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ABSTRACT 

 

Wind turbines are critically important in the quest to move towards a non-renewable 

energy independent world. With the space to add 5M wind turbines, the United States is at the 

forefront of this transition. Horizontal axis wind turbines (HAWTs) have been studied 

numerically and experimentally at length. The vast majority of computational fluid dynamics 

(CFD) studies of HAWTs documented in the open literature have been carried out using two-

dimensional simulations. Currently, the available three-dimensional simulations do not provide a 

comprehensive investigation of the accuracy of different options for modeling of fluid 

turbulence. In this paper four sets of CFD simulations are carried out using four different 

turbulence models that are commonly used for engineering level CFD analysis: SST-k-ω, 

Transition k-kL-ω, Standard k-ε, and Monotonically Integrated Large Eddy Simulation (MILES). 

These models were compared with experimental performance and coefficient of power results 

for a small-scale industrial wind turbine with inverse tip speed ratios (𝜆−1) in the range 0.072-

0.144.  They were further investigated to highlight the similarities and differences for the 

prediction of coefficient of pressure, skin friction coefficient, wall shear, radial velocity and 

turbulence kinetic energy for 𝜆−1 from 0.072 to 0.324. The results showed that no singular 

model, of the four investigated, was able to consistently predict the power performance with a 

high degree of accuracy when compared to the experimental results. The models also exhibited 

both similarities and key differences for the other aspects of flow physics. The results presented 

in this study highlight the critical role that turbulence modeling plays in the overall accuracy of a 

CFD simulation, and indicate that end users should be well aware of the uncertainties that arise 

in CFD results for wind turbine analysis, even when other sources of numerical error have been 

carefully minimized. 
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CHAPTER I 

INTRODUCTION 

 

The global wind turbine industry is constantly competing with non-renewable energy 

sources to achieve a more efficient and sustainable method of energy harvesting. The United 

States wind turbine industry has more than tripled over the past decade and currently has nearly 

56,000 wind turbines in use according to the American Wind Energy Association (2019). The 

office of Energy Efficiency and Renewable Energy has estimated that these turbines are capable 

of producing around 97,000 MW while the country as a whole has a potential wind capacity 

estimated around 10.5TW (2019).With the current technology, this number can only be reached 

by adding 5M turbines.  

The development of wind turbines is of considerable cost. Therefore, preliminary 

analysis is critical to the design process, and that results arising from this analysis provide 

information that can be trusted. As a consequence, researchers seek to develop techniques for 

predicting the flow behavior around wind turbines with a high level of accuracy and confidence 

when investigating new designs. At present there is a lack of a predictive tool that can effectively 

capture all of the flow physics, in quantitative terms, for any given turbine design. Currently, 

designers and researchers complete these investigations in two global ways. The first method is 

testing the design at scale in a wind tunnel or in field testing, otherwise referred to as the 

experimental method. For example, a considerable number of tests have been completed by the 

National Renewable Energy Laboratory (NREL), and the results are offered via their public 

database. Though these tests incur many uncertainties from scale effects, wind tunnel setup, and 

effects of measurement devices, they provide relevant information for many different turbine 
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designs and operating conditions. They serve as the baseline data for validation of numerical 

studies, which is the second main method of analysis.  Numerical investigations, or 

computational fluid dynamics (CFD) studies, are completed with the use of physics based 

turbulence models that resolve varying scales of motion based on the application. An attempt is 

made to validate the CFD results with the associated experimental measurements. A crucial 

aspect of these CFD investigations that all designers and researchers must take into account is 

computational intensity. This greatly affects the initial cost associated with the CFD study, as 

well as the time it takes for results to be obtained. For this reason, many CFD studies for wind 

turbines are completed with a two-dimensional domain for several span-wise locations. This 

method fails to capture the three-dimensional effects inherent to wind turbines in real world 

applications. That said, there have been numerous CFD studies completed in a three-dimensional 

space. This adds to the complexity of the problem exponentially and as a result, designers often 

from forgo the more computationally robust three-dimensional simulations for more cost 

efficient methods. Along with this concession, many aspects of the computational study are 

altered in order to achieve results that best fit the empirical data.  

This thesis highlights the performance characteristics of four different CFD turbulence 

models: SST-k-ω, Transition k-kL-ω, Standard k-ε, and Monotonically Integrated Large Eddy 

Simulation (MILES).The investigation specifically evaluates the computational techniques, 

which provided varying results, of each approach for a three-dimensional computational domain 

for flow around a wind turbine. Currently the vast majority of studies are only available for two –

dimensional studies. The details of the flow physics are investigated to highlight differences and 

similarities between each fluid model and show that a singular model cannot be used to capture 

all of the flow physics for validation with absolute certainty. 



 

3 | P a g e  
 

 

 

CHAPTER II 

LITERATURE REVIEW 

 

The typical fluid dynamics of flow through horizontal axis wind turbines (HAWT) is 

driven by low speed flow with high turbulence. Many studies concerned with this type of flow 

field are available in open literature. These studies are validated by comparing computational 

results with empirical data, which can be broadly classified as a combined 

computational/experimental approach. The computational methods can be completed in two or 

three dimensions. An overview of the open literature for two-dimensional and three-dimensional 

investigations is presented.  

2.1      Two Dimensional Studies 

 

Harbert-Acero et al. (2015) investigated 12 turbulence models to assess the associated 

predicted airfoil dynamics for each. Their two-dimensional computational mesh varied from 

model to model though they kept their non-dimensional wall height (y+) at a value of 

approximately one. In their study they highlighted the main differences of flow physics for the 

model predictions for a Reynolds Number (Re) of 3 × 106 for angles of attack (AoA) of 0° and 

20°. For the AoA of 0°, they found the best lift coefficient to be represented by two models, 

𝑆𝑆𝑇 − 𝑘 − 𝜔 and Standard 𝑘 − 𝜔. The Transition 𝑆𝑆𝑇 − 𝑘 − 𝜔 model slightly over predicted 

the lift coefficient. As for the drag coefficient, the standard 𝑘 − 𝜔 model provided the worst 

prediction. The authors attributed these discrepancies to the inability of the models to 

consistently capture the transition from laminar to turbulent flow, as well as the inadequate 
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turbulence modeling at the outer layers of the boundary layer. For the AoA of 20°, they found 

that the Standard 𝑘 − 𝜔 model predicted lift force the best but each of them failed to accurately 

capture the drag force. 

Aftab et al. (2016) investigated several turbulence models and their influence on 

prediction of the formation of separation bubbles on the NACA4415 airfoil. The models 

investigated were: one equation Spallart-Allmars, two equation 𝑆𝑆𝑇 − 𝑘 − 𝜔, three equation 

Intermittency (𝛾) SST, 𝑘 − 𝑘𝑙 − 𝜔, and the four equation transition 𝛾 − 𝑅𝑒𝜃 𝑆𝑆𝑇. Each of these 

models exhibits different flow physics. The domain extended 20c in each direction from the 

airfoil, making up a square domain of 20𝑐 ×  20𝑐, where c is the unit cord length. A grid of 

223,000 nodes was used. Incompressible flow was assumed and pressure, density and viscosity 

were specified based on atmospheric conditions at sea level. The SIMPLE algorithm, along with 

second order discretization for pressure and momentum, was employed. Two angles of attack 

were investigated, 6° and 18°. The authors concluded that the  𝑆𝑆𝑇 − 𝑘 − 𝜔 and Intermittency 

(𝛾) SST models yielded similar results but were unable to completely capture the formation of 

the separation bubble inherent to their case. They also indicated that the 𝑘 − 𝑘𝑙 − 𝜔 model 

yielded results close to the experimental values for Cp at low AoA. The 𝑘 − 𝑘𝑙 − 𝜔 model was 

able to capture the separation of flow but was unable to capture the re-attachment, which was 

validated by skin friction coefficient. The model that was able to capture the entirety of the flow 

physics for the given case was the transition 𝛾 − 𝑅𝑒𝜃 𝑆𝑆𝑇.  

2.2      Three Dimensional Studies 

 

Abdelsalam and Ramalingam (2014) conducted a CFD study, using the Standard k-ε  

turbulence model, for the flow field surrounding the wind turbine blade and the effects 
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turbulence has on the near wake and far wake flow regions to gain insight on wind farm layout 

and efficiency. They used a full three-blade geometry, consisting of three airfoils and the entire 

hub. Their computational domain extended 2D, 25D, 4D, and 3D in the upstream, downstream, 

span wise and vertical directions respectively. The grid consisted of 2.9M cells and a 𝑦+value 

ranging from 50-120. An incompressible flow assumption was made. The Semi Implicit Method 

for Pressure Linked Equations (SIMPLE) algorithm was used along with a 1st order upwind 

discretization scheme for the turbulence equations. Higher order discretization schemes were 

attempted but failed due to divergence. The authors validated their model with NREL data for 

the NACA 63-2xx airfoil. They concluded that the Standard k-ε  model was in good agreement 

for the full rotor approach, thus validating their CFD approach. The authors went on to 

investigate the wake characteristics for varying tip speed ratios (λ) in the range of 2.53-10.12 for 

axial positions (𝑥/𝐷) ranging from 0-25. It was further concluded that the Standard k-ε  model 

using the full rotor geometry was superior to assuming the geometry of the rotor to be an 

actuator disc.  

A similar study was conducted by Abdelsalam et al. (2014) where a few changes were 

made. This study was carried out for the NREL S-series airfoil using the same turbulence model 

and domain as the previous study. The grid was refined to 5.7M cells and the y+=50-150. They 

found good agreement with experimental data for normalized streamwise mean velocity in the 

near and far wake regions. Their data also suggested that momentum and power losses increase 

as wind speed decreases. They concluded that this may be caused by the high value of thrust 

coefficient at low wind speeds. Finally, they observed a large deviation in the turbulence 

intensity, chiefly due to the inability of accurate measurement of turbulence intensity by use of 

Sodar and Lidar measurement devices.     
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Thumthae and Chitsomboon (2009) performed CFD analysis on the NREL S809 airfoil 

and compared these results with the experimental results provided by several European Union 

research labs and NREL. Their goal was to validate the numerical solutions with the 

experimental results in order to provide a design basis for future work. Their computational 

domain consisted of an unstructured grid with one blade and the associated portion of the hub. 

Steady-state, incompressible flow was assumed. The rotational speed of the turbine was held 

constant at 72.0 𝑟𝑝𝑚. The diameter of the turbine was 10.1𝑚. Four tip speed ratios (TSRs) (𝜆 =

3.59, 4.23, 4.76, 5.29),  were examined at five blade pitch angles (Θ = 1,3,5,7,12). The 

corresponding Re for the varying λ was 7.8 × 105 to 8.0 × 105. The authors used the Standard 

k-ε turbulence model with the SIMPLE algorithm. The QUICK method was employed for the 

convective momentum terms while the turbulence equations were handled using a 1st order 

upwind scheme. The power output for the CFD and experimental approaches were analyzed. 

Power output was measured as power output from a generator (e.g. electrical power) and as shaft 

torque from a strain gauge (e.g. conversion of torque to power) for the experimental approach. 

The authors used the case for 𝜆 = 3.59 𝑎𝑛𝑑 5.29  with a blade pitch of 12° for validation. Their 

results show agreement with the strain gage experimental method to within 2.0% and 5.22% for  

𝜆 = 5.29 and 3.59, respectively. 

Elfarra et al. (2013) carried out an investigation into design optimization of HAWTs 

using winglets. The applicable portion of the study is in the validation of the CFD results. They 

analyzed the NREL S809 airfoil using the Standard k-ε turbulence model. Their computational 

domain consisted of a cylinder that extended 10 times the blade length in the axial direction and 

7 times the blade length in the radial direction, though they used Cartesian coordinates. A 

structured grid of 350,000 nodes was generated with a 𝑦+ ranging from 1 to 7. A fixed rotation 
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rate with varying axial velocities was investigated, yielding λ in the range of 3.02 to 15.09. Their 

simulation was performed using a second-order finite volume scheme for the RANS equations. 

The authors validated their results by comparing them to the experimental data. It was shown 

that peak performance was predicted at a wind speed of 11ms-1. Disagreement with the 

experimental results was found at peak performance and 15 ms-1. They suggested that the 

Standard k-ε  model was unable to capture the flow separation and strong vortices at an inboard 

span of 30%. It is also noted this result is in agreement with previous work of Sezor-Uzol (2006) 

using an unsteady-state large eddy simulation model. 

Krogstad and Lund (2011) used a combined experimental and computational approach to 

investigate the performance of a model HAWT with an S826 airfoil profile. They used a 

computational domain that extended 4.5𝐷 upstream and 7.8𝐷 downstream and excluded the 

tower geometry. Because the tower geometry was excluded, the authors were able to take 

advantage of the periodicity of the blade and hub. However, spherical coordinates were used for 

computation; therefore the exact boundary conditions of the wind tunnel could not be used. The 

authors used the SIMPLER algorithm for pressure and velocity coupling while the turbulence 

model employed was the k-ω SST model. The convective terms in the RANS equations were 

solved using a first-order upwind scheme. Pressure discretization was handled with first-order 

interpolation. Results were produced for a fixed inlet velocity of 10𝑚 𝑠⁄   with varied rotational 

speeds, resulting in TSRs of 𝜆 = 3,4,5,6,7,9, 𝑎𝑛𝑑 11. The results of the CFD computations 

showed that the coefficient of power (𝐶𝑝𝑜𝑤) for the majority of TSRs was in agreement with the 

experimental results. The authors concluded that the k-ω SST model was able to predict the wind 

turbine performance at model scale.  
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2.3     Outstanding Issues 

 

The papers above show that investigation into HAWT performance is usually achieved 

by a combined approach. The majority of current 3D CFD studies completed use two main 

turbulence models, k-ω SST and standard 𝑘 − 𝜀, whereas the available 2D investigations 

compare multiple models. This is a direct result of the low computational requirement for a 2D 

grid as compared to a 3D grid. Multi-model investigations (those using more than one turbulence 

model) in 2D can be completed in a relatively short amount of time and cost compared to those 

of a 3D multi-model investigation. Another shortcoming of the available studies completed in 3D 

is the method in which the model equations are solved along with the grid size. This area in CFD 

is inversely related with computational demand. Researchers have used discretization methods 

with 1st-oder accurate schemes with a relatively fine grid (~3.5M cells) or 2nd-order accurate 

schemes with a relatively coarse grid (<3.5M cells). While multi-model investigations exist for 

two-dimensional domains, a three-dimensional multi-model investigation using higher order 

discretization schemes in combination with a fine grid is lacking. 
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CHAPTER III 

TURBULENCE MODELING 

The majority of flows in engineering applications are turbulent. These flows are highly 

unsteady in space and time and are difficult, if not impossible, to capture fully when 

investigating experimentally. For this reason a predictive tool is necessary to model and 

investigate turbulent flows. Turbulence modeling employs constitutive equations to predict the 

evolution of turbulent flows. To date, there is not a single generally accepted turbulence model. 

Currently there are two main modeling approaches for use with CFD, Reynolds Averaged 

Navier-Stokes (RANS) and large eddy simulation (LES). Each approach was used in this study. 

Details of each approach are discussed below.    

3.1       Reynolds Averaged Navier-Stokes (RANS) 

 

RANS based turbulence modeling is the most widely used approach in CFD today, due to 

the relatively low computational cost relative to other types of modeling efforts. The underlying 

concept of RANS is to solve the governing equations only for the mean or averaged values of the 

flow variables. Any effects of fluctuating (turbulent) flow are included through prescribed 

physical models based on estimates of flow statistical quantities. The basis for the RANS 

approach is the governing, Navier-Stokes, equations of viscous incompressible flow 

𝝏𝒖̃𝒊

𝝏𝒕
+ 𝒖̃𝒋

𝝏𝒖̃𝒊

𝝏𝒙𝒋
= −

𝟏

𝝆

𝝏𝒑̃

𝝏𝒙𝒊 
+ 𝝁

𝝏𝟐

𝝏𝒙𝒋𝝏𝒙𝒋
𝒖̃𝒊  (1) 

𝝏𝒖̃𝒊

𝝏𝒙𝒊
= 𝟎   (2) 
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where 𝑢̃𝑖 is the instantaneous velocity vector, 𝑝 is the instantaneous pressure, and 𝜈 is the 

kinematic viscosity. To obtain the RANS form of the equations, the total velocity is decomposed 

into the sum of mean and fluctuating components, 

𝒖̃(𝒙, 𝒕) = 𝑼(𝒙, 𝒕)⏟    
𝒎𝒆𝒂𝒏

+ 𝒖(𝒙, 𝒕)⏟  
𝒇𝒍𝒖𝒄𝒕𝒖𝒂𝒕𝒊𝒏𝒈

    (3) 

and substituted back into Eq. 1. The equations are then ensemble-averaged, assuming an infinite 

ensemble, resulting in the RANS equations 

𝝏𝑼̅𝒊

𝝏𝒕
+ 𝑼̅𝒋

𝝏𝑼̅𝒊

𝝏𝒙𝒋
= −

𝟏

𝝆

𝝏𝑷

𝝏𝒙𝒊 
+ 𝝁

𝝏𝟐𝑼̅𝒊

𝝏𝒙𝒋𝝏𝒙𝒋
−
𝝏 𝒖𝒋𝒖𝒊̅̅ ̅̅ ̅̅⏞

𝑹𝒆𝒚𝒏𝒐𝒍𝒅𝒔
 𝑺𝒕𝒓𝒆𝒔𝒔 

𝝏𝒙𝒋
  (4) 

𝝏𝑼̅𝒊

𝝏𝒙𝒋
= 𝟎   (5) 

These equations are unclosed because, in three dimensions, there are four equations with 

ten unknowns. The Reynolds stress transport equation can be derived from equations 1 and 3 and 

is 

𝜕𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

𝜕𝑡
+ 𝑈𝑘̅̅̅̅

𝜕

𝜕𝑥𝑘
𝑢𝑗𝑢𝑖 = −

1

𝜌
(
𝜕

𝜕𝑥𝑖
𝑢𝑗𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅
−
𝜕

𝜕𝑥𝑗
𝑢𝑖𝑝

̅̅ ̅̅ ̅̅ ̅̅ ̅
)

⏟            
𝑅𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

− 2𝜇 (
𝜕

𝜕𝑥𝑘
𝑢𝑖

𝜕

𝜕𝑥𝑘
𝑢𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

⏟            
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 

−
𝝏

𝝏𝒙𝒌
𝒖𝒌𝒖𝒊𝒖𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅

⏟        
𝑻𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒕
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

−𝒖𝒋𝒖𝒌̅̅ ̅̅ ̅̅
𝝏

𝝏𝒙𝒌
𝑼𝒊̅̅ ̅ − 𝒖𝒊𝒖𝒌̅̅ ̅̅ ̅̅

𝝏

𝝏𝒙𝒌
𝑼𝒋̅̅ ̅⏟                

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

+ 𝝁
𝝏𝟐

𝝏𝒙𝟐
𝒖𝒊𝒖𝒋̅̅ ̅̅ ̅̅⏟      

𝑴𝒐𝒍𝒆𝒄𝒖𝒍𝒂𝒓
𝑽𝒊𝒔𝒄𝒐𝒖𝒔
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

  

  (6) 

The turbulent kinetic energy equation can be obtained by the contraction of Eq. (4) and is 

expressed as 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑘̅̅̅̅

𝜕𝑘

𝜕𝑥𝑘
= −

1

𝜌

𝜕

𝜕𝑥𝑖
𝑢𝑖𝑝̅̅ ̅̅⏟      

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝜇
𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅

⏟    
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

−
1

2

𝜕

𝜕𝑥𝑘
𝑢𝑘𝑢𝑖𝑢𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
⏟        

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

− 𝑢𝑖𝑢𝑘̅̅ ̅̅ ̅̅
𝜕

𝜕𝑥𝑘
𝑈𝑖̅⏟      

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜇
𝜕2

𝜕𝑥2
𝑘 (7) 



 

11 | P a g e  
 

where 𝑘 ≡
1

2
𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅. Each of the annotated portions of equation 5 denotes the physical 

interpretation of the individual terms. Each will be briefly explained.  

Dissipation is the decay of turbulence due to viscous damping at small scales, hence the 

negative sign preceding the term. Turbulent transport is the transport of turbulent kinetic energy 

in space due to the turbulent velocity fluctuations themselves. Similarly, pressure diffusion is 

transport of turbulent kinetic energy in space due to pressure fluctuations. Both of these terms 

lack any production or destruction and are therefore conservative. The production term 

represents the rate at which the energy from the mean flow is transferred to turbulent 

fluctuations. The turbulent kinetic energy equation is the basis of the three turbulence models 

used in the present study. Each of the models is discussed in brief below.  

3.1.1      Standard k-ε 

The Standard k-ε model, proposed by Jones and Launder (1972), is a fully turbulent 

eddy-viscosity model. This model is a two-equation model. 

 

𝝏𝒌

𝝏𝒕
+ 𝒖𝒋

𝝏𝒌

𝝏𝒙𝒋⏟  
𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏

= 𝑷𝒌⏟
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝜺⏟
𝑫𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒊𝒐𝒏

+
𝝏

𝝏𝒙𝒋
[(𝝂 + 𝝈𝒌𝝂𝑻)

𝝏𝒌

𝝏𝒙𝒋
 ]

⏟            
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

   (8) 

𝝏𝜺

𝝏𝒕
+ 𝒖𝒋

𝝏𝜺

𝝏𝒙𝒋⏟  
𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏

= 𝑪𝟏𝜺
𝜺

𝒌
𝑷𝒌⏟    

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝑪𝟐𝜺
𝜺𝟐

𝒌⏟  
𝑫𝒆𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

+
𝝏

𝝏𝒙𝒋
[(𝝂 + 𝝈𝜺𝝂𝑻)

𝝏𝝎

𝝏𝒙𝒋
 ]

⏟            
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

    (9) 

The standard k-ε model turbulence length scale is calculated by solving a transport 

equation for the dissipation of turbulence kinetic energy. The model was developed for the 

prediction of wall boundary-layer flows where the streamwise accelerations cause the boundary 

layer to revert partially to a laminar flow type. This type of process is termed “reverse-transition” 

and occurs when the flow rapidly evolves in the direction of flow and is commonly seen in flow 
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of rocket nozzles and flow over gas turbine blades, hence high speed turbulent flows. It is a fully 

turbulent model and cannot model laminar flow until reverse transition occurs. This particular 

model has inherent disadvantages in resolving TKE at areas of high pressure. This phenomenon 

was investigated by Durbin (2012) and is referred to as the stagnation point anomaly.  

3.1.2      Shear Stress Transport (SST)-k-ω 

The SST-k-ω model, proposed by Menter (1994), is a fully turbulent eddy-viscosity 

model that is a combination of the Wilcox (1994) k-ω model and the k-ε model proposed by 

Jones and Launder (1972). By substituting 𝜀 = 𝑘𝜔 into equations 8 and 9, the equations for SST-

k-ω are 

𝝏

𝝏𝒕
(𝝆𝒌) +

𝝏

𝝏𝒙𝒋
(𝝆𝒖𝒊) =

𝝏

𝝏𝒙𝒋
(𝚪𝐤

𝝏𝒌

𝝏𝒙𝒋
)

⏟      
𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏

+ 𝑮𝒌⏟
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝒀𝒌⏟
𝑫𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒊𝒐𝒏

+ 𝑺𝒌  (10) 

𝝏

𝝏𝒕
(𝝆𝝎) +

𝝏

𝝏𝒙𝒋
(𝝆𝝎𝒖𝒊) =

𝝏

𝝏𝒙𝒋
(𝚪𝐤

𝝏𝝎

𝝏𝒙𝒋
)

⏟      
𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏

+ 𝑮𝝎⏟
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝒀𝝎⏟
𝑫𝒊𝒔𝒔𝒊𝒑𝒂𝒕𝒊𝒐𝒏

+ 𝑫𝝎⏟
𝑩𝒍𝒆𝒏𝒅𝒊𝒏𝒈

+ 𝑺𝝎 (11) 

This combination yields terms for production, dissipation and diffusion as well as a 

blending function for the dissipation equation, annotated above. The blending function is applied 

in the wake region of the boundary layer. Moreover, the Wilcox model is activated in the near 

wall treatment and the k-ε model is applied to the outer wake and free shear layers.  

3.1.3      Transitional k-kL-ω 

The k-kL-ω model proposed by Walters and Cokljat (2008) is a transition sensitive eddy-

viscosity turbulence model. The basis of this model is the Wilcox (1994) k-ω model with an 

added equation. Incorporation of an additional transport equation models the pre-transitional 

boundary layer. It is comprised of three model equations (Eq. 12-14) . These equations are for 

turbulent kinetic energy, laminar kinetic energy, and specific dissipation rate respectively. 
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𝑫𝒌𝑻

𝑫𝒕
= 𝑷𝒌𝑻⏟
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

+𝑹𝑩𝑷 + 𝑹𝑵𝑨𝑻 −𝝎𝒌𝑻 − 𝑫𝑻⏟
𝑫𝒆𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

+
𝝏

𝝏𝒙𝒋
[(𝝂 +

𝜶𝑻

𝝈𝒌
)
𝝏𝒌𝑻

𝝏𝒙𝒋
 ]

⏟          
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

 (12) 

𝑫𝒌𝑳

𝑫𝒕
= 𝑷𝒌𝑳⏟
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝑹𝑩𝑷 − 𝑹𝑵𝑨𝑻 − 𝑫𝑳⏟
𝑫𝒆𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

+
𝝏

𝝏𝒙𝒋
[
𝝏𝒌𝑻

𝝏𝒙𝒋
 ]

⏟    
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

  (13) 

𝑫𝝎

𝑫𝒕
= 𝑪𝝎𝟏

𝝎

𝒌𝑻
𝑷𝒌𝑻⏟      

𝑭𝒖𝒍𝒍𝒚 𝑻𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒕 
𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

+ (
𝑪𝝎𝑹
𝒇𝑾

− 𝟏)
𝝎

𝒌𝑻
(𝑹𝑩𝑷 +𝑹𝑵𝑨𝑻 )

⏟                  
𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏

− 𝑪𝝎𝟐𝝎
𝟐

⏟  
𝑭𝒖𝒍𝒍𝒚 𝑻𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒕 
𝑫𝒆𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

 

+𝑪𝝎𝟑𝒇𝝎𝜶𝑻𝒇𝑾
𝟐 √𝒌𝑻

𝒅𝟑⏟          
𝑩𝑳 𝑾𝒂𝒌𝒆
𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏

+
𝝏

𝝏𝒙𝒋
[(𝝂 +

𝜶𝑻

𝝈𝝎
)
𝝏𝝎

𝝏𝒙𝒋
]

⏟          
𝑭𝒖𝒍𝒍𝒚 𝑻𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒕
𝑻𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕

   (14) 

The equations for turbulent and laminar kinetic energy are equations 12 and 13 

respectively. Specific dissipation rate, Equation 14, models the transition between fully turbulent 

and laminar regions. A combination of turbulent and transitionary terms is used. The terms for 

the respective regimes and their physical significance are annotated above.   

3.2         Large-Eddy Simulation (LES) 

3.2.1      Monotonically Integrated Large Eddy Simulation (MILES) 

The MILES approach, proposed by Fureby and Grinstein (1999), incorporates no sub grid 

turbulence model. Instead, it utilizes the dissipative nature of finite volume methods for 

modeling sub grid scales. These subgrid scales, or small scales, are “smeared” by numerical 

dissipation. This results in an approach effectively resolves scales larger than the local grid scale. 
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CHAPTER IV 

TEST CASE SETUP 

4.1      Geometry 

The Endurance S-343 small wind turbine geometry was investigated in this study. This 

turbine is a three blade HAWT that is used primarily for residential applications requiring 10,000 

to 20,000 kWh per year. This particular turbine developed by Endurance Wind Power is also 

suited for applications in small wind farms or for single use in training environments (2012). The 

rotor diameter (D) is 6.37m which yields a total swept area of 31.9m2. Two sets of experimental 

data were used for comparison. Each set was derived using a 28m tall tilting monopole tower. 

The Windward Engineering, LLC (WE) experimental field test was conducted in Spanish Fork, 

Utah from October 19, 2011 to October 27, 2011 in accordance with American Wind Energy 

Association (AWEA) and under a contract as part of NREL’s Regional Test Center (RTC) 

program. The results for the WE experiment were normalized to normal atmospheric conditions 

since the test site was at an altitude of 4,820 ft. The XPEED Turbine Technologies, LLC (XTT) 

experiment was conducted under normal atmospheric conditions at the Department of Energy’s 

(DoE) National Renewable Energy Labs (NREL) for several weeks. Both experiments were run 

with constant recording of wind speed, turbine rotation rate, and power output. Data were 

conditionally averaged to yield the relationship between tip speed ratio and total power, which is 

the primary metric to be used in this study for the comparison of CFD simulation results.  For the 

CFD studies, the tower was neglected. It was assumed that the presence of the monopole would 

have negligible impact on the overall results since it was located downstream of the rotor. This 

approach was consistent with the previous studies completed by Thumthae and Chitsomboon 

(2009), Krogstad and Lund (2011), and Elfarra et. al. (2013). Figure 1 shows the geometry 

considered for the present investigation and Figure 2 is a CAD model of Figure 1. By 
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disregarding the monopole, the HAWT could be considered rotationally periodic. This allowed 

the geometry considered for computations to use a 120° section, shown in Figure 3 below. The 

Endurance S-343 has a variable twist and chord distribution in the span wise direction. A 

computer aided design (CAD) model was supplied by XTT. The blade pitch at the tip was 0°. 

Figure 4 shows the airfoil profiles for varied span wise positions.  

 

Figure 1: EWP S‐343 test unit at the Windward Engineering’s Spanish Fork, UT test site. (E.L. 

2012) 
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Figure 2: S-343 Full Swept Area Geometry 

 

 

 

Figure 3: 1/3 Turbine Geometry 
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Figure 4: Airfoil Profiles for Span Positions (a) 25%, (b) 33%, (c) 50%, (d) 75%, (e) 90% 

4.2      Geometry and Mesh 

The farfield boundary was placed at 10D in the radial direction. The inlet and outlet 

boundaries were located equidistant from the turbine. The inlet and outlet were positioned 10D 

upstream and downstream of the turbine, respectively. The inlet, outlet, periodic and farfield 

boundaries are shown in Figure 5.  
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Figure 5: Three Dimensional Computational Domain Boundaries 

Ameur et. al. (2011) showed that a grid size of 2 × 106 cells is sufficiently refined for 

discretization schemes that are of first order error (Ameur et. al., 2011). For their study only half 

of the rotor and nacelle were considered. This resulted in a computational grid size of4 × 106. 

For the current study a mesh size of 2.3 × 107cells was used. These cells populated the volume 

inside the boundaries of figure 5. Since the geometry was in 120° sections, the resultant grid, in 

comparison with Ameur et. al., was nearly 7.0 × 107 cells. Because no convergence issues were 

encountered using second order schemes and since the current mesh is an order of magnitude 

larger than previous studies suggested, the current mesh is assumed to be sufficiently refined. 

The mesh consists of tetrahedral and hexahedral cells. Compared with tetrahedral cells, 

hexahedral cells yield a solution with lower discretization error (Hefney & Ooka, 2009). The 

hexahedral cells are located in the region near the blade wall in order to resolve the boundary 

layer more accurately (Figures 6 and 7). To ensure the boundary layer is being resolved 



 

19 | P a g e  
 

accurately it was important to determine the non-dimensional wall height (y+). In general, a y+ 

value greater than 5 is indicative of the cell being located outside the viscous sublayer. For this 

reason, the first cell y+ average for 𝜆−1 = 0.324 was held to 1.45. Each y+ average for 𝜆1 <

0.324 resulted in𝑦+ ≤ 1.45. This indicates that the simulations have a well refined grid near the 

wall. Figure 7(a) shows these regions at a span wise location of 90% with a close-up view in 

Figure 7(b). Figure 7(c) shows the close-up of the structured mesh at the leading edge, also for 

the span wise location of 90%.  

    

 

Figure 6: Region of Mesh Near Blade Wall 
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Figure 7: (a-b) Two Dimensional Interface of Structured and Unstructured Meshes near 

Turbine Rotor at Span=90%, (c) Visualization of Structured Mesh near Leading Edge of S343 at 

Span=90%    

4.3      Boundary Conditions 

Flow was propagated in the positive x-direction from the inlet boundary. A uniform mean 

velocity was prescribed at the inlet. The outlet, farfield and periodic boundary conditions were 

constant across varying approaches throughout the CFD study. The outlet was defined as a 

pressure outlet at standard atmospheric pressure, or zero static gage pressure. The farfield was 

defined as a stationary wall with a specified shear of zero and was located sufficiently far enough 

from the blade tip such that the velocity experienced at the farfield was  no more than 101% of 

the velocity prescribed at the inlet. This decision was made to increase the numerical stability 

while having a negligible effect on the results. The inlet condition varied across different 

approaches as each of the turbulence models dictated. For the SST-k-ω and Standard k-ε models 

the inlet condition was specified with a turbulent intensity of 5% and a turbulent viscosity ratio 
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of 10. The k-kL-ω model inlet condition also required a condition for laminar kinetic energy (kL). 

The kL was assumed to be zero but was set as 1 × 10−6 to avoid computation errors caused by 

kL=0. Due to the laminar viscous model used in the MILES approach, no additional turbulence 

conditions were required.   

For each turbulence model, various inlet velocities were specified with a constant rotor 

rotation rate of 17.38 rad/s. A rotation rate of 17.38
𝑟𝑎𝑑

𝑠
 was used in the XTT experiment while 

the WE experiment had a varying rotation rate for each respective inlet velocity. The mean rate 

of rotation used by WE for inlet velocities ranging 4 − 17𝑚 𝑠⁄   was 17.65
𝑟𝑎𝑑

𝑠
. The largest 

difference in rotation rate was at the inlet speed of4𝑚 𝑠⁄ . The corresponding rotation rate for the 

WE experiment was 15.17
𝑟𝑎𝑑

𝑠
. Because the average rotation rate was similar for each study, it 

was not expected that the difference would be the root cause of a difference in coefficient of 

power. Therefore both experiments were assumed relevant for comparison to the present study.  

The rotation rate for the CFD studies was achieved by applying a rotating reference frame to the 

interior of the domain. This resulted in 𝜆−1 ranging from 0.072 to 0.324. The turbine was defined 

as a wall with a roughness height of zero. The no-slip condition was applied at the wall 

boundary.  

A comparison of air density assumptions was performed for the MILES approach. Two 

different equation of state assumptions were performed. These two assumption were constant 

density and ideal gas assumption. This examination was performed for 𝜆−1 = 0.072 − 0.252.  

The comparison showed there was very little difference in the two approaches. The ideal-gas 

assumption under predicted for the majority of 𝜆−1 investigated, with the exception of 𝜆−1 =

0.072 and 𝜆−1 = 0.090. The average variation in Cpow was 1.3%. The maximum variation was 

18%. This was found at 𝜆−1 = 0.072 and was an over prediction by the ideal gas assumption 
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approach. It was determined that the constant air density approach was sufficient for the study. 

Consequently, a constant air density of 1.225
𝑘𝑔

𝑚3 and dynamic viscosity 1.7894 × 10−5
𝑘𝑔

𝑚−𝑠
 were 

specified as the fluid properties.   

4.4      Numerical Methods 

 

All of the simulations were performed using the pressure-based solver in ANSYS Fluent 

v16.2. The numerical scheme details differed depending on whether a RANS or MILES 

turbulence modeling approach was used, and details are provided below. 

Three RANS models were employed for the current study: SST-k-ω, k-kl-ω, and 

Standard k-ε. A second order upwind scheme was used for the convective terms of all transport 

equations, including mean velocity and turbulence model variables (e.g. k, ) (Barth and 

Jesperson). The mass flux across cell interfaces was computed using a momentum interpolation 

method similar to Rhie-Chow interpolation (Mathur and Murthy). The pressure terms of each 

model were discretized using a standard scheme in which the face pressure was obtained from an 

average of the pressure values in neighboring cells.  Pressure-velocity coupling was handled by 

the SIMPLE scheme (Patankar and Spalding). Each of these models was applied using a steady 

state assumption. Steady state problems can be said to be converged when additional iterations 

yield no change to the solution. Simulations were found to be well converged after 15,000 

iterations for each RANS model. This was confirmed by examining the Coefficient of Moment 

(CoM) with respect to the number of iterations. Shown below are a subset of the SST-k-ω model 

CoM. The initial 1,000 iterations for each of the simulations were unstable. The CoM for each of 

the cases was converged after 5,000 iterations. To ensure each case was sufficiently converged 

the simulations were carried out an additional 10,000 iterations. The figure below illustrated how 
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the CoM’s become constant, thus converged. Inlet velocities 7.0 m/s and 7.5 m/s appeared to 

have periodic behavior in their region of convergence. The magnitude of this periodicity was 

negligible and therefore the data was also considered to be converged. This behavior was 

visualized for all 𝜆−1 across all of the investigated RANS turbulence models.    

 

Figure 8: Coefficient of Moment Used for Convergence 

The MILES approach was employed by using the Laminar Viscous Model. Numerical 

details were identical to that for the RANS turbulence models except that a different scheme was 

used for the convective terms and the discretized unsteady (time-derivative) term was added to 

the model equations. The bounded central difference scheme was used instead of second-order 

upwinding in order to reduce the effect of numerical dissipation on the simulations (Jasak et al.). 

The transient formulation that was employed was the second order implicit scheme, i.e. the 

three-point backward difference. For convergence of unsteady computations using an implicit 

time-stepping scheme, convergence should occur at each time step. A time step size of 1 × 10−4 

s was used with a maximum of 10 iterations per time step. Convergence at each time step was 
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achieved with this combination. This was confirmed by ensuring the coefficient of moment was 

reduced by at least two orders of magnitude in each time step.  

4.5      Computational Requirements 

 

As aforementioned, each simulation employed in the current study was completed using 

ANSYS Fluent v16.2. Because the mesh size was 2.3 × 107cells, the use of High Performance 

Computing (HPC) resources was a necessity. HPC resources were provided by the University of 

Oklahoma Supercomputing Center for Education and Research (OSCER). Each simulation 

required a minimum of six computing nodes. Each node consisted of 20 CPU cores with 32GB 

RAM. With six nodes the RANS simulations were completed in 8-16 hours of run time for one 

𝜆−1. The MILES simulations required nearly 72 hours of run time to complete one 𝜆−1.        
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CHAPTER V 

RESULTS 

In this chapter CFD simulation results for each of the turbulence models are presented. 

Both quantitative and qualitative results are presented in order to highlight differences and 

similarities between the models. Results are also compared to available experimental data for 

validation purposes. As noted above, the goal of the study is to isolate the true turbulence model 

performance for these cases by carefully addressing sources of error due to domain and 

computational geometry, dimensionality of the simulation (2D versus 3D), mesh density, and 

discretization scheme. Nevertheless, both known and unknown sources of uncertainty are 

expected to be present in the CFD results and experimental data. For one of the experimental 

data sets, uncertainly was quantified and error bars are included in the plots shown here. In 

addition, it must be noted that the experimental test cases measured electrical power generation, 

while the CFD results show only the power delivered to the turbine blades by the flowing air, 

and do not take into account the  electrical losses which are inherent in experimental studies of 

HAWTs. Since no experimental data regarding electrical losses was provided, and since an 

analysis of wind turbine electrical systems is beyond the scope of the present work, it is assumed 

that the CFD results will be biased to higher power output values than the companion 

experimental measurements.   

5.1      Power Output/Performance 

Performance, which refers to the overall power produced by a wind turbine as a function 

of wind speed, is the most widely investigated global factor for wind turbines since this is the 

total amount of power extracted from the wind. For HAWTs the wind speed at which maximum 

power is generated is referred to as the point of rating. The power and wind speed found at this 
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point determine the rated power and rated inverse tip speed ratio (𝜆𝑟𝑎𝑡𝑒𝑑
−1 ). Comparison was 

made between two experimental data sets and four turbulence models to inspect the similarities 

and differences between turbulence model predictions of the point of rating. The regions 

preceding and following this rating point were also investigated to further highlight differences 

and similarities between the turbulence models and experimental results over a range of 

operational wind speeds.  

5.1.1      Experimental Data 

Two experimental data sets were used for comparison in the current study, and the power 

output curves for each are shown in Figure 9. These experimental studies were completed by WE 

(2012) and XTT. These studies were carried out different operating conditions. The WE study 

was conducted at the Windward Engineering outdoor test facility. The XTT study was conducted 

at the NREL wind turbine field test facility. Each study predicted rated power output within 2% 

for the same turbine geometry: 6.11kW and 6.00kW for XTT and WE, respectively. The chief 

difference between the two studies was that the WE study predicted a 𝜆𝑟𝑎𝑡𝑒𝑑
−1 = 0.226 while the 

XTT study did so at 𝜆𝑟𝑎𝑡𝑒𝑑
−1 = 0.251. This difference was assumed to be a direct result of 

experimental error. This is similar to the findings of the CFD results in the sense that each 

turbulence model produced a varying result due to the complexity of the fluid dynamics in three 

dimensions. The differences between the two experimental studies highlight the presence of 

known and unknown sources of uncertainty, in addition to the formal uncertainty estimates 

provided by the WE experiments and indicated using error bars in Figure 9.  
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 Figure 9: WE and XTT Experimental Results  

5.1.2      CFD Results 

Results obtained using each of the four turbulence models are shown in Figure 10 and 

compared to the experimental data sets. The figure clearly shows that there is considerable 

variation in predicted power for the different turbulence models, suggesting that the uncertainty 

due to turbulence model choice is substantially greater than the uncertainty in the experimental 

data. It is also clear that no single model provides the best agreement with experimental data 

over the entire range of wind speeds investigated. Lastly, it is apparent that all of the models 

show considerable overall error over at least some portion of the operational range. The 

performance of each model is discussed in more detail in the following paragraphs. 

The SST-k-ω model over predicted the power output in the 𝜆−1 range of 0.072-0.180. 

The 𝜆𝑟𝑎𝑡𝑒𝑑
−1  was predicted lower than each of the experiments. The 𝜆𝑟𝑎𝑡𝑒𝑑

−1  occurred at 𝜆−1 =

0.198 which was a 12% and 21% under prediction relative to the WE and XTT studies 

respectively. The rated power output was 5.67kW for the SST-k-ω model. This was around a 6-
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7% under prediction relative to the experimental results. In the post stall region, the SST-k-ω 

model grossly under predicted the power output. For this region, this model yielded the  under 

largest prediction for all models.   

The MILES turbulence model grossly over predicted the power output relative to the 

experimental studies up to the point of stall. The power output in the 𝜆−1 range of 0.072-0.180 

for the MILES approach was predicted much higher than any other model for the same range. 

This approach predicted 𝜆𝑟𝑎𝑡𝑒𝑑
−1 = 0.180 with a resulting rated power output of 6.87kW. The 

rated power output was over predicted by 14% and 12% compared to the WE and XTT 

experiments respectively. Further, the 𝜆𝑟𝑎𝑡𝑒𝑑
−1  was under predicted by over 20% relative to each 

experiment. In relation to the post stall region of the WE experiment, 𝜆−1 = 0.234 − 0.300, the 

WE study the MILES turbulence model were close in their prediction of power output.  

The k-kL-ω model predicted the power output closer to the experimental studies than the 

MILES approach for  𝜆−1 = 0.072 − 0.180, but showed the largest over prediction of all models 

from that point through the point of rating and post stall region. The maximum power output of 

8.67kW was an over prediction of over 40% relative to the experiments. Stall occurred at 

𝜆𝑟𝑎𝑡𝑒𝑑
−1 = 0.234 and was within 4% and 7% of the WE and XTT experiments respectively. This 

model provided the closest correlation to the point of rating in regards to the 𝜆−1 while providing 

the largest discrepancy for power output at the point of rating. Interestingly, the k-kL-ω model 

appears to most closely follow the overall shape of the experimental power output curves, 

although it is not clear if this is an indication that the model is more correctly resolving 

qualitative flow features than the other models (for example boundary layer transition, which the 

k-kL-ω model was designed to predict) or whether it is coincidence. Further simulations using 
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alternative turbine geometries would likely help to clarify this point, but they are beyond the 

scope of this work. 

Similarly, the k-kL-ω model was able to predict an anomalous behavior that existed in the 

WE experiment. This correlation was only qualitative in nature and occurred just prior to the 

point of rating in both models. Specifically, the WE experiment experienced an increase in 

power for 𝜆−1 = 0.072 − 0.184, a subsequent decrease in power at 𝜆−1 = 0.184 − 0.192, and 

then an increase in power up to stall at 𝜆−1 = 0.192 − 0.226. The k-kL-ω model produced a 

similar behavior that was drawn out over a larger region of 𝜆−1. Specifically, the k-kL-ω model 

showed there to be an increase in power from for 𝜆−1 = 0.072 − 0.198, a decrease in power at 

𝜆−1 = 0.198 − 0.216 and then an increase in power up to stall from 𝜆−1 = 0.216 − 0.234.    

The standard k-ε model yielded the only under prediction of power output for all values 

of 𝜆−1 in the pre-stall region. At very low values of 𝜆−1, around 0.072-0.108, the model had a 

strong correlation with the XTT experimental results. This correlation diminished as a 

progressive under prediction as the value of 𝜆−1increased.  The point of rating for the model 

occurred at 𝜆−1 = 0.307 with a corresponding power output of 5.64kW. Compared with the WE 

and XTT results the stall point 𝜆−1 was over predicted by 35% and 22% respectively. This was 

the largest difference in stall point compared with all other models. The power output at the point 

of rating was within 6% of both experiments. Because the point of rating for the standard k-ε 

model was near the maximum 𝜆−1 for this study, information regarding the post stall region was 

not available, though it appears that the decline in power output predicted by the model is much 

less steep than that found in the WE experiments, which provide data up to about 𝜆−1 = 0.3. 
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Figure 10: Power Curves for CFD and Experimental Results 

 

5.2      Coefficient of Power 

Figures 11 and 12 show the coefficient of power, Cpow, as a function of 𝜆−1, for the 

experimental results and CFD simulations using each turbulence model. The definition used for 

Cpow in the present study is 

𝐶𝑝𝑜𝑤 =
𝑃

1

2
𝜌𝑈∞

3 𝐴
   (15) 

where P is the power generated by the turbine, ρ is the density of air, U∞ is wind speed and A is 

the rotor swept area. This variable can be generalized as the efficiency of the turbine in 

converting wind energy into mechanical energy. As noted above, however, it does not take into 

account efficiency (losses) associated with conversion of mechanical energy to electrical energy.  

There exists a limit on the maximum Cpow a turbine can extract from the wind. This is 

known as the Betz-Joukowsky limit. This limit depends on major simplifications and 
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assumptions about airflow past a wind turbine though no well-documented study has violated 

this limit (Wood, 2013). The limit states that the maximum Cpow that can be extracted from the 

wind is  

𝑪𝒑𝒐𝒘,𝒎𝒂𝒙 = 𝟏𝟔/𝟐𝟕 ≈ 𝟎. 𝟓𝟗𝟑   (16) 

This was determined by equating equation 13 with the axial induction factor (a), where  

𝒂 = 𝟏 −
𝑼∞

𝑼𝟎
    (17) 

therefore  

𝑪𝒑𝒐𝒘 =
𝟒𝑼𝟎

𝟐(𝑼∞−𝑼𝟎)

𝑼∞
𝟑 = 𝟒𝒂(𝟏 − 𝒂)𝟐  (18) 

where U0 is the wind speed outside of the bounding streamline. The Cpow,max will occur when the 

change in Cpow with respect to a is zero. This occurs when at 𝑎 =
1

3
. 

Figure 11 shows the relationship between experimental results and each CFD approach 

for Cpow. Figure 12 provides an enhanced view of the region in which most of the model results 

appear to converge to a similar value of Cpow. Consistent with performance results shown below, 

it is apparent that none of the models are able to accurately predict Cpow over the entire range of 

wind speeds investigated. The behavior of the measured data and computational results are 

discussed in more detail below. 

5.2.1      Experimental Data 

Coefficient of power for each of the experiments varied similar to the results for the 

power output. This result was expected as the power output and coefficient of power are closely 

related as indicated by Eq. (15). The maximum Cpow for each experiment occurred in the same 

approximate region: 𝜆−1 = 0.125 − 0.150 for WE, and 𝜆−1 = 0.135 − 0.153 for XTT. The WE 

maximum, Cpow = 0.3, occurred at four successive data points and, similarly, the XTT maximum, 
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Cpow = 0.26, occurred at three successive data points. It is likely that experimental uncertainty 

accounted for these maximum values presenting themselves across a range of 𝜆−1 versus at a 

singular point.  

5.2.2      CFD Results 

Relative to the WE experiment the SST-k-ω model showed the greatest differences in 

Cpow near the endpoints of the wind speed range. The largest error magnitude was experienced 

around 𝜆−1 = 0.288 − 0.324. The same behavior existed from 𝜆−1 = 0.072 to just before 0.108 

but was not as severe as the end region. For 𝜆−1 = 0.108 − 0.288, the model error magnitude 

progressively decreased until reaching a minimum around 𝜆−1 = 0.216. From this point on the 

error magnitude grew until reaching a maximum at 𝜆−1 = 0.324. When comparing this model to 

the XTT experiment, similar results were seen for the majority of the values of 𝜆−1. There was 

one significant difference between the two. At 𝜆−1 = 0.216 the model reached its minimum 

error magnitude, similar to the comparison with the WE results. From this point on the error 

magnitude increased much faster than when compared to the WE experiment.  

The MILES approach yielded a results for Cpow that was qualitatively different than all 

other models and experiments for 𝜆−1 = 0.072 − 0.144. This was the greatest anomaly that was 

found for the investigation into Cpow. Most notably, the simulations appear to violate the Betz 

limit in the region of 𝜆−1 = 0.072 to 0.108. However, the error magnitude relative to the 

experimental data sets displayed a similar qualitative behavior as the other CFD approaches over 

the majority of the wind speed range. The largest error magnitude was experienced at 𝜆−1 =

0.324 followed by 𝜆−1 = 0.072. The model error magnitude behavior for the remaining 𝜆−1 was 

not the same for each experiment. When compared with the WE experiment the error magnitude 

progressively decreased from 𝜆−1 = 0.090 to 𝜆−1 = 0.288. A minimum error magnitude was 
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found at 𝜆−1 = 0.288. For the XTT comparison the MILES error magnitude progressively 

decreased from 𝜆−1 = 0.090 − 0.234. The minimum error magnitude was found at 𝜆−1 =

0.324. Immediately following this 𝜆−1the error grew exponentially to a maximum at 𝜆−1 =

0.324. 

The k-kL-ω model exhibited similar behavior as the previous models for the error 

magnitude. When compared to the WE experimental results the k-kL-ω model showed the same 

behavior as the other models at the endpoints. However, the maximum error magnitude was 

found to be at 𝜆−1 = 0.072. The error magnitude decreased to from 𝜆−1 = 0.072 − 0.126 and 

experienced a slight increase from 𝜆−1 = 0.126 − 0.288. Immediately following this point the 

error quickly dropped the absolute minimum at 𝜆−1 = 0.307. Similar qualitative behavior 

existed for the model when compared with the XTT data. The maximum was found at the initial 

𝜆−1 while the minimum was predicted much earlier at 𝜆−1 = 0.270.   

When compared with the WE experimental results, the standard k-ε model behaved 

similar to the SST-k-ω model for the range of 𝜆−1 = 0.090 − 0.288 showing the minimum error 

magnitude at 𝜆−1 = 0.234. The largest error magnitude was found at 𝜆−1 = 0.090. For 𝜆−1 =

0.288 − 0.324 the standard k-ε model behaved nearly identical to the k-kL-ω model. This result 

was very different when compared to the XTT experimental results. Again, the maximum error 

was found at 𝜆−1 = 0.324 but the model did not behave in the same manner as any other model. 

For 𝜆−1 = 0.090 − 0.252 the error magnitude was near constant around 10-18%. This was 

interpreted as providing a good quantitative match with this experiment. Though this appeared to 

suggest that the standard k-ε model was preferred, however two key points should be made. 

First, the standard k-ε model is known to overpredict turbulent kinetic energy and effective 

viscosity in the leading region of airfoils, and in fact this behavior was observed in the present 
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simulations (discussed in more detail below). This means that the model is expected to over 

predict viscous losses which results in lower overall power output and coefficient of power 

prediction. It is possible that the experimental results included surface roughness effects that 

were not taken into account in the CFD simulations, and that the standard k-ε is artificially 

mimicking that effect. If that is the case, then the standard k-ε results should be viewed perhaps 

as a fortuitous cancellation of errors rather than an example of inherent model superiority. 

Second, the known bias due to electrical losses in the experimental tests should lead to an 

overprediction by the CFD results, rather than an underprediction as shown by the standard k-ε 

model. Both of these considerations suggest that observed Cpow behavior should not be taken as 

sufficient evidence that the standard k-ε model is in general the best choice for wind turbine 

predictions. 

 

Figure 11: Coefficient of Power for CFD and Experimental Results  
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Figure 12: Coefficient of Power (Enhanced View of Figure 10) 

 

 

 

Figure 13: Error Magnitude, WE Experimental Baseline 
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Figure 14: Error Magnitude, XTT Experimental Baseline 
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𝐶𝑝 and 𝐶𝑓 were inspected on the airfoil surface and the respective plots for each were constructed 

using the following diagram (Figure 15). The plots have two global regions which is made up of 

a pressure side and suction side. The pressure side corresponds to s > 0 while the suction side 

corresponds to 𝑠 < 0. These two regions are divided in the plots for 𝐶𝑝 and 𝐶𝑓 by the stagnation 

point where 𝑠 = 0. The endpoints of the plots both correspond to the trailing edge of the airfoil. 

At this point 𝑠 = ±1.  

 

Figure 15: Regions for Pressure and Friction Plots 

Coefficient of pressure, 𝐶𝑝, is the ratio of gage pressure to dynamic pressure. For the 

present study 𝐶𝑝 was defined as 

𝐶𝑝 =
𝑝−𝑝∞
1

2
𝜌𝑈∞

2
   (19) 

where 𝑝 is static pressure on the airfoil, 𝑝∞ is the atmospheric pressure, 𝜌 is air density, and 𝑈∞ 

is the inlet velocity. Static pressure is on the airfoil surface the dependent dimensional variable in 

the computation of  𝐶𝑝.  
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The plots show below show the distribution of Cp for the pressure and suction sides of the 

airfoil. The corresponding relative velocity magnitude (RVM) contours are shown for each of the 

plots (Figures 17, 20 and 23). RVM for the present study was defined as the velocity magnitude 

in the rotating reference frame normal to the hub of the turbine. RVM contours are shown due to 

the relation between velocity and pressure. It is well known that an inverse relationship between 

pressure and velocity exists. Therefore it can be stated that any increase in Cp is in general a 

result of a decrease in RVM, and vice versa. It can further be directly related to the turbine Cpow. 

An increase in the difference in Cp between the pressure and suction sides in general results in an 

increase in Cpow.    

5.3.1      Pressure-Side Coefficient of Pressure 

 

The k-kL-ω, standard k-ε, and SST-k-ω models exhibited nearly the same qualitative 

behavior for 𝜆−1 = 0.072 near the leading edge of the airfoil. The outlier for this 𝜆−1 value was 

found with the MILES turbulence model. The MILES turbulence model predicted a larger 

pressure loading on the airfoil for the majority of the pressure side. This difference can be seen in 

figure 17. Each of the other models predicted roughly the same RVM whereas the MILES 

approach predicted the RVM to be much lower. Near the trailing edge of the pressure side the 

MILES model behaved similar to the k-kL-ω model while the standard k-ε and SST-k-ω behaved 

similarly. The corresponding contour for RVM (Figure 18) confirms this. The standard k-ε and 

SST-k-ω models experienced an increase in velocity near the trailing edge while the MILES and 

k-kL-ω models experienced a flow detachment near the trailing edge. This behavior is due to the 

fact that both of these models predict an initially laminar boundary layer on the pressure side at 

this location, while the standard k-ε and SST-k-ω models predict, by default, fully turbulent 
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boundary layers on all surfaces. The flow detachment by the MILES and k-kL-ω models caused a 

decrease in the velocity and thus an increase in Cp.  

The differences between models found on the pressure side diminished as the 𝜆−1 value 

increased. For 𝜆−1 = 0.108, the MILES model predicted the value of Cp much closer to the 

remaining models for the majority of the pressure side. Though they were present to a smaller 

degree, the small differences found near the trailing edge persisted for this 𝜆−1. This was 

confirmed by the corresponding contour of RVM (Figure 20). All differences on the pressure 

side of the airfoil were found to be negligible at 𝜆−1 = 0.144. This was further validated by 

inspection of RVM (Figure 21). For 𝜆−1 = 0.144 the RVM for each of the models is nearly 

identical on the pressure side of the airfoil. A small increase in velocity can be seen in the SST-

k-ω model though this increase is not large enough to make a considerable difference in the 

pressure loading.  

5.3.2     Suction-Side Coefficient of Pressure 

 

The largest differences in Cp were found on the suction side of the airfoil. The variation 

of relative velocity magnitude and surface pressure is greater than on the pressure side. For 

𝜆−1 = 0.072, the suction side of the blade exhibited the largest difference between models. The 

SST-k-ω and k-kL-ω models behaved quantitatively similar on the suction side near the leading 

edge. The slight difference was found around the halfway point between the leading and trailing 

edge, roughly at a position of -0.67 (reference fig. 15). At this point the k-kL-ω model flow 

detached whereas the SST-k-ω model did not. This is due to the prediction of laminar flow by 

the k-kL-ω up to the point of separation. The fully turbulent boundary layer predicted by the 

SST-k-ω remains attached over the entire surface. Figure 18 shows the point of separation and 
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reattachment for the k-kL-ω model. This had an effect on the resultant Cp that was presented as a 

rapid increase in suction pressure forward and a decrease in pressure at the point of reattachment.  

The remaining two models, MILES and standard k-ε, shared a near identical qualitative 

behavior but dramatically different quantitative behavior. The difference being that the MILES 

approach predicted larger suction pressures than the standard k-ε model for the majority of the 

suction side near the leading edge. Figure 17 shows that the MILES approach carries a lower 

RVM through much more of the suction side than does the standard k-ε model. Durbin (1996) 

found that the standard k-ε model is known to produce very high levels of turbulence in the 

leading-edge region of airfoils which reduces the velocity near the surface. The MILES and 

standard k-ε models lose their qualitative similarities near the trailing edge of the suction side, at 

a point roughly 90% aft of the leading edge. At this point the MILES and k-kL-ω model become 

more similar. Figure 19 confirmed this similarity. At a point aft of the separation bubble for the 

k-kL-ω model, the k-kL-ω model and MILES approach appeared to be near identical.  

Similar behavior occurred at 𝜆−1 = 0.108 for each of the models. The only difference 

observed in comparison to the 𝜆−1 = 0.072 results was that the peak values of the suction 

pressure were somewhat more pronounced near the leading edge of the airfoil. Similarly, the 

location of flow separation for the transition-sensitive k-kL-ω model was moved closer to the 

leading edge. This was confirmed by inspection of the separation bubble for the k-kL-ω model in 

Figures 19 and 21. The location of this bubble was around -0.62 whereas the previous 𝜆−1 

separation bubble for the k-kL-ω model was at -0.67.  The differences seen between models near 

the trailing edge for the suction side, specifically the last 10%, were near identical to the 

differences seen at 𝜆−1 = 0.072.   
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The greatest qualitative similarities among all the models were found at 𝜆−1 = 0.144. 

This was due in large part to the behavior of the k-kL-ω model. At this value of 𝜆−1 the 

separation bubble was not present (see fig. 24). For this reason the k-kL-ω, MILES, and SST k-ω 

turbulence models shared a high degree of qualitative and quantitative similarity. The flow 

around the airfoil for each of these models showed no appreciable differences in terms of relative 

velocity magnitude (see fig. 23). The standard k-ε model shared a similar qualitative behavior 

with the remaining three models but it under predicted the suction pressure. As discussed 

previously, this is believed to be due to the overprediction of turbulent kinetic energy and 

consequently reduced RVM as shown in fig. 23.  

 

Figure 16: Pressure Coefficient around Airfoil, λ-1=0.072, 90% span 
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Figure 17: Contours of RVM, λ-1=0.072, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 18: Contour of RVM; λ-1=0.072, 90% span, (d)k-kl-ω 
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Figure 19: Pressure Coefficient around Airfoil,  λ-1=0.108, 90% span 

 

 

Figure 20: Contours of RVM, λ-1=0.108, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 21: Contour of RVM; λ-1=0.108, 90% span, (d)k-kl-ω 

 

Figure 22: Pressure Coefficient around Airfoil, λ-1=0.144, 90% span 
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Figure 23: Contours of RVM, λ-1=0.144, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 24: Contour of RVM; λ-1=0.144, 90% span, (d)k-kl-ω 
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5.4      Skin Friction Coefficient 

Another important variable in HAWT studies is Cf. Skin friction coefficient is similar to 

pressure coefficient in that it quantifies a contribution of force on the airfoil surface. Pressure 

coefficient is the result of a force being applied to the airfoil in the normal direction. This force 

typically contributes to the power output of the HAWT. Skin friction coefficient is the result of a 

force in a direction tangential to the airfoil surface. Consequently, Cf contributes to the drag force 

the HAWT experiences. This is a detriment to the power output of HAWTs. Skin friction 

coefficient is the ratio of the local wall shear to the dynamic pressure. For the present study, the 

skin friction coefficient was defined as   

𝐶𝑓 =
𝜏𝑤

1

2
𝜌𝑈∞

2
   (20) 

where 𝜏𝑤 is the wall shear, 𝜌 is air density, and 𝑈∞ is the inlet velocity.  Skin friction coefficient, 

Cf was examined at the same span location, 90% of radial span, as the coefficient of pressure, Cp. 

5.4.1      Pressure-Side Skin Friction Coefficient 

At 𝜆−1 = 0.072, the k-kL-ω and MILES models yielded a qualitatively and quantitatively 

similar result (see fig. 25). This was confirmed by the contour of radial velocity,Vr, for the 

specified 𝜆−1, shown in figure 26. The slight differences in the predicted values of Cf found near 

the leading edge were visualized by the contours for each model. Figure 27 showed that the 

relatively high levels of 𝜏𝑤 for the k-kL-ω model did not propagate as far downstream from the 

leading edge as the MILES results did (fig. 28).  Interestingly, both of these models show 

evidence of boundary layer transition, identifiable as a relatively sharp increase in Cf, at a surface 

location just downstream of -0.7.  
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The remaining two models, SST-k-ω and standard k-ε, shared a qualitative behavior with 

the other models. These models behaved similar to one another near the trailing edge of the 

pressure side while the MILES approach and k-kL-ω showed erratic behavior near the trailing 

edge, in the former case due to the unsteady nature of the resolved turbulence, and in the latter 

case likely due to underlying unsteadiness of the separated flow region. Similar behavior 

between the models existed for 𝜆−1 = 0.180 (fig. 30 and 31). This behavior also existed for 

𝜆−1 = 0.324 with one glaring difference. In the region of increasing Cf near the leading edge the 

MILES, k-kL-ω and  SST-k-ω predict a quantitatively similar Cf local maximum (fig. 33 and 34). 

This was a departure from the previous two 𝜆−1 where the SST-k-ω over predicted the Cf. 

5.4.2      Suction-Side Skin Friction Coefficient 

The suction side of the airfoil showed, for  𝜆−1 = 0.072, the k-kL-ω and MILES 

turbulence models were very similar in both quantitative and qualitative behavior (fig. 25). A 

region existed from a position of  -0.18 to -0.50 where the models predicted the Cf with good 

quantitative agreement to each other. This region was where the flow was laminar, hence lacking 

turbulence, and therefore the prediction of skin friction was very similar. The differences 

between these models at this 𝜆−1 were found near the leading and trailing edges. At both the 

leading and trailing edge the MILES turbulence model predicted a higher Cf than the k-kL-ω 

model. This was a result of the nature of the MILES model and the inability to capture, and 

accurately model, the small scales of motion. The flow for each of these models transitions from 

laminar to turbulent around -0.5 and persists through the remaining portion of the blade. 

Comparison with the Cp results above suggests that for the k-kL-ω model the transition actually 

corresponds to boundary layer separation, which is also indicated by the fact that Cf is equal to 

zero at separation (-0.52) and reattachment points (-0.77). In contrast, the MILES model seems 
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to indicate transition occurring in the attached boundary layer, most likely triggered by the 

adverse pressure gradient in that region (see fig. 16).   

The standard k-ε and SST-k- ω models shared a qualitative behavior with the other 

models in a region from -0.18 to -0.50. These models did show turbulent behavior near the 

trailing edge of the blade, though it was dissimilar to the presentation of turbulence by the k-kL-ω 

and MILES turbulence models. The key difference was that these models did not model the same 

transition, from laminar to turbulent flow, as the MILES and k-kL-ω models.  Both standard k-ε 

and SST-k- ω models predicted laminar flow for 95% of the suction side. The last 5%, near the 

trailing edge, was predicted to be turbulent though there was no transition zone. The standard k-ε 

and SST-k- ω models shared a consistent qualitative behavior throughout the entirety of the 

suction side. These models were in quantitative agreement near the leading and trailing edges, 

though the standard k-ε model predicted a higher Cf throughout the majority of the laminar 

region on the suction side (fig. 30).  

Similar behavior was seen for the k-kL-ω and MILES turbulence models for 𝜆−1 = 0.108 

(fig. 30 and 32), though the region of quantitative agreement became smaller, roughly from -0.20 

to -0.45. The models were still in qualitative agreement near the leading and trailing edges with 

the MILES turbulence model predicting a larger Cf. These models, standard k-ε and SST-k- ω, 

exhibited the same behavior as seen for the previous values of 𝜆−1. At the leading and trailing 

edges the models were in agreement but between the two the standard k-ε over predicted the Cf. 

For the MILES and k-kL-ω models, the turbulent region was slightly larger than the previous 

𝜆−1. 

A 𝜆−1 = 0.144, the largest differences were seen between models (fig. 33 and 35). The 

standard k-ε and SST-k- ω predicted the Cf with the same behavior as the previous two values of 
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𝜆−1. The difference was seen in the k-kL-ω and MILES turbulence models. From the leading 

edge to -0.20, these models were in qualitative agreement. From -0.20 to -0.70 these models did 

not predict the Cf with any similarity. The k-kL-ω model predicted an area of increased Cf from -

0.25 to -0.70 that reached a maximum at -0.45. This was an area of laminar flow where the flow 

detached from the blade at -0.19, reattached to the blade at -0.65, then became turbulent from -

0.65 to the trailing edge. For the same region from -0.19 to -0.65, the MILES turbulence model 

predicted the flow to be turbulent. Though the flow was turbulent for this region, the Cf was 

nearly constant with a slight increase near -0.70. From -0.70 to -0.95 these models shared 

qualitative agreement and both predicted turbulent flow. From -0.95 to the trailing edge the 

models were in quantitative agreement.  

 

Figure 25: Skin Friction Coefficient around Airfoil, λ-1=0.072, 90% span 
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Figure 26: Contours of Wall Shear, Pressure Side, λ-1=0.072, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 27: Contours of Wall Shear, Pressure Side, λ-1=0.072, k-kl-ω 

 



 

51 | P a g e  
 

 

Figure 28: Contours of Wall Shear, Pressure Side, λ-1=0.072, MILES  

 

 

 

Figure 29: Contours of Wall Shear, Suction Side, λ-1=0.072, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 30: Skin Friction Coefficient around Airfoil, λ-1=0.108, 90% span 

 

 

Figure 31: Contours of Wall Shear, Pressure Side, λ-1=0.108, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 32: Contours of Wall Shear, Suction Side, λ-1=0.108, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

 

 

Figure 33: Skin Friction Coefficient around Airfoil,  λ-1=0.144, 90% span 
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Figure 34: Contours of Wall Shear, Pressure Side, λ-1=0.144, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

 

Figure 35: Contours of Wall Shear, Suction Side, λ-1=0.144, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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5.5        Wall Shear Stress Distribution 

5.5.1      Suction Side 

Wall shear was investigated for 𝜆−1 = 0.072, 0.180, 0.324. Results for all models in the 

region of the airfoil tip on the suction surface are shown in figs. 36-38. The standard k-ε model 

predicted the highest shear loading at the tip for all 𝜆−1 values. This result was substantially 

higher than any of the other three models. The high levels of shear stress are again indicative of 

the increased levels of turbulence that are expected to be predicted in the boundary layer by the 

standard k-ε model. The SST-k-ω model showed stress levels at the leading edge comparable to 

the MILES and k-kL-ω models but higher levels over the majority of the surface. This is due to 

the fact that the SST-k-ω model predicts a fully turbulent boundary layer and does not resolve 

transition from laminar to turbulent. The MILES and k-kL-ω turbulence models show the lowest 

levels of shear stress due to their ability to predict both laminar and turbulent flow regions. They 

also show some level of unsteadiness, visible as patchy regions of higher shear stress. For the 

MILES model, the flow is shear stress distribution is quite patchy and unsteady since any 

turbulence in the flow appears as fluctuating velocity which in turns yields fluctuating shear 

stress on the wall. 

As the value of 𝜆−1 increased, the relative behavior of the models did not change 

significantly. Effectively, the angle of attack of the airfoil also increased and the region of high 

shear stress moved closer to the leading edge. For the midrange value 𝜆−1 = 0.180, the flow is 

predicted to be separated by the MILES and k-kL-ω models, since the laminar boundary layer 

tends to separate more readily under adverse pressure gradient. At the highest value of 𝜆−1, the 

flow appears to be separated for all models except for standard k-ε. The delay in separation for 
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the standard k-ε is due to the prediction of high turbulence, and helps to explain the late 

prediction of stall indicated in the power performance plots (fig. 10). 

 

 

Figure 36: Contours of Wall Shear Near Blade Tip, Suction Side, λ-1=0.072, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 37: Contours of Wall Shear Near Blade Tip, Suction Side, λ-1=0.180, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 38: Contours of Wall Shear Near Blade Tip, Suction Side, λ-1=0.324, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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5.5.2      Pressure Side 

The pressure side of the blade for 𝜆−1 = 0.072 showed that the standard k-ε and SST-k-ω 

models again predicted clearly defined areas of high shear. This was likely due to the inherent 

prediction of fully turbulent flow for these models. The MILES and k-kL-ω models predicted 

regions of shear similar to one another. This value of 𝜆−1 accounted for the largest difference 

between the modeling of 𝜏𝑤 between turbulence models (fig. 39). When looking at 𝜆−1 = 0.180 

the model 𝜏𝑤was predicted in a similar manner as the previous 𝜆−1 (fig. 40). At 𝜆−1 = 0.324 

(fig. 41) the SST-k-ω and standard k-ε models predicted wall shear very similarly. The same 

qualitative behavior between models was shared while the standard k-ε over predicted the value 

of 𝜏𝑤. This was again likely due to the over prediction of turbulence at the stagnation point 

(further discussed in the section below on turbulent kinetic energy). The remaining turbulence 

models, MILES and k-kL-ω, were very closely related. Each model exhibited a nearly identical 

contour for 𝜏𝑤 near the tip (fig. 39 c and d). The only slight difference that existed was that the 

k-kL-ω results showed a clearly defined area of shear while the MILES turbulence model was 

unable to capture a clearly defined area. Again, this is directly related to the differences the 

MILES and  k-kL-ω models had in modeling Cp and Cf. 
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Figure 39: Contours of Wall Shear Near Blade Tip, Pressure Side, λ-1=0.072, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 40: Contours of Wall Shear Near Blade Tip, Pressure Side, λ-1=0.180, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 41: Contours of Wall Shear Near Blade Tip, Pressure Side, λ-1=0.324, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

5.6      Radial Velocity 

Radial velocity (Vr ) in HAWTs is the velocity component of flow from the root of the 

blade outward toward the tip. Micallef et al. (2012) observed that complex behaviors of Vr 

occurred at the root and tip. These behaviors were seen at various 𝜆−1 and span locations and are 

presented below.  

The Vr for 𝜆−1 = 0.072 for five span wise locations; 25%, 33%, 50%, 75%, 90%; was 

examined (figs. 42, 44, 46, 47, 50). At this value of 𝜆−1 the SST-k-ω and standard k-ε models 

showed no complex radial flow for all span wise locations. This was not the case for the MILES 

and k-kL-ω models. The MILES turbulence model predicted complex Vr behavior near the tip at 

span wise locations of 75% and 90% (figs. 48 and 51). The k-kL-ω model predicted complex Vr 

near both the root and the tip at span wise locations of 25%, 33%, 75% and  90% (figs. 43, 45, 

49, and 52). The only span wise location where this behavior was not predicted was at 50% span. 
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While both k-kL-ω and MILES turbulence models predicted Vr at 75% and 90% span, the 

presentation of Vr differed. At both span locations the MILES turbulence model predicted a thin 

layer of Vr that was located close to the airfoil surface. Radial velocity was predicted on the 

suction side only at 75% span and both sides of the airfoil at 90% span. The k-kL-ω model 

predicted a Vr at these locations that was beginning to detach and separate itself from the airfoil 

surface.  This flow was seen on both the suction and pressure sides for both span wise locations.     

 

Figure 42: Contours of Radial Velocity, λ-1=0.072, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 43: Contours of Radial Velocity, λ-1=0.072, 25% span, (d) k-kl-ω 

 

 

Figure 44: Contours of Radial Velocity, λ-1=0.072, 33% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 45: Contours of Radial Velocity, λ-1=0.072, 33% span, (d) k-kl-ω 

 

 

Figure 46: Contours of Radial Velocity, λ-1=0.072, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 47: Contours of Radial Velocity, λ-1=0.072, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 48: Contours of Radial Velocity, λ-1=0.072, 75% span, (c)MILES 
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Figure 49: Contours of Radial Velocity, λ-1=0.072, 75% span, (d) k-kl-ω 

 

 
 

Figure 50: Contours of Radial Velocity, λ-1=0.072, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 51: Contours of Radial Velocity, λ-1=0.072, 90% span, (c) MILES 

 

 

Figure 52: Contours of Radial Velocity, λ-1=0.072, 90% span, (d) k-kl-ω 
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The differences between models for 𝜆−1 = 0.180 were not as subtle as those seen 

for𝜆−1 = 0.072. The SST-k-ω model predicted a much higher Vr on the suction side through all 

span wise locations (figs 52-56) with the exception coming at 90% span (fig. 57). At 25% and 

50% span the standard k-ε model predicted a similar Vr. The major difference for these locations 

was that the standard k-ε prediction was small in magnitude and located closer to the trailing 

edge than that of the SST-k-ω prediction. The remaining span wise locations provided no 

consistent results between models. Finally, the MILES turbulence model yielded an anomalous 

result. At 90% span, a small area of increased Vr was found near the leading edge (fig. 58) . This 

result was not found with any other method at any span wise location for 𝜆−1 = 0.180. 

 

 

Figure 53: Contours of Radial Velocity, λ-1=0.180, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 54: Contours of Radial Velocity, λ-1=0.180, 33% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 55: Contours of Radial Velocity, λ-1=0.180, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 56: Contours of Radial Velocity, λ-1=0.180, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 57: Contours of Radial Velocity, λ-1=0.180, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 



 

70 | P a g e  
 

 

Figure 58: Contours of Radial Velocity, λ-1=0.180, 90% span, (c) MILES 

 

At 𝜆−1 = 0.324 the turbine was past the point of rating. Though the flow physics at this  

𝜆−1 may not be of particular interest with regard to turbine performance, the results provided 

more insight to the variation of turbulence model predictions. The Vr was inspected at the same 

five span wise locations for  𝜆−1 = 0.324. The MILES turbulence model predicted the highest Vr 

near the root of the blade, specifically at 25% and 33% (figs. 59 and 60). At these locations the 

k-kL-ω and standard k-ε model predictions were similar in magnitude, with the major difference 

being that the k-kL-ω Vr was predicted nearer and attached to the leading edge. At 33% span the 

SST-k-ω prediction behaved much like the k-kL-ω prediction. For the remaining span wise 

locations, the SST-k-ω model predicted a much higher Vr than all other models. The remaining 

models showed no similarity in prediction with one another or with the  SST-k-ω model. 
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Figure 59: Contours of Radial Velocity, λ-1=0.324, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
 

 

Figure 60: Contours of Radial Velocity, λ-1=0.324, 33% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 61: Contours of Radial Velocity, λ-1=0.324, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

Figure 62: Contours of Radial Velocity, λ-1=0.324, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 63: Contours of Radial Velocity, λ-1=0.324, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

5.7      Turbulent Kinetic Energy 

Turbulent kinetic energy (TKE) is a measure of the intensity of the turbulence in the 

flow. Specifically, it is the magnitude of the temporal variance of the velocity vector, defined at 

each point in space. For the RANS models, turbulent kinetic energy (denoted by k) is determined 

by solution of a transport equation (eqs. 6, 9 and 11). For the MILES model, time-dependent 

velocity fluctuations are resolved in the solution and TKE is determined based on statistical 

averaging of the flowfield. The TKE results for three 𝝀−𝟏 values at five span locations are 

presented below.  

There results using different models show substantial differences for 𝜆−1 = 0.072 and 

𝜆−1 = 0.180 (fig. 64-73). The standard k-ε model predicted a region of high values of TKE near 

the stagnation point and propagating back to the trailing edge of the airfoil. It was assumed that 
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the high prediction of TKE was a result of the stagnation point anomaly presented by Durbin 

(1996). The propagation of TKE rearward was a result of the high prediction of TKE at the 

stagnation point, which also diffused into the boundary layer, increasing the predicted level of 

turbulent viscosity, which in turn produces the high values of wall shear stress and delayed 

separation of the boundary layer as discussed previously. Although this behavior is known to be 

non-physical, it is interesting that it results in an improvement in the overall prediction of power 

performance relative to the other models (see fig. 10).  

The SST-k-ω model does not show the stagnation point anomaly and therefore predicts 

much lower overall levels of turbulence in and near the boundary layer. However, even though 

the levels are lower, the boundary layer is fully turbulent over the entire surface. In contrast, the 

contours of TKE highlight the transitional nature of the boundary layer as predicted by the k-kL-

ω and MILES models. The figures clearly indicate regions of both laminar and turbulent flow, 

which supports results seen above, particularly contours of wall shear stress and Cf profiles. 
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Figure 64: Contours of Turbulence Kinetic Energy, λ-1=0.072, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

 

Figure 65: Contours of Turbulence Kinetic Energy, λ-1=0.072, 33% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 66: Contours of Turbulence Kinetic Energy, λ-1=0.072, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

 

Figure 67: Contours of Turbulence Kinetic Energy, λ-1=0.072, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 68: Contours of Turbulence Kinetic Energy, λ-1=0.072, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

 

Figure 69: Contours of Turbulence Kinetic Energy, λ-1=0.180, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 70: Contours of Turbulence Kinetic Energy, λ-1=0.180, 33% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

Figure 71: Contours of Turbulence Kinetic Energy, λ-1=0.180, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 72: Contours of Turbulence Kinetic Energy, λ-1=0.180, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

Figure 73: Contours of Turbulence Kinetic Energy, λ-1=0.180, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Model results for 𝝀−𝟏 = 𝟎. 𝟑𝟐𝟒 were all qualitatively very similar to one another 

throughout all of the span locations (fig. 75-79), though the levels of turbulence varied from 

model to model. The span locations that yielded the most similarity across all models was at 

33%, 50%, and 75%. It is clear that at this value of 𝝀−𝟏 the boundary layer is completely 

separated over the entire airfoil. This result was consistent with the assumptions of Micallef et al. 

(2012).  

The remaining locations yielded a large variance in TKE between each of the models. 

Each of the models exhibited a similar qualitative representation of TKE but the value for each 

model varied greatly. The MILES turbulence model predicted the largest value of TKE near the 

root and at the tip that was attached to the airfoil near the leading edge. The k-kL-ω model 

predicted a very similar TKE profile but lacked the large region of TKE near the leading edge. 

This difference is likely due to the way each of the models predicts and models turbulence in the 

transition region. The result for SST-k-ω was expected due to the behavior of the shear stress 

limiter inherent to the model. This aspect helps prevent the buildup of excessive TKE near 

stagnation points whereas the standard k-ε struggles to do this at the stagnation point. This 

difference was highlighted near the root and tip where the standard k-ε model predicted a high 

TKE at the stagnation point and the SST-k-ω model did not present a high prediction at the 

stagnation point.   
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Figure 74: Contours of Turbulence Kinetic Energy, λ-1=0.324, 25% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω

 

Figure 75: Contours of Turbulence Kinetic Energy, λ-1=0.324, 33% span,(a)SST-k-ω (b) 

Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 76: Contours of Turbulence Kinetic Energy, λ-1=0.324, 50% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 

 

Figure 77: Contours of Turbulence Kinetic Energy, λ-1=0.324, 75% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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Figure 78: Contours of Turbulence Kinetic Energy, λ-1=0.324, 90% span, 

(a)SST-k-ω (b) Standard k-ε (c)MILES (d)k-kl-ω 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1      Conclusions  

Computational fluid dynamics (CFD) simulations of the Endurance S343 HAWT were 

performed for 𝜆−1 = 0.072 − 0.324. These simulations were carried out using three Reynolds-

averaged Navier RANS turbulence models (SST-k-ω, Transition k-kL-ω, Standard k-ε ) and an 

implicit large-eddy simulation model (MILES). The CFD results were then compared with 

experimental test results for turbine performance and coefficient of power (Cpow). The 

experimental test results did not provide data for any other aspects of the flow physics, so 

detailed comparison in terms of surface or field distributions of flow variables was not possible. 

In order to elucidate the reason for different power predictions using different turbulence models, 

several other results, including Cp, Cf, 𝜏𝑤, 𝑉𝑟, and TKE, were compared to find differences for 

each of the models. 

Two different experimental data sets were used for validation. It was observed that the 

experimental test results yielded different results for the same geometry and test conditions when 

compared with one another. This difference highlights the inherent uncertainty in measurements 

of complex flow systems. This was also an interesting parallel when looking into the turbulence 

model behavior for the numerical simulations as it provided some insight into the nature and 

complexity of three-dimensional studies.  

When comparing results from the different turbulence models, dach model exhibited 

behaviors that were unlike their counterparts. The k-kL-ω model produced the highest 

overprediction of power in comparison with the WE experimental results and but predicted the 

inverse tip speed ratio (𝜆−1) corresponding to peak performance within 7% of both of the 
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experiments. This model also predicted an anomalous behavior that was also seen in the WE test, 

a slight decrease and subsequent increase in power near the peak performance value. The SST-k-

ω model showed qualitative similarities with the experimental tests with regards to performance, 

and closer quantitative agreement than the k-kL-ω model. Stall was predicted at a value of 𝜆−1 

more than 20% less than the test results, however the maximum power output was found to be 

within 6% of the experiments.  

The MILES turbulence model failed to predict the power output and the value of 𝜆−1 at 

stall with reasonable agreement. Both were found to be outside of differ by more than 12% from 

the experimental data. The standard k-ε model predicted the performance well for 𝜆−1 =

0.072 − 0.108. This quantitative similarity diminished at values of 𝜆−1 past this range. The 

point of rating was found to be at a 𝜆−1 that was more than 20% higher than either experimental 

result yet the power output was predicted to only be 6% lower than each experiment.   

Based on the comparison of power output, no single turbulence model could be judged to 

be inherently superior, and all showed non-trivial disagreement with measurement data over at 

least part of the speed range investigated.  Furthermore, each of the models were found to show 

significant differences from the others over all or part of the speed range. Not only was no model 

consistent with the experiments, no model was consistent with any other model. 

Results from the CFD simulations of this HAWT did not provide a turbulence model that 

completely and accurately modeled the experimental tests with a high degree of certainty. Each 

turbulence model displayed differing characteristics. The standard k-ε model modeled excessive 

turbulence as a result of the stagnation point anomaly. The effect of this was increased wall shear 

and drag. This increase led to delayed separation yet it was this turbulence model that provided 
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the closest result to the experiments. The stagnation point anomaly is a shortcoming of the 

standard k-ε model. This made justification of the accuracy of the turbulence model difficult. 

More concretely, no justification of model accuracy could be made due to the similarity of the 

model results with experimental results being predicated on a shortcoming of the turbulence 

model itself. The SST-k-ω predicted a fully turbulent boundary layer. This prediction is likely 

not a realistic representation of what was physically occurring within the boundary layer. 

However, the SST-k-ω model yielded reasonable agreement with the experiments through much 

of the speed range up to the point of rating especially since the CFD results should be greater 

than the experimental results due to mechanical and electrical losses. The k-kL-ω model provided 

the best qualitative agreement. This model predicted a laminar boundary layer which led to a 

reduction in wall shear. The consequence of this was early separation. These factors caused the 

shape of the power curve for this turbulence model to closely resemble the experimental results 

more than any other model. The MILES turbulence model predicts transition in the boundary 

layer. The result of this was early separation and stall. This resulted in the point of rating shifting 

to a lesser 𝜆−1 than the experimental results. The results for this model could likely be improved 

upon by refining the grid. This grid refinement would allow more of the turbulent fluctuations to 

be accurately resolved. 

Each of the turbulence models was employed on a consistent test case. A key focus for 

this study was to effectively address every aspect of the test case so the turbulence model results 

could be compared. For this test case the geometry and dimensionality were held constant. To 

ensure turbulence model results were not varied as a result of poor selection of boundary 

conditions, the placement as well as the type of boundary conditions was studied at length. The 

grid was refined to a level that well exceeds previous works in open literature. Even when taking 
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special care of the aforementioned aspects the results of each turbulence model was highly 

varied. This led to the conclusion that turbulence model selection has a great impact on CFD 

results and CFD end users should always be aware of the inherent uncertainty when using CFD 

for analysis and design.  

6.2      Future Work 

Future efforts will focus on a more in-depth analysis of the behavior of these models 

using a three-dimensional geometry. Additional test cases are necessary in development of a 

more comprehensive picture of model performance. Suggestions include larger turbines at a 

higher Reynolds number and alternative models. Potential models for investigation are hybrid 

RANS-LES models. These models could be employed and would take advantage of the strengths 

of each approach.  Further investigation into the effects a more refined grid has on the results of 

these models is also of high importance. This will facilitate more accurate results when 

employing large eddy simulation.  
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