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ABSTRACT 

At low concentrations, welan gum fluids have high viscosity, excellent suspending 

properties, shear thinning (pseudoplastic) rheological properties, viscosity retention at 

high temperatures and provides excellent friction pressure reduction. Hence, they are 

used in oilfield operations including hydraulic fracturing, wellbore cleanup, cementing 

and drilling for viscosity enhancement and friction pressure reduction purposes. In 

drilling and completion operations, brine solutions are commonly used as base fluids, 

therefore it is essential to quantify the effects of salinity on the rheological and hydraulic 

properties ofwelan gum. 

In this work, the effects of salinity on the rheological and hydraulic properties of welan 

gum fluids of various concentrations (0.5, 1, 2 and 3 lb/bbl) in fresh water, 2% and 4% 

KC! has been evaluated through experimental studies. The experimental set-up includes a 

Yi-in . OD flow loop with a 15-ft straight section and 18-ft coiled tubing with curvature 

ratio of 0.019. From the experimental data gathered, it is confirmed that rheology of 

welan gum fluids is sensitive to the concentration of salt. The sensitivity is seen as a 

reduction in viscosity of fluid as the concentration of salt is increased. 

For flow in straight tubing, it is observed that at low concentrations of 0.5 and 1.0 lb/bbl, 

welan gum fluids in brine solutions exhibit lower drag reduction compared to that in fresh 

water. The opposite effect is observed at higher concentrations of 2.0 and 3.0 lb/bbl. It is 

also observed that in coiled tubing, the drag reduction characteristics of welan gum fluids 

in brine solutions increased when compared with those prepared with fresh water. 

The friction pressure data for welan gum fluids in straight and coiled tubing as observed 

in the experimental investigation are correlated using the following dimensionless 

xiii 



parameters - Fanning friction factor and generalized Reynolds number. These 

correlations are found to provide good accuracy for prediction purposes when compared 

to the experimental data from larger tubing sizes. 
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CHAPTER 1 

INTRODUCTION 

The use of water so luble polymers is fundamental in oil and gas production operations 

such as drilling, hydraulic fracturing, wellbore cleanup, cementing and acidizing. In 

drilling muds they function as drill bit cooling, cleaning and protecting agents, and as 

drag reducing fluids allowing for faster drilling speeds. In workover and completion 

fluid s, the polymers help to achieve and maintain maximum well productivity by 

contributing to hole cleaning, rock cutting suspension, and drag reduction. In tertiary oil 

recovery, polymeric aqueous so lutions are injected into oil reservoirs to displace the oil to 

product ion wells (Lapasi n et al. 1995). They are also used for fluid loss control, shale 

stab ili za ti on and flocculation purposes. All the polymers used in these applications 

possess hi gh molecular we ight, high swelling at low polymer concentration, high 

pseudoplasticity, high efficiency as suspending agents, thermal stability and compatibility 

with high concentrat ion of various sa lts. 

Three categories of water so luble polymers are commonly used in oil and gas production: 

polysaccharides (biopolymers) , modified polymers, and synthet ic polymers. 

Polysaccharides are for med from the polymerization of saccharide molec ul es through the 

process of bacterial ferme ntation; their molecules are bonded through glycos idic linkages 

and they are relatively non-ionic. Common ly used polysaccharides in the oilfield include 

Xanthan , guar and we lan gum . The modified polymers are obtained by chemica ll y 

treating polymers to ach ieve certai n desired properties, through the add ition of side 

chai ns. Examples of modified polymers are hydroxyethy l ce llulose (HEC), 

hydroxypropyl guar (HPG) and carboxymethyl ce llulose (CMC). Synthet ic polymers 



used in the oilfield include polyacrylamides and partially hydrolyzed polyacrylamide 

(PHPA). 

Welan gum (formerly known as S-130) 1s a commercial available bacterial 

polysaccharide produced by an Alcaligenes species (ATCC-31555) in an aerobic, 

submerged fermentation (Kang et al. 1982). lt has found a wide range of uses in oilfield 

operations including hydraulic fracturing, wellbore cleanup, cementing and drilling for 

viscosity enhancement and friction pressure reduction purposes. Welan gum at low 

concentrations has high low shear rate viscosity (LSRV) at low concentrations, excellent 

suspending properties, pseudoplastic (shear thinning) rheological properties, excellent 

stability in a wide pH range (2-12), and excellent retention of viscosity at temperatures up 

to 150 °C. 

Welan gum is an an1on1c polysaccharide and therefore must have polyelectrolyte 

properties due to the presence of D-glucuronic acid in its chemical structure. 

Polyelectrolytes are polymers whose repeating units bear an electrolyte group, which will 

di ssociate in aqueous solutions, making the polymers charged. Thus, polyelectrolyte 

properties are similar to both electrolytes and polymers, and are sometimes called 

polyions because their charge ari ses from many ionized functional groups positioned 

along the chain contour. Electrostatic repulsion between the ionized groups in solution 

lead to an increase in the hydrodynamic volume of the polymer chains and subsequent 

increase in so lution viscosity. However, adding electrolyte (for example brine) to the 

polyelectrolyte so lution leads to decrease in vi scosity due to the screening of the 

electrostatic repulsions. The charge screening causes a reduction in hydrodynamic size of 

the molecule, which when not accompanied by increased intermolecular assoc iat ion, 

results in a decrease in solution properties (Campana et al. 1990; Rochefort et al. 1987). 

The effects of brines on the solution properties of polelectro lytes is illustrated in Figure 
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1.1. Polyelectrolytes are classified as strong or weak and the net charge of the later varies 

with pH. 

Dissolution in wate1· 

Polymer Becomes 
C harged 

Uncharged Polymer . . . . . . . . 
Jnc rease in Hydrodynam ic 

Volume Leads to In crease in 

Solution Viscosity 

Sa lt 

C harge Screening 

Decrease in Hydrodynamic 

Vol ume Leads to Decrease in 

Solution Viscosity 

Fig. 1.1 Effects of Salinity on the Solution Properties of Polyelectrolytes 

Brines are normally used as base fluids, to prevent clay swelling and shale instability, in 

oilfield applications where we lan gum fluid s are used. Welan gum fluids are compatible 

with common oilfield monovalent and divalent brines within the normal range of 

application needs in the oilfield . Examples of monovalent brines used in the oilfield 

include - sodium chloride, sodium bromide, potass ium chl oride, and potass ium bromide, 

and divalent brines include - ca lcium chloride, ca lcium bromide, and zinc bromide. 

Divalent brines have higher ionic strength when compared with monoval ent brines of 

same concentrat ion, hence, they are expected to cause more significant decrease in 

so lution viscos ity of we Ian gum fluid s. The high density brines fro m 11.6 - 19.2 lb/ga llon 

are usua ll y obtained by blending ca lcium chloride, ca lcium bromide and zinc bromide. 

Improved perfo rmance can be obtained by fo rmulating the brines fo r a minimum ionic 

strength. 

During oilfield operations such as hydraulic fracturing, ac idizing and we llbore cleanout, 

aqueous so lutions of we lan gum are pumped downhole th rough strai ght and co iled 
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tubing. Therefore, development of correlations to accurately predict the frictional 

pressure losses in the tubings is essential for engineering design purposes and for pump 

horse power optimization. This could be challenging due to the complex flow behavior 

of non-Newtonian fluids in straight and coiled tubing. Moreover, different fluids behave 

differentl y under different flow conditions and environments due to their physical , 

chemical and rheological properties. 

ln thi s work, the effects of salinity on the rheology and friction pressure loss of welan 

gum fluids flowing in straight and coiled tubing have been experimentally investigated . 

The friction pressure data observed in the experiments were correlated using 

dimensionless variables. 

I.I. OBJECTIVES 

The obj ectives li sted below were accomplished by performing a comprehensive 

experi mental study of welan gum fluids of various concentrations and sa linities at 

amb ient conditions, using the straight and coiled tubing flow loop, located at the Well 

Construction Technology Center of the University of Oklahoma. The object ives of thi s 

study include: 

• Rheological characterization of we Ian gum fluids. 

• Study the effect of sa linity on the rheological characterist ics of we Ian gum fluids 

• In vestigation of the effect of sal inity on friction pressure losses of we lan gum 

fluids . 

• Development of correlations for the prediction of fr ict ion factor for flow of we Ian 

gum fluids in both straight and coi led tubing. 

4 



CHAPTER2 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

2.1. LITERATURE REVIEW 

Welan gum is a commercial bacterial polysaccharide produced by an Alcaligenes species 

(ATCC-31555) in an aerobic, submerged fermentation. The medium contains 3% glucose 

as the carbon source, phosphate as a buffer, ammonium nitrate and soy peptone as 

sources of nitrogen and trace elements such as iron, magnesium, molybdate, cobalt, zinc, 

copper manganese, and borate. The fermentation process usually last 60 - 70 hours, after 

which the polysaccharide is recovered by precipitation of the polymer with isopropanol 

(Kang et al. 1982). 

Welan gum has fo und a wide range of uses in oilfield operations including hydrau lic 

fracturing, wellbore cleanup, cementing and drilling for viscosity enhancement and 

friction pressure reduction purposes. Hoskin et al ( 1991) invented cross! inked we Ian gum 

ge ls for se lectively plugging regions of higher permeability within an oil bearing 

subterranean formation , thereby improving sweep effic iency during fluid flood oi l 

recovery. These ge ls wi ll form in lower sa linity brines and under virtually all pH 

conditions. They are stable under the cond itions encountered in flooding operat ions 

including high temperatures. Aqueous sol utions of welan have higher suspension 

capability, low shear rate viscosity and thermal stabi lity compared with that of 

hydroxypropyl guar, hydroxyethylcellulose (HEC) and Xanthan (Kang et a l. 1983 ; 

Sanford et al. 1984; Whistler and BeMiller 1993). 

Several investigators have studied the chemical structure and solution properties of welan 

gum. In 1985, Jansson et al. determined the chem ical structure of we lan and their 

findings were later confirmed by O'Neill et al. ( 1986). They fo und that it contains L-
5 



mannose, L-rhamnose, D-glucose, and D-glucuronic acid. Figure 1 shows the molecular 

structure of welan gum. It is structurally similar to gellan which has the same 

tetrasaccharide repeating units, but without the side chains (Jansson et al. 1985). Despite 

their structural similarities, both biopolymers have different aqueous solution properties, 

notably, gellan forms gels whereas welan is a non-gelling polysaccharide (Sanford et al. 

1984). A study by Crescenzi et al ( 1986; 1987) to investigate the influence of side-chains 

on the dilute-solution properties of welan and gellan found that the side chains mediated 

against conformational ordering. 

CH,OH COOH CH20 H 

\./~()\ /--<J\ ; --{\ !~. /' 

r\ f-·-o l \f"-Q / \ ,-O-/ ..,.H ?o \1·-··f.f 
f\ ~ .. "_J\ OH l ~/.,, / \, ./ 

H ()\ / \ / / \ .. ,·.L___,I . 
. ,. '~ I \---( 

OH OH O OH OH OH 

/i--Q. /. i~ / 
HO/ CH "· / HO "''H ·c H\ / 

f / v ' \f OR \/ v : J ~ 
\ I \ I 
\ ./ \ .. / 
r---1 II 

OH OH OH OH 

_. 3H\-D-G lcp-i"f __. 4)-1\ -0 -G lcpA-( 1-< 4H~ -D -G lcp-(1...., 4.)-" -L-Rhap-('1_. 

3 
T 

·t -L-Rhap OR =1 -L-Manp 

Fig. 2.1 Molecular Structure of Welan Gum (After Urbani and Brant, 1989) 

Welan gum must have polye lectrolyte properti es due to the presence of D-glucuronic acid 

in its chemical structure. In 1990, Campana et al investigated the polye lectrolyte and 

rheological behavior of dilute and semi-dilute aqueous welan gum solutions. It was 

shown, based on its thermodynamic properties, that the conform ation of welan gum is 

compatible with an extended double-helix similar to gellan. The polye lectro lyte behavior 

of welan gum was confirmed from the decrease of viscosity with the addition of sa lt 

without any conformational change. They also noted that the initial source of we Ian gum, 
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industrial powder or unpasteurized broth, could affect its polyelectrolyte character, a 

finding that was confirmed by Lopes et al. in I 994. They showed that the rheological 

properties of welan gum and the extension of the welan chain due to electrostatic 

repulsions are influenced by the origin of welan gum sample and the method of 

purification used. This behavior is attributed to the presence and shape of aggregates 

which are irreversible when simple purification is used. However, welan gum solutions 

do not exhibit aggregate-like behavior when the welan broth is treated by a mild alkaline 

process before precipitation. 

Urbani et al. (1989) compared the dilute aqueous solution properties of S-130 (welan 

gum) and S-657, which have a common backbone repeating unit and small differences in 

side chain structure. They concluded that both biopolymers di splay only very weak 

polyelectrolyte behavior based on potentiometric proton titration and investigations of the 

dependence of intrinsic viscosity on ionic strength. There is also a modest tendency of 

both polymers to aggregate with increasing aq ueous NaCl concentration and they 

maintained practically constant intrinsic viscos ities in sa lt concentrations in the range 

0.001 - 0.100 M. 

Budd ( 1995) cond ucted ult racentri fuge studies of the polyelectrolyte behavior of we Ian 

gum , the results of wh ich showed that it exhibits typical polyelectrolyte properties at very 

low ionic strength. However at NaC l concentrations greater than abo ut 0.1 mol/dm 3 the 

charge effects due to increasing sa lt concentrat ion are eliminated . He suggested that 

screening of the carboxylate groups through intramolecular interactions with the side 

chains and weak intermolecular association cou ld lead to the observed insensitivity of 

so lution properties to sa lt concentrat ion above 0.1 mol/dm 3. However, Campana et al. 

( 1997) attributed the weak polyelectrolyte behavior to the hi gh stiffness of the we Ian gum 

chain, which has been compared to the stiffness of DNA (Campana et al.1990). Their 
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results showed that the value of the intrinsic viscosity at low ionic strength was close to 

that obtained at higher salt concentration. Stokke et al. (l 988) used electron microscopy 

to investigate the structure of Xanthan and welan gum, and concluded that the very stiff 

structural chains of these polysaccharides resulted in the high viscosity and sa lt-tolerance 

of their solutions. 

The solids suspension and transportation properties of welan gum and Xanthan based 

fluids can be directly correlated to their low-shear-rate-viscosity (LSRV) and elasticity 

(Powell et al. 1991). In their study, they also determined that a minimum effective or 

critical polymer concentration (CPC) must be reached or exceeded in order to achieve 

optimal fluid performance during oilfield drilling or workover operations. The CPC is 

affected by different factors including temperature, salinity, average shear rate, ve locity 

gradients, hole angle, polymer molecular properties, and the size and concentration of the 

suspended so l ids. 

For oil-field app lications, welan gum solutions are pumped downhole through straight 

and coiled tubing, therefore it is essential to understand the flow characteristics of these 

solutions under the conditions encountered in the field. Recently, an experimental 

investigation of the effect of pol ymer concentration and coiled tubing curvature ratio on 

the hydraulic characteristics of welan gum fluids in straight and coi led tubing was carried 

out by Asubiaro and Shah (2008). They developed correlations to predict Fanning 

fri ction factor fo r fl ow of welan gum fluids in straight and coiled tubing. However, only 

we lan gum fluids in fresh water were considered in their work. In drilling and completion 

operations, brine solutions are commonly used as base flu ids to prevent clay swelling and 

shale instability. Therefore, it is important to quanti fy the effects of commonly used 

oilfield brines on the rheological and flow properties of welan gum fluids of 

concentrations typica l in oilfield applications, especiall y in straight and coiled tubing. In 
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this work, the effect of salinity on the flow characteristics for welan gum fluids in straight 

and coiled tubing has been experimentally investigated. The friction pressure data as 

observed in the experimental investigation are correlated using dimensionless parameters. 

These correlations are found to provide good accuracy for prediction purposes when 

compared to the experimental data. 

2.2. RHEOLOGICAL CHARACTERIZATION 

Rheology is the study of deformation and flow of matter. Fluid is substance that 

undergoes continuous deformation when force is applied and is generally classified as 

Newtonian (shear rate independent) or Non-Newtonian (shear rate dependent). An 

accurate knowledge of the rheological behavior of fluids is important in engineering 

design to determine their ability to perform certain functions. 

2.2.l. Rheological Models 

Figure 2.2 illustrates Newtonian and three kinds of non-Newtonian flow behavior. For 

Newtonian fluids the applied shear stress is directly proportional to the shear rate in 

laminar flow . The viscosity is the ratio of shear stress to shear rate and can be obta ined as 

the slope of the shear stress versus shear rate plot (which passes through the origin). It is 

constant at a given temperature and pressure regardless of the shear rate. The shear stress 

for a Newtonian fluid is expressed as: 

r = µ y (2.1) 

where, r = shear stress, y = shear rate, and JL = viscosity 
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Fig. 2.2 Newtonian and Non-Newtonian Behavior 

A non-Newtonian fluid is that whose rheogram (shear stress versus shear rate plot) is 

non-linear or does not pass through the origin (Chhabra and Richardson 2008). The 
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apparent viscosity for these fluids is dependent on shear rate, except for Bingham plastic 

fluids which exhibit Newtonian behavior after the yield stress is overcome. Most of the 

fluids used in oil and gas production operations, including welan gum, are non

Newtonian in nature. Non-Newtonian fluids can be further grouped into three categories: 

• Time Independent Fluids: These are fluids for which the rate of shear is 

determined by the shear stress at that point and instance . They are also known as 

purely viscous, inelastic or generalized Newtonian fluids. The shear rate at a 

given point is unique and not a linear function of shear stress except for Bingham 

plastic fluids. 

• Time Dependent Fluids: These are fluid s for which shear rate is a function of both 

magnitude and duration of shear and their kinematic history. Shear rate is not a 

I inear function of shear stress. 

• Visco-elastic Fluids: Flu ids that exhibit both viscous and elastic behavior. The 

internal stresses are function not only of the shear rate, but also depend upon the 

entire past history of deformation. They are also known as memory fluid s. 

In principle, rheological characterization of non-Newtonian fluid s requires using 

constituti ve equations or model s to desc ribe the respon se of the fluid to changes in shear 

rate so that the apparent viscos ity cou ld be ca lcul ated under different flow conditions. 

The fo ll owing mode ls are common ly used to characterize non-Newtonian fluids used in 

the oilfield : 

• Power Law Model: Th is model wh ich was proposed by Ostwa ld and de Waele, is 

the most popular express ion for desc ribing the flow behavi or of oil field fluids. It 

describes the relationship between shear stress and shear rate for shear thinning 

fluids usi ng two parameters. It is on ly app li cable over a limited range of shear rate 

(or stress) where the rheogram (p lotted on double logarithm coordinates) can be 
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approximated using a straight line. The non-linear rheogram curve passes through 

the origin and can be mathematically expressed as: 

r = k(y)" (2.2) 

where k = fluid consistency index (lb;secn/fl2) 

and n = flow behavior index. 

When n < I the fluid exhibits pseudoplastic or shear thinning properties. The 

apparent vi scos ity of these fluids decreases with increase in shear rate. Fluids for 

which n > 1 are referred to as shear thickening or dilatant fluids. The fluid 1s 

Newtonian when n = 1. 

• Bingham Plastic Model: This model describes the flow behavior of fluids 

exhibiting viscosity that is independent of shear rate but require a finite stress 

known as yie ld stress to initiate flow . The plast ic viscosity is obtained from the 

slope of the I inear portion of the shear stress versus shear rate curve. 

Mathematically, the two parameter model can be expressed as: 

(2.3) 

where r = shear stress, I br /ft2 

r 0 = yie ld stress, lbr /ft2 

h -I r = s ear rate, sec 

fl " = plastic viscosity, cP 

• Herschel-Bulkley Model: This model genera li zes the Bingham plastic mode l 

using three parameters to define the non-linear flow curve . It exhibits a yield 

stress and plastic viscosity that is shear rate dependent and can be represented 

mathematically as: 

r = r 0 + k(y)", (2.4) 

where r = shear stress, I br /ft 2 
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r 0 = yield stress, lbr /ft2 

h -I r = s ear rate, sec 

k = fluid consistency index (/bjsecnlfi2) 

and n = fl ow behavior index. 

The model reduces to power law when there is no yield point and to Bingham 

plastic model when n = 1. 

2.3. RHEOLOGY MEASUREMENT METHODS 

The rheological characterization of fluids used in the production of oil and gas is 

challenging due to their non-linear and complex mechanical properties. For non-

Newtonian fluid s, variations in shear rate within the flow geometry cou Id undermine the 

accurate determination of the shear stress - shear rate relationship. Such limitati ons could 

be overcome by utilizing proper measuring strategies and carefu l design of the measuring 

instruments. The basic feat ures and work ing principles of some of the most comm only 

used rheometers in the oi l and gas industry are discussed below: 

• Pipe or Capillary Viscometer: Due to their simplicity, low cost, structural 

sim ilarities to many process flows and accuracy (i n the case of long capillar ies) 

cap ill ary viscometers are the most common instruments used for viscosity 

measurement. In the capi llary viscometer, fluid is a llowed to fl ow through a 

known length of a sma ll diameter pipe at a desired flow rate, and the pressure 

drop across the tubing length is determined. The flow rate, under lami nar fl ow 

conditions, is converted to wa ll shear rate while the measured pressure drop is 

converted to wa ll shear stress. The power law parameters are then obtained from a 

logarithmic plot of wa ll shear stress and wa ll shear rate. The pipe viscometer is a 

slight modification of the capi ll ary viscometer, in which a larger pipe diameter is 
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used . Capillary viscometers are the instruments of choice to accurately determine 

the vi scosity of Newtonian fluids and highly diluted systems. 

• Rotational Rheometer: Rotational rheometers are usually preferred for the 

determination of the rheological properties of non-Newtonian fluids. Rotational 

rheometers are generally classified as controlled shear rate and controlled stress 

rheometers. In the rate-controlled instruments, the velocity of rotation of one 

member of the measuring system is controlled, and the resulting couple is 

measured either on the same member (Searle system) or on the other (Couette 

system). On the other hand, in stress controlled instruments the couple is applied 

to one member of the measuring system and its rate of rotation is measured 

(Lapas in and Pricl, 1995). The concentric cylinder, cone-and-plate and parallel

plate measuring geometries can be used with the rotational rheometers. 

The rotational viscometer (model 35 Fann viscometer), shown in Figure 2.3 , is 

one of the most common rotational vi scometers used in the oilfield . The 

measuring system consists of two concentric cylinders: the inner cylinder or bob 

(which is stati onary) and the outer cy linder or sleeve (which rotates) . The test 

fluid is contained in the narrow annular space between the cylinders. The sleeve is 

rotated at a known speed and torque due to the fluid s vi scous drag is exerted on 

the bob. The de fl ec ti on of a heli ca ll y wo und spring, which balances the toque, can 

be read on a ca librated dial at the top of the viscometer. The rotor speed 

(measured in rotati ons per minute, rpm) can be converted to shear ra te and the 

torque indicated by the di al reading is converted to shear stress, fo r a given bob

sleeve geometry and torque spring. The power law parameters are obtained by 

plotting the shear stress and shear rate on a logarithmic sca le. 
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Fig. 2.3 Rotational Viscometer (Model 35 Fann) 

2.4. DRAG REDUCTION 

The res istance to fl ow encountered during fluid fl ow through pipes is known as drag or 

fr icti on. It has long been established that drag could be drastically reduced during 

turbulent fl ow, by adding small amounts of spec ific high molecular and long-chain 

po lymers to the fluid fl ow, thereby increas ing fluid pumping capac ity (Drag reductions of 

up to 80% over the so lve nt could be achi eved with these "drag reducers"). The drag 

reducing capab ili ty of polymers depends on its molecular we ight, molec ul ar we ight 

di stribution, molecular st ructu re and solubili ty in the so lve nt. The phenomenon has fo und 

many applications in va ri ous processes in the petro leum industry such as hydraulic 

frac turing, ac idizing, we llbore cleanup, cementing and drilling. Drag reduction, which is 

usuall y expressed in percentage, can be computed from the fr icti on pressure-flow rate 

data obtained during the fl ow of the solvent and polymer solution. 

Mathemat ica ll y, drag reduction can be expressed as : 

wherefp = Fanning fri cti on factor of polymer so lution 
15 

(2.5) 



ls= Fanning friction factor of the solvent 

In the above equation, it is assumed that the density of the polymer solution is equal to 

the density of the solvent, which is true for the low welan gum fluid concentrations used 

in this study. 

2.5. IONIC STRENGTH 

The ionic strength of a solution is a measure of the concentration of ions contained in that 

solution. Ionic compounds like salt dissolve and dissociate in water fo rming charged 

particles known as ions. Ionic strength has significant impact on the so lution properties of 

polymers, such as the viscosity or solubility. Mathematically, ionic strength is expressed 

as: 

(2.6) 

where Ci = molar concentration of i-th ion, mol/dm3 

Zi = charge number of ion. 

The sum is taken over all the ions in the so lution. 
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CHAPTER3 

EXPERIMENTAL SETUP AND TEST PROCEDURE 

The purpose of this experimental study is to investigate the effects of salinity on the 

hydraulic characteristics of welan gum fluids of concentrations typical in oilfield 

applications, at ambient temperature conditions (75°F). To achieve this purpose, the V2 in. 

fluid flow loop at the Well construction Technology Center as described in this chapter 

was utilized. 

3.1. EXPERIMENTAL SETUP 

The fluid fl ow loop, shown in Figure 3.1 is a ptpe flow viscometer designed to 

characterize hydraulic behavior of fluids. The main components of the flow system are: 

V2- in. OD (0.435-in. ID) straight and coiled tubing as flow conduit, fluid mixing and 

pumping equipment, and data acq uisition system. The fl uid fl ow loop has a 15 ft long 

straight section with 3 ft entrance and 2 ft exit lengths and 18 ft long coiled tubing with 

curvature ratio of 0.019. The fluid to be characterized is mixed in a 1000 gal tank. 

Pumping is achieved by the use ofa progressive cavity pump (Model 6P l0 Moyna) and a 

centrifuga l pump (Model SM Deming) which serves to boost the suction of the 

progress ive cavity pump. The maximum flow rate achievable by the progressive cavity 

pump depends on the type of fluid being pumped. The max imum working pressure of the 

fl ow loop is 1200 psi. The valves in the flow loop are all full -opening bal l type va lves. 

The data collected in the flow test included: flow rate, differential pressure across various 

sections of straight and co iled tubing, fluid density, fluid temperature and system 

pressure. A Corio li s fl owmeter (M icromotion® Elite Model CMF050) was used for the 

measurement of the flow variables including the fo llowing: 
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Fig. 3.1 Schematic Diagram of Experimental Setup 

1. Flow rate in the range 0-30 gal/min with accuracy of ± 0.05% 

11. Density with accuracy ± 0.0005 glee. 

111. Temperature with accuracy± I °C. 

Differential pressure transducers to determine the fri ctional pressure losses in straight and 

co iled tubing sections were placed across a known length of tubing. The max imum 

differential pressure span fo r these transducers is 0 - I 00 psi with accuracy of ± 0.075%. 

The span used fo r the straight pipe section was 0 - 50 psi while that fo r the coiled tubing 

was 0 - I 00 psi. The measured data from the fl owmeters, pressure transducers as we ll as 

pressure gauges were collected and transmitted to a microcomputer where the data were 

di sp layed and saved for analysis. This task was accompli shed using a data acquisition 

system (Fluke Hydra) which communicates with a host computer via a wireless modem 

radio link. The data acqui sition system software prov ides the operator the option of 

di sp laying the data signals graphica lly while the test is in progress. Thi s feature enables 

18 



the operator to monitor the trends of measured variables so that informed decisions and 

proper adj ustments can be made while the test is in progress. 

Figure 3.2 shows the Yi -in. OD and 0.435-in. ID coiled tubing, used for this experimental 

study. The coiled tubing is made by spooling straight stain less steel tubing onto a drum of 

fixed diameter. 

Fig. 3.2 '12 inch Stainless Coiled Tubing Used for Study 

3.2. EXPERIMENTAL PROCEDURE 

Proper fluid mixing procedures must be fo llowed in the preparation of the test fluids. 

Therefore, the manufacturer's recommended mixing proced ure fo r welan gum was 

foll owed for the preparation of the four fluid concentrations (0.5. 1.0. 2.0 and 3.0 lb/bbl) 

at different salinities (fresh water, 2% KCI and 4% KCI ). Desired welan gum suspension 

was prepared by adding the proper amount o f polymer to water in the mixing tank wh ile 

operating the agitator at a moderate speed. The pH of the suspension was lowered to 

about 3 by add ing a measured amount of muriatic acid to faci litate proper di spersion of 
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the polymer. Once adequate mixing was achieved, the pH of the fluid system was 

increased to about 8.5 to 9 by adding sufficient quantity of sodium hydroxide so lution. It 

is important to mention that dry caustic soda should never be used since it might lead to 

loca lized increase in pH resulting in the ge llation of the polymer. The required amount of 

sa lt was then added to achieve the desired salinity. The fluid was allowed to hydrate for 

24 hours. The following day, a fluid sample was collected from the tank and its 

rheological properties were measured with the rotational viscometer. 

Prior to pumping test fluid through the flow loop, water at ambient temperature 

conditions (75°F) was circulated to conduct system calibration. Then, welan gum fluid 

was pumped through the straight and coiled tubings at various flow rates and the 

corresponding pressure drop read ings were recorded . Flow rate was set at a desired value 

and the steady-state pressure drop data across straight and coiled tubing lengths were 

recorded. Subsequently, fl ow rate was increased and corresponding pressure drop was 

noted . Test fluid was pumped in a single-pass to avo id polymer degradation due to 

excess ive shear. Before terminating the test, another fluid sample was co llected from the 

flow loop and the fluid rheology was agai n measured wi th the rotat ional viscometer fo r 

any possible degradation due to heat ing and/or shear. At the end of testing, system was 

flu shed by pumping water and di splacing the test fluid . It is important to mention that the 

system was ca librated every time a new test was performed to ensure that reliable data 

were generated. 

3.3. DATA REDUCTION AND ANALYSIS 

The measured flow rate, pressure drop, temperature and density data in straight and 

co il ed tubings we re recorded for analys is. Only stabi lized region data were averaged and 

used for ana lys is. 
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3.3.1. Fluid Characterization 

The rheological properties of the fluids tested were measured using the rotational 

viscometer with a bob and cup measuring geometry. The ratio of the bob to cup radius, 

/3, for the viscometer is 0.936. 

The dial readings were converted to obtain wall shear stress values, using the following 

equation. 

rw = O.Ol066NB; (3.1) 

where, r 11 . is wall shear stress (lb/ft\ N is spring factor (1.0 for no. 1 spring) and() is the 

dial reading. Wall shear rates were calculated from the speeds of the sleeve using the 

following equation. 

Yw = 1.703 x RPM (3.2) 

where, r .. is wall shear rate (s- 1) 

Logarithmic plots of wall shear stress versus wall shear rate were made to determine the 

power law parameters: flow behavior index, n, and consistency index, K,. 

Consistency index, K, , obta ined from the viscometer data, was converted to pipe 

consistency index, KP by using the fo ll ow ing equation (Shah 2008): 

K 
K = " 

" [ 4no- ]" 
3n +I 

(3.3) 

where, a is a constant defined by: 

(3.4) 

Where Flow rate and pressure drop va lues we re first converted to Fanning friction factor 

and genera lized Reynolds number. These two dimensionle s groups were used in 
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characterizing fluid flow through straight and coiled tubing. The following equations (in 

field units) were used in the data analysis. 

Generalized Reynolds number, (NReg), a dimensionless variable, for non-Newtonian 

fluids flowing through pipe was calculated using the following formula (Shah 2008): 

N = 0.024 x (3.85)-n d;nP [2_] 2-n 
Reg K sn-1 A 

p 

(3.5) 

where, A is the cross-sectional area of the pipe (in. 2); d; is the internal diameter of straight 

or coiled tubing (in.) ; q is the flow rate (gal/min); pis the fluid density (lb 11/ gal) ; KP is the 

pipe consistency index of the fluid (/b.1sec11/fi2), and n is the flow behavior index of the 

fluid . 

Fanning fri cti on factor f, is a dimensionless variable used to determine friction pressure 

gradient and is defined by the fo ll owing express ion: 

f = 25.8[d; ~P] 
Iv p 

where, I is the length between pressure ports (ji) and iJp is the pressure drop (psi). 

Average ve loc ity, v, (jthec) is ca lculated from the fo ll ow ing equation. 

q 
v =-----

2 .448 d / 

3.3.2. Experimental Error Analysis 

(3.6) 

(3.7) 

The max imum experimenta l percentage errors we re computed fo r the dimensionless 

parameters: genera li zed Reynolds number and Fannin g fri cti on fac tor, based on the 

accuracy of phys ica l measurements including fl ow rate, density and pressure drop from 

the Micromoti on fl ow meter and differentia l pressure transducers. The accuracy of the 

22 



pipe length and diameter measurements were taken to be ± 0.125 in. and ± 0.000 I in . 

respectively. The maximum experimental percentage error for the dimensionless 

parameters used in the analysis of welan gum fluids flow characterist ics are presented in 

Table 3.1. The detailed error propagation analysis is shown in Appendix A. 

Table 3.1 Experimental Percentage Error for Generalized Reynolds Number and 
Fanning Friction Factor 

Maximum % Experimental Error 
Tubing Type 

Generalized Reynolds Number Fanning Friction Factor 

Straight Tubing 0. I 3.0 

Coiled Tubing, r/R = 0.019 0.2 1.0 

3.3.3. System Calibration 

For system ca libration and estab li shment of baseline for com parison, water data were 

acquired through Y2-in. stra ight and co il ed tubing at ambient temperature conditions 

(75°F). The pressure drop - flow rate data for water is shown in Appendix B. Data 

acq uired from the flow loop were converted to Fanning friction facto r and Reynolds 

number. The accuracy of the acq uired water data from the straight pipe was examined by 

comparing with the fo ll owi ng Drew et al. ( 1932) corre lation for turbulen t flow in smooth 

pipes. 

f = 0.00 14+0. 125(NRe)-032 (3.8) 

Thi s correlation is app li cab le in the Reynolds number ra nge of 2 100 < NRc < 3 x I 06 and 

is fo r Newtonian turbulent flow in smooth pipes. 

The acc uracy of the acqu ired water data from the co il ed tubing was exam ined by 

comparing with the fo llowi ng Srini vasan et al ( 1970) corre lat ion, wh ich is va lid for 

smooth co il ed tubing in the turbulent flow regime. 
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= 0.084 (!_)O.I 
f N o2 R 

Re 

(3.9) 

where, r/R = curvature ratio, r = radius of coiled tubing and R = radius of co iled tubing 

reel. It is valid for Dean number range of, Noe critical to Noe = 14,000 and curvature ratio 

from 0.0097 to 0.1 35. 

Dean number (Dean et al. 1928) was introduced to characterize the fl ow in curved pipes 

and is given by, 

( )
0.5 

N De = NRe ~ (3.10) 

Srinivasan et al. (1970) proposed the fo llowing Critical Dean number: 

N = 2 1 00 I + 12 ~ [ ( )0.5] 
/Jecn11ca/ R (3.11) 
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4.1. WATER TESTS 

CHAPTER4 

RESULTS AND DISCUSSION 

The water tests are performed to calibrate the flow system and to generate a base line fo r 

comparison with the frictional pressure data of test fluids. The logarithmic plots of 

Fanning friction factor vs. Reynolds number for water through straight and coiled tubing 

is shown in Figure 4.1 . It is observed that the water data from the straight and coiled 

tubing are in good agreement with the Drew and Srinivasan correlations fo r straight pipe 

and coiled tubing respectively. This is the expected result since both the straight and 

coiled tubing sect ions are made of stainless steel tubing which could be considered as 

smooth pipes with negligible roughness effect. It is important to mention that the system 

was ca librated every time a new test was perfo rmed to ensure that reliable data were 

generated. 

From Figure 4.1, it can be observed that at a given Reynolds number, water fl owing 

through straight pipe exhibit lower friction factor when compared to that in coil ed tubing. 

The fl ow pattern through coi led tubing is different from that in straight pipe due to the 

presence of secondary flow . The variation in centri fugal fo rces across the pipe creates a 

non-uni form pressure distr ibution, with the maximum pressure occurring at the outer wa ll 

and the minimum pre sure at the inner wall . This im balance in pre ure distribution 

creates secondary flow at ri ght angle to the main flow that bringing about additional fl ow 

resistance and hence, increased fri ctional pressure loss. The secondary flow pattern is 

composed of counterrotating vort ices, commonly ca lled Dean vortice . 
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Fig. 4.1 Water Flow Data through Yz-in. Straight and Coiled Tubing (r/R=0.019) 

The maximum deviation of the measured values of friction factor from the predicted 

va lues fo r straight pipe and coiled tubing are 3.2 percent and 1.0 percent respectively. 

The max imum deviation values are within the acceptable range of experimental error and 

confirm the re li abi lity of the friction pressure data obtained from the straight and coi led 

tubing. This a lso confirms the accuracy of the tubing diameter used for data ana lysis in 

thi s experimental set-up. 

4.2. RHEOLOGICAL CHARACTERIZATION 

Logarithmic plots of wa ll shear stress and wa ll shear rate (rheograms) obtained from 

rotary vi scometer measurements for a ll welan gum concentrations considered in this 

study are shown in Figures 4.2 - 4.5. The corresponding apparent viscosity aga inst shear 

ra te plot are depicted in Figures 4.6 - 4.9. The rotat ional vi scometer data fo r welan gum 

fluids investi gated in thi s work are shown in Appendix C. 
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The plots of shear stress and viscosi ty versus shear rate fo r the shear rate range of I 0.2 -

1000 s- 1 can be approxi mated by straight lines. T he apparent viscosity versus shear rate 

plots show that a ll fluids considered behave as non-Newtonian pseudoplastic fluid s over a 

large shear rate range, since the apparent viscosity decreases with increase in shear rate. 

The power law rheological model re lating wa ll shear stress and wa ll shear rate was used 

to characte rize the behavio r of the we Ian gum fluid s investigated. 

)( 

M 
0. 1 .a. 

"' E ""' ... 
= .,,.,, .... 
~ " " .. ~ " .. 
"' 

~ 
... ;; 
" " " A 

.<:: 0.0 1 .!. 
"' .!. 

~ .!. 

' 0 .5 lh/hh l in fn·"h " :1 h·r 4 11.5 lh/bhl in Z"I. K CI • H.5 lh/hhl in .i•;. K C I 

0.00 1 

10 100 1000 10000 
\ Va ll S hear Rate, sec · 1 

F ig. 4.2 Wall Shear Stress vs. Wall Shea r Rate P lot for 0.5 lb/bbl Wela n G um F luid 
in Va rious Brine Solutions 

~ 0.1 
;> 

0.01 

x 

' 1.11 lh/hhl i n fn • .. h \\ ;1k r 

10 

.&. I.II lh/hhl in z•;., K C I • 1.0 lh/hhl in .J •/., K C I 

I 00 1000 10000 

\ Vall Shc~• r Ra1c, sec -1 

Fig. 4.3 Wall Shear Stress vs. Wall Shear Ra te P lot fo r 1.0 lb/bbl Welan G um Fluid 
in Various Brine Solutions 

27 



~ ... 

x 
~ 

)!( 

)( .. ..Q )( 

t A. 
~ 0.1 A. • .. • 
!: 
rJ) 
.... 
<.: ... -= rJ) 

= <.: 

~ 

l :K 2.0 lb/bbl in fresh wate r & 2.0 lb/bbl in 2% K CI • 2.0 lb/bbl in 4% K CI J 
0.01 

10 100 1000 10000 

'Wall S hear Rate, sec -1 

F ig. 4.4 Wall Shear Stress vs. Wall Shear Ra te Plot for 2.0 lb/bbl Welan Gum Fluid 
in Various Brine Solutions 

~ 
..Q 

~ 

K 
.,, .,, 
'"' ~ :... - A rJ) 

5 
-= rJ) 

,. 
> ..... 

XJ .O lb/bbl in fr{'Sh \\ :I I('!" A3.0 lb/bbl iu 21% h'. C I • 3.0 lb/ hbl i11-l 1Yo h'. ('I 

0. 1 
10 100 1000 10000 

\Va ll S hea r· Ra lc, sec -1 

F ig. 4.5 Wall Shea r St ress vs. Wall Shear Ra te P lot for 3.0 lb/bbl Wela n Gum Flu id 
in Various Brine Solu tions 

28 



;;: 

.... 

100 -
Q., 
'-' 

£. 
"' 0 
'-' 
"' > -c: ., ... 
~ 
c. 10 c. 
< 

[ 

x 

.!. ;;: 

.;. 
x • ... 

X 0.5 lb/bbl in fresh water 

10 

.i. 0.5 lb/bbl in 2'X, KCI 

100 
Wall Shear Rate, sec -1 

x . ... 

• 0.5 lb/bbl in 4% KCI 

1000 

J 
10000 

Fig. 4.6 Apparent Viscosity vs. Wall Shear Rate Plot for 0.5 lb/bbl Welan Gum 
Fluid in Various Brine Solutions 

10000 

1000 x 
~ :x 

t .K 
Q., 
'-' .~. >-. 
.C· .a. 
"' 0 100 '-' 
-~ :y 
;.... t.. 

/ 

~ • Yx ... 
~ ·~.i { , c. 
c. 

···•· 
)!" 

-!'. ... 
10 ¥ ... 

;t::: 1.0 lb/bbl in fres h \'taler· "' 1.0 lb/bbl in 2% !-:Cl • 1.0 lb/bbl in -l'Yu h:CI 

10 100 1000 10000 

Wall Shear Rate, sec -1 

Fig. 4.7 Apparent Viscosity vs. Wall Shear Rate Plot for 1.0 lb/bbl Welan Gum 
Fluid in Various Brine Solutions 

29 



=... 
"' 
"i-
"' 0 

"' "' > 
~ .... 
~ 
c. 
c. 

-<!'. 

10000 

~ 

~ 
~ .. 

IOOO 

100 

x 
.t. 

x .. 

~ 
··~ . I 

[ X 2.0 lb/bbl in fresh waler t. 2.0 lb/bbl in 2 'Vo K CI • 2.0 lb/bbl in 4% K CI J 
IO W=~~~==;=~~~~~~~~==~~~~~ 

10 100 1000 10000 
Wall Shear Rate, sec -1 

Fig. 4.8 Apparent Viscosity vs. Wall Shear Rate Plot for 2.0 lb/bbl Welan Gum 
Fluid in Various Brine Solutions 

10000 

... 
1000 

=... 
"' 
~ 
"' 0 

"' "' > 
~ 
:... 
~ 100 c. 
c. 

-<!'. 

% 3.0 lb/bbl in fr esh " " tc r 

10 

10 

't ... 

" 3.0 lb/bbl in 2•x. K CI 

100 

Wall Shear Ra te, sec · 1 

,:. ... 

• 3.0 lb/bbl in 4% 1-:CI 

1000 10000 

Fig. 4.9 Apparent Viscosity vs. Wall Shear Rate Plot for 3.0 lb/bbl Welan Gum 
Fluid in Various Brine Solutions 

30 



The shear thinning range chosen for the determination of power law parameters is 5 1 -

I 022 s- 1• The n and Kv values determined are presented in Table 4. 1. The correlation 

coeffi cient, R2, fo r these values is 0.99. Also presented in the table is the pipe consistency 

index, Kp, calculated from Kv. The plots of n and Kp versus fluid concentration fo r we lan 

gum fluids in fresh water, 2% and 4% KC! are shown in Appendix D. It can be observed 

that the flow behavior index (n) decreases and the consistency index (Kv or Kp) increases 

as fluid concentration increases, indicating a typical non-Newtonian pseudoplatic 

behav ior. Plots of apparent viscosity versus wall shear rate for we Ian gum fl uids in fresh 

water, 2%, and 4% KC! are shown in Appendix E. It can be observed that the fl uids 

become more viscous with increase in welan gum fluid concentration. 

Table 4.1 Power Law Model Parameters for Welan Gum Fluids 

Co nce ntration K ,. (lbf.s"(ft 2 ) (lbf.s"!ft 2 ) R ange (s -1 ) 

Ionic stregth, 
II K" 3 Fl uid 111 o f e/d 111 

0.5 lb/bb l 
0.47 1 0.0044 0.0047 5 1 - 1022 0 in fresh water 

0.5 lb/bb l 
0.480 0.0035 0.0037 SI - 1022 0.00059 in 2% KCI 

0.5 lb/bb l 
0.495 0.0030 0.0027 5 1 - 1022 0.00 118 in 4% KCI 

1.0 lb/bb l 
0.349 0.0 193 0.0 180 51 - 1022 0 in fresh water 

I 0 lb/bb l 
0.39 1 0.0 122 0.0 150 5 1 - 1022 0.00059 in 2% KCI 

E I 0 lb/bb l ::: 0.401 0.0 11 0 0.0147 5 1 - 1022 0.00 11 8 v in 4% KCI 
c: 

'" 2.0 lb/bb l 
~ 0.242 0.086 1 0.0676 5 1 - 1022 0 
..- in fresh water 

2.0 lb/bb l 
0.266 0.0645 0.0573 5 I - 1022 0.00059 

in 2% KCI 

2.0 lb/bbl 
0.290 0.0540 0.0548 5 1 - 1022 0.00 11 8 

in 4% KCI 

3.0 lb/bb l 
0.23 1 0 1575 0. 1727 170 - 1022 0 

in fresh "atcr 

3.0 lb/bbl 
0250 0 1279 0 1404 170 - I 022 0.00059 

Ill 2% KCI 

3 0 lb/bbl 
0.252 0 12 15 0 1334 170- 1022 0 00 11 8 in 4% KCI 

Figures 4.10 and 4.1 I show the plot of the power law parameters ve r us the ionic strength 

of the flu id. The effects of sa li nity can be observed a n va lue increase and K,. or KP 

va lues decrea e with increase in salinity from fresh water to 2% KC!. This is the typ ica l 
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polye lectrolyte behavior with increase in sa linity due to the screening of the 

intermolecular electrostatic repulsions that ex ist in aqueous so lutions of polye lectrolytes, 

hence allowing for a more compact structure (Campana et al. 1990; Rochefort et al. 

1987). The charge screening causes a reduction in the hydrodynamic size of the 

molecule, which when not accompanied by increased intermolecular assoc iations, results 

in a decrease in solution properties (Rochefort et a l. 1987). However, as sa linity increases 

from 2% KCI to 4% KCI, the charge effects due to increasing salt concentration are 

eliminated. Budd ( 1995) suggested that screening of the carboxylate groups in we Ian gum 

through intramolecular interactions with the side chains and weak intermolecular 

association could lead to the observed insensitivity of so lution properties to higher sa lt 

concentration. Campana et al. ( 1997) attributed the weak polye lectrolyte behav ior to the 

high stiffness of the we Ian chain . 
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= 

'-
0 
·;;;: 
.2 

.l 2.0 lb/ hbl Wcla n <> um • 3.0 lb/ bbl Wcla n o um 

0.5 

+----------......-+--
0.45 

_; 0.35 
> ; 

<;:: 
0.3 

0.25~ .. · -·-· 
0.2 

0 0.0002 11.0004 0.0006 0.0008 

Io nic S1rcng th , m o le/dm 3 

0.00 1 0.001 2 0.001 4 

Fig. 4.10 Flow Behavior Index vs. Ionic Strength Plot for Welan Gum Fluids 
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Fig. 4.11 Consistency Index vs. Ionic Strength Plot for Welan Gum Fluids 

4.3. FLOW TEST OF WELAN GUM FLUIDS: EFFECT OF SALINITY 

To stud y the effects of salinity on the fi ow characteri sti cs of welan gum fluid s, four 

concentra ti ons o f we lan gum i.e. 0.5, 1.0, 2.0 and 3.0 lb/bbl in fresh water, 2% KCI and 

4% KCI we re pumped through the experimental setup described in the previous chapter. 

The pressure drop - fl ow ra te data fo r we lan gum fluid s in vesti gated in thi s work are 

shown in Appendi x F. All the tests were conducted at ambient temperature conditions 

(7 5°F) con cl it ions. Th is secti on cl iscusses the e ffect of sa Ii n ity on fri cti ona I pressure losses 

in both stra ight and co il ed tubing based on experimental obse rva ti ons. 

4.3.1. Straight Pipe 

To better in vesti gate the effect of alini ty on fri cti on fac tor of we Ian gum flu ids in 

straight tubing, linear pl ots of pressure drop gradient aga inst fl ow ra te fo r each we lan 

gum concentrati on investi gated we re prepared and presented in Figure 4 .1 2 th ro ugh 

4. 15. 
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Fig. 4.12 Pressure Drop Gradients in Yi in. Straight Tubing for 0.5 lb/bbl Welan Gum 
Fluids 

For 0.5 lb/bbl we lan gum fluid s fl owing in straight tubing, it can be observed that the 

pressure drop increases with increase in sa linity from fresh water to 2% KCI, espec iall y 

at the hi gher flow rates. T he pressure drop increases by as much as 2 1 % at a fl ow rate of 

20 ga l/min. Howeve r, further increase in sa linity to 4% KCI leads to an increase o f' onl y 

about 5% in pressure drop. 

Similarl y. fo r I lb/bbl we lan gum fluid fl owing in straight tubing. the pre ure drop 

ac ross the tubing increases by about 16% and 7% w ith increase in salinity from fre h 

wa ter to 2% KCI and from 2% to 4% KCI respecti ve ly at a fl ow rate of20 gal/min . 
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For 2.0 lb/bbl we lan gum fluid flowing in ST, interpolating the data points at a flow rate 

of 20 ga l/min, it is observed that the pressure drop across the tubing decreases by 12% 

with increase in sa lini ty from fresh water to 2% KCI. However, further increase in 

sa linity does not yield a significant decrease in pressure drop. 
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Fig. 4.15 Pressure Drop Gradients in Y2 in. Stra ight Tubing for 3.0 lb/bbl Welan Gum 
Fluids 

A simil ar trend is observed for 3.0 lb/bbl we lan gum fluid s flowing in ST, w here the 

pressure drop across the tubing decreases by about 15% with increase in sa linity from 

fresh water to 2% KC I at a fl ow rate of 16 ga l/min . 

A ll we Ian gum fluid s in vesti ga ted in strai ght tubing show significant change in pressure 

drop gradi ent (up to 2 1 % for 0.5 lb/bbl we Ian gum) as the sa linity o f the fluid s increa e 

from fresh wa ter to 2% K I. I loweve r, further increa e in sa linity from 2% KCI to 4% 

KC I doe not re ult in significant change in pressure drop gradient. Moreover, it can be 

observed that at low concentrati ons of 0.5 and 1.0 lb/bbl , we lan gum fluid s in brine 
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exhibit higher pressure drop gradient compared to that in fresh water. This indicates that 

salinity decreases the drag reduction ability of welan gum fluids at concentrations of 0.5 

and 1.0 lb/bbl, opposite to what is observed at higher concentrations of 2.0 and 3.0 lb/bbl 

(Figures 4.12 and 4.15). These trends are due to dominant viscous effects or delay in 

onset of drag reduction as a result of increased fluid concentration. 

Figures 4.16 through 4.19 are the logarithmic plots of Fanning friction factor against 

generalized Reynolds number corresponding to the pressure drop - flow rate data 

gathered from the experiment for a given welan gum concentration at all sa linities. Plots 

of the Hagen-Poiseuille equation (j = 16/NReg ) for straight laminar tube flow and Drew 

correlation for turbulent flow of Newtonian fluids in straight pipes are also shown in 

these figures. For 2 and 3 lb/bbl welan gum fluids, the laminar flow data are slightly 

below the Hagen-Poiseuille equation with a maxi mum deviation of about 8%, thus giving 

a reasonable fit. The data points in the turbulent region are significantly lower than the 

Drew correlation plot fo r a ll the concentrations, indicating that welan gum fluids exhibit 

sign ificant drag reduction characteristics, up to about 78% in 2 lb/bbl, for the generalized 

Reynolds number range investigated. The percentage drag reduction plots for the welan 

gum fluid s investigated are shown in Figures 4.20 through 4.23 . 
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Asubiaro and Shah (2008) observed that we lan gum flui ds fl owing in stra ight tubing 

exhibit extended laminar flow regime, up to a generalized Reynold num ber of I 0,000. 

They suggested that the delayed transition to turbulence could be due to the drag reducing 

properties of this biopolymer. This could also explain why significant changes in the 

friction pressure with increase in salinity are observed onl y at the higher flow rates and 

corresponding generalized Reynolds numbers, when the fl ow regime becomes turbulent. 

The fri ction fac tors of welan gum fluids depends not only on Reynolds number but also 

on the fluid characteristics represented by the fl ow behavior index, n and the consistency 

index, k. Generally, the fri ction factor decreases and more drag reduction is observed 

with decrease in the fluid flow behavior index, until an optimum flui d concentration is 

reached above which flow resistance starts to increase due to viscous effects. This 

optimum concentration is between 2 and 3 lb/bbl fo r we lan gum fluids fl owing in stra ight 

tubing and the max im um drag reduction is obtained when 2 or 4% KCI is u ed as base 

fl uid compared with water. 

4.3.2. Coiled T u bing 

Adopti ng an approach similar to the fl ow of welan gum fl uids in straight tubing, li near 

plot of pressure drop aga inst fl ow rate fo r all we lan gum concentrati on investigated in 

coiled tu bing were prepared and are presented in Figures 4.24 - 4.27. The linear plots 

give a direct representat ion of the effects of sa li nity on the fl ow characteri tics of we Ian 

gum fl uids in coiled tubi ng. All welan gum concentrations considered in coiled tu bing 

show decrease in pressure drop gradient as the sa li ni ty of the flu id increase from fresh 

water to 2% KCI. However, as was observed in straight tubing, further increa e in alin ity 

from 2% KCI to 4% KCI does not result to signifi cant change in pressure drop gradient. 

For 0.5. 1.0 and 2.0 lb/bbl we Ian gum fluids fl owing in coi led tubing. at a fl ow rate of 20 
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gal/min, the pressure drop across co iled tubing decreases by 5, I 0 and 16% respecti vely 

with increase in salinity from fresh water to 4% KC!. Similarly, for 3.0 lb/bbl welan gum 

fluids, at a flow rate of 16 gal/min, the pressure drop across the coiled tubing decrease 

by 17% with increase in salinity from fresh water to 4% KC!. It should be reca lled that 

for welan gum fluids flowing in straight tubing we observed decrease in pressure drop 

gradient with increase in salinity fo r onl y 2 and 3 lb/bbl welan gum fluids and a reverse 

effect for 0.5 and I lb/bbl welan gum fluids. 

4.5 
4 0.5 lb/bbl in fresh water 

4 
D0.5% lb/bbl in 2% KCI 
• 0.5 lb/bbl in 4% KCI 

3.5 

~ ,,, 
3 c.. -c: 

<) 

"O 

t 
2.5 

v 
c.. 2 e 

0 

1::'. 1.5 ' 
... 

:l II ,,, 
"' 1::'. 

:... 
... 
Iii 

0.5 • 
~ 

0 

0 5 10 15 20 25 

Flow Rate, gal/min 

Fig. 4.24 Pressure Drop G radients in Yi in. Coiled Tubing (r/R = 0.019) for 0.5 lb/bbl Welan 
G um Fluids 

43 



6 
" I lb/bbl in fresh water 
o I lb/bb l in 2% KCI 

•I lb/b bl in -t 'Y., KCI 
5 

~ 
c. -t " ...:-
c: +i "' 

":) 

~ 

G 3 
" c. 
ltJ 0 .... 

Q 

~ 2 " "' "' "' .... 
Q.. 

I 

• ~ 

0 

0 5 JO 15 20 25 

Flow Rate, ga l/min 

Fig. 4.25 Pressure Drop Gradients in Yi in. Coiled Tubing (r/R = 0.019) for 1.0 lb/bbl Welan 
Gum Fluids 

6 
"2 lh/bbl in fresh w>iter 

02 lb/bblin 2% KCI 

• 2 lb/bbl in -t % KCI 
" s <J 

.-
~ 

·;;; 
c. -t 
~ " !J 
~ 

":) 

c 
v 3 
c. 
E " 

Q 

t ~ 
2 

"' "' ~ " Q.. 
l!I 

" I!! 

~ 

0 

0 s JO IS 20 25 

Flm' Rate, gal/ min 

Fig . .t.26 Pressure Drop Gradients in Yi in. Coiled Tubing (r/R = 0.019) for 2.0 lb/bbl Welan 
Gum Fluids 

44 



6 
"J lb/bbl in fresh water 
o J lb/bbl in 2'~o K CI 
• J lb/bbl in 4% K CI 

5 .. 
ll 

~ 
Q.. -I 
.: I! c 
"' -::I .. 
~ 
:... 

J "' Q.. 
II 

0 
:... 
0 • 
"' .. :... 2 ::; 

"' Ill "' "' :... 
~ .. 

Ill .. 
~ 

0 ---··-----·-·-··--·,------ ·········------- ····--·-----·--···-·-·-·· 

0 2 -I 6 8 10 12 1-1 16 18 20 

Flow Ra tc, ga l/ 111 in 

Fig. 4.27 Pressure Drop Gradients in Yi in. Coiled Tubing (r/R = 0.019) for 3.0 lb/bbl Welan 
Gum Fluids 

A lso, it is observed that the sensitivity of the welan gum fluids to increase in sa linity 

becomes more significant w ith increase in we lan gum concentration. For instance, w ith 

increase in sa linity from fresh water to 4% KCI, 0.5 lb/bbl welan gum fluids show a 5% 

decrease in pres ure drop gradient at a flow rate of 20 ga l/min, compared to 16% for 2 

lb/bbl welan gum fluids at same flow rate. For all the fluids investigated in thi s study, the 

pressure drop in the coiled tubing is higher than that in the straight tubing. 

hgures 4.28 through 4.3 1 are the logarithmic plots of fr icti on factor against genera l ized 

Reynolds number for all polymer concentrati ons and sal inity along with corre ponding 

I lagen-Poiseuille eq uati on and Srinivasan correlation for co iled tubing. T he Hagen-

Poiseuille equation unclerpreclicts the fri cti on pressure loss in the lami nar flow reg ion in 

co iled tubing, since much higher pre sure losses are experienced in th is region for co iled 

tubing than in straight tubing. As was mentioned earlier, thi i due to the ec nclary fl ow 

effects which provide additional resistance to fluid flow in co iled tubing. A lso the friction 

pre sure va lue in the co iled tubing are lower than predicted by Sriniva an correlation, 
.. f5 



confirming the drag reducing properties of welan gum fluids in coiled tubing, up to about 

58% in 2 lb/bbl welan gum fluids for the generalized Reynolds number range 

investigated. The drag reduction versus generalized Reynolds number plots for welan 

gum fluids in coiled tubing are shown in Figures 4.32 through 4.35 . 

= 0 
..... 
<.J ·c ... 
OJ) 

= 
= = 
"' ... 

0.001 

• 0 .5 lb/bbl welan gum in fresh water 
• 0.5 lb /bbl welan g um in 2'Yo KC I 
• 0.5 lb /b bl welan g um in 4 % KC I 

- 16/Nreg 
- S rinivasan correlation 

1000 

• 
• 

10000 

Generalized Rey nolds Number 

• 

., 

100000 

Fig. 4.28 Friction Factors in Yz in. Coiled Tubing (r/R= 0.019) for 0.5 lb/bbl Welan 
Gum Fluids 

46 



.... 
0 
u 
~ 
c 
.: 
" ·.::: 

t.o.. 
el) 
c 
c 
c 

0.1 

'°' j~ • • . 

IOOO 

• •• 

10000 

• I lb/hbl "clan g um in fresh watl'r 
• llb/bhl" clan g umin2 % KCI 
A llb/hbl\\clan g umin.t % KCI 

- Srinh asan correlatio n 
- 1 6/:'l:r~ 

• •• • • A • 

•• • 

100000 

Generalized Rey nolds Number 

Fig. 4.29 Friction Factors in Yz in. Coiled Tubing (r/R= 0.019) for 1.0 lb/bbl Welan 
Gum Fluids 

0.1 

0.001 J 

1000 

• 

• 

10000 

• 2 lb/bbl wclan g um in fresh wa ter 
• 2 lb/bbl n clan g um in 2% KC I 
.l 2 lb/b bhi elan gum in .t% KC I 

- 16/:'l: rcg 
- S rini1 asan correlation 

• - • .. . 
• .. 

Genera lized Re~ nolds ;\'um ber 

100000 

Fig. 4.30 Friction Factors in Yz in. Coiled Tubing (r/R= 0.019) for 2.0 lb/bbl Welan 
Gum Fluids 

47 



... 
E 
u 

"' u.. 
c 
0 -

0. 1 

·~ 0.01 
u.. 
ell 
c 

0.00 1 

• 

1000 

• 3 lb/bbl \\ Cla n gum n fresh wa ter 

• 

• J lb/bb l" ela n gum n2'Yo KC I 
• 3 lb/b bl wela n gum 11 4% KC I 

- 16/N reg 
- :§_rini vasa n co rrela tio n 

-------•• .. . 
• • 

10000 

Genera li zed Rey nolds Number 

100000 

Fig. 4.31 Friction Factors in Yi in. Coiled Tubing (r/R= 0.019) for 3.0 lb/bbl Welan 
Gum Fluids 

70 

65 

60 

55 

~ 
" 50 -0 

--u 

~ 45 

""' 0:: 

;1' 40 ... 
Q 

35 ~ 
30 J 

25 i 
• 

20 1 

1000 

• 
• 

• 

• • 

10000 

• 

• • 
• 

.. . • •• 

• 0.5 lb/b b l \\Cla n g um in fres h water 
• 0.5 lb/bb l \Hla n g um in 2% KC I 
• 0.5 lb/b bl" ela n_g_um in .t % KC I 

Genera lized Reyn olds Num be r 

• •• 

100000 

Fig. 4.32 Drag Reduction in Yi in. Coiled Tubing for 0.5 lb/bbl Welan Gum Fluids 

48 



65 

• I lb/bblwelan gum in fresh water 

60 
•I lb/bblwelan gum in 2% KCI •• 
J. I lb/bblwclan_g_um in .t % KCI 

•• • 
• 55 

J. 

50 • ~ 0 A 
c: • 
0 -ts ....... 
(.j 

::l • 'O ., 
Cl:! -to 
OJ) 
0: J. ... 
0 

35 • 

30 • 
25 J. 

• 
20 l-

1000 10000 100000 

Genera lized Rey nolds Number 

Fig. 4.33 Drag Reduction in Yi in. Coiled Tubing for 1.0 lb/bbl Welan Gum Fluids 

60 

SS 

50 

?F. -1 5 

= 
0 

u 
::l -10 .... "O 

"' c::: 
'OlJ 

E 35 ::: 

30 

25 

• 
20 

1000 

• 

• 

10000 

.... 

• 

• 

• 2 lb/bbl \\clan g um in frc!'<i h '' a tcr 

• 2 lb/bhl " clan g um in 2'Y, , K C I 

.1. 2 lb/bb l \\clan ~ 11111 in -1 % K C I 

Generali zed l{ cyno lds '\'11111bcr 

100000 

Fig. -L3.t Drag Reduction in Yi in. Coiled Tubing for 2.0 lb/ bbl Welan Gum Fluids 

~ 9 



~ ::> 

= 0 -'"' :: 
-0 

"' 0::: 
OJ) 

~ ,_ 
0 

50 

-t5 

-tO 

35 

30 

25 

20 

15 -

10 

1000 

+ 3 lb/bbl in fresh water· 
•31b/bblin 2% KCI 
• 31b/bblin -t % KCI 

• 

• 
"' 

.. 
• 

• 

• 
rl 

10000 100000 

Genernlizccl Reynold s Number 

Fig. 4.35 Drag Reduction in Yi in. Coiled Tubing for 3.0 lb/bbl Welan Gum Fluids 

50 



CHAPTER 5 

FRICTION FACTOR CORRELATIONS 

For engineerin g design purposes, predicti on of fri cti on pressure losses o f fluid s i 

extremely important in pumping operations. Accurate pred ict ion of the pressure losses in 

the tubular, is required to estim ate the horse power requirement, bottomhole treat ing 

pressure, and max imum wellhead pressure. These correlati ons have become even more 

important since most recent fracturing treatments are for deeper well s and employing 

co iled tubing where friction loss in the pipe could be a limiting factor. 

In the fo llowin g secti ons, empirica l correlati ons to predict the frictional pressure los e of 

we lan gum fluid s in both strai ght pipe and co iled tubing at ambient temperature 

conditions (75°F) are presented. Previous correlat ions developed by Asubiaro and Shah 

(2008) we re based on we lan gum fluid s onl y in fresh water. However. here the effects o f 

sa linity on the fl ow behav ior of we Ian gum lluids in fresh wa ter. 2% KCI and 4% KCI are 

con idcrcd in deve lop ing correlations. 

5.1. FRICTION FACTOR CORRELATION FOR STRAIGHT PIPE 

T he fricti on pres urc data for wc lan gum fluid fl owing through straight tubing are 

correlated using dimensionl ess parameters; Fanning fri cti on factor, f and generalized 

Reynolds number, N11e~ and th e fl w be hav ior index . /1 and apparent vi ·co ity. ~t a o f fluid. 

Comm erciall y ava il abl e curve fittin g so fl ware . Lab fit and Datafi t. were used 1n 

developing the correlati on. T he traight pipe corrc lati n for fl ow o f \ c lan gum 

cxpre cd a : 

B 
+=A+--.J .,, N 

Re g 
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where A and B are correlati on constants fo r a particular fluid and depend on the apparent 

viscos ity, µa of fluid at 5 11 sec-1 shear rate and the fl ow behav ior index, n. The 

parameters, A and B are calculated from the fo llowing equati ons: 

ln(A) = 0 .0074(µ0 )'"
5 - 0.08µ 0 - 5.77 (5.2) 

B = 1138n3 -1242n2 + 417n-31.4 (5.3) 

The correlation has a coeffici ent of determination, R2 of 0.99, whi ch indicates a good fit. 

For thi s correl ati on, the average abso lute percent deviation of the predicted fri cti on factor 

from the measured values fo r the fl ow of welan gum fluid s through strai ght tubing is 

4.05% with a max imum deviation of about 13%. This confirms the va lidity of the 

co rrelati on fo r predi cting fri cti on factor of welan gum fluid s in strai ght tubing. Plots of 

the para meters A and B vs apparent viscos ity at 5 11 sec· 1 shea r rate and fl ow behav ior 

index re pecti ve ly, are shown in Appendi x G. The compari son between the predi cted and 

experimental fri cti on fac tor va lues fo r fl ow in stra ight tubing is shown in Figure 5. 1 to 

5.3. The co rrelati on is va lid fo r 3.000 < NRcg < 90,000, and 0.20 < n < 0.52. Figure 5.4 

shows a cro s plot or the mea ured Fanning fri cti on fac tor aga inst pred icted va lues from 

deve loped corre lati ons fo r straight tubin g. Thi s fi gure furth er confirm s the accuracy or 

the proposed co rre lati on. 
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5.2. FRICTI ON FACTOR CORRELATION FOR COI LED TUB ING 

T he fri cti on pre sure data for fl ow of we lan gum fluid s in co iled tubing arc al o 

correlated using dimensionless parameters; Fanning fri cti on fac tor, f, and generali zed 

Reynolds number, NReg and fl ow behavior index, 11 . The correlation wa deve loped using 

the same curve fitting software as with straight tubing correlation and i cxprc ed a 

follows: 

(SA) 

where, A, B, C and D are correlation constants given as: 

A = 0.5059 ; B = -0.5484 ; C = 0.01227; D = 0.002186. 

T hi s correlati on is va lid for 3,000 < Reg< I 0,0000 ; 0.20 < /1 < 0.52. and r/R = 0.019. 

Figures 5.5 through 5.7 show compari son of predicted friction fac tor using the correlati on 

w ith experimental va lues fo r co iled tubing for the three sa linities co n s id e red~ fresh wa ter. 

2 and 4% KCI respect ive ly . For the aliniti es in vesti ga ted, it can be obse rved that the 

predicti ons from correlati on are in reasonab le agreement with the experim en tal da ta. thus 

va li dating the correlati on. The correlati on has a correlati on cocrflc icn t o f determinati on 

o f 0.98, an average abso lute percent deviation of 4.97% and a rnaxirnurn deviation f 

about 10% for all fluid s in vesti ga ted, further va lidating the correlati on. Therefo re. the 

proposed correlati on can predict fricti on fac tor o f wc lan gum fluid !l ow in co il ed tubin° 

w ith a rea onab lc accuracy. Figure 5.8 how a cros pl ot o f· the measured Fanning 

fricti on fac tor aga inst predicted va lue from developed correlat ions fo r co iled tubin g. 

T hi s figure further confirms the accuracy o f the proposed correlati on. 
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5.3. APPLICATION OF DEVELOPED CORRELATIONS 

This secti on demonstrates an appli ca ti on of the deve loped c rrelati on r r tu bular fri cti on 

pressure loss predicti on of we lan gum fluid s in straight and co iled tubing. The example 

used here is specifi ca ll y related to hydraulic fracturing operati ons. The objecti ve is t 

determine the horse power requirement for pumping a we lan gum fluid th rough strai ght 

and co iled tubing. 

Example 

A formation at a depth of 7,000 ft is to be hydraulica lly fractured using co iled tubing. 

Given the fo llowing in formation, compute the fricti on pressure loss across the tubular 

and the resulting horse power requirement for pumping a fracturing fluid th rough the 

tu bing. 

Fluid Type = 2.0 lb/bbl we lan gum in 4% KCI base fluid 

Fluid Density. p = 8.60 lb/ga l 

Flow Behavior Index, n = 0.303 

Consistency Index, Kp = 0.0548 lbj"/'lfl2 

Injecti on Rate. q = 5 bb l/min (2 10 ga l/min) 

L iquid Vo lume = 80.000 ga l 

T ubing Size = 2 3/8 in . OD (cl, = 2.063 in.) 

Ree l D iameter = I 09 in . (r/R = 0.0 19) 

T ubing Length = 14,000 ft. 
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Solution 

To per form the hydraulic fracturing trea tment, 7.000 ft o f the coiled tubing length w ill be 

lowered into the wellbore as trai ght ecti on leav ing 7.000 ft on the ree l a co iled tubing. 

Fluid is therefore pumped through both strai ght and co iled secti ons. 

Straiuht Section: From Eq 3 5 N,'c g = 0.02393 x (3 .8499)-" cl," P 1 [ q ]
2

-
11 

the 
o . . , , K 8"- A , 

p 

genera li zed Reynolds number is computed as NRcg = 7.784. 

Using the deve loped correlati on for predicting Fanning fri ction factor in strai ght tubing, 

Eqs. 5. 1 - 5.3 , the fri cti on factor is computed to be: fs, = 0.00251 . 

[ 
d f').p] 

T he pressure drop grad ient 1s then ca lcul ated using Eq. 3.6, f = 25 .8 h> p , 

resu lting in 6.p/ / = 0.165 psi/ ft. Tota l pressure drop across the tra ight secti on (7 .000 ft) is 

1.152 ps i. 

The hydrauli c horse power, P11, requirement for thi s pumping operation is computed 

using the exprc sion below: 

pq 

1,71 4 
(5.5) 

I lcncc the pump power needed to ove rcome fr icti n lo sc 1n the traight cc ti on 

computed to be: P11 = 14 1 hp. 

Coiled Tu bin g: From Eq. 3.5. the generalized RC) no ld number aga in i · compu ted a 

R~g = 7.784. 

sing the devc l pcd correlati on !o r pred icting Fann ing l'ri cti on fac tor in co iled tub ing. 

Eq. 5.4 . the fricti on fac tor i computed to be:};, - 0.006. 

The pre ure drop gradient is then ca lcu lated u ing Eq. 3.6. re ulting in \ f J I 0.394 

p i/fi . Total pressure drop aero the en tire tu bing length (7.000 n) i 2.r9 psi. 



The hydraulic horse power, P11• requirement for pumping thr ugh the c il cd tubing from 

Eq. 5.5. is P 11 = 33 8 hp. 

T otal power required to overcome fri cti on lo ses in both strai ght and co iled ecti n 

equal to 4 79 hp . 

The resu lts of the calcu lati ons are ummari zed in Tab le 5. 1. 

Table 5.J Pumping Operation Design Calculations 

Length, ft L'.1~1,_Q_si/ft L'lp, psi P11 hp 

Straight tubing 7,000 0.165 I, 152 14 1 

Coiled tubing 7,000 0.394 2,759 338 

Total 14,000 0.559 3,9 11 479 

From the above example, it i ob erved that the pump power required to overcome 

fri cti on losses in the co il ed secti on is about 140 % higher than the trai ght secti on o f 

same length . T his is in agreement with experim ental observati ons. 

5.4. SCALAB ILITY OF DEVELOPED CORRELATIONS 

T he genera li zed Reynold number range in thi s stud y i typi ca l o f' those encountered in 

oilfield opera ti ons. However. larger tu bing size are norm ally u cd in oilfield opera ti ons. 

where the nuid s are pumped at hi gher now rates compared to the Yz -inch OD (0.4 35-inch 

ID) straight and coiled tu bing used for the experim ental in vc li ga ti on and deve lopment o i" 

fr icti on pressure los corrc lati n 1n our tud y. I lcncc, it is important to vc ri f) the 

appli ca bility o f th e deve loped correlati on to pred ict f ri cti onal pre urc I cs 111 larger 

tu bing siLc . For the stra ight tu bing, thi cxc rc1 c ' a ca rried ut ' ' ith 27/x- inch () I) 

(2.499- inch ID) tu bin g and 1.75 lb/bbl and 2.25 lb/bbl' clan gum flui d in frc '>h ' ' atcr. 

I lo,, ever. '' e \\ CIT not ab le to ve rif) the ca labi lity r the dcvc l pcd corrc lati )n'> in the 

co iled tubing due to in sufTic ient \\ Clan gum p lymer. Figure 5.9 · h o" ~ the compar i'>( n )(' 

the experim ental and predicted fri cti on pres ure alue fo r 1.75 lb/bb l (n 0.426) and 

2.25 lb/bbl (n = 0.220) ' clan gum flui d fl \\' ing thr ugh 2Y8-inch D tra ight tu bing. 
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From the plot it can be observed that our correlation predicts Fanning friction factors in 

the 2Ys-inch tubing with an acceptable degree of accuracy. For 1.75 lb/bbl wclan gum 

fluids, the average and maximum percentage deviations between the experimental and 

predicted Fanning friction factors arc 3 .6 and 9.3 % respectively, while for 2.25 lb/bbl 

welan gum fluids the deviations are 4.6 and 10.9 % respectively. Hence, for the straight 

tubing, the Fanning friction factor correlations developed with experimental data from Yi -

inch tubing can be used to predict Fanning friction factors in the 2Vs-inch tubing, further 

validating the scalability and accuracy of the correlations. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. CONCLUSIONS 

• Correlations for predicting Fanning fri ction factor for flow or welan gum in both 

straight and co iled tubing have been deve loped. 

• From the rheo logy data gathered in thi s study, it is confi rm ed that we lan gum 

fluids viscosit ies are sensiti ve to salt (KC I). T he sen iti v ity i een as a reduction 

in viscos ity of fluid as the concentration of sa lt is increased. 

• Salinity increases the drag reduction abili ty of we Ian gum flui ds at concentra t ions 

of 2 and 3 lb/bbl. T hi could be due to delay in onset of drag reduction in stra ight 

tubing as fluid concentration increases. Notably, an opposite trend was observed 

at lower we Ian gum concentration of 0.5 and 1.0 lb/bb l. 

• For co iled tubing, it is observed that alinity has no significant effect on the drag 

reduct ion characteri sti cs o r 0.5 and 1.0 lb/bbl \\ Clan gum flu id w ithin the 

generalized Reynold num ber range invc ligated. I IO\\ C er, the drag reduction or 

2.0 and 3.0 lb/bb l '' c lan gum lluids incrca c ' ' ith incrca c in al inity from fre h 

wa ter to _o/o KC I. Fu rther incrca ·c in alinity to .+% KCI doc not have a 

·ignilicant effect on the drag red ucing characterist ic in c ilcd tubi ng. 

• Fanning fri cti on factor correlations devel ped with experimental da ta r 0.5. 1.0, 

2.0, and 3.0 lb/bb l we lan gum flui d in fre h '' ater. 2%. and 4% K ' I and in 

1/2- inch tubing were u eel to accurate ly rredict Fanning fr iction fact r:. in 2Yx-inch 

tra ight tubi ng G r 1.75 and 2.25 lb/bb l we lan gum fluid in frc h \\ atcr. 
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6.2. RECOMMENDAT ION 

• T he generalized Reynold number range u ed in thi tud y i typi ca l o f ilfield 

appli cati ons. However, experim ental in vesti gati on hould be conducte I in larger 

co iled tubing sizes and at higher fl ow ra tes, typi ca l o f o ilfi eld appli ca ti on to 

furth er veri fy the findings o f thi s study. Large sca le tests were not ca rri ed out due 

to in sufficient amount o f we Ian gum forte ting. 

• In thi s stud y, tests were conducted at room temperature which is usuall y not the 

case for fi eld applications. In the fi eld, the fluid temperature va ri e due to heat 

generated in the pumping equipment or weather condition . Temperature affects 

the so luti on properti es of polymeri c fluid s such as viscos ity and so lubility . 

T herefore, it is important to in vesti gate the effects o f temperature on the hydraulic 

properties of we lan gum fluid s o f concentra ti on typi ca l in oillield appli cati ons. 

espec iall y in straight and co iled tubing. One way to achi eve thi s purpo e would be 

to in vesti gate the effect of temperature on the power la'' parameters - n and k. 

• Onl y monova lent brine (KC I) in the concentrati on range commonly used in li c ld 

operati ons to prevent c lay swe lling and shale in tab ilit) ha · been c n idercd 1n 

thi s stud y. Based on the result from our expe rim ental tud) , furth er increa c 1n 

KC I concentrati on w ill have in igni fica nt c lkct on the v i ~co~ it ) and hydrauli c 

properti es Of \\ elan gum nuid in tra igh t and co il ed tu bing. Di va len t brin e uch 

as aCh arc al o u eel a ba e flui d in li eld pcrati on ·. T hC) ha c hi gher i ni c 

strength w hen compared '' ith mon a len t bri ne. o f sa me conce nt ra ti on. and arc 

expected to ca u e m re igni licant d crea e in so luti on i<ic . it) o f \\C lan gum 

nuid . T herefore. it is im portant to in e ti ga te the effec t<, l f. di, alcnt brine '> c n the 

rheo log ica l and hydraulic propc rti c · o f ' clan gum fl u i d ~ in tra ight and co il ed 

tu bin g and fr icti on factor correlati n de el I eel accord ingl) . 
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APPENDIX A 

ERROR PROPAGATION ANALYSIS 

I f a variab le Z depends on (one or) two va ri ab le (A and B) which ha e independent 

errors (M and t..B) , then the rul e for ca lculating the error in Z i tabulated in Tab le A . I 

fo r a variety of simple relati onships (Tay lor, 1997): 

Table A.1 Rules for Calculating Error Propagation 

Relation between Relation between errors 

Zand (A, B) ~and (M,~B) 

Z = A+B (~)2 = (M)2 + (6.B)2 

Z = A - B (~)2 = ( I )2 + (6.8)2 

Z = A-B ( L~)2 =( ~)2 +( L:)2 

Z = !!_ 
( ~)2 =( L~ y +( L:)2 

B 

L\ Z I 
Z = A" - =11-z A 

Z = In A '\Z =-' A 

I- -

L = e I 
'\Z 

I - z 
-
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Error in velocity ca lculati on i computed a : 

(B . l) 

Error in generali zed Reynold number ca lcu lated as: 

6.p v - d -
( ]

2 ? ? 

6.NRcg = NRe g p +(-;) +( d) (B.2) 

Error in Fanning fricti on factor ca lculated a : 

(B.3) 

Table A.2 shows the error assoc iated with each measured parameter for both straight and 

co iled tubing. 

Table A.2 Parameter Errors for Friction Factor Calc ulations 

Parameter Error 

Straight T ubing Co il ed T ubing 

q (ga l/min) ± 0.05% - 0.05% 

p (psi) _ 0.075%·Ca librati on Span _ 0.075%· Ca librati on Span 

p ( lb/ga l) _ 0.0042 lb/ga l _ 0.00-+ 2 lb/ga l 

- --1 
d ( in .) _ 0.000 I in . _ 0.000 I in. 

---1 
I (ft) _ 0.0 1 n _ 0.0 1 n 
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APPENDIX B 

PRESSURE DROP-FLOW RATE DATA FOR FRESH WATER 

Table B.J Flow Data for Fresh Water throu gh Yi- inch ST and CT 

6P /L, psi/ft 

q, gal/min ST CT p, lb/gal 

3.01 0.20 0 .25 8.27 

5.02 0.48 0.61 8.28 

8.01 1.11 1.40 8.28 

10.10 1.70 2.17 8.28 

12 .10 2.35 2.97 8.29 

16.05 3.95 4.97 8.29 
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APPENDrx c 

ROTATIONAL VISCOMETER DATA FOR WELAN GUM FLUIDS 

Table C.1 R ota ti onal Viscomete r (F a nn Model 35, # 1/5 S prin g) Data for 0.5 lb/ bbl 
W elan G um Fluids in Various Brine Solutions 

Dial Readin_g_ 

S hea r Ra te, 
RP M F resh Wate r 2% KCI 4% K CI 

600 57 47 45 

300 39 32 30 
200 32 26 25 
180 30 25 24 
100 23 19 18 

90 22 18 17 
60 18 15 14 

30 14 11 10 
6 8 6 7 

3 7 5 5 
1.8 6 4 4 

0.9 4 3 3 

Ta bl e C.2 Rotati ona l Viscomete r (Fa nn Model 35, # 1/5 S prin o) Data for 1.0 lb/ bbl 
We la n G um Fluid s in Various Brin e olutions 

.-- -
Dial Rca di~ 

2 •y., 4 °/o S hea r Ra te, 
R PJ\1 Fresh Wa te r KCI K~I 

600 105 90 86 
1--~~---1------1-----i-----j 

JOO 

200 
r--

1 80 
I--

79 65 63 

68 55 53 
66 54 51 

100 53 41 40 
1-- ~t-- ---+-----t----1 

t

r-

f-

()() 

(i() 

] () ---

I 8 1--- . 
0.9 

52 
45 
37 

26 
22 
19 
16 

40 38 

35 33 

--r----ii---
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Table C.3 Rotational Viscometer (Fann Model 35, # l /5 pring) Data for 2.0 lb/bbl 
Welan Gum Fluids in Various Brine olutions 

Dial Readi•!_g_ 
Shear Rate, 2°/o -tO/o 

RPM Fresh Water KCI KCI 
600 222 200 195 
300 183 158 153 
200 162 140 134 
180 160 137 132 
100 137 116 110 
90 135 114 107 
60 123 103 96 
30 108 90 82 
6 87 66 60 
.., 79 60 55 J 

1.8 69 53 48 
0.9 63 48 43 

Table C.4 Rotational Viscometer (Fann Model 35, # 1 Spring) Data for 3.0 lb/bbl 
Welan Gum Fluids in Various Brine Solutions 

Dial Reacli1!_g_ 
Shear 2'Yo 4°/o 

Rate, RPM Fr~1 Water KCI KCI 

600 74 69 66 
300 62 56 54 
200 56 51 49 
100 49 44 42 
6 35 27 26 
3 33 25 25 
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APPENDIX 0 

FLOW BEHA VIOR INDEX AND FLUID C ON IST ENC Y INDEX 
FOR WE LAN GUM FLUIDS 
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APPENDIX E 

APPARENT VISCOSITY - WALL SHEAR RATE PLOTS FOR 
WELAN GUM FLUIDS 
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APPENDIX F 

PRESSURE DROP - FLOW RA TE DATA FOR WE LAN GUM 
FLUIDS 

Table F.1 F low Data for 0.5 lb/ bbl Welan Gum Fluid in Fresh Water Through 
Yi-inch ST a nd CT 

flP/L, psi/ft 
q, gal/min ST CT p, lb~al 

3.03 0.13 0.28 8.28 
5.03 0.25 048 8.28 
8.08 0.52 0.92 8.27 
12.05 1.02 1.57 8.28 
16.04 1.69 2.38 8.28 
20 .11 2.55 3.33 8.30 
23.10 3.33 4.07 8.31 

Table F.2 Flow Data for 0.5 lb/ bbl Wela n G um Fluid in 2 % KCI Brine Through 
Yz- inch ST a nd CT 

flP /L, psi/ft 

q, gal/min ST CT 2.J lb~al 

3.07 0.12 0 .22 8.41 

5.05 0.26 0.44 8 .43 

8.09 0 .57 0.81 8. 42 

12.1 4 1. 19 1.46 8. 42 

16.29 2. 04 2.29 8. 44 
-

20 .30 3.08 3.25 8 .45 



Table F.3 Flow Data for 0.5 lb/bbl Welan Gum Fluid in 4% KC I Brine Through Yi 
inch ST and CT 

/lP/L, psi/ft 

q, gal/min ST CT p, lb/gal 

3.23 0.14 0.23 8.47 

5.05 0.27 0.43 8.52 

8.09 0.61 0.81 8.52 

12.11 1.24 1.46 8.53 

16.12 2.20 2.28 8.54 

20.28 3.20 3.32 8.55 

Table F.4 Flow Data for 1.0 lb/bbl Welan Gum Fluid in Fresh Water Through 
Yi-inch ST and CT 

f:iP/L, psi/ft 
q, gal/min ST CT _e_, lb£g_al 

3 06 0.21 0.39 8.27 
5.06 0.31 0.64 8.28 
8.07 0.50 1.13 8.28 
12.04 0.89 1.95 8.28 
16.07 1.43 2.93 8.29 
18.54 1.83 8.29 
20.16 4 01 8.30 
23 04 2.71 4.77 8.31 

Table F.5 Flow Data fo r 1.0 lb/ bbl Wclan G um Fluid in 2'Yti KCI Brine T h ro ugh 
Yi- inch T a nd CT 

- -

!-----
/lP /L, psi/ft 

q, gal/min ST CT p, lb/gal 

3.14 0.18 0.32 8.39 

5.06 0. 25 0.58 8.42 
-

8.09 0. 50 1.05 8.42 -
12.08 0.98 1.83 8.41 

t- -
16.03 1.62 2.66 8.43 - t-
20.14 2.44 3.63 8.45 _, 
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Ta ble F.6 Flow Data for 1.0 lb/ bbl Wela n G um Fluid in 4'% KCI Brine T hro ugh 
Yz-inch ST a nd CT 

flP/L, psi/ft 

q, gal/min ST CT p, lb/gal 

3.28 0.18 0.32 8.49 

5.07 0.27 0.56 8.52 

8.11 0.56 1.03 8.52 

12 .08 1.08 1.80 8.53 

16.04 1.76 2.61 8.54 

19.99 2.61 3.56 8.55 

Ta ble F.7 Flow Da ta fo r 2.0 lb/ bbl Wela n G um F luid in Fresh W a ter T hrough 
Yz-inch ST a nd CT 

flP /L, psi/ft 
q, gal/min ST CT p, lb/gal 

3.08 0.41 0.61 8.28 
5.04 0.54 0.96 8.28 
8.06 075 1.61 8.28 
12.08 1.08 2.63 8.29 
14.05 1.29 3.80 8.30 
20.17 2.06 5.13 8.30 

Table F.8 Flow Data for 2.0 lb/ bb l Welan G um Fluid in 2'Y., KC I Brin e T hrough 
Y2-i nch ST a nd CT 

I-
flP /L, psi/ft 

q, ga l/ min ST CT p, lb/gal 

3.13 0.34 0 .51 8.41 

5.05 0.44 0 .80 8.44 
t--

8.08 0 .60 1.32 8.45 
-j-

12.05 0.92 2. 17 8.45 ---1------- -t-

15.07 1.22 2.92 8.46 
~--1------1--------1-----~ 

18.12 1.57 3.72 8.47 
f-----

22.23 2. 12 4 .93 8.48 - .__ 
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Ta ble F.9 Flow Da ta for 2.0 lb/ bbl Wela n G um Fluid in 4% KC I Brine Through 
Yi-inch ST a nd CT 

tiP /L, psi/ft 

q, gal/min ST CT p, lb/gal 

3 .08 0.36 0 .53 8.54 

5.06 0.43 0.80 8.55 

8.06 0.60 1.34 8.55 

12 .11 0.93 2.21 8.56 

15.22 1.25 2.98 8.57 

18.06 1.59 3.76 8 .58 

22 .03 2.13 4.93 8 .59 

Table F. 10 F low Da ta fo r 3.0 lb/ bbl Wela n G um F luid in F resh Water Through 
Yi-inch ST a nd CT 

tiP /L, psi/ft 
q, gal/min ST CT p, lb/gal 

3.16 0 .74 0 .95 8 .25 
5.04 0 .84 1.29 8 .27 
8 .07 1.13 2 .10 8.27 
12.13 1.55 3.40 8 .28 
13 .10 1.68 8.29 
16 .21 2 .04 4 .87 8.28 

Table F.11 Flow Data for 3.0 lb/bbl Wcla n G u m Flu id in 2% KCI Brine T h ro ug h 
Y2-i nch ST a nd CT 

.--
tiP /L, psi/ft 

q, ga l/ min ST CT p, lb/gal 

3. 15 0 .56 0.75 8.40 

5.03 0 .69 1.10 8.44 
I---

8 .05 0 .92 1.77 8.45 
f--

12.09 1. 27 2.83 8. 46 

15.16 1.60 3.75 8.47 --t-

18. 10 1.96 4 .71 8 .48 
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Table F.12 Flow Data for 3.0 lb/bbl Welan Gum Fluid in 4% KCI Brine Through 
Yi- inch ST and CT 

~p /L, psi/ft 

q, gal/min ST CT p, lb/gal 

3.22 0.58 0.77 8.55 

5.05 0.70 1.11 8.56 

8.05 0.91 1.77 8.56 

10.07 1.08 2.30 8 .57 

12.06 1.27 2.84 8.57 

15.19 1.61 3.77 8.58 

18.06 1.96 4.71 8 .59 

Table F.13 Flow Data for 1.75 lb/bbl Welan Gum Fluid in Fresh Water Through 
H 's-inch ST a nd CT 

~P/L, psi/ft 

q, gal/min ST CT p, lb/gal 

32.l 0.022 0 .023 8 .45 

50.3 0.021 0 .028 8.45 

100.4 0.028 0.044 8.44 

150.0 0.031 0.06 2 8.44 

175.7 0.043 0.072 8.44 

200.6 0.045 0.084 8.44 

225.5 0.053 0.098 8.44 

248.7 0.063 0.112 8.44 

28 1.8 0.072 0.13 1 8 .44 

Table F.1 -t Flow Data for 2.25 lb/ bbl Wcla n G um Fluid in Fresh Water T hrough 
2Yx-inc h ST and CT 

-i-~ ~ 

~P/L, psi/ft 

q, gal/min ST CT p, lb/gal 
t--

30.9 0 .033 
t-

0.036 8.45 

49 .6 0.035 0 .038 8.45 
t--

100. 3 0.042 0.057 8 .45 
t- --1 -150.4 0.052 0 .077 8 .45 - -1 

175.3 0.051 0 .087 8.45 
t- - ~ 

199 .7 0.054 0.106 8.44 -
225 .3 0.067 0.120 8.44 r-- - I- -- -
250.2 0 .075 0.130 8.45 - - -- --1 
281.2 0.083 0 .151 8.44 

n 
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APPENDIX G 

CORRELATION PARAMETERS A VERSUS APPARENT 
VISCOSITY AND B VERSUS FLOW BEHAVIOR INDEX 
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APPENDIX H 

NOMENCLATURE 

Pipe cross sectional area, (in. 2) 

Correlation Constants 

Internal diameter of tubing, (in.) 

Drag Reducti on 

Fanning frict ion factor, dimensionless 

Fanning fr ict ion factor of po lymer so lution, dimensionless 

Fanning fr ict ion factor of so lvent, dimensionless 

Consistency index of power law fluid (fb.15n!fi2) 

Pipe Consistency index, (lb;:/(fi 2) 

Viscometer consistency index, (lb1s"lfi2) 

Length between pressure ports (fi) 

Spri ng factor for Fann 35 v iscometer 

Flow behavior index of power law fluid, dimensionless 

Dean number, dimensionless 

Crit ical Dean number. di111ensionless 

General ized Dean number. dimensionless 

Reynolds number. di111ensionless 

Crit ica l Reynolds number. dimensionless 

Genera l ized Reynolds number, dimensionless 

Re) no ld number o r so lvent. dimensionless 

Outside tubing diameter. (in.) 

Pump horse pO\\ er 

FIO\\ rate (KJm1) 

l ~ad i u of co iled tubing. (in.) 

Radius o f' cu rvatu re o f' co i led tubing ree l. (in.) 

Co i led tubing curvature ratio. di111e11sionless 

Corrclati n coe ffi cient. di111e11sionless 

Re o lution per minute 

crage nuid ve loc ity. (Ii sec) 

Pre ure drop (psi) 
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GREEK SYMBOLS 

r 
Y11· 

~ 

e 
0 

T 

To 

Tw 

fl 

Ila 

/lp 

p 

= 

= 

= 

hear rate, (s-') 

Wall shear rate, (s-1) 

Ratio of bob to cup radius for rotational Viscometer 

Viscometer di al reading 

Constant in Eqs. 3.3 and 3.4, dimensionless 

Shear stress (lb/fi2) 

Yield stress (fb/ ft 2) 

Wall shear stress (lb/ft2) 

Viscosity of fluid , (cP) 

Apparent Viscos ity of fluid , (cP) 

Plasti c Viscosity of fluid , (cP) 

Fluid density, (lb,, ,lgal) 

SUBSCRIPTS 

ct Co iled Tubing 

st Stra ight Tubing 

CT Coiled Tubing 

ST Straight Tubing 
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