges from 10 µm to 80 µm with an average size of 

around 50−60 µm.50 In our studies, most plaques are smaller than 50 µm, indicating that high-

spatial resolution MSI techniques are needed for conducting experiments 

Figure 4-2. Fluorescence microscopy images of brain slices of (A) 5xFAD and (B) control 

mice. 

 

4.4.2. MSI of mouse brain and image fusion 

Previous studies indicate that Aβ plaques have relatively higher abundances in hippocampus 

because amyloid precursor protein (APP) are transported to the nerve terminal in this region and 

further processed into Aβ.51 Thus, we conducted MSI measurements of the selected small areas 

(e.g., 1 mm X 0.3 mm) on brain slice containing hippocampus. For example, a slice of whole 
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mouse brain with AD (Figure 4-3A) containing the hippocampus, as shown in a zoomed-in picture 

(Figure 4-3B), was selected for the MSI experiments. The MSI experiments were conducted in 

both positive and negative ion modes to detect broader ranges of molecules. In the positive ion 

mode, a large number of lysophospholipids were observed, whereas, in the negative ion mode, 

organic acids were primarily detected. The MS images of the selected metabolites were then 

constructed (Figure 4-3) to demonstrate their spatial distributions. For example, [PC(36:1)+H]+ 

(m/z 788.6137) and [PC(38:1)+H]+ (m/z 814.6292) were mainly distributed in the white matter, 

whereas [PC(38:4)+K]+ (m/z 848.5542) and [PC(38:6)+K]+ (m/z 844.5221) were primarily 

observed in the gray area. Similar results of a number of lipids were reported in previous studies.52, 

53 For example, Antonio Veloso et al.52 showed PC(38:4) and PC(38:6) are more abundant in the 

grey matter, whereas PC (36:1) has higher abundance in the white matter. MSI experiments of 

mice brain samples in the control group were also conducted (positive ion mode), and MS images 

of representative metabolites in the white and grey matter were provided in Figure S4-10. All 
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metabolites were identified using MS2 from tissue slice, and results were compared with METLIN 

(Figure S2-11).  

Figure 4-3. Optical and MS images of FAD mouse brain. 

Optical image of (A) a coronal section of the mouse brain (B) the zoomed-in region containing the 

area for MSI measurement (enclosed in the red rectangle). MS images of (C) [PC(36:1) + H]+ and 

(D) [PC(38:1) + H]+) representing metabolites primarily distributed in the white matter. MS 

images of (E) [PC(38:4) + K]+  and (F) [PC(38:6) + K]+)  representing metabolites primarily 

distributed in the gray matter. All metabolites were identified using MS2 from tissue slice, and 

results were compared with METLIN (Table S4-4).    

To localize the area of the Aβ plaques, the adjacent slice was stained using thioflavin S, and the 

fluorescence microscopy image was taken to match the region measured in the MSI experiment 
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(Figure 4-4A). Molecular Image Fusion software was employed to fuse the MS image and the 

corresponding fluorescence microscopy image, and the spatial resolution of MS. images (~17 µm), 

which was determined based previously established method54, has been increased to ~5 µm in the 

fused image (Figure 4-4C) (characterization of the spatial resolution is provided in Figure S4-8). 

For example, the fused images of [PC(34:1) + H]+ (m/z 760.5851) and [PC(38:8) + H]+ (m/z 

834.5983) become sharper compared with their original MS images. High reconstruction rates 

(76.3-78.4%, Figure S4-2) indicate the image fusion process is reliable and satisfactory (i.e., 

reconstruction rate > 75% is regarded as satisfied fusion43).  Particularly, the fused images correlate 

histological protein hallmarks with metabolomic features. We obtained a number of ions (e.g., 

[LPC(18:0) + H]+ (m/z 524.3693)) accumulated on Aβ plaques (i.e., bright spots on the 

fluorescence microscopy images). 

Figure 4-4. Fusion of fluorescence microscopy image and MS image. 

(A) Fluorescence microscopy image of a 5XFAD mouse brain slice stained using Thioflavin S. (B) 

Original MS images of metabolites ([PC(34:1) + H]+ (760.5851) (upper), [PC(38:6) + H]+ 

(844.5218) (middle), and [LPC(18:0) + H]+ (m/z 524.3693) (lower)) and (C) their fused images. 

All metabolites were identified using MS2 from tissue slice, and results were compared with 

METLIN (Figure S4-3). 
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4.4.3.  Data analysis 

To achieve a comprehensive analysis of MSI data representing Aβ plaques and their surrounding 

regions, a statistical data analysis was carried out. By comparing the fused image with the 

fluorescence microscope image (Figure 4-4A and 4-5A), multiple Aβ plaques were identified, and 

three of them were selected to determine the metabolites with significantly different abundances 

between Aβ plaques and their surrounding regions. Based on the fused image, pixels representing 

different regions were manually selected to generate the averaged mass spectra. For example, in 

region 1, the pixels encompassed by the blue rectangle represent the Aβ plaque, whereas those 

between the yellow and blue rectangles represent the surrounding region of the Aβ plaque (details 

of pixel numbers selection are provided in the Table S4-1). An averaged mass spectrum of each 

region (Figure 4-5B) was generated using the corresponding MSI data, and ion intensities were 

normalized to the TIC (total ion current) of the average mass spectrum. The t-test was conducted 

to determine the ions with significantly different abundances between Aβ plaques and their 

surrounding regions.  
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Figure 4-5. Pixel selection and average spectra (MS positive ion mode). 

(A) Fused image and the pixels representing Aβ plaques and its surrounding region. (B) The 

averaged mass spectra of an Aβ plaque and its surrounding region.  

 

Except for the example shown in Figure 4-5, two additional plaques were analyzed (Figure S4-6). 

Our results indicate that metabolites accumulated in Aβ plaques (Figure 4-6) are primarily 

lysophospholipids such as LPC (lysophosphatidylcholine) and LPG (lysophosphatidylglycerol). 

For example, the relative intensities of [LPC (16:0) + H]+  and LPC [(18:1) + H]+ were about 14 

and 11 times higher in Aβ plaques than the surrounding regions, respectively. Previous studies 

demonstrate that lysophospholipids are mainly generated along with fatty acids through 

hydrolyzation of membrane phospholipids55. As bioactive lipid mediators, lysophospholipids play 

a variety of roles such as proliferation, differentiation, survival, migration, adhesion, invasion, and 

morphogenesis56. However, lysophospholipids may potentially cause cell membrane disruption 

and ultimately lead to cell lysis due to their toxic detergent-like properties57. Thus, the change of 

lysophospholipids level may deter fundamental functions of cell membrane such as ion 

transportation58, molecule secretion,59 and membrane related signal reception60. According to 

previous studies of immunostaining of amyloid peptide in 5xFAD mice models, the accumulation 

of LPCs in Aβ plaque is likely due to the hyperactivity of enzyme PLA2 (an enzyme directly 

converts phospholipid to lysophospholipids and fatty acids)61. Kaya et. al62 also demonstrated 

other lysophospholipids (e.g., LPC, lysophosphatidic acid (LPA), and 

lysophosphatidylethanolamine (LPE)) are aggregated in the plaque of AD mice brain using 

multimode MALDI-IMS technique. Furthermore, decreasing the overexpressed PLA2 is regarded 

as one of the goals in AD treatment. For example, PLA2 inhibitor has been employed to treat 
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Alzheimer’s disease.63 In fact, the reduction of PLA2 can ameliorate the cognitive deficits in a 

mouse model of AD64.  

Figure 4-6. Representative metabolites (MS positive ion mode) with significantly different 

abundances between Aβ plaques and their surrounding regions. 

Results were obtained from three Aβ plaques. The error bar indicates the standard deviation of the 

relative intensities obtained from the selected pixels. All metabolites were identified using MS2 

from tissue slice, and results were compared with METLIN (Figure S4-3). (From t-test: ***, < 

0.001) 

 

In addition to LPCs, we discovered the abundances of a number of other small molecules (e.g., 

spermine and arachidonic acid) are significantly different between plaques and their surrounding 

regions (Table S4-2). Spermine, which has the largest number of amine group among three 

naturally occurring polyamines65 (i.e., spermine, spermidine, and putrescine), plays multiple 

important roles such as controlling gene express, stabilizing chromatin,66 and protecting replicating 

DNA from being damaged by singlet oxygen67. The upregulation of spermine in plaques can be 

understood as a protective mechanism: Aβ is toxic to neurons through a free radical dependent 

oxidative mechanism,68 whereas increased polyamines can act as radical scavengers to neutralize 



80 

 

free radicals generated by the Aβ and protect neurons.69, 70 Another small molecule accumulated 

in Aβ plaque is arachidonic acid (AA), which is an essential omega-6 fatty acid critical for synaptic 

signaling, long-term potentiation, learning, and memory71. Although AA can be generated from 

other sources, such as hydrolysis of fatty acid amide hydrolase and monoacylglycerol lipase, the 

level of free AA in brain is primarily determined by a specific form of PLA2, GIVA-PLA2
58. 

According to previous studies, the stimulation of Aβ results in an increased level of GIVA-PLA2, 

and further alters the amount of AA72. For example, upregulation of AA was previously reported 

in the APP (amyloid precursor protein) transferred PC12 cells73 and in the plaque region of mouse 

using the PET (positron emission tomography)74. 

Figure 4-7.  Image fusion of fluorescence microscopy and MS images (MS negative ion mode). 

(A) Fluorescence microscopy image of 5xFAD mouse brain. (B) MS image of [PA(O-32:0)-2H]2─ 

and (C) its fused image. (D) MS image of dodecenoic acid [M+K-2H]─  and (E) its fused image. 

 

 The MSI experiments were also conducted in the negative ion mode and the area is 0.5 mm X 0.5 

mm. Fluorescence microscopy image (Figure 4-7A) and MS image (Figure 4-7B and 4-7C) were 
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obtained from AD mouse brain slice, and fused using procedures as described above. Similar to 

the results acquired from the positive ion mode, metabolites exhibit different distribution features. 

For example, ([PA(O-32:0) - 2H]2−) and dodecenoic acid ([M+K-2H]−) primarily present in the 

white matter and gray matter, respectively (Figure 4-7D and 4-7E). Comparing the fused image 

with fluorescence microscopy image, multiple Aβ regions were located, and two of them were 

selected to extract pixels representing Aβ plaques and their surrounding regions (Figure 4-8 and 

Figure S4-7).  A number of metabolites (e.g., malic acid, glutamine, aspartic acid, and 

docosahexaenoic acid (DHA)) possess significantly different abundances between Aβ plaques and 

their surrounding regions (Table S4-3). For example, the relative ion intensity of glutamine is two 

times lower in plaque region compared with its surrounding (Figure 4-8B). Glutamine, which is 

an important amino acid for multiple processes such as promoting and maintaining cell function.75 

Glutamine is mainly produced by glutamine synthetase (GS), which converts glutamate and 

ammonium to glutamine.76 It was reported that intense oxidative stress is one the important 

symptoms of AD brain77, 78 and closely related to the Aβ79, 80.  The oxidative stress leads to 

alterations of large numbers of molecular processes such as lipid peroxidation81, DNA oxidation82, 

and protein dysfunction83. Particularly, the activity of GS is significantly decreased due to the 

oxidative stress84, 85 which may further resulting the deactivation of GS in Aβ region and lower the 

level of glutamine.  

The relative intensity of aspartic acid was about four times lower in Aβ plaques compared with the 

surrounding regions. A previous study revealed that the metabolic profiles of a number of amino 

acids and relevant molecules, including aspartic acid, alanine, serine, glycine, and N-acetyl 

aspartic acid, were significantly altered in the mice during aging86, 87. For example, the level of 

aspartic acid is decreased in AD mice compared with control mice brain87; this trend is similar to 
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our results. The potential mechanism is likely related to the dysfunction of mitochondrial and 

hypometabolism in AD pathogenesis88, 89. In addition, our results indicate that the relative 

abundance of malic acid is about 1.5 times higher in plaque than in surrounding region; the 

upregulation of malic acid in plaque is also reported in previous studies90. As an important 

intermediate molecule, malic acid is involved in Krebs cycle mainly occurring in mitochondrial91. 

Thus, the alteration of malic acid is likely due to mitochondrial dysfunction and decreased function 

of key enzymes in AD92. In addition, the abundances of other metabolites, such as xanthine and 

DHA (Table S4-3), are also significantly different between the Aβ and surrounding regions, 

whereas the relevant mechanisms need to be further studied. 

Figure 4-8. Pixel selection and ion abundance comparison (MS negative ion mode). 

(A) Pixels representing Aβ plaques and their surrounding areas in the fused images. (B) 

Representative metabolites possessing significantly different abundances between Aβ plaques and 

their surrounding regions (From t-test: ***, < 0.001). All metabolites were identified using MS2 

from tissue slice, and results were compared with METLIN (Figure S4-4). 
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4.5.  Conclusion 

In this study, we utilized the Single-probe MSI technique to achieve high-resolution, ambient MS 

images of mouse brain with Alzheimer Disease in both negative and positive ion modes. 

Fluorescence microscopy images were obtained using the adjacent mouse brain slices to locate Aβ 

plaque positions. Image fusion was carried out to integrate fluorescence microscopy images (with 

higher spatial resolution) and MS images (with rich chemical information). Particularly, the fused 

images can provide significantly improved spatial resolution of MS images, allowing for the 

correlation of histological hallmarks of Aβ plaques and their surrounding regions to their relevant 

metabolomic profiles. Our results indicate that a number of metabolites (e.g., lysophospholipids, 

spermine, arachidonic acid, malic acid, glutamine, and aspartic acid) are abnormally expressed in 

Aβ plaques, and they are very likely related to the development of AD. Our method can be 

potentially used in other studies to illustrate the spatially resolved correlations between metabolites 

and potential biomarkers of diseases. The fully established methods may benefit the 

physiopathology, therapeutic resistance, and biomarker discovery. 

 

 

  

The material in chapter 3 is adapted from Tian, X.; Xie, B.; Zou, Z.; Jiao, Y.; Lin, L. E.; Chen, C. 

L.; Hsu, C. C.; Peng, J.; Yang, Z., Anal. Chem. 2019, 91 (20), 12882-12889. The copyright 

permission is obtained from ACS.  
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Appendix 1: Chapter 2 Supplemental 

Figure S2-1. MSI data analysis using MCR-ALS method. 

The spatial distribution patterns (left) and the grouped molecules (right) present in (A) inner 

medulla and (B) cortex of mouse kidney slice. (C) and (D) are from the other two components. 

 

 

Figure S2-2. Validation of results obtained from the supervised ML. 

(A) Visualization of supervised ML results using t-SNE. Tissue labels are color-coded as red (inner 

medulla), blue (outer medulla), and green (cortex) shown in separated groups. (B) Bar plot of point 

reachability from OPTICS analysis. Similar to the t-SNE result, four major clusters (A, B, C, and 

D) were achieved. Although the outer medulla was reduced into two separated clusters (B and C), 

they have shorter reachability distance (i.e., the highest bar between B and C) than that between A 

(inner medulla) and D (cortex). In fact, the relative shorter reachability distance between B and C 

is likely due to their similar chemical compositions. It follows that OPTICS reachability plot 

supported the t-SNE distribution map. Overall, the dimensionality reduction using t-SNE provided 

satisfactory results that are suitable for the flowing unsupervised ML approaches. 
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Figure S2-3. Optimization of unsupervised ML methods. 

(A) Optimization of the number of clusters in CLARA. (B) Optimization of the epsilon value in 

DBSCAN. 

 

 

Figure S2-4. Unsupervised ML analyses of the high-dimensional MSI dataset without 

performing t-SNE dimensionality reduction. 

Unsatisfactory results were obtained from (A) CLARA and (B) DBSCAN without conducting t-

SNE dimensionality reduction in advance.  
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Figure S2-5. Determining the number of components in MCR analysis using the Singular 

Value Decomposition (SVD). 
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Figure S2-6. The percent of variance explained (97.656%) with the number of component 

(5). 
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Figure S2-7. Unsatisfactory results were obtained from dimensionality reduction using PCA. 
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Table S2-1. Data selection for Random Forest model training and testing. 

 Rows/pixel Columns/(m/z) 

Selected dataset 2900 182 

Train data 2610 182 

Test data 290 182 

 

Table S2-2. Validation of supervised ML model using testing data obtained from MCR 

results. 

Trail number Inner medulla  Outer medulla Cortex 

1 

 
99.01%  100% 100% 

               2 99.10% 

 
 98.95% 100% 

3 99.09%  100% 98.78% 

 
Average                              99.07%                                            99.65%                               99.59% 

 

Table S2-3. Top 15 most abundant ions grouped in component 2. 

MCR (m/z)                     Experiment(m/z)         Tentative Labeling* Exact (m/z)         ppm Loading Score 

810.6423 810.6019 PC(20:3/18:1) 810.6007 1 0.5329 
782.5432 782.5701 PC(18:3/18:1) 782.5694 0 0.4913 
811.6421 811.6054 SM(17:1/22:0) 811.6090 4 0.2716 
760.5466 760.5870 PC(22:1/12:0) 760.5851 2 0.2555 
783.5430 783.5739 SM(18:1/19:0) 783.5777 4 0.2319 
808.5428 808.5878 PC(20:4/18:1) 808.5851 3 0.2281 
786.6442 786.6017 PC(18:1/18:1) 786.6007 1 0.2045 
832.5390 832.5841 PC(18:1/20:3) 832.5827 1 0.1538 
758.5451 758.5702 PE(22:2/15:0) 758.5694 1 0.1376 
804.5418 804.5525 PC(14:0/22:4) 804.5514 1 0.1185 
848.5390 848.5534 PC(18:3/20:1) 848.5566 3 0.1178 
820.5419 820.5266 PC(18:0/18:4) 820.5253 1 0.0965 
806.5413 806.5704 PC(20:2/18:4) 806.5694 1 0.0923 
788.6437 788.6201 PC(17:0/19:1) 788.6164 4 0.0704 
784.5447 784.5871 PC(19:1/17:2) 784.5851 2 0.0639 

*PC: Phosphatidylcholines, PE: Phosphatidylethanolamine, SM: Sphingomyelin. 
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Table S2-4. Top 15 most abundant ions grouped in component 3. 

MCR (m/z)                     Experiment(m/z)         Tentative Labeling* Exact (m/z)         ppm Loading Score 

758.5451 758.5707 PE(22:2/15:0) 785.5694 1 0.4787 
734.5470 734.5704 PC(14:0/18:0) 734.5694 1 0.4519 
782.5432 782.5703 PC(18:3/18:1) 782.5694 1 0.4080 
783.5430 783.5736 SM(18:1/19:0) 783.5777 5 0.1937 
756.5456 756.5527 PE(19:0/16:0) 756.5513 1 0.1534 
810.6423 810.6024 PC(20:3/18:1) 810.6002 2 0.1444 
780.5437 780.5535 PC(20:5/16:0) 780.5538 0 0.1386 
760.5466 760.5875 PE(15:0/22:1) 760.5851 3 0.1349 
786.6442 786.6027 PC(18:1/18:1) 786.6007 2 0.1332 
772.5457 772.5273 PC(13:0/19:0) 772.5253 2 0.1121 
792.5428 792.5916 PC(16:0/22:5) 792.5902 1 0.0982 
796.5438 796.5272 PC(18:2/16:0) 796.5253 2 0.0981 
828.5399 828.5533 PC(22:5/18:4) 828.5538 0 0.0946 
784.5447 784.5884 PC(19:1/17:2) 782.5851 4 0.0946 
844.5380 844.5272 PC(18:4/20:2) 844.5253 2 0.0816 

*PC: Phosphatidylcholines, PE: Phosphatidylethanolamine, SM: Sphingomyelin. 

Table S2-5. Top 15 most abundant ions grouped in component 4. 

MCR (m/z)                     Experiment(m/z)         Tentative Labeling* Exact (m/z)         ppm Loading Score 

806.5413 806.5709 PC(20:2/18:4) 806.5694 1 0.9384 
792.5428 792.5916 PC(16:0/22:5) 792.5902 1 0.1713 
758.5451 758.5707 PE(22:2/15:0) 758.5694 1 0.1157 
782.5432 782.5703 PC(18:3/18:1) 782.5694 1 0.1151 
793.6425 793.5951 PG(19:0/18:0) 793.5953 0 0.0844 
734.5470 734.5710 PC(14:0/18:0) 734.5694 2 0.0767 
834.6404 834.6027 PC(20:4/20:2) 834.6007 2 0.0468 
828.5399 828.5533 PC(22:5/18:4) 828.5538 0 0.0370 
844.5380 844.5272 PC(18:4/20:2) 844.5353 2 0.0257 
822.2415 822.5658 PS(20:0/20:5) 822.5643 1 0.0256 
838.5195 838.5608 PS(20:4/20:1) 838.5593 1 0.0241 
760.5466 760.5875 PE(15:0/22:1) 760.5853 3 0.0227 
804.5418 804.5526 PC(14:0/22:4) 804.5514 1 0.0144 
798.5433 798.5427 PC(18:0/16:1) 798.5410 2 0.0605 
849.5388 849.5611 PG(20:1/20:3) 849.5616 0 0.0582 

*PC: Phosphatidylcholines, PE: Phosphatidylethanolamine, PG: Phosphatidylglycerol.   

PS: Phosphatidylserine 
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Table S2-6. Top 15 most abundant ions grouped in component 5 

MCR (m/z)                     Experiment(m/z)         Tentative Labeling* Exact (m/z)         ppm Loading Score 

844.5380615 844.5272 PC(18:4/20:2) 844.5253 2 0.34957 
828.5399867 828.5533 PC(22:5/18:4) 828.5538 0 0.31601 
820.5419491 820.5272 PC(18:0/18:4) 820.5253 2 0.26439 
796.5438371 796.5366 PS(16:0/20:1) 796.5463 12 0.25983 
780.5437628 780.5529 PC(16:0/18:2) 780.5514 1 0.24061 
804.5418748 804.5531 PC(20:4/18:3) 804.5538 0 0.23871 
830.5394961 830.5468 PC(22:5/16:0) 830.546 0 0.22432 
848.5390798 848.5584 PC(18:3/20:1) 848.5566 2 0.21048 
832.5390055 832.5853 PC(20:5/20:2) 832.5851 0 0.20511 
772.5457252 772.5266 PC(13:0/19:0) 772.5253 1 0.17865 
814.5414213 814.5736 PC(13:0/22:0) 814.5723 1 0.17369 
824.5409679 824.5583 PC(18:2/18:0) 824.5566 2 0.1725 
845.5398157 845.53 PG(18:1/22:5) 845.5303 0 0.17228 
756.5456509 756.5528 PE(19:0/16:0) 756.5513 1 0.16383 
808.5428931 808.5867 PC(20:4/18:1) 808.5851 2 0.15259 

*PC: Phosphatidylcholines, PE: Phosphatidylethanolamine, PG: Phosphatidylglycerol,  

PS: Phosphatidylserine 

 

Table S2-7. Percent of variance explained when choosing different number of components 

Number of component Percent of variance explained 

3 92.80% 

 
4 96.65% 

 
5 97.66% 

 
6 98.18% 

 
7 98.50% 
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Appendix 2: Chapter 3 Supplemental 

Figure S3-1. The photo of a Single-probe, which was assembled using three parts: a Nano 

ESI (nano-ESI) emitter, a dual-bore needle, and a solvent-providing capillary. 
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Figure S3-2. Microscope photos of spheroid under the treatment of Irinotecan (20.6 µM) 

obtained at different time points. The morphology of spheroid has no significant change 

within 24 hours. 

 

Figure S3-3. The relative abundances of Irinotecan on spheroid (20.6 µM, 10 h) illustrated 

using (A) contour plot and (B) MSI heatmap. 
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Figure S3-4. Determining the number of components in MCR analysis using the Singular 

Value Decomposition (SVD). 
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Figure S3-5. Percent of variance explained (80.621%) in the MSI data obtained from the 

control spheroid. Analyses were conducted using Multivariate Curve Resolution Toolbox. 

 

 

Figure S3-6. Alternative contour plots of Figure 3-5. Plots are constructed based on MCR 

analysis results of MS images of an Irinotecan treated spheroid (5 µM, 1 h). 
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Figure S3-7. MCR-ALS analysis results of MSI data obtained from spheroids in the control 

and drug-treated groups. All MSI datasets were decomposed into three major components: 

outer region (component 1), inner region (component 2), and background (component 3). 

 

 

Figure S3-8. Optimization of unsupervised ML methods. 

(A) Optimization of the number of clusters in CLARA model. (B) Dimensionality reduction using 

t-SNE prior to CLARA analysis. 
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Figure S3-9. Evaluation of the stability of t-SNE for dimensionality reduction. The t-SNE 

calculations were conducted five times using the same MSI data (treatment condition: 5 μM, 

1 h). 

(A) Adjusted Rand Index was obtained for each t-SNE calculation, and consistently high values 

(0.85 ─ 0.91) indicate that t-SNE has a very stable performance through all five calculations. 

(Adjusted Rand Index ranges from 0 to 1, and higher values indicate higher similarity). (B) The 

comparison of five reconstructed CLARA results. 

 

 

Figure S3-10. Evaluation the influence of 3D t-SNE dimensionality reduction on CLARA 

results. 

(A) CLARA result based on 3D t-SNE dimensionality reduction. (B) The reconstructed spatial 

distribution based on CLARA result shows similar features as those based on 2D t-SNE method. 
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Figure S3-11. Evaluation of PCA for dimensionality reduction.  

(A) PCA result of a drug treated spheroid slice (5 μM, 1 h). (B) Optimal number of clusters (i.e., 

2) determined from CLARA. (C) CLARA result of with MSI data with lower dimensions (2D). 

(D) Reconstruction of CLARA result showing the spatial distribution of grouped data points. 
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Figure S3-12. Results obtained from (A) the unsupervised and (B) supervised ML analyses 

of MS images obtained from both control and drug treated spheroids. 

 

 

Figure S3-13. Comparison of results obtained from supervised ML (Random Forest) analysis 

of a drug treated spheroid slice (5 μM, 1 h) using different methods for training data selection: 

(A) k-means, (B) Hierarchical Clustering, and (C) MCR. 
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Figure S3-14. MS/MS analysis of selected metabolites. 

(A) [PC(32:1) + H]+, (B) [PC(34:2) + H]+, (C)  [PC(34:1) + Na]+, (D) [SM(34:1) + H]+, (E) 

[PC(31:1) + Na]+, (F) [PC(34:0) + Na]+, (G) [PC(34:1) + H]+, (H) [PC(P-34:1) + Na]+, and (I) 

[PE(O-35:0) + H]+. All MS/MS spectra were compared with online databases Metlin.  
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Figure S3-15. Comparison of MSn obtained from spheroid slices and standard compound 

for structure confirmation of metabolites. 

Both MS2 and MS3 were conducted for [PC(34:1) + H]+ (A and C) and ([PC(34:1) - PO4C5H13N + 

H]+ (B and D).  

 

Table S3-1. Parameters of data matrix obtained from MSI datasets upon finishing pre-

process. 

Groups Pixels Number of common ions 

Control 7480 307 

5 μM, 1 h 6369 348 

10 μM,  1 h 8160 235 

20.6 μM, 1 h 11400 224 

20.6 μM, 10 h 7760 346 

20.6 μM, 24 h 9700 174 
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Table S3-2. The prediction accuracy of Random Forest models for MSI dataset. 

Group Background (%) Inner Region (%) Outer Region (%) 

Control 96.3 91.21 95.50 

5 μM 1 h 100 93.12 100 

10 μM 1 h 100 98.12 94.50 

20.6 μM 1 h 100 100 100 

20.6 μM 10 h 94.22 95.15 98.61 

20.6 μM 24 h 96.67 100 94.73 

 

 

 

Table S3-3. Top-10 most abundant ions in the component 1. 

m/z Labelsa Loading Score 

760.5832 PC(34:1)* 0.195995 

761.5960 PA(40:0) 0.18903 

786.6084 PC(36:2) 0.187542 

758.5769 PC(34:2)* 0.181174 

788.6243 PC(36:1) 0.173391 

787.6120 PA(42:1) 0.173062 

784.5929 PC(34:0)* 0.170212 

759.5804 PA(40:1) 0.159413 

703.5816 SM(34:1)* 0.156258 

789.6277 PA(42:0) 0.154923 
aPC: Phosphatidylcholines, PA: Phosphatidic Acid, SM: Sphingomyelin. *Structure was 

confirmed by MS/MS analysis. 
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Table S3-4. Top-10 most abundant ions in the component 2. 

m/z Labelsa Loading Score 

767.2340 PA(P-40:0) 0.146215 

770.3107 PC(O-36:3) 0.144249 

773.3875 PA(P-42:0) 0.142898 

719.1610 PA(O-38:0) 0.141826 

746.6176 PE(P-37:0) 0.14169 

783.6178 PA(40:0) 0.139972 

782.6178 PC(34:1)* 0.139558 

744.6177 PC(P-34:1) 0.139281 

748.1178 PE(O-37:0) 0.13771 

743.1927 PA(P-40:1) 0.136859 
aPE: Phosphatidylethanolamine *Structure was confirmed by MS/MS 

 

 

 

 

Table S3-5. Supervised machine learning (Random forest) data selection. 

 

 

 

 

 

 

 

 

 

 

 control 5 µM, 1 h 10 µM, 1 h 20.6 µM, 1 h 20.6 µM, 10 h 20.6 µM, 24 h 

Selected 

date (pixels) 
600 400 600 500 400 500 

Training 

data (Pixels) 
540 360 540 450 360 450 

Testing data 

(pixels) 
60 40 60 50 40 50 
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Table S3-6. Metabolites significantly altered by Irinotecan treatment (concentration-

dependent). 

m/z Assignment Method 
Relative Intensity 

Region 
Control 5 µM, 1 h 10 µM, 1 h 20.6 µM, 1 h 

726.5446 [PC (31:1) + Na]+ 

Supervised 1.13E-04 3.80E-04 9.30E-04 1.43E-02 

Inner 

Unsupervised 2.17E-03 2.87E-03 2.78E-03 1.03E-02 

758.5685 [PC (34:2) + H]+ 

Supervised 2.92E-02 3.64E-02 6.52E-02 1.42E-01 
Inner 

Unsupervised 6.07E-02 4.50E-01 3.52E-01 2.59E-01 

782.5692 [PC (34:1) + Na]+ 
Supervised 5.24E-03 2.71E-02 3.96E-02 1.87E-01 

Inner 
Unsupervised 1.06E-02 2.38E-01 2.01E-01 1.40E-01 

784.5865   [PC (34:0) + Na]+ 

Supervised 1.51E-02 1.68E-02 1.13E-01 1.13E-01 

Inner 

Unsupervised 3.19E-02 2.31E-01 2.12E-01 1.25E-01 

766.5719 [PC(P-34:1)+ Na]+ 

Supervised 3.97E-04 1.36E-03 1.66E-03 5.78E-03 

Outer 

Unsupervised 3.99E-04 1.06E-03 1.02E-03 2.29E-03 

 

 

Table S3-7. Metabolites significantly altered by Irinotecan treatment (time-dependent). 

m/z Assignment ML Method 
Relative Intensities 

Region 
Control 20.6 µM, 1 h 20.6 µM, 10 h 20.6 µM, 24 h 

703.5706 [SM (34:1+H)]+ 
Supervised          

4.55E-03 1.32E-01 1.25E-01 1.74E-01 
Inner 

Unsupervised 
9.69E-03 1.31E-01 1.61E-01 1.94E-01 

732.5438 [PC (32:1) + H]+ 
Supervised 1.24E-02 1.42E-01 1.50E-01 1.04E-01 

Inner 
Unsupervised 2.65E-02 1.67E-01 1.68E-01 1.31E-01 

760.5832 [PC (34:1) + H]+ 
Supervised 7.82E-02 6.65E-01 1.51E-01 4.63E-01 

Inner 
Unsupervised 1.61E-02 6.10E-01 2.10E-01 5.11E-01 

720.5912 [PE(O-35:0) + Na]+ 
Supervised 2.98E-03 1.23E-02 6.85E-03 9.68E-03 

Outer 
Unsupervised 3.26E-03 1.27E-02 1.04E-02 8.36E-03 
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Appendix 3: Chapter 4 Supplemental 

 

Figure S4-1. The Single-probe MSI experimental set-up with key components labeled. 
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Figure S4-2. The reconstruction rate obtained from measured MS images (left) and predicted 

images (right). 

(A) [PA(O-32:0) - 2H]2– (m/z 309.2514), (B) [Dodecenoic acid + K – 2H]– (m/z 251.1053), (C) 

[LPC(18:0) + H]+ (m/z 524.3696), (D) [PC(34:1) + H]+ (m/z 760.5851), and (E) [PC(38:6) + K]+ 

(m/z 844.5218). All metabolites were identified using MS/MS from tissue slice, and results were 

compared with METLIN. 

 

 

 

 

 



111 

 

Figure S4-3. MS/MS analysis of selected metabolites (in the positive ion mode).  
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(A) [PC(36:1) + H]+, (B) [LPC(18:0) + H]+, (C) [LPC(16:1) + H]+, (D) [LPC(18:1) +H]+, (E) 

[PE(40:0) + H]+, (F) [PC(37:6) + Na]+, (G) [PC(38:6) + K]+, (H) [PC(38:4) + Na]+, (I) [LPC(15:0 

+ H)]+, (J) [LPC(22:6) + H]+, (K) [PA(24:0) + H]+, (M) [Arachidonic acid + Na]+, (N) [Spermine 

+ H]+, and (O) [LPG(15:0) + K]+(All MS/MS spectra were compared with online databases 

METLIN). 

 

Figure S4-4. MS/MS analysis of selected metabolites (in negative ion mode). 

(A) [malic acid - H]-, (B) [glutamine - H]-, (C) [asparic acid - H]-, (D) [5-aminolevulinic acid - H]-, 

(E) [docosahexaenoic acid - H]-, (F) [Xanthine - H]-, and (G) [Phenylalanine - H]-. (All MS/MS 

spectra were compared with online databases METLIN). 
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Figure S4-5. Zoomed in averaged spectra of Figure 4-5B and metabolites which have 

significant differences between plaque and its surrounding region in plaque 1. 

(A) Zoomed spectra from 200 m/z to 330 m/z. (B)zoomed spectra from 450 m/z to 630 m/z. (C) 

Zoomed spectra from 800 m/z to 820 m/z. 

 

 

Figure S4-6. Metabolites significantly different abundances between Aβ plaques and their 

surrounding regions. 

Results were obtained from (A) plaque 1, (B) plaque 2, and (C) plaque 3 as shown in (D). (D) 

Fused image and three selected plaques. All metabolites were identified using the tandem mass 

spectra on tissue slice, and results were compared with database METLIN. (From t-test: ***, P < 

0.001) 
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Figure S4-7. Pixels selection and ion relative intensity comparison. 

(A) Pixels selection of Aβ plaques and their surrounding areas using the fused images. (B) and (C) 

Metabolites possessing significantly different abundances between Aβ plaques and their 

surrounding regions measured from plauqe1 and plaque 2. All metabolites were identified using 

the tandem mass spectra on tissue slice, and results were compared with database METLIN. (From 

t-test: ***, < 0.001) 

 

Figure S4-8. Characterization of the spatial resolution of MS images. 

The relative ion intensities of ion [PC(36:1) + H]+ in three representative line scans in a MS image 

(Figure 4-3). The spatial resolution was determined on the distance with the relative ion intensities 

change from 20% to 80%. 
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Figure S4-9. Stained slice of mouse brain with Alzheimer Disease. 

The sizes of most plaques (green bright dots) are smaller than 50μm. 
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Figure S4-10. Experimental results from the control group. 

Bright-field microscopy image of (A) a control mouse brain and the zoomed-in region. MS images 

of (C) [PC(36:1) + H]+ and (D) [PC(34:1) + H]+. Metabolites with relatively higher abundances in 

(E) the gray matter and (F) white matter. 
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Figure S4-11. MS/MS analysis of selected metabolites in Figure S4-10 (positive ion mode). 

(A) [PC(19:0) + k]+, (B) [LPC(22:6) + H]+, (C) [PE(38:3) + Na]+, (D) [LPC(18:1) +H]+, (E) 

[PC(34:1) + Na]+, (F) [PC(38:6) + K]+, (G) [PC(38:4) + K]+, (H) [PE-Cer(d15:2/24:0) + Na]+, (I) 

[PC(36:1 + H)]+, (J) [LPC(38:1) + H]+, (K) [PE(40:6) + Na]+ (All MS/MS spectra were compared 

with online databases METLIN). 
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Table S4-1. Pixel selection in Aβ plaques and their surrounding regions from fused images. 

Regions Positive Ion Mode Negative Ion Mode 

 1 2 3 1 2 

Aβ 15 15 15 15 15 

Surrounding 30 30 30 20 20 

 

Table S4-2. Metabolites with significantly different abundances in Aβ plaques and their 

surrounding regions (positive ion mode). 

m/z Assignment* Relative Intensity 

(plaque) 

Relative Intensity 

(surrounding) 

203.2225 [Spermine + H]+ 1.2 X 10-1 1.2 X 10-2 

327.2286 [arachidonic acid + H]+ 9.8 X 10-2 4.3 X 10-2 

482.3241 [LPC(15:0) + H]+ 7.8 X 10-3 1.5 X 10-3 

496.3381 [LPC(16:0) + H]+ 2.4 X 10-2 1.5 X 10-2 

509.2242 [LPG(15:0) + H]+ 2.3 X 10-2 2.6 X 10-3 

522.3536 [LPC(18:1) + H]+ 1.9 X 10-3 1.2 X 10-3 

524.3696 [LPC(18:0) + H]+ 1.2 X 10-2 3.1 X 10-3 

526.2912 [LPE(22:6) + H]+ 1.3 X 10-2 8.0 X 10-3 

537.3532 [PA(24:0) + H]+ 3.9 X 10-3 7.2 X 10-4 

606.2936 [LPC(22:6) + H]+ 6.2 X 10-3 3.3 X 10-3 

814.5233 [PE(40:0) + H]+ 1.2 X 10-2 1.4 X 10-3 

(LPC: Lysophosphatidylcholines, LPG: lysophosphatidylglycerol, LPE: lysophosphatidylethanol, 

PA: Phosphatidic acids, PE: phosphatidylethanol) 

 

Table S4-3. Metabolites with significantly different abundances in Aβ plaques and their 

surrounding regions (negative ion mode). 

m/z Assignment* Relative Intensity 

(plaque) 

Relative Intensity 

(surrounding) 

133.0118 [malic acid - H]- 8.5 X 10-3 1.08 x10-2 

145.0431 [Glutamine - H]- 8.4 X 10-4 1.2 X 10-3 

132.0277 [Aspartic acid - H]- 1.6 x 10-2 6.5 X 10-2 

130.0513 [(5-Aminolevulinic acid) - H]- 1.6 X 10-3 2.2 X 10-3 

327.2323 [(docosahexaenoic acid) - H]- 1.4 X10-2 2.2 X 10-2 

151.0253 [(Xanthine) - H]- 4.0 X 10-3 1.2 X 10-2 

147.0452 [(Phenylalanine) - H]- 2.3 X 10-3 2.8 X 10-3 

*The assignment was based on the tandem mass spectra (MS/MS) and compared with online 

database METLIN 
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Table S4-4. Metabolites illustrated in Figure 4-3 and Figure4-7. 

m/z Assignment* Ion mode 

788.6197 [PC(36:1) + H]+ Positive 

848.5534 [PC(37:6) + H]+ Positive 

844.5218 [PC(38:6) + K]+ Positive 

832.5792 [PC(38:4) + H]+ Positive 

251.1065 [Dodecenoic acid + K – 2H]- Negative 

309.2514 [PA(O-32:0) – 2H]2- Negative 

PC: phosphatidylcholines 

 

 

 


