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Abstract

Within traditional antenna design, the behavior of the antenna can be dictated by its

physical dimensions and their proportions to a wavelength. Traditional electrically

small antennas in particular face many limitations on factors such as their gain,

quality factor, or bandwidth. The limitations on traditional antennas are based on

the assumption that the antenna in question is a Linear Time-Invariant (LTI) com-

ponent. This project proposes the introduction of time-varying loads to antennas

in order to fundamentally alter the limitations assumed by electrical size. Non-

LTI antennas however cannot be modeled and characterized by many traditional

electromagnetic solvers used commonly. In this thesis, an expanded and gener-

alized frequency domain method for analyzing time-varying loads on antennas is

introduced. It combines traditional method of moments techniques with conversion

matrices commonly used for time-varying circuit analysis. The Conversion Matri-

ces Method (CMM) has shown to be promising, providing agreement with results

found using a known time-domain method. This thesis provides the fundamental

first step toward non-LTI antennas with an accurate method of modeling antennas

with time-varying components.
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Chapter 1

Introduction

Antenna size limitations, due to form-factor constraints, has driven many areas of

research in traditional antenna design. While size is generally thought of as a physi-

cal dimension, for antennas, the implication of the size is based off its relation to the

wavelength of the operating signal, known as the electrical size. For many antenna

applications, an electrical size of a half-wavelength is simply too large to imple-

ment, especially for lower frequencies. Simply decreasing the electrical size is not

always the solution, as it fundamentally changes the behavior of the antenna. An-

tennas with a physical size that is proportionally small enough to the wavelength to

constitute such behavior limitations are called electrically small. Electrically small

antennas are defined in [1] as any antenna whose maximum dimension is less than

1
2πλ

represented in Figure 1.1. The constraints that electrical size present have been

well documented in papers such as [1], [2], where conclusions on the antenna’s

efficiency and bandwidth can be drawn. This is backed up in [3]–[5], where an

investigation into the quality factor (Q-factor) shows its reliance on the effective

volume an antenna encompasses. They show that electrical size can place a limita-

tion on the quality factor of an antenna, creating an inversely proportional relation

to the bandwidth and antenna efficiency.

Electrical size, however, is not tied indefinitely to the physical dimensions of

1



Figure 1.1: Omni-direction antenna used to prove limitations of electrically small
antennas from [2]

the antenna. In many cases, in order to combat size restrictions for possibly lower

frequencies, many techniques have been used to work around the electrical size

dilemma. Capacitive or inductive loads can be placed along the antenna to provide

a shift in the effective length of the antenna. While loading an antenna to increase

its effective length seems like the obvious solution to the dilemma of physical size

restriction, such loads do not change the instantaneous bandwidth and therefore

the Q factor of the antenna. Despite the shift of the resonant frequency such typical

loads can provide, the impedance bandwidth is still directly proportional to the elec-

trical size. This can be present challenges in applications where a wider bandwidth

is needed for system performance, but the required form factor makes the antenna

electrically small.

Such limitations rely on the assumption that the antenna of interest is of tradi-

tional design. Traditional antennas are considered to be both passive and Linear

Time-Invariant (LTI) components. By breaking those fundamental assumptions, a

new avenue to bend the limitations of antenna design can be explored. This project

explores the introduction of a linear time-varying load to an antenna shown in Fig-

ure 1.2 in order to bypass such limitations. It aims to give further insight into the

behavior of such antennas, in particular their interaction with incident waves. This

thesis will ideally give insight and intuition to the process of designing these anten-

2



Figure 1.2: Visualization of proposed application of time-varying loads to antennas

nas.

This project is not the first to utilize the effects of time-modulated loads to bend

the rules of electrical size restriction on performance. While it has been shown

in [6]–[8] that an electrically small antenna loaded with an active component can

display higher performance, time-varying active loads are less deeply researched.

In [9], the authors describe the design of a parametric slot antenna that is loaded

with a varactor across the slot. The antenna is fed by a waveguide that couples both

the input signal and pumping signal. While the most obvious difference between

this antenna and the intentions of this project is its design as a transmit antenna

rather than a receive. The paper also lacks methods to analyze the antenna and

its behavior. [10] provides an example of a time-varying matching network with

Direct Antenna Modulation (DAM) shown in Figure 1.3 implemented on a transmit

antenna. The switching used to create the DAM effect was however not located

on the antenna but rather before as a part of the feed. DAM does however show

good evidence that such modulation is capable of achieving a broader band signal

transmission than traditionally possible from an electrically small antenna.

The benefits of time-modulated loads have been explored in areas outside of

antenna design for a variety of reasons, one of which being nonreciprocity. The

authors in [11] used what was coined as Distributedly Modulated Capacitors, or

3



Figure 1.3: Example of direct antenna modulation created by a switch from [10]

DMCs, to create a nonreciprocal effect on a transmission line. By utilizing the

frequency conversion that is often observed with the addition of time-varying com-

ponents to a circuit, the transmit and receive signal on the transmission line can be

separated into different frequency bands. This was suggested as an alternative to

bulky ferrite material typically used in circulators. [12] utilizes the same concept

of time-modulated resonators to create nonreciprocal bandpass filters. Analysis for

this was done using what is called the spectral network parameters. This modifica-

tion to traditional network parameters allow for the ability to apply them to Linear

Time-Varying or LTV circuits. Many of the effects seen by time-varying loads are

a result of the concept known as parametric amplification. Parametric amplification

is defined in [13] as the application of a nonlinear or time-varying reactance through

a pumping signal in order to achieve both amplification and frequency mixing.

The first challenge in the design of antennas that utilize time-modulated loads is

the methods of which to model them. Due to the time-varying nature of this antenna

modulation technique, traditional LTI antenna modeling techniques no longer apply.

Many alternative modeling methods have been created to observe nonlinear loads in

the time domain. These include those such as [14], [15] which utilize the finite dif-

ference time domain method (FDTD) to model the loaded antenna, while [16] uses

the time-domain integral equation. While many methods have been developed to

model the behavior of nonlinear loads, analysis for time-modulated loads has been

more often been observed as a byproduct or extension of the original method. This

4



is most prevalent in the analytical methods that are solved using a time-stepping

model such as that seen from Landt in [17]–[19]. This method takes the thin wire

approximations described in [20], and performs a time-stepping operation to model

the current distribution and spectrum on the antenna. Landt provides examples of

this method operating for not only nonlinear loads, but time-modulated loads as

well. Drawbacks to this method however circle around its time intensive nature.

A typical workaround to the drawbacks of time domain solutions is to move

to the frequency domain. However, as established before, traditional frequency

domain analysis techniques are not valid in a non-LTI system. Time-modulated

loads have been modeled previously in the frequency domain in examples like [12]

mentioned earlier with the spectral network parameters. The Reflection Algorithm,

developed in [21] for microwave diode mixers, uses the known impedance behav-

ior of the pumped load, as well as incident and reflected waves approaching the

diode, in an iterative process to achieve a steady state solution. Huang [22] pro-

vided a method to analyze a wire antenna with a time-varying resistance by utiliz-

ing Method of Moments (MoM) to extract the impedance matrix of the antenna and

conversion matrices from [23]. [24] did the same, but extended the implementation

to time-varying capacitances as well. Both [22], [24] characterize the antenna be-

ing loaded with a single input impedance value in an equivalent circuit shown in

Figure 1.4. This creates drawbacks to the method, as they do not provide a way to

analyze the current at points on the antenna other than the load location. They also

do not allow the application of multiple time-varying loads. These drawbacks are

the motivation behind the developed and generalized technique introduced in this

thesis.

This thesis will cover an expansion of the methods introduced by [22], [24]. The

basis of those methods are combined with traditional antenna analysis from [20] to

5



Figure 1.4: Equivalent circuit of antenna with modulated load from [22]

allow for a wider range of generalized use. The method developed is believed to

be a useful stepping stone in the process of developing time-varying antennas for

the applications mentioned before. This thesis will be structured into 7 chapters.

Chapter 1 will act as the introduction, covering the motivation of the project and

past work done in the field of time-varying loads on antennas. Chapter 2 will intro-

duce the basics of method of moments and their applications. Chapter 3 will cover

the Landt Integral Method, the time-domain analysis method used as the basis for

comparison of the new developed method. Conversion matrices will be introduced

in Chapter 4, and their application to antennas as well as the new expanded Con-

version Matrices Method will be covered in Chapter 5. Chapter 6 will cover the

techniques of Chapter 5 applied to impedance matrices extracted from FEKO. Fi-

nally, Chapter 7 will provide conclusions for the project, as well as a discussion on

future work to be done in the research.

6



Chapter 2

Method of Moments

Much of the analysis techniques for this project are dependent on the antenna char-

acteristics extracted by method of moments. Method of moments, or MoM, is de-

fined by [25] as a technique that takes integral equations, and converts them into

a linear system. In terms of electromagnetic computation, MoM takes the contin-

uous integral equations that describe the electromagnetic behavior of an antenna,

and uses them to compute the linear relation of charge distribution on the antenna

from either a direct feed or incident wave. This is done by separating the antenna

into discrete segments, and therefore finding the linear equations that describe the

behavior on each of said segments. These linear equations are then described as

matrix relations to solve for unknowns. This concept was first demonstrated on

antennas by Harrington in [20], where its application to a variety electromagnetic

computational problems was shown.

As stated, method of moments is a process that takes integral equations and cre-

ates a linear system of those equations by discretizing them. In order to understand

this concept and apply it to more complicated problems, it is important to gener-

alize the method itself. In order to describe this generalization, Harrington begins

with the relation

L(f) = g, (2.1)

7



where L is the linear operator, g is the forcing function like an excitation, and f

is the unknown function like charge or current. This unknown function f is then

discretized by N number of weighted basis functions

f =
M∑

m=−M

amfm, (2.2)

where M = (N − 1)/2 and am are the weighting coefficients. The weighted func-

tion can then be substituted into (2.1) resulting in the final equation

M∑
m=−M

amL(fm) ≈ g. (2.3)

This shows that the unknown current or charge can be described as a discrete sum

of weighted values. In order to begin the process of using method of moments to

perform electromagnetic computations on an antenna, the first step is to identify

the boundary conditions that simplify the integral equation to be discretized. This

chapter will begin with an overview of the boundary conditions of special cases

made to obtain the needed integral equation to be solved, moving on to basis func-

tions used to discretize said equation. Finally, methods presented by Harrington to

analyze antennas using the linear matrix relations found using method of moments

will be covered.

2.1 Thin Wire Antenna Approximation

The basis of method of moments is taking an integral equation, and converting it

into a system of linear relations that can be enforced by certain boundary condi-

tions. The specified integral equation and the boundary conditions that simplify it

become increasingly important for solutions between the different type of antenna

8



geometries. This section will cover one of the most fundamental special cases, the

thin wire antenna. As many of the beginning cases in this thesis feature a dipole

antenna, it was thought of as important to give adequate explanation on the assump-

tions made on dipoles when using method of moments to analyze the antenna. In

other cases, the general integral form of Maxwell’s equations can be applied.

While the standard integral Maxwell’s equations can be applied to any geome-

try, these equations can be simplified down when certain assumptions can be made

about the structure. The derivation of the thin wire antenna approximation integral

equations is covered in great detail in [20], [25], [26]. This derivation begins with

a thin wire aligned with the z-axis shown in Figure 2.1 and Green’s function

G(ρ, z − z′) =
e−jkR

R
, (2.4)

where k is the propagation constant of the material and R =
√

(z − z′)2 + ρ2. This

Green’s Function is an approximation of the full form version, and is applicable to

a thin wire antenna. The function can then be integrated over the surface area of the

conductor in order to find the magnetic vector potential

Az(ρ, φ, z) =
µ

4π

∫ l/2

−l/2

∫ 2π

0

Iz(z
′)

2π

e2jkR

R
dφ′dz′ (2.5)

where l is the length of the antenna and Iz(z′) is the current along the wire. This

surface integral can now be simplified to a line integral by making two major as-

sumptions about the structure. The first of which is that at either ends of the dipole

the current is zero, and the second being that the radius is of a size much smaller

in proportion to the length. These two assumptions make the impact of the dφ por-

tion of the integral much more negligible, and reduces the thin wire approximation

9



Figure 2.1: Model used for the thin wire antenna approximation from [26]

magnetic vector potential to the equation

Az(ρ, z) =
µ

4π

∫ l/2

−l/2
Iz(z

′)
e−jkR

R
dz′ (2.6)

2.1.1 Hallen and Pocklington Equations

The magnetic vector potential can then be used to determine the incident and ra-

diated field acting upon the antenna. This calculation is only reliant however on

a single assumption, that the total electric field is a summation of the incident

and reflected fields and is equal to zero on the boundary of the wire, described

by Etotal = Erad + Einc = 0. This can be attributed to a PEC approximation of

the wire, where an electric field cannot exist in a perfect electric conductor. The

incident field can then be calculated by applying the magnetic vector potential of a

thin wire antenna with the relation

Einc =
j

ωµε

[ δ2

δz2
+ k2

]
Az (2.7)
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derived from Maxwell’s equations. This relation can be expanded in two different

ways, known as the Hallen and Pocklington integral equations. Hallen’s Integral

Equation is the direct result of inserting the magnetic vector potential into (2.7),

stating

Einc =
j

ωε

[ δ2

δz2
+ k2

] ∫ l/2

−l/2
Iz(z

′)
e−jkR

4πR
dz′. (2.8)

By transferring the differential operator to within the integral, one can derive Pock-

lington’s Integral Equation as

Einc =
j

ωε

∫ l/2

−l/2
Iz(z

′)
[ δ2

δz2
+ k2

]e−jkR
4πR

dz′. (2.9)

Both Pocklington’s and Hallen’s equations have their own particular costs and bene-

fits. Hallen, while providing a more accurate calculation that converges much faster,

is a more complicated calculation. Pocklington’s equation is easier to compute, but

requries the antenna be analyzed at a higher number of segments to reach the same

accuracy as Hallen. This relationship can be observed in Figure 2.2.

2.2 Basis Functions

The weighted basis function that dictates the discretization described before is of

upmost importance. It can have great influence on the accuracy of the solution. The

utilization of basis functions that match the weighted functions to solve method of

moments problems is called Galerkin’s Method [25]. This section will cover a few

examples of common basis functions used specifically for thin wire antennas.

The delta basis function is one of the simplest and most intuitive ways to ap-

proach a weighted basis function for the Galerkin Method. It follows a very similar

protocol to the method of point matching, evaluating at specified discrete points on

11



Figure 2.2: Accuracy of Hallen vs. Pocklington integral equations from [25]

the antenna. While the results are similar to simple point matching, using the delta

basis function with the Galerkin Method is achieved by utilizing the basis function

B(z) = δ(z)∆, (2.10)

where δ is the width of the narrow pulses, and ∆ = L/N is the spacing between

those pulses. A visualisation of the delta basis function is provided in Figure 2.3. It

can be viewed rather as a direct sampling at the center of the segment.

Figure 2.3: Representation of delta basis function from [26]
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The pulse basis function is an extension of the delta basis function. Rather than

a single sampling at the center of the segment, the pulse basis function looks at

the evaluation of the current or charge on the antenna as a step function over the

entirety of the segment. The resulting equation for the basis function is

B(z) =


1 if|z′ − zm| ≤ 1

2
∆

0, otherwise
, (2.11)

where ∆ is the same as the delta basis function and |z′ − zm| is the location cen-

tered on the mth segment. Each value at that central point is assigned to the whole

segment, providing continuity. The pulse basis function is shown in Figure 2.4.

Figure 2.4: Representation of pulse basis function from [26]

The triangular basis function varies from the prior two, as instead of assessing

the behavior of a single segment, it identifies the interaction between two segments.

The values of the basis function are then assigned to the edges between segments

rather than the center of the segments. This results in a N = 11 case actually made

up of 10 segments with 11 edges. The triangular basis function [26] is defined by

13



the equation

B(z) =


1− |z|

∆
if|z| ≤ ∆

0, otherwise
. (2.12)

where the width of each segment is ∆ = L/(N − 1), differing from the pulse and

delta basis functions.

Figure 2.5: Representation of piecewise triangular basis function from [26]

The final basis function to be discussed is the Numerical Electromagnetics Code

(NEC) sinusoidal basis function. The NEC is a public-domain program widely

available for modeling antennas. It utilizes Pocklington’s integral equation as well

as a sinusoidal basis in order to complete its computation. The basis function used

by the NEC is significantly more complicated than the basis functions discussed so

far in this chapter.

Figure 2.6: Representation of piecewise NEC basis function from [26]
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For the Galerkin Method, the basis function can then be used to calculate the

impedance matrix using the equation

Znm =
jη

2π

∫ L/2

−L/2

∫ L/2

−L/2
B(z − zn)G(z − z′)B(z′ − zm)dzdz′ (2.13)

where G(z) is the kernel, serving as a linear map between the vector spaces of the

voltage and the current. This equation samples that linear map based off of the basis

equations to create the impedance matrix.

2.3 Antenna Analysis using Method of Moments

Once the impedance matrix has been extracted, analyzing the characteristics of var-

ious antenna geometries becomes a fairly simple linear matrix calculation. This is

done in Harrington by describing the antenna as a multi-port system, with each of

the sampled points denoted by the basis function as its own individual point. The

relation

[v] = [z][i] (2.14)

is used where [v] and [i] are the port voltages and currents respectively. The value

of the impedance matrix can then be deduced using the relation

zab =
va
ib

(2.15)

where the ports are open-circuited. This approach allows for method of moment

computations to be done where loads are applied, as well as a variety of different

excitations. This section will cover the ways Harrington outlines utilizing such

methods for extended antenna analysis.
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Figure 2.7: Figure representing antennas being loaded using multi-port system from
[20]

2.3.1 Applying Loads

One extension Harrington describes is the ability to use the extracted method of

moments impedance matrix, and manipulate it in order to understand the behavior

of a load on the antenna. In order to describe the process of applying a load, Har-

rington describes the antenna with a single load as a two-port system. One port is

the observation point along the antenna, and the secondary port is the load location

itself shown in Figure 2.7.This two-port relation is as follows

i1
i2

 =

y11 y12

y21 y22


v1

v2

 . (2.16)

Due to reference conditions, the relation of the loaded admittance to its location

is

i2 = −YLv2. (2.17)

A physical representation of this relation is shown in Figure 2.7. If the two-port

16



admittance matrix and the antenna load is known, it can be solved to result in the

following relation

Yin = y11 −
y12y21

y22 + YL
(2.18)

which shows the input admittance at the observation point with the load at point 2.

The use of the two-port system is a very valuable approach to loading the antenna,

but in order to move further to multiple loads along the antenna, the approach must

be applied to the entire impedance matrix. To show the approach of loading using

the full antenna, one first begins with the impedance matrix Z,

Z =



z11 z12 z13 . . . z1N

z21 z22 z23 . . . z2N

z31 z32
. . . ...

... . . . ...

zN1 . . . . . . . . . ZNN


. (2.19)

Using the same reference conditions as the single load case, the load impedance is

subtracted from the self-impedance at the location the load is placed. For example,

a load placed on the second segment will result in an impedance matrix

Z − ZL =



z11 z12 z13 . . . z1N

z21 z22 − ZL z23 . . . z2N

z31 z32
. . . ...

... . . . ...

zN1 . . . . . . . . . ZNN


. (2.20)

This new loaded impedance matrix can now be used for method of moment solu-

tions.
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2.3.2 Excitations

This section will cover the three primary methods used to excite specifically linear

thin wire antennas. These methods can be extended to different antenna geometries,

but for the purpose of the applications outlined in this thesis, the focus remained on

linear antennas. The three main methods that will be covered are the delta-gap

model, the magnetic frill model, and the plane wave source. Models of the delta-

gap model and plane wave source from [26] are shown in Figure 2.8.

Figure 2.8: Excitation models of delta-gap and plane wave source from [26]

Two excitation models are typically used for transmit antennas as their appli-

cation is concentrated on a single segment, the location of the feed. The first of

which is the delta-gap model which assumes that an electric field is only applied to

a specific gap, ∆z. The resulting relationship from the experienced E-field and the

induced voltage is

V0 = Ein∆z, (2.21)

where V0 and Ein are the voltage and E-field on the specified gap, or in many

cases, the segment being excited. It is important to note that [V ] and [E] are related
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through a factor called d, which is defined by

d = 2 ∗ k ∗∆2, (2.22)

where k is the propagation constant of the medium, and ∆ is the length of each

segment. The relation of [V ] and [E] is defined as

[V ] =



E1 ∗ d

E2 ∗ d

E3 ∗ d
...

EN ∗ d


. (2.23)

Therefore, an antenna excitation matrix that is excited centrally using the delta-gap

model would result in the matrix

[V ] =



0

0

...

EN/2 ∗ d
...

0

0



. (2.24)

The second single segment excitation model is the magnetic frill model, shown in

Figure 2.9. Instead of modeling the source as a current being induced by an incident

E-field on the specified segment, the magnetic frill models the source as a magnetic

field circling the conductor at a radius b that is inducing a current on the conductor
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of radius a. The model is defined by the equation

Ein(z) =
V0

2ln(b/a)

[
e−jkRa

Ra

− e−jkRb

Rb

]
(2.25)

where Ra =
√
z2 + a2 and Rb =

√
z2 + b2.

Figure 2.9: Excitation model of magnetic frill source from [25]

The final excitation model is the plane wave source, used primarily for receive

antennas. Shown in Figure 2.8, the plane wave source assumes the incident wave is

approaching the antenna at a specified angle θ, and that all segments in the method

of moments solution are excited. The weighting at which each segment is specified

is determined by the angle of incidence itself. The equation for the incident field is

Ein(z) = E0 sinθ e
jkzcosθ. (2.26)
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The resulting matrix for an incident plane wave excitation will be

[V ] =



E0 ∗ d sinθ ejkcosθ

E0 ∗ d sinθ ej2kcosθ

E0 ∗ d sinθ ej3kcosθ
...

E0 ∗ d sinθ ejNkcosθ


. (2.27)

Due to the end result of this project being a receive antenna, the plane-wave model

is most heavily used in the entirety of this document.

2.4 Summary

Method of moments is a fundamental theory for electromagnetic computation. It

utilizes boundary conditions of specific geometries and weighted basis functions

to create discretized linear relations of Maxwell’s equations in integral form. Har-

rington has shown that it can be a useful tool in understanding the behavior of an

antenna as it is loaded and fed with differing types of excitations. The following

chapter will cover a time-domain method that utilizes method of moments to char-

acterize time-varying and nonlinear loads on antennas.
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Chapter 3

Landt Integral Method for Time-Varying Loads

With the implementation of a time-varying load, the use of a time domain solu-

tion appears to be the most intuitive approach. This section will cover the method

described in [17]–[19] by Jeremy Landt. For the remainder of the chapters, the

method outlined in this chapter will be referred to as the Landt Integral Method.

As stated before, method of moments is the conversion of integral equations into a

linear form. This principle is the basis for this time domain method for analyzing

nonlinear and time-varying loads on antennas. The Landt Integral Method will be

used as the basis for comparison of the new developed method.

3.1 Integral Equation Basis

While it may seem intuitive to simply take a finite difference time domain approach

for the solution in the time domain, [15] states that for a structure as simple as a wire

antenna, the computational time will be smaller with the application of method of

moments. For applications outside of this project that utilize more complicated ge-

ometries, a finite difference time domain method may be required. In order to create

the linear matrix relation, the integral equation applicable must first be identified.
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The integral equation used by [17] was

ŝ· ~Einc(~r, t) =
µ0

4π

∫
C(r)

[
ŝ · ŝ′
R

δ

δt′
I(s′, t′)+c

ŝ · ~R
R2
· δ
δs
I(s′, t)−c2 ŝ · ~R

R3
q(s′, t′)

]
ds′,

(3.1)

where ~Einc(~r, t) is the incident E-field at observation point ~r and time t. ŝ and ŝ′

are unit vectors parallel to C(~r) at ~r and ~r′. I(s′, t′) and q(s′, t′) are the current

and charge at point s’ and time t’. c and µ0 are the speed of light and permeability

of free space respectively. This integral equation can then be reduced to the linear

matrix relation of

[EI
v ] + [ES

v ] = [Z][Iv] (3.2)

where [EI
v ] is the incident E-field at time step v, [ES

v ] is the scattered E-field at time

step v, and [Iv] is the current on the antenna at time step v.

3.2 Loaded Matrix Relations

The linear matrix relation found in the previous section does not account for the

application of a load. In order to do so, the relation must be slightly altered in order

to derive the computations done by Landt. This altered relation is

[EI
v ] + [ES

v ] = [Z][Iv] + [ZL][Iv], (3.3)

where [Iv] is the unknown current of the loaded antenna at time step v and [ZL]

is an impedance matrix for the added load. In order to derive the matrix relations

that dictate Landt’s Integral Method, the antenna and its load is first observed as a
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two-port system. This makes the impedance matrix a 2× 2 matrix

[Z] =

Z11 Z12

Z21 Z22

 (3.4)

where Z11 and Z22 are the self impedances of the load location and observation

point, respectively. Z12 and Z21 are the impedances between the two locations on

the antenna. The 2× 2 matrix representing the load value is

[ZL] =

ZL 0

0 0

 (3.5)

where it can be seen that the load is only located at the same place on the antenna as

the self impedance Z11. If the load is time-varying, the value of ZL is also changing

with each time step v. In order to stay consistent with [20], the same assumptions

are made on reference conditions, and the following constraint

E1v = −[ZL]I1v (3.6)

is applied, where E1v and I1v are the E-field and current at the location of the load

at time step v. The expansion of (3.3) for the two-port system is then

E1v

E2v

 =


Z11 Z12

Z21 Z22

−
ZL 0

0 0



I1v

I2v

 . (3.7)

The relation

[Ev] = [Z][Iuv ] (3.8)
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can then be substituted into the expansion, where [Iuv ] is the current on the unloaded

antenna resulting in

Iu1v
Iu2v

 =


1 0

0 1

+

Z11 Z12

Z21 Z22


−1 −ZL 0

0 0



I1v

I2v

 . (3.9)

To now solve for the unknown current accounting for the load, the final equation is

I1v

I2v

 =


1 0

0 1

+

Z11 Z12

Z21 Z22


−1 −ZL 0

0 0



−1 Iu1v

Iu2v

 . (3.10)

This equation is then evaluated for all values of time step v, and combined to com-

plete the waveform for the current distribution on the antenna.

The matrix relation for a two port can then be expanded to a full method of

moments impedance matrix for an antenna. An example of this can be seen in

Figure 3.1 where a dipole separated into three segments is loaded with a time-

varying resistance R. The resulting calculation of the current on the antenna with

the time-varying load at a single time step will be


I1v

I2v

I3v

 =




1 0 0

0 1 0

0 0 1

+



Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33


−1

∗


0 0 0

0 −Rv 0

0 0 0




−1

∗


Iu1v

Iu2v

Iu3v

, (3.11)

where Rv is the value of the time-varying resistance R at time step v. Once again,

this is evaluated at each time step, and compiled to find the total current over the

whole time sample.
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Figure 3.1: Example of wire antenna with a time-varying Load

3.3 Results and Applications

In order to show the results of this method, as well as prove the validity of the

replication done in MATLAB, an example problem from [17] will be used. The

example presented is a 9 m dipole that has a radius of 0.2 m. It is divided into 9

segments and experiences a 16 MHz incident E-field wave of 1 V/m. It is centrally

loaded with a time-varying resistance oscillating at the rate

R(t) = 500(1 + sin(ωp t)) Ω (3.12)

where ωp = 2π(4 MHz). It is important to note that in [17], Landt only provides

results as the relative magnitude of the E-field spectrum on the load, but does not

specify at what distance the magnitude is being evaluated. Due to this, the current

spectrum of the computed results will be compared to Landt’s as this is known to

be proportional.

The results of the specified example provided by [17] are shown in Figure 3.2

along with the results of the MATLAB code replicating Landt’s process. The results

show great agreement between the two for the same example, particularly in the
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Figure 3.2: Results of E-field spectrum from [17] of provided example along with
results of current spectrum from MATLAB code meant to replicate Landt example

spectrum shape between the two. Both results show spectral spreading when the

addition of a time-varying load is made on an antenna. The replicated MATLAB

code is also capable of recreating the current waveform from [17]. Figure 3.3 shows

the waveform of the E-field from [17] and the current waveform from the replicated

MATLAB code. The results are shown to be proportional to the results provided by

Landt as expected.

3.4 Summary

This chapter covered a time-domain method for analyzing time-varying and non-

linear loads on antennas called the Landt Integral Method. While this method was

written to be performed in FORTRAN, a replication was produced for the pur-

poses of this project in MATLAB. It is believed that this method will provide a
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Figure 3.3: Waveform of field vs. time from [17] and the result of current vs. time
-from MATLAB code meant to replicate the example

standard for the performance of other methods throughout the continuation of this

project. The next chapter will introduce methods used for time-varying elements

in the frequency domain; however, later chapters will once again call back to the

Landt Integral Method for validation.
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Chapter 4

Introduction of Conversion Matrices

In basic circuit analysis, the introduction of analysis in the frequency domain al-

lows for increased ease and speed of computation. The frequency domain is most

commonly used for its ability to simplify mathematical relations from differential

equations into algebraic relations. Conversion matrices are introduced by Stephen

Maas in [23], [27] as a way to model a time-varying load and perform basic cir-

cuit analysis in the frequency domain. This chapter will outline the background,

formulation, and application of such matrices.

4.1 Background of Large-Signal/Small-Signal Analysis

Large-Signal/Small-Signal analysis is introduced in [23] as a means to analyze the

effects of a small signal on a device that is “pumped” by a larger signal. Typically

the device is nonlinear and often a mixer. The harmonic-balance method is first

used to perform the large-signal analysis, producing a linear time-varying or LTV

equation that can be used to represent the non-linearity in the device. Conversion

matrices are used in the small-signal analysis portion of large-signal/small-signal

analysis. They provide a way to model LTV elements, and perform circuit analysis

of both LTV and static components. For this project, the former portion of large-
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Figure 4.1: Format of time-varying component conversion matrix along with exci-
tation matrices from [23]

signal/small-signal analysis is not needed as all components, the antenna and its

loads, are LTV by choice. Therefore, this chapter will only focus on small-signal

analysis done with conversion matrices.

4.2 Structure of Conversion Matrices

Conversion matrices are simply the frequency domain relation of the voltages and

currents of time-varying circuits. In order to use them to perform circuit analysis,

the formation of the matrices is key. The structure of the matrix varies however be-

tween time-varying components, static components, and the sources in the circuit.

This section will detail the methodology of formatting conversion matrices based

off the type of component.
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4.2.1 Excitations

The format for excitations to be used in tandem with conversion matrices of com-

ponents is very simple. In order to create the voltage and current matrices that

can accurately display the mixing properties of time-varying loads, they must be

formatted a certain way. Both the voltage and current matrices are made from the

frequency notation

v′(t) =
∞∑

n=−∞

Vne
jnωnt (4.1)

and

i′(t) =
∞∑

n=−∞

Ine
jnωnt (4.2)

where ωn is the mixing frequency. The mixing frequency is defined by

ωn = ωs + nωp, (4.3)

where ωs is the signal frequency, and ωp is the frequency at which the load is oscil-

lating. A visualization of the mixing frequencies is shown in Figure 4.2. The format

of the excitation matrices can be seen in Figure 4.1, where the subscript denotes the

value of n when calculating ωn. It is important to note that this is in fact not the

Fourier series of the voltage and current as the element values are evaluated at each

mixing frequency rather than at each harmonic.

4.2.2 Static Components

While static components have impedance values that do not change with time, com-

ponents such as the impedance of an antenna segment can still change with fre-

quency. Therefore it is still important to put the impedance in a form that still de-
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Figure 4.2: Mixing frequency representation from [23]

scribes the behavior of the component over the mixing frequencies being evaluated.

The format of static component conversion matrices is very similar to that of the

excitations. Rather than a Fourier series, each element is determined by its value at

the specified mixing frequency ωn similar to the excitations. The signal frequency,

or mixing frequency evaluated at n = 0 where ω0 = ωs + 0(ωp) is placed at the

center of the matrix. The positive mixing frequencies are place further along the di-

agonal, and their negative mixing frequency counterparts are place before the signal

frequency. The values of the component at each of the different mixing frequencies

in the diagonal matrix is shown in Figure 4.3.

Figure 4.3: Format of static impedance conversion matrix from [23]
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4.2.3 Time-Varying Components

Linear time-varying components are the primary reason of the existence and need

of conversion matrices. It is then understandable why the formulation of them is of

utmost importance. The basis of the conversion matrix for a time-varying compo-

nent is the Fourier series of the time-varying equation that describes the load. The

Fourier series is a function that describes a period function as a summation of a si-

nusoid and its harmonics. Specifically for conversion matrices, the complex Fourier

coefficients must be extracted from the series in order to find the element values for

the conversion matrix.

For a time-varying resistive load oscillating at a rate of ωp, the relation between

the resistance over time and its Fourier coefficients is described by the equation

R(t) =
∞∑

n=−∞

Rne
jnωpt, (4.4)

where the values for Rn are the complex Fourier coefficients for each of the har-

monics. In order to calculate the values for Rn, the coefficients can be calculated

using the equations[28]

an =
2

T

∫ T

0

R(t) ∗ cos(2πfpnt) (4.5)

and

bn =
2

T

∫ T

0

R(t) ∗ sin(2πfpnt), (4.6)

where T = 1
fp

is the period of the signal. These coefficients can then be converted

into the complex form

Rn =
an + jbn

2
. (4.7)
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It however is not possible to implement an infinite conversion matrix, therefore

these coefficients are evaluated for a number of harmonics N , both positive and

negative, from n = −2N to 2N . Once the complex coefficients are evaluated for

all of the values of n, they are placed into the conversion matrix format shown in

Figure 4.1. Note that value of the element R−N is the complex conjugate of RN .

In order to show an example of a resistive conversion matrix, a time-varying

resistance of value

R(t) = 500 ∗ (1 + sin(2π(4 MHz)t))Ω (4.8)

is used. To keep the example as simplified as possible, only one harmonic was

evaluated meaning N = 1. The complex Fourier series for this load evaluate to be

R(t) = 500 + (−3.38× 10−12 + i2.5× 102)ej(4MHz)t+

(−5.93× 10−14 + i3.77× 10−14)ej(8MHz)tΩ.

(4.9)

These values can then be inserted into the resistive conversion matrix, with the

complex conjugate being taken of the negative frequency values. The resulting

conversion matrix R is

R =


500 −3.38× 10−12 − i2.5× 102 −5.93× 10−14 − i3.77× 10−14

−3.38× 10−12 + i2.5× 102 500 −3.38× 10−12 − i2.5× 102

−5.93× 10−14 + i3.77× 10−14 −3.38× 10−12 + i2.5× 102 500

Ω.
(4.10)

A time-varying capacitive or inductive load requires slightly different treatment.

Such reactance conversion matrices require the multiplication of a frequency con-

version matrix shown in Figure 4.4 when applied to circuit analysis. Figure 4.4
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shows the format of the frequency matrix closely reflects that of the static com-

ponent conversion matrix with the diagonal values being defined by the mixing

frequencies. The reasoning behind this can be shown by the charge found in a

time-varying capacitor

q′(t) = c(t)v(t), (4.11)

which can be expanded in discrete form to

∞∑
k=−∞

Qke
jωkt =

∞∑
n=∞

∞∑
m=∞

CnVme
jωm+nt (4.12)

The relation of current to charge is defined as

i′(t) =
d

dt
q′(t), (4.13)

and when put in discrete form with (4.12) substituted in for the charge has the form

∞∑
k=−∞

Ike
jωkt =

∞∑
n=∞

∞∑
m=∞

jωmnCnVme
jωm+nt. (4.14)

A jω term appears, as differentiation in the frequency domain is achieved by mul-

tiplication of jω. The conversion matrix form of this relation is

[I] = j[Ω][C][V ], (4.15)

where [Ω] is the frequency conversion matrix from Figure 4.4.
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Figure 4.4: Omega conversion matrix for time-varying reactances from [23]

It is important to note however that the conversion matrix of the time-varying

capacitance or inductance alone is of the same format as a time-varying resistance.

The value of the reactance conversion matrix will then be seen in the format

j[Ω][C] =



jω−N 0 0 . . . 0

0 jω−N+1 0 . . .
...

0 0 jω−N+2 . . .
...

... . . . ...

0 . . . . . . . . . jωN





C0 C−1 C−2 . . . C−2N

C1 C0
...

C2
. . . ...

... . . . ...

C2N C2N−1 . . . . . . C0


(4.16)

4.3 Circuit Analysis with Conversion Matrices

Once each component has a corresponding conversion matrix, analysis of circuits

with time-varying elements becomes relatively simple. One of the main benefits

of conversion matrices is the fact that mathematical operations stay the same when

circuit analysis is performed with them. This section will cover the steps of circuit

analysis with conversion matrices, as well as multiple examples with one provided

by [23]. All examples will follow a similar order of operations: first convert each

of the components into its own individual conversion matrix, then combine compo-
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nents as expected using mathematical relation of basic circuit analysis.

The first example of the conversion matrices applied to time-varying circuits

is composed of three components shown in Figure 4.5: a static resistor Ra, and

two time-varying resistances Rb(t) and Rc(t). As stated before, the first step in

analyzing the time-varying circuit with the implementation of conversion matrices

is to create the conversion matrix for each of the individual components. For this

specific example, the resulting conversion matrices are:

[Ra] =



Ra 0 0 . . . 0

0 Ra 0 . . .
...

0 0 Ra . . .
...

... . . . ...

0 . . . . . . . . . Ra


, [Rb] =



Rb0 Rb−1 Rb−2 . . . Rb−2N

Rb1 Rb0

...

Rb2
. . . ...

... . . . ...

Rb2N Rb2N−1
. . . . . . Rb0


,

and [Rc] =



Rc0 Rc−1 Rc−2 . . . Rc−2N

Rc1 Rc0

...

Rc2
. . . ...

... . . . ...

Rc2N Rc2N−1
. . . . . . Rc0


.

Once the matrices have been created, basis principles of circuit analysis can be

applied to understand how they interact with each other. For this specific schematic,

the total seen impedance [Z] at the terminals can be described by the following

equation

[Z] = [Ra] + ([Rb]
−1 + [Rc]

−1)−1 (4.17)

where each value is the individual conversion matrices described before. This equa-

tion can then be expanded and observed in matrix form as the following:
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Figure 4.5: Example circuit to be solved with conversion matrices

Z =



Ra 0 0 . . . 0

0 Ra 0 . . .
...

0 0 Ra . . .
...

... . . . ...

0 . . . . . . . . . Ra



+





Rb0 Rb−1 Rb−2 . . . Rb−2N

Rb1 Rb0

...

Rb2
. . . ...

... . . . ...

Rb2N Rb2N−1
. . . . . . Rb0



−1

+



Rc0 Rc−1 Rc−2 . . . Rc−2N

Rc1 Rc0

...

Rc2
. . . ...

... . . . ...

Rc2N Rc2N−1
. . . . . . Rc0



−1


−1

.

(4.18)

The second example, while having the same structure now introduces a time-

varying capacitance, Cj(t), and time-varying conductance, gj(t). Just as the previ-

ous example, the first step is to format the conversion matrices for each component

where

[R] =



R 0 0 . . . 0

0 R 0 . . .
...

0 0 R . . .
...

... . . . ...

0 . . . . . . . . . R


, [Cj] =



Cj0 Cj−1 Cj−2 . . . Cj−2N

Cj1 Cj0
...

Cj2
. . . ...

... . . . ...

Cj2N Cj2N−1
. . . . . . Cj0


,
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and [Gj] =



Gj0 Gj−1 Gj−2 . . . Gj−2N

Gj1 Gj0

...

Gj2
. . . ...

... . . . ...

Gj2N Gj2N−1
. . . . . . Gj0


.

Once this has been completed, the same circuit analysis can be performed. The

equation for the total impedance [Z] of this example slightly differs as it now in-

cludes the conversion matrix of a time-varying reactance.

[Z] = [R] + ([Gj] + j[Ω][Cj])
−1 (4.19)

This equation can once again be expanded into matrix form as the following equa-

tion.

Z =



Ra 0 0 . . . 0

0 Ra 0 . . .
...

0 0 Ra . . .
...

... . . . ...

0 . . . . . . . . . Ra



+





Gj0 Gj−1 Gj−2 . . . Gj−2N

Gj1 Gj0

...

Gj2
. . . ...

... . . . ...

Gj2N Gj2N−1
. . . . . . Gj0



+



jω−N 0 0 . . . 0

0 jω−N+1 0 . . .
...

0 0 jω−N+2 . . .
...

... . . . ...

0 . . . . . . . . . jωN





Cj0 Cj−1 Cj−2 . . . Cj−2N

Cj1 Cj0
...

Cj2
. . . ...

... . . . ...

Cj2N Cj2N−1
. . . . . . Cj0





−1

(4.20)

4.3.1 Nodal Analysis

Conversion matrices and their extension to nodal analysis explained in [23] was

the catalyst towards expanding their use to method of moment applications with

antennas. Maas describes the applications of conversion matrices to nodal analysis

as a way to create a ”general-purpose circuit analysis program”. This nodal analysis

is described by defining two specific nodes i and j that contains some time-varying
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Figure 4.6: Example circuit for conversion matrix analysis from [23]

Figure 4.7: Two node network from [23]

admittance between the two with a conversion matrix Yc. Maas then treats this pair

of nodes as a two-port network. A visualization of a network between two nodes

can be found in Figure 4.7. This nodal analysis using conversion matrices is not

restricted to circuits of a two nodes however. A nodal matrix is simply formed

where each element uses conversion matrices to describe the interaction between

each of the different nodes in the circuit. This expanded node matrix can be seen in

Figure 4.8.

Figure 4.8: Nodal matrix for system of greater than two nodes from [23]
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4.4 Summary

Conversion matrices as described by [23] are an incredibly useful tool when applied

to analyzing circuits with time-varying components. Once formatted correctly, they

can be applied to a wide variety of circuit applications in many forms. This project

will utilize that flexibility, and the ability for conversion matrices to describe the

voltage to current relation for a variety of frequencies. While this chapter covered

the basis of conversion matrices and their possible uses, the next chapter will diver

deeper into their application to antennas.
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Chapter 5

Conversion Matrices Antenna Applications

This chapter will cover the application of conversion matrices as a technique for

understanding the behavior of time-varying loads on antennas. While their use for

this application has been seen before, this section will propose an expansion of the

technique that is capable of surpassing the limitations of the previous techniques.

The chapter will conclude with a comparison of the performance of the techniques

to the time-domain Landt Integral Method.

5.1 Past Conversion Matrix Antenna Application

Due to their utility in analyzing time-varying circuits, it is intuitive to apply the

same theory of conversion matrices towards the application of time-varying loads

on antennas. Examples of applications of conversion matrices to antennas are intro-

duced by both Huang and Flaviis in [22], [24]. These papers present the application

to model not only time-varying resistors, but capacitive switches as well. Both are

based off the description of the loaded antenna as an equivalent circuit, but slightly

differ from each other based off the utilized components and setup of the load.

The first of the examples to be discussed is from Huang in [22]. Huang in-

troduces a combination of harmonic balance and method of moments in order to
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Figure 5.1: Equivalent circuit used by [22] to apply conversion matrices to antennas

Figure 5.2: Equivalent circuit used by [24] to describe capacitive switches on an-
tenna

analyze not only nonlinear but also time-varying loads on antennas. The equivalent

circuit used to represent the loaded antenna is shown in Figure 5.1. In the equiv-

alent circuit, the value of Zin represents the input impedance of the antenna at the

loaded location. The value R represents the time-varying resistive load; however, it

is mentioned that this value can be replaced with that of a time-varying capacitance

or inductance with the proper measures as covered in the previous chapter. The sec-

ond example, while having a differing equivalent circuit layout, follows the same

methodology. This example from [24] investigates the applications of capacitive

switches to antennas. Conversion matrices applied to basic circuit analysis are used

to solve these equivalent circuits and find the currents on the load.

5.1.1 Setbacks with Previous Work

The application of conversion matrices to antennas as shown by [22], [24] have

two primary restrictions: the capability of only a single observation point, and a

single time-varying load. By design, the equivalent circuit assumed that the input
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impedance itself was a static component, only varying by frequency. It did not ac-

count for the ability to understand what a time-varying load may look like from an

observation point located on the other end of the antenna. This lack of differing ob-

servation points led to the inability to apply multiple time-varying loads. Without

being able to understand how a time-varying load would affect a different observa-

tion point, it was also not capable at understanding how a time-varying load would

affect another at a different location.

For this project, it was important to have the freedom to apply multiple time-

varying loads to a variety of locations, as well as see the current distribution at

all points on the antenna. Restrictions on the previously proposed applications of

conversion matrices is based off the characterization of the antenna as an equivalent

circuit. Characterizing an entire antenna as a single impedance value that is then

loaded was not capable of providing the generalization the project aimed for.

5.2 Expansion to Harrington Method of Moments

The methods introduced in [22], [24] were restricted based on the antenna being

modeled as an equivalent circuit. In order to move past such restrictions, an ex-

pansion was made to apply conversion matrices more broadly to the full impedance

matrix of an antenna. Instead of creating conversion matrices of single element

values, such as the input impedance of the loaded point, a much larger conversion

matrix can be made to describe the impedance of the whole antenna and its behavior

at multiple mixing frequencies. This was seen as an intuitive next step, utilizing the

nodal analysis method introduced in [23], but applying it to a method of moments

extracted impedance matrix. With this expansion, many of the principles from [20]

can by applied to antennas with time-varying loads, including the capability of an-
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alyzing multiple loads from various observation points. This section will cover this

expansion of matrices, as well as its implementation for antenna analysis.

5.2.1 Impedance Conversion Matrix

The first and most important expansion made with conversion matrices is that of

the unloaded impedance matrix of the antenna in use. For ease of explanation, the

expansion will be described in terms of a simple dipole antenna. As covered in

Chapter 2, the method of moments extraction of an impedance matrix utilizing a

pulse basis function will return an N ×N impedance matrix, where N corresponds

to the number of segments the antenna is separated into. For example, a thin wire

dipole antenna separated into three segments as seen in Figure 5.3 will result in a

3× 3 impedance matrix of the format

[Z] =


z11 z12 z13

z21 z22 z23

z31 z32 z33

 . (5.1)

The diagonal elements of this matrix represent the self impedances of the segments

on the antenna, and all other elements represent the interaction impedances between

segments. This extracted impedance matrix however is dependent on the frequency

at which the antenna is operating at, which is an important factor when creating the

impedance conversion matrix for the entire antenna.

As stated in the previous chapter, the conversion matrix of a static component

is a diagonal matrix where each element corresponds to the value of the component

at a different mixing frequency. In order to convert the typical antenna impedance

matrix into its conversion matrix form, the first step is to identify the number of
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Figure 5.3: Example of wire antenna separated into three segments

mixing frequencies one wishes to observe. For simplicity in this example, we will

begin with just the signal frequency ωs, and the first positive and negative mixing

frequencies, ω+1 = ωs +ωn and ω−1 = ωs−ωn respectively. It is important to note

once again the mixing frequency is defined by the relation

ωn = ωs + nωp (5.2)

where ωp is the frequency the load is modulating. By specifying that only 3 mixing

frequencies, n = −1, 0, 1, will be observed, the resulting impedance conversion

matrix will be a 3 × 3 impedance matrix comprised of 3 × 3 conversion matri-

ces, resulting in a 9 × 9 total matrix size. Each individual element in the original

impedance will be expanded to a conversion matrix defined by the given mixing

frequencies. For example, the z11 element will be expanded to

z11 =⇒


z11(ω−1) 0 0

0 z11(ω0) 0

0 0 z11(ω+1)

 . (5.3)
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When this extension is applied to all elements of the original impedance matrix, the

expanded impedance matrix can be viewed as


z11 z12 z13

z21 z22 z23

z31 z32 z33

 =⇒





z11(ω−1) 0 0

0 z11(ω0) 0

0 0 z11(ω+1)





z12(ω−1) 0 0

0 z12(ω0) 0

0 0 z12(ω+1)





z13(ω−1) 0 0

0 z13(ω0) 0

0 0 z13(ω+1)





z21(ω−1) 0 0

0 z21(ω0) 0

0 0 z21(ω+1)





z22(ω−1) 0 0

0 z22(ω0) 0

0 0 z22(ω+1)





z23(ω−1) 0 0

0 z23(ω0) 0

0 0 z23(ω+1)





z31(ω−1) 0 0

0 z31(ω0) 0

0 0 z31(ω+1)





z32(ω−1) 0 0

0 z32(ω0) 0

0 0 z32(ω+1)





z33(ω−1) 0 0

0 z33(ω0) 0

0 0 z33(ω+1)





.

(5.4)

This expanded impedance matrix is the basis of the expansions made to conversion

matrices and their application to antennas. It allows for the principles introduced

by [20] to be applied, and therefore a generalization in the Conversion Matrices

Method for analyzing time-varying loads on antennas.

5.2.2 Loading the Conversion Matrix

Due to the expansion of the impedance matrix, loading the antenna as shown in

Chapter 2 can be performed even with the presence of time-varying loads. For a

continuation of the three segmented dipole, the center segment will now be loaded

47



with a time-varying resistance shown in Figure 5.4. The first step is to identify

the conversion matrix for the time-varying load. For this example, the resulting

conversion matrix is shown as

R =


R0 R−1 R−2

R1 R0 R−1

R2 R1 R0

 . (5.5)

Once the conversion matrix for the load is created, it can be applied to the

impedance conversion matrix using the same techniques as Harrington. The value

of the load is subtracted from the self impedance of the segment that the load is

located on. This subtraction is due to the previously mentioned reference conditions

stated by Harrington

vi = −ZLii, (5.6)

where vi and ii are voltage and current on the loaded segment respectively. A

representation of this principle being applied to the impedance conversion matrix is

shown in (5.7). This is now the total loaded impedance matrix that can then be used

with an excitation matrix.

48



Figure 5.4: Example of wire antenna now with the addition of a time-varying load


z11 z12 z13

z21 z22 −R z23

z31 z32 z33

 =⇒





z11(ω−1) 0 0

0 z11(ω0) 0

0 0 z11(ω+1)





z12(ω−1) 0 0

0 z12(ω0) 0

0 0 z12(ω+1)





z13(ω−1) 0 0

0 z13(ω0) 0

0 0 z13(ω+1)





z21(ω−1) 0 0

0 z21(ω0) 0

0 0 z21(ω+1)





z22(ω−1)−R0 −R−1 −R−2

−R1 z22(ω0)−R0 −R−1

−R2 −R1 z22(ω+1)−R0





z23(ω−1) 0 0

0 z23(ω0) 0

0 0 z23(ω+1)





z31(ω−1) 0 0

0 z31(ω0) 0

0 0 z31(ω+1)





z32(ω−1) 0 0

0 z32(ω0) 0

0 0 z32(ω+1)





z33(ω−1) 0 0

0 z33(ω0) 0

0 0 z33(ω+1)





(5.7)
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5.2.3 Excitation Matrix

Once the wire is loaded, the final step towards understanding the behavior of the

antenna with a time-varying load is exciting the antenna. Similar to that of the

impedance matrix, the excitation matrix is an expansion of that introduced by Har-

rington. As this project aimed to design a receive antenna, this section will primarily

cover the introduction of an incident plane wave on the antenna. Exciting the an-

tenna with a direct feed would be fairly intuitive with an expanded excitation matrix

using methods from Harrington.

To continue the example for a three-segmented dipole, an incident E-field plane

wave approaching the antenna at broadside will have the following matrix

[V ] =


E(t) ∗ d

E(t) ∗ d

E(t) ∗ d

 , (5.8)

where E(t) = E0 ∗ ejωst, ωs is the signal frequency of the incident E-field, and d =

2k∆2 where k is the propagation constant of the medium as discussed in Chapter 2.

In order to account for a plane wave approaching the antenna at a differing incident

angle, the value of E(t) now becomes

E(t) = (E0 ∗ ejωst) ∗ sinθ ejkzcosθ (5.9)

where z is the segment thatE(t) is being evaluated at and θ is the angle of incidence

[26]. The matrix of a plane wave approaching the antenna can therefore be written
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as

[V ] =


(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

 . (5.10)

In order to create the conversion matrices version of the excitation matrix, the

element for each of the segments must be expanded based on the number of mixing

frequencies being observed. For the purposes of this project, it was assumed that the

plane wave was oscillating at a single frequency (ωs). In the absence of any mixing

frequencies in the incident E-field, the conversion matrix form is fairly simple. For

a single segment, the time-varying E-field will have a conversion matrix form of

v(t) = (E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ =⇒


0

E0 ∗ d ∗ sinθ ejkzcosθ

0

 (5.11)

where zeros are observed at the elements for the mixing frequencies other than

that of the fundamental signal frequency ωs. In order to expand this matrix for the

three segment dipole presented before, the resulting conversion matrices excitation

matrix is
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
(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

(E0 ∗ d ∗ ejωst) ∗ sinθ ejkzcosθ

 =⇒




0

E0 ∗ d ∗ sinθ ejkzcosθ

0




0

E0 ∗ d ∗ sinθ ejkzcosθ

0




0

E0 ∗ d ∗ sinθ ejkzcosθ

0





. (5.12)

5.3 Current Distribution

This excitation conversion matrix can then be multiplied by the impedance matrix in

order to find the current distribution on the antenna. This is done using the methods

found once again from Harrington using the relation

[I] = [Y ][V ], (5.13)

a method of moments matrix form of Ohm’s law. [Y ] represents the loaded admit-

tance matrix, or the inverse of the loaded impedance matrix in conversion matrix

form created in the earlier section. The loaded admittance matrix is then multiplied

by the conversion matrix excitation matrix to create the resulting current distribu-

tion. (5.14) shows a visualization of the complete conversion matrix form of the
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impedance, excitation, and current distribution matrices.





I1(ω−1)

I1(ω0)

I1(ω+1)





I2(ω−1)

I2(ω0)

I2(ω+1)





I3(ω−1)

I3(ω0)

I3(ω+1)





=





z11(ω−1) 0 0

0 z11(ω0) 0

0 0 z11(ω+1)





z12(ω−1) 0 0

0 z12(ω0) 0

0 0 z12(ω+1)





z13(ω−1) 0 0

0 z13(ω0) 0

0 0 z13(ω+1)





z21(ω−1) 0 0

0 z21(ω0) 0

0 0 z21(ω+1)





z22(ω−1)−R0 −R−1 −R−2

−R1 z22(ω0)−R0 −R−1

−R2 −R1 z22(ω+1)−R0





z23(ω−1) 0 0

0 z23(ω0) 0

0 0 z23(ω+1)





z31(ω−1) 0 0

0 z31(ω0) 0

0 0 z31(ω+1)





z32(ω−1) 0 0

0 z32(ω0) 0

0 0 z32(ω+1)





z33(ω−1) 0 0

0 z33(ω0) 0

0 0 z33(ω+1)





−1



0

E0 ∗ d ∗ sinθ ejkzcosθ

0





0

E0 ∗ d ∗ sinθ ejkzcosθ

0





0

E0 ∗ d ∗ sinθ ejkzcosθ

0





.

(5.14)

Once the matrix multiplication is performed, the resulting current matrix is

made of conversion matrices describing the frequency spectrum of the currents

found on each of the individual segments. For the three segment example dipole,

the resulting current matrix will be in the form,
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


I1(ω−1)

I1(ω0)

I1(ω+1)



I2(ω−1)

I2(ω0)

I2(ω+1)



I3(ω−1)

I3(ω0)

I3(ω+1)





, (5.15)

where the 4th through 6th elements are extracted to find the current on the load.

Figure 5.5 shows the current magnitude values for the three mixing frequencies

from the matrix being plotted in order to represent the current spectrum. In order

to see the current spectrum at differing observations points, the element values that

correspond to the conversion matrix for that specific segment are extracted.

5.4 Comparison of Performance

In order to test the validity of the Conversion Matrices method, it must be compared

to known methods. The main standard for performance of the Conversion Matrices

Method is the comparison of its results to those obtained using the Landt Integral

Method. This section will cover the results of the Landt Integral Method and Con-

version matrices method with an example that was first presented by Landt and

covered in Chapter 3. This was also the example used to confirm the performance
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Figure 5.5: The current spectrum from the extracted conversion matrix

of Huang’s method. To reiterate, the example is a dipole 9 m in length and 0.2 m in

radius. The dipole is divided into 9 segments and center loaded with a time-varying

resistance of the value

R(t) = 500(1 + sin(ωp t)) Ω (5.16)

where ωp = 2π(4 MHz). An incident wave is approaching the antenna oscillating

at ωs = 2π(16 MHz) and a magnitude of E0 = 1 V/m. The results in this chapter

will also be presented as the magnitude of the current spectrum on the antenna, just

as they were in Chapter 3.

5.4.1 Base Results

Results of the Landt Integral Method for the same example were pulled from Chap-

ter 3. The base results found using both the Landt Integral Method and Conver-
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Figure 5.6: Result of current spectrum from Landt Integral Method and comparison
to result from Conversion Matrices Method

Figure 5.7: Result of current waveform from both Landt Integral Method and Con-
version Matrices Method

sion Matrices Method were then compared in Figure 5.6. The two plots show great

agreement, with only slight variations in magnitude and spectrum shape. The wave-

form shape is also consistent between the two methods. Figure 5.7 shows the cur-

rent waveform at the feed point obtained using the MATLAB replication of the

Landt Integral Method and Conversion Matrices Method. The only discrepancy be-

tween the two is a slight phase shift, but the waveform itself is in line between the

two methods.

56



Figure 5.8: Visualization of an example used to test the results of differing feed
locations using Conversion Matrices Method

5.4.2 Varying Locations

As previously mentioned, one of the restrictions of conversion matrices and their

applications to antennas using an equivalent circuit was the inability to analyze the

currents anywhere else except on the load. This section will cover the performance

of the Conversion Matrices Method and its ability to match up to the Landt Integral

Method at a variety of observation points along the antenna. In order to do so, the

Landt Integral Method and Conversion Matrices Method were both used to analyze

the same antenna from the previous example, where instead the feed is located one

segment away from the load. The setup used in this example is shown in Figure 5.8.

Figure 5.9 shows the results for both methods. There is a very apparent de-

crease in the magnitudes of the mixing frequencies, and an increase of the main

fundamental frequency at 16 MHz. These results show good agreement once again

between the two methods, and shows that the expansion of the conversion matrices

for antennas allows for accurate analysis at feed points other than the load location.
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Figure 5.9: Results from the Landt Integral Method and Conversion Matrices
Method one segment away from the load

5.4.3 Multiple Loads

The second restriction presented in the previous applications of conversion matri-

ces was the inability to place multiple time-varying loads in arbitrary locations.

To test the ability of the Conversion Matrices Method to match the Landt Integral

Method solutions with multiple loads, the following example was simulated. The

same dipole from the base example was used, which has a central load with a time-

varying resistance. Just like the example proving the validity of the Conversion Ma-

trices Method at differing observation locations, the feed was placed one segment

away from the center. This time however, the load at the center was duplicated

and placed one segment over from the feed, leaving the feed settled in between two

time-varying loads. A visualization of this example is shown in Figure 5.10. The

incident wave properties, dimensions of the antenna, and time-varying resistances

are identical to the base example provided at the beginning of this section.

The results of this simulation using the Landt Integral Method and Conversion

Matrices Method are shown in Figure 5.11. It is first important to note that both

results show great similarities to each other, confirming the belief that the Conver-
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Figure 5.10: Visualization of example used to test the results of multiple loads using
the Conversion Matrices Method

Figure 5.11: Comparison of the Landt and Conversion Matrices methods for a
dipole antenna with two time-varying resistances and single feed point all located
at different locations

sion Matrices Method can model multiple loads just like the Landt Integral Method.

This solves the second concern that was brought up with the original application of

conversion matrices to antennas with time-varying loads. Additionally, the appli-

cation of a second time-varying load to the antenna shows a greater magnitude of

current being received at the feed than in the example in the section testing simply

feed locations differing from the load. This is also with fairly little change to the

actual shape of the current spectrum itself other than a slight increase in mixing

frequency magnitudes.

59



5.5 Summary

This chapter showed the introduction of an expanded conversion matrices method

to analyze time-varying loads on antennas. This method utilizes conversion ma-

trices in the creation of a new impedance matrix, rather than confining itself to

equivalent circuits that describe the antenna. This new form of impedance matrix

and electromagnetic computation dismisses the restraints on previous applications

of conversion matrices to antennas. The introduced Conversion Matrices Method

provides the ability to handle both multiple time-varying loads, as well as differing

observation points. The next chapter will discuss a generalization of this method

and its application using extracted impedance matrices from an electromagnetic

solver method of moments solver.
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Chapter 6

Generalization of the Conversion Matrices Method

In order to take the Conversion Matrix Method and make it capable of widespread

use for varying types of antennas, the capability to extract the impedance matrix

for a broad range of antennas is imperative. It is known that as the structure of

an antenna moves beyond a thin wire and to more complicated geometries, the

method of moments computation of the impedance matrix becomes increasingly

more intensive. In order to reduce computational work, but still expand the variety

of antennas this method could be applied to, it was seen as valuable to make the

method compatible with impedance matrices extracted from a computational elec-

tromagnetics solver that utilizes method of moments. FEKO by Altair Engineering,

which comes from the German phrase that roughly translates to “field calculations

involving bodies of arbitrary shape”, is a software that solves for the fields and char-

acteristics of a component by meshing the structure and using method of moments

based off Maxwell’s equations. For this thesis, the FEKO software is used to vali-

date methodology and provide a proof-of-concept example. This chapter will cover

a brief overview of the basis functions used by FEKO for the method of moments

calculations, wire and planar structures in FEKO, and results of implementing the

Conversion Matrices Method with FEKO impedance matrices.
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Figure 6.1: Representation of piecewise triangular basis function from [26] that is
used by FEKO

6.1 Wire Meshing

In FEKO, the meshing and computation of a thin wire antenna is fairly simple.

While a pulse basis function creates a constant value for a single segment on the

wire, FEKO uses instead a piecewise triangular basis function, observing the inter-

action between two segments. Therefore, rather than a value for a self impedance

being identified on a single segment, it is assigned to the edge between the two seg-

ments it represents. A visualization of the basis function used by FEKO is shown

in Figure 6.1 and was covered in depth in Chapter 2. Due to the application to thin

wire antennas, the assumption of zero current can be made for the end values of

I−M and I+M . This is why when the impedance matrix is extracted from FEKO,

there are no element values for the “edge” or end of the antenna. For example, an

antenna divided into 10 segments will return a 9 × 9 impedance matrix instead of

11× 11.

6.1.1 Thin Wire Dipole

The modeling of a thin wire dipole in FEKO is considered one of the most sim-

ple geometries and provides a good starting point for the implementation of the

Conversions Matrices Method using FEKO generated impedance matrices. The
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example used in the prior chapters of a 9 m long dipole centrally fed was once

again used; however, the dipole was instead separated into 10 segments. An even

number of segments was required as now instead of loading the impedance matrix

element that corresponded to the central segment, the element of the edge between

two central segments was loaded. The 10 equally sized segments allowed for the

extracted impedance matrix elements to correspond to the 9 interior edges. The

antenna model used is shown in Figure 6.2. The time-varying resistance as well

as the incident wave are the same as the base example from the prior chapters as

well. FEKO does not allow for negative frequencies to be solved for, and because

there must be an equal number of positive and negative mixing frequencies that the

impedance matrices are solved for, the zero frequency limit acted as a barrier. An

attempt was made to have FEKO simulate the negative frequencies, but the error

message “Error 17505: Parameter should be > 0 for parameter” was the response.

Due to this barrier, FEKO solved for only 4 negative and 4 positive mixing frequen-

cies before the negative mixing frequencies hit the zero barrier. This resulted in a

total of 9 evaluated frequencies including fs.

The setup of the initial test done with a FEKO impedance matrix is shown in

Figure 6.3. The results of the current spectrum evaluated on the center load using

the Landt Integral Method and Conversion Matrices Method with the FEKO ex-

tracted impedance matrix are shown in Figure 6.4. While the spectrum shape varies

slightly more than the results from the MATLAB calculated impedance matrices,

the magnitudes of the current spectrums and general shape still show good agree-

ment. This discrepancy is partially assumed to be due to the restriction on number

of mixing frequencies that could be evaluated. Despite the results for this specific

example, multiple other orientations were tested in order to further validate that the

methods still reflected each other in more cases.
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Figure 6.2: Simulated model in FEKO for wire antenna, separated into 10 segments
with 9 edges between segments

Figure 6.3: Setup of simulation done for FEKO extracted wire antenna impedance
matrix with load and feed at the center of the dipole
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Figure 6.4: Results of current spectrum on the central load from Landt Integral
Method and Conversion Matrices Method using FEKO extracted impedance matrix
of a wire antenna

Figure 6.5: Setup of simulation done for FEKO extracted wire antenna impedance
matrix with load on the second edge between segments

When the load was moved away from the center, the methods showed even more

agreement. In order to once again test the versatility of the method, the load was

moved from the center to the second edge between the second and third segment

from the antenna end as shown in Figure 6.5. The feed however was kept to be at

the same location as the load. The results of this example, shown in Figure 6.6 were

even more promising as the current spectrums matched very well.

In order to test the location of the feed at a differing location other than at the

load, the feed was moved back to the center of the antenna. The configuration
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Figure 6.6: Result of the current spectrum on the load from Landt Integral Method
and Conversion Matrices Method using FEKO extracted impedance matrix of a
wire antenna with the load moved to the second edge from the end of the antenna

Figure 6.7: Setup of simulation done for FEKO extracted wire antenna impedance
matrix to test feed points away from the load

for this test is shown in Figure 6.7. The results in Figure 6.8 show a decrease in

harmonic prominence compared to the magnitude of the fundamental frequency.

There was also an increase in the magnitude of the fundamental frequency current

which was expected, as the feed was placed at the center of the dipole and less

affected by the modulation of the load.

The FEKO extracted impedance matrices were then tested for the application

of multiple loads. A second time-varying resistance was placed proportionally on

the other side of the antenna from the feed as shown in Figure 6.9. In terms of

edge number, the loads were placed on the 2nd and 8th edge, and the feed at the
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Figure 6.8: Result of current spectrum on the load from both methods using FEKO
extracted impedance matrix of wire antenna to test feed points away from the load

central 5th edge. The results for this setup are shown in Figure 6.10. There was not

only an increase in magnitude of the mixing frequencies, but also an overall mag-

nitude increase from Figure 6.4 with a central load and feed. This again adds to the

assumption that the strategic addition of more time-varying loads provides for an in-

creased density of the current on the antenna while also providing prominent mixing

frequency magnitudes as well. The trade-off lies between current magnitude on the

antenna and mixing frequency prevalence. The effect of the time-varying loads on

the mixing frequency magnitudes was more apparent with the use of multiple loads

rather than a single load placed at a different segment from the feed in Figure 6.8.

Overall, the results from the FEKO extracted impedance matrix for a wire antenna

show good agreement between the Conversion Matrices Method and Landt Integral

Method, and gives more intuition to the design of antennas with time-varying loads.

In order to provide an example of a higher fs that takes a much higher number

of mixing frequencies to reach the 0 Hz boundary, the same antenna geometry was

used along with new values of fs = 80 MHz and fp = 5 MHz and the feed and

load placed back at the center. This allowed for 15 positive and 15 negative mix-

ing frequencies to be evaluated, 31 in total including fs. Figure 6.11 shows that by
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Figure 6.9: Setup of simulation done for FEKO extracted wire antenna impedance
matrix to test multiple loads

Figure 6.10: Result of current spectrum on the load from both methods using FEKO
extracted impedance matrix of wire antenna to test multiple loads
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Figure 6.11: Result of current spectrum on wire antenna with higher fs to avoid 0
MHz, as well as a more refined mesh

shifting the frequencies and allowing for the evaluation of more mixing frequencies,

the outer portion of the Conversion Matrices Method spectrum aligns more closely

with the Landt Integral Method. It is important to keep the restriction of of the zero

barrier in mind when using FEKO extracted impedance matrices as it can affect the

accuracy of the result. Due to the higher frequency, in order to keep the same accu-

racy of the solution, FEKO suggested a much more refined mesh, jumping from the

9 segments of the original example, to 37 segments for a “coarse” meshing. While

negligible for the Conversion Matrices Method, this increase in impedance matrix

size caused a more noticeable jump in the Landt Integral Method run time. For this

specific case, the Landt Integral Method ran in 2.986 seconds while the Conversion

Matrices Method ran in 1.648 seconds. This was one of the largest gaps in timing

seen between the two methods with the Landt Integral Method actually typically

running faster for much simpler geometries. It is believed that the benefit of just

performing a single matrix multiplication, even if the matrix is much larger like in

the Conversion Matrices Method, becomes more efficient than matrix multiplica-

tion for each time step if the impedance matrix is large enough.
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Figure 6.12: Vector plot of RWG basis function from [30]

6.2 Planar Meshing

Once the structure transitions to be two-dimension like a ribbon dipole, the mesh-

ing becomes increasingly more complicated. In order to recreate the geometry of

a planar structure, simply creating rectangular or square segments is no longer the

best or most efficient approach. Triangles are found to be the best at approximat-

ing two-dimensional geometries. A basis function using triangular segments was

presented by Rao, Wilton, and Glisson in [29], and is referred to as the RWG basis

function. The RWG basis function is very similar to the the piecewise triangular

basis function as it describes the the interaction between segments rather than dis-

crete values of a single segment. A visualization of the RWG basis function from

[30] is provided in Figure 6.12.

In order to describe the process of planar meshing within FEKO, a ribbon dipole

will be used as an example. The first step taken to create the mesh in FEKO is to

divide the geometry into a number of triangular segments as described by the RWG

basis function. This division can be shown in Figure 6.13.

The ribbon dipole in the example is separated into 8 triangles with 7 edges be-

tween them. FEKO then assigns each individual triangle an identification number

seen in Figure 6.14. The number assigned to each triangle and the physical points
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Figure 6.13: Planar mesh of a ribbon dipole

that describe its location are documented in the “.out” file provided by FEKO. Fig-

ure 6.15 shows a portion of a real “.out” file extracted from FEKO. This portion

shows the number of each of the triangles on the geometry, and the three points that

dictate the coordinates of said triangle.

As said before however, FEKO operates using an RWG basis function which fo-

cuses instead on the edges between the triangles. This means the elements of the ex-

tracted impedance matrix from FEKO for a planar structure describe the impedance

between two specified triangles. In the case of the ribbon dipole example provided,

in order to center load the dipole, the edge of the two triangles at the center of the

dipole must be identified. In Figure 6.16, it can be seen that the center of the dipole

lies between triangles 4 and 5. In order to load this edge, the element corresponding

to this edge in the impedance matrix can be altered. It can be very difficult however

to arbitrarily identify which element in the impedance matrix corresponds to which

edge in the mesh when looking at an extracted impedance matrix from FEKO. This
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Figure 6.14: Planar mesh with assigned triangle numbers

Figure 6.15: Portion of real “.out” file from FEKO describing triangles
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Figure 6.16: Planar mesh edge being identified

is why it is important to once again look at the “.out” file for guidance. The first

step is to determine the two triangles that correspond to the physical location to be

loaded. These triangle numbers can be identified from the portion of the “.out” file

shown in Figure 6.15. Once the triangles for the physical location of the load are

identified, the number of the edge between them must be found. Figure 6.17 shows

an example of the edge information from the “.out” file. Each number is the in-

dividual edge between two triangles identified by the variables KORP and KORM.

In this specific “.out” file, it can be seen that the edge 6 is between triangles 4 and

6. Once the edge number is identified, that number is the corresponding element

number of the load location in the FEKO extracted impedance matrix.
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Figure 6.17: Portion of real “.out” file from FEKO describing edges between trian-
gles

6.2.1 Ribbon Dipole

As was stated in the planar meshing section, a ribbon dipole is one of the simplest

planar geometries to be observed. In the design in FEKO, the ribbon dipole was

assumed to be infinitely thin and was created with a 2D rectangle. It was seen as

more important to focus on the meshing of the planar dimension before accounting

for plane thickness. In order to test the behavior of the Conversion Matrices Method

on planar components, a ribbon dipole was made by creating a plane 4.5m× 0.2m.

This ribbon dipole was separated into 12 metallic triangles with 11 edges shown in

Figure 6.18.

The setup for the first base results was very similar to that of the wire dipole. The

ribbon dipole was centrally fed and loaded as shown in Figure 6.19. Identifying the

central edge however was more complicated than for the thin wire dipole. The edges

were no longer just the vertical edges across the wire antenna, but also the diagonal

edges between triangles. The “.out” file of the antenna extracted from FEKO can

then be used to identify which element of the impedance matrix corresponds to

which edge. For this specific meshing, the central edge was between triangles 6

and 12 and the edge number was 6. The numbering of the triangles and edges are
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Figure 6.18: Simulated model in FEKO for ribbon dipole, separated into 12 trian-
gles with 11 edges between them

shown in Figure 6.20. This shows that the process and numbers assigned to each

triangle and edge is not as intuitive as the segmented thin wire antenna.

The results for current spectrum of this base example are shown in Figure 6.21.

The spectrums show good agreement; however, it is apparent that Landt Integral

Method is not computed with a finite number of mixing frequencies while the Con-

version Matrices Method is. The overall distribution and magnitude of the spec-

trums are very similar between the two methods, giving confidence that the method

could be translated to planar structures. The discrepancies are primarily shown to-

wards the outer edges of the spectrum which was expected with the zero boundary

limiting the number of mixing frequencies the Conversion Matrices Method can

analyze. In order to confirm this planar model was fully compatible with the Con-

version Matrices Method, tests for different case scenarios were performed on the

FEKO extracted planar impedance matrix.

The first case was moving the feed and load at a point away from the center

of the antenna. This was to verify that the methods agreed when the loading and
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Figure 6.19: Setup of simulation done for FEKO extracted ribbon dipole impedance
matrix with load and feed at center

Figure 6.20: Triangle and edge numbers in meshing identified from FEKO “.out”
file

Figure 6.21: Results of the current spectrum on the central load from the Landt Inte-
gral Method and Conversion Matrices Method using a FEKO extracted impedance
matrix of a ribbon dipole
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Figure 6.22: Setup of simulation done for FEKO extracted ribbon dipole impedance
matrix with load and feed at edge 10, away from the center

feeding point were moved to different elements in the impedance matrix. The load

and feed were moved to the next straight segment over from the center, which was

the edge connecting triangles 9 and 10. This edge was labeled as 10, dictating its

element number in the extracted impedance matrix. The setup of this case is shown

in Figure 6.22. The results for this setup are shown in Figure 6.23. The results

are very similar to that of Figure 6.21; however, with a decrease in the overall

magnitude. This is expected as the feed and load are being moved away from the

current maximum of the center.

The second case was testing a feed location at a different location from the load.

This was done to ensure that the capability to observe the current on the antenna at

locations different from the load still worked for planar structures. The setup for

this example is shown in Figure 6.24, and the results shown in Figure 6.25 show

that the magnitudes of the mixing frequencies are almost entirely diminished by the

feed being two edges (or one vertical edge) away from the load. This does make

sense as this is a separation of about 0.75 m physically. The fairly abrupt decrease

in mixing frequency level as the feed moves away from the time-varying load has
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Figure 6.23: Results of the current spectrum on the off-center load from the
Landt Integral Method and Conversion Matrices Method using the FEKO extracted
impedance matrix of a ribbon dipole

Figure 6.24: Setup of the simulation in FEKO for the extracted ribbon dipole
impedance matrix with load at edge 10 and feed at the center

been consistent throughout the entirety of this thesis.

The planar structure was then tested for its ability to handle the addition of

multiple loads. In order to test this, a second load was added to the other side of

the central feed proportionally the same distance as the first load. The setup for this

final example is shown in Figure 6.26. The results in Figure 6.27 shown not only an

increase in magnitude of the mixing frequencies from Figure 6.24, but also greater

spectral spreading. This is very similar to the results of the addition of a secondary

load in Figure 6.10. Overall, there is great agreement between the Landt Integral

Method and Conversion Matrices Method.

Finally, the same higher frequency example from the wire dipole was applied to
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Figure 6.25: Results of the current spectrum for the off-center load and center feed
for the Landt Integral Method and Conversion Matrices Method using the FEKO
extracted impedance matrix of a ribbon dipole

Figure 6.26: Setup of the simulation done in FEKO for the extracted ribbon dipole
impedance matrix with multiple loads

Figure 6.27: Results of the current spectrum in the center of two loads from the
Landt Integral Method and Conversion Matrices Method using the FEKO extracted
impedance matrix of a ribbon dipole
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Figure 6.28: Result of the current spectrum on a planar antenna with a higher fs to
avoid 0 MHz, as well as a more refined mesh

the geometry of the ribbon dipole to test the agreement between the two methods

with a higher number of mixing frequencies. The frequency values were changed to

fs = 80 MHz and fp = 5 MHz, and the feed and load were placed at the center. The

results in Figure 6.28 show that with a higher number of mixing frequencies, the

outer portion of the spectrum between the two methods match up better. In order

to account for the higher frequency, the “coarse” mesh in FEKO required signifi-

cantly more triangles, moving from 12 to 139. This large increase in the impedance

matrix size was very apparent in the computation time. The Conversion Matri-

ces Method took 5.943 seconds to run, while the Landt Integral Method made the

jump to 106.477 seconds. This further builds the idea that the Conversion Matrices

Method will be a much more efficient computation method when the geometries

of the antenna become increasingly more complicated, resulting in more intricate

meshing and therefore larger impedance matrices.

80



6.3 Summary

The Conversion Matrices Method has shown to be compatible with the extracted

FEKO impedance matrices, which provides a more generalized application of the

method. While there are slightly more discrepancies between the CMM and Landt

Integral Method using FEKO impedance matrices, there is still great agreement

between the two methods. More work needs to be done on a wider variety of an-

tennas such as loops and larger planar structures like patch antennas. By creating

this generalization, it is believed that the characterization of time-varying loads on

antennas can be done in an efficient manner, and this technique will be a useful tool

in encouraging further research of such antennas.
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Chapter 7

Conclusions and Future Work

The application of time-varying loads has been observed on a variety of components

for a variety of reasons. Time-varying loads have been shown to model effects of

parametric amplification such as frequency conversion, and in some cases are used

to create a nonreciprocity in both filters and transmission lines. This project sought

to utilize time-varying loads to break the Linear Time-Invariant (LTI) assumption

made of most antennas, and utilize their effects to bypass the performance limita-

tions on electrically small antennas set by [2]. One of the main concerns with the

application of time-varying loads is the methods with which to model them. Many

typical methods rely on the same LTI assumption. This thesis presented a gen-

eralized and extended frequency domain method for modeling time-varying loads

on antennas using a combination of method of moments and conversion matrices

called the Conversion Matrices Method.

While methods using conversion matrices have been presented before for this

application, they have relied on the use of a single equivalent circuit to model the

antenna. This presents two main issues: the inability to observe the currents on

the antenna at locations differing from the load and model multiple time-varying

loads on the antenna. The extension of this method by applying conversion matri-

ces to the entirety of the impedance matrix of an antenna extracted using method
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of moments provides a solution for both of the aforementioned limitations. This

method has been shown to have great agreement with the time stepping method for

analyzing time-varying loads called the Landt Integral Method. In order to make

the method capable of modeling arbitrary antenna shapes, it was modified to be

applied to impedance matrices extracted from an electromagnetic solver that uses

method of moments. In this thesis, the FEKO software package was chosen to ex-

tract said impedance matrices. Method of moments impedance matrix solutions can

become increasingly difficult to calculate by hand as the geometry becomes more

complicated, and the use of FEKO allows for that difficulty to be bypassed.

The work on this project however is far from done. The steps to be taken in fu-

ture work can be separated into two main categories, expansion and validation. The

first category, expansion, refers to the addition of techniques to be implemented

with the Conversion Matrices Method. One important addition is the method of

harmonic balance. All the loads in this thesis were assumed to be linear and time-

varying, and conversion matrices are defined by [23] to be the secondary portion

of small/large signal analysis after harmonic balance is performed. By applying

harmonic balance solutions to the method, it would expand the method to be ap-

plicable with nonlinear components, such as varactors, in addition to time-varying

components.

The second category for future work is validation, which would ideally be done

with two methods. The first of which is through a standardized time-domain elec-

tromagnetic solver called XFDTD which uses finite difference time-domain. Being

able to compare results to software that is commercially available is seen as a good

next step in the direction of further validating the Conversion Matrices Method.

Once this validation can be made, antennas with time-varying loads can be fabri-

cated and tested for real physical measurements. The validations made before this
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final step however are incredibly important in order to avoid unnecessary design

mistakes, as this type of antenna does not have a wide range of general antenna

knowledge or intuition that can be applied.

Overall, this thesis has provided a basis for the further development of the Con-

version Matrices Method. It has shown the method is a very promising frequency

domain alternative to the time domain methods that dominate nonlinear and time-

varying load modeling. The method has been generalized to be applied with elec-

tromagnetic computation software such as FEKO, and it is believed that continued

work will provide a prominent and efficient alternative to simulation in the growing

field of nonlinear and time-varying antennas.
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