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Abstract 

The air-water interface in porous media has been studied for decades, and is important for 

understanding the distribution and movement of water, solutes and suspended colloids and 

nanoparticles in the unsaturated zone. The spatial configuration of individual grain surfaces plays 

a central role in defining the shapes of capillary-held water films in porous media, as well as 

influencing how flow and transport occur in unsaturated media. An accurate description of grain 

surface is essential for the simulation of the configuration of air-water interface. The objectives 

of this work were to explore algorithms related to reconstruction of grain surfaces from scanning 

electron microscopy (SEM) images, and then to simulate configuration and flow in unsaturated 

media at different scales. 

To obtain grain surface configuration, a new hybrid method was developed to reconstruct 

three-dimensional (3D) grain surfaces from two dimensional (2D) images taken by scanning 

electron microscopy (SEM). The hybrid method combines stereoscopic reconstruction with 

shape-from-shading calculations, and is able to capture detail from complex natural surfaces.  

shadows are universal in SEM images, and can complicate reconstruction. A machine-

learning method based on boosted decision trees was used to identify shadows in SEM images 

based on a training set of shadows in photographic images. The influence of shadows on the 

hybrid reconstruction method was analyzed. 

Previous studies examining the configuration of air-water interfaces have been based on 

calculations for surfaces whose elevations can be defined by 𝑧 = 𝑓(𝑥, 𝑦). This made existing 

methods unsuitable for calculations in more complex geometries, such as around the outsides of 

grains. A numerical simulation method was developed to calculate air-water interface in three-
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dimensional space around the outsides of grains. The method was then extended to allow 

simulation of flow during evaporation. 

Finally, work was conducted to explore the flow and transport of nanoparticles in a 

cluster of sand grains experiencing evaporation. Experiments involved filling a cluster of sand 

grains with water containing fluorescein sodium and sulfate-modified polystyrene nanospheres, 

and using confocal microscopy to image water flow between sand grains and deposition of 

fluorescent nanoparticles during evaporation. A model was developed to explain the flow 

behavior observed. 
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Chapter 1. Introduction 

1.1. Motivation 

Unsaturated porous media contain both air and water in the pores. The presence of water 

film and an air-water interface in porous media significantly influence a wide range of important 

physical phenomena including multiphase flow, mass transfer, and energy transfer processes 

(Powers et al., 1991; Costanza-Robinson & Brusseau, 2002; Flury & Aramrak, 2017). 

Multiphase flow plays an essential role in the deposition and transport of dissolved substances 

such as minerals, contaminants, as well as suspended nanoparticles and colloids (Ju & Fan, 2009; 

Meakin & Tartakovsky, 2009).  

There are two kinds of water films in unsaturated porous media: capillary-held water 

films, and adsorbed water films. Adsorbed water film thicknesses are thought to be tens of 

nanometers (T. K. Tokunaga, 2011), while capillary-held water film thicknesses are thought to 

be  on the order of micrometers (T. C. G. Kibbey, 2013). That means capillary films contain 

much more water than adsorbed films, and film phenomena such as transport and mass transfer 

of dissolved or suspended substances are likely to be more significant in capillary-held films. 

Recent work (T. C. G. Kibbey, 2013) suggests that capillary-held films may be significantly 

more common in real unsaturated porous media than adsorbed films, so understanding their 

behavior is critical to understanding phenomena in unsaturated media. 

Pore-scale simulation of phenomena in unsaturated porous media requires an accurate 

knowledge of the configuration of water films. Theoretical capillary-held water film profiles on 

sand grain surfaces can be calculated by solving the Young-Laplace equation which describes 

the shape of capillary held water films (Sweeney et al., 1993; T. C. G. Kibbey, 2013).  The 
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spatial configuration of the sand grain surface plays a significant role in determining the water 

film configurations.  High resolution 3D elevation maps of sand grain surfaces are needed for 

accurate calculation of water film profiles, which are themselves needed for accurate simulation 

of phenomena such as fluid motion that occur in capillary-held water films.  The purpose of this 

work was to develop a range of numerical simulations of important phenomena that take place in 

water films in unsaturated porous media. In addition, the work was focused on development of 

numerical tools needed to conduct more accurate simulations of behaviors and configurations of 

water films. 

1.2. Objectives 

There were two main objectives of this work: 

(1) To develop improved methods to reconstruct the 3D surfaces of sand grains from 

scanning electron microscope(SEM) images, to provide more detailed information for flow 

simulations. This included: 

(a) Development of a new 3D reconstruction algorithm to extract maximum details of 

natural surfaces based on the intensity information of 2D SEM images. 

(b) Utilization of a boosted decision tree approach to identify regions in SEM images 

impacted by shadows and assess the influence of shadows on the 3D reconstruction. 

(2) To develop and use simulations to study how water flow on and between sand grains 

influences physical phenomena in unsaturated porous media. This included: 

(a) development of a model to simulate the configuration of water flow in evaporation 

surface film in three-dimensional space on sand grains. 

(b) exploration of how evaporation drives water flow and the deposition of nanoparticles 

in grain clusters. 
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1.3. Outline 

This dissertation is organized as follows: 

Chapter 2 describes a hybrid method developed to extract maximum detail from natural 

surfaces when reconstructing 3D elevation maps from stereoscopic SEM images. 

Chapter 3 introduces the application of a boosted decision tree to identify shadows in 

SEM images. The influence of identified shadows on the 3D reconstruction method in Chapter 2 

is discussed.  

Chapter 4 describes a numerical simulation to calculate film configurations and water 

movement on sand grains in three-dimensional space. 

Chapter 5 describes experiments and simulations examining the transport and deposition 

of nanoparticles in the pores of grain clusters undergoing evaporation.  

Chapter 6 provides a summary and conclusions for Chapters 2-5. 
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Chapter 2. A Hybrid Method for 3D Reconstruction of Sand Grain 

Surfaces from Scanning Electron Microscope (SEM) Images* 

Abstract 

Reconstruction methods are widely used to extract three-dimensional information from 

scanning electron microscope (SEM) images. This chapter presents a new hybrid reconstruction 

method that combines stereoscopic reconstruction with shape-from-shading calculations to 

generate highly-detailed elevation maps from SEM image pairs. The method makes use of an 

imaged glass sphere to determine the quantitative relationship between observed intensity and 

angles between the beam and surface normal, and the detector and surface normal. Two specific 

equations are derived to make use of image intensity information in creating the final elevation 

map. The equations are used together, one making use of intensities in the two images, the other 

making use of intensities within a single image. The method is specifically designed for SEM 

images captured with a single secondary electron detector, and is optimized to capture maximum 

detail from complex natural surfaces. The method is illustrated with a complex structured 

abrasive material, and a rough natural sand grain. Results show that the method is capable of 

capturing details such as angular surface features, varying surface roughness, and surface 

striations. 

2.1. Introduction 

The scanning electron microscope (SEM) is a useful tool to analyze the surface structures 

of natural and engineered materials (Bogner et al., 2007; Rittscher et al., 2008; Limandri et al., 

2016). However, by itself, SEM can only provide two-dimensional images. Three dimensional 

                                                 
* This chapter has been published in modified form as “A hybrid 3D SEM reconstruction method optimized for 

complex geologic material surfaces” by Yan, S., Adegbule, A. and Kibbey , T. C. (2017), Micron, 99, 26-31. 
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surface reconstruction methods are required to obtain three dimensional information from two 

dimensional SEM images. There are three major categories of three-dimensional reconstruction 

methods: single-view methods, multi-view methods, and hybrid methods (A. P. Tafti et al., 

2015). Single-view methods, sometimes described as shape-from-shading methods, calculate 

three-dimensional information based on one or more images taken from the same view point.  

Photometric stereo, where images with different lighting or sensor configurations are used to 

calculate surface elevations, is one example of a single-view method.  The method and its 

variations have been widely used, and are particularly well suited to extracting three-dimensional 

information from smooth surfaces (Woodham, 1980; Drzazga et al., 2005; Paluszyński & 

Slowko, 2005; Warren, 2007; Argyriou & Petrou, 2008; Marinello et al., 2008; Pintus et al., 

2008; Slowko & Krysztof, 2013).  Multi-view methods make use of two or more images taken 

from different viewpoints to reconstruct surfaces based on the mathematics of projection.  Stereo 

matching is the most common multi-view approach (Stampfl et al., 1996; Minnich et al., 1999; 

Zisserman, 2004; Samak et al., 2007).  The method is based on finding matching points on a 

surface in stereo images captured at different angles, and then calculating the elevation of the 

point in three dimensions based on the coordinates in the two-dimensional images.  One of the 

major challenges of the method is accurate matching of points between the images, because a 

single mismatched point will skew the final three-dimensional surface; approaches from neural 

adaptive learning or machine learning have been used with success to improve matching 

(Binaghi et al., 2004; Ahmad P Tafti et al., 2016).  Unlike single-view methods, stereo matching 

methods are best suited to images with hard edges or other distinct features to allow accurate 

identification of matching points between images.  However, stereo-matching methods are not 

able to accurately determine three dimensional information for portions of surfaces between the 
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identified matching points, so interpolation must be used to estimate the surface shape in those 

regions.  Furthermore, even with sub-pixel matching point identification, pixel resolution tends 

to limit the accuracy of three dimensional information determined from matching point methods, 

because small differences in position between two images often correspond to large steps in 

elevation.  Hybrid methods combine aspects of both single-view and multi-view methods, using 

multi-view methods to determine the major three-dimensional structure, and then single-view 

methods to fill in detail (e.g., (Beil & Carlsen, 1991; Danzl & Scherer, 2001)). 

The work described in this chapter centers around a hybrid method optimized to extract 

maximum detail from complex natural surfaces.  The method uses a multi-scale windowing 

method to reject mismatched points from stereoscopic images, and then a novel shape-from-

shading approach that incorporates the detector location and response into the reconstruction 

algorithm, and incorporates intensity information both from two separate images and within a 

single image.  The method is specifically designed for images captured using a single in-chamber 

secondary electron detector. 

2.2. Methodology 

2.2.1. SEM imaging 

Images for the work were captured with a Zeiss NEON 40 EsB high-resolution scanning 

electron microscope at the University of Oklahoma Samuel Roberts Noble Electron Microscopy 

Laboratory.  Images were captured at a resolution of 1024×768, with pixel sizes ranging from 

1.002 to 1.787 µm.  All materials were sputtered with a gold-palladium alloy prior to imaging.  

Images were captured using the in-chamber secondary electron detector at a voltage of 5.0 kV.  

For images used for three-dimensional reconstruction, stereo image pairs were taken with the 

sample stage tilted at 6 apart (± 3) from the horizontal.   
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2.2.2. Description of the hybrid method 

The hybrid method described in this chapter consists of a matching point multi-view 

method which is used to determine the coarse three dimensional structure of the surface, and then 

a shape-from-shading algorithm to extract additional fine detail from the SEM images.  The 

subsequent sections describe each of these two components of the hybrid method. 

2.2.2.1 Stereo matching component 

The stereo matching method is based on the disparity estimation of stereo-pair images 

(Pollard et al., 1985; Eastman & Waxman, 1987; Hoff & Ahuja, 1989). Elevations of matching 

points are obtained by the analysis of projective matrix based on camera model. Camera model 

supposes that points in the three dimensional space can be projected on two dimensional image 

by a two dimensional projective matrix with the size 3 times 4.The projective matrix can be 

decomposed into three parts, which is shown in equation (2.1) (Zisserman, 2004): 

 𝐏 = 𝐊[𝐑| − 𝐑𝐂] (2.1) 

Where P is the projective matrix; K is the intrinsic parameters; R is the rotation matrix, samples 

are only rotated along the tilting axis, y-coordinate; C is the homogenous representation of the 

camera center which is the electron source here. Matrix K and 𝐑 have the following forms 

(Zisserman, 2004): 

 

𝐊 = [
𝑓𝑥 𝑠 𝑥0
0 𝑓𝑦 𝑦0
0 0 1

]     𝐑 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

]    𝐂 = [

𝑥𝑐
𝑦𝑐
𝑧𝑐
] 

(2.2) 

Where 𝑓𝑥 and 𝑓𝑦 are the imaging magnification along x-coordinate and y-coordinate; s is defined 

as skewness; (𝑥0, 𝑦0) is the position of the principle point. For SEM images, the distance from 

the electron source to the sample is much bigger than the size of the sample. And, the electron 
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source can be considered at an infinite distance. Thus, the projective matrix can be matrix at 

infinity (Zisserman, 2004): 

 

𝑷∞ = [
𝑓𝑥 𝑠 𝑥0
0 𝑓𝑦 𝑦0
0 0 1

] [
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
0 0 0

    
−𝑡1
−𝑡2
1
] 

(2.3) 

Where 𝑡1 = 𝑟11𝑥𝑐 + 𝑟12𝑦𝑐 + 𝑟13𝑧𝑐, and 𝑡2 = 𝑟21𝑥𝑐 + 𝑟22𝑦𝑐 + 𝑟23𝑧𝑐. 

Two projective matrixes 𝑷𝟏∞ and 𝑷𝟐∞ are supposed to be the projective matrixes of a 

pair of stereo images. Samples are tilted at  ±∆𝜓 apart along y-coordinate and there is no 

skewness on the two images. Magnification is the same along x-coordinate and y-coordinate of 

the two images. 

 

𝑷𝟏∞ = [
𝑓 0 𝑥0

1

0 𝑓 𝑦0
1

0 0 1

] [
cos ∆𝜓 0 sin ∆𝜓
0 1 0
0 0 0

    
−𝑥𝑐cos∆𝜓  − 𝑧𝑐sin ∆𝜓  

−𝑦𝑐
1

]                                   

𝑷𝟐∞ = [
𝑓 0 𝑥0

2

0 𝑓 𝑦0
2

0 0 1

] [
cos ∆𝜓  0 − sin ∆𝜓  

0 1 0
0 0 0

    
−𝑥𝑐cos ∆𝜓 + 𝑧𝑐sin ∆𝜓

𝑦𝑐
1

] 

(2.4a) 

 

(2.4b) 

Where (𝑥0
1, 𝑦0

1) is the principle point for matrix 𝑷𝟏∞, and (𝑥0
2, 𝑦0

2) is the principle point for 

matrix 𝑷𝟐∞; Equations (2.4a) and (2.4b) are combined and rearranged to obtain Equation 2.5: 

 
𝑥 − 𝑥𝑐 =

𝑥1 + 𝑥2 − 𝑥0
1 − 𝑥0

2

2𝑓cos∆𝜓 
       𝑦 − 𝑦𝑐 =

𝑦1 − 𝑦0
1

𝑓
=
𝑦2 − 𝑦0

2

𝑓
     

𝑧 − 𝑧𝑐 = 
𝑥1 − 𝑥0

1 − 𝑥2 + 𝑥0
2

2𝑓 sin ∆𝜓
 

 

(2.5) 

Where (𝑥0
1, 𝑦0

1), (𝑥0
2, 𝑦0

2) and (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) are constant values. Moving the 2D images and samples 

to appropriate positions can get  (𝑥0
1, 𝑦0

1) = (0,0), (𝑥0
2, 𝑦0

2) = (0,0) and (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) = (0,0,0). 

Equation 2.5 can be: 

 
𝑥 =

𝑥1 + 𝑥2
2𝑓𝑐𝑜𝑠∆𝜓

 𝑦 =
𝑦1
𝑓
=
𝑦2
𝑓

 𝑧 =
𝑥1 − 𝑥2
2𝑓𝑠𝑖𝑛∆𝜓

 (2.6) 
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Equation 2.6 is consistent with the result from the geometry analysis method described by 

(Piazzesi, 1973). 

The major challenge of disparity estimation is the accurate identification of coordinates 

of matching points between the stereo-pair images. A number of different methods have been 

used with success in the past (Pollard et al., 1985; Eastman & Waxman, 1987; Hoff & Ahuja, 

1989; Kanade & Okutomi; Binaghi et al.).  For this work, candidate matching points are selected 

using the following approach:  Edges and extreme light or dark points are identified in one stereo 

image by taking the difference of smoothed images smoothed to different degrees (Lowe, 2004). 

Laplacian of Gaussian (LOG) filters are chosen to select candidate matching points, as they can 

reduce the influence of image noises on the accuracy of stereo matching. The filters use a 2D 

(LOG) kernel to approximate the Laplacian of Gaussian function, and SEM images are smoothed 

by the standard convolution with the kernel. 

  𝑆(𝑥, 𝑦, 𝜎) = 𝐿𝑂𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (2.7) 

Where ∗ is the convolution operation, 𝑆(𝑥, 𝑦, 𝜎) is the intensity of smoothed image pixels. 

𝐼(𝑥, 𝑦) is the intensity of SEM image pixels, and 𝐿𝑂𝐺(𝑥, 𝑦, 𝜎) is the Laplacian of Gaussian with 

standard deviation 𝜎. 

The difference of LOG image can be obtained: 

 𝐷(𝑥, 𝑦, 𝜎1, 𝜎2) = 𝑆(𝑥, 𝑦, 𝜎1) − 𝑆(𝑥, 𝑦, 𝜎2)

= (𝐿𝑂𝐺(𝑥, 𝑦, 𝜎1) − 𝐿𝑂𝐺(𝑥, 𝑦, 𝜎2)) ∗ 𝐼(𝑥, 𝑦) 
(2.8) 

Where 𝐷(𝑥, 𝑦, 𝜎1, 𝜎2) is the intensity of difference of LOG image.  

For this work, 𝜎1 was 1.8 and 𝜎2 was 2.0. Candidate points were identified as all positive 

local maxima or negative local minima extreme points along all x scan lines. Matching points for 

these were then identified in the second stereo image by first creating a transformed version of 
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each stereo image containing the absolute value of the first derivative of intensity with respect to 

x (|𝜕𝐼 𝜕𝑥⁄ |).  The use of absolute value first derivative images was found to slightly improve 

performance in preliminary tests with repetitive synthetic images. Matches were identified by 

searching for areas on each transformed image with the highest correlation coefficients. 

Correlation coefficients were calculated by zero-normalized cross-correlation (ZNCC). 

 
𝐶(𝑥, 𝑦) =

∑ (𝐷𝐼1(𝑥, 𝑦) − 𝐷𝐼1) ⋅ (𝐷𝐼2(𝑥, 𝑦) − 𝐷𝐼2)𝑥,𝑦

√∑ (𝐷𝐼1(𝑥, 𝑦) − 𝐷𝐼1)
2∑ (𝐷𝐼2(𝑥, 𝑦) − 𝐷𝐼2)

2
𝑥,𝑦𝑥,𝑦

 

𝐷𝐼(𝑥, 𝑦) = |𝜕𝐼 𝜕𝑥⁄ | 

(2.9) 

Where 𝐶(𝑥, 𝑦) is correlation coefficient,  𝐼(𝑥, 𝑦) is the intensity of SEM image pixel(𝑥, 𝑦), and 

𝐷𝐼 is average intensity in the search window.  

Four search window sizes were used: 33×33 pixels, 17×17 pixels, 9×9 pixels, and 5×5 

pixels.  The coordinate of the matching point was taken as the center of the search window, and 

the maximum was identified with subpixel accuracy by fitting a Centripetal Catmull-Rom spline 

to the cross-correlation values surrounding the apparent maximum (Barry & Goldman, 1988).  

Matching points with cross-correlation coefficients less than 0.7 were eliminated, as were points 

where the maximum difference between the matching point position for the four window sizes 

exceeded 0.8 pixels.  This approach yielded a set of accurate matching points, with few apparent 

artifacts.  A final filter was applied to remove any adjacent identified matching points where the 

calculated three dimensional slope between adjacent points (𝜕𝑧 𝜕𝑥⁄ , as calculated from 

preliminary elevations determined using Eq. 2.6) was greater than 60 pixels per pixel; this 

typically removed a number of matching points in the low single digits.  Final stereo-matching 

elevation maps were created by applying Eq. 2.6 to all match points, and then interpolating to a 

uniform grid by creating a polygonal mesh connecting the points, and then identifying new 
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points at uniform spatial intervals by linearly interpolating within the polygons.  Because there 

are no matching points directly along the elevation map edges, the outer edges of the interpolated 

map are trimmed to remove surface points extrapolated beyond the known data.  The resulting 

elevation maps were used as inputs to the shape-from-shading component of the hybrid method 

described in the next section. 

2.2.2.2 Shape from shading component 

Shape from shading component starts with the stereoscopic elevation map from section 

2.2.2.1 and focuses on extracting topographical detail in the two images by relating intensity of 

SEM image pixels to surface slope. To derive the relationship between pixel intensity and 

surface slope, a number of authors have used equations based on the intensity values at a point in 

three dimensional space identified in two images where the sample was rotated through a small 

angle ±∆𝜓 (e.g., (Newbury, 1975; Kholodilov et al., 1987; Beil & Carlsen, 1991)). And, the 

equations derived suppose that the intensity of SEM images pixel is proportional to sec 𝛼, where 

𝛼 is the angle between the surface normal and the incident electron beam. The  equations work 

for the imaging systems where the majority of the released secondary electrons are captured by 

the detector, as the secondary electron yield from a surface is proportional to sec 𝛼 (Newbury, 

1975; Reimer, 1998). However, for an imaging system with single detector, the detector can only 

capture a portion of the yield secondary electron. For a single in-chamber secondary electron 

detector, it is supposed that the detector can collect secondary electrons within 90 degrees of the 

detector angle.  
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Fig.2.1 angles for captured electrons by the detector 

 

For a surface obeying Lambert’s cosine law, the portion of captured electrons: 

 
∫ cos 𝛾 𝑑𝛾
90°

0

+∫ cos 𝛾 𝑑𝛾
90°−𝛽

0

= 1 + cos𝛽 
(2.10) 

This gives detected intensities proportional to sec 𝛼 (1 + 𝑐𝑜𝑠𝛽), where 𝛽 is the angle between 

the detector and the sample. For a normalized SEM image, the intensity of pixels can be 

expressed:  

 𝐼 = 𝑘 ∙ sec 𝛼 (1 + cos 𝛽) + 𝑐 (2.11) 

where I is the measured intensity at some point (x, y), and k and c are constants for a specific set 

of imaging parameters.  The constants in Eq. 2.11 can be determined by processing an image of a 

sphere collected with the same imaging parameters used for other surfaces.  Because all points 

on a sphere have known surface normal, which means  sec 𝛼 is known in Eq. 2.11.  

 

 

𝛽

 0 − 𝛽
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Fig.2.2 Image of a 685 µm diameter glass sphere used to characterize detector direction. 

 

 

Fig. 2.3 Relationship between intensity and angles α and β determined from the sphere in Fig. 

2.2 Data points along top edge correspond to points where the detector is saturated (upper right 

of the sphere in Fig. 2.2). 
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Figure 2.2 shows the image of a glass sphere (SI-BG05, Scientific Industries (Bohemia, 

NY)) used for evaluating k and c.  Figure 2.3 shows a plot of image intensities from Fig. 2.2 vs. 

sec 𝛼 (1 + cos 𝛽), where nonlinear optimization was used to determine the constants k and c, as 

well as the components of the detector position vector, d, a unit vector from the object to the 

detector (cos 𝛽 =  ∙  , where n is the unit normal vector of the surface at point (x, y)).  The 

beam source is assumed to be positioned at direction (0,0,1) from the surface, which gives 

sec 𝛼 = ( ∙ (0,0,1))
−1

.  Note that edge detection was used to exclude points associated with 

surface defects on the sphere in Fig. 2.2 in the calculations.  Note also that the image in Figure 

2.2 is slightly over-exposed, resulting in the points in Figure 2.2 that have the maximum intensity 

(254) but do not follow the linear trend.  (In Figure 2.2, these points are on the upper right of the 

sphere.)  The non-saturated data in Figure 2.2 correspond to the constants 𝑘 = 111.135 ±

0.37 4, 𝑐 = −85. 65 ± 0.1 45, and d=(0.418, -0.458, 0.785), i.e., the detector is located 

upright in images (the y axis is positive downward). 

The information in Equation 2.11 is used to develop two equations relating intensity to 

surface morphology. The first, Eq. 2.12, uses the intensity values of a single point in space in two 

images of an object that have been rotated about the y-axis by a small angle ±∆𝜓. 

 
tan 𝜓 =

𝜕𝑧

𝜕𝑥
=

(𝐼2 − 𝐼1) − 2𝑑𝑥𝑘 tan∆𝜓

(𝐼2 + 𝐼1 − 2𝑐 − 2𝑑𝑧𝑘) tan∆𝜓
 

(2.12) 

where I1 is the intensity of a specific point in space in an image where the object has been rotated 

at a small angle −∆𝜓 about the y-axis, and I2 is the intensity of a specific point in space in an 

image where the object has been rotated at a small angle +∆𝜓 about the y-axis, 𝑑𝑥 and 𝑑𝑧 are the 

x and z components of the vector d, respectively, and c and k are constants from Eq. 2.11. Note 

that the derivation of Eq. 2.12 follows a similar approach to that described by (Kholodilov et al., 
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1987), but has been derived to include the location of the secondary electron detector. A detailed 

derivation of Eq. 2.12 is provided at the end of chapter 2. It should be emphasized that I1 and I2 

in Eq. 2.12 do not correspond to the same pixel coordinates in each image, but rather correspond 

to the same point in three dimensional space.  Equation 2.12 is used to relate image coordinates 

to space coordinates.  The pixel locations of I1 and I2 are initially based on the interpolated 

surface from the stereo matching component, and are updated as the surface is progressively 

refined using the shape-from-shading information. 

Because Eq. 2.12 only describes slopes in the x-direction, additional information is 

needed to maintain continuity between adjacent x scanlines.  Others (e.g. (Danzl & Scherer, 

2001)) have used minimization of the second derivatives perpendicular to scanlines for this 

purpose.  However, this approach can yield an artificially smoothed surface, blurring any sharp 

transitions in the final surface.  Because the objective of this work was to resolve as much detail 

as possible from the surface, Eq. 2.13 was developed to relate intensity differences in the y-

direction in a single image and calculated slopes in the x-direction to the second derivative: 

 
𝜕2𝑧

𝜕𝑦2
|
𝐼

≈
1

2 ∙ 𝑑𝑦
(
𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗−1

𝑘
− (tan𝜓𝑖,𝑗+1 − tan𝜓𝑖,𝑗−1) − (

1

𝑛𝑧𝑖,𝑗+1
−
1

𝑛𝑧𝑖,𝑗−1
)) (2.13) 

where 𝑑𝑦 is the y component of the vector d, 𝜓 is angle of the surface from the x-axis, Values of 

tan 𝜓 (𝜕𝑧 𝜕𝑥⁄ ) are taken from those calculated in Eq. 2.12, and 𝑛𝑧 is the z-component of the 

surface normal, evaluated iteratively from the calculated surface as it converges.  The indices i 

and j in Eq. 2.13 correspond to points in space, not on the image.  Values of I are taken from one 

image, with their pixel coordinates calculated as before through the use of Eq. 2.6. A detailed 

derivation of Eq. 2.13 is provided at the end of chapter 2. 
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To calculate the surface elevation map, an iterative approach is applied. Like the 

approach described by (Beil & Carlsen, 1991; Danzl & Scherer, 2001), a cost function (Eq. 2.14) 

is progressively minimized to determine the hybrid method surface elevation map: 

 𝐶 =∑(𝑤𝜓𝐶𝜓 + 𝑤𝜙𝐶𝜙)

(𝑖,𝑗)

 
(2.14) 

where 𝑤𝜓 and 𝑤𝜙 are weighting coefficients for the two components of the cost function, 𝐶𝜓 and 

𝐶𝜙, which are defined in Eq. 2.15 and 2.16: 

 
𝐶𝜓 = ((𝑧𝑖,𝑗 − 𝑧𝑖−1,𝑗) − tan𝜓𝑖,𝑗)

2

 
(2.15) 

 

𝐶𝜙 = ((𝑧𝑖,𝑗+1 − 2𝑧𝑖,𝑗 + 𝑧𝑖,𝑗−1) − 
𝜕2𝑧

𝜕𝑦2
|
𝐼

)

2

 

(2.16) 

where tan𝜓𝑖,𝑗 is from Eq. 2.12, and 
𝜕2𝑧

𝜕𝑦2
|
𝐼
 is from Eq. 2.13.  For this work, the weighting 

coefficients in Eq. 2.14 are both set equal to 1.0. Optimization of the surface is conducted using 

the Progressive Optimality Algorithm (Howson & Sancho, 1975) to minimize Eq. 2.14 by 

adjusting elevations throughout the elevation map to progressively reduce local C values.  

Multiple iterations are conducted until the surface converges; on the order of 100 iterations were 

required for the surfaces explored in this chapter. 

2.3. Results and Discussion 

Figure 2.4 shows use of the method on a commercial structured abrasive material, a 

portion of a 1200-grit 3M Trizact sanding disk, model 237AA.  The material was selected 

because of its distinct, sharp edges and flat planes, but also because of the small attached 

particulates and other interesting surface defects.  Some reconstruction methods struggle to 

reconstruct objects with sharp edges, yielding rounded elevation maps.  Furthermore, objects 
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with repeating parallel lines can be challenging from the standpoint of stereo identification, 

because of the difficulties associated with unique identification of matching points between 

images. 

Figure 2.4A shows one of the two SEM images used for the reconstruction (because of 

the similarity between the images, only one is included here.)  Figure 2.4B shows the stereo 

reconstruction of the surface, and Figure 2.4C shows the final hybrid reconstruction.  Note that 

reconstructions in the chapter are rendered using the TVTK framework as they would appear 

with visual light illumination.  Although the primary light source has been positioned to roughly 

approximate the detector position (upper right in the images), the physics of illumination differs 

from that of secondary electron detection, so shaded faces appear in the reconstruction 

renderings (Fig. 2.4B, C) where they might otherwise be bright in an SEM image (Fig. 2.4A) as a 

result of the sec 𝛼 in Eq. 2.11 (e.g., steep faces with surface normal vectors pointing to the left).  

Nevertheless, it is apparent from the figure that the hybrid reconstruction method does a very 

good job of capturing the detail in the SEM image, including the sharp edges and angular facets, 

the attached dust particles, and the small indentations at the top of individual pyramids.  Because 

the hybrid method starts with the stereo elevation map, any errors in the stereo reconstruction can 

produce artifacts in the final hybrid reconstruction.  For example, the lower left corner of Fig. 

2.4B shows some apparent artifacts (not uncommon on image boundaries).  The artifact 

propagates into the hybrid reconstruction in Fig. 2.4C, appearing as warping in the lower left 

corner of the image.  Note also that although the hybrid method does a very good job of 

reproducing the dust particles on the surface, the fact that the reconstructed elevation map is in 

the form 𝑧 =  𝑓(𝑥, 𝑦) means that they are not identified as separate objects, so do not appear as 

distinct as in the original images.  Finally, as is the case with many shape-from-shading methods, 
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shadows have the potential to confuse the reconstruction process, because they show pixel 

intensities that are not directly related to surface slope.  While the optimization method used here 

reduces this effect (in particular, Eq. 2.16), some of the minor surface warping around the 

attached dust particles in Fig. 2.4C likely results in part from this effect. 

 

Fig. 2.4. Application of the hybrid method to a 1830 µm wide section of 1200 grit structured 

abrasive material. A. SEM image (-3 deg.). B. Stereoscopic reconstruction. C. Hybrid 

reconstruction. 

 

Figure 2.5 shows use of the method to reconstruct the surface of a 999 µm wide beach 

sand grain collected from Sandwich, Massachusetts.  Fig. 2.5A shows one of the two stereo 

images used in the reconstruction. Figures 2.5B and C show the stereo and hybrid 

reconstructions of the surface.  Note that the background has been removed from both 

A B 

C 
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reconstructions to allow easier comparison with the SEM image. Overall, the hybrid 

reconstruction method does a very good job of duplicating much of the surface detail of the grain, 

although it is apparent that the reconstruction is somewhat less angular than the original SEM 

image; in particular, some of the steepest faces and their adjacent edges are rounded in Fig. 5C 

where they are clearly angular in the original image.  Areas where the method works well 

include in its ability to duplicate the distinct surface striations throughout the grain, as well as 

patches of locally-varying roughness.  The level of detail with which these features can be 

resolved should be sufficient for many uses of grain surface elevation maps, including detailed 

simulations of fluid configuration and flow on surfaces among other applications (e.g. (T. C. G. 

Kibbey, 2013)). 
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Fig. 2.5. Application of the hybrid method to a 999 µm wide grain of beach sand. A. SEM image 

(-3 deg.). B. Stereoscopic reconstruction. C. Hybrid reconstruction. 

 

2.4. Conclusions 

This chapter presents a new hybrid three-dimensional reconstruction method that is 

optimized to extract maximum detail from SEM images of natural materials.  The underlying 

equations for the method are derived for use with a single in-chamber secondary electron 

detector, to take advantage of the additional directional information available from the detector 

A B 

C 
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response.  The method makes use of an imaged sphere with surface normal to calculate both 

detector location and image response, and then a two-stage reconstruction method to create an 

elevation map.  The resulting elevation maps are able to reproduce angular features in the 

original SEM images, including surface striations and patches of locally-varying roughness, 

making the method well-suited to applications that require extraction of detail from SEM images 

of natural materials.  Limitations of the method are those that challenge most shape-from-

shading-based methods, including surface warping caused by shadows, and limitations in the 

ability to represent overlapping objects with a single-valued (𝑧 = 𝑓(𝑥, 𝑦)) elevation map. 

2.5. Supplementary 

2.5.1. Derivation of Eq. 2.12: The relationship between I1, I2 and 𝝏𝒛 𝝏𝒙⁄  

For this work, the image plane is the x-y plane, and the z axis points toward the beam 

source.  Note that this derivation is based on a left hand coordinate system for consistency with 

earlier work, as well as the downward-positive y-axis in the images.  Rotation for the two images 

is about the y-axis. 

Vector from surface to beam:  𝒃 = (0,0,1) 

Vector from surface to detector:   = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)  

Normal vector at a point on surface:  = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) 

 

Angles: 

𝛽 is the angle between the surface normal and the detector  

𝛼 is the angle between the surface normal and the beam  

𝜙 is the angle between the surface normal and the y-axis  
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𝜓 is the angle between the surface and the x-axis  

 

Relationships: 

cos𝜙 =  ∙ (0,1,0) = 𝑛𝑦   (Si) 

cos 𝛼 =  ∙ 𝒃 = 𝑛𝑧    (Sii) 

cos 𝛽 =  ∙  = 𝑛𝑥𝑑𝑥 + 𝑛𝑦𝑑𝑦 + 𝑛𝑧𝑑𝑧 (Siii) 

tan𝜓 =
𝑛𝑥

𝑛𝑧
=

𝑑𝑧

𝑑𝑥
    (Siv) 

cos𝜓 =
𝑛𝑥

√𝑛𝑥2+𝑛𝑧2
    (Sv) 

sin𝜙 = | × (0,1,0)| = √𝑛𝑥2 + 𝑛𝑧2  (Svi) 

 

From above: 

cos 𝛼 = cos𝜓 ∙ sin𝜙    (Svii) 

(Note: see (Kholodilov et al., 1987) for more on Eq. Svii.) 

Rearranging Equation 2.11 and substituting relationships from above: 

 𝐼 = 𝑘 ∙ sec 𝛼 (1 + 𝑐𝑜𝑠𝛽) + 𝑐 (2.11) 

 (𝐼 − 𝑐) cos 𝛼 = 𝑘 ∙ (1 + 𝑐𝑜𝑠𝛽) (S1) 

 (𝐼 − 𝑐) cos 𝛼 = 𝑘 ∙ (1 + 𝑛𝑥𝑑𝑥 + 𝑛𝑦𝑑𝑦 + 𝑛𝑧𝑑𝑧) (S2) 

 (𝐼 − 𝑐) cos 𝛼 = 𝑘 ∙ (1 + tan𝜓 cos 𝛼 𝑑𝑥 + 𝑛𝑦𝑑𝑦 + cos 𝛼 𝑑𝑧) (S3) 

 

Now, evaluating for the same point in space in each of the two images. I1 is the intensity 

of a specific point in space in the image where the object has been rotated at a small angle −∆𝜓 

about the y-axis, and I2 is the intensity of a specific point in space in the image where the object 
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has been rotated at a small angle +∆𝜓 about the y-axis.  These intensities corresponds to angles 

from the beam 𝛼1 and 𝛼2. 

 (𝐼1 − 𝑐) cos 𝛼1 = 𝑘 ∙ (1 + tan𝜓1 cos 𝛼1 𝑑𝑥 + 𝑛𝑦𝑑𝑦 + cos 𝛼1 𝑑𝑧) (S4) 

 (𝐼2 − 𝑐) cos 𝛼2 = 𝑘 ∙ (1 + tan𝜓2 cos 𝛼1 𝑑𝑥 + 𝑛𝑦𝑑𝑦 + cos𝛼2 𝑑𝑧) (S5) 

Replacing (𝐼 − 𝑐) with 𝐼′, and subtracting S5 from S4, and then substituting Eq. Svii gives: 

 (𝐼1 − 𝑐) cos 𝛼1 − (𝐼2 − 𝑐) cos 𝛼2 − 𝑘 ∙ 𝑑𝑧 ∙ (cos 𝛼1 − cos 𝛼2)

= 𝑘 ∙ 𝑑𝑥 ∙ (tan𝜓1 cos 𝛼1 − tan𝜓2 cos 𝛼2)

= 𝑘 ∙ 𝑑𝑥 ∙ sin𝜙 (sin𝜓1 − sin𝜓2) 

(S6) 

Note that sin 𝜙 is independent of tilt. 

 

Additional trigonometric relationships: 

cos 𝛼1 − cos 𝛼2 = sin𝜙 [cos(𝜑 − ∆𝜑) − cos(𝜑 + ∆𝜑)] = 2 sin𝜙 sin 𝜑 sin ∆𝜑  (Sviii) 

cos 𝛼1 + cos 𝛼2 = 2 sin𝜙 cos𝜑 cos ∆𝜑        (Six) 

sinφ1 − sinφ2 = sin(𝜑 − ∆𝜑) − sin(𝜑 + ∆𝜑) = −2 cos𝜑 sin ∆𝜑    (Sx) 

Substituting these relationships into Eq. S6 and rearranging gives Eq. 2.12. 

 
tan𝜓 = −

𝜕𝑧

𝜕𝑥
=

(𝐼2 − 𝐼1) − 2𝑑𝑥𝑘 tan∆𝜓

(𝐼2 + 𝐼1 − 2𝑐 − 2𝑑𝑧𝑘) tan∆𝜓
 (2.12) 

 

2.5.2. Derivation of the Relationship used for Scanline-to-Scanline Continuity (Eq. 2.13) 

Eq. 2.13 starts with Eq. 2.11 – the relationship between intensity and angles 𝛼 and 𝛽: 

 𝐼 = 𝑘 ∙ sec 𝛼 (1 + cos 𝛽) + 𝑐 (2.11) 

Rearranging and making substitutions from relationships on Eq. 2.11: 

 (𝐼 − 𝑐)

𝑘
cos 𝛼 = (1 + cos 𝛽) 

(S7) 
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 (𝐼 − 𝑐)

𝑘
cos 𝛼 = (1 + 𝑛𝑥𝑑𝑥 + 𝑛𝑦𝑑𝑦 + 𝑛𝑧𝑑𝑧) 

(S8) 

 (𝐼 − 𝑐)

𝑘
𝑛𝑧 = (1 + 𝑛𝑥𝑑𝑥 + 𝑛𝑦𝑑𝑦 + 𝑛𝑧𝑑𝑧) 

  (S9) 

 (𝐼 − 𝑐)

𝑘
= (

1

𝑛𝑧
+
𝑛𝑥
𝑛𝑧
𝑑𝑥 +

𝑛𝑦

𝑛𝑧
𝑑𝑦 + 𝑑𝑧) 

(S10) 

 (𝐼 − 𝑐)

𝑘
= (

1

𝑛𝑧
− tan𝜓𝑑𝑥 − tan𝜙 𝑑𝑦 + 𝑑𝑧) 

(S11) 

 
tan𝜙 =

𝜕𝑧

𝜕𝑦
= −

1

𝑑𝑦
∙ [
(𝐼 − 𝑐)

𝑘
−
1

𝑛𝑧
+ tan𝜓 𝑑𝑥 − 𝑑𝑧] 

(S12) 

We then take the derivative of Eq. S12 to get an expression for second derivative with respect to 

y that can be used to optimize the surface (Eq. 2.13). 

 
𝜕2𝑧

𝜕𝑦2
|
𝐼

≈ −
1

2 ∙ 𝑑𝑦
(
𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗−1

𝑘
+ (tan𝜓𝑖,𝑗+1 − tan𝜓𝑖,𝑗−1) − (

1

𝑛𝑧𝑖,𝑗+1
−
1

𝑛𝑧𝑖,𝑗−1
)) (2.13) 

2.5.3. Stereoscopic Image Pairs Used in Fig. 4 and 5 

Image pairs below correspond to -3 deg (left) and +3 deg (right) rotations. 
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Fig. 2.6. Image pairs used in Fig. 4 and 5. 
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Chapter 3. A Boosted Decision Tree Approach to Shadow Detection 

in Scanning Electron Microscope (SEM) Images for Machine Vision 

Applications† 

Abstract 

Scanning electron microscopy is important across a wide range of machine vision 

applications, and the ability to detect shadows in images could provide an important tool for 

evaluating attributes of the surfaces being imaged, such as the presence of defects or particulate 

impurities. One example where the presence of shadows can be important is in the reconstruction 

of elevation maps from stereo-pair scanning electron microscopy (SEM) images. Shadows can 

both interfere with determination of matching points for stereoscopic calculations, and confuse 

shape-from-shading algorithms which rely on pixel intensity gradients to calculate surface slope, 

leading to inaccurate reconstructions. This chapter describes a machine learning method for 

identifying locations in SEM images impacted by shadows, based on a training set of 

photographic images. The method could be useful as a means of identifying parts of images 

likely to suffer from reconstruction artifacts in shape-from-shading-based reconstructions, or as a 

tool for automated defect identification. The method uses a boosted decision tree machine 

learning approach to identify shadows based on the features of images. The method is illustrated 

with four different natural surfaces exhibiting a range of different types of shadow features, and 

an example is used to illustrate how the method can identify regions likely to be impacted by 

shadows in reconstructions. 

                                                 
† This chapter has been published as “A boosted decision tree approach to shadow detection in scanning electron 

microscope (SEM) images for machine vision applications” by Yan, S., Adegbule, A. and Kibbey, T. C. (2019), 

Ultramicroscopy, 197, 122-128. 
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3.1. Introduction 

Scanning electron microscopy (SEM) plays an important role in machine vision 

applications, where it can be used both to look for defects or surface imperfections, and as an 

input to reconstruction algorithms used to recover three dimensional information. Reconstructing 

three dimensional surface information from scanning electron microscope images has been a 

topic of great interest for many years (Stroke et al., 1977; Beil & Carlsen, 1991; Groeber et al., 

2006; Gontard et al., 2017). Reconstruction methods typically fall into three categories: single 

view methods, multi view methods, and hybrid methods (A. P. Tafti et al., 2015). Single-view 

methods use pixel intensities to estimate surface normal vectors of objects based on SEM images 

which have been taken under different lighting conditions.  Multi-view methods make use of the 

position variation of objects to extract 3D information.  Hybrid methods combine elements from 

the two categories. 

Shadows are common in SEM images, and can both complicate reconstruction algorithms, 

and, in some cases, be used as an indicator of surface defects.  Shadows occur in secondary 

electron SEM imaging when the topography of an object blocks the path of secondary electrons 

emitted from the surface, reducing the fraction that can reach the detector.  Shadows can reduce 

the accuracy of stereo matching reconstruction methods by mismatching the same points on the 

image pairs, because pixels impacted by shadows can depend on the relationship between the 

position of the shadowed surface topography and the detector.  Shadows can also cause artifacts 

in shape-from-shading reconstruction calculations, because they disrupt relationships between 

the intensity of pixel value and the angle from the surface normal, in that a shadowed region 

could have the same slope as a non-shadow region and yet exhibit lower pixel intensities.  This 
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effect can be a significant problem with very rough surfaces, where shadow noise associated 

with surface features can distort elevation maps. 

Shadows are also potentially important in machine vision applications because they can 

be caused by hard edges that result from surface defects or attached particles.  The ability to 

accurately detect shadows could potentially be used both to identify locations where 

reconstructions are inaccurate, and to detect the presence of surface defects. 

The work described here applies a boosted decision tree machine learning method to the 

automated detection of shadows in SEM images.  The algorithm uses photographic images as the 

training set. The next sections describe the imaging conducted for the work, and the details of the 

shadow detection algorithm. 

3.2. Methodology  

3.2.1. Imaging 

Imaging for the work was conducted using the in-chamber secondary electron detector of 

a Zeiss NEON 40 EsB high resolution scanning electron microscope.  The detector was operated 

at a voltage of 5.0 kV.  Stereo image pairs were taken with the stage tilted ±3° from the 

horizontal about the y axis.  Surfaces imaged included one synthetic abrasive material, and three 

natural sand grains.  All were collected at a pixel resolution of 1024×768; images were cropped 

to smaller regions for this work to focus on portions of the surfaces containing significant 

shadows.  Imaged regions ranged in size from 65 µm in width for the smallest imaged surface, to 

1.29 mm in width for the largest imaged surface. 
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3.2.2. Shadow detection 

Shadow detection methods have been developed to detect static and moving shadows 

produced by objects such as cars and people in visible light images (Shehata et al., 2006; Joshi & 

Papanikolopoulos, 2008; Dong et al., 2014). An effective way to identify moving shadows is to 

compare the images with background images.  Gaussian mixture models can learn the statistical 

distribution of shadows, and have been widely used to distinguish between background and 

shadows in moving shadow detection systems (Stauffer & Grimson, 1999; XiaHou & Gong, 

2008). Static shadows can be identified by machine learning methods automatically, as they can 

learn to distinguish image features which are different between shadows and foreground images 

(Khan et al., 2016; Xu et al., 2017). Shadow-labeled images need to be input into the machine 

learning algorithms for training.  In the context of SEM imaging, the images generated are 

monochromatic, static images. 

For this work, a boosted decision tree is used to identify shadows.  Boosted decision trees 

have been found to be highly effective for identifying shadows for monochromatic images, with 

a detection accuracy greater than 85% (Zhu et al., 2010). Decision trees employ a tree-like graph 

of decisions from history data to predict the probability of an event.  Boosted decision trees 

enlarge the number of leaves by increasing the weights of misidentified samples.  The method 

used for this work is adapted from the method described by (Zhu et al., 2010) for detecting static 

shadows in photographic images.  A total of ten photographic images were taken for this work to 

use as training images for the boosted decision tree.  Images were taken from outdoors on a 

bright day and were selected to include a range of hard and soft shadows of varying darkness.  

Images were taken with a Huawei BLN-AL40 phone, converted to 8 bit grayscale, and scaled 

down to 372 pixels × 496 pixels for processing.  Shadows on the input images were labeled 
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manually.  In addition to pixel intensity, six features were extracted from the images to 

differentiate the shadows and non-shadows.  These features were: gradient similarity, local 

maximum, discrete entropy, skewness, edges, and smoothness.  The local window size for 

extracting local maximum, discrete entropy, skewness and smoothness was 5×5 pixels.  The 

gradient is the square root of the sum of the first order derivative along the horizontal and 

vertical directions.  Local maximum is the maximum value of local windows with the pixel as 

the center of the local window.  Discrete entropy is the negative logarithm of the probability 

mass function, and describes the average amount of information. Alternative Pearson Mode was 

used as the measure of skewness.  Edges were extracted by the Sobel-Feldman operator.  

Standard deviation of the local 5×5 pixel window was chosen as the measure of smoothness.  

The gradient: 

 

𝐼𝑖,𝑗,𝑔𝑟𝑎 = √(
𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗−1

2
)2 + (

𝐼𝑖+1,𝑗 − 𝐼𝑖−1,𝑗

2
)2 

(3.1) 

Local maximum: 

 𝐼𝑖,𝑗,𝑙𝑚 = max (𝐼(𝑖,𝑗)∈𝜔) (3.2) 

Discrete entropy: 

 𝐼𝑖,𝑗,𝑒𝑛𝑡𝑟𝑜 = ∑ −𝑝𝑖,𝑗𝑙𝑜𝑔2(𝑝𝑖,𝑗)

(𝑖,𝑗)∈𝜔

 
(3.3) 

Smoothness: 

 
𝐼𝑖,𝑗,𝑠𝑚𝑜𝑜𝑡ℎ = √ ∑

(𝐼𝑖,𝑗 − 𝜇)2

𝑁
(𝑖,𝑗)∈𝜔

 
(3.5) 

Skewness: 
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𝐼𝑖,𝑗,𝑆𝑘𝑒𝑤 =

1

𝑁
∑ (

𝐼𝑖,𝑗 − 𝜇

𝜎𝑖,𝑗
)3

(𝑖,𝑗)∈𝜔

 
(3.5) 

Edges: 

 
𝐼𝑒𝑑𝑔𝑒,𝑥 = [

−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐼     𝑎𝑛𝑑     𝐼𝑒𝑑𝑔𝑒,𝑦 = [
−1 −2 −1
−2 0 2
1 2 1

] ∗ 𝐼  

𝐼𝑒𝑑𝑔𝑒 = √𝐼𝑒𝑑𝑔𝑒,𝑥
2 + 𝐼𝑒𝑑𝑔𝑒,𝑦

2  

(3.6) 

Where 𝐼𝑖,𝑗 is the measured intensity of SEM image at some point (𝑖, 𝑗),  𝜔 is the local window 

with size 5×5 pixels, 𝑝𝑖,𝑗 is the probability of the intensity counts in the local window with the 

center at some point (𝑖, 𝑗),  𝜇 is the mean intensity in the local window, N is the number of pixels 

in the local window, 𝜎𝑖,𝑗 is the standard deviation of intensity in the local window, which equals 

to 𝐼𝑖,𝑗,𝑆𝑚𝑜𝑜𝑡ℎ, and ∗ is the convolution operation. 

The shadow detection problem can be treated as a binary problem, in that a pixel in an 

image is treated as shadow or non-shadow.  The training images are transformed into binary 

images, and then binary images and the features of the training images were input into the 

boosted decision tree machine learning method to detect shadows.  To ensure uniform 

performance between SEM images captured at different times, the SEM images subjected to 

shadow detection are normalized prior to shadow detection so their intensity ranges covered the 

full dynamic range of the image (i.e., 0 to 255 for an 8 bit image).  The maximum number of 

boosting stages to perform was set as 100 for this work, meaning that the learning process was 

terminated when the number of boosting stages reached 100, or if there was a perfect fit.  Small 

isolated non-shadow areas surrounded by shadows were treated as shadow points and removed 

by morphology operator closing. Closing of a binary image is the erosion of the dilation of the 

binary image.  
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3.2.3. Reconstruction 

The reconstruction algorithm used to explore the impact of shadows for this work was 

developed previously by the authors, and is described in detail in (S. Yan et al., 2017). In short, 

the method is a hybrid stereo and shape-from-shading algorithm optimized to extract maximum 

detail from rough natural surfaces. A minor change has been made from stereo matching 

component in section 2.2.2.1, which can ensure enough matching points with a high level of 

accuracy here. Stereo images are collected at ±3° with the y-axis as the rotation axis.  The stereo 

component of the method uses the Difference of Gaussian method to identify characteristic 

points from each image (Stevens & Beaman, 1988). The maximum and minimum points of the 

local windows with the size 3×3 in the Difference of Gaussian images are taken as candidate 

matching points.  Area based matching with three different sized rectangular templates is used to 

identify the matches. Sizes of the template are 33, 17, and 9 pixels in the x-direction, and 5 pixels 

in the y-direction.  All the correlation coefficients of the search window are connected to a curve 

by Catmull-Rom spline interpolation (Barry & Goldman, 1988). Matching points are the points 

which are the center of the searching windows with maximum correlation coefficient. The 

threshold of the correlation coefficient is 0.7 for non-shadow areas to reject matching points and 

0.5 for shadow areas to reject matching points.  Matching points are also eliminated if the 

maximum disparity of the coordinates of matching points of the three different sized templates is 

larger than one pixel. The identified matching points are used to create a preliminary elevation 

map using the mathematics of projection (S. Yan et al., 2017). The shape-from-shading 

component used here is the same as that in section 2.2.2.2. 
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It should be noted that although a specific reconstruction algorithm was used for this 

work to illustrate the implications of shadows on reconstruction, similar results would be 

expected for any shape-from-shading-based reconstruction method where intensity is taken to be 

a function of surface slope, because shadows create local regions of low intensity where the 

relationship between intensity and slope differs from unshaded regions. 

3.3. Training images and test 

Figure 3.1 shows the ten training photographic images collected for shadow detection.  

Although the optics of photographic images are different from image formation in SEM images, 

they are analogous in that secondary electron SEM images have similar characteristics to optical 

images of objects exhibiting diffuse reflection from a point source light.  A hypothesis driving 

this work was that this similarity would allow optical images could to be used as a training set 

for shadow detection.  An advantage of this approach is that it is possible to verify shadow and 

non-shadow areas while photographic images are collected, while the process would be more 

subjective if SEM images were used as training images. 

 

Figure 3.1. The ten photographic images used to train the shadow detection algorithm. 
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Figure 3.2 shows the manually-identified shadows (indicated in black) for the ten training 

images in Figure 3.1.  Note that the images contain 323,402 identified shadow pixels and 

1,521,718 identified non-shadow pixels.  Features corresponding to these pixels serve as inputs 

to the detection algorithm. 

 

Figure 3.2. Manually-identified shadows in the ten training images from Fig. 3.1.  Note that the 

images contain 323,402 shadow pixels and 1,521,718 non-shadow pixels. 

 

Figure 3.3 shows the six features used in the shadow detection algorithm (smoothness, 

skewness, local maximum, gradient, edge and entropy) as identified in the ten training images in 

Figure 3.1.  The features are all normalized to 8-bit gray images, and shown on a scale where red 

corresponds to high values, blue to low values.  Note that the edge and gradient images are very 

similar because many edge detection methods, including the Sobel operator, rely on computation 

of the image gradient. 

To check the performance of boosted decision tree machine learning method on 

identifying shadows, a photographic image with manually identified shadows is used. In the first 

row in Figure 3.4, the first image is the original photographic image.  Black areas on second 

image are the manually identified shadows. Red color in the third image is shadow identified by 

1 2 3 4 5 

6 7 8 9 10 
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the boosted decision tree method. There are total 184512 pixels on the image. 65330 pixels from 

the 75944 pixels manually identified as shadow are detected as shadow and 578 pixels from the 

108568 manually identified as non-shadow are detected as shadow by the boosted decision tree 

method. The accuracy of the boosted decision tree method is as high as 86.0%. Note that isolated 

small shadow areas on the top left corner are not manually identified as shadows but are 

identified by the boosted decision tree method as shadows. It is very hard for the boosted 

decision tree method to identify the small white stones, which are manually identified as  

   

Figure 3.3. The six extracted features for the ten photographic training images in figure 3.1. Red 

corresponds to high values, while blue corresponds to low values. 
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shadows, on the left as shadows, as the intensity of pixels on these stones are as high as some 

non-shadow pixels and these stones consist of tens of pixels which can not be treated as noises. 

The accuracy of the boosted decision tree method can be higher than 86.0% if these factors are 

considered. 

 

Figure 3.4. A photographic image, binary image with manually identified shadows, shadows 

detected by boosted decision tree (shown in red), and six feature images. 

Local max  Edge 

Entropy 

Gradient Skewness Smoothness 
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3.4. Results and discussion 

Figure 3.5 shows an SEM image of a portion of a sand grain to be subjected to shadow 

detection (top), and the six extracted features of the image (bottom).  The image corresponds to a 

region whose dimensions are approximately 65 µm × 45 µm.  Note the extremely angular nature 

of the surface, which exhibits several sunken regions where hard shadows are evident. 

Figure 3.6 illustrates both the shadow detection for the image in Figure 3.5, and how 

detected shadows could be an indicator of reconstruction performance.  Figure 3.6A shows the 

detected shadows, highlighted in red.  Note that two apparent deep pits in the surface have been 

identified by the algorithm as being in shadow, as have other smaller regions around the grain.  

Figure 3.6B shows a rendering of a three dimensional reconstruction conducted using the hybrid 

method described by S. Yan et al. (2017).  While the method appears to capture many of the 

features of the original surface, the fact that the method, like most hybrid methods, relates 

intensity to surface angle, means that it struggles to reconstruct shadowed regions.  The two inset 

figures (Figs. 3.6C and 3.6D) show two sunken regions from the original image (Figure 3.5), for 

direct comparison with the reconstruction.  It is apparent from the comparison that the two 

sunken regions are poorly reproduced by the reconstruction; note that many of the features 

identifiable in both the shadowed regions such as small particulates (likely attached clay particles) 

are missing from the reconstruction.  Furthermore, it is apparent that the detected shadows in 

Figure 3.6B are a very good indicator of the regions where the reconstruction struggles.  This 

information could be useful both for assessing the quality of reconstructions, and could also 

potentially be used as an input to more advanced reconstruction methods designed to improve 

reconstruction in shadow regions. 
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Figure 3.5. SEM image of a 65 µm × 45 µm region of a sand grain (Top), and the six extracted 

features for the image (Bottom). 
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Figure 3.6. Shadows detected in the sand grain surface from Fig. 3.5 (shown in red, A), and a 

rendering of a 3D reconstruction, illustrating the challenges of reconstructing shadowed regions 

(B).  Insets from the original image (C, D) have been included for comparison. 

A 

B 

C 
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Figure 3.7. An SEM image of a 1.04 mm × 0.715 mm region of a synthetic abrasive (A), and 

detected shadows (shown in red, B). 

 

 

Figure 3.8. An SEM image of a 340 µm × 234 µm region of a sand grain (A), and detected 

shadows (shown in red, B). 

 

 

Figure 3.9. An SEM image of a 1.29 mm × 0.89 mm region of a sand grain (A), and detected 

shadows (shown in red, B). 

 

Figures 3.7-3.9 illustrate the shadow detection algorithm as applied to three additional 

surfaces.  In each case, the top image (A) shows the original SEM image, while the bottom 

image (B) shows detected shadows superimposed in red. 

A B 

A B 

A B 
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Figure 3.7 is an image of a structured abrasive material (1200 grit 3M Trizact).  The 

imaged region is approx. 1.04 mm × 0.715 mm, approximately 16 times the length dimension 

(256 times the area) compared with the sand grain region image in Figures 3.5-3.6.  Nevertheless, 

the shadow detection algorithm is able to detect the regions with the darkest shadows on the 

images, both between the pyramids, as well as in the sunken regions at the tops of the pyramids.  

Note that the areas likely to be the most challenging to reconstruct in these images are cracks in 

the surface between individual pyramids, and the sunken regions at the top, all portions identified 

as in shadow by the algorithm. 

Figures 3.8 and 3.9 are both portions of different sand grains.  Figure 3.8 is a small region 

of a sand grain (340 µm × 234 µm).  Note that the shadow detection method is able to identify 

many of the hard shadows around the perimeters of sunken regions on the grain, as well as 

around the angular facets in the lower left corner of the grain, all features that would be difficult 

for reconstruction methods to duplicate.  Figure 3.9 is a much larger region (1.29 mm × 0.89 mm) 

of a different, large sand grain.  Significant fractions of the central ridges of the grain exhibit 

substantial shadowing, as identified by the algorithm, all areas that would be difficult to 

reconstruct. 

3.5. Conclusions 

 This chapter illustrates the use of a machine learning method for detecting shadows in 

SEM images.  The method is based on boosted decision trees, and uses photographic training 

images for shadow detection.  The use of photographic images for training means that it is 

relatively straightforward to verify shadows in training images while they are collected, a process 

that would be subjective if SEM images were used for training images.  The approach described 

in this chapter is well-suited to machine vision applications, either for assessing the likely quality 
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of three dimensional reconstructions, or for identifying surface defects.  In the area of 

reconstruction, the method appears to be able to highlight areas that are the most difficult for 

reconstruction algorithms to duplicate.  This could be used to flag regions where three 

dimensional reconstructions may be suspect, or could even be used as an input to more advanced 

reconstruction methods (e.g., where shadows are processed separately).  For identification of 

defects or impurities, the method is well-suited to automated processing of large numbers SEM 

images.  Because shadows could be an indication of surface defects such as cracks or fissures, or 

attached particulates, the ability to flag images containing unexpected shadows could be 

extremely valuable.
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Chapter 4. Numerical Simulation of the Air-water Interface on Sand 

Grain Surfaces in Three Dimensions 

Abstract 

An accurate description of the air-water interface in three dimensional systems is 

important for the development of three-dimensional numerical models to explore water flow and 

its related phenomena in the water films. This chapter presents a method to calculate the 

configuration of air-water interface in complex geometries by iteratively combining two-

dimensional solutions, and a mass balance method to calculate water flow during evaporation in 

three-dimensional space. The configuration calculation method generates multiple two-

dimensional elevation maps centered at points around the three dimensional object, projected 

with the z direction defined normal to the surface. Calculations of water surface shape on 

individual elevation maps are combined using weighting method that weights overlapping points 

based on its distance from the boundary of each two dimensional elevation map. Multiple passes 

produce an interface shape that converges. Flow accompanying evaporation is determined by 

conducting a mass balance on the changing of water mass under increasing capillary pressures. 

The two methods are illustrated with a natural grain surface, and a synthetic surface of two 

connected grains. Simulations show that water flows towards the receding air-water-solid contact 

lines on both the single grain and the connected grains. 

4.1. Introduction 

Water films and the associated air-water interface play an essential role in phenomena 

such as multiphase flow,  mass transfer, and fate and transport of contaminants, colloids, and 

nanoparticles (Chang & Franses, 1995; L. Chen & Kibbey, 2006; Keita et al., 2016). An accurate 
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understanding of the configuration of water films on grains in unsaturated porous media is 

important for the examination of the related phenomena investigated by experimental studies and 

numerical simulation studies. Capillary-held water films have been distinguished from adsorbed 

water films by many researchers (Bryant & Anna, 2004; Tetsu K Tokunaga, 2009; Lebeau & 

Konrad, 2010). While capillary held films tend to be thicker, on the order of tens of micrometers, 

capillarity can contribution to the configuration of water film whose thicknesses are as low as 4 

nm (Fisher & Israelachvili, 1979).  Adsorbed films tend to have thicknesses in the low 

nanometer range. Flow in adsorbed films is negligible, so regions of thicker films connected by 

adsorbed films are typically considered hydraulically discontinuous. 

The configuration of capillary-held water films on sand grain surfaces is sensitive to the 

geometry of the underlying solid. The relationship between water film thickness and surface 

roughness has been explored by calculating water film configuration under different capillary 

pressures on several surfaces with difference roughness (T. C. G. Kibbey, 2013). However, the 

algorithm developed in that work was limited to elevation maps of the form 𝑍 = 𝑓(𝑥, 𝑦), so 

could not be used to calculate the configuration of water for more complicated geometries, such 

as around the outsides of three dimensional grains. 

Not only are configurations of water films important, but the movement of water in films 

is also important. Of particular interest is the case where water film motion is driven by 

evaporation. Previous work studied the effect of evaporation on water film motion on single 

grains (Adegbule et al., 2018), as well as in grain clusters (S. Yan & Kibbey, 2019). Just was as 

the case with calculations of configuration of water films, however, calculations of water motion 

were conducted in two dimensions based on elevation maps of underlying surfaces in the form 
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𝑍 = 𝑓(𝑥, 𝑦). Many important transport phenomena occur in more complicated geometries, 

however, so this was a limitation of the methods. 

As such, the objectives of this work were to develop a model to obtain theoretical 

configurations of air-water interface on grain surfaces in three-dimensional space, and then use 

that model as a starting point for a model to study how water flow in three-dimensional space. 

This chapter describes the two models developed for the work, and illustrates their performance 

on two different test geometries. 

4.2. Methods 

4.2.1. Test geometries 

Two kinds of surfaces were used in this work: a natural surface of a sand grain extracted 

from a three-dimensional computed microtomography (CMT) image of a cluster of sand grains, 

and a synthetic surface of two connected sand grains.  

CMT is a method that uses x-rays to reconstruct cross-sections of physical objects, 

yielding three-dimension information about the inner structure of the objects, without damaging 

the original objects. The natural surface of a single grain used in this work was extracted from 

CMT data of a cluster of sand grains measured by Molnar et al. (Molnar et al., 2015; Molnar et 

al., 2016), and published on the Digital Rocks Portal (Prodanovic et al., 2015). The sand grain 

was cropped manually from the region of the image, and has dimensions of  5(𝑥) × 68(𝑦) ×

53(𝑧) voxels. Dimensions of voxels were set to be 10 µm in all directions in the following 

simulations (the actual dimensions of voxels are 9.87 µm in all directions). Following extraction 

from the CMT data, the surface of the sand grain was smoothed by averaging the coordinates of 

the points within sphere of radius 2 units for every point on the grain surface in order to remove 

stair-step artifacts from the surface. Figure 4.1 shows surfaces of the natural grain rendered by 
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triangle mesh from different directions. Concave regions are apparent on the surfaces expect for 

the surface from rear view. Concave regions with large curvature can hold water at large 

capillary pressure. 

 

Figure 4.1. The extracted natural grain viewed from different directions  
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The synthetic surface consists of two sand grains represented by two spheres with of 

radius 28 units. (Like the natural surface voxels, each unit in the synthetic surface corresponds to 

10 µm.) The two spheres overlap in 0.2 units along the center line, which means the distance 

between the centers of the two spheres is 55.8 units. The points on the two spheres were defined 

using cylindrical coordinates. A total of 19982 points are included on the synthetic surface in this 

work. Figure 4.2 shows the triangle mesh rendering of cylindrical meshed synthetic surface. 

 

 

Figure 4.2. Triangle mesh rendering of cylindrical meshed synthetic surface.  
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4.2.2. Calculation of three-dimensional interface shapes 

The Young-Laplace equation is employed to describe the configuration of the air-water 

interface. The equation is solved by a finite difference numerical method developed by T. C. G. 

Kibbey (2013). The method used an implicitly finite difference method to iteratively converge on 

a solution by keeping the first derivative terms in Young-Laplace equation of the previous step 

and estimating the second derivative terms at the present step. Contact lines are allowed to 

recede as needed during the iteration to satisfy the equation.  However, the solution is single 

value (𝑍 = 𝑓(𝑥, 𝑦)) elevation surface. Moreover, the slope of the boundary of each calculated 

region is assumed to be the average slope of the underneath grain surface within a rectangular 

window around the boundary, which results in an inaccurate simulation of air-water interface 

near the boundary.  

To adapt the method for this application, sand grains are rotated by different angles. For 

each rotation, only the air-water interface on the upper grain is calculated by the numerical 

method. Fourteen rotation angles are used in this work. If the vector after rotation is (0,0,1), the 

vectors before rotation are (0,0, ±1) and (0, cos 𝜃 , sin 𝜃), where 𝜃 is from 0 to 2𝜋 at 𝜋/6 

interval. Fourteen rotation angles mean almost the whole grain surface has been used several 

times for calculating air-water interface. Two initial surfaces are used for the two surfaces 

separately in this study. For the single grain surface, the initial surface is obtained by rotating a 

sphere of radius 2𝛾/𝑃𝑐 around the outside of the surface as a starting estimate of film thickness 

around the grain surface (Hilpert & Miller, 2001), where 𝛾 is the surface tension of water and 𝑃𝑐 

is the required capillary pressure. For the synthetic grain surface of two connected spheres, a 

cylindrical surface with radius equal to the radius of the two spheres is considered as the initial 

surface. The centers of the two base circles of the cylindrical surface are at the same positions as 
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the centers of the two spheres. It is hard to accurately describe the boundary condition of air-

water interface during the simulation (the influence of the boundary condition on the simulation 

of air-water interface on the inner grain surface is negligible). The inaccurate simulation of air-

water interface on the boundary in each calculation (as a result of the boundary condition not 

matching the actual water configuration) can create errors in the final air-water interface. To 

diminish the impact of the inaccurate simulation, a weight function has been used based on the 

distance of points to the border of the grain surface.  

 
𝑊𝑖,𝑗 = 𝑒−

1
2
(
𝑑𝑖,𝑗−𝑑max 

𝜎
)2

 
  (4.1) 

Where 𝑊𝑖,𝑗 is the weight of point (𝑖, 𝑗) on air-water interface in each calculation; 𝑑𝑖,𝑗 is the 

projected distance of point (𝑖, 𝑗) to the nearest border of the upper surface from each rotation in 

horizontal plane (the horizontal plane is the plane after rotation), and 𝑑max  is the maximum 

distance;  𝜎 is a given number controlling 𝑊𝑖,𝑗. 𝜎 is set to 4.0 and it works well for the 

calculations. Fig. 4.3C shows the projected distances of points of grain surface viewed from one 

rotation angle in horizontal plane. The black region in Figure 4.3C is background and yellow line 

is boundary of grain surface. For a point at (𝑥1, 𝑦1, 𝑧1) and it nearest boundary at (𝑥2, 𝑦2, 𝑧2), the 

distance can be calculated by Eq. 4.2. The maximum distance in Figure 4.3C is 25. 

 𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (4.2) 
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Figure 4.3. Projection process and weight function. A. Sand grain and the fourteen rotation 

directions represented yellow arrows. B. grain surface viewed from the rotation angle in the red 

circle. C. distances of points to the boundary of grain surface on Fig. 4.3B. 

Most of the points on grain surface have been used more than once for calculating air-

water interface. That means most of the points on grain surface have more than one 

corresponding point on the air-water interface, and the corresponding points of the same point on 

grain surface may have different coordinates in three-dimensional space, as they are calculated 

from different rotation angles. Thus, there are more points on air-water interface than on the 
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grain surface. For the points on air-water interface, if the weight of point is less than one-tenth of 

the weight of adjacent points, the point will be removed. Then, the air-water interface is 

smoothed by the weighted mean of the coordinates of every remaining point and its adjacent 

points which are within 1 unit (10.0 µm) from the point. Adjacent points are the points which can 

make up triangles with the points by triangle mesh. The final air water interface is obtained by 

refining the smoothed air water interface through iterative calculation around the grain surface, 

adjusting boundaries for each projection based on values determined from the previous iteration. 

4.2.3 Mesh and water flow 

The points on air-water interfaces are scattered and do not correspond to the points on 

grain surfaces. Specific coordinates of grid points are obtained by linear interpolation of the 

coordinates of scattered points from the final air-water interfaces and sand grain surfaces, which 

make the points from the air-water interfaces and sand grain surfaces on same grid, which is 

essential to calculate the thickness of water films. For the single grain surface, the scattered 

original points on air-water interface were used to form a triangle mesh. New points on air-water 

interface corresponding to the points on the grain surface were calculated by linear interpolation 

of the vertices of their outside triangles. Spherical coordinates of points were applied in the linear 

interpolation process. For the surface with two connected grains, a cylindrical grid was used to 

interpolate new points from the scattered points of simulated water surface by linear 

interpolation. Cylindrical coordinates were applied in the linear interpolation process. There is no 

need to interpolate the points on the regions without water film. 

Water flows were calculated by a model adapted from the two-dimensional model 

previously described by Adegbule et al. (2018). In the model, water flow between capillary 

pressure steps was calculated by a mass balance method.  In the mass balance method, the total 
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evaporated water at each capillary pressure step is distributed uniformly over the surface. Details 

of the two-dimensional model are described in subchapter 5.2.3. However, water flow calculated 

in this chapter is in three-dimensional space. The difference between the two-dimensional model 

is the mass balance equation.  

 

𝑚𝑖
𝑐1 +∑∆𝑚𝑖,𝑗

𝑁1

𝑗=1

−𝑚𝑖
𝐸 = 𝑚𝑖

𝑐2 

(4.3) 

Where 𝑚𝑖
𝑐1 and 𝑚𝑖

𝑐2 are the mass of water at point (𝑖) in three-dimensional space at 

capillary pressure 𝑐1 and 𝑐2;  𝑚𝑖
𝐸 is the evaporated mass of water at point (𝑖) from capillary 

pressure 𝑐1 to 𝑐2;  ∆𝑚𝑖,𝑗 is the mass of water transfer between point (𝑖) and its adjacent point 

(𝑖, 𝑗) from capillary pressure 𝑐1 to 𝑐2. Point (𝑖)  has 𝑁1 adjacent points. The number of adjacent 

points for different points can be different. Note these points are interpolated points. 

4.3. Results and Discussion 

Figure 4.4 shows the simulated water film at capillary pressure 0.1 cm water on the grain 

surface. Water film thicker than 0.1 micrometer is shown as blue color. Thickness of water film 

is the difference of the distances from center of the grain to the corresponding points on grain 

surface and water film surface. Figure 4.4 illustrates that large area of grain surface is covered by 

water. However, most of water film is thin, which can be indicated by Figure 4.5, where area of 

water film thicker than 2 micrometer is much smaller than that thicker than 0.1 micrometer.  
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Figure 4.4. Simulated water film thicker than 0.1 micrometer at capillary pressure 0.1 cm water 

viewed from different directions are shown as blue color 
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Figure 4.5. Simulated water film thicker than 0.1, 1.0, 2.0, and 5.0 micrometers at capillary 

pressure 0.1 cm water are shown as blue color. 
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Figure 4.6 shows water movement from the previous capillary pressure step during 

evaporation. Only the front-view is shown in Fig. 4.6. The front-view grain surface has two 

concave regions. The one with large curvature (i.e., small radius of curvature) can hold a thick 

water film, while the one with small curvature (i.e., large radius of curvature) can hold a thin 

water film. Arrows on the left subfigures indicate directions and mass of water flow from 

capillary pressure 0.05 cm water to 0.1 cm water, from 0.9 cm water to 1.05 cm water, and from 

1.75 cm water to 2.0 cm water. It is hard to see the arrows on the upper part of the grain surface. 

In order to depict the direction of water flow more clearly, small arrows are amplified and shown 

on the right subfigures. Figure 4.6 illustrates water flows towards the contact lines of air-water 

interface and grain surface during evaporation, a behavior which has been observed by a number 

of studies (Deegan et al., 1997; Wan & Tokunaga, 2005; Adegbule et al., 2018; S. Yan & 

Kibbey, 2019). It is likely that the uneven receding of air-water interface drives water flow 

towards contact lines. Water in the narrow connection between two big water patches moves 

much faster than that in other places in the same region. Note that water flow in isolated regions 

are considered separately. Time is not considered directly in the model. According to Langmuir 

evaporation equation, evaporation rates are the same under the same conditions. The tiny size of 

grain surfaces mean conditions of isolated regions are approximately the same. It is hard for all 

isolated regions to reach the same capillary pressure at the same time, as isolated regions may 

have different roughness and water evaporated during two given capillary pressures is not the 

same. Water films inside the same regions are under same capillary pressure at the same time. 
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Figure 4.6. Simulated water film thicker than 0.1 micrometers at capillary pressure 0.1 cm water, 

1.05 cm water, and 2.0 cm water are shown as blue color. The arrows correspond to water 

movement from the previous simulated capillary pressure step. Capillary pressures are from 0.05 

cm water to 0.1 cm water, from 0.9 cm water to 1.05 cm water, and from 1.75 cm water to 2.0 

cm water. The length of arrows on the left subfigures are proportional to mass transfer between 

cells for all capillary pressures. Arrows on the right subfigures only illustrate the direction of 

water movement. 
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Figure 4.7 shows simulated water film thicker than 0.1 micrometers on grain surface at 

capillary pressure 0.1 cm water, 1.05 cm water, and 2.0 cm water. Water flows towards contact 

lines.  As the grain surface is symmetrical along 𝑧 axis, water film dictated by Young-Laplace 

Equation should be symmetric along 𝑧 axis and water flow around the horizontal circle should be 

zero. Water flow at plane 𝑧 = 0 is caused by errors resulting from calculation of the coordinates 

of points on air-water interface. Figure 4.8 shows the details of water flow at capillary pressure 

2.0 cm water. Water flows in the opposite directions, which indicates that water surface at plane 

𝑧 = 0 is not a precise circle. 

 

Figure 4.7. Simulated water film thicker than 0.1 micrometers at capillary pressure 0.1 cm water, 

1.05 cm water, and 2.0 cm water are shown as blue color. The arrows correspond to water 

movement from the previous simulated capillary pressure step. Capillary pressures are from 0.05 

cm water to 0.1 cm water, from 0.9 cm water to 1.05 cm water, and from 1.75 cm water to 2.0 

cm water. The lengths of arrows are proportional to mass transfer between cells at each capillary 

pressure. 
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Figure 4.8. Water flow at capillary pressure 2.0 cm water in details. 

 

Curvature of the simulated air-water interface on the synthetic surface was checked by an 

analysis method (Nguyen et al., 2019). The analysis method can calculate the air-water surface 

between spherical particles of unequal size by estimating the curvature of the axisymmetric 

surface. As the water surface is axisymmetric, two-dimensional curve paths of meridian from the 

simulated water film and analytical surface are compared.  Figure 4.9 shows the two curves and a 

curve of grain surface. The horizontal axis is the symmetric axis. The maximum distance 

difference between the two curves is about 0.0615 unit (0.615 µm) and the standard deviation of 

the distance differences is about 0.0208 units (0.208 µm) (the region without water film is not 

considered in the calculation). Note that the distances from the curve of the simulated surface are 

the average distances of the points on the same vertical plane of the symmetric axis to the axis.  

Figure 4.10 shows the standard deviations of the distances of the points of simulated surface to 

the symmetric axis for its all vertical planes at capillary pressure 2.0 cm water. The origin points 
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in Figure 4.9 and 4.10 are the same point which is in the middle of the two centers of the two 

spheres. 

 

Figure 4.9. Analytic curvature and simulated curvature at capillary pressure 2.0 cm water. 
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Figure 4.10. Standard deviation of the distances from simulated water surface to the symmetrical 

axis at capillary pressure 2.0 cm water. 

 

4.4. Conclusions 

A method simulating water film on grain surfaces in three-dimensional space has been 

provided in this chapter. A weight function has been used in this method to calculate coordinates 

of the points on air-water interface by weighted mean of coordinates of the points from different 

projected directions. Numerical simulations have found that water flow towards contact lines 

during evaporation, a phenomenon referred to as the coffee ring effect. The simulations of water 

film and water movement between two sand grains and among single grains can be treated as 

foundation for establishing three-dimensional models to explore related phenomena such as 

water movement, mass transfer, and diffusion in porous media in unsaturated zone.    
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Chapter 5. The Effect of Evaporation-induced Flow at the Pore 

Scale on Nanoparticle Transport and Deposition in Drying 

Unsaturated Porous Media‡ 

Abstract 

An understanding of nanoparticle interactions with solid surfaces in unsaturated porous 

media is important both for understanding nanoparticle fate in the environment, and for the 

design of environmental applications that depend on the delivery of nanoparticles. While 

surface-chemical interactions can have a strong influence on nanomaterial attachment to surfaces 

in environmental porous media, the hydraulics of water flow can also play an important role in 

attachment. In the unsaturated zone, naturally-occurring evaporation is a major source of water 

flow. The purpose of this work was to examine how evaporation-induced water flow at the pore 

scale impacts the transport and deposition of negatively-charged sulfate-modified polystyrene 

nanoparticles. Evaporation experiments were conducted by initially saturating small clusters of 

sand grains with a suspension of nanoparticles. Confocal microscopy was then used to track the 

changing water surface profile, as well as to track the transport and deposition of nanoparticles in 

the grain clusters. Confocal data showed that nanoparticles tended to deposit on sand grains near 

the receding air-water interface, an expected behavior. This process led to attachment on grain 

surfaces as they were exposed by the receding interface. Evaporation was found to produce 

complex flow patterns with temporally-changing flow directions at the pore scale. A finite 

difference model developed to explore the link between evaporation and water flow in pore 

spaces was able to duplicate many of the observed phenomena. Simulations suggest that distinct 

                                                 
‡ This chapter has been published as “The effect of evaporation-induced flow at the pore scale on nanoparticle 

transport and deposition in drying unsaturated porous media” by Yan, S. and Kibbey, T. C. (2019), Journal of 

contaminant hydrology, 226, 103524. 
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differences in deposition mechanisms should be expected for porous media undergoing 

evaporation compared with porous media experiencing drainage. 

5.1. Introduction 

With the ongoing advances in nanotechnology, nanoparticles are being produced in 

increasing quantities for use in fields such as electronics, medicine, imaging and drug delivery, 

as well as for terrestrial applications such as agriculture and environmental remediation (Sun et 

al., 2008; Khot et al., 2012; Rai et al., 2015; Rai et al., 2016; H. Yan & Melosh, 2016). The high 

likelihood that nanomaterials will enter the environment, either through manufacturing releases 

or directly during their use (e.g., in agricultural or remediation applications) means that they 

have the potential to pose risk to the environment and human health (Wiesner et al., 2006). In 

addition to risks posed by nanomaterials themselves, mobile nanomaterials and other colloids 

may also influence the mobility of organic contaminants or heavy metals, creating an additional 

source of risk (Cheng et al., 2005). As such, a quantitative understanding of the environmental 

fate of nanomaterials is essential for environment protection and for the sustainability of 

nanotechnology.  Furthermore, a quantitative understanding of nanomaterial transport at the pore 

scale is important for environmental remediation applications that require controlled delivery of 

nanoparticles in the subsurface. 

The transport and deposition of nanoparticles in porous media have been widely studied 

(J. Wang et al., 2006; L. Chen & Kibbey, 2008; Ben-Moshe et al., 2010; M. Wang et al., 2016). 

As is the case with other types of colloids, collision and attachment to solid surfaces are major 

phenomena controlling the deposition of nanoparticles in porous media, so nanoparticles can be 

retained by porous media when they intercept solid surfaces, provided that surface 

thermodynamics favor attachment (McDowell‐Boyer et al., 1986; Elimelech & O'Melia, 1990; 
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Christian et al., 2008). Higher attachment is typically observed under conditions where 

nanoparticles and solid surfaces have opposite surface charges, and under conditions of high 

ionic strength (L. Chen et al., 2010; M. Wang et al., 2016). In saturated porous media, 

nanoparticle retention can be caused by aggregation and sedimentation, as well as pore straining 

(Petosa et al., 2010; Solovitch et al., 2010; G. Chen et al., 2011; Fang et al., 2013). In 

unsaturated porous media, additional attachment mechanisms are possible, including attachment 

to air-water interfaces, or straining by receding water films (L. Chen & Kibbey, 2008; L. Chen et 

al., 2008; Flury & Aramrak, 2017). 

Although the thermodynamics of interactions between nanomaterials and solid surfaces 

can play a central role in deposition of nanoparticles during transport, hydraulics is also 

important. For example, slower flow in both saturated and unsaturated porous media is almost 

always observed to yield greater retention (e.g., (Lecoanet & Wiesner, 2004; L. Chen et al., 

2008)). In addition, nanoparticles have been observed to be retained in unsaturated media 

undergoing drainage, even under conditions where the surface and solution properties favor high 

mobility, and where attachment is not observed in saturated flow experiments under the same 

conditions (L. Chen et al., 2010; Hoggan et al., 2016), a result that suggests that changing water 

contents may play an important role in retention. 

Near the ground surface, environmental porous media are constantly experiencing 

changing water contents, as a result of rainfall infiltration, changing water table levels, drainage 

and redistribution.  Furthermore, evaporation of porewater is ubiquitous near the ground surface, 

and is known to induce net porewater flow toward the ground surface (e.g., (Hanks et al., 1967; 

Daamen & Simmonds, 1996; Brutsaert, 2014)).  While evaporation has been linked to potential 
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impacts on the transport of dissolved solutes (e.g., (Normile et al., 2017)), little is known about 

its potential impact on transport and deposition of nanoparticles in the unsaturated zone. 

The objective of this work was to explore the effect of evaporation on water flow at the 

pore scale, with emphasis on understanding its effect on the transport and deposition of 

nanoparticles.  Confocal microscopy was used to study the flow of water and deposition of 

fluorescent nanoparticles on sand grain surfaces in a cluster of sand grains undergoing 

evaporation, and numerical simulations were used to interpret the observed results. 

5.2. Materials and Methods 

5.2.1. Materials 

The nanomaterials used in this work were fluorescent red sulfate-modified polystyrene 

latex nanospheres.  The nanospheres were purchased in a 2.5% suspension from Sigma-Aldrich 

(St. Louis, MO), and have a manufacturer-reported size of 100 nm. All experiments were 

conducted with a suspension with a nanosphere concentration of 2.5 mg/L.  The suspension was 

prepared in Nanopure water (Barnstead, Dubuque, IA), with fluorescein sodium added to allow 

simultaneous imaging of the water in pore spaces. Zeta potential of the nanospheres in 

suspension with fluorescein was measured using a Nicomp 380 ZLS (Particle Sizing Systems, 

Port Richey, FL) dynamic-light scattering zeta potential analyzer and found to be −36.3 ±

0.  𝑚𝑉 under the conditions used in the work. Sulfate-modified polystyrene nanospheres were 

selected for the work because sand grains have negative surface charges under most natural pH 

conditions (pH greater than approx. 2), so electrostatics do not favor attachment of the 

nanospheres to sand surfaces.  The unconsolidated porous medium used for this work was 

created from clusters of U.S. Silica F-45 sand, a high purity natural sand with a measured mean 

grain size 323 micrometers (T. C. Kibbey & Chen, 2012). 
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5.2.2. Imaging and image processing 

 Imaging for this work was conducted using a Leica (Buffalo Grove, IL) SP-8 confocal 

microscope.  Confocal microscopy uses specialized laser optics to collect only in-focus light, 

allowing for imaging to be conducted as a function of depth, yielding three dimensional 

information about the sample.  Imaging was conducted in resonance mode to allow rapid 

scanning with depth.  Clusters of sand grains were created on microscope slides by first placing a 

thin layer of epoxy on the slides, and then gently pouring sand grains onto the slides.  The 

resulting clusters contained several hundred individual grains, and were typically several grains 

deep.  Note that only grains in the lowest level of the clusters were attached to the slide with the 

epoxy; the upper layers rested on the lower layers, which served to hold upper grains in place.   

Experiments were conducted in the top layers of clusters, and involved placing a drop of 

nanosphere suspension on the cluster, and then imaging as the suspension evaporated.  Imaging 

was conducted using the 488 nm line of the argon laser for excitation of the fluorescein, and 561 

nm diode-pumped solid state (DPSS) laser for excitation of the nanoparticles.  A 10× 

magnification 0.3 aperture dry objective was used for all imaging.  Two systems were studied for 

this work.  Specific details of the systems studied are discussed in the Results and Discussion in 

the context of the experimental results.  However, the imaged region for each experiment 

contained between one- and two million voxels, and had dimensions in each direction less than 1 

mm, a small fraction of the total cluster dimension.  Imaging was conducted at intervals of 

several seconds. 

Confocal data were processed using both Fiji, a variant of ImageJ (Schindelin et al., 2012; 

Schneider et al., 2012), and the Imaris software package (Bitplane, Zurich Switzerland). 
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5.2.3. Numerical simulation 

 A two-dimensional numerical simulation was used to explore how evaporation induces 

flow in grain clusters.  Because the imaged regions covered only a small portion of the 

experimental grain clusters, and significant evaporation and flow occurred outside of the imaged 

regions, it was not possible to determine boundary conditions for the imaged region from the 

experimental data; as such, simulations were used to explore flow in a computer generated 

synthetic two-grain cluster.  Simulations were based on a quasi-static flow model used 

previously by the authors to study flow and transport during evaporation on individual grain 

surfaces (Adegbule et al., 2018).  The model is based on the recognition that evaporation of 

capillary held water films is accompanied by an increase in capillary pressure.  The model 

simulates the changing capillary-held film configuration with increasing capillary pressure, and 

then uses water mass balances to evaluate the flow needed to reconcile differences in the spatial 

distribution of evaporation from the surface between capillary pressure steps, and the film 

thicknesses dictated by capillary pressure.  Theoretical capillary-held water film configurations 

are calculated by solving the Young-Laplace equation for incrementally-increasing capillary 

pressures, using the algorithm described previously by Kibbey (2013).  The algorithm uses an 

iterative approach to calculate the changing contact line positions as films recede.  A zero-slope 

boundary condition was used for all calculations in this work.  Water film configurations were 

calculated for capillary pressures from 0.1 to 0.3 cm water at 0.1 cm intervals, from 0.3 to 1.5 cm 

water at 0.2 cm intervals, from 1.5 to 3.0 cm water at 0.3 cm intervals, and from 3.0 to 6.0 cm 

water at 0.5 cm intervals.  Smaller intervals were used at lower capillary pressures because air-

water interface shape varies more with capillary pressure at lower capillary pressures.  (It should 

be noted that the exact details of steps used don’t influence the observed trends.)  The 
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evaporation rate for all water surfaces is taken to be uniform, as dictated by the Langmuir 

evaporation equation.  As such, the total water evaporated between each capillary pressure step is 

distributed uniformly across the water surface, and then mass balance is used to calculate the 

change in water mass at each point in space between capillary pressure steps (Eq. 5.1) (Adegbule 

et al., 2018): 

 𝑚𝑖,𝑗
𝑐1 + ∆𝑚𝑖−1,𝑗 + ∆𝑚𝑖+1,𝑗 + ∆𝑚𝑖,𝑗−1 + ∆𝑚𝑖,𝑗+1 −𝑚𝑖,𝑗

𝐸 = 𝑚𝑖,𝑗
𝑐2  (5.1) 

Where 𝑚𝑖,𝑗
𝑐1  and 𝑚𝑖,𝑗

𝑐2  are the mass of water at point (𝑖, 𝑗) at capillary pressure 𝑐1 and 𝑐2;  𝑚𝑖,𝑗
𝐸  is 

the evaporated mass of water at point (𝑖, 𝑗) from capillary pressure 𝑐1 to 𝑐2;  ∆𝑚𝑖±1,𝑗±1 is the 

mass of water transfer between point (𝑖 ± 1, 𝑗 ± 1) and point (𝑖, 𝑗) from capillary pressure 𝑐1 to 

𝑐2. 

 Because of the small size of the simulation region, flow is assumed to be laminar, and 

viscosity and film thickness dictates the resistance to flow between any two points.  The series of 

equations described by Eq. 5.1 are solved implicitly at each capillary pressure step.  For this 

work, no-flow boundaries are used around the outside of the simulated region. Additional 

calculations with the model were used to explore differences in water flux resulting from 

evaporation and drainage in a simplified 1D system. 

5.3. Results and Discussion 

 Figure 5.1 shows two representations of the grain configuration in one of the two grain 

cluster regions studied in this work (System 1).  Fig. 5.1A shows a top projection in the x-y plane 

from the confocal data.  The image is a reversed image of the fluorescein channel, where the 

intensities in the z-direction are summed.  Reversing the image means that the parts of the image 

with the longest path lengths through the fluorescein are darkest, meaning that the bright portions 

of the image correspond to individual sand grains, with the brightest grains having the highest 
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top surface elevations.  Fig. 5.1B is a three-dimensional rendering of the grain top surface from 

the same data.  Note that grains themselves are opaque, so imaging can only be conducted in 

pore space above grains; as such, the grain configuration below the visible portion is unknown.  

The imaged region has horizontal dimensions of 661 µm × 661 µm and an imaged depth of 454 

µm, corresponding to 128 (x) × 128 (y) × 106 (z) voxels, with individual voxel dimensions of 5.16 

µm (x) × 5.16 µm (y) × 4.28 µm (z).  The imaged region shows portions of between 9 and 12 

individual small sand grains.  Imaging was conducted for this system at 9.24 second intervals. 

 

Figure 5.1. Sand grain positions for System 1. A. Summed top projection of fluorescein confocal 

data. B. Reconstructed grain top surface elevation map. 

 

 Figure 5.2 shows three dimensional images generated from the confocal volume data at 

nine different times as evaporation progresses.  (Note that a video corresponding to the system 

shown in Fig. 5.2 is included in the accompanying online Supplementary Material.)  The 

numbers by the individual images correspond to minutes since the start of the experiment.  The 

images are created from the nanosphere fluorescence channel of the confocal data (e.g., 561 nm 

excitation wavelength).  In the color map used for the rendering (shown to the right of the figure), 

fluorescence is rendered on a scale ranging through black, red, yellow and white, with higher 

fluorescence shown as brighter colors (e.g., yellow, white).  Because the individual nanoparticles 

are smaller than voxel dimensions, individual nanoparticles can’t be resolved with confocal 

A B 
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imaging in these systems.  However, cumulative fluorescence in each voxel is detected, so 

rendered color is an indication of nanoparticle concentration, with brighter colors corresponding 

to higher concentrations.  That means the method can detect the nanoparticle suspension (e.g., 

the contours of the water surface and water/grain interfaces), as well as higher concentrations of 

accumulated nanoparticles, both on sand grains, and where suspended aggregates are present. 

 

Figure 5.2. Movement and accumulation of nanoparticles on grain surfaces in System 1 during 

evaporation.  Numbers correspond to time in minutes since the start of the experiment. 

 

At early times in Figure 5.2, nanoparticle suspension occupies the water in the spaces 

around the soil grains.  Although some individual nanoparticle aggregates are visible in the pore 
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space (especially apparent in the accompanying video, where their motion can be observed), the 

distribution of nanoparticles in the suspension is relatively uniform.  As time progresses, 

evaporation continues and the water surface drops, gradually exposing the tops of sand grains.  

As the grains are exposed, the exposed portions are bright, indicating high fluorescence, and 

correspondingly a high concentration of retained nanoparticles on the exposed portions of the 

grains.  By 12 minutes, portions of the top surfaces of four of the highest elevation grains are 

visible, while by 17.6 minutes, the tops of 6 grains are visible.  As the water recedes, up through 

17.6 minutes, it can be seen that porewater fluorescence increases, indicating that in addition to 

causing deposition on grain surfaces, evaporation is increasing the nanoparticle concentration of 

the suspension.  Finally, at 23.1 minutes, most of the porewater from the imaged region has 

evaporated, leaving deposited nanoparticles on the surfaces of all of the grains present. 

 Before discussing the behavior of System 1 further, it is useful to first explore expected 

flow behaviors in a simulated system experiencing evaporation, as a basis for discussion of 

observed behaviors.  Figure 5.3 shows six different three-dimensional views of the calculated 

evaporation-driven flow in a synthetic cluster at different capillary pressures.  The simulated 

region is 512 µm × 512 µm with a maximum height of 256 µm, so is similar in size to the imaged 

regions studied in confocal data in this work.  The synthetic cluster consists of one high grain 

surface (front left) and one low grain surface (rear right).  Because the model is a 2D model, the 

grains are approximated as mounds, to provide a smooth elevation map in the form z=f(x,y). 

The water surfaces shown correspond to each capillary pressure, while the vectors show 

the calculated flow directions between the previous (i.e., lower) and current simulated capillary 

pressure steps.  Two major phenomena are observable in the simulation: 1. flow toward contact 

lines, and 2. complex, larger-scale flow patterns that exhibit flow in pores first toward newly-
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exposed high elevation surfaces, and then later away from them as other newly formed lower 

elevation contact lines influence the bulk flow. 

 

Figure 5.3. Numerical simulation results at nine capillary pressures in a synthetic medium.  

Numbers correspond to capillary pressures.  Water surfaces are shown for each capillary pressure, 

while flow vectors correspond to water movement from the previous simulated capillary pressure 

step. 

 

At a capillary pressure of 0.2 cm water (upper left subfigure), only the front left grain 

surface protrudes from the water, while the rear right grain is fully submerged.  Note that the 

flow directions are toward the contact line of the front left grain in the 0.2 cm water subfigure.  

After 0.5 cm (upper right subfigure), when portions of both grains become exposed, flow 

directions are from the bulk toward the contact lines for both grains.  Note that this is true even 

2.7 cm 4.0 cm 

1.1 cm 1.8 cm 

0.2 cm 0.5 cm 
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in the 2.7 and 4.0 cm cases (bottom row), where although the large arrows appear to flow past 

the front left grain toward the rear right grain, close examination of the data shows net inflow of 

water to grid cells adjacent to contact lines on both grains.  (This is not visible in the figures 

because of the small magnitude of flow toward contact lines in those regions compared with 

rapid flow past the grains.)  Note also in the 2.7 and 4.0 cm cases that contact lines are evident 

where the water has receded from the bottom surface of the simulated region, in the front right 

and rear left; flow also occurs toward these contact lines. 

The results of these simulations supports the frequently-observed behavior of suspended 

colloids and nanoparticles accumulating on grain surfaces near contact lines in part as a result of 

convective flow toward contact lines (e.g., (Zevi et al., 2006; Dathe et al., 2014; Flury & 

Aramrak, 2017)). Wan and Tokunaga (2005) correctly identified the source of this behavior as a 

phenomenon referred to as the coffee ring effect, where evaporation drives flow and advection to 

the perimeter of an evaporating drop (Deegan et al., 1997; Adegbule et al., 2018).  The effect is 

named because it can result in a ring of precipitates or deposited particles at the perimeter of the 

drop. 

Although flow directly adjacent to grains is toward the contact lines, at a slightly larger 

scale, the coffee ring effect can create extremely complex flow patterns that change throughout 

the course of evaporation, a phenomenon that could potentially influence the extent of mixing at 

the pore scale.  For example, at low capillary pressures in the simulation (Fig. 5.3), the bulk flow 

is generally from the rear right to the front left, while at higher capillary pressures it is from the 

front left to rear right.  In general, flow is observed toward higher elevation surfaces as they 

initially protrude from the water surface.  As the water level continues to drop, other emerging 

surfaces dominate the flow, causing flow to change directions.  As will be discussed in a 
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subsequent paragraph, this phenomenon is also observable in the experimental data collected for 

this work. 

While flow in pores can change directions throughout evaporation, the fact that flow near 

grain surfaces is toward contact lines means that particles being carried past grains by 

evaporation-driven flow may be drawn toward surfaces and intercepted.  Figure 5.4 shows an 

experimental system (System 2) that illustrates this phenomenon.  The imaged region has 

horizontal dimensions of 671 µm × 671 µm and an imaged depth of 347 µm, corresponding to 

128 (x) × 128 (y) × 81 (z) voxels, with individual voxel dimensions of 5.24 µm (x) × 5.24 µm (y) × 

4.28 µm (z).  The three-dimensional images in Fig. 5.4 were generated from confocal volume 

data at nine different times as evaporation progresses, using the same settings as used in Fig. 5.2.  

The color map for Figure 5.4 is also the same as that used in Fig. 5.2.  (Note that a video 

corresponding to the system shown in Fig. 5.4 is included in the accompanying online 

Supplementary Material.)  While System 1 (Fig. 5.2) explored behavior in a cluster of small 

grains, the imaged region for System 2 (Fig. 5.4) shows one large grain (approx. 530 × 600 µm), 

just to the right of center, and portions of three other grains.  Imaging was conducted for this 

system at 3.71 second intervals. 
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Figure 5.4. Tracking the movement of two nanoparticle aggregates during evaporation in System 

2.  Numbers on the upper figures correspond to time in minutes since the start of the experiment.  

Trajectories for the two aggregates over the imaged duration are shown in the 12.6 minute 

subfigure.  The plot at the bottom shows the projected velocities of the two aggregates.  Red 

symbols in the plot correspond to the times of the six images. 

 

Of interest in Figure 5.4 are two different nanoparticle aggregates that are carried into the 

imaged area from the front left and deposited on the large grain as the water surface recedes with 

evaporation.  The upper six subfigures track the two aggregates (indicated with white circles).  

Numbers in the subfigures correspond to time in minutes since the start of the experiment.  Paths 

followed by the aggregates over the imaged duration are shown in the final (12.6 min.) image.  
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The plot at the bottom of the figure shows the top-projected velocity for the two aggregates, and 

also indicates the times of image subfigures in red symbols on the time axis.  Note that the two 

aggregates are initially transported rapidly toward the rear right, but then as the water begins to 

recede from the grain (around 5 minutes), their paths turn to the right, toward the grain, and they 

are intercepted by the grain surface at the receding contact line.  After approx. 6 minutes, the 

aggregates are essentially immobilized on the grain surface.  This behavior is consistent with the 

existence of local evaporation-induced flow toward receding contact lines. 

      

Figure 5.5.  Simulations illustrating the difference between A. evaporation and B. 

drainage in the resulting water movement in a receding air-water interface. 
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 While the potential importance of contact lines in the deposition of colloids and 

nanoparticles is widely recognized, it is important to emphasize that convective flow toward 

contact lines is something that can only result from evaporation at the pore scale, and not from 

other behaviors that cause changing water contents.  Figure 5.5 uses the same numerical model 

from Fig. 5.3 to simulate water motion resulting from evaporation (A) and drainage (B) from an 

interface pinned to a sharp ridge.  (It should be noted that a pinned contact line is not required to 

create the behavior illustrated in the figure, but it simplifies the illustration.)  The simulations 

correspond to a cylindrical air-water interface, as might be observed adjacent to a long, straight 

ridge.  The dimensions of the simulated region are 100 µm in the x-direction, and 70 µm in the z-

direction.  In the case of evaporation, water is assumed to leave the system uniformly over the 

surface, while in the case of drainage, water is assumed to flow out from the left boundary.  In all 

cases, the slope at the left of the simulation is set to zero, and water configuration is calculated to 

increase in 2 cm capillary pressure steps as shown.  Note that because of the cylindrical 

interfaces, all water surfaces have circular cross sections.  Blue arrows in the figure show the 

calculated water volumetric flux required to move between capillary pressure steps subject to the 

defined boundary conditions.  In the case of evaporation (Fig. 5.5A), increasing capillary 

pressures create advective flow toward the contact line, while in the case of drainage (Fig. 5.5B), 

increasing capillary pressures create advective flow away from the contact line.  That means that 

behavior such as that observed in Fig. 5.4 (System 2), i.e., colloids being drawn toward a contact 

line as they flow past, could only result from evaporation.  While other sources of interface 

motion, such as drainage, can potentially trap colloids and nanoparticles at contact lines, the 

behavior does not result from convective flow toward contact lines. 
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 Figure 5.6 illustrates the complex larger scale flow patterns that result from evaporation 

in System 1 (Figs. 5.1, 5.2).  Red arrows correspond to specific, manually-identified suspended 

aggregates of nanospheres.  Arrow tails begin at the position of the aggregate in each image 

shown, while the arrow head position corresponds to the aggregate location in the next frame, 

9.24 s after the frame shown.  Note that at early times flow is toward the back of the cluster (the 

top of the image), where high grain surfaces are present.  As evaporation proceeds, flow 

directions change repeatedly, influenced not only by the grains present in the image, but also by 

grains outside of the imaged area.  At late times, rapid flow is observed toward the front right of 

the cluster.  Note that this behavior is quite evident in the accompanying video in the online 

Supplementary Material. 

Figure 5.6. Changing flow patterns in System 1 during evaporation. 

1.5 min 4.8 min 9.9 min 

12.2 min 13.6 min 19.4 min 
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While Figures 5.2 and 5.6 clearly indicate the accumulation of nanoparticles on grain 

surfaces and the complex changing flow patterns that accompany evaporation, they do not 

provide insight into what is happening below the air-water interface.  Figures 5.7 and 5.8 show 

fluorescence from two different vertical planes slicing through the data.  In each figure, the upper 

left subfigure shows the location of the slice (the red dashed line), and the direction from which 

it is viewed (the red arrow).  The remaining subfigures in each figure correspond to the same 

times shown in all but the first subfigure in Fig. 5.2.  Note that because Figs. 5.7 and 5.8 only 

show fluorescence in the imaged slice, rather than a sum, brightness in Figs. 5.7 and 5.8 is a 

direct indicator of nanoparticle concentration.  In both figures it is possible to see the receding 

water level with increasing time.  Furthermore, it is apparent that the porewater concentration of 

nanoparticles increases with time as water evaporates, as evidenced by the imaged porewater 

color changing from blue to green with increasing time.  This effect is evident in both figures, 

and can be observed by comparing the porewater at time 3.7 minutes to that at 17.6 minutes. 

Another interesting feature that can be observed in Figs. 5.7 and 5.8 is accumulation of 

nanoparticles in the vicinity of the air-water interface as water evaporates.  The effect is 

particularly noticeable at 12.0 and 14.8 minutes in the figures, as evidenced by the bright green 

at the interface.  This behavior likely indicates that the water evaporation causes the interface to 

recede more rapidly than the nanoparticles are able to diffuse away from the interface and into 

the bulk.  Note that the enhanced concentration near the air-water interface extends over a depth 

of as much as 50 µm (approx. 500 particle diameters), so is not the result of adsorption at the air-

water interface.  (Because these nanoparticles are hydrophilic and negatively charged, significant 

adsorption at the air-water interface wouldn’t be expected, in any case.)  The fact that this 

behavior occurs suggests that any mixing that accompanies the complex temporally-varying 
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evaporation-driven flow patterns (Fig. 5.6) may be primarily in the horizontal direction, and thus 

not sufficient to cause significant vertical mixing of suspended nanoparticles.  The resulting 

increased concentrations near the air-water interface may further enhance their retention at 

contact lines.   

 

Figure 5.7.  Side slice view of nanoparticle concentrations in System 1.  The inset figure in the 

upper left corner shows the position of the slice and the viewpoint.  Numbers correspond to time 

in minutes since the start of the experiment. 

 

Also apparent in Figs. 5.7 and 5.8 is that the accumulation on grain surfaces only happens 

as the receding water surface exposes grains; accumulation is not evident below the water 

surface.  This is apparent from the bright spots that appear at high points on grain surfaces as the 
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water surface recedes.  For example, in Fig. 5.7, at 12.0 and 14.8 minutes, bright spots (i.e., 

accumulated nanoparticles) appear at the top of the rightmost grain.  As the water continues to 

recede, bright spots are visible at the tops of both the left and right grains by 20.3 minutes.  

Similarly, in Fig. 5.8, accumulation is evident at the peaks of highest grains as they are exposed 

by the receding air-water interface. 

It should be noted that while accumulation of nanoparticles is observed on grain surfaces 

as air-water interfaces recede, accumulation is not evident in the water below the interface in any 

of the images.  This observation is consistent with a lack of affinity between the negatively-

charged nanoparticles and the negatively-charged sand grain surfaces, and further indicates that 

the accumulation on grain surfaces during evaporation in this system results from the hydraulics 

of evaporation-induced flow. 
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Figure 5.8. Side slice view of nanoparticle concentrations in System 1.  The inset figure in the 

upper left corner shows the position of the slice and the viewpoint.  Numbers correspond to time 

in minutes since the start of the experiment. 

 

5.4. Conclusions 

The results of this work show that pore water flow induced by evaporation can lead to 

deposition of suspended nanoparticles, even in cases where attachment is not favorable.  

Simulations support the idea that flow occurs to balance the spatial distribution of evaporation 

with the interface shape requirements dictated by capillary pressure (a phenomenon known as the 

coffee ring effect).  Close to grain surfaces, flow occurs toward contact lines, producing a driving 
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force for deposition of nanoparticles.  In the pore spaces farther from grains, however, the flow 

resulting from evaporation can exhibit complex, temporally changing patterns.  In general, flow 

is observed toward higher-elevation grain surfaces as they protrude from the air-water surface.  

As time progresses and water recedes, flow toward newly emerging grains dominates the net 

flow patterns.  While both evaporation and drainage can potentially produce similarly complex 

pore scale flow patterns, simulations suggest that only flow induced by evaporation will produce 

convective flow toward contact lines.  This means that although trapping of colloids and 

nanoparticles by moving contact lines may still occur during drainage, the mechanisms of 

retention during evaporation are likely different.  The results of this work have implications for 

understanding the movement and deposition of nanoparticles and other colloids not only in the 

unsaturated zone, but also potentially in any multiphase system where changing phase volumes 

(e.g., through dissolution or evaporation) create pore scale flow gradients. 

 



83 

 

Chapter 6. Summary and Conclusions 

This work describes a range of numerical simulation of important phenomena that take 

place in water films in unsaturated porous media. Simulations focus on the configuration of air-

water film, water movement, and transport and deposition of nanoparticles in unsaturated porous 

media in multi-scales including pore scale, single grain scale and multi-grain scale. To better 

understand the phenomena that occur in capillary-held water films, a new hybrid three-

dimensional reconstruction method has been developed to obtain high resolution 3D elevation 

maps of grain surfaces for accurate calculation of water film profiles. Then, the performance of 

the hybrid three-dimensional reconstruction method was tested.  

In Chapter 2, the hybrid three-dimensional reconstruction method has been introduced. 

The method includes two components: stereo-matching component and shape from shading 

component. The elevation map from stereo-matching component is input as a coarse preliminary 

elevation map to shape from shading component. The quality of the elevation map is controlled 

by the accurate identification of the position of matching points, projections of the same point in 

three-dimensional space viewed from different direction, on the multi-view images. To better 

refine the elevation map from stereo-matching component in shape from shading component, a 

new function has been provided to describe the relationship between surface normal and the 

intensity of SEM image pixels for a single in-chamber secondary electron detector. The final 

elevation maps show that the new method can extract maximum detail and angular features from 

the original SEM images. As the reconstruction map is a single-valued (𝑧 = 𝑓(𝑥, 𝑦)) elevation 

map, the method can’t recover three-dimensional surface from overlapping objects. 
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In Chapter 3, shadows in images have been detected by a boosted decision tree machine 

learning method. Ten photographic images are input into the boosted decision tree method as 

training images and seven features including intensities of pixels from original images are 

chosen to differentiate shadow points from non-shadow points. Then, the hybrid method 

provided from chapter 2 has been used to reconstruction three-dimensional elevation maps from 

SEM images with identified shadows. It is found that the identified shadow areas are the most 

difficult for the reconstruction algorithm to recover. The shadow detection method can be used to 

flag regions where three-dimensional reconstruction algorithms tend to work poorly.  

In Chapter 4, a numerical simulation model has been utilized to simulate water film and 

water movement in three-dimensional space. A single grain surface and a surface containing two 

connected grains have been studied in this chapter. The configuration of air-water interface on 

grain surfaces has been calculated several times by a previous algorithm provided by T. C. G. 

Kibbey (2013) on projected surfaces from grain surfaces in three dimensional space at different 

directions at different capillary pressures during evaporation. A weight function has been applied 

to calculate the final coordinate of each point on air-water interfaces. Results from the simulation 

of water movement indicate that water flows towards contact lines during evaporation. The 

three-dimensional model can be used as foundation for advanced three-dimensional models to 

explore water movement and mass transfer in unsaturated porous media. 

In Chapter 5, confocal microscopy has been used to track water movement and, transport 

and deposition of fluorescent nanoparticles in two cluster of sand grains undergoing evaporation. 

The confocal images show that deposition of suspended nanoparticles can be caused by pore 

water flow induced by evaporation, even in attachment unfavorable conditions. Side views of 

air-water interfaces verify the hypothesis that capillary pressure increase in pores during 
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evaporation.  Then, a numerical simulation has been provided to simulate water flow during 

evaporation, which is consistent with the experiments that the suspended clusters of 

nanoparticles move towards contact lines, as contact lines recede. The simulation supports the 

idea that it is the water flow resulting from the uneven receding of air-water interfaces during 

evaporation contributes to deposition of suspended nanoparticles on grain surfaces near contact 

lines (coffee ring effect). To distinguish the influence of evaporation and drainage on water flow, 

simulations of water flow during evaporation and drainage in pore scale have been compared. It 

suggests that only flow induced by evaporation will produce convective flow toward contact 

lines. 
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