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Abstract 

Emerging technologies for liquid chromatography (LC) separations and mass 

spectrometry (MS) have dramatically improved the throughput of top-down proteomics, 

which has allowed the identification of thousands of intact proteoforms in complex 

biological samples. Many proteins have multiple intact proteoforms (i.e. variants with 

different post-translational modifications, PTMs) and these proteoforms often exhibit 

differing functions in biological processes. Therefore, it is important to establish an 

accurate and high-throughput top-down approach for the analysis of intact proteoforms. 

The focus of this dissertation is the development and application of novel high-throughput 

quantitative top-down proteomics techniques to characterize intact proteins in complex 

biological samples (e.g., serum autoantibody repertoire). 

We have developed a two-dimensional separation platform for high-throughput 

top-down MS analysis, which employs high-pH and low-pH RPLC-MS for top-down 

proteomics. The high-pH and low-pH 2D RPLC has been widely applied in bottom-up 

proteomics; however, it has not been applied to intact protein separation. Our results 

demonstrated that the proposed high-pH and low-pH RPLC separation format has good 

orthogonality for intact protein separation. We have used our 2D Ph RP/RPLC platform 

for PTM characterization of complex biological samples such as E. coli and human cell 

lysates. This ‘salt-free’ RPLC process overcomes the disadvantage of other 

chromatographic methods, which require complicated sample processing (i.e., buffer 

exchange, desalting) before MS analysis, and the two dimensions of separation could be 

easily coupled for online analysis.  

One of the drawbacks of the platform is that a large amount of starting material is 
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required and the sample handling process between each dimension can introduce variations 

in the sample and can cause loss of sensitivity due to sample loss during the transfer, 

recovery, and desalting processes. Moreover, the off-line multidimensional separation 

techniques are often time consuming, labor intensive, and low-throughput. To improve the 

throughput and sensitivity of the offline approach, we developed an online 2D ultra-high-

pressure nano-LC system for high-pH and low-pH RPLC separation in top-down 

proteomics. The online 2DLC platform enabled the characterization of 2000+ intact 

proteoforms from  5 micro-grams of intact E. coli cell lysate, presenting a potential for 

deep proteome characterization in mass-limited samples using top-down proteomics.  

The human serum autoantibody repertoire is extremely complicated and 

autoantibody development is crucial to the function of the human immune system. We have 

applied top-down MS methods to characterize the serum autoantibody repertoire. We 

implemented a 1D UPLC-TDMS platform and achieved separation of a mixture of 12 

antibody Fabs with highly homologous sequences. Furthermore, we characterized 86 Fab 

related mass features, which represents the first top-down analysis of the complexity of the 

human autoantibody repertoire. Using top-down proteomics techniques, the PTMs of 

monoclonal antibodies can also be characterized; this information could give valuable 

insight into autoantibody function and human immunity. 

Antibody-antigen interaction is the fundamental reaction of immune system. The 

clear characterization of paratope/epitope of an immune complex can help the 

understanding of immune response and possibly the mechanisms of related diseases. To 

characterize the immune complexes, we coupled a low-temperature LC system with 

hydrogen/deuterium exchange mass spectrometry (HDX-MS), and applied it to 
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characterize the epitopes of the protective antigen. 

Overall, our results demonstrate the utility of top-down proteomics for the analysis 

of the serum autoantibody repertoire and application of HDX-MS on immune complex 

characterization. Top-down proteomics techniques hold great promise for the discovery of 

novel serum autoantibody biomarkers, as well as the promotion of our understanding of 

pathogenic autoimmune processes. 
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Chapter 1 Introduction 

1.1 Background 

The proteome, the complex system of proteins expressed by a cell,  is essential for 

the activity of complex biochemical processes. The study of the proteome provides 

complementary information to genomics and transcriptomics, which promotes the 

understanding of cellular functions and signaling pathways. During the transcription and 

translation processes that are used to synthesize proteins, any gene and protein processing 

event such as allelic variation (e.g. coding polymorphisms), alternative splicing, and post-

translational modification may vary protein structure (Figure 1-1). Different protein 

products can be produced from a single gene due to these pre- and post- 

transcriptional/translational processes which results in the large diversity of the proteome 

compared to the diversity of the genome . These protein variants were designated with the 

term “proteoform” in 2013 [1]. Different proteoforms of the same protein may have 

different abundances and functions in the cellular environment and may be active in the 

regulation of gene expression. Thus, understanding the abundance and function of a 

proteoform in a biological system is extremely important to study and understand the 

mechanisms of different biological processes. 
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Figure 1-1. Central dogma of molecular biology. 

 

Proteomics is the large-scale study of proteins[2, 3]. Unlike the relatively constant 

genome in a biological system, the proteome is dynamic. This means that, even from a 

distinct set of genes, proteoform identity and abundance can vary in different cells; PTMs 

and of abundance can also change over the lifetime of the cell[4]. To study proteins, ligand 

binding assays such as antibody-based immunoassays (e.g. enzyme-linked immunosorbent 

assay, ELISA) and mass spectrometry-based methods have been the most commonly 

applied methods in the past decades. Antibody-based immunoassays require known 

antibodies against proteins of interest for affinity purification. These antibodies can be time 

consuming and labor intensive to produce and antibody-based immunoassays cannot reveal 

protein structural information. Traditionally, mass spectrometry-based proteomics have 

utilized two-dimensional polyacrylamide gel electrophoresis (2D PAGE) for front end 

protein separation prior to mass spectrometry analysis. After the protein mixture is 

separated on a PAGE gel, the protein bands of interest are isolated, subjected to sample 

preparation (e.g. in-gel enzymatic digestion), and detected using a mass spectrometer. 

However, 2D PAGE is time consuming and low throughput.  

The use of high-resolution front-end separation techniques such as reversed phase 
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liquid chromatography (RPLC) and capillary electrophoresis (CE) has emerged as an 

alternative to 2D PAGE for protein separation. Using these online separation techniques, 

thousands of proteins can be detected from a single sample using mass spectrometry. 

Additionally, the advancement of high-end mass spectrometry instruments (e.g. FTICR, 

Orbitrap, Time-Of-Flight mass analyzers, and etc.) has enabled the fast and accurate 

detection of large biological molecules (e.g. peptides and proteins). Through the 

application of online separation techniques, predominantly LC, coupled with mass 

spectrometric detection, large scale, routine, and high-throughput analysis of proteins is 

becoming feasible and reliable.  

1.2 High-throughput proteomics 

 There are about 20,000 protein-coding genes in the human genome [5, 6], and an 

estimated 1,000,000 proteoforms from one cell type in the human proteome. Most of these 

different proteoforms are responsible for unique biological processes and control the 

function or misfunction of the human body[6]. The comparatively large diversity in the 

human proteome stems from sources such as alternative splicing, PTMs, etc. However, we 

have very limited knowledge on the function of proteoforms in health and disease. 

Understanding the identity, abundance, and function of important proteoforms will provide 

useful information for disease diagnosis and treatment. Considering the large size of the 

human proteome, high-throughput techniques are needed to map as many human 

proteoforms as possible. 

The aim of high-throughput proteomics is deeper proteome coverage with 

decreased analysis time[7]. There are three main approaches to high-throughput mass 
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spectrometry-based proteomics: bottom-up, middle-down, and top-down proteomics 

(Figure 1-2).  

 

 

Figure 1-2. Scheme of bottom-up and top-down proteomics. 

 

In bottom-up proteomics, proteins are normally enzymatically digested (e.g. tryptic 

digestion) and analyzed by LC-MS techniques. Full MS scans can be used for peptide 

quantification and tandem mass spectrometry is utilized for peptide sequencing and 

identification. In top-down proteomics, intact proteins are directly separated using LC and 

detected using high-resolution mass spectrometry. In middle-down proteomics, proteins 

undergo limited proteolysis to produce relatively large peptides (i.e. 3 – 9 kDa), the 

resulting peptides are then separated and detected by LC-MS/MS[8].  

Bottom-up methods have been widely applied to proteomics studies and are capable 

of identifying thousands of peptides in a single analysis. Bottom-up proteomics is robust 

and sensitive, but it cannot provide accurate information on the combinatorial modification 

patterns of proteoforms (Figure 1-3). Top-down proteomics analyzes intact proteins and 

allows for the identification of PTM patterns, sequence variations, etc., providing a 



5 
 

complete description of the primary structure of the protein and its modifications. Middle-

down proteomics is a popular method because it preserves combinatorial modification 

patterns on proteoforms and can approach the sensitivity of bottom-up proteomics. Middle-

down proteomics is extensively applied for histone proteomics[9, 10]. 

 

 

Figure 1-3. Bottom-up proteomics results in loss of proteoform information. 

 

The biological functions of different proteoforms largely rely on the abundance and 

PTM of the proteoform (e.g. histone code). Bottom-up proteomics is more robust for 

protein identification; however, the proteoform information in terms of PTM location, 

pattern, and abundance will be lost. High-throughput top-down proteomics has become 

more accessible thanks to the advancement of online separation/offline fractionation 

workflows, high-resolution MS instrumentation, and fragmentation techniques for large 

gas phase molecules. 

Top-down proteomics analyzes intact proteoforms which preserves the primary 

structure of different proteoforms and information of PTMs. Top-down proteomics 

provides a promising tool for the identification of novel proteoforms, deeper understanding 
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of protein sequences, and the quantification of functional PTMs[11, 12]. Top-down 

proteomics was previously limited to the analysis of pure intact proteins and targeted 

analysis of proteins of interest in its early development[13-15]. Over the past 5 to 10 years, 

top-down proteomics has been rapidly improved thanks to the fast development of 

separation techniques and high resolution mass spectrometers[12]. Now, global profiling 

of proteomes using top-down proteomics is feasible, enabling the identification and 

quantification of thousands of intact proteoforms in one single LC-MS/MS analysis[16-

21].  

 

 

Figure 1-4. Typical workflow of a high-throughput top-down proteomics study. 

 

Typically, a high-throughput top-down proteomics study starts from protein 

extraction (i.e., sample preparation), followed by protein separation, and MS detection[22]. 
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Top-down proteomics is developing quickly; however, there are still significant challenges 

posed by the complexity of protein samples, e.g. the wide dynamic range of proteoforms 

in a biological sample and the large size of intact proteins[23]. The high degree of 

complexity requires optimization or customization for each step of top-down analysis.  

Different sample preparation strategies can be utilized based on the characteristics 

of protein samples to be analyzed. In the case of physiological samples that are not 

compatible with separation and MS detection, buffer exchange of the proteins can be 

performed. Traditionally, filter-aided sample preparation (FASP) has been applied where 

protein samples are centrifuged through a membrane of certain pore size. This method 

provides an easy process for protein sample buffer exchange and desalting. For samples 

that contain proteins of interest at low abundance, enrichment of selected proteins can be 

performed. For example, immunoprecipitation and immobilized metal affinity 

chromatography (IMAC) can be used to enrich phosphoproteins.  

The throughput of the top-down proteomics workflow has also been improved with 

the advancement of high-resolution separation techniques, high-resolution MS instruments 

with fast scan rate, and accessible bioinformatics tools.   

1.2.1 Separation techniques for top-down proteomics 

One of the major goals of global profiling of proteomes using top-down proteomics 

is to identify and quantify as many proteoforms as possible from biological samples. The 

number of identified proteoforms directly correlates with the separation power of 

separation techniques, and MS and MS/MS scan quantity and quality. Separation 

techniques with higher resolution reduce the ionization competition from co-eluted 
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analytes because the proteoforms can be concentrated into a sharper elution peaks; this 

results in higher sensitivity of MS detection.  A variety of separation methods that separate 

proteins based on different mechanisms (e.g. size, charge, polarity) have been evaluated 

for protein separation for top-down proteomics. Separation techniques that have been 

applied to the separation of intact proteins include reversed phase liquid chromatography 

(RPLC), hydrophilic interaction chromatography (HILIC), size exclusion chromatography 

(SEC), hydrophobic interaction chromatography (HIC), and ion exchange chromatography 

(IEC)[24, 25]. Electrophoresis-based methods such as gel-eluted liquid fraction entrapment 

electrophoresis (GELFrEE)[26] and capillary electrophoresis (CE) have also been applied 

to the separation of intact proteins[27]. These various separation techniques provide a pool 

of tools for the separation of intact proteins for MS analysis.  

RPLC is the most prevalent approach for studying complex intact protein 

samples[7, 11, 28-30]. CE has also been applied as a complementary separation technique 

to RPLC for the separation of peptides and proteins in proteomics studies. While CE 

provides higher theoretical plate numbers and more efficient separation, the application of 

CE has been limited due to the characteristics of the method. For example, as CE is a nano-

scale sample separation technique, the limited sample loading amount results in the 

inability to detect low abundant proteins. In addition, compared to LC based techniques, 

the reproducibility of CE is relatively poor, making it hard to apply to routine analysis[27, 

31, 32]. Given the challenges of CE, top-down proteomics with LC separation techniques 

are still the most applicable and feasible approaches currently available. Various 

approaches have been developed to improve RPLC separation power [33-35] including the 

utilization of ultra-high pressure LC systems with longer columns [36] or smaller column 
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particle sizes. These advancements serve to improve the peak capacity of the 1D RPLC 

separation [37].  

Since single dimensional separation techniques separate proteins based on a single 

physicochemical property, they can never resolve the whole proteome. Multi-dimensional 

separation platforms have emerged to separate proteins based on multiple physicochemical 

properties. Different separation techniques can be coupled together either online or offline 

(i.e., pre-fractionation) to extend the separation power of front-end separation for top-down 

proteomics. Multidimensional separation can result in more identification of proteins and 

a deeper and more comprehensive understanding of proteoforms. In order to maximize the 

utilization of the separation window, the different dimensions of multidimensional 

separation techniques need to be orthogonal, meaning that the same protein will have 

different elution behaviors in the different dimensions (Figure 1-5A). If the separation 

mechanism of the first dimension is the same or similar with the second-dimension 

separation, the same protein will be eluted out at a similar retention time in the first- and 

second-dimension separations, resulting an inefficient usage of whole separation window 

(Figure 1-5B). 

 

Figure 1-5. Orthogonality demonstration. 
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In the past decades, various multi-dimension techniques have been developed for 

top-down proteomics. In 2010, Tian and his coworkers developed weak cation exchange 

chromatography and hydrophilic interaction chromatography (WCX/HILIC) coupled to 

RPLC for histone studies[33]. In 2011, the Kelleher group reported a four-dimensional 

separation platform that coupled isoelectric focusing, multiplex GELFrEE, and 

nanocapillary LC-MS. This platform demonstrated greater than 20-fold increase in both 

separation power and proteome coverage[38]. In 2014 and 2015, the Ge group developed 

a method that coupled HIC to RPLC and three-dimensional separation using IEC, HIC, and 

RPLC for intact protein analysis [21, 39]. Traditionally, the multidimensional separation 

platforms involve sample processing between different dimensions (e.g., desalting, 

concentrating), which can be time consuming and labor intensive. More importantly, 

offline fractionation requires a large amount of starting materials which limits the 

application of multi-dimensional separation for top-down proteomics in some situations. 

Although, the online 2DLC system has been reported for histone analysis [33], no 

automated online multi-dimensional separation platform has been reported for global 

profiling of proteomes. Multi-dimensional separation for top-down proteomics has been 

effective; however, the instrumentation of the multi-dimensional separation system will 

need to be further improved for more robust and high-throughput analysis of intact protein 

samples. 

1.2.2 The development of mass spectrometry for top-down proteomics  

The very early top-down MS characterization of intact protein was performed on 

quadrupole-based instruments. Compared to modern MS instrument, quadrupole-based 
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instruments are simpler but the mass resolving power is poor, which leads to inaccurate 

mass measurement. With the invention and development of high-resolution mass 

analyzers, the benefits of top-down proteomics started to shine. Fourier-transform ion 

cyclotron resonance (FTICR) mass analyzers and Orbitrap mass analyzers are currently 

more commonly used for top-down MS analysis. Other types of instruments, such as linear 

ion traps, time-of-flight (ToF) mass analyzers, can also be applied to analyze intact 

proteins. Compared to FTMS, ToF mass analyzer can detect intact proteins with very high 

m/z, making it preferable for large protein complex detection. However, the FTMS 

instruments provide excellent sensitivity and high mass accuracy, allowing better 

characterization of proteoforms for top-down proteomics. The improved mass accuracy 

and high resolving power of modern MS instruments enables the detection of monoisotopic 

masses of intact proteins. In addition, the high-resolution mass detection can also resolve 

overlapped fragment ions with similar masses, resulting in more confident assignment of 

fragment ions[40]. 

One of the aims of top-down proteomics is the deep characterization of proteoforms 

with more accurate primary structure characterization, PTM localization, and relative 

quantification. Ion dissociation techniques have been development to increase the internal 

energy of analyte ions to the dissociation threshold to generate fragment ions. The fragment 

ions can be further analyzed by tandem mass spectrometry (i.e., MS/MS) and used to 

characterize the proteins. Currently, collision-based dissociation methods are still 

commonly used for protein identification. However, to increase the sequence coverage and 

better characterize proteoforms (e.g. localization of PTMs), different dissociation 

techniques with complementary fragment features and patterns are sometimes required. 
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Figure 1-6. Peptide backbone fragmentation. 

 

Different dissociation techniques fragment ions using different mechanisms, such 

as gas-phase collisions (CID, HCD), surface induced collisions (SID), photodissociation 

(UVPD), electron capture/transfer dissociation (ECD/ETD), etc. The peptide backbone in 

a protein can be cleaved at different sites depending on the type of dissociation technique 

used (Figure 1-6). b- and y- ions can be produced by “slow-heating” techniques, such as 

CID and HCD, c- and z- ions can be produced by ECD, ETD, UVPD, etc., and  a- and x- 

ions are normally generated with electron-mediated techniques for anionic analytes, such 

as electron detachment dissociation (EDD), negative electron transfer dissociation (nETD), 

etc [41]. b- and y- ions, c- and z- ions are the most commonly used for characterization of 

proteins in top-down proteomics. 

Different dissociation techniques can be utilized to address different experimental 

applications. For example, HCD is generally used with Orbitrap type instruments for high 

throughput protein identification. UVPD can be applied to sequence intact monoclonal 

antibodies[42]. ETD can be beneficial to PTM analysis, especially to glycoproteomics, 
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since the glycans can be easily dissociated with collision-based dissociation 

techniques[43].  

1.3 Serum autoantibody proteomics 

The human immune system protects human health against disease pathogens 

mainly through the adaptive immune system that is reliant on the diversification of the 

antibody repertoire in response to antigenic determinants (antigens)[44]. When the B cell 

antigen receptor (BCR) on the cell membrane recognizes a specific antigen, the B cell 

undergoes a series of somatic gene rearrangement events to produce a specific antibody 

that can bind to the antigen. This antibody can prevent future attack from the same disease 

pathogen[44, 45]. However, the immune system can be overactive and result in 

autoimmune diseases such as Sjögren’s syndrome (SS) and systemic lupus erythematosus 

(SLE). Autoimmune diseases occur when the immune system recognizes a self-antigen and 

generates an autoantibody against the autoantigen which will attack healthy tissue, organs, 

etc[46, 47].  

To understand the mechanisms of autoimmune diseases, current studies focus on 

autoantigens and their autoepitopes[46, 48-51]. However, such research provides no 

information on molecular characteristics, clonality, variable gene usage, or mutational 

status of the autoantibodies[45, 46]. Mass spectrometry-based proteomics techniques have 

been used for the detection and characterization of serum monoclonal antibodies. Several 

bottom-up and middle-down approaches have been developed to identify autoantibodies in 

serum[52-54]. However, there are inherent challenges with bottom-up approaches for the 

analysis of the highly diverse serum antibody repertoire. In order to produce an 
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autoantibody repertoire of high diversity, the VDJ recombination process produces an 

astronomical number of antibody sequences (Figure 1-7). A finite set of variable (V), 

diversity (D), and joining (J) germline gene segments will arrange together tandemly, with 

the random addition or deletion of N-nucleotides, to make a unique antibody sequence. The 

unique process of VDJ recombination diversifies the antibody repertoire, however, the 

majority of the antibody sequences share common primary sequences from common VDJ 

and C (constant) gene families. This recombination results in a pool of peptides with both 

shared and non-shared sequences. Even assuming 100% sequence coverage (which is 

nearly impossible to generate with bottom-up approaches), bottom-up MS is unable to 

identify the precise coordination of individual sequences for each IgG. Top-down 

proteomics uses high resolution MS for accurate mass detection distinguishing different 

antibodies. It also allows for post-translational modification mapping and preserves the 

light chain and heavy chain pairing information. The advantages of top-down proteomics 

make it a promising tool for comprehensive antibody proteomics. 

 

Figure 1-7. The VDJ recombination diversifying the antibody repertoire.  

V: variable gene segment; D: diversity gene segment; J: joining gene segment; N: non-
templated addition of N-nucleotides; C: constant gene segment; FW: framework; CDR: 
complementarity-determining region. 
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1.4 Dissertation synopsis 

This dissertation presents the development and application of high-throughput top-

down proteomics techniques to enable the deeper understanding of proteomes and related 

biochemical processes. A 1D high-performance liquid chromatography platform using a 

long capillary RPLC column was developed for complex intact protein sample analysis. 

The platform achieved a high peak capacity for intact proteome separation. To further 

improve the throughput, an online comprehensive 2DLC platform couples high-pH RPLC 

and low-pH RPLC for top-down proteomics (Chapter 2). The high-pH and low-pH 2D 

RPLC platform has previously been applied in bottom-up proteomics. This platform has 

good orthogonality for peptide separation, utilizes simple sample handling techniques, and 

‘salt’-free, MS friendly buffers. However, it has never been applied to intact protein 

separation. We evaluated the 2D pH RP/RPLC platform and observed orthogonality for 

intact protein separation. The 2DLC platform enables the deep identification of proteoform 

PTMs due to increased sensitivity. The 2DLC platform was further developed into an 

online automated system utilizing nano flow LC for both dimensions (Chapter 3). The 

automated online 2DLC system does not require sample handling between the two 

dimensions; as a result, less sample loss and artificial modifications occur during the 

experiment. More importantly, 100 times less starting material was needed (i.e., 5 μg vs. 

500 μg), to achieve similar performance to the offline 2DLC platform, which equates to a 

100-fold increase in sensitivity. 

Understanding the human autoantibody repertoire and immune complex is essential 

to explore the mechanism of autoimmune diseases for disease management and treatment. 

We applied high-throughput top-down proteomics to the analysis of antigen-binding 
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fragments from serum autoantibody repertoire (Chapter 4). To our knowledge, this work 

is the first, to date of publication, top-down MS analysis of the human serum autoantibody 

pool and has enabled the classification of light chains and heavy chains. Our top-down 

approach gives us a ‘bird’s-eye’ view of the complexity of human serum autoantibodies. 

Further, we optimized and evaluated a low-temperature LC system coupled with HDX-MS 

to characterize the epitopes of the protective antigen (Chapter 5).   
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Chapter 2 Two-dimensional separation using high-pH and low-pH 

reversed phase liquid chromatography for top-down proteomics 

2.1 Abstract 

Advancements in chromatographic separation are critical to in-depth top-down 

proteomics of complex intact protein samples. Reversed-phase liquid chromatography is 

the most prevalent technique for top-down proteomics. However, in cases of high 

complexities and large dynamic ranges, 1D-RPLC may not provide sufficient coverage of 

the proteome. To address these challenges, orthogonal separation techniques are often 

combined to improve the coverage and the dynamic range of detection. In this study, a 

“salt-free” high-pH RPLC was evaluated as an orthogonal dimension of separation to 

conventional low-pH RPLC with top-down MS.  The RPLC separations with low-pH 

conditions (pH=2) and high-pH conditions (pH=10) were compared to confirm the good 

orthogonality between high-pH and low-pH RPLC’s. The offline 2D RPLC-RPLC-MS/MS 

analyses of intact E. coli samples were evaluated for the improvement of intact protein 

identifications as well as intact proteoform characterizations. Compared to the 163 proteins 

and 328 proteoforms identified using a 1D RPLC-MS approach, 365 proteins and 886 

proteoforms were identified using the 2D RPLC-RPLC top-down MS approach. Our 

results demonstrate that the 2D RPLC-RPLC top-down approach holds great potential for 

in-depth top-down proteomics studies by utilizing the high resolving power of RPLC 

separations and by using mass spectrometry compatible buffers for easy sample handling 

for online MS analysis. 
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2.2 Introduction 

Post-translational modifications (e.g., phosphorylation, glycosylation, acetylation, 

etc.) and other cellular biochemical processes often result in various modified proteoforms 

of a single protein, which are recognized as important functional molecular signatures for 

disease diagnosis and potential drug targets[38]. Several mass spectrometry (MS) based 

proteomics approaches are currently available: bottom-up proteomics, middle-down 

proteomics, and top-down proteomics[7]. Bottom-up proteomics offers high sensitivity, 

high throughput, and good sequence coverage for studying complex protein samples[7, 

55].  Middle-down proteomics refers to the partial cleavage of intact proteins into a few 

large fragments prior to LC-MS/MS analysis[56]. However, both techniques often result 

in the loss of information for different proteoforms. In top-down proteomics, intact protein 

samples are directly analyzed using MS without any pre-treatment. Compared to bottom-

up proteomics and middle-down proteomics, top-down proteomics has the advantages of 

the preservation of intact proteoforms[57]. Therefore, top-down proteomics is being 

increasingly utilized for proteome studies. Additionally, in recent years, high-speed and 

high-resolution MS instrument development (i.e., orbitrap and FTICR MS) has greatly 

advanced the field of top-down proteomics[58-60].   

One of the main challenges of top-down proteomics is the lack of high-resolution 

separation techniques for complex protein samples[39, 61]. Reversed phase liquid 

chromatography (RPLC) coupled online with MS is the most prevalent approach for 

studying complex intact protein samples in top-down proteomics[7, 11, 28-30]. Various 

approaches have been developed to improve the separation power of the RPLC 

analysis[33-35]. One of the major efforts is to utilize ultra-high pressure LC systems with 
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longer columns[36] or smaller particle sizes, improving the peak capacity of the 1D RPLC 

separation[37]. However, due to extreme complexities, limited sample loading amounts, 

and large dynamic ranges of intact protein samples, 1D RPLC alone may not provide 

sufficient proteome coverage for top-down proteomics.  Capillary electrophoresis (CE) has 

also been applied as a complementary separation technique to RPLC for the separation of 

peptides and proteins in proteomics studies. However, the application of CE has been 

limited for several reasons. Low concentration and ionic strength of the analytes is required 

to minimize peak broadening and peak distortion. Limited sample loading amounts and 

relatively poor reproducibility of CE have also limited its wide application[27, 31, 32]. In 

addition, confident intact protein and proteoform characterizations often require good 

quality fragmentation peaks by averaging several MS/MS scans, and this is a rate limiting 

step for both 1D RPLC analysis and CE based separations.  

To address these challenges, various orthogonal separation techniques (i.e., 2D LC) 

are often combined to improve proteome coverage and increase the dynamic range of 

detection[62, 63]. Different separation methods have been evaluated and optimized as 

complimentary separation techniques to RPLC, including hydrophilic interaction 

chromatography (HILIC), size exclusion chromatography (SEC), hydrophobic interaction 

chromatography (HIC), and ion exchange chromatography (IEC), etc. [24, 25]. 

Electrophoresis-based separation techniques, such as gel-eluted liquid fraction entrapment 

electrophoresis (GELFrEE)[26], and capillary zone electrophoresis (CZE) [27] have also 

been used. HILIC has been successfully applied to histone proteoform analysis[64, 65], but 

it is not widely applicable due to poor solubility of many proteins in organic loading 

buffers. SEC separates proteins based on the sizes of the proteins which provides a 
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complementary mechanism to RPLC and is useful for the identification of large proteins. 

However, SEC often has low peak capacity for protein separation[66, 67].  HIC is a 

technique that separates proteins based on the hydrophobicity with high resolution. It also 

provides complementary selectivity to RPLC[20, 68]. However, HIC provides inadequate 

protein retention and is often limited by the concentrations of salts in the mobile phase. 

These problems of HIC were overcome by several studies. Ge’s group developed the online 

HIC-MS platform with the MS-compatible  salt ammonium tartrate[39], and more recently,  

introduced a novel hydrophobic HIC packing material that can retain proteins with MS-

compatible salts such as ammonium acetate[20]. IEC is another commonly applied pre-

fractionation approach in top-down proteomics. It offers good separation power and is 

highly orthogonal to the RPLC separation.  However, IEC buffers contain high 

concentrations of non-volatile salts that are incompatible with MS, and additional desalting 

steps are always required prior to MS analysis[69]. Therefore, there is a general need to 

develop complementary separation approaches to couple with RPLC-MS for top-down 

analysis.  

Using high-pH RPLC as the first-dimension of separation offers the possibility of 

retaining the high resolution of RPLC and bringing orthogonality to the second dimension 

of the RPLC separation[70, 71]. It has been widely applied to bottom-up MS approaches 

due to the good or even better performance compared to current state-of-the-art strong 

cation exchange (SCX)-RPLC separation. In addition, the MS compatible mobile phases 

simplify the sample processing because no desalting step is required for the secondary 

dimension of the separation. However, this approach has not been applied to intact protein 

separation. In this study, we evaluate the high-pH and low-pH RPLC’s for intact protein 
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separation using standard proteins and E. coli intact proteins. The optimized 2D separation 

platform was further applied to the separation and the identification of E. coli intact 

proteins and proteoforms. Our results demonstrate that the proposed platform provides high 

resolving power for both RPLC separations, good orthogonality between the two 

dimensions, and easy sample handling with mass spectrometry compatible buffers. 

2.3 Material and methods  

2.3.1  Materials and reagents 

LC/MS CHROMASOLV® grade isopropanol (IPA), acetonitrile (ACN), and water 

were purchased from Sigma-Aldrich (St. Louis, MO). Analytical reagent (AR) grade 

ammonium formate (AF) and acetic acid (HAc) were also procured from Sigma-Aldrich. 

Pierce™ Trifluoroacetic Acid (TFA), formic acid (FA), and the Pierce™ BCA Protein 

Assay Kit were obtained from Thermo Scientific (Hanover Park, IL). Three standard 

proteins, α-Casein from bovine milk, carbonic anhydrase from bovine erythrocytes, and 

cytochrome c from bovine heart were obtained from Sigma-Aldrich. The packing materials 

for packing C5 (Jupiter particles, 5 µm diameter, 300 Å pore size) and C18 (Jupiter 

particles, 5 µm diameter, 300 Å pore size) columns were purchased from Phenomenex 

(Torrance, CA). 

2.3.2  Sample preparation 

Standard protein solutions (CAS, α-Casein from bovine milk; CAH, carbonic 

anhydrase from bovine erythrocytes; Cyt, cytochrome c from bovine heart) were prepared 
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by dissolving the lyophilized proteins into the HPLC mobile phase A (0.1% TFA in water 

for low-pH RPLC, 20 mM AF in water for high-pH RPLC) to a final concentration of 1.0 

mg/mL. Intact soluble E. coli cell lysate proteins were obtained from the BL21 strain grown 

in house and by a bead-beating approach described in the literature[72]. Aliquots of protein 

solutions were stored at -80 oC until further use. 

2.3.3 1st dimension RPLC separation and fractionation 

The first-dimension separation was performed on a Thermo Accela HPLC system 

(Thermo Scientific, Hanover Park, IL). An XBridge® Protein BEH C4 column (300 Å, 3.5 

μm, 2.1 mm × 250 mm) from Waters, Inc. (Milford, MA) was used. For high-pH (pH=10) 

1st dimension fractionation, the mobile phase A (MPA)was 20 mM ammonium formate in 

water and the mobile phase B (MPB) was 20 mM ammonium formate in acetonitrile. The 

mobile phases were adjusted to pH 10. For low-pH (pH=2) 1st dimension fractionation, the 

mobile phase A was 0.1 % TFA in water and the mobile phase B was 0.1 % TFA in ACN. 

For both approaches, the LC flow rate was 150 μL/min, and the UV absorbance detection 

wavelength was set at 280 nm. Five hundred micrograms of E. coli intact proteins or 50 μg 

of the three standard proteins were loaded onto the column. For direct comparison between 

the high-pH 1st dimension RPLC separation and the low-pH 1st dimension RPLC 

separation, the same gradient was applied, and the same column was used. The LC method 

was set at 5 minutes for sample loading followed by a 60-minute separation gradient from 

10% to 70% of MPB. The column was regenerated by running 90% of MPB over 10 

minutes and equilibrated to 97% of MPA for the next run. Twenty-four fractions were 

collected by a fraction collector. Each fraction was vacuum dried and stored at -20 oC. 
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Right before the analysis using second-dimension RPLC, each fraction was reconstituted 

by adding 100 μL of MPA for the second-dimension RPLC (0.01 % TFA, 0.585% HAc, 

2.5% IPA, and 5% ACN in water). The protein content and concentration of each fraction 

were evaluated by SDS-PAGE gel and BCA Protein Assay Kit. 

2.3.4 2nd dimension top-down RPLC-MS/MS analysis 

An in-house packed nano-flow capillary C5 column (5 μm, 75μm × 75 cm) was 

used on a modified Thermo Accela HPLC system. The RPLC conditions were similar to 

those previously reported[73, 74]. The mobile phase A was 0.01% TFA, 0.585% HAc, 

2.5% IPA and 5% ACN in water, and the mobile phase B was 0.01% TFA, 0.585% HAc, 

45% IPA and 45% ACN in water. 25 μL of each reconstituted fraction (i.e., ¼ of each 

fraction) was loaded on an SPE column for sample trapping and cleaning. A 280-minute 

gradient from 10% A to 80% B at a flow rate of about 400 nL/min was applied for the 

separation and the column was regenerated by running 90% of MPB for 10 minutes and 

equilibrated to 97% of MPA. The second-dimension RPLC was coupled directly to an LTQ 

Orbitrap Velos Pro mass spectrometer for MS analysis. Eluents from the second-dimension 

RPLC were electro sprayed from a custom designed nano-ESI source into an LTQ Orbitrap 

Velos Pro mass spectrometer (ThermoFisher Scientific, Bremen, Germany). The 

electrospray voltage was set to 2.6 kV and the heated inlet capillary temperature was 

optimized to 300 °C. MS data were collected at the resolving power setting of 100 000 (at 

m/z 400) with two micro scans. Data-dependent MS/MS acquisition was performed by 

selecting the top five most abundant precursor ions in the MS scan with an isolation width 

of 3.0 and fragmenting them using collision induced dissociation (CID) with a normalized 
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energy of 35%. The MS/MS data were obtained at a resolving power setting of 60 000 (at 

m/z 400) with one micro scan. Ions with less than 4 charges were rejected for the selection 

of MS/MS scans. The maximum injection time for a full mass scan and MS/MS scan were 

set to 1000 ms. and 500 ms., respectively. The AGC target was set as 1 × 106 for full mass 

scans, and 5× 105 for MS/MS scans. All the data were collected with Xcalibur 3.0 software 

(Thermo Fisher Scientific, Bremen, Germany). 

The E.coli intact proteins were also analyzed by a single-dimensional RPLC-

MS/MS (1D RPLC) to compare with the 2D RPLC-RPLC-MS/MS platform. The exact 

same conditions for LC and MS as the 2nd dimension top-down RPLC-MS/MS analysis 

were applied. 

2.3.5  Bottom-up LC-MS/MS analysis of fractions from 1st dimension RPLC 

The fractions from the first-dimension RPLC separation were tryptic digested and 

analyzed by the bottom-up approach for the evaluation of orthogonality between the low-

pH RPLC and high-pH RPLC. Briefly, the vacuum dried fractions were reconstituted in 25 

mM ammonium bicarbonate (ABC) and 6 M urea. Two hundred mM dithiothreitol (DTT) 

was used to reduce the disulfide bonds. Two hundred mM iodoacetamide (IAA) was used 

to protect the thiol groups from re-forming disulfide bonds. Trypsin was added to fractions 

with a protein to enzyme ratio of 50:1 and the digestion was performed overnight at 37 oC. 

The digested fractions were desalted and loaded onto an in-house packed C18 column (5 

μm, 75μm × 15 cm) for the bottom-up study. The mobile phases were 0.1% formic acid in 

water (MPA) and 0.1% formic acid in ACN (MPB). The gradient was from 3% MPB to 

35% MPB over 40 minutes following a 15-minute sample loading step. The column was 
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regenerated with 90% MPB for 10 minutes and equilibrated to 3% MPB for 30 minutes.  

2.3.6  Protein and proteoform identification 

In bottom-up experiments, peptides were identified using MSGF+[75, 76] to search 

the mass spectra from the LC-MS/MS analysis against the annotated E coli. database and 

its decoy database. Peptide identifications were filtered using an MS-GF cut-off value of 

1x10-10 (i.e., the calculated FDR<1% at the unique peptide level). The intact protein 

MS/MS data were subjected to data analysis and protein identification using MS-Align+ 

(http://bix.ucsd.edu/projects/msalign/)[77] with the following search parameters: minimal 

precursor mass = 2500 Da; minimal fragment peaks per scan =10; maximum number of 

modifications = 2; fragment mass error tolerance = 15 ppm. MS-Align+ reported only the 

PrSM with the best E-value for each spectrum. LC-MS/MS data were searched against the 

annotated E coli. database. The false discovery rate (FDR) for protein/spectrum matches 

was estimated by searching top-down spectra against the human Uniprot database. A final 

E-value cutoff of 2x10-4[75] was used to achieve an FDR of 1%. All of the identified 

proteins and proteoforms were further manually evaluated. 

2.4 Results and discussion 

2.4.1  Evaluation of orthogonality between high-pH RPLC and low-pH RPLC 

We first evaluated the orthogonality between high-pH RPLC and low pH-RPLC 

using three standard proteins, α-casein, carbonic anhydrase, and cytochrome c. The 

standard proteins were loaded on the same column with different mobile phases (low pH 
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and high pH) individually. The elution time was normalized to the percentage of mobile 

phase B for direct comparison (Figure 2-1).   

 

 

Figure 2-1. The separation of three standard proteins. 

(A) low pH RPLC, and (B) high pH RPLC. The retention time was normalized to the 
percentage of mobile phase B. 

 
Under low-pH conditions, the elution order of the three standard proteins was Cyt, 

Cas, and CAH, while under high-pH conditions, the elution order was CAH, Cyt, and Cas. 

The change in elution order of the standard proteins indicates that under different pH 

conditions, different proteins will have different retention behaviors which provides the 

possibility of achieving orthogonal separation using low-pH RPLC and high-pH RPLC. In 

addition, we observed that the separation window under high-pH conditions was wider than 

that under the low-pH conditions. The separation window under low-pH conditions was 

about 12% MPB, and the separation window under the high-pH conditions was about 24% 

MPB further indicating the differences in retention behaviors of different proteins between 

high-pH RPLC and low-pH RPLC.  
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Figure 2-2. Comparison of low-pH RPLC and high-pH RPLC as the first-dimension 
separation.  

(A) UV chromatograms SDS-PAGE using low-pH RPLC; (B) UV chromatogram and 
SDS-PAGE using high-pH RPLC. (C) Venn diagram of unique proteins identified using 
bottom-up proteomics. (D) Histogram of the fraction shift from low pH RPLC to high pH 
RPLC. 

 
We further evaluated the performance of the high-pH RPLC and the low-pH RPLC 

for separating complex protein mixtures such as E. coli intact proteins. For both RPLC 

separations, the same elution gradient (10-70% of MPB) was employed for direct 

comparison.  Figure 2-2 shows the elution profiles (UV chromatograms) of E.coli soluble 

intact proteins under different pH conditions.  The fractions from both low-pH RPLC and 

high-pH RPLC were analyzed by SDS-PAGE. A significant difference between the protein 

elution profiles was observed on both UV chromatograms and SDS-PAGE. All fractions 
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were analyzed by bottom-up MS for protein identification, and protein elution profiles were 

evaluated under different pH conditions (Figure 2-2). Overall, with bottom-up MS, a total 

of 678 unique proteins were identified using low-pH RPLC, and 840 proteins were 

identified using high pH RPLC with an overlap of 464 proteins between the two methods.  

The fraction shift was calculated to evaluate the orthogonality between different pH 

conditions (The fraction shift = the fraction number where the protein is most abundant 

under the high-pH condition – the fraction number where the protein is most abundant 

under the low-pH condition). Most of the identified proteins have a fraction shift larger 

than 2 (about 5% of the organic component), indicating good orthogonality between the 

two methods. Previous studies suggest that protein retention behaviors depend heavily on 

the composition of amino acids and their three-dimensional conformations.[78]  Five 

amino acids (Glu, Asp, Arg, His, and Lys) can be differentially ionized under different pH 

conditions. These five amino acids have either acidic side chains or basic side chains of 

which the polarities will be reversed when the conditions change from low-pH to high-pH. 

Thus, the retention behavior changes under different pH conditions and depends heavily 

on the ratio of these five amino acids in the sequence. Other than these five charged amino 

acids, all other types of amino acids have higher or similar retention coefficient under high-

pH condition than under low-pH condition.  Therefore, proteins are often eluted in later 

fractions under high-pH conditions, which is consistent with our observations (Figure 2-

2D).  Compared to the separation of peptides using a high-pH and low-pH RPLC platform 

reported by Gilar[70], the retention time shift of intact proteins was greater than the shift 

of tryptic-digested peptides, which may indicate that pH conditions have greater impacts 

on the hydrophobicity of proteins than that of peptides. We hypothesize that the large 
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properly folded proteins change properties more than small peptides because changing a 

single charge somewhere of a large protein can cause large conformational changes which 

will greatly affect retention behavior.  

We also compared the fraction width of each protein identified under high-pH and 

low-pH conditions (Fraction width refers to the number of fractions where a certain protein 

is identified). Fraction width under high pH is less than the fraction width under low pH, 

which is consistent with the greater identification number under high-pH conditions. Both 

the identification number and fraction width proved that RPLC with high-pH conditions 

provides similar or even better separation power than conventional low-pH RPLC, which 

shows high potential for high-pH RPLC as an orthogonal separation technique to yield high 

resolution 2D separations. 

One interesting observation was that under high-pH conditions, the retention 

behaviors of proteins seem to be less molecular weight dependent. According to previous 

reports [79, 80], larger proteins tend to have greater retention times in RPLC due to greater 

hydrophobicity under low-pH conditions.  One possible explanation of our observation is 

that protein charge distributions are different under different pH conditions. Basic amino 

acids such as Lys, Arg, and His are positively charged under low-pH conditions, and acidic 

amino acids such as Glu and Asp are negatively charged under high-pH conditions.  The 

location of these charged groups can have effects on protein elution. It has been reported 

that the proteins are more positively charged at their N-terminal and C-terminal, and more 

negatively charged at their core regions[81].  Therefore, there are less charges in the core 

regions under low-pH conditions and there are possibly more chain-length-dependence 

effects[82].  On the other hand, there are possibly more nearest-neighbor effects[83] on 
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protein elution due to neighboring negatively charged amino acids at their core region 

under high-pH conditions.  Still, the mechanisms of these proposed effects are unknown, 

and additional research is needed to further explore these observations. 

Overall, our results demonstrate the good orthogonality between low-pH RPLC and 

high-pH RPLC, which may be combined as a 2D separation approach for top-down MS 

analysis. The low-pH RPLC was selected as the second-dimension separation to directly 

couple with MS because the protein ionization efficiency is higher under acidic conditions 

and proteins tend to have higher charge state distributions that can be efficiently detected 

under the normal Orbitrap MS scan range (i.e., 400-2000). 

2.4.2  2D high-pH and low-pH RPLC-MS/MS analysis of E. coli intact proteins 

The two-dimensional separation platform using high-pH RPLC as the first 

dimension and low-pH RPLC as the second dimension was applied to the identification of 

complex E. coli proteins. To further evaluate the orthogonality between the 1st dimension 

separation and 2nd dimension separation, a total of 24 sequential fractions (i.e., 1-min per 

fraction, Figure 2-2A) were analyzed using the 2nd dimension RPLC-MS.  For future 

applications, the fractionation scheme can be optimized to justify the time investment and 

its benefits.  In addition, a targeted fraction analysis can be applied to increase the 

proteoform coverage of a specific protein or several proteins in a complicated background 

setting without significant increases in analysis time (i.e., with pre-fractionation, only 

several fractions need to be analyzed with 2nd RPLC-MS/MS reducing the total analysis 

time significantly).  

To evaluate the improvement from the 1D low pH RPLC to the 2D high- and low- 
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pH RPLC/MS platform, we analyzed E. coli intact proteins with 1D RPLC as well. Our 

results show that 2D pH-PRLC-RPLC separation allows better separation of protein 

mixtures with more proteins and proteoforms identified in the E. coli lysate.  A total of 365 

proteins and 886 proteoforms were identified with the 2D pH-RPLC-RPLC-MS/MS 

analysis, which is a significant improvement over 163 proteins and 328 proteoforms 

identified using the 1D RPLC method. An overlap of 121 proteins and 139 proteoforms 

between the 2D and 1D method was observed (Figure 2-3A and 2-3B).  

 

Figure 2-3. Identification results of the 2DLC. 

Venn diagram of numbers of (A) proteins and (B) proteoforms identified using 1D and 
2D methods. (C) Base peak chromatograms of 4 representative fractions. 
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However, there were some proteins that were only identified in the 1D RPLC-

MS/MS analysis. One possible explanation is that some proteins were unable to bind to the 

packing material under high pH conditions resulting in loss of identification of those 

proteins. A flow-through fraction will be incorporated in future studies to ensure the 

identification of unbound proteins.  

 

  

Figure 2-4. 2D pH RP/RPLC/MS analysis on E.coli proteins. 

(A) Base peak chromatogram of second dimension top-down analysis of fraction 19. (B) 
Representative mass spectra of three proteins identified in fraction 19. The three proteins 
are periplasmic protein, peptidyl-prolyl cis-trans isomerase A, and mono-oxygenase, 
subunit of predicted monooxygenase. (C) Overlay of observed isotopic distribution and 
theoretical isotopic distribution (red cycles). 
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The base peak chromatograms (BPCs) of individual fractions in the second 

dimension were evaluated (i.e., the BPCs of fraction 9, 12, 15, and 19 were demonstrated 

in Figure 2-3C). Figure 2-4 shows the examples of three identified proteins with isotopic 

distributions and molecular weight from 7.7 kDa to 18 kDa. For all 4 fractions, the BPC 

profiles indicated good orthogonality between different pH RPLCs because most of the 

proteins in these fractions were eluted out over the entire separation gradient (Figure 2-

3C). In addition, the BPCs of these 4 selected fractions have significantly different patterns 

as indicated in Figure 2-3C. These two observations further supported the good 

orthogonality between high pH RPLC and low pH RPLC.  

To further evaluate the improvement of top-down MS performance using 2D pH-

RPLC, the 5-minute segments (retention time from 90 minutes to 95 minutes) in the 

gradient of the 1D separation and the 2D separations of each fraction were compared 

(Figure 2-5). In the 1D RPLC-MS analysis, a total of 9 mass features were found in the 

selected 5-minute segment where6 unique proteins were identified. On the other hand, a 

total of 65 unique mass features were found in all the fractions in the 2D method, and 28 

unique proteins were identified. Some of the identified proteins were color coded in Figure 

2-5. A protein with the m/z of 1211.46 and charge state of 13 was identified in the 1D 

RPLC-MS analysis as a superoxide dismutase precursor (Cu-Zn) protein.  This protein was 

also identified in the fraction 17 of the 2D analysis. Interestingly, with the 2D separation, 

another precursor ion with similar m/z (i.e., m/z=1211.57) but different charge state (i.e., 

z=15) was observed in the same elution window in fraction 6 of the 2D analysis, which 

was confirmed as gi|251785751.  With 1D separation, only high-abundance proteins can 

be observed when the m/z of the detected ions are overlapping.  Due to less sample 
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complexity in the 2D method, more proteins can be identified, especially some low-

abundance proteins or from some overlapped peaks. The identification of intact proteins 

benefited from the orthogonality between the different pH RPLC separations. In addition, 

due to the improved separation power with the 2D pH-RPLC method, more proteoforms 

can be identified for the same proteins. For example, only one proteoform of the stress 

response protein (gi|251787301) was identified with the 1D RPLC method, however, 4 

different proteoforms (unmodified protein, lysine acetylation, methionine oxidation, and 

C-terminal degradation) were identified with the 2D method.  

 

Figure 2-5. Five-minute segment (RT = 90 min to 95 min) from LC/MS runs of 1D and 
2D methods. 
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It is known that the methionine residue can be oxidized through the interaction with 

molecular oxygen during sample processing steps.  Therefore, we compared the identified 

methionine oxidized proteoforms between the 1D RPLC-MS (280 min) analysis and the 

2D RPLC-MS analysis.  Overall, we detected 2 methionine oxidized proteoforms in the 

1D analysis, and 22 methionine oxidized proteoforms in 2D analysis. We further compared 

the intensities between the oxidized proteoforms and the non-oxidized proteoforms, and 

the average ratio was about 1:10 for both 1D and 2D. Our results do not suggest extensive 

oxidation arising from the additional processing steps and time in the 2D analysis.  Still, 

the detected proteoforms with oxidized methionine are likely from sample preparation 

steps such as cell lysis. 

Our 2D separation approach is relatively simple when compared with some other 

multidimensional separation approaches such as the GELFrEE [26] where an SDS removal 

step is necessary or and ion exchange chromatography where desalting step is often 

required before sample concentration.  The only step after fraction collection and before 

sample injection is that fractions are concentrated using vacuum drying where the frozen 

solution sublimes under vacuum (i.e., low oxygen level). 

2.4.3  Identification of novel intact proteoforms of apo-acyl carrier protein 

The apo-acyl carrier protein (gi|251784624) was identified in both the 1D and 2D 

methods. Apo-acryl carrier protein (ACP) is a unique protein working as a coenzyme in 

fatty acid and polyketide biosynthesis[84]. The protein is expressed in an inactive form. 

The phosphopantetheinyl transferase activates the protein after the expression by adding 

the phosphopantetheine moiety to serine 37 on ACP[85]. During the biosynthesis process, 
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the growing fatty acid chain is tethered to the thiol group of the phosphopantetheine on 

serine 37.  

 

Figure 2-6. Different proteoforms of apo-acyl carrier protein identified using 1D and 2D 
methods. 

 
From our 2D results, we identified both inactive and active forms of ACP, namely 

the protein with and without phosphopantetheine modifications (short as Pho-SH in Figure 

2-6) on serine 37 in the ACP sequence. Due to the improved separation, we were able to 

identify other low-abundance proteoforms, such as the proteoforms with and without N- 
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terminal methionine, the proteoform with an oxidation on methionine 45, etc. Interestingly, 

we also observed several novel proteoforms with different types of oxidized thiol groups 

of the phosphopantetheine on serine 37. We confirmed the proteoforms with Pho-SH, Pho-

SOH, Pho-SO2H, Pho-SO3H by the MS/MS results as well as by comparing the isotopic 

distribution of the detected peaks with the theoretical distribution (data not shown). 

Another oxidative proteoform was also confirmed as the glutathionylation on the thiol 

group of the phosphopantetheine on serine 37, which is a common non-enzymatic 

modification of cysteine thiol groups  resulting from oxidative stress and preventing 

irreversible oxidation of thiol groups[86-89]. Interestingly, all of the identified oxidative 

forms on the thiol group of the phosphopantetheine mimic the PTMs of cysteine thiol 

groups, which indicates the similar reactivity of these two types of thiol groups. One thing 

we would like to point out is that most of the different proteoforms of ACP were observed 

in one fraction (i.e., fraction 12), which indicates the modifcations on the thiol group of 

phosphopantetheine do not greatly affect the retention times of the protein. Using the 1D 

method, however, we only observed one proteoform as the active apo form of ACP with 

the removal of the N-terminal methionine. This enhanced identification of PTMs of ACP 

has convincingly proven that the 2D pH-RPLC-RPLC method improved proteoform 

identification by simplifying the complexity of the samples. All of the identifications of 

PTMs were characterized by MS2 spectra generated by collision induced dissociation. [17] 

Among all the 11 proteoforms of apo-acyl carrier protein in our study, we identified 

4 oxidized forms of the thiol group. We confirmed all of the Pho-S oxidative forms by 

MS/MS spectra.  Because the reactivity of the Pho-SH thiol group has not been studied 

before, it is difficult for us to conclude if the observed oxidative proteoforms are from the 
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sample process.  Interestingly, a proteoform with a free thiol group on phosphopantetheine 

was observed. Thiol groups normally have high reactivity in biological samples, especially 

with other thiol groups, forming disulfide bonds. It would be interesting to study on the 

function of the thiol group on the phosphopantetheine in the future. 

2.5 Conclusions 

We report the development and evaluation of a two-dimensional separation 

technique using a high- and low- pH RPLC/MS/MS platform for top-down proteomics. It 

achieves orthogonal separation by altering the pH conditions of the mobile phases while 

taking advantage of the high resolving power of RPLC. This allows the use of RPLC in 

both dimensions and offers higher resolution and better sensitivity than 1D techniques. 

From both the retention times of standard proteins as well as the bottom-up results of 

fractions from E. coli proteins using different pH RPLC’s, we have proven that altering the 

pH conditions of the mobile phases used in reversed phase chromatography changes the 

retention times of proteins in a useful manner. The platform was further applied to the 

identification of intact proteins in an E. coli lysate and it allowed the identification of 

greater numbers of proteins and showed higher proteoform coverage compared to 1D 

RPLC/MS top-down proteomics. This ‘salt-free’ RPLC process overcomes the 

disadvantage of other chromatographic methods which require complicated sample 

processing (i.e. buffer exchange, desalting) before MS analysis and provides the potential 

of easily coupling two dimensions of separation for online analysis. This is an important 

advance in separating complex intact protein samples for high throughput top-down 

proteomics. 
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*The materials in Chapter 2 are adapted from  

Wang, Z., Ma, H., Smith, K. and Wu, S., 2018. Two-dimensional separation using 

high-pH and low-pH reversed phase liquid chromatography for top-down proteomics. 

International journal of mass spectrometry, 427, pp.43-51. 
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Chapter 3 Development of an online 2D ultra-high-pressure nano-LC 

system for high-pH and low-pH reversed phase separation in top-

down proteomics 

3.1 Abstract 

The development of novel high-resolution separation techniques is crucial for advancing 

the complex sample analysis necessary for high-throughput top-down proteomics.  Ultra-

high-pressure long capillary column RPLC separation has been applied to top-down 

proteomics for the improvement of separation resolution because it allows the 

identification of hundreds of intact proteoforms from complex biological samples at low 

microgram sample amounts.  Recently, our group developed an offline 2D high-pH 

RPLC/low-pH RPLC separation method and demonstrated good orthogonality between 

these two RPLC formats. To further improve the throughput and sensitivity of the offline 

approach, we developed an online 2D ultra-high-pressure nano-LC system for high-pH and 

low-pH RPLC separations in top-down proteomics. A micro-trap column with an online 

dilution setup was used to collect eluted proteins from the high-pH separation and to inject 

fractions for ultra-high-pressure long capillary column low-pH RPLC separation in the 

second dimension. This platform enables the characterization of 1000+ intact proteoforms 

from 5 micrograms of intact E. coli cell lysate in 10 online-collected fractions. Here, we 

have demonstrated that our online 2D pH RP/RPLC system coupled with top-down 

proteomics holds the potential for deep proteome characterization of mass-limited samples. 
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3.2 Introduction 

Top-down proteomics analyzes intact proteoforms resulting from genetic 

variations, alternative RNA splicing, and post translational modifications [1]. Whereas 

bottom-up proteomics is robust and sensitive but provides limited information on 

proteoforms, top-down proteomics can provide a complete description of the primary 

structure of a protein and its modifications [90]. However, there are significant challenges 

posed to top-down proteomics by the complexity of protein samples [23]. Proteomes 

normally present a wide dynamic range of thousands of proteoforms, which makes the 

separation, accurate mass spectrometric detection, and data analysis extremely 

complicated. One of the major efforts to address these challenges is the improvement of 

separation resolution prior to MS analysis.  

Various separation techniques have been developed to be directly coupled to MS 

for high-throughput top-down proteomics, including RPLC [16, 18, 19] and capillary 

electrophoresis (CE) [91-94]. Multidimensional separation platforms have also emerged to 

improve the separation resolution of intact proteins from complex biological samples based 

on their orthogonal separation mechanisms [17, 21, 38, 39, 64, 91, 95-99]. Recently, our 

group reported the development of a 2D-LC platform that coupled high-pH RPLC to low-

pH RPLC for top-down proteomics. Fractions from the 1st-dimension high-pH RPLC were 

further separated using an ultra-high-pressure long capillary column for high-resolution 

low-pH RPLC-MS analysis. The offline platform was applied to characterize intact 

proteoforms from E. coli lysate [17] and from human HeLa lysate[100]. Our results 

suggested that orthogonal separation by altering the pH conditions of the mobile phases of 

RPLC was be achieved and the use of RPLC in both dimensions offered higher resolution 
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and better sensitivity than 1D-LC techniques. However, additional sample handling steps 

in offline 2D-LC often make the techniques lower-throughput, introduce degradation 

products, and result in poor sample recovery.  

Online 2D-LC has been developed to overcome some limitations of offline 2D-LC 

[19, 95, 96, 101, 102]. Recently, Baghdady et al. reported a proof-of-principle online 2D 

system that couples high-pH RPLC and low-pH RPLC for intact protein separation [101]. 

In Baghdady’s work, microflow RPLC columns were used in both dimensions and two 

sample storage loops were used for online coupling. In the 2nd dimension low pH RPLC 

separation, a very steep gradient (<1 min) was utilized which has been reported to enable 

the injection of sample volumes up to 70% of the column dead volume without band 

broadening for peptides and proteins [101, 103]. However, the separation resolution of the 

2nd dimension RPLC was relatively low, with a peak capacity of 19. This low resolution in 

the second dimension makes this approach less practical for improving proteoform 

identification without significantly improved 1st-separation resolution since online MS 

detection largely relies on decreased protein complexity eluted from the 2nd dimension 

RPLC.   

3.3 Materials and methods 

3.3.1 Chemicals and materials 

LC/MS grade acetonitrile (ACN), isopropanol (IPA), water, analytical reagent 

(AR) grade ammonium formate (AF), and acetic acid (HAc) were purchased from Sigma-

Aldrich (St. Louis, MO). Pierce™ Trifluoroacetic Acid (TFA), formic acid (FA), and 
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Pierce™ BCA Protein Assay Kit were obtained from Thermo Scientific (Hanover Park, 

IL). The packing material for packing C5 (Jupiter particles, 5 µm diameter, 300 Å pore 

size) column was purchased from Phenomenex (Torrance, CA), and the packing material 

for high-pH C4 columns was obtained from an ACQUITY UPLC Protein BEH C4 300 Å 

column (3.5 µm particles, 300 Å pore size, 4.6 mm × 100 mm) from Waters (Milford, MA). 

The 15,000 psi nano-volume 6-port switching valve and UPLC fittings were purchased 

from VICI Valco Instruments Co. Inc. (Houston, TX). Capillary tubing of different sizes 

was purchased from Molex (Lisle, IL). 

3.3.2 Sample preparation 

BL21 strain Escherichia coli (E. coli) cells were incubated in LB medium at 37 ℃ 

for 12 hours. The harvested E. coli cells were centrifuged at 10,000 × g at 4 ℃ for 10 

minutes to separate the cell pellets from culture medium. Cells were lysed using a high-

pressure homogenizer unit for 3 minutes (Avestin C3 EmulsiFlex homogenizer, pressure 

maintained between 1,500 psi and 2,000 psi). The cell lysate was then centrifuged at 10,000 

× g at 4 ℃ for 30 minutes to get rid of the cell debris.  The supernatant was desalted using 

a 3K MWCO filter tube (Amicon®, MilliporeSigma). The concentrations of the E. coli 

lysate were determined using BCA Protein Assay from Thermo Scientific. Aliquots of 

protein solutions were stored at -80 ℃ until further use. 

3.3.3 Instrumental setup of 1D-LC system 

All the 1D-LC experiments were performed on a modified Thermo Accela HPLC 

system as described in our previous work.[17] An in-house packed nano-flow capillary 
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column (75 cm, 75 μm I.D. × 360 μm O.D., C5, 5 μm particle size) was used.  The 

separation utilized 0.01% TFA, 0.585% HAc, 2.5% IPA and 5% ACN in water as mobile 

phase A, and 0.01% TFA, 0.585% HAc, 45% IPA and 45% ACN in water as mobile phase 

B. Twenty microliters of 0.25 μg/μL E. coli proteins were loaded on an SPE column (C5, 

5 μm, 150 μm I.D. × 5 cm) using an autosampler installed with a 25-μL sample loop. The 

sample was loaded onto the SPE with a flowrate of 6 μL/min for 15 minutes using buffer 

A, then the valve was switched to connect the SPE to the analytical capillary column for 

sample separation, where a 200-minute gradient from 10% A to 70% B at a flow rate of 

400 nL/min was applied. After the elution gradient, the gradient was ramped to 90% B and 

the column was flushed with 90% B for column washing. The gradient was then shifted 

back to 100% A to re-equilibrate the column for 20 minutes.   

3.3.4 Instrumental setup of online 2D-LC system 

The online 2D-LC platform was built using a Thermo Accela LC system (one 

autosampler, two Accela pumps), with two 6-port switching valves from Valco Instruments 

Co. Inc. (Figure 3-1 and 3-2).  The 1st dimension RPLC column (5 cm, 150 µm I.D. × 360 

µm O.D., Waters BEH C4 3.5 µm particles, 300 Å pore size), the 2nd RPLC column (75 

cm, 75 µm 8.D. × 360 µm O.D., C5, 5 µm particles), and the  SPE micro-trap column  (5 

cm, 150 µm I.D. × 360 µm O.D., Waters BEH C4, 3.5 µm particles, 300 Å pore size) were 

packed in-house. For high-pH RPLC separation, 20 mM ammonium formate in water  

(pH=10) was used as mobile phase A and 20 mM ammonium formate in acetonitrile 

(pH=10) was used as mobile phase B.  The pH values for buffers were adjusted with 

ammonium hydroxide.  (1) Sample loading: 5 μg of E. coli proteins was loaded onto the 
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1st dimension high-pH C4 column using an autosampler when the switching valve #1 was 

set at position A to allow the sample loop to be connected to the 1st dimension column.  

Meanwhile, the switch valve #2 was set at position A so the SPE micro-trap column was 

connected to the 1st dimension column to collect the flow-through fraction (e.g., proteins 

did not bind to the 1st dimension column); (2) Sample elution from 1st dimension column: 

The switching valve #1 was set to position B to bypass the sample loop after sample loading 

to 1D column. The first-dimension separation utilized step-gradient to elute the proteins 

from 1D column to the SPE. To enable the binding of eluted proteins from the first-

dimension separation to the 2D column, a flow from the 2D pump was used to dilute the 1D 

elution with a 1:10 dilution ratio. The flowrate was regulated using a splitting column to 

achieve a flowrate of 3 μL/min through the 1D column and a flowrate of 25 μL/min through 

the SPE. For each step, the proteins on the 1D column were eluted with a certain mobile 

phase B percentage range to the SPE at position A of the switching valve #2. (3) Sample 

separation and detection from 2nd dimension column: At 70 minutes, the switching valve 

#2 was switched to position B where the SPE was connected to the 2D column for second-

dimension separation. After that, the gradient of the second-dimension separation started 

at 10% B and ramped to 70% B over 200 minutes. Meanwhile, the first-dimension gradient 

was set back to 100% A. After the elution gradient, 270 minutes, the second-dimension 

gradient was set to 90% B to wash the 2D column for 10 minutes, and then back to 100% 

A to re-equilibrate the column. Repeating methods with different mobile phase B ranges 

for the first-dimension separation were applied to perform the online comprehensive 2DLC. 

The flow-through from the first-dimension separation was also analyzed after 2D separation. 
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3.3.5 Top-down MS analysis 

The analytes from LC separation were injected into an LTQ Orbitrap Elite mass 

spectrometer (ThermoFisher Scientific, Bremen, Germany) via a custom designed Nano-

ESI interface. The electrospray voltage was set to 2.6 kV and the inlet capillary temperature 

was optimized to 300 °C. The MS was set to a resolving setting of 120,000 (at m/z 400) 

with three micro scans with max ion time of 1,000 ms. The precursor ions were selected 

using an isolation window width of 6.0 under the data-dependent MS/MS acquisition mode 

where the top six most abundant precursor ions in the MS scan was selected. The selected 

precursor ions were fragmented using collision induced dissociation (CID) with a 

normalized energy of 35%. The MS/MS data were collected at a resolving power setting 

of 60,000 (at m/z 400) with three micro scans with max ion time of 500 ms. Ions with less 

than 4 charges were rejected for the selection of MS/MS scans. The dynamic exclusion was 

enabled where repeat count was set to 1, repeat and exclusion duration was set to 90 s with 

an exclusion list size of 500 count. The AGC target was set as 1 × 106 for full mass scans, 

and 3 × 105 for MS/MS scans. All the data were collected with Xcalibur 3.0 software 

(Thermo Fisher Scientific, Bremen, Germany). 

3.3.6 Data analysis 

The RAW files were converted into mzXML files with msconvert.[104] Top-down 

data were deconvoluted and searched against the annotated E coli. Database from UniProt 

using top-down mass spectrometry based Proteoform Identification and Characterization  

(TopPIC) suite[105] with the following search parameters: error tolerance for precursor 

and fragment masses was set to 15 ppm, the unexpected mass shifts were set to -500 to 
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500, maximum number of unexpected modifications was set to 2, the spectrum level and 

proteoform level cut off were both set to EVALUE less than 0.01.  TopPIC only reported 

one PrSM with the best E-value for each spectrum. To remove the redundant proteoforms, 

the proteoforms with mass differences less than 3.7 Da from the sample protein were 

manually evaluated and removed if they shared a sequence with a proteoform with a mass 

shift less than 3.7 Da. 

3.4 Results and discussion 

We have recently demonstrated a peak capacity of 200 for a single low-pH RPLC 

separation using an ultra-high-pressure long capillary column in top-down proteomics[16]. 

To further improve the separation resolution, here we report a microtrap column-based 

online 2D-LC platform using high-pH RPLC and low-pH RPLC separation with the ultra-

high-pressure long capillary column being used  in the low-pH RPLC separation. 

Nanoscale UPLC columns were also used in the 1st-dimension of high-pH RPLC to 

improve the sensitivity of the system. To operate these columns, ultra-high-pressure 

nanoflow pumps are often required. However, commercially available nanoflow UPLC 

systems are often expensive and hard to maintain. To provide an alternative affordable 

solution, we customized a high-pressure normal flow LC system with two Thermo Accela 

LC pumps (operational pressure 10,000+ psi, operation flow rate 10-1000 μL/min), two 

high-pressure 6-port switching valves and splitting columns [16], and one Thermo Accela 

autosampler. The schematic diagram of the online 2D system is shown in Figure 3-1. The 

experimental details are shown in Figure 3-2.  
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Figure 3-1. The schematic diagram of online comprehensive 2D-LC platform.  

The setup of the online comprehensive 2D-LC. A 25-μL sample loop was installed on a 
valve in the autosampler. The 1D pump (high-pH mobile phase) was used to pumping the 
mobile phases for sample loading and first-dimension separation. The 2D pump (low-pH 
mobile phase) was used to provide dilution mobile phase to dilute the elution from the 
first-dimension separation, and to provide the gradient for second-dimension separation. 
A splitting column was used to regulate the pressure and flowrate of the SPE sample 
loading and first-dimension separation. 

  
Gradient setup for 1D: 

 

Figure 3-2. Stepwise operation of online 2D nano-LC system and the gradient setup. 
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In the 1st-dimension, we utilized a custom-packed 10 cm C4 capillary column 

(Waters BEH300, 3.5 μm, 300 Å, 75 μm I.D.) for high-pH RPLC separation (pH = 10). 

The eluate from the 1st-dimension was diluted online (1:10) and collected using a micro-

trap SPE column (Waters BEH300, 3.5 μm, 300 Å, 20 mm ×  150 μm). In the 2nd 

dimension, we utilized a 100 cm C5 column (Jupiter particles, 300 Å, 5 μm, 75 μm I.D.) 

for low-pH RPLC separation (pH = 2) that was directly coupled to an LTQ Orbitrap Velos 

Pro mass spectrometer for top-down MS analysis.  

 

Figure 3-3. Validation of the dilution factor for 2DLC analysis.  

The comparison of the base peak chromatograms of (A) 1DLC and (B) 2DLC analysis 
and the extracted ion chromatograms of two detected mass features from (C) 1DLC and 
(D) 2DLC analysis indicate that the eluate of the 1D separation can be efficiently diluted 
in a Tee with the dilution ratio of 1:10 (v/v). 

 
To evaluate the trapping efficiency of the micro-trap column (e.g., if the organic 

content was sufficiently diluted and pH was low enough for 2nd dimension RPLC 

separation), 5 μg of E. coli protein sample was injected onto the 1st-dimension column and 
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then directly eluted using 100% of high-pH mobile phase B to the trap column.  Both flow-

through and eluate were collected on the trap column during the trapping process. After 

trapping, the sample was separated using the 2nd dimension low-pH RPLC column for MS 

detection. The protein elution profile, protein intensity, and protein identification from this 

run were compared to a 1D low-pH RPLC separation of the same amount of E. coli protein 

sample (Figure 3-3). These results show that proteins can be efficiently eluted from the 

high-pH RPLC separation and trapped using the online micro-trap for the 2nd dimension 

low-pH RPLC separation. We further evaluated the reproducibility of the online 2D system 

with duplicated 2-fraction runs (1st-fraction is flow-through and 2nd fraction is eluate from 

0% to 100% buffer B) (Figure 3-4). The two 2D-LC runs had similar elution profiles in 

both flow-through and elution experiments. 

 

Figure 3-4. The online 2D chromatograms of 2-fraction runs. 

 
We then optimized the 1st-dimension fraction collection steps. An initial test of 11 

fractions (Figure 3-5) was evaluated with the following elution steps: 0% for 1st-fraction 
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and 0% to 10% for 2nd fraction followed by a 10% increase in the concentration of the 

elution buffer for each subsequent fraction. Analysis of intact E. coli cell lysate suggested 

that the majority of proteins were eluted in the range of 20% to 70% of mobile phase B of 

the 1st-dimension high-pH RPLC separation with the most mass features were detected in 

the fractions from 40% to 70% of mobile phase B.  

 

Figure 3-5. Evaluation of 1D gradient range for E. coli protein separation.  

Different percentage ranges of mobile phase were applied to elute the samples from the 
1D column. The eluates were separated and analyzed on the 2D column. 

 
Based on these observations, we combined 0% – 40% into one online fraction, and 

70% - 100% into another online fraction. The optimized a 10-fraction gradient setup for 

online 2D nano-LC was included in Figure 3-2 which was then applied to the 

characterization of intact E. coli proteins. The base peak chromatograms (BPCs) of the 2nd-

dimension low-pH RPLC-MS separation for each fraction are shown in Figure 3-6, 

demonstrating different elution profiles in different fractions. The BPSs of fractions after 

60% MPB of 1st-dimension present similar profiles. In last three fraction, there were only 



52 
 

87 unique proteoforms identified.  More precise optimization of gradient setup for different 

types of samples may be needed to better utilize the instrument time.   

 

Figure 3-6. LC-MS base peak chromatograms (m/z 600-1100) of the online 2D-LC 
analysis with 10 online collected fractions. 
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Figure 3-7. Online 2D pH RP/RPLC MS analysis of E.coli proteins.  

(A) Base peak chromatogram of second dimension top-down analysis of online collected 
fraction 4. (B) Representative mass spectra of three proteins identified in fraction 4. (C) 
Overlay of observed isotopic distribution and theoretical isotopic distribution (red 
circles). 

 
Examples of three identified proteins with isotopic distributions are shown in 

Figure 3-7. To further evaluate the improvement of the online 2D-LC platform, we 

evaluated the 5-min 1D-LC gradient segment and the same retention time segment in each 

online 2D-LC collected fraction (Figure 3-8). Using 1D-LC, 19 mass features were 

detected in the 5-min separation window and 9 non-redundant proteoforms were identified. 
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Using online 2D-LC, we identified 24 unique proteoforms from 57 detected mass features 

in the 5-min segment in all the 10 online collected fractions. In total, 1,507 non-redundant 

proteoforms in 308 unique proteins were identified in 5 μg intact E. coli cell lysate with 

our online 2D separation, which is comparable with our previous reported results in 500 

μg intact E. coli cell lysate using the offline 2D separation [17]. 

 

Figure 3-8. Five-minute segment  from 1DLC and online 2DLC (RT = 190 min – 195 
min). 
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We previously reported the identification of the apo-acyl carrier protein which is a 

unique protein working as a coenzyme in fatty acid and polyketide biosynthesis. Due to 

improved separation using the offline 2D pH RP/RPLC platform, low abundant 

proteoforms of the apo-acyl protein were characterized with the phosphopantetheine 

modification and its unique different oxidative forms of the thiol group on this 

modification. In this study, we were able to characterize most of the low abundant 

proteoforms of the apo-acyl protein using the online comprehensive 2D-LC platform 

(Figure 3-9). 

 

Figure 3-9.  Proteoforms of the apo-acyl carrier protein identified using offline 2D and 
online 2D pH RP/RPLC-MS. 

 
Despite the success of offline 2D high-pH/low-pH RPLC separations in bottom-up 

proteomics, there has been limited success for online 2D separation for bottom-up analyses. 

One major reason is that high-pH RPLC and low-pH RPLC are only partially orthogonal 

for peptide separations. Therefore, fraction concatenation is applied to more efficiently 



56 
 

utilize the separation space[106].  In top-down proteomics, as we discussed in previous 

offline studies, we observed good orthogonality between high-pH RPLC separation and 

low-pH RPLC separation. The improved orthogonality of the 2D platform allows efficient 

utilization of separation space without fraction concentration, which makes the online 

coupling of high-pH RPLC and low-pH RPLC feasible. We here evaluated the 

orthogonality between high-pH RPLC separation and low-pH RPLC separation with the 

developed online platform. For each “fraction”, a heatmap was generated using the relative 

number of uniquely identified proteoforms in each bin (10-minute windows) (Figure 3-

10). Our results suggest good orthogonality of the online 2D platform, which is comparable 

with the results from our previously reported offline 2D platform.    

 

Figure 3-10. The proteoform elution patterns in high pH fractions.  

Each column bin in the heatmap represents the relative count number of uniquely 
identified in the 10-min elution window in the low pH RPLC separation. 
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3.5 Conclusion 

While offline fractionation is still the most commonly applied method, online 2D-

LC platforms offer the advantage of less sample loss and higher sensitivity, which enables 

the analysis of small quantity samples. In addition, since the online 2D-LC system is 

automated and no sample processing between the two dimensions is involved, artificial 

modifications such as degradation can potentially be reduced.  We here report the 

development of an online 2D ultra-high-pressure nano-LC system for high-pH and low-pH 

reversed phase separation for the top-down analysis of complex biological samples. With 

the online 2D system, small sample quantities could be analyzed to achieve comparable 

proteoform identification results with the offline 2D-LC using much higher starting sample 

amounts. Good orthogonality between 1st dimension high-pH RPLC and 2nd dimension 

low-pH RPLC were demonstrated using the online 2D system, which is consistent with our 

previously reports using the offline 2D system.  The performance of the proposed on-line 

2D system can be further optimized.  For example, the incorporation of duel trap columns 

could reduce the MS dead time in between runs through the parallel trapping and elution 

process[107].  Additionally, high-performance and high frequency MS instrumentation can 

be adapted for improved proteoform identifications in relatively shorter 2nd dimension 

gradient with columns using smaller particle size. Also, 1st dimension RPLC separation 

conditions such as buffer composition and column temperature can be optimized to 

improve the elution of hydrophobic proteins, which can increase column life and avoid 

back pressure problems. 

 

*Authors: Zhe Wang, Dahang Yu, Xiaowen Liu, Kenneth Smith, and Si Wu  
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Chapter 4 Top-down mass spectrometry analysis of human serum 

autoantibody antigen-binding fragments 

4.1 Abstract 

Detecting autoimmune disease at an early stage is crucial for effective treatment 

and disease management to slow disease progression and prevent irreversible organ 

damage. In many autoimmune diseases, disease-specific autoantibodies are produced by B 

cells in response to soluble autoantigens due to defects in B cell tolerance mechanisms.  

Autoantibodies accrue early in disease development, and several are so disease-specific 

they serve as classification criteria. In this study, we established a high-throughput, 

sensitive, intact serum autoantibody analysis platform based on the optimization of a one 

dimensional ultra-high-pressure liquid chromatography high-resolution top-down mass 

spectrometry platform (1D UPLC-TD-HRMS). Combined with our customized 

sequencing software, this approach has been successfully applied to a 12 standard 

monoclonal antibody Fab mixture, demonstrating the feasibility to separate and sequence 

intact antibodies with high sequence coverage and high sensitivity. We then applied the 

optimized platform to characterize serum autoantibody Fabs in a systemic lupus 

erythematosus (SLE) patient sample and compared it to healthy control samples.  From 

this analysis, we show that the SLE sample has many dominant antibody Fab-related mass 

features unlike the healthy controls.  To our knowledge, this is the first top-down 

demonstration of serum autoantibody pool analysis. Overall, our proposed approach holds 

great promise for discovering novel serum antibody biomarkers that are of interest for 
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diagnosis, prognosis, and tolerance induction, as well as improving our understanding of 

pathogenic autoimmune processes. 

4.2 Introduction 

Autoimmune diseases are a leading cause of death and disability in young minority 

women and collectively affecting more than 23.5 million Americans [108]. Many of the 

autoimmune diseases share similar symptoms, especially during the early stage of disease, 

which makes the diagnosis of autoimmune diseases extremely difficult[109]. Most 

autoimmune diseases are chronic conditions which can be controlled to varying extents by 

medication, but there is no permanent cure and these medications often leave the patient at 

increased risk of infection[110, 111]. Current researches increase the chances of more 

accurate diagnosis[46, 53, 54], however, many of the autoimmune diseases share similar 

serum biomarkers further contribute to an unreliable diagnosis[109]. Therefore, detecting 

systematic autoimmune diseases at an early stage is crucial for effective treatment and 

disease management to slow disease progression and prevent irreversible organ damage. 

However, this remains a significant clinical challenge due to the lack of unique biomarkers 

with both specificity and sensitivity.   

Autoantibodies are a hallmark of many autoimmune diseases and can be present in 

serum years before clinical symptoms arise[112] and are occasionally present even in 

healthy individuals[113]. Current analysis approaches only measure the total 

concentrations of the autoantigen specific autoantibodies that are often polyclonal and may 

contain highly homologous clonal sequences[45, 46]. However, the presence of specific 

autoantibodies in patients with autoimmune diseases is of interest for diagnosis, prognosis, 



60 
 

drug targets, and for our understanding of various disease processes.  DNA deep 

sequencing of the B cell antibody repertoire can be used to analyze humoral immune 

responses[114], but few of the detected sequences are represented in the circulating pool 

of serum immunoglobulins, and it is essentially impossible to determine which sequences 

are specific to an antigen of interest. To elucidate functionally relevant autoantibodies that 

mediate autoimmune responses, protein-level characterization of autoantibodies in the 

patient serum (i.e., proteomics) is needed to precisely determine which of these 

autoantibody clones are predictive of autoimmune disease progression. 

Mass spectrometry-based proteomics techniques have been used for the detection 

and characterization of serum monoclonal antibodies. Several bottom-up approaches have 

been developed to identify antigen-specific autoantibodies in serum [52, 53, 115].  These 

approaches often start with affinity purification of polyclonal autoantibodies from human 

serum with an autoantigen of interest. The purified antibodies are then digested with 

proteases such as trypsin to produce peptide fragments that are analyzed by LC-MS/MS.  

Identification of the peptide sequences corresponding to antibody fragments can be 

performed either with reference databases or through de novo sequencing.  In a very recent 

report, Gordon’s group demonstrated a possible “clonotypic sharing” by several shared 

peptide sequences in unrelated patients with SLE through bottom-up MS and de novo 

sequencing [46]. However, there are inherent challenges with bottom-up approaches for 

serum antibody analysis.  Serum autoantibodies are likely to be highly homologous with 

very similar sequences from common V gene families. Bottom-up proteomics on serum 

autoantibodies, starting with digested peptides, will result in a pool of peptides with both 

shared and non-shared sequences. Even assuming 100% sequence coverage (which is 
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nearly impossible to generate with bottom-up approaches), without additional information, 

bottom-up MS is unable to identify the precise coordination of individual sequences for 

each IgG. Moreover, the affinity purification of autoantibodies often requires extensive 

optimization processes, large initial sample volumes, selects for the highest affinity 

antibodies, and cannot provide a “bird-eye’s” view of the total autoantibody composition 

to all autoantigens in patient serum samples. 

Top-down proteomics has unique advantages in analyzing proteoforms with 

sequence variations and post-translational modifications (PTMs) because it analyzes intact 

proteoforms rather than short peptides. Recent developments in MS instrumentation and 

protein separation have paved the way for proteome-wide analysis of complex[61, 116]. A 

top-down proteomics approach (i.e., miRAMM) has been demonstrated for monitoring the 

light chain of a single monoclonal therapeutic IgG in spiked-in serum. Recently, the 

miRAMM was applied with the ultrahigh resolution MS (i.e., 21T FTICR-MS) and nano-

scale RPLC separation to analyze several spiked-in monoclonal antibodies in human serum 

offering the high mass accuracy and high sequence coverage[117]. However, because 

multiple autoantigens co-exist in autoimmune diseases, sera of autoimmune disease 

patients are very complex, likely containing at least hundreds of highly homologous 

monoclonal autoantibodies.  Thus, miRAMM or similar approaches cannot be directly 

applied to analyze serum autoantibodies without significantly advancing the analytical 

capability to separate many highly homologous autoantibodies from the serum antibody 

background.  In addition, advanced bioinformatics tools need to be developed to 

confidently sequence these autoantibodies. 

With top-down proteomics, reversed phase liquid chromatography (RPLC) is the 
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most commonly applied high throughput separation approach that can be coupled directly 

online with MS. Similar to bottom-up MS, longer column and higher pressure pumps are 

used to improve the peak capacity of RPLC separation[18].  We have previously reported 

a single-dimension top-down proteomics platform analysis with home-built nanoflow 

columns and Waters nanoAcquity pumps (maximum pressure 10,000 psi, operation 

pressure 7,000 psi)[29, 74, 118]. This platform identified 563 intact proteins in Salmonella 

including 1,665 proteoforms generated by posttranslational modification (PTMs) at 5% 

false discovery rate (FDR), representing one of the largest single-dimension top-down 

datasets reported to date[29].  In this study, we optimized an automatic single-dimension 

RPLC platform through a custom-modified ultra-high pressure nano LC system (UPLC, 

maximum pressure 14,000 psi, operation pressure 10,000 psi) to improve the separation of 

highly homologous autoantibodies (i.e., intact Fab’s, light chains, and heavy chains of the 

Fab portion) in serum samples. This approach has been successfully applied to a 12 

standard monoclonal antibody Fab mixture, demonstrating the feasibility to separate and 

sequence intact antibodies with high sequence coverage and high sensitivity. We then 

applied the optimized platform to characterize serum autoantibody Fabs in a systemic lupus 

erythematosus (SLE) patient sample compared to healthy control samples, showing that 

80+ dominant antibody Fab related mass features are only observed in the SLE sample, 

which is the first top-down demonstration of a serum autoantibody pool analysis.  
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4.3 Materials and methods 

4.3.1 Materials and Reagents 

LC/MS CHROMASOLV® grade isopropanol (IPA), acetonitrile (ACN), and water 

were purchased from Sigma-Aldrich (St. Louis, MO). Pierce™ Trifluoroacetic Acid (TFA) 

and Bond-Breaker™ TCEP Solution were obtained from Thermo Scientific (Hanover Park, 

IL). The packing materials for packing C5 (Jupiter particles, 5 µm diameter, 300 Å pore 

size) was purchased from Phenomenex (Torrance, CA). 

4.3.2 Human subjects 

SLE and healthy control plasma samples were obtained in accordance with the 

Helsinki Declaration and were approved by the Institutional Review Board at the 

Oklahoma Medical Research Foundation.  Blood was collected via venipuncture into ACD 

vacutainers (BD Biosciences, San Jose, CA), spun and the plasma was removed and stored 

at -20 oC until used.  The plasma from this particular SLE patient contains ~0.5 mg/mL of 

anti-Sm, as well as smaller quantities of anti-nRNP, anti-Ro and anti-La (data not shown).  

4.3.3 Monoclonal antibodies 

Fully human, full-length monoclonal antibodies were produced by the Human 

antibody core facility at the Oklahoma Medical Research Foundation as previously 

reported[119].  These antibodies were obtained from single cell-sorted antibody secreting 

cells or naïve B cells and are expressed with human IgG1 heavy chains and kappa or 

lambda light chains. 
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4.3.4 Sample preparation 

Escherichia coli cell lysate proteins were obtained from the BL21 strain grown in 

house. Cell lysate was obtained by bead-beating with zirconia silica beads[72]. Aliquots of 

protein solutions were stored at -80 oC until further use. Protein A/agarose beads were used 

for the antibody purification from serum samples. In detail, protein A beads were incubated 

with diluted plasma (3-5 ml total plasma, diluted 1:5 in 1 × PBS) at 4 oC overnight. The 

antibodies were eluted with 0.1 M glycine-HCl (pH 2.7) and concentrated using Amicon 

concentrators (30 kDa cutoff).  The purified IgG fractions, as well as standard monoclonal 

antibodies were then digested using insoluble papain suspension with incubation at 37 oC 

for 4 hours. After the incubation, protein A/agarose beads were used for the removal of Fc 

fragments from the antibody digests with the same conditions as previous described. Fab 

fragments from either plasma or monoclonal antibodies were then concentrated to > 1 

mg/mL total protein concentration with Amicon protein concentrators (10 kDa cutoff).  The 

Fab fragments were reduced by reacting with 1 μL of 0.5 M TCEP prior to the UPLC-TD-

HRMS analysis. 

4.3.5 UPLC-TD-HRMS 

An in-house packed nano-flow capillary RPLC-C5 column (5 μm, 75μm × 100 cm) 

was used on a custom modified UPLC (maximum pressure 14,000 psi) system. The mobile 

phase A was 0.01% TFA, 0.585% HAc, 2.5% IPA and 5% ACN in water, and the mobile 

phase B was 0.01% TFA, 0.585% HAc, 45% IPA and 45% ACN in water. Ten micrograms 

of E. coli lysate proteins, 8 micrograms of 12-antibody-Fab mixture, and 8 micrograms of 

purified human serum antibody Fab samples were loaded on the column for the top-down 



65 
 

MS analysis individually. A gradient from 10% to 70% of mobile phase B over 70 minutes 

or 280 minutes at a flow rate of 400 nL/min was applied for the separation and the column 

was regenerated by flushing with 90% of mobile phase B for 10 minutes and equilibrated 

to 100% of mobile phase A. The nano-LC column was directly coupled to an LTQ Orbitrap 

Velos Pro mass spectrometer (ThermoFisher Scientific, Bremen, Germany) for online 

MS/MS analysis with a custom designed nano-ESI interface under positive mode. The 

electrospray voltage was set to 2.6 kV and the heated inlet capillary temperature was 

optimized to 250 °C. MS data were collected at the resolving power setting of 100,000 (at 

m/z 400) with two micro scans. MS/MS acquisition was performed by selecting the top 

five most abundant precursor ions in the full MS scan using collision induced dissociation 

(CID) with the normalized energy of 35 %, higher-energy collisional dissociation (HCD), 

or electron-transfer dissociation (ETD). The MS/MS data were obtained at a resolving 

power setting of 60,000 (at m/z 400) with one micro scan. Ions with less than 4 charges 

were rejected for the selection of MS/MS scans. The maximum injection time for a full 

mass scan and a MS/MS scan were set to 1000 ms. and 500 ms., respectively. The AGC 

target was set at 1 × 106 for full mass scans, and 5× 105 for MS/MS scans. All of the data 

were collected with the Xcalibur 3.0 software (Thermo Fisher Scientific, Bremen, 

Germany).  

4.3.6 Data analysis 

The MS raw data were converted to centroid mzXML files with msconvert (a tool 

in ProteoWizard[104] and  deconvoluted with MS-Deconv[120]. A constant region 

sequence database (55 heavy, 5 kappa, and 13 lambda sequences) were downloaded from 
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the IMGT database[121]. The deconvoluted data were searched against the sequence 

database separately using TopPIC [105, 122], in which the error tolerances for precursor 

and fragment masses were 15 ppm and at most 2 unknown mass shifts were allowed in a 

proteoform spectrum-match. Other parameter settings in TopPIC can be found in Table 1.  

 

Table 4-1. Parameter settings of TopPIC in the analysis of the top-down MS/MS data of 
human serum samples 

Parameter Value 
Fragmentation method FILE 

Fixed modifications None 
N-terminal forms of proteins NONE, NME, NME+ACETYLATION 

Using a decoy database No 
Error tolerance 15 ppm 

Maximum number of unexpected mass 
shifts in a proteoform spectrum-match 2 

Spectrum level cutoff type E-value 
Spectrum level cutoff value 0.01 

Number of combined spectra 1 
E-value computation method Lookup table 

 

The filtered PrSMs were evaluated and filtered based on fragmentation patterns and 

matched signature sequence tags. The identifications are manually evaluated using 

ProSight Lite[123]. The detected mass features were deconvoluted using Informed 

Proteomics[124] and evaluated manually.   
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4.4 Results 

4.4.1 Optimization of the UPLC-TD-HRMS platform 

  

Figure 4-1. Peak capacities of the LC-MS run of E.coli lysate proteins with different 
gradient length.  

(A) 280 minutes, and (B) 70 minutes. a, b, c, d, and e represent the randomly chosen 
peaks used for the calculation of the peak capacity. 

 
The 1D UPLC-TD-HRMS was developed and optimized using a Waters 

NanoAcquity HPLC system with the maximum pressure of 10,000 psi in our previous 

work[29, 73, 74, 118, 125, 126]. However, the routine operational pressure of the system 

was limited to 7,000 psi due to commercial system limitations and automation. The 

operational pressure often changes with the organic components in the elution buffer, and 

the run would be interrupted when the pressure reached the maximum pressure. Recently, 

Shen et al. demonstrated high peak capacities in long-column RPLC separation at ultra-

high pressure operation pressure (maximum operation pressure at 14,000 psi) using a 

manually operated constant pressure syringe pumps with customized gradient mixers[18]. 
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To improve the throughput for long-column RPLC separation at higher operation pressure 

limits, we modified a commercially available normal-flow system (e.g., Thermo Accela 

pumps, maximum pressure 14,000 psi) through the customized splitting system to establish 

an automatic UPLC system that can be routinely operated at a pressure higher than 10,000 

psi for long-column nano-LC separation (e.g., operation flow rate between 200 nL/min to 

400 nL/min).  

The elution gradient of the customized UPLC system was optimized using a custom 

packed C5 long column (e.g., C5, 100 cm length, 360 µm o.d., 75 µm i.d.). Ten micrograms 

of E. coli lysate proteins were loaded on the column and an elution gradient from 10 % to 

70% of mobile phase B was applied over 70 minutes and 280 minutes separately. The peak 

capacities with different gradient times were calculated by comparing the base peak widths 

of five randomly selected proteins from the LC/MS runs (Figure 4-1). The average base 

peak widths were 1.08 minutes for a 70 minute-gradient and 1.41 minutes for a 280 minute-

gradient, respectively. The peak capacity of a 70-minute run was calculated as 66, and the 

peak capacity of a 280-min run was 200. Our results suggested that the peak widths did not 

increase significantly with the gradient length was increased. With the ultra-high pressure 

applied, the improved resolution of the separation from longer columns can partially 

overcome the resolution loss from the diffusion with the longer separation time. Based on 

the results, we here chose 280 minutes as the gradient time (10% - 70% of mobile phase 

B) for the separation of 12-Fab mixture and Fab fragments enriched from human serum 

samples.  
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4.4.2 UPLC-TD-HRMS analysis of a 12-antibody mixture 

To evaluate the capacity of the separation and identification of intact antibody Fabs 

using the optimized UPLC-TD-HRMS platform, we papain-digested 12 fully human 

monoclonal antibodies and enriched the Fab fragments using protein A agarose beads as 

described above.  These 12 Fabs were mixed in equal quantities and eight micrograms of 

the 12-Fab mixture was reduced by TCEP and loaded on the column for top-down MS 

analysis.  

 

Figure 4-2. LC-MS of 12 standard antibody mixture.  

(A) Base peak chromatogram of the LC-MS. (B) Extracted ion chromatograms of light 
chains and heavy chains from 4 standard antibodies. (C) Mass spectra of the 4 light 
chains and 4 heavy chains. 
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Figure 4-2A shows the base peak chromatogram of the separation of the 12-Fab 

mixture as well as the extracted ion chromatograms (Figure 4-1B) of the light chains and 

heavy chains for each Fab fragment.  Overall, the Fab light chains eluted earlier (between 

27% and 30% B) compared with the Fab heavy chains (between 27% and 38% B). 

Combined with high-resolution MS spectra and online MS/MS spectra, most of the 

standard antibody Fabs can be confidently assigned.  Representative high-resolution MS 

spectra were demonstrated for 4 light chains and 4 heavy chains (Figure 4-1C). Our 

analysis demonstrated the feasibility of separating reduced intact Fab fragments in complex 

samples such as serum autoantibodies. 

  

Figure 4-3. The identifications of the Fab light chain and Fab heavy chain of an antibody.  

Different fragmentation methods (e.g. HCD and ETD) were used to improve the 
sequence coverage. Examples of the MS/MS spectra of Fab light chain and Fab heavy 
chain were shown in the figure. 
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Different dissociation methods available on commercial orbitrap instruments were 

applied to the online fragmentation of proteins ions, including collisional induced 

dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer 

dissociation (ETD). The combination of different dissociation methods can significantly 

improve the sequence coverage of reduced Fab fragments. The representative Fab fragment 

was well characterized with 51% residue cleavages (67% for light chain and 40% for Fab 

heavy chain) (Figure 4-3). All of the MS/MS spectra used for Fab identification were 

manually checked and confirmed.  

Analysis of Fabs with proper heavy and light chain pairing is crucial for antigen-

binding studies of antibodies and this cannot be achieved with reduced samples. Therefore, 

the intact Fab fragment mixture (no reduction) was also analyzed using the UPLC-TD-

HRMS platform. We have optimized our current Velos Orbitrap Pro’s performance and 

were able to partially resolve intact non-reduced Fabs (e.g., M.W. ~48 kDa).  The results 

(Figure 4-4) indicated that intact non-reduced Fabs can be efficiently separated and 

analyzed using our developed UPLC-TD-HRMS platform.  The detected masses from the 

non-reduced samples were used to pair the light chain and heavy chain masses detected 

from the reduced samples  (Figure 4-4B).  Our results demonstrated that the developed 

UPLC-TD-HRMS platform is capable of separating and characterizing antibody Fab 

mixtures (both reduced and non-reduced) with high similarities, which can be applied to 

analyze enriched Fabs from human serum samples.  
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Figure 4-4. Analysis of reduced and intact Fab fragments. 

(A) Base peak chromatogram of one LC-MS/MS run of the intact Fab mixture. Two 
examples of the detected mass spectra.  (B) One example of light chain and heavy chain 
pairing. The mass spectrum of the intact Fab was from the LC-MS/MS run of the 12 
intact Fab mixture. The detected mass was compared with all the detected masses from 
the LC-MS/MS run of the 12 reduced Fab mixture to obtain the LC/HC pairing. 
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4.4.3 UPLC-TD-HRMS analysis of monoclonal antibodies in human serum 

With the optimized platform, we analyzed several human serum samples and 

characterized higher abundance antibodies that we suspect are autoantibodies in the serum 

with the ability to determine the light chains and heavy chains.  Three serum samples were 

obtained from a SLE patient at different time points and the control samples were obtained 

from two healthy control individuals (autoantibody negative). All of the serum samples 

were purified using Protein A beads to enrich the antibodies from serum. After the 

enrichment, the samples were papain-digested and Fc portions were removed by Protein A 

beads. The purified Fab mixtures were reduced with TCEP and analyzed using the 1D 

UPLC-TD-HRMS platform. We first evaluated the summed MS spectra among different 

samples (Figure 4-5A).   

 

Figure 4-5. LC-MS analysis of SLE serum sample and healthy control samples.  

(A) Summed mass spectra of control samples and the SLE serum sample. Deconvoluted 
mass features from 22,500 Da to 25,000 Da from different samples. Comparison between 
(B) two control samples, (C) SLE serum and one of the control samples. Some of the 
mass spectra of the deconvoluted mass features were also shown above. 
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For control samples, the summed spectra showed a wide range of unresolved 

normal distributed peaks similar to previous reports.  For the SLE sample, several mass 

features were observed, indicating possible presence of autoantibodies. The UPLC-MS 

datasets were then deconvoluted to generate a “bird’s-eye” view on the total autoantibody 

composition in patient serum samples.  Figure 4-5B and 4-5C showed the deconvoluted 

mass features between 22,500 Da to 25,000 Da, representing the molecular weight range 

of both Fab heavy chains and Fab light chains. In the control samples, most of the 

deconvoluted mass features have low intensities and are not well-resolved (i.e., less than 

1E5 with the S/N less than 2).  In control sample 1 (Figure 4-5B), we observed 4 mass 

features with relatively good S/N ratios.  We manually averaged the related scans for these 

mass features, and all of them have good isotopic distributions that can be putative Fab 

chains. These putative Fab chains are less likely from autoantibodies because these control 

serum samples tested negative against all known autoantigens, but they are likely from 

ongoing immune responses.  Moreover, the measured intensities of these putative Fab 

chains are relatively low (i.e., less than 2E5).  We further compared one of the SLE serum 

samples with one of the control samples (Figure 4-5C). In the SLE serum sample, 40 mass 

features were confidently detected with the total intensity larger than 1E6.  All of these 

mass features are manually evaluated to ensure that they stood out from the serum antibody 

background (i.e., S/N larger than 5).  
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Figure 4-6. Identification of light chains and heavy chains of the IgGs in SLE Patient 
Serum.  

(A) Plotting of the distribution of the detected mass features in one of the SLE patient 
serum samples. (B) MS/MS identification of one kappa 1 immunoglobulin light chain. 



76 
 

The detected mass features were deconvoluted and plotted against the LC elution 

time (Figure 4-6A). Mass spectra and EICs of two representative detected mass features 

are also shown in the figure. Baseline resolved monoisotopic distribution of the detected 

mass feature was achieved and the EIC showed the high resolution of the UPLC-TD-

HRMS platform even with extreme complicated and similar background serum antibodies. 

In order to identify the detected mass features, we first used our customized sequencing 

software to perform a database search, and 20 PrSMs were confidently identified as either 

light chains or heavy chains of intact Fabs. After manually checking the MS/MS spectra, 

we noticed a common pattern in all detected light chain MS/MS spectra. The sequence tag, 

VFIFPP, was confidently identified in all MS/MS spectra of the light chains, which was 

then applied as the criteria of the mass features being light chains. One of the identified 

light chain from the SLE patient serum sample was shown in Figure 4-6B. The constant 

region of the light chain was well characterized with fully cleavage site coverage of the 

desired region (VFIFPP). Thus, in the filtered PrSMs, a mass feature was assigned as a 

light chain if more than two product ions of VFIFPP were observed. In addition, we 

manually analyzed the identified CID MS/MS spectra and confirmed 9 of them as intact 

Fab light chains in the SLE serum sample. We further performed the UPLC-TD-HRMS 

analysis on two additional SLE serum samples from the same patient.  Overall, we 

confidently detected 80+ unique mass features in the putative Fab range in samples from 3 

different years.  The collected MS/MS raw data were processed with TopPIC and IMGT 

database[121] was used to search the data.  Manual evaluation was also performed to 

ensure the quality of the identifications. In total, 47 unique light chains and 16 unique heavy 

chains were identified in the samples from one SLE patient collected over three successive 
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years. Both biological and technical duplicates were also performed to evaluate the run-to-

run reproducibility. The biological duplicate samples of SLE serum samples collected in 3 

different years were obtained by performing the same Fab produce process described above 

and analyzed by the developed platform. All of the detected mass features were evaluated 

manually. The detected mass features from each run were then compared showing in 

Figure 4-7A.  Technical duplicates were performed as well. Figure 4-7B shows the 

overlap of the detected mass features from two runs of year 3 sample. From the result, the 

platform was proven to be highly reproducible between technical duplicates where run 1 

and run 2 of year 3 sample shared 39 detected mass features out of 47 and 43 detected mass 

features, respectively. Biological duplicates of the 3 samples also showed good 

reproducibility. However, the overlap between the biological duplicates of year 1 sample 

showed small overlap. One of the possible reasons is the difference brought in during the 

sample process. Overall, the overlap between biological duplicates was over 50%. 

 

Figure 4-7. Run-to-run reproducibility of the developed platform.  

(A) The overlaps between biological duplicates of samples collected in different years are 
shown above. (B) The technical duplicate of the sample from year 3 is also compared 
showing overlapping of 39 detected mass features with small difference. 
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4.5 Discussion 

We developed and optimized a single dimensional UPLC-Top-down-High 

resolution mass spectrometry platform (UPLC-TD-HRMS) for the separation and 

characterization of autoantibodies in human serum. The UPLC-TD-HRMS platform 

provided sufficient separation of complicated antibody Fab mixtures and comprehensive 

characterization of Fab for light chain/heavy chain classification with high mass accuracy, 

high run-to-run reproducibility and in a high-throughput manner. To achieve better LC and 

mass resolution on our accessible instruments, the Fab fragments were reduced. However, 

due to the reduction of disulfide bonds, the light chain and heavy chain pairing information 

cannot be preserved with one LC-MS/MS analysis, but it is possible to regain this 

information by LC-MS/MS analysis of intact Fab fragments.  

Using our platform, we were able to identify a total of47 light chains and 16 heavy 

chains from SLE patient serum. To our knowledge, this work is the first, to date, top-down 

MS demonstration of the human serum autoantibody pool analysis enabling the 

classification of light chains and heavy chains, which gives us a ‘bird’s-eye’ view of the 

complexity of human serum autoantibodies. Our results showed the potential of using high 

resolution separation methods coupled to high resolution and highly sensitive mass 

spectrometry detection to help the understanding of human serum autoantibodies. Future 

studies can be done to improve the LC separation resolution of larger proteins, such as 

multidimensional separation techniques[127]. We note that currently selected patient 

samples are from a patient with advanced disease. More sensitive separation approaches 

such as capillary electrophoresis[128] and targeted approaches can be incorporated for 

early stage autoantibody detections. High-end mass spectrometers (i.e., 21T FTICR-MS) 
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with different fragmentation techniques, such as front-end electron transfer 

dissociation[129] and Ultraviolet Photodissociation (UVPD)[130], can also be applied to 

increase the mass detection range and mass accuracy.  

One of the challenges of serum autoantibody sequencing and characterization is the 

complexity of human antibody repertoire. The DNA sequencing of B-cells from particular 

patient can be performed to enlarge the existing database for more identifications of 

antibodies in human serum samples. In addition, we also observed some of the MS/MS 

spectra with good quality fragmentation were not identified which might be another result 

of the incomplete database. Another reason may relate to the sequencing software. In future 

works, the optimization of the sequencing software can also be done to expand the 

identifications. Our results, overall, demonstrated the ability of our platform performing 

top-down MS analysis on complicated human serum samples and detecting antibodies 

developed in patient serum over years, which gives it the possibility to monitor the 

development of antibodies during autoimmune disease progression. 

 
 

 

 

*The materials in Chapter 4 are adapted from  

Wang, Z., Liu, X., Muther, J., James, J.A., Smith, K. and Wu, S., 2019. Top-down 

Mass Spectrometry Analysis of Human Serum Autoantibody Antigen-Binding Fragments. 

Scientific reports, 9(1), p.2345. 
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Chapter 5 Optimization of a subzero temperature LC separation in 

hydrogen/deuterium exchange mass spectrometry for 

conformational epitope mapping 

5.1 Abstract 

Hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) 

provides a powerful and desirable protein foot-printing method to monitor protein 

dynamics and protein-protein interaction.  In HDX-MS, sub-zero temperature LC 

separation has been developed to minimize the back-exchange and maintain a high-

sequence coverage, which are crucial aspects for HDX-MS analysis.  We here optimized 

the LC separation for HDX-MS using different mobile phases under different subzero 

temperatures with the tryptically digested E. coli cell lysate.  The back-exchange rates were 

evaluated by comparing the theoretical maximum deuterium uptake to the detected mass 

of each identified peptide using customized software. The optimized sub-zero temperature 

RPLC platform (i.e., -9 ℃, water/acetonitrile-based buffers, 10,000 psi) was then used to 

characterize the conformational changes in the anthrax protective antigen (PA) and its 

known antibody complex samples. We identified a potential binding site of the PA and one 

anti-PA antibody. Furthermore, we performed the same technique to characterize the 

binding sites of PA and two different anti-PA antibodies in a one-pot sample, showing the 

potential of the sub-zero temperature RPLC HDX-MS platform to identify site-specific 

information in complex samples. 
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5.2 Introduction 

Proteins are of great importance in every living organism. They perform a variety 

of essential functions in different biological processes such as immune response, energy 

conversion, transport, catalysis, etc. [131]. The functionality of a protein depends on the 

structures and dynamics of that protein; thus, understanding the structures and dynamics 

of proteins is essential to the studies of protein functions.  Hydrogen deuterium exchange 

mass spectrometry (HDX-MS) has become a promising technique for characterizing 

protein structure and dynamics, as well as protein/protein interactions [132]. HDX-MS 

monitors the exchange of protein backbone amide hydrogens to deuterium to reveal 

conformational information regarding the structures of proteins or protein complexes. 

HDX-MS technique is complementary to traditional structural biology techniques such as 

X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryogenic 

electron microscopy (cryo-EM) [133, 134]. However, protein crystals are required for X-

ray crystallography, purified protein is required for NMR techniques, and special sample 

treatment is needed for cryo-EM techniques. The crystallization of proteins is normally 

time consuming and X-ray crystallography and NMR techniques are limited to small size 

proteins[135]. Compared to these traditional structural biology methods, HDX-MS offers 

the advantage of simple sample preparation, which only requires D2O to produce label 

proteins. Additionally, since the deuterated proteins are digested into small peptides for 

MS or LC-MS analysis, HDX-MS can be applied to analyze large proteins, which is 

difficult to achieve using other methods [136]. Furthermore, HDX-MS also has minimal 

background matrix effect, which means that it can be applied to analyze proteins of interest 

in complex samples [133].  
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HDX-MS, however, does offer its own drawback including the sensitivity of 

deuteration to experimental conditions such as pH and temperature. Therefore, careful 

optimization and control of HDX experimental conditions is essential to deliver a reliable 

and unbiased result [133, 137]. Another issue in the implementation of HDX-MS is the 

back exchange of deuterium with hydrogens from the solvent after quenching, during 

protein digestion, reduction, and LC separation [138]. Hydrogen back-exchange affects the 

measurement of amide hydrogen exchange rates which results in loss of site-specific 

information and can bias the identification of sites of interest.  

Extensive efforts have been made to optimize the HDX experimental conditions, 

especially the conditions of post HDX quenching steps, to minimize the back-exchange of 

deuterium [138-141]. These efforts include low-pH and low-temperature protein digestion 

[142] and fast chromatographic separation at low temperature (e.g. 0 ℃) [143, 144]. 

However, fast chromatographic separation limits the identification of peptides, reduces 

sequence coverage, and cannot sufficiently separate complex samples. The loss of site-

specific information may impede the identification of binding sites if the corresponding 

peptides cannot be identified.  To minimize back-exchange during longer chromatographic 

separation sub-zero temperature LC for HDX-MS has been developed and evaluated [138, 

139]. Bai and Englander have demonstrated that decreasing the temperature of separation 

from 0 to -30 ℃ can effectively reduce the deuterium exchange rate by about 40-fold[145]. 

With appropriate mobile phase modifier, to prevent the mobile phase from freezing, 

reversed phase liquid chromatography (RPLC) at sub-zero temperature demonstrated a 

negligible loss of deuterium.  

We here evaluated LC separation at subzero temperatures using different mobile 
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phases to minimize the back exchange and maintain a high sequence coverage.  The 

optimized sub-zero temperature (i.e., -9 ℃) RPLC separation system were used for the 

HDX-MS of the antibody-antigen interactions of the adaptive immune system (i.e., anthrax 

protective antigen (PA) and the interactions of various anti-PA antibody complex 

mixtures). We have identified a potential binding site of PA with one anti-PA antibody and 

characterized the binding sites of PA with two different anti-PA antibodies in a one-pot 

sample. Clear characterization of paratope/epitope interaction of an immune complex can 

further the understanding of immune response and possibly elucidate the mechanisms of 

immune diseases [146, 147]. Moreover, our results demonstrate the potential of a sub-zero 

temperature RPLC HDX-MS platform to identify site-specific interactions in complex 

samples. 

5.3 Material and methods 

5.3.1 Materials and reagents 

All chemicals, including Protease Type XIII from Aspergillus saitoi (≥0.6 unit/mg) 

and Deuterium oxide (≥99.6 atom % D), were purchased from Sigma-Aldrich (Milwaukee, 

WI) unless noted otherwise. Phenylmethylsulphonyl fluoride (PMSF) was purchased from 

VWR (Radnor, PA) and trypsin (TPCK treated) was obtained from ThermoFisher 

(Rockford, IL). The desalting column, Strata C18-U (55 μm, 70 Å, 100 mg/mL) was 

purchased from Phenomenex (Torrance, CA). An ACE® Excel® SuperC18™ column (100 

mm × 2.1 mm, 1.7 μm, 90 Å) was purchased from Advanced Chromatography 

Technologies Ltd (Aberdeen, Scotland). 
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5.3.2 Sample preparation 

Escherichia coli (E. coli) K12 cells were grown in 2% LB media and cultured at 37 

°C with gentle shaking at 250 rpm overnight. The cultured E. coli was collected and 

centrifuged at 13,000 rpm for 60 minutes. The supernatant was discarded, and the resulting 

E. coli pellets were resuspended in 25 mM ammonium bicarbonate at a ratio of 1 gram of 

cell pellets to 5 mL of buffer. 0.1% (v/v) PMSF was added to inhibit the protease from 

degrading proteins. Then, the E. coli pellets were lysed using EmulsiFlex-C3 homogenizer. 

The cell lysate was then centrifuged at 4 °C at 13,000 rpm for 60 minutes to remove cell 

membrane. The proteins in the supernatant were denatured using 6 M urea and reduced 

using 200 mM dithiothreitol and 200 mM iodoacetamide. The proteins were then digested 

with trypsin at 37 °C overnight with a protein to enzyme ratio of 50:1 (m/m). The peptides 

were then desalted using solid phase extraction columns and vacuum dried. Non-deuterated 

E. coli peptides were prepared by reconstituting the vacuum dried peptides into LC-MS 

grade water to a concentration of 1 μg/μL. Fully deuterated E. coli peptides were prepared 

by reconstituting the vacuum dried peptides into D2O to a concentration of 1 μg/ μL and 

incubated at room temperature for three days.  

5.3.3 Low-temperature liquid chromatography 

Low-temperature liquid chromatography was achieved by placing a six-port valve 

and a C18 RPLC column (100 mm × 2.1 mm, 1.7 μm, 90 Å) in a portable freezer. The 

temperature of the portable freezer can be controlled at a range from 20 °C to - 20°C. Two 

different mobile phase systems (mobile phase system 1 and 2) were utilized to avoid 

freezing of solvent in the LC system. Mobile phase system 1 was made up of 89.9% HPLC 
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water, 10% acetonitrile, and 0.1% formic acid for mobile phase A and 99.9% acetonitrile 

and 0.1% formic acid for mobile phase B. Mobile phase system 2 was made up of 64.9% 

water, 35% methanol, and 0.1% formic acid for mobile phase A and 99.9% acetonitrile and 

0.1% formic acid for mobile phase B.  

LC separation performance of the two different mobile phase systems were 

evaluated using E. coli digest and detected with a photodiode array (PDA) detector. For 

mobile phase system 1, 25 μg of non-deuterated E. coli lysate peptides were manually 

injected into the LC system at room temperature, 4 °C and -9 °C. The flow rate was 150 

μL/min. The gradient started with 0% mobile B for sample loading over 10 minutes 

followed by an increase from 0% to 35% mobile phase B over 30 minutes for peptide 

separation. Then the column was washed by 90% mobile phase B for 5 minutes, followed 

by a decrease to 0% mobile phase B in 3 minutes. The column was re-equilibrated by 

flushing with 100% mobile phase A for 10 minutes. For mobile phase set 2, the same 

sample and gradient procedures were used, except mobile phase B was ramped to 40% 

instead of 35% over 30 minutes for peptide separation. Mobile phase system 2 was also 

evaluated at -20 °C.  

The back-exchange rates of the two different mobile phase systems at different 

temperatures were evaluated using fully deuterated E. coli digest and detected using MS. 

25 μg fully deuterated E. coli lysate peptides were manually injected into LC system at 

room temperature, 4 °C, -9 °C, and -20 °C. Mobile phase system 1 and 2 were both used 

for room temperature, 4 °C, and -9 °C. Mobile phase system 2 was used for -20 °C.. A 

longer gradient, 10% mobile phase B to 40 % mobile phase B over 90 minutes with a flow 

rate of 150 μL/min, was also applied to evaluate the back-exchange of fully deuterated E. 
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coli peptides.  

5.3.4 Hydrogen/Deuterium Exchange 

Differential HDX experiments were performed for PA epitope mapping. 6 μM PA 

was prepared by diluting 12 mM PA into HPLC water at a ratio of 1:1 (v/v). The PA and 

anti-PA antibody immunocomplex sample was prepared by premixing 12 μM PA with 15 

μM anti-PA antibody at ratio of 1:1 (v/v) at room temperature. For deuterium labeling, 4 

μL of free PA sample and 4 μL of complex sample were diluted with 20 μL of D2O and 

incubated for 3.5 minutes at room temperature, individually. Experiments were conducted 

in triplicate. The deuteration was quenched by adding 24 μL of chilled 1% formic acid to 

a final pH of 2.4 and incubated at 0 °C for 2 minutes. The quenched solution then was 

incubated with 48 μL of 1.2 mg/mL protease XIII at 0 °C for 4 minutes for protein 

digestion. The digested peptides were quickly injected into the low-temperature LC system 

with a gradient from 0% to 35% mobile phase B over 30 minutes at -9 °C followed by mass 

spectrometer analysis. 4 μL of 6 mM PA sample was incubated with 20 μL of H2O, 

followed by same quenching, digestion, LC separation, and MS analysis steps for peptide 

identification.  

5.3.5 Bottom-up MS analysis 

An LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Hanover 

Park, IL, USA) with a custom nano-ESI interface was used for LC-MS/MS. The heated 

capillary temperature was set to 275°C with a spray voltage of 3.5 kV. MS scans were 

obtained using the Orbitrap MS with a resolution setting of 100,000 and m/z range from 
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350 to 1350. The AGC was set to 5E6 and the max ion time was set to 1000 ms with 2 

micro scans. MS/MS scans were acquired using the LTQ MS with collisional induced 

dissociation (CID) at a normalized collision energy setting of 35%. The ten most abundant 

precursor ions were selected for MS/MS. The AGC for MS/MS was set to 1E6 and the max 

ion time was set to 1000 ms with 2 micro scans.  

5.3.6 Data analysis 

5.3.6.1 Peptide identification 

Non-deuterated E. coli lysate peptides were identified using MSGF+ to search the 

mass spectra from the LC-MS/MS analysis against the annotated E. coli database and its 

decoy database. The peptide identifications were filtered using a SpecE cut-off value of 

1E−10 (i.e., the calculated FDR <1% at the unique peptide level). 

5.3.6.2 Deuterium uptake calculation 

 Deuterium incorporation of peptides was calculated using the in-house developed 

software. Deuteration level of each peptide was calculated as shifted weighed mass of each 

peptide divided by the total number of exchangeable amide hydrogens [148]. 

5.4 Results and discussion 

5.4.1 Evaluation of low-temperature RPLC separation 

RPLC is often performed at room temperature or higher for more efficient mass 

transfer of analytes to achieve better separation. The RPLC mobile phase A utilizes water 
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which has a freezing point of 0 ℃. To operate LC under sub-zero temperatures, mobile 

phase modifiers can be used to decrease the freezing points of mobile phases to avoid 

freezing the LC system. The modifiers should have good electrospray efficiency to 

minimize the effects on the sensitivity of MS detection. Ethylene glycol, dimethyl 

formamide, formamide, and methanol have been previously used as mobile phase 

modifiers [139]. We chose methanol as the modifier to perform LC at -20 ℃ because 

methanol has good electrospray efficiency and low hydrophobicity which should have a 

limited impact on the separation resolution. Acetonitrile is commonly used as mobile phase 

B for RPLC separation of peptides. The freezing point of 10% acetonitrile is slightly lower 

than -9 ℃. Thus, we evaluated four different temperatures: room temperature, 4 ℃, -9 ℃, 

and -20 ℃. In order to run LC under sub-zero temperature, we used two different mobile 

phase systems: (1) Mobile phase system 1: 0.1 % formic acid in water as mobile phase A, 

and 0.1 % formic acid in acetonitrile as mobile phase B; (2) Mobile phase system 2: 0.1 % 

formic acid, 30 % methanol in water for mobile phase A, and 0.1 % formic acid in 

acetonitrile as mobile phase B. 

For mobile phase system 1, RPLC separation of E. coli digest with a gradient from 

10% mobile phase B to 35% mobile phase B was conducted at room temperature, 4 ℃, 

and -9 ℃. For mobile phase system 2, we added 30% methanol into mobile phase A ( 0.1 

% formic acid, 30 % methanol in water) to lower the freezing points to below -20 ℃. With 

this mobile phase composition, we performed RPLC separation of E. coli digest with a 

gradient from 0% B to 40% B at room temperature, 4 ℃, -9 ℃, and -20 ℃. To compare 

the separation efficiency using different mobile phases at different temperatures, a UV/Vis 

PDA detector was used. As shown in Figure 5-1, the separation performance under sub-
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zero temperatures was similar to the performance at 4 ℃ with both mobile phase systems 

1 and 2. However, as the temperature decreased, the peaks became broader. Meanwhile, 

some peptides did not bind to the column at lower temperatures, resulting in peaks eluted 

in flow through time. For mobile phase system 1 at 4 ℃ and -9 ℃, the elution profiles 

were very similar which indicates that the decrease in temperature did not affect the 

separation performance.  In general, LC separation resolution was relatively low using 

mobile phase system 2 (e.g., broader peaks). While -20 ℃ is favorable for HDX to 

minimize the back-exchange of deuterium, the RPLC separation under -20 ℃ using mobile 

phase system 2 may not provide sufficient separation resolution.  

 

Figure 5-1. UV traces of RPLC chromatograms of E. coli digest at different temperatures.  

(A) Mobile phase system 1: 89.9% HPLC water, 10% acetonitrile, and 0.1% formic acid 
as A and 99.9% acetonitrile and 0.1% formic acid as B. (B) Mobile phase system 2: 
64.9% water, 35% methanol, and 0.1% formic acid as A and 99.9% acetonitrile and 0.1% 
formic acid as B. 
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5.4.2 Back-exchange rate evaluation 

Lower temperatures are favorable to HDX separation and it has been reported that 

by decreasing the temperature from 0 ℃ to -30 ℃, deuterium exchange rate can be reduced 

the by about 40 fold [145]. However, low temperatures are not favorable for RPLC 

separation of peptides due to the lower mass transfer rate under low temperatures. Our data 

indicated that lower resolution was obtained for RPLC separation using a C18 column at -

20 ℃ than at -9 ℃. The low separation resolution resulted in insufficient separation of 

peptides and fewer peptide identifications. In complex samples, fewer peptide 

identifications decreases the overall peptide coverage and can result in the loss of 

information about binding sites.  

In order to examine the back-exchange status of deuterated peptides, fully 

deuterated E. coli digest was prepared by incubating E. coli digest with D2O for 3 days. 

The fully deuterated E. coli digest was then analyzed by LC-MS using mobile phase system 

2 at -9 ℃ and -20 ℃. The mass of each peptide eluted at different time from the fully 

deuterated sample were measured. The deuterium level of each peptide was calculated as 

follow: the average masses of the peptide detected in the fully-deuterated and non-

deuterated samples were calculated. The difference between the average masses of the 

same peptide in the fully-deuterated and non-deuterated samples was calculated to indicate 

the mass increase due to the incorporation of deuterium. Then, the mass difference was 

divided by the maximum deuterium uptake of the peptide to calculate the deuterium level 

of the peptide. The non-deuterated E. coli digest was analyzed by LC-MS/MS for peptide 

identification. An in-house developed software was used to match the deuterium labeled 

peptides to the non-deuterated peptides to identify the deuterated peptides. Briefly 
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speaking, a peptide identification list from the non-deuterated peptide sample with their 

corresponding m/z ratios was imported into the software. For each identified peptide, a list 

of m/z ratios with different deuterium uptake (i.e. +1 deuterium, +2 deuterium, +3 

deuterium, ……) was generated. The software then calculated the mass error between the 

m/z on the list and each m/z detected in the spectrum from the deuterated peptide samples 

with the similar retention time window (time tolerance can be changed). If a cluster of m/z 

values (monoisotopic distribution) of the deuterated peptide samples with mass error less 

than 15 ppm can be matched with the m/z values on the list, the deuterated peptide will be 

assigned with the sequence of the peptides identified from the non-deuterated sample. The 

mass error matching algorithm was shown in Figure 5-2.   

 

Figure 5-2. The mass error matching algorithm used for deuterated peptide identification. 
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Figure 5-3. Deuteration level vs. retention time of E. coli peptides under -9 ℃ and -20 
℃. 

 

The deuteration level of each identified peptide from the E. coli digest under 

different temperature conditions was calculated to examine the deuterium back-exchange 

rate, as shown in Figure 5-3. Using mobile phase system 2 at -9 ℃ and -20 ℃, similar 

deuteration levels of identified peptides from the E. coli digest were observed, which 

indicated that the rate of deuterium back-exchange at -9 ℃ and -20 ℃ were similar. The 

back-exchange rate at higher temperature was also examined using mobile phase system 1. 

Increasing deuterium uptake was observed with the decrease in temperature from room 

temperature to -9 ℃ with the use of mobile phase system 1, Figure 5-4. When mobile 

phase system 2 was used, similar deuterium uptake was observed for the two peptides at -

9 ℃ and -20 ℃.  Considering RPLC separation at -9 ℃ offered better separation resolution, 

-9 ℃ and mobile phase system 1 were used for our low-temperature LC HDX-MS 

experiments. 
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Figure 5-4. Mass spectra of deuterated peptides under different temperature conditions. 

 

5.4.3 Epitope mapping of Anthrax protective antigen 

After the optimization of the subzero temperature LC separation, we applied the 

platform to characterize the epitope of PA to an anti-PA antibody (C01). Differential HDX-

MS was performed, where the free PA antigen sample and the PA – anti-PA complex 

sample were analyzed using the low-temperature RPLC platform. The non-deuterated PA 

sample was analyzed using low-temperature LC for peptide identification. Then, the free 

PA and complex samples were diluted into D2O for HDX reaction. After the reaction was 

quenched, the samples were quickly digested using protease XIII and separated using low-

temperature LC for direct mass measurement. Triplicate runs were performed for each 

sample.  

The in-house developed software was used to calculate the average mass of each 

identified PA peptide after deuteration in the free PA and complex samples. The average 

mass of each peptide from the triplicate runs were then averaged and the deuteration level 

(%) was calculated by comparing the mass difference of the peptide in the free PA and 
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complex samples with its theoretical maximum deuterium uptake. Deuteration levels less 

than ± 5% were considered to not have a significant mass shift and it was concluded that 

these peptides were not involved in the binding event or the environment of these peptides 

did not change due to binding. For all the peptides with deuteration levels greater than ± 

5%, manual evaluation of the raw data was performed to ensure the validity of the 

identification. A heatmap of each identified PA peptide was generated to visualize the 

deuteration level (Figure 5-5).  

 

Figure 5-5. Heatmap of deuteration level of PA peptides obtained from differential HDX-
MS of the free PA sample and the PA – anti-PA C01 antibody complex sample. 
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From the heatmap, we observed several peptides with consistent deuteration level 

increase comparing the peptides in the free PA sample with the peptides in the complex 

sample. Thus, we concluded that the epitope of PA binding to anti-PA C01 antibody was 

AAVNPSDPLETTKPDMTLKEA. The spectra of peptides that were in this region is 

shown in Figure 5-6A. For comparison, peptides that were not affected by the binding 

event are shown in Figure 5-6B. 

 

Figure 5-6. Mass spectra of PA peptides that were (A) involved and (B) not involved in 
the binding events. 
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Figure 5-7. Heatmap of the deuteration level of PA peptides obtained from differential 
HDX-MS of the free PA sample and the PA, anti-PA antibody C01, and F01 mixture. 

 

Furthermore, the same experiments were performed for the free PA sample and a 

mixture of PA, anti-PA antibody, C01 and F01, respectively. The heatmap (Figure 5-7) 

indicates the same binding site between PA and anti-PA antibody C01 as was identified 

using when pure anti-PA antibody C01 was bound with PA. The results indicate that the 

low-temperature LC HDX-MS can be used to analyze the protein-protein interaction in a 

relatively complex sample. However, we were not able to identify the binding site between 

PA and anti-PA antibody F01 and there are two possible reasons. The binding of PA to 

C01 may be more favorable than the binding of PA to F01, so the PA may have been bound 

primarily to C01. Alternatively, PA epitope to F01 may be contain only a few amino acid 



97 
 

residues. As the mass shift for shorter peptides is smaller, back-exchange is more of an 

issue for these peptides and the differential deuterium uptake may not have been 

measurable even under low-temperature separation conditions. To address these issues, the 

low-temperature LC HDX-MS platform could be further optimized with lower temperature 

to further minimize back-exchange during LC separation and MS detection.  

5.5 Conclusions 

We have developed a low-temperature LC system to separate deuterated peptide 

samples for differential HDX-MS analysis. Using mobile phase system 1, the separation 

resolution and deuterium back-exchange effect were optimized at -9 ℃. The platform was 

then successfully applied to analyze the epitope of PA to anti-PA antibodies in both pure 

antibody sample and a mixture of two anti-PA antibodies sample. However, we were not 

able to identify the binding site of anti-PA F01 when anti-PA C01 was present. Future work 

can be done to further optimize the platform and experimental conditions to identify 

multiple binding sites. For example, capillary packed RPLC columns may be used to 

increase the separation resolution and sensitivity of the platform. Lower temperature with 

suitable mobile phase modifiers could also be applied to further minimize the back-

exchange. Modifications to the ionization process and implementation of different MS 

technology may also be considered to improve HDX identification. The back-exchange of 

peptides during the ESI process may be reduced by the incorporation of a flow of chilled 

nitrogen gas to the ESI spray. Additionally, the resolution of HDX-MS can be improved 

by using electron transfer dissociation (ETD), rather than collision induced dissociation 

(CID), which will not cause the rearrangement of deuterium on the peptides during the 
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dissociation process. Single amino acid resolution could even be achieved with the careful 

optimization of experimental conditions [149]. Overall, HDX-MS is a promising technique 

that is complementary to traditional structural biology techniques. With the incorporation 

of low-temperature LC, the level of deuterium labeling retained by peptide amides after a 

prolonged peptide separation has been improved, which will broaden the utility of HDX-

MS [138].  
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Chapter 6 Overall summary and future directions  

6.1 Overall summary 

The work described here within this dissertation was about the developments of 

high-throughput top-down proteomics and the applications on analyzing human serum 

autoantibody repertoire.  The need for developing high-throughput top-down proteomics 

arises from the complexity of biological samples. Proteomics techniques provide the tools 

to the analysis of proteins which are essential to life. Top-down proteomics makes it 

possible to characterize and quantify intact proteoforms and provides valuable information 

to the understanding of protein functions. As current proteomics techniques can only reveal 

limited information about proteomes, the development of techniques is needed to explore 

more of proteomes.  

A two-dimensional separation platform using high-pH RPLC and low-pH RPLC 

was shown in Chapter 2 and 3, to improve the separation power of intact proteins for top-

down proteomics. The 2DLC system utilized RPLC which is the most commonly applied 

technique for intact protein separation on both of the two dimensions. By varying the pH 

conditions of the mobile phases used in the two dimensions, orthogonal separation was 

achieved for intact proteins in complex samples. The protein conformation changes under 

different pH condition due to electrostatic force changes, which alters the hydrophobicity 

of proteins. The orthogonality of RPLC separation of intact proteins under different pH 

conditions was evaluated using protein standards and the whole E. coli proteome. The 

2DLC was proved to be able to separate intact proteins efficiently and orthogonally.  
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We further developed a comprehensive online 2DLC system based on the work in 

Chapter 2 to increase the sensitivity of the top-down proteomics platform for the analysis 

of low-quantity biological samples. The two dimensions utilized Nano-flow capillary 

RPLC to minimize the usage of sample amounts. The online 2DLC system achieved 

comparable results to the offline 2DLC system with 100 times less sample injected. The 

online 2DLC system could potential provide a promising and sensitive tool for the analysis 

of low-volume samples. 

 Autoantibodies are a hallmark of many autoimmune diseases and can be present in 

serum years before clinical symptoms arise, thus the detection and characterization of 

autoantibody repertoire have been drawing attentions. 

Based on previous work in our lab, we optimized an automatic single-dimension 

RPLC platform through a custom-modified ultra-high pressure nano LC system (UPLC, 

maximum pressure 14,000 psi, operation pressure 10,000 psi) to improve the separation of 

highly homologous autoantibodies in serum. This approach has been successfully applied 

to a 12 standard monoclonal antibody Fab mixture, demonstrating the feasibility to separate 

and sequence intact antibodies with high sequence coverage and high sensitivity. We then 

applied the optimized platform to characterize serum autoantibody Fabs in a systemic lupus 

erythematosus (SLE) patient sample compared to healthy control samples, showing that 

80+ dominant antibody Fab related mass features are only observed in the SLE sample, 

which is the first top-down demonstration of a serum autoantibody pool analysis.  

The characterization of immune complexes promotes the understanding of human 

immunity and provides the information about the mechanisms of related diseases. We 

applied low-temperature LC coupled to HDX-MS to characterize the binding between 
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Anthrax protective antigen and different anti-PA antibodies. 

6.2 Future directions 

Proteins play important roles in human body, including transporting molecules, 

building cell/organism structures, catalyzing metabolic reaction, and etc. Proteomes consist 

of numerous proteins with wide dynamic ranges in term of abundance and different 

modifications. On the long way of developing top-down proteomics techniques, every step 

will need to be considered and promoted by the collaboration of researchers in different 

fields, including the separation techniques, mass spectrometry techniques and 

instrumentation, bioinformatic tools for top-down proteomics. More efficient 

multidimensional separation with higher separation power will be beneficial to the 

separation of proteomes. The development of more affordable mass spectrometers will help 

the promotion of top-down proteomics in more laboratories and boost the pace of top-down 

proteomics development. Higher resolution mass spectrometers help to study larger 

proteins with better mass accuracy. Top-down proteomics data is normally tedious to 

analyze, advanced bioinformatic tools for top-down proteomics is in urgent need to provide 

robust and accurate tools for top-down proteomics data interpretation.  

Analyzing autoantibodies in serum samples is extremely challenging due to their 

similarity and complexity. With current application of UPLC-HRMS platform described 

in chapter 4, only very limited information can be provided. The online 2DLC coupled to 

high resolution MS could be applied to analyze autoantibody repertoire, potentially 

providing deeper characterization of human serum autoantibodies. In addition, to fully 

understand the function of autoantibodies of interest, techniques that can provide structural 
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information, such as native proteomics,  hydrogen deuterium exchange mass spectrometry, 

and etc., can be developed and applied to elucidate the structures of proteins and protein 

complexes, such as epitope/paratope mapping for immune complexes.  
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