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Abstract 

Recent advances of zinc oxide (ZnO) nanowires have attracted extensive interests due to 

their multifunctional properties. In this dissertation, well-aligned ZnO nanowires were synthesized 

as the interfacial enhancement in carbon fiber reinforced composites using atomic layer deposition 

(ALD) and hydrothermal methods. Optimal synthesis of ZnO seed layers on silicon substrate was 

first studied to understand the impact of growth parameters in ALD process including 

H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature. Aligned ZnO 

nanowires on silicon substrate were grown from the ZnO seeds deposited by ALD treatment. Then, 

the developed ZnO nanowire synthesis methods were employed to grow aligned ZnO nanoarrays 

on carbon fiber fabrics for structural composite applications. The effects of key ALD parameters 

on the morphologies of ZnO nanowires were studied. In addition, the effect of temperature, growth 

time and concentration of zinc nitrate hydrate and hexamethylenetetramine (HMTA) during the 

hydrothermal treatment was characterized. Critical ZnO properties, such as morphologies, crystal 

phase and element identification, were characterized using field emission scanning electron 

microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and 

thermogravimetric analysis (TGA). Experimental results demonstrated that the properties of ZnO 

nanowires could be controlled by adjusting the key parameters during ALD and hydrothermal 

syntheses. Single fiber tensile test and single fiber fragmentation test (SFFT) were carried out to 

verify the influence of ZnO nanowires on carbon fiber properties as an interphase between carbon 

fiber and polymer matrix. The tensile strength of carbon fiber with ZnO nanowires preserved as 

the maximum temperature in growth process was only 200 °C. Single fiber fragmentation test 

revealed that the interfacial shear strength (IFSS) in epoxy composites improved by 286%. The 

experimental results indicated that the hierarchical carbon fibers enhanced by aligned ZnO 
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nanowires in epoxy composites were effective to improve IFSS. Surface energy and wetting 

properties of carbon fiber fabrics with aligned ZnO nanostructures were also explored. It was found 

that controlling the morphology of ZnO nanowires could result in significant change of surface 

energy of carbon fiber fabrics, changing their surface properties from hydrophobicity to 

hydrophilicity. 

The impact of aligned ZnO nanowires on the interfacial properties in carbon fiber 

reinforced composites were systematically studied in this dissertation.  Carbon fiber composite 

laminates were manufactured by vacuum assisted resin transfer molding (VARTM) with external 

pressure with incorporation of ZnO nanowires. Dynamic mechanical analysis (DMA), 3-point 

bending test and short beam 3-point bending test were conducted using hybrid carbon fiber 

composites to investigate the effects of different morphologies of ZnO nanowires on the interfacial 

properties in composites. Experimental results showed that the employment of ZnO nanowires has 

leaded to a maximum reinforcement in both flexural strength and interlaminar shear strength (ILSS) 

by up to 45.6% and 31.1%, respectively. 

In summary, this dissertation developed a novel approach to synthesize well-aligned ZnO 

nanowires on carbon fiber fabrics using the combined ALD and hydrothermal methods. The 

successful development and characterization of ZnO nanowires enhanced structural composites 

have great potential to lead to the new generation of lightweight materials with increased 

mechanical properties for broad mechanical and aerospace engineering applications. 
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Chapter 1 Introduction 

1.1 Interfacial treatments 

The interphase of carbon fiber composites transfers shear stress between carbon fiber and 

polymer matrix. Debonding of carbon fiber to the matrix which causes the failure of composites 

will occur when the regional shear stress exceeds the interfacial shear strength of carbon fiber 

composites. In order to improve the better performance of composites, various methods of 

modifying the surface of carbon fiber attract numerous interests mainly composed of surface 

functionalization and roughening, and building secondary interphase. 

1.1.1 Surface functionalization and roughening  

The interaction between carbon fiber and polymer matrix can be improved by 

functionalizing and roughening the surface of carbon fiber. High reactivity of functional groups 

can be created on the surface of carbon fiber to increase the wetting and adhesion of carbon fiber 

to the polymer matrix, and the roughed surface of carbon fiber can mechanically interlock with 

polymer matrix by removing the smooth outer layers of carbon fiber. These treatments can improve 

the adhesion between carbon fiber and polymer matrix, but in-plane mechanical properties such as 

tensile strength of carbon fiber will decrease due to the damage in these processes. The common 

methods in these treatments include acidic and basic oxidation[1], plasma oxidation[2], 

electrochemical oxidation[3] and high energy irradiation[4]. 

N. Li et al.[1] treated the carbon fiber with aqueous ammonia etching, nitric acid oxidation 

and combined aqueous ammonia/nitric acid. Oxygen-containing functional groups were created 

on carbon fiber surface by nitric acid and the roughness was improved by aqueous ammonia. Better 

wettability of carbon fiber was obtained and the tensile strength of carbon fiber slightly loosed.  

The maximum improvement of IFSS was 43.36% compared to bare carbon fiber.  
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S. Erden et al.[2]used the continuous atmospheric plasma oxidation to treat the surface of 

carbon fiber. Polar oxygen-containing groups were introduced to the surface of carbon fiber and 

the wettability was improved. The single fiber fragmentation test showed that the IFSS was 

improved from 40 to 83 MPa when the carbon fiber was exposed under the plasma for 4 minutes.  

D.K. Kim et al.[3] investigated the influence of electrochemical oxidation on carbon fiber. 

Oxygen functional groups were created and the fiber roughness was increased. Micro-bond method 

was used to evaluate the interfacial shear strength. It was found that the adhesion between carbon 

fiber and epoxy resin was greatly increased and the IFSS was increased up to 144% compared to 

the pristine carbon fiber. 

L. Xing et al.[4] showed that high energy irradiation could be an effective way to improve 

the IFSS between domestic aramid fiber and epoxy chloropropane. The number of polar groups 

were created on the fiber surface, and the roughness and wettability of carbon fiber were improved. 

When the irritation energy was 400kGy, the IFSS was 68.57MPa which was increased by 45.17% 

compared to domestic aramid fiber composites without treatment. 

1.1.2 Building secondary interphase 

Building secondary interphase between fiber and polymer matrix was also an effective 

method to increase the IFSS as the new interphase can increase the adhesion, improve the load 

transfer and enlarge the contact area of fiber surface. The secondary interphase on carbon fiber 

includes thin film of sizing[5] and nanostructures such as carbon nanotubes[6] and ZnO nanowires[7]. 

The sizing layer will have a better adhesion to the polymer matrix compared to the fiber directly 

bonds with matrix. The sizing was compatible with both fiber and polymer. Nanostructured 

interfaces such as aligned carbon fiber nanotubes and ZnO nanowires have a much larger surface 
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contact area and the nanostructures inserted into the polymer matrix will work as mechanical 

interlocking.  

Z.H. Dai et al.[5] studied the interfacial adhesion of sized and desized T300B and T700SC 

carbon fibers to evaluate the effect of sizing. The polar surface energy of desized carbon fiber was 

lower and the concentration of activated carbon atoms was smaller compared to the two 

commercial carbon fibers. It concluded that the IFSS of carbon fiber composites depended on both 

chemical bonding and physically adhesive interaction. 

Carbon nanotubes have excellent mechanical properties that can reinforce both in-plane 

and out-plane properties of composites. The employment of carbon nanotubes can significantly 

increase the IFSS as the aligned carbon nanotubes can improve the load transfer. Chemical vapor 

deposition (CVD) was usually used to synthesized carbon nanotubes. However, the high 

temperature and involvement of catalyst in CVD process will result in the degradation of carbon 

fiber and formation of defects in composites. 

R.J. Sager et al.[6] used CVD to grow radially aligned and randomly oriented carbon 

nanotubes on T650 carbon fiber. The tensile strength of carbon fiber reduced by 37% and 30% for 

each morphologies of carbon nanotubes. The thermal degradation and surface oxidation during 

CVD process were believed to add the surface defects resulting in the reduced mechanical 

properties of carbon fiber. Based on the results of single fiber fragmentation test, the IFSS of both 

were improved by 71% and 11% for randomly oriented and aligned carbon nanotubes. The 

presence of nanotubes increased the interphase shear yield strength and adhesion of matrix to the 

fiber. 
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To overcome the disadvantages of growing carbon nanotubes by CVD, Y. Lin et al.[7] 

proposed a novel approach using two-step hydrothermal method to grow ZnO nanowires on carbon 

fiber to increase the IFSS. The tensile properties of carbon fiber preserved due to low temperature 

during growth. The rigid ZnO nanowires penetrated into the polymer matrix and improved the load 

transfer. The incorporation of ZnO nanowires significantly increased the IFSS by 113%. 

S.A. Song et al.[8] modified Lin’s method, using electrochemical deposition method to 

deposit seed layers of ZnO nanoparticles in the first step of hydrothermal growth. Microwave 

radiation was used to boost the growth of ZnO nanorods in the second step of growth. The growth 

time of ZnO nanowires was greatly reduced by 95.8% due to the employment of microwave. The 

dense and uniform ZnO nanorods increased the IFSS by up to 56.2%. 

1.2 ZnO nanowires growth 

Zinc oxide (ZnO) is a significant semiconductor material due to its direct wide band gap 

(~3.3 eV at 300 K) and large exciton binding energy (~60 meV)[9]. Zinc oxide also has excellent 

chemical and thermal stability, nontoxicity, biocompatibility, antibacterial, and piezoelectric 

properties[9-11]. These multifarious properties of ZnO make it as one of the most multi-functional 

materials, so extensive interest has been attracted in variable applications such as solar cells[12], 

ultraviolet lasers[13], light emitting diodes[14], gas sensors[15], photo detectors[16], photo catalysts[17], 

piezoelectric nano-generators[10], interface strength enhancement[7] and others. 
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Figure 1-1 (a) Hexagonal wurtzite crystal structure of ZnO, (b) Hexagonal prism of ZnO crystal showing different crystallographic 

faces[18]. 

ZnO is a direct wide bandgap semiconductor material with piezoelectric and optoelectronic 

properties that belongs to the hexagonal line with wurtzite crystal structure which is shown in 

Figure 1-1. For its lattice constant, a= 0.32495 nm, c= 0.52069 nm, the ratio of c/a is 1.602 which 

is less than 1.633 (for ideal hexagonal structure)[19]. The crystal structure shows that in its unit cell, 

each zinc is originally tetrahedral with four oxygen atoms. Viewing from the (0001) direction, 

ZnO is densely deposited from Zn surface and O surface. This arrangement leads to ZnO with a 

Zn polarized surface (generally noted as (0001)) and an O-polarized surface (generally noted as 

( 0001� ))[19]. These two types of polarized surfaces have different properties in experiments 

showing that the Zn surface is smoother than the O surface. The crystallographic structure of ZnO 

also determines that the crystal prefers growth in c-axis orientation, which is suitable for the growth 

of high-quality oriented epitaxial films. 

The key to the application of nanomaterials is to build them into a highly aligned nanoarray 

structure in a wide range, so fabrication of uniform alignment of nanoarray has become the focus 

of scientists all over the world. The methods of fabrication of ZnO nanoarray mainly are vapor-

liquid-solid (VLS), vapor-solid (VS), template and wet chemical growth. 
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1.2.1  Vapor-Liquid-Solid (VLS) 

Synthesis of one-dimensional ZnO nanostructured materials have been reported more and 

more based on the VLS growth mechanism of the catalytic reaction. In 2001, P.D. Yang [13] used 

VLS method to fabricate ZnO nanowire arrays on sapphire substrates with Au nanoparticles as 

catalyst. The specific growth method is that first, a layer of Au film was grown on the substrate, 

then an equal amount of ZnO powder and graphite powder were mixed as starting materials and 

put in the center of the boat in furnace. The substrates and starting materials were heated up to 

800 °C to 905 °C in an Ar flow. Zn vapor was generated by carbothermal reduction of ZnO and 

transported to the substrates where ZnO nanowires grew. ZnO nanowires arrays perpendicular to 

the substrate surface along the (002) orientation could be fabricated by controlling the proper 

conditions and be made as ZnO nanowire laser. 

 

Figure 1-2 SEM images of ZnO nanowire arrays grown on sapphire substrates[13]. 

As shown in Figure 1-2, (a) to (e) are SEM images of ZnO nanowire arrays grown on 

sapphire substrates, (f) is TEM image of single ZnO nanowire. The results showed that the 
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nanowires only grew in the area with Au covered, and the top of each nanowire was covered with 

Au-Zn alloy group. 

1.2.2 Vapor-Solid (VS) 

In addition to the VLS mechanism, another VS mechanism is often used to prepare one-

dimensional nanowires. During the growth process in vapor-solid, gas vapor is produced by 

thermal evaporation, chemical reduction and gas phase reaction, then the gas is transported and 

deposited on the substrate. This pattern of growth is often interpreted as the growth of one-

dimensional materials centered on microscopic defects (dislocations, twins, etc.) at the liquid and 

solid interfaces. However, for most whisker growth, it is the key to control the supersaturation of 

the preferential coagulation, because evidence shows that supersaturation will directly determine 

the morphologies of the crystal growth. Supersaturation is closely related to the original growth 

morphologies (whiskers, lumps, powders). Low supersaturation corresponds to the whisker growth. 

Moderate supersaturation corresponds to the formation of massive crystals. At very high 

supersaturation, the powder is formed by uniform nucleation. Therefore, the size of whiskers can 

be controlled by supersaturation, nucleation size and growth time. One-dimensional nanomaterial 

can be synthesized by this method. The advantage of this preparation method is that no catalyst is 

required, but the disadvantage is that the growth temperature is higher. 

In 2001, Z.L. Wang [20] synthesized a series of semiconductor oxide nanoribbons such as 

ZnO for the first time. ZnO nanobelts were synthesized by vapor-solid method at high temperature 

with ZnO powder (99.99%) as raw material. These ribbon structures were ideal single crystal sheet 

structures and the cross section is a narrow rectangular structure with width of 30 ~ 300nm, 

thickness of 5 to 10 nm, and the length up to a few millimeters. This was a new type of functional 

oxide of one-dimensional nanomaterial system after the fabrication of nanowires and nanotubes. 



8 

It was significant in the discovery of a new form with a unique defect-free oxide semiconductor 

system which was very important in nano-physical research and nano-device application.  

1.2.3 Template method 

Template method is one of the most common methods with a wide range of applications. 

The template can be prepared with a variety of materials, such as metal, alloy, semiconductor, 

conductive polymer, oxide and other material. Its superiority cannot be replaced by any other 

method. The outstanding advantage of this method is the fabrication of nanowire array. The 

nanowire array can remain in the holes of the template, or the nanoarray structures are obtained by 

removing the part of template when the nano structure films are fixed on certain substrates  

The properties of the nanostructures can be regulated based to the composition of materials 

being assembled in template and the change of aspect ratio of nanowires and tubes. This has broad 

applications in the field of electronics. The template is a prerequisite for the synthesis of 

nanostructure arrays. Anodic alumina, polymer and metal templates are most commonly used in 

the synthesis of nanostructure arrays. The desired nanowire or tube arrays can be obtained by 

electrochemical deposition, sol-gel, chemical polymerization, chemical vapor deposition and other 

methods.  

H.Q. Wu[21] used carbon nanotubes as templates to induce the growth of ZnO nanorods. 

They stirred the zinc nitrate solution and the appropriate amount of nitric acid treated MWNTs for 

48 h. The obtained samples were filtered, washed, dried and then heat-treated at 500 ℃ for 6 h in 

Ar atmosphere. The samples were calcined in air at 750 ℃ for 2h to burn off the multi-walled 

carbon nanotubes. After burning, ZnO nanorods were obtained with diameter of 20 ~ 40nm and 

length of 250 ~ 1000nm. 
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1.2.4 Wet chemical growth method 

The reaction mechanism of preparing aligned nanowire, nanorod and nanotube arrays on  

solid substrate by this method is that the activation energy of heterogeneous nucleation in solution 

is much lower than the activation energy of homogeneous nucleation[22, 23]. Therefore, the reaction 

particles are more likely to form fine nuclei on the solid substrate immersed in the solution. The 

nucleation of nuclei on the substrate is much faster than the formation in solution. In this way, it 

is possible to ensure that a large number of crystal nuclei with higher density and smaller grains 

exist on the substrate and grow along a certain crystal plane. In order to improve the orientation of 

prepared nanoarrays, substrate can be pre-modified with a suitable nanoparticle films, then grown 

with nanoarrays. Vayssieres, L.[24, 25] and Govender, K.[26] used hydrothermal method to prepare 

well oriented ZnO nanorods in solution.  

Hydrothermal method is composed of substrates pre-treatment (ZnO particle seeding) and 

chemical bath deposition process (ZnO nanowire growth)[27]. Various methods have been involved 

to prepare the seed layers of ZnO including ,magnetron sputtering[28], spin coating [27], dip-coating 

[29] and atomic layer deposition[30]. 

P.N. Mbuyisa et al.[28] used direct current magnetron sputtering to prepare ZnO template 

thin films on silicon substrate with a Zn target of 99.995% purity at room temperature. 

Hydrothermal growth solution was prepared by the solution of zinc chloride and aqueous ammonia. 

Highly crystalline miniature nanorods were obtained and the mean diameter of ZnO nanorods 

decreased when the deposition pressure in sputtering increased. 

L.L. Yang et al.[27] employed a high speed spin coater to deposit ZnO nanoparticles on 

silicon substrates. Then aqueous solution of zinc nitrate hexahydrate and methenamine was used 
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for the growth of ZnO nanowires. The influence of substrate pre-treatments, pH, angel between 

substrate and beaker, and growth time were studied. 

Y. Lin et al.[29] prepared the dip-coating solution by dissolving the zinc acetate dihydrate 

and sodium hydroxide in ethanol. The carbon fiber tows were dipped into solution and dried with 

heating for several times. After ZnO particles formed on the surface, conventional zinc nitrate 

hexahydrate and hexamethylenetetramine was used to grow ZnO nanowires. 

Q.C. Li et al[30] firstly introduced the atomic layer deposition in two-step hydrothermal 

growth. A uniform thin layer of ZnO film was deposited on different substrates including silicon 

wafers, polyethylene terephthalate and sapphire. The successful growth of ZnO nanorods proved 

that ALD was an effective method to deposit ZnO thin films on multiple substrates and offered 

more options in synthesizing one dimensional nanostructures. 

1.3 Mechanism and characterization methods of composite interface 

1.3.1 Mechanism of composite interface  

A variety of theories have been established so far for the mechanism of the interface. 

Various theories have experimental support, but it is difficult to completely describe the interface 

effects and explain various experimental results simply by one theory as many roles are mutually 

reinforcing the interface. Interphase mechanism can be briefly summarized by the followings:  

Infiltration theory considers that the combination of two phases in the interface is 

mechanical bonding and wetting adsorption, and the adhesion force is mainly van der Waals force. 

It starts from the basis of thermodynamics, considering the correlation between the energies of two 

surface and the resulting interfacial energy. This theory cannot explain the chemical bond 

interface[31]. 
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Chemical bond theory was the earliest interface theory. It is considered that the interface 

mainly consists of two chemical phases which react with each other through chemical functional 

groups, and the binding force is mainly the action of primary bond[32]. 

Friction theory considered that the bond between the substrate and the reinforcement is 

based on the friction effect, and the coefficient of friction between the reinforcement and the 

substrate determines the strength of the composites. The important role of coupling agent is to 

increase the coefficient of friction between the resin matrix and the reinforcement[33]. 

1.3.2 Characterization methods 

The mechanical properties of the fiber reinforced resin matrix composites are significantly 

affected by the bond strength between the fiber and the matrix. Therefore, most researchers use a 

variety of micro-mechanical testing techniques to measure the shear strength between the matrix 

and fiber in composites. The earliest reports were based on the interfacial strength measurements 

of fiber-reinforced metals proposed by Kelly, A[34] in the 1960s. This research has led to a boom 

in the interface research of composite materials.  

According to the test principle and material failure modes, the methods of interface 

bonding strength test can be divided into two categories: non-destructive and destructive. Non-

destructive method is to use chemical, physical or energy analysis to measure the bond strength 

between fiber and resin, such as spectral analysis[35], X-ray diffraction spectra[36], acoustic 

emission[37], Raman spectroscopy[38]. The salient feature of these methods is that they will not 

cause material damage during the measurement. It does not require a large number of repeated 

destruction experiments to achieve the test purpose. However, using these measurement methods 

and techniques for interfacial research requires highly sophisticated experimental equipment, and 

the relevant theoretical explanations pose great challenges to the researchers.  
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Destructive methods generally use micro-mechanical testing methods, which includes a 

Single Fiber Pull-out Test[39], Micro de-bonding Test[40] , Fiber Pullout and Pushout Tests[41], and 

Single Fiber Fragmentation Test[42]  

1.4 Dissertation objective and outline 

The main goal of this dissertation is to employ ALD to deposit ZnO nanoparticles as seed 

layers for the hydrothermal growth of ZnO nanowires on carbon fiber, then to manufacture hybrid 

carbon fiber composite laminates to verify the enhancement effect of ZnO nanowires. 

Chapter 1 provides a literature review in different methods of fabricating ZnO and 

composite interface theory. Chapter 2 focuses on developing a thermal ALD process to optimize 

the morphology and structural properties of as-grown ZnO thin films on silicon substrate. Chapter 

3 demonstrates the effect of ZnO nanoparticles grown by differing ALD parameters including 

temperature and growth cycles as seed layers to fabricate ZnO nanowires on carbon fabric. Chapter 

4 investigates the effect of reaction temperature and concentration of chemical reagents in the 

second step hydrothermal method on the properties of ZnO nanowires on carbon fabric using the 

same recipe of ALD. Chapter 5 studies the influence of hydrothermal process time and reagent 

concentrations on the properties of ZnO nanowires on the substrate of carbon fabric based on the 

same growth parameters of ALD process.  

Chapter 6 presents the optimal synthesis and characterization of aligned zinc oxide (ZnO) 

nanowires on carbon fibers for the development of hybrid composites with increased interfacial 

strength. Atomic layer deposition method was first employed to uniformly deposit nanoscale ZnO 

seeds on the carbon fiber surface. Then, low temperature hydrothermal method was used to grow 
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the ZnO seeds into aligned nanowires for composite applications. Critical properties of aligned 

ZnO nanowires, such as morphology and chemical compositions, were characterized. 

Chapter 7 shows that the enhanced mechanical properties of carbon fiber composites 

including flexural strength and ILSS by introducing vertically aligned ZnO nanowires on the 

surface of carbon fibers were examined. The ZnO nanowires were synthesized by a two-step 

hydrothermal method. In the first step of growth, ALD was involved to deposit fine ZnO 

nanoparticles as nucleation site for the fabrication of ZnO nanowires in second step. The 

morphologies, elemental composition, crystal orientation and mass ratio of ZnO on carbon fabric 

were characterized. Carbon fiber composite laminates were manufactured by vacuum assisted 

resin transfer molding (VARTM) with external pressure. 

Chapter 8 summarizes the major finding of this dissertation for the hybrid carbon fiber 

composites with the decoration of ZnO nanowires and proposes recommendations for the potential 

future work  
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Chapter 2 Growth Process Optimization of ZnO Thin Film using ALD 

2.1 Introduction 

In recent years, ZnO is one of the most intensively investigated semiconductor materials 

due to its wide direct bandgap (~3.3 eV), large exciton binding energy (~60 meV), and excellent 

piezoelectric properties[43]. Significant interest has been attracted in view of its broad range of 

research and industrial applications, including light emitting diodes[44], UV laser diodes[45, 46], 

photon detectors[47], solar cells[48], pressure sensors[49], transparent conductive materials[50], and 

also interfacial coatings for fiber strength enhancement[7]. 

Common techniques used to grow relatively good quality ZnO thin films are physical vapor 

deposition (PVD) systems, such as magnetron sputtering[51, 52], e-beam evaporation[53], and pulsed 

laser deposition[54]. However, these high energy PVD methods typically result in broad material 

interface damage, significant stoichiometric non-uniformity in films, and commonly existing 

structure imperfections including micro pin-holes and point-defects. With the continual trend 

towards scaling modern novel electronic devices down to micro- and nano-scale levels, such issues 

become even more severe and degrade the material quality tremendously. In contrast to these PVD 

methods, ALD is well-known as a promising alternative deposition method with numerous 

advantages, such as good uniformity and conformality, atomic-scale thickness controllability, 

perfect stoichiometric uniformity and low impurity contamination at lower growth temperatures 

from 400 °C down to as low as 50 °C[55, 56]. In addition to the improvement of the structural 

property, this technique also has strong capabilities to enhance the electric, optical and mechanical 

characteristics[57, 58] of the ALD derived thin films, including Hall mobility, electrical resistivity, 

light transparency, photoluminescence, hardness and Young's modulus. Moreover, in recent years, 

rapidly growing research attention has been paid to growing semiconductor thin films onto 
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lightweight, flexible and mechanically strong plastic films[59]. Generally, such organic substrates 

cannot withstand high processing temperature (e.g. PET ≤ 150 °C[60], Kapton Polyimide 

≤400 °C[61]). 

Therefore, it becomes increasingly advantageous to study ZnO thin film growth using ALD 

at lower temperature ranges under these considerations. It is noted that there are a few efforts that 

have already been made in this area, with different research emphasis including growth rate, crystal 

quality, and optical and electronic properties[62, 63]. 

In this chapter, our efforts focus on developing a thermal ALD process to optimize the 

morphology and structural properties of as-grown ZnO thin films. Major growth factors including 

the H2O/Diethyl Zinc (DEZn) dose ratio, background base pressure and growth temperature are 

investigated systematically. When some growth factors are tuned out of certain ranges, a high 

density of flower-like nanostructures were observed for the first time in ALD growth research 

works. Such limitations for using thermal ALD to deliver high quality ZnO thin films are reported 

in this work. It is believed that the findings reported in this chapter will offer unique and valuable 

guidelines for researchers to grow high quality ZnO thin films by ALD method. 

2.2 Methodology 

ZnO thin films were grown on (100) silicon substrates by an ALD method under various 

growth conditions. Prior to the growth step, all 2 × 2 cm2 Si substrates were degreased by dipping 

into Trichloroethylene (TCE), Acetone, and Methanol solvents respectively for 5 min (mins) each 

under ultrasonic agitation, followed by cleaning the substrates under running deionized water (DI) 

for 10 min before finally purge-drying by ultrahigh purity (UHP) N2 gas. A customized 3’’ thermal 

ALD system was then used to perform the ZnO growth on the cleaned Si wafers. In the reaction 

process, we adopted a double-exchange chemical vapor reaction between DI water and DEZn 
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precursors. The dose time was controlled by computer driven pneumatic valves, and N2 gas carried 

these vaporized sources to the reaction chamber. The H2O and DEZn were alternately distributed, 

and a 10 s (s) UHP N2 purge period was carried out after each dosing process. It is noted that this 

period was enough to ensure that the pressure returned to its base level before the next pulse. 

In order to find a suitable growth window and optimize the deposition procedure, three 

major growth factors including H2O/DEZn distribution ratio, background base pressure, and 

growth temperature were investigated. Three H2O/DEZn dose ratios of 0.8, 1.5, and 2.0 were 

studied by tuning the DI H2O pulse time while fixing the pulse for the DEZn precursor. To 

investigate the impact of the base pressure conditions, ZnO films were grown under 0.5, 0.4, 0.3 

and 0.2 Torr respectively by adjusting the feeding UHP N2 amount. For both H2O/DEZn dose ratio 

and base pressure studies, the growth temperatures were all set at 150 °C. For the temperature 

impact study, the growth temperatures were adjusted from 100 °C to 300 °C, in steps of 50 °C. It 

is worth noting that 300 growth cycles were carried out to ensure sufficient film thicknesses for 

characterization. 

After the series of growth processes, thin films were characterized by a high-resolution 

Zeiss Neon EsB FESEM with Oxford EBSD capabilities, an Asylum atomic force microscope 

(AFM), a KLA Tencor D500 stylus profiler, and a Rigaku powder x-ray diffraction (XRD) system. 

2.3 Results and discussion 

During the ALD process, precursor chemistry plays a vital role. Different precursors have 

different chemical properties such as volatility and thermal stability. Therefore, finding a good 

balance between the H2O and DEZn precursors is the most critical step in order to achieve 

successful ZnO ALD growth. With this consideration, the effect of dose ratio between the 

H2O/DEZn precursors was studied first. With the change of pulse time of H2O from 0.1 s to 0.3 s, 
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the resulting pressure spikes (∆P) were increased consequently, as shown in Table 2-1. The top-

view morphologies of feeding ratio dependent as-grown ZnO films are demonstrated in Figure 2-1 

(a)–(c). As can be seen in Figure 2-1 (a) and (b), when the H2O source was not sufficiently supplied, 

nanoflower-like structures were formed on top of the thin films. Such random structures increase 

the surface roughness and play a role as irregular seeds that will adversely affect film quality in 

subsequent growth processes, such as fast growth speed, and irregular orientations of grains. It is 

believed that the nano-flower formation results from the unbalanced H2O/DEZn dose ratio. With 

a decreasing amount of H2O, the DEZn was overdosed relatively, which results in a process more 

like chemical vapor deposition (CVD) rather than an ALD process. Therefore, in order to eliminate 

the formation of those nano-flowers, it is necessary to keep the H2O/DEZn dose ratio over a certain 

level to prevent a DEZn over-dose situation. In our system, to deliver successful ZnO growth, the 

H2O dose amount needs to be close to or higher than 2 times of DEZn, as shown in Figure 2-1 (c). 

Table 2-1 The relationship between pulse time and pressure spike of H2O source. 

pulse time (second) 0.1 0.2 0.3 

pressure spike 

(∆P mTorr) 
100 180 250 
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Note: pulse time and pressure spike for DEZn were set at 0.3 s and 120 mTorr. 

 

Figure 2-1 Top down SEM images for ZnO thin films deposited by ALD with various H2O/DEZn precursors dose ratio including 

(a)–(c) and different background pressure including (c)–(f). 

ALD is a self-limiting chemical reaction process that can provide an equilibrium state 

between adsorption and desorption of precursors within each reaction cycles. Since background 

pressure is directly related to the surface adsorption or residence time of a precursor, without a 

suitable base pressure, the equilibrium state will be hard to maintain resulting in an uncontrollable 

growth process. Therefore, even if H2O/DEZn dose ratio is at a balanced range, similar 

nanoflower-like random grains can still form when the base pressure falls below 0.3 Torr, as shown 

in Figure 2-1 (e) and (f). It is believed that a similar CVD process might be happening under this 

condition. Specifically, too low of a base pressure results in desorption of DEZn precursors that 

originally bonded on the ZnO thin film. Consequently, those precursors react with H2O molecules 

and redeposit on the surface creating nanoflower-like grains. As a result, the surface roughness is 

found to be strongly dependent on both the H2O/DEZn dose ratio and base pressure parameters. 

In order to perform a controllable and uniform ZnO ALD deposition, both dose ratio and base 



19 

pressure during the reaction process have to be tuned to a suitable window as shown in Figure 2-1 

(c) and (d). 

It is well known that ALD is a thermally activated process that produces self-limiting 

reactions on the surface of a substrate. Therefore, a suitable temperature window can be identified 

for ZnO thin film deposition based on the constant growth rate of the ALD process. To study the 

effect of deposition temperature for ZnO thin films, five different deposition temperatures were 

tested from 100 °C up to 300 °C as mentioned before. Other conditions followed the optimized 

parameters discussed in previous sections: H2O/DEZn = 2, Pbase = 0.5 Torr and cycle = 300. 

 

Figure 2-2 Growth temperature dependent deposition rate of ZnO thin films on Si wafers. 

Figure 2-2 shows the average growth rate as a function of the growth temperature. As 

shown, the growth rate increases from 100 °C to 150 °C. This is due to the fact that the reactant is 

unable to fully overcome the necessary activation energy to chemisorb on the substrate at lower 

temperatures (~100 °C). It is known that H2O is a highly polar molecule that tends to condense or 

physisorb on to the surface and lead to a partial CVD process with an unwanted higher growth rate. 

High temperature can help to minimize this issue. Therefore the growth rate decreases after the 

temperature rises from 150 °C to 200 °C. From 200 °C to 250 °C, a relatively stable growth rate 



20 

is achieved. The range is believed as the good ALD growth window for deposition of ZnO thin 

films. However, extremely high temperatures will lead to decomposition or desorption of 

adsorbates before the reaction. This explains why the growth rate quickly decreases from 250 °C 

to 300 °C. 

 

Figure 2-3 Temperature dependent morphologies of ZnO films by ALD: (a)–(e) top down SEM pictures with 3D AFM insets; (f) 

surface roughness as a function of growth temperature. (Note: extra small insets in (e) are indexed Kikuchi pattern and EBSD 

resolved wurtzite structure). 

The surface morphologies of ZnO films grown under different temperatures were also 

characterized by SEM and AFM tools as presented in Figure 2-3 (a)–(e). The root mean square 

(RMS) of surface roughness was obtained from the AFM image with an accuracy of 0.1 nm. The 

relationship between RMS and growth temperature is also shown in Figure 2-3 (f). As shown in 

the 3D AFM images, with an increase in the growth temperature from 100 °C to 200 °C, the surface 

morphology is steadily improved. At 100 °C and 150 °C, the growth process is either due to 

insufficient chemisorbtion energy or involved with a partial CVD mechanism due to the H2O 
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condensation issues as mentioned. Therefore, the growth is not primarily through ALD's self-

limiting reaction condition and consequently we observe rough growth surfaces. This also explains 

why the RMS value goes up when the growth temperature increases to 300 °C, since this region 

can lead to very poor absorption of reactants on the substrate as explained previously. Finally, for 

growth temperatures at 200 °C and 250 °C, the RMS values of 2 nm suggest that the ZnO film 

grown by our customized ALD system is able to achieve atomic flatness under optimized growth 

conditions. In addition, it is worth noting that the ZnO grains have changed from rice-like to rock-

shaped microstructures when the temperature goes to 300 °C, while the films grown at 250 °C is 

at a transition state having grains with both formations, as shown in the SEM images in Figure 2-3 

(d) and (e). EBSD was used to investigate the crystallographic change of the microstructures where 

it was observed that rice-like grains randomly contain both zinc blende and wurtzite crystal 

structures. On the contrary, rock-shaped grains primarily have a wurtzite crystal structure whose 

indexed Kikuchi pattern and the resolved wurtzite formation are displayed as insets in Figure 2-3 

(e). 

 

Figure 2-4 XRD patterns of ALD ZnO thin films with different growth temperatures. 
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Furthermore, in order to investigate the crystal quality of these films grown under different 

temperatures, XRD data was collected through a Rigaku powder XRD tool. XRD scans were 

performed from 20° to 50°, and the spectra are shown in Figure 2-4. It is found that ZnO films can 

be poly-crystallized even at the lowest growth temperature of 100 °C, as ZnO peaks can still be 

observed at this level. With an increase in temperature, we found the intensity of the (002) peak 

increased strongly, but the (100) and (101) peaks become weaker. The strongest (002) peak is 

observed at 200 °C which indicates the films were primarily grown in the c-axis orientation. 

However, after the temperature is over 200 °C, the (002) peak goes weaker indicating the films are 

no longer dominated by a c-axis. The reason could be due to the fact that crystal structures start 

transforming at this stage. Similar results were also observed in other studies[64, 65]. 

2.4 Conclusion 

In this chapter, the thermal ALD growth process of ZnO thin films on silicon is 

systematically studied and optimized through a customized ALD system using alternating pulses 

of DEZn and H2O. The impact of three ALD growth factors include H2O/DEZn precursors dose 

ratio, background base pressure and growth temperature have been studied. In order to perform a 

controllable and uniform ZnO ALD deposition, it is found that both dose ratio and base pressure 

during the reaction process have to be tuned to a suitable window for highly uniform deposition: 

the H2O/DEZn ratio needs to be controlled close to or above 2, and 0.4 Torr is the bottom limit 

base pressure for our customized ALD system. On the other hand, the study of the temperature 

impact suggests that the suitable temperature window for growth should stay within 200 °C –

250 °C. 
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Chapter 3 Effect of ALD Seeding on Growth of ZnO Nanowires on 

Carbon Fabrics by Hydrothermal Method 

3.1 Introduction 

Well aligned ZnO nanowires can be achieved by various growth techniques including 

vapor–liquid–solid (VLS) growth[66], chemical vapor deposition[67] and hydrothermal[68] methods. 

Hydrothermal synthesis is a desired option for growth due to its low growth temperature (<100 °C) 

and simplicity in an aqueous solution[69]. Hydrothermal method is normally composed of two steps: 

substrates pre-treatment (ZnO particles seeding) and chemical bath deposition process (ZnO 

nanowires growth)[27]. For the preparation of ZnO seed layer, various methods have been employed 

including dipping[70], sputtering[71], sol-gel[72] , and atomic layer deposition (ALD)[30]. 

Y. Lin[7] firstly synthesized the vertical ZnO nanowires on carbon fiber using dipping as 

first step in two-step hydrothermal method. He proved that great improvement of interfacial shear 

strength was obtained by introducing ZnO nanowires to the interphase between carbon fiber and 

polymer matrix. The tensile strength of carbon fiber preserved without degradation due to the low 

temperature of aqueous solution. U. Galan[73] continued Lin’s work by varying the growth 

parameters of second step of hydrothermal method to fabricate different morphologies (length and 

diameter) of ZnO nanowires. He demonstrated that the enhancement of interfacial shear strength 

can be tailored by precise morphology control. The introduced interphase of ZnO nanowires would 

provide the multi-functional composites with optimal performance. The work of them offered a 

novel approach to make high performance composites by growing ZnO nanowires compared to 

conventional whiskerization method including carbon nanotubes and silicon carbide (SiC) 
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nanowires which would cause the degradation of carbon fiber and lower down the in-plane 

performance of composites. 

However, dipping has some disadvantages such as uneasy controlling process, difficult 

deposition on some substrates and non-uniformity of seed layers. It was reported that grain size 

and quality of seed layers greatly affected the growth morphologies of ZnO nanowires, so a method 

can produce high quality with small grain size is demanded. ALD is one of the best thin film 

deposition method that has numerous advantages of good uniformity and conformality, atomic-

scale thickness controllability, perfect stoichiometric uniformity and low impurity contamination 

at lower growth temperatures from 400 °C down to as low as 50 °C[74]. The high uniformity of 

ZnO seed layers with small grain size by ALD will lead to a favorable vertical orientation and 

small diameter nanowires[75]. The lower temperature of ALD will have a similar result like dipping 

that will preserve the tensile strength of carbon fiber and keep the in-plane properties of composites 

but obtain higher quality of ZnO seed layers. To investigate the parameters of ALD process will 

also benefit the tailored properties of ZnO nanowires for high performance composites.  

By now the influence of parameters of second step of hydrothermal method on synthesizing 

ZnO nanowires on carbon fabric using ALD to grow the seed layer has been explored[76, 77], but 

the effect of ZnO nanoparticles grown by ALD as seed layers to fabricate ZnO nanowires on 

carbon fabric has not been studied yet. In this work, ALD was used to fabricate high quality ZnO 

nanoparticles as seed layer on carbon fabric. Temperature and growth cycles of ALD process were 

varied to investigate their influence on ZnO nanowires by hydrothermal method whose growth 

parameters keep unchanged. ZnO nanowires were characterized by field emission scanning 

electron microscope (FESEM), energy-dispersive x-ray spectroscopy (EDX), X-ray diffraction 

(XRD) and thermogravimetric analysis (TGA) to study their morphologies, element composition, 
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crystal orientation and weight ratio of ZnO on carbon fabric. The study shows that temperature 

from 100 °C to 300 °C has a significant effect on the morphologies and densities of ZnO nanowires, 

and more growth cycles will result in larger diameter of ZnO nanowires. 

3.2 Experiments 

3.2.1 ZnO seed layer by ALD 

ALD is a self-limiting chemical reaction process in cycles that deposit materials in an 

equilibrium state between adsorption and desorption of precursors. A typical cycle was repeated 

until growth completed with following steps: self-limiting reaction of precursor A, purge to clean 

up the residual precursor and product, self-limiting reaction of precursor B, purge to clean up the 

residual precursor and product. With the growth process continuing, one layer of Zn atoms and 

one layer of O atom will form ZnO nanoparticles on the substrate. The self-limiting reaction makes 

ALD process precisely control the growth in nanoscale and easy to deposit on most substrates. 

Diethylzinc (DEZn, Zn(C2H5)2) and deionized water (DI water) were purchased from 

Sigma–Aldrich and used as precursors to synthesize ZnO nanoparticles as seed layers for the next 

step hydrothermal growth. The deposition of ZnO seed layers was carried out on a customized 3” 

ALD system. Carbon fabric (25 mm * 25 mm) was prepared as substrate of growth and adhered 

on a piece of glass slide by high temperature Kapton tape. The substrate was not cleaned due to 

the ultimate application in carbon fiber composites which were usually fabricated in a non-

sensitive environment.  

We have conducted an optimal ALD growth of ZnO thin films on Silicon substrate and 

obtained the results that parameters of pulse time of DEZn and water at 0.3s, vapor ratio of DEZn 

and water over 2, temperature at 200 °C, background pressure at 0.5 Torr and growth cycles at 300 
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would produce the best quality of ZnO nanoparticles. Based on these values, we will investigate 

the influence of substrate temperature and growth cycles which play a critical role in producing 

the quality of seed layers in this work. The temperature varied at 100 °C, 150 °C, 200 °C, 250 °C 

and 300 °C with other parameters unchanged, and the growth cycles varied at 100, 200, 300, 400 

and 500 with other parameters unaltered, as shown in Table 3-1. The purge time of ultrahigh purity 

N2 gas after each pulse of precursors was 20 seconds to avoid the potential CVD reaction with 

remained vapors. 

Table 3-1 Growth parameters of ALD growth for ZnO seed layers. 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 
Temperature 

(°C) 
100 150 200 250 300 200 200 200 200 

Growth cycles 300 300 300 300 300 100 200 400 500 
 

3.2.2 Hydrothermal growth of ZnO nanowires 

Zinc nitrate hexahydrate (Zn(NO3)2•6H2O) and Hexamethylenetetramine (HMTA) were 

purchased from Sigma–Aldrich to grow ZnO nanowires using conventional hydrothermal method. 

Both Zn(NO3)2 and HMTA solutions were prepared by dissolving the powers in Di water at a 

concentration of 25mMol/L. They were stirred by magnetic bars separately at 800 rpm and heated 

to 90 °C on hotplates, then mixed together in a large beaker with samples immersed inside. The 

beaker was put in a PolyScience water bath for 17 hours at 95 °C. After completing the growth of 

ZnO nanowires, samples were taken out from the beaker, rinsed by Di water for 1 minute and dried 

on hotplate at 125 °C for 15 minutes. 
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3.2.3 Materials characterization 

High resolution Zeiss Neon EsB FESEM with Oxford EBSD capabilities was used to take 

images of ZnO nanoparticles and nanowires at a working distance of roughly 6 mm at an 

accelerating voltage of 5 kV by in-lens signal and to detect the elements on hybrid carbon fabric. 

XRD analysis was performed on a Rigaku Ultima IV diffractometer with Cu-K-alpha radiation 

(40 kV, 44 mA) via a Bragg-Brentano detector. TGA analysis was performed by TA Instruments 

Q50 with a temperature range from 35 °C to 900 °C at 10 °C/minute.  

3.3 Results and discussion 

The morphologies of ZnO nanoparticles as seed layers via ALD on carbon fabric were 

studied by SEM images as shown in Figure 3-1 (a) to (e) shows the morphologies of ZnO 

nanoparticles in temperature group where growth cycles are 300 but temperature range from 

100 °C to 300 °C. From (a) to (c), the shape of ZnO nanoparticles seems to have a transitional 

growth from small rice-like to large rice-like. When the temperature goes to 250°C, the shape from 

rice-like to stone-like, as demonstrate in (c) and (e). When the temperature continues goes up to 

300 °C, the size of stone-like ZnO particles decreases. For the growth cycles group from (f) to (j), 

a continuous grain size growing up was noticed. From (f) to (h), it can be seen ZnO nanoparticles 

transformed from stone-like to rice-like when the growth cycles increased from 100 to 300. The 

rice-like ZnO nanoparticles expanded its shape in plane and the density decreased quickly in (i) 

and (j). The orientation of rice-like ZnO nanoparticles is random with a length from 15 nm to 30 

nm and width from 7 nm to 15 nm at the temperature of 200 °C for 300 growth cycles. 
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Figure 3-1 SEM images of ZnO nanoparticles: (a) 100 °C@300 cycles, (b) 150 °C@300 cycles, (c) 200 °C@300 cycles, (d) 

250 °C@300 cycles, (e) 300 °C@300 cycles, (f) 100 cycles@200 °C, (g) 200 cycles@200 °C, (h) 300 cycles@200 °C, (i) 400 

cycles@200 °C, (j) 500 cycles@200 °C, scale bar is 200nm. 

ZnO nanowires synthesized by different ALD seeded layers of temperature and cycles 

group are shown in Figure 3-2. Very dense and small ZnO nanowires were obtained when the 

temperature was at 100 °C. Corresponding to the shape of ZnO nanoparticles that transited from 

stone-like to rice-like in temperature group from 100 °C to 200 °C, the diameter of ZnO nanowires 

increased and the density decreased. When the temperature went extremely high to 300 °C, the 

quantity of ZnO nanowires was very sparse in (e). For cycles group (f) to (j), there is an increasing 

trend for the size of ZnO nanowires when the growth cycles increase due to the nucleation of ZnO 

grains simultaneously grew larger. When the growth cycles were 100, the quantity of ZnO 

nanowires was also relatively sparse. When the growth cycles went over 400, obvious enlargement 

of ZnO nanowires was observed. 
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Figure 3-2 SEM images of ZnO nanowires: (a) 100 °C@300 cycles, (b) 150 °C@300 cycles, (c) 200 °C@300 cycles, (d) 

250 °C@300 cycles, (e) 300 °C@300 cycles, (f) 100 cycles@200 °C, (g) 200 cycles@200 °C, (h) 300 cycles@200 °C, (i) 400 

cycles@200 °C, (j) 500 cycles@200 °C, scale bar is 200nm. 

The detailed information of diameter and density of ZnO nanowires for temperature and 

cycles group was illustrated in Figure 3-3. The diameter of ZnO nanowires for temperature group 

has a smooth increasing which was 17.839 ± 5.77 nm, 21.896 ± 5.968 nm, 23.862 ± 7.917 nm, 

27.159 ± 7.835 nm and 33.29 ± 11.184 nm in (a). In (b), the density decreased simultaneously with 

the larger ZnO nanowires when the temperature goes from 100 to 200 °C. There is a jump for the 

density at 250 °C, but it sharply lower down when the high temperature at 300 °C which greatly 

reduced the quality of seed layers and finally affected the ZnO nanowires in hydrothermal process. 

For cycles group in (c), the increasing of the diameter of ZnO nanowires is steady when the cycles 

go up from 100 to 300 cycles. A jump in diameter can be seen when cycles go over 400, due to 

the enlargement of ZnO nanoparticles in ALD process. In (d), density of ZnO nanowires grown in 

100 cycles is only 488 per um2 which is less than the quantity in other growth cycles. When the 

surface of carbon fabric has been coated with ZnO nanoparticles at 200 cycles, the density of ZnO 

nanowires reaches the highest, then goes down with the increasing growth cycles which also 

brought larger size of ZnO nanowires. 
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Figure 3-3 Diameter and density of ZnO nanowire: (a) diameter of temperature group, (b) density of temperature group, (3) 

diameter of cycles group, (d) density of cycles group. 

In order to verify the element composition of nanostructures on carbon fabric, EDX 

analysis was carried out. Figure 3-4 manifests the EDX spectrum of ZnO nanowires by different 

ALD parameters of temperature and cycles group. All carbon, oxygen and zinc elements were 

detected for two groups, but the weight ratio and signal intensity for each vary significantly. For 

the temperature group in (a), the lowest weight fractionof carbon at 8.8% with highest weight ratio 

of zinc at 70.4% occurs when the temperature is at 150 °C. In contrast the highest weight ratio of 

carbon at 76.5% and lowest weight ratio of zinc at 16.2% was obtained at the temperature of 300 °C. 

It shows that the extremely high temperature will significantly inhibit the growth of ZnO 

nanowires. For the cycles group in (b), the weight fractionof all elements have a same trend when 

the growth cycles increase. The weight fractionof carbon lower down from 65.6% to 2.2% when 

the growth cycles change from 100 to 500. Oppositely, the weight ratio of oxygen increasing from 

6.3% to 19.6% and zinc increasing from 28.1% to 78.1% is greatly boosted. It proved that the 

longer growth cycles will benefit the deposition of ZnO and lead to more weight of ZnO nanowires. 
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The results of EDX spectrum confirm that the nanostructure grown on carbon fabric is composed 

of ZnO. 

 

Figure 3-4 EDX spectrum of ZnO nanowires on carbon fabric: (a) temperature group, (b) cycles group. 

XRD was used to study the crystal orientation of ZnO nanowires, as shown in Figure 3-5. 

Samples were scanned with angles from 10° and 80° at a speed of 2°/minute for a scanning step 

of 0.02°. For temperature group in (a), all common crystals of (100), (002), (101), (102), (110), 

(103) and (112) are detected except when the temperature is 300 °C. Planes of (100), (002), (101) 

dominate the peaks of ZnO crystals. When the temperature goes from 100 °C to 200 °C, the 

intensity of (100), (002), (101) becomes stronger compared to the peak of carbon. After the 

temperature goes over 200 °C, the intensity of these goes weaker, and (002) goes weaker compared 
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to the other two. As the (002) plane is the preferred growth orientation of ZnO nanowires along 

the c-axis direction, this explained why the alignment of ZnO nanowires is not vertical in previous 

SEM images. When the temperature goes to 300 °C, only the dominated three planes of (100), 

(002), (101) can be detected, and the others are almost gone. It can be conlcuded that high 

temperature will play a negative role in fabricating ZnO nanowires. 

 

Figure 3-5 XRD diffraction of ZnO nanowires: (a) temperature group, (b) cycles group. 

For cycles group in (b), the intensity of all planess increases simultaneously with the 

increasing of growth cycles. Intensity of plane (002) becomes weaker compared to intensity of 

other planes which matches the worse alignment of ZnO nanowires in previous SEM images when 

the growth cycles increase. When the cycles are 100, the peak of this growth has a similar situation 

of samples in temperature group for 300 cycles at 300 °C, that intensity of all peaks is very weak 
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and hard to detect. This result gave the reason why the densities of ZnO nanowires in these both 

growths are very sparse. 

 

Figure 3-6 TGA of bare carbon fabric and carbon fabric with ZnO nanowires: (a) temperature group, (b) partial enlargement of 

(temperature group), (c) cycles group, (d) partial enlargement of cycles group. 

TGA analysis was performed on temperature and cycles groups of ZnO nanowires growth 

to investigate how much weight is added to carbon fabric by ZnO, as shown in Figure 3-6. If the 

weight of ZnO is too much, it will limit the application of ZnO nanowires in carbon fiber 

composites as light weight composites are always desired. Air was chosen to be the gas for TGA 

test as the carbon fiber can be burned off in air environment before the temperature goes up to 

1000°C, while the deposition temperature of ZnO is near 2000°C which is far higher than the 

decomposition temperature of carbon fiber. 

No weight loss is found before the temperature goes to 300 °C as the carbon fabric was 

preserved well with no moisture inside. When the temperature was between 300 °C to 550 °C, 

there is about 1% weight loss which cannot be discerned in graph and is believed to be the sizing 
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that was burned off during this time. When the temperature reaches to 600 °C, the carbon fiber 

begins to burn, and finally burned off at round 850 °C, and white ZnO powder was left in burning 

basket. 

For the temperature group in (a) and (b), the left weight ratio of ZnO nanowires increases 

from 4.77% to 6.95% when the temperature increase from 100 °C to 200 °C. After over 200 °C, 

the value drops to 3.2% at 300 °C. The weight ratio of samples at 200 °C is the highest. For the 

cycles group in (c) and (d), it is a linear trend for the weight ratio of ZnO when the growth cycles 

increase. 100 cycles have lowest with 3.77% and 500 cycles have highest with 10.31%. The TGA 

results give the quantitative value of weight ratio of ZnO on carbon fabric and confirm that the 

introducing of ZnO nanowires will not add too much weight on carbon fabric. As the highest 

weight fractionof ZnO in both groups is only 10.31%, ZnO will be much less when this hybrid 

carbon fabric is manufactured into composites. Considering the enhanced mechanical properties 

and other potential multi-functional properties by ZnO nanowires, growing the ZnO nanowire on 

carbon fabric is promising and significant.  

3.4 Conclusion 

In this study, we have systematically investigated the effect of ZnO nanoparticles seeded 

by ALD on the growth of ZnO nanowires on carbon fabric. The temperature and growth of cycles 

in ALD process were varied to fabricate ZnO nanowires in different morphologies. The 

morphologies were characterized by SEM images and studied by their diameters and densities. 

EDX, XRD and TGA analysis were used to investigate the element composition, crystal 

orientation and weight fraction of ZnO nanowires. It was found that extreme high temperature at 

300 °C or lower growth cycles for 100 would inhibit the growth of ZnO nanowires. The added 

weight of ZnO nanowires carbon fabric was acceptable and made this application very promising. 
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By tailoring the morphologies of ZnO nanowires via ALD, it will give us the guide to obtain 

desired product which benefits its application in composites. 
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Chapter 4 Synthesis and Characterization of Self-Assembled ZnO 

Nanoarrays On Hybrid Structural Fibers 

4.1 Introduction 

Recently light-weight structural composite materials have attracted significant attention 

due to their high strength-to-weight ratio, corrosion resistance, and design flexibility[78]. 

Integrating nanomaterials and nanostructures within conventional fiber reinforced composites 

provides a promising approach to improve composite properties. Carbon felt and carbon nanotubes 

have been synthesized on continuous structural fiber fabric[79, 80]. Vertically aligned zinc oxide 

(ZnO) nanowires have been synthesized on natural fibers, such as cotton fibers[81-83] and jute 

fibers[84], and synthetic fibers, such as poly(acrylonitrile) fibers[85] and polyester fibers[86]. In 

particular, structural fibers, including carbon fibers[73, 87, 88] and aramid fibers[89-91] with vertically 

aligned nanowires, can result in advanced composite materials with enhanced mechanical 

properties due to the increased interfacial area between fiber and polymer matrix. Additionally, 

the piezoelectric properties of ZnO nanowires can also lead to load sensing functions for in-situ 

structural health monitoring and prognostics in complex composite structures[92-98]. 

Most current approaches to growing ZnO nanoarrays on carbon fiber fabrics are based on 

the dip-coating method that can only attach ZnO seeds to substrates by weak van der Waals forces 

in a wet chemical environment[79-86]. In addition, considering the strong hydrophobic properties 

and the cylindrical shape of the carbon fibers, it is challenging to deposit ZnO seeds in a good 

uniformity, conformity, and controlled crystal orientation using the dip-coating method. 

Recently, an emerging technique called atomic layer deposition (ALD) has become popular 

because it offers advantages, such as high degree of conformity, atomic-scale thickness 
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controllability, perfect stoichiometric uniformity, low impurity contamination, and low growth 

temperature[99-101]. Therefore, in order to avoid the issues associated with the dip-coating method, 

in this chapter the ALD method was adopted to produce uniform and high-quality ZnO seed layers 

on carbon fiber fabrics. Then, we focused on studying the hydrothermally synthesized, vertically 

aligned ZnO nanoarrays on carbon fiber fabrics. Various hydrothermal growth parameters were 

investigated, including reaction temperature and concentration of chemical reagents, and the 

properties of ZnO nanoarrays coated carbon fiber fabrics were characterized using field emission 

scanning electron microscope (FESEM), thermogravimetric analysis (TGA) and energy-dispersive 

x-ray spectroscopy (EDX). We believe that the developed carbon fiber fabrics with ZnO nanoarray 

coatings will lead to the development of advanced composite materials with enhanced mechanical 

properties and potential load sensing capabilities. 

4.2 Experiments 

4.2.1 Materials 

Unless otherwise stated, all the following listed materials and reagents were used as 

received. Plain weave carbon fiber fabrics were purchased from Fibre Glast. Diethylzinc and 

deionized water were purchased from Sigma–Aldrich and used for the ZnO seeding via ALD. 

Trichloroethylene (TCE, 99%), zinc nitrate hexahydrate (Zn(NO3)2, 99%) and 

hexamethylenetetramine (HMT, 99%) were purchased from Sigma–Aldrich and used in the 

hydrothermal synthesis of ZnO nanoarrays on carbon fiber fabrics. 

4.2.2 Synthesis of ZnO nanoarrays on carbon fiber fabrics 

A two-step synthesis approach was developed to grow vertically aligned ZnO nanowires 

on carbon fiber fabrics. First, the ALD method was used to deposit the ZnO seed layer on carbon 

fiber fabrics. Then, a low temperature hydrothermal method was employed as the second step to 
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synthesize ZnO nanoarrays in the forms of nanowires and nanorods. To obtain an optimal ALD 

procedure, the seed layer was first grown on a silicon substrate, and characterized using atomic 

force microscope (AFM), x-ray diffraction (XRD), and FESEM. The detailed synthesis procedure 

has been reported in our previous publication[74]. The identified nucleation procedure was 

employed to deposit the ZnO seeds on carbon fiber fabrics, followed by FESEM characterization 

of the seed morphology. 

Table 4-1 Experimental procedures used in hydrothermal syntheses of ZnO nanoforest on carbon fiber fabrics. 

Sample name ZnO concentration 
(mMol/L) 

HMT concentration 
(mMol/L) 

Growth temperature 
(°C) 

A1 25 25 70 
A2 50 50 70 
A3 100 100 70 
B1 25 25 80 
B2 50 20 80 
B3 100 100 80 

 

In the second step, carbon fiber fabrics were degreased by dipping them into TCE and 

methanol solvents, respectively, for 10 min under ultrasonic agitation, then washed under running 

deionized water for 10 min, and finally dried in an environmental oven. Zn(NO3)2 and HMT 

aqueous solutions were prepared. Each was stirred at 600 rpm for 10 min at 55 °C, then mixed 

together and stirred at 600 rpm for 10 min at 55 °C. The solution was stored in a water bath at 

90 °C for 1 h to consume impurities. Finally, the carbon fiber fabrics were submerged into the 

prepared solution to hydrothermally synthesize ZnO nanoarrays. Detailed solution concentrations 

and hydrothermal growth temperature are listed in Table 4-1. The morphology of ZnO nanoarrays 

was studied using FESEM to characterize the average diameters and length to diameter ratio of 

ZnO nanoarrays. The elemental composition of the carbon fibers before and after ZnO nanoarrays 

coating were studied by EDX, the ZnO crystal orientation on the synthesized ZnO nanoarrays were 
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tested by XRD, and the decomposition property and weight ratio of the ZnO on carbon fibers were 

then characterized using TGA. 

4.3 Results and discussion 

The identification of the optimal ALD procedure to deposit a thin layer of ZnO seeds on 

the substrate is a critical aspect of this work. ZnO seeds were uniformly deposited on the silicon 

substrate, as shown in the FESEM (Figure 4-1(a)) and AFM (Figure 4-1 (b)) images. The same 

experimental procedure was adopted to deposit ZnO seed layer on carbon fiber fabrics. The 

FESEM image of the uniformly deposited ZnO seeds on a single carbon fiber was shown in Figure 

4-1 (c). XRD tests were used to validate the crystal structures of the ZnO seeds and synthesized 

ZnO nanowires. Both the ZnO seeds grown on Si wafer (Figure 4-1 (d)) and carbon fibers (Figure 

4-1 (e)) were tested first. When ZnO seeds were deposited on a flat Si wafer, the ZnO diffraction 

peaks in the XRD pattern proved the poly-crystalline nature of the thin film. Meanwhile, 

contrasting with the two weak (100) and (110) peaks, the dominant (002) diffraction peak indicated 

that the thin film was primarily grown in the c-axis orientation. Such optimized material quality 

will ensure high quality ZnO nanoarray growth in the hydrothermal growth process. When ZnO 

seeds were coated on carbon fiber, more diffraction peaks were detected in XRD. The (002) 

diffraction peak was still clear, however, the (100) and (101) diffraction peaks were also observed 

mainly due to the curved carbon fiber surface. The same XRD pattern was observed in ZnO 

nanowires compared to ZnO seeds on carbon fiber fabrics. During the hydrothermal treatment, all 

the ZnO diffraction peaks were enhanced, as shown in Figure 4-1 (f). 
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Figure 4-1 (a) FESEM image of ZnO seeds on a silicon substrate; (b) AFM image of ZnO seeds on a silicon substrate; (c) FESEM 

image of ZnO seeds on carbon fiber fabrics; (d) XRD pattern of ZnO nucleation on the silicon substrate; (e) XRD pattern of ZnO 

nucleation on carbon fiber fabrics; (f) XRD pattern of ZnO nanowires on carbon fiber fabrics. 

The morphology of ZnO nanoarrays on carbon fiber fabrics was studied using FESEM, as 

shown in Figure 4-2. Six sets of ZnO nanoarrays were synthesized, varying the hydrothermal 

reaction temperature and reagents’ concentrations. The hydrothermal synthesis time used was 17 

h for all the experiments. It should be noted that the Zn(NO3)2 and HMT concentrations had a 

significant effect on ZnO morphology. As shown in Figure 4-2 (a) and (b), ZnO nanowires were 

obtained when 25 mMol/L of Zn(NO3)2 and HMT were used during the hydrothermal treatment. 

ZnO nanowires with similar morphology were obtained when the hydrothermal reaction 

temperature was reduced to 70 °C. However, the average diameter of ZnO nanoarrays significantly 

increased when 50 mMol/L of Zn(NO3)2 and HMT were used during the hydrothermal treatment. 

As shown in Figure 4-2 (d) and (e), ZnO nanorods were synthesized on carbon fibers. Similar ZnO 

nanorods were obtained when the hydrothermal reaction temperature was reduced to 70 °C, though 
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both the average diameter and length of ZnO nanorods were slightly reduced. The vertical 

alignment of ZnO nanoarrays were visualized from the side view, as shown in Figure 4-1 (c) and 

(f). Good ZnO alignment of both ZnO nanowires and nanorods were obtained from samples B1 

and B2. 

 

Figure 4-2 (a)–(c) FESEM images of sample B1 showing the vertically aligned ZnO nanowires on carbon fibers; (c)–(f) FESEM 

images of sample B2 showing the vertically aligned ZnO nanorods on carbon fibers. 

When Zn(NO3)2 and HMT concentrations increased to 100 mMol/L, the diameter of ZnO 

nanorods increased and the ZnO nanorods were grown at an increased density. As shown in Figure 

4-3, nanorods covered entire carbon fiber. Similar results were obtained from sample B3 when the 

hydrothermal temperature increased to 80 °C. Since this type of ZnO nanoarray coatings on carbon 

fibers did not significantly increase the surface area to volume ratio of carbon fibers, we did not 

consider those samples for interfacial strength enhancement in carbon fiber fabrics and composites. 
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Figure 4-3 FESEM images of sample A3 showing a top view of the fully grown ZnO nanorods covering the entire carbon fiber. 

The average diameters and the length to diameter ratio of ZnO are two critical parameters 

indicating potential mechanical property enhancement capabilities due to increased surface area 

on carbon fibers. As shown in Figure 4-4, the averaged diameters of ZnO nanoarrays increased 

from 28 nm (sample A1) to 189 nm(sample B3), and the length to diameter ratio decreased from 

270 (sample A1) to 44 (sample B3), when Zn(NO3)2 and HMT concentrations increased from 25 

mMol/L to 100 mMol/L. The variation of ZnO diameter and length to diameter ratio proved that 

the solution concentration used in hydrothermal synthesis of ZnO nanoarrays on carbon fibers was 

the dominant effect on the ZnO morphology. 

 

Figure 4-4 (a) Average diameters of ZnO nanoarrays with different concentrations of hydrothermal solutions; (b) average length 

to diameter ratio of ZnO nanoarrays with different concentrations of hydrothermal solutions. 
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The EDX pattern (Figure 4-5(b)) shows the elemental analysis on the ZnO nanoarrays 

coated carbon fiber fabrics. When carbon fibers with ZnO nanoarrays were tested using EDX, only 

zinc and oxygen elements were detected on the top surface, indicating the high density of ZnO 

nanoarrays. Although there were gaps among ZnO nanoarrays, the high length to diameter ratio of 

nanoarrays created full coverage of the carbon fiber surface. For comparison, when pristine carbon 

fibers were studied via EDX (Figure 4-5(d)), only carbon was detected. 

 

Figure 4-5 (a) FESEM image on carbon fiber with ZnO nanowires; (b) EDX graph measured from the highlighted area in (a); (c) 

FESEM image on bare carbon fiber; (d) EDX graph measured from the highlighted area in (c). 
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The weight ratios of ZnO nanoarrays on carbon fibers were investigated using TGA tests 

and are shown in figure 6. All the experiments were conducted by increasing the temperature by 

5 °C/min. The weight of all samples began decreasing around 600 °C. ZnO modified carbon fibers 

reached full decomposition at 780 °C, and bare carbon fibers were fully decomposed at about 

876 °C. Of the carbon fibers coated with ZnO nanoarrays, there was about 11 wt% left after the 

TGA tests. Since only carbon was burned off during all the TGA tests, the residual weight was 

considered to be only ZnO, indicating about an 11 wt% weight increase after ZnO nanoarrays 

synthesis on carbon fibers. In addition, the decomposition speed of bare carbon fibers was slower 

than the modified carbon fibers with ZnO nanowires. This is because the increased surface area to 

volume ratio on the modified carbon fibers increased heat transfer efficiency. Therefore, ZnO 

modified carbon fibers were burned off faster than their unmodified counterparts. 

 

Figure 4-6 TGA graphs of carbon fiber, and carbon fiber coated with ZnO nanoarrays. 

4.4 Conclusion 

 This chapter presents a two-step approach of vertically aligned ZnO nanoarrays synthesis 

on carbon fiber fabrics using the combined ALD and hydrothermal methods. The optimal ALD 

parameters and ZnO seeding procedure were identified using silicon substrates and adopted to 
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grow the ZnO seeds on carbon fiber fabrics. The hydrothermal method was used to synthesize ZnO 

nanoarrays. By adjusting the hydrothermal solution concentration and temperature, the average 

diameters of ZnO nanowires and nanorods can be controlled between 28 nm and 189 nm, and the 

length to diameter ratio of nanowires and nanorods can be controlled between 270 and 44. All ZnO 

modified carbon fibers were characterized using FESEM, EDX, and TGA. Due to the dramatic 

increase of surface area on the modified carbon fiber fabrics, these materials can be used to develop 

novel structural composites with enhanced mechanical properties. Load sensing capabilities can 

also be obtained due to the piezoelectric properties of the ZnO nanoarray. 
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Chapter 5 Synthesis and Characterization of Self-Assembled ZnO 

Nanoarrays On Hybrid Structural Fibers 

5.1 Introduction 

Advanced fiber reinforced composites have been used extensively in high-performance 

structural applications[102-106]. Due to weak adhesive bonding in composites, barely visible damage, 

such as delamination and fiber pull-out, can significantly weaken the mechanical strength of 

composites and even cause catastrophic structural failures[107, 108]. Hybrid fibers with 

nanostructured surfaces using carbon nanotubes (CNT) and zinc oxide (ZnO) nanowires have been 

developed to enhance interfacial mechanical properties[7, 109-111]. Due to their superior mechanical 

and thermal properties, well-aligned CNT nanoforests have been synthesized mainly using 

chemical vapor deposition (CVD) method to enhance the bonding strength and interfacial 

properties in fiber reinforced composite laminates[112]. However, the high CVD temperature can 

degrade the mechanical strength of carbon fiber fabrics in composite laminates. Due to the 

increased surface area to volume ratio, structural fiber fabrics coated with ZnO nanowires are 

expected to increase the bonding between the fiber and polymer matrix in composites. The low 

hydrothermal temperature of ZnO nanowires allows direct growth of ZnO nanostructures on 

structural fibers and used for structural composite applications. In addition, as a type of 

piezoelectric materials, ZnO nanowires can respond to applied external loads on composites, 

leading to novel functional composites with load sensing functions[113]. 

In recent years, increasing attention has been drawn to the advancement of synthesis 

technology for the growth of aligned ZnO nanoarrays in the shape of nanowires[114, 115], 

nanorods[116, 117], nanorings[100], nanosprings[118], and other nanostructures[119, 120] on various types 
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of substrates using chemical vapor deposition[121], physical vapor deposition[122], and 

hydrothermal[123] methods. However, most aligned ZnO nanowires on continuous structural fibers 

have been synthesized using a two-step method: first, the dip-coating method to generate ZnO 

seeds on fiber surfaces, and then the hydrothermal method for nanowire growth[29, 73]. Since the 

dip-coating method can hardly control the size and shape of ZnO seeds, low seeding quality affects 

the alignment and property of hybrid fibers with ZnO nanoarrays.  

Atomic layer deposition (ALD) has been well accepted as a micro-manufacturing 

technology to grow thin films[55]. Since ALD is able to meet the needs for atomic layer control and 

conformal deposition using sequential and self-limiting surface reactions, this approach is 

considered to be one of the best methods to achieve high conformality, in particular, on high aspect 

structures. Binary metal oxides, including Al2O3[124], TiO2[125], ZnO[126], and metal thin films, such 

as Cu[127], can be deposited on various substrates. Besides conformality, low deposition 

temperature is another key advantage of ALD, allowing the process of temperature sensitive 

materials and substrates. The employment of ALD method to grow ZnO seed layer on carbon fiber 

fabrics has the potential to accurately control ZnO nanoparticle size with improved uniformity. 

Since the mechanical properties of carbon fiber fabrics can be significantly degraded at high 

temperature, low deposition temperature of ALD allows to coat conformal ZnO thin films as seed 

layer on carbon fiber fabrics without degrading the fiber’s strength. Our recent study has 

demonstrated the capability to grow ZnO seed layer on carbon fiber fabrics using ALD method[74, 

77]. This chapter focuses on the impacts of the reagent concentrations and hydrothermal reaction 

time on ZnO nanoarray morphology.  

In this chapter, we report an integrated approach for the morphological control of ZnO 

nanowire arrays on carbon fiber fabrics, using ALD to deposit ZnO seeds and the low temperature 
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hydrothermal method for nanowire synthesis. The unique combination of ALD and hydrothermal 

methods allowed to generate high ZnO seed layers on carbon fiber and to control ZnO nanoarray 

morphology. The nano structures of synthesized ZnO were tailored by adjusting the hydrothermal 

process time and reagent concentrations. Detailed properties of the fabricated hybrid fibers were 

characterized. 

5.2 Experiments 

5.2.1 Materials  

Diethylzinc and deionized water were purchased from Sigma–Aldrich and used for ZnO 

seeding via ALD. Trichloroethylene (TCE, 99%), zinc nitrate hexahydrate (Zn(NO3)2, 99%) and 

hexamethylenetetramine (HMT, 99%) were purchased from Sigma–Aldrich and used in the 

hydrothermal synthesis of ZnO nanoarrays on carbon fiber fabrics. All the materials were used as 

received.  

5.2.2 Synthesis procedure of hybrid fibers 

In this chapter, a two-step hybrid fiber synthesis procedure, combining ALD and 

hydrothermal methods, was developed to synthesize ZnO nanoarrays. High quality ZnO seeds 

were first deposited on carbon fibers via ALD, and then grown into nanoarrays in an aqueous 

solution using the hydrothermal method. The schematic of synthesis procedure is shown in Figure 

5-1. 
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Figure 5-1 Schematic of synthesis procedure of hybrid structural fibers using combined ALD and hydrothermal methods. 

Carbon fiber fabrics were first degreased by dipping them into TCE and methanol, 

respectively, for 10 minutes under ultrasonic agitation, washed under running deionized water for 

10 minutes, and finally dried in an environmental oven. The prepared carbon fiber fabrics were 

used for the ALD and hydrothermal synthesis of ZnO nanoarrays on carbon fiber fabrics.  

To synthesize ZnO nanoarrays on carbon fiber fabrics, a customized thermal ALD system 

was used to deposit ZnO seeds on the cleaned carbon fiber fabrics. In the reaction process, a 

double-exchange chemical vapor reaction was adopted between DI water and DEZn precursors. 

The dose time was controlled via computer driven pneumatic valves, and N2 gas was used to carry 

these vaporized sources to the reaction chamber. The H2O and DEZn were alternately distributed, 

and a 10 second ultra-high purity N2 purge period was carried out after each dosing process. It 

should be noted that this period was enough to ensure the pressure returned to its base level before 

the next pulse. 

In the second step, Zn(NO3)2 and HMT aqueous solutions were prepared for the 

hydrothermal process. Each was stirred at 600 rpm for 10 minutes at 55 °C, then mixed together 

and stirred at 600 rpm for 10 minutes at 55 °C. The solution was stored in a water bath at 90 °C 
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for 1 hour to consume impurities. Finally, the carbon fiber fabrics were submerged into the 

prepared solution to hydrothermally synthesize ZnO nanoarrays. The morphologies of synthesized 

nanoarrays were controlled by adjusting the hydrothermal reaction time from 5 h to 30 hours and 

reagent concentration from 25 mMol/L to 100 mMol/L. The ZnO nanoarrays were naturally 

aligned due to the self-assembly nature of ZnO nanoarrays. 

5.2.3 Property characterization 

The investigation of the ZnO nanoarray morphology was carried out using a field emission 

scanning electron microscope (FESEM) at a voltage of 20 kV. The diameters of the ZnO nanowires 

were measured using the commercial software ImageJ on the FESEM images, and statistical 

analyses were employed to study the diameter distribution of the ZnO nanoarrays. The weight 

concentration of ZnO in hybrid fiber was tested using the thermogravimetric analysis (TGA). The 

element analysis of hybrid fibers was conducted using energy-dispersive X-ray (EDX) 

spectroscopy. Powder X-ray diffraction (XRD) measurements were carried out using a Rigaku 

Ultima IV diffractometer. Cu-K-alpha radiation (40 kV, 44 mA) was used via a Bragg-Brentano 

detector. The hydrophobic and hydrophilic surface properties of the synthesized hybrid fibers were 

characterized by measuring the contact angles of water and ZnO nanoarrays. ZnO nanoarray 

coated carbon fiber fabrics was attached on a glass substrate and place on a flat stage in front of a 

camera. Water droplet was pushed out from a syringe by a motor-driven lead screw mechanism. 

Only one water droplet was placed on top of the ZnO nanoarray during the tests. The contact angle 

was measured using commercial software ImageJ from the recorded pictures. 

5.3 Results and discussion 

In this chapter, the morphology and microstructure of ZnO nanoarrays were controlled by 

tailoring the reagent concentrations and reaction time of the hydrothermal process, and were 
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studied via FESEM. Four types of ZnO nanoarray morphology were obtained: fine nanowires 

(Figure 5-2 a & b), fuzzy nanowires (Figure 5-2 c & d), fine nanorods (Figure 5-2 e & f), and 

compact nanorods (Figure 5-2 g & h). Both the fine nanowires and fine nanorods showed a one-

dimensional (1D) microstructure of the synthesized nanoarray, with the ZnO nanowires aligned 

on carbon fiber fabrics. However, the fuzzy nanowires were not well-aligned due to the lack of 

guidance during the hydrothermal process. The ZnO compact nanorods covered the entire carbon 

fiber surface when the reagent concentration was 200 mMol/L or higher during the hydrothermal 

process. The detailed reagent concentrations, hydrothermal growth time, and obtained morphology 

are listed in Table 5-1. The diameter distributions of the ZnO nanoarrays obtained from the 

corresponding FESEM images are shown in Figure 5-3. The average diameters of the ZnO 

nanoarrays can be controlled at different reagent concentrations. When the reagent concentration 

increased from 25 to 100 mMol/L, the average diameters of the ZnO nanoarrays increased from 

29nm to 65nm, correspondingly. Similar trends were obtained when the hydrothermal reaction 

time increased from 5 hours to 30 hours. 

 

Figure 5-2 FESEM images of synthesized hybrid structural fibers: (a & b) FESEM images of ZnO fine nanowires on carbon fibers; 

(c & d) FESEM images of ZnO fuzzy nanowires on carbon fibers; (e & f) FESEM images of ZnO fine nanorods on carbon fibers; 

(g & h) FESEM images of compact nanorods on carbon fibers showing the fully coverage of carbon fiber by ZnO. 
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Table 5-1 Hydrothermal parameters. 

Sample 
Name 

Zn(NO3)2 
(mMol/L) 

HMT  
(mMol/L) 

Growth Time 
 (h) 

Nanoarray 
morphology 

A1 25 25 5 Fine nanowires 
A2 50 50 5 Fine nanowires 
A3 100 100 5 Fine nanorods 
A4 200 200 5 Compact nanorods 
B1 25 25 17 Fine nanowires 
B2 50 50 17 Fuzzy nanowires 
B3 100 100 17 Fine nanorods 
B4 200 200 17 Compact nanorods 
C1 25 25 30 Fine nanowires 
C2 50 50 30 Fuzzy nanowires 
C3 100 100 30 Fine nanorods 
C4 200 200 30 Compact nanorods 

 

 

Figure 5-3 Effect of reagent concentration on diameter distributions of ZnO nanoarrays grown on carbon fiber substrates. Growth 

time: 5 h. 
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Weight concentration of aligned ZnO nanowire arrays on hybrid fiber fabrics is critical for 

light-weight composite applications. TGA tests were conducted to burn off all carbon fiber fabrics, 

and ZnO weight concentrations were calculated using the residual weight of the tested samples. 

As shown in Figure 5-4 (a), carbon fibers on the hybrid fiber samples A1, B1, and C1 all started 

decomposing at around 600 ̊ C. Once all the carbon fibers were burned off, the residual weight 

concentrations of ZnO for samples A1, B1, and C1 were 5.10%, 5.68%, and 7.56%. Since the 

reagent concentration used for these samples was at 25 mMol/L, the TGA results proved that 

longer hydrothermal synthesis time results in higher ZnO concentrations and larger ZnO nanowire 

and nanorod diameters. Similar TGA test results were obtained using other samples. The TGA 

testing results of samples A2, B2, and C2 are shown in Figure 5-4 (b), and the TGA testing results 

of samples A3, B3, and C3 are shown in  Figure 5-4 (c). The TGA results reported in the 

supplement materials demonstrate that longer hydrothermal synthesis time results in higher ZnO 

concentrations and larger ZnO nanowire and nanorods diameters. In addition to the hydrothermal 

treatment time, reagent concentrations also impacted ZnO weight concentrations. When the 

reagent concentration increased from 25 mMol/L to 100 mMol/L, the maximum ZnO weight ratio 

reached 11.72%.  The weight concentration of ZnO of all the tested samples are listed in Table 5-2, 

and summarized TGA in  Figure 5-4 (d). 

Table 5-2 ZnO weight concentrations of hybrid fibers. 

Sample 
Name 

ZnO weight 
concentration 

Sample 
Name 

ZnO weight 
concentration 

Sample 
Name 

ZnO weight 
concentration 

A1 5.10% B1 5.68% C1 7.56% 
A2 5.57% B2 7.24% C2 9.45% 
A3 7.54% B3 10.59% C3 11.72% 
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Figure 5-4 TGA characterization of ZnO weight concentrations in hybrid structural fibers. 

Elemental analysis of the ZnO nanoarray coated carbon fiber fabrics was performed via 

EDX. Zinc, oxygen, and carbon were all detected on samples with ZnO fine nanowires. Only zinc 

and oxygen were detected on samples with fuzzy nanowires and fine nanorods due to the high ZnO 

density on the fibers (Figure 5-5). The crystal structures of ZnO nanoarrays were studied via XRD. 

Figure 5-6 shows that multiple diffraction peaks, including (100), (002), and (101), were recorded 

due to the highly cured fiber surface. Since the same XRD diffraction peaks were obtained from 

all the samples with different morphology, it can be concluded that the variation of reagent 

concentration and hydrothermal process time did not change the crystal structures of synthesized 

ZnO nanoarray coated carbon fiber fabrics.   
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Figure 5-5 EDX spectra of ZnO nanowires on carbon fibers. 

 

Figure 5-6 XRD diffraction of ZnO nanoarrays with different morphology. 

The contact angles of water on the grown ZnO nanostructures have been measured from 

the synthesized hybrid fiber fabrics with four different types of ZnO morphologies. As shown in 

Figure 5-7, the contact angles of water on ZnO fine nanowires, fuzzy nanowires, fine nanorods, 

and compact nanorods were 155.7°, 144.9°, 139.0°, and 77.8°, respectively. Compared to ZnO 
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morphology in Figure 5-2 and the average ZnO diameters shown in Figure 5-3, it is obvious that 

the nanostructures of fine ZnO nanowires with good alignment and small average diameter could 

provide air/solid binary collaboration effect on the fabric surface, which increased the water 

repellence property of the fabrics. However, the hydrophobic properties were weakened when the 

average diameter increased and ZnO morphology converted to fuzzy nanowires and nanorods. 

When ZnO completely covered the entire carbon fiber and showed morphology of compact 

nanorods, the contact angle reduced to 77.8°, demonstrating the hydrophilic surface property of 

the hybrid fabrics. 

  

Figure 5-7 Contact angles of four types of synthesized hybrid structural fiber fabrics. 

5.4 Conclusion 

ZnO nanoarrays with controllable morphology were synthesized and characterized in this 

chapter. A two-step approach combining ALD and hydrothermal methods was developed to 

synthesize ZnO nanoarrays. Characterization methods, including FESEM, TGA, EDX, and XRD, 

were employed to study the morphology and crystal structures of ZnO. Four types of ZnO surface 

morphology were grown on carbon fiber fabrics: fine nanowires, fuzzy nanowire, fine nanorods, 
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and compact nanorods. Experimental results demonstrated that the same ZnO crystal structure was 

obtained regardless of the reagent concentrations and hydrothermal process time. The contact 

angles of the synthesized hybrid fibers were controlled by the average ZnO diameter and 

morphology. The developed hybrid fibers can be used to develop light-weight structural 

composites with enhanced interfacial properties. 
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Chapter 6 Enhancement of Interfacial Shear Strength in Carbon Fiber 

Reinforced Composite Laminates 

6.1 Introduction 

Advances in reinforcements fibers and polymers have led to the development of high-

performance structural composites[104]. Multiple types of fibers have been applied as reinforcing 

materials, such as carbon fiber, glass fiber, and aramid fiber. Because the mechanical properties of 

composites depend not only on the constituent materials but also on the interfacial properties 

between fiber and polymer matrix, the research of fiber/matrix interface and load transfer 

mechanism have received considerable attentions. For carbon fiber reinforced polymer matrix 

composites, multiple surface treatment methods have been investigated to improve the bonding at 

the fiber/matrix interface. In general, the interfacial properties of composites are improved 

following three strategies: 1) enhancing the chemical interactions at the fiber/matrix interface; 2) 

increasing the fiber surface area for load transfer; 3) integration of both chemical interactions and 

increased surface area of fiber. For example, chemical oxidation can remove weak outer layers of 

fibers and add functional groups to generate strong chemical bonds between fiber and matrix using 

chemical interactions[128, 129]. Nonoxidative treatment methods, such as grafting, involve the 

deposition of materials on fibers, resulting in a thin layer of coating on fibers to improve the load 

transfer capability[130]. In addition, high energy irradiation method has been used to cure polymer 

matrix in composites, creating both oxygen functional groups on carbon fibers and tailoring 

surface roughness for increased contact area between fiber and matrix[131]. However, the surface 

oxidation, plasma treatment, and other chemical processing of carbon fibers can influence the 

graphite structures of carbon fibers and weaken the overall composite properties. 
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Recently, whiskerization has been a popular approach to grow high strength of 

nanostructures on structural fibers[132]. Various nanoparticles including aligned carbon nanotubes 

(CNTs), silicon carbide (SiC) nanowires, zinc oxide (ZnO) nanowires have been synthesized on 

carbon fibers as an interphase for the enhancement of interfacial properties[133-135]. The 

employment of CNTs and SiC nanowires on continuous structural fibers increases their surface 

area that can lead to improved mechanical interlocking and load transfer capabilities between fiber 

and matrix in composites. However, these approaches are challenged by the potential degradation 

of carbon fibers caused by the harsh nanoparticle synthesis procedures. The syntheses of CNTs 

and SiC nanowires using chemical vapor deposition (CVD) process are usually carried out at least 

900 °C, which cause significant structural degradation of carbon fibers, thus, decreasing in-plane 

properties of composites[136]. In addition, catalyst used during the synthesis of CNTS can 

significantly lower down the tensile strength of carbon fiber[137]. 

To overcome these problems, Lin et al. developed a two-step hydrothermal method at low 

temperature (<90 °C) to vertically grow ZnO nanowires on carbon fiber [29]. He demonstrated that 

the IFSS was improved more than 110% when ZnO nanowires worked as an interphase without 

degradation of tensile strength of carbon fiber. Ehlert et al. investigated that ZnO nanowires 

worked as an interphase to carbon fiber and explained the chemical mechanism of adhesion[135]. 

He used experiment and simulation of molecule dynamics to prove that the ketone groups improve 

the adhesion between ZnO and graphite. Patterson et al. directly measured the adhesive force 

between ZnO nanoparticles and highly oriented pyrolytic graphite (HOPG) using atomic force 

microscopy (AFM) to investigate the interaction of ZnO nanowires and validated that ZnO was a 

strong interface[138]. Parisa et al. recently demonstrated a multi-scale analysis using ABAQUS to 

simulate the interaction of ZnO nanowires between carbon fiber and matrix [139]. She confirmed 
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that the existence of ZnO nanowires will enhance the load transferring between carbon fiber and 

matrix. 

In this two-step hydrothermal method, mechanical properties of carbon fiber preserved due 

to this low temperature aqueous growth compared to the traditional CVD growth of CNTs [29]. The 

first step of seed layer growth of ZnO nanoparticles is the most important to determine the second 

step of ZnO nanowires growth[140]. The non-uniform ZnO seed layer will lead to a large size of 

ZnO nanowires and affect the morphologies of ZnO nanowires.  For the first step, a dipping method 

was used to grow the ZnO nanoparticles which has a limitation of large grain size of ZnO 

nanoparticle and difficult uniformity. Compared to the dipping, atomic layer deposition (ALD) is 

promising for the growing of ZnO nanoparticle due to its excellent uniformity, high degree of 

conformity, atomic-scale thickness controllability, perfect stoichiometric uniformity, low impurity 

contamination, and low growth temperature which can be as low as 100 °C close to the dipping[74, 

141]. ZnO nanowires synthesized on carbon fabric using ALD to grow the ZnO nanoparticles as 

seed layer have been reported in our previous work[76, 77]. 

Several techniques are used to measure the IFSS including fiber push-in test[142], pull-out 

test[143], micro-bond test[144] and single fiber fragmentation test (SFFT)[42]. Among them, SFFT is 

the most popular method as the preparation of specimen and operation of test are simple and the 

fail type can be visualized during process compared to the other three. In this test, a single fiber 

was embedded into the dog-bone shape of polymer matrix along the central axis. The specimens 

are applied with tensile load, and the tensile load forms the matrix which create the shear stress 

along the axial direction of fiber. The shear stress will also result in the normal stress of single 

fiber. Fiber facture occurs when the normal stress reaches to the tensile strength of fiber. The 
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fragmentation of fiber will reach to a saturation when the cracked fiber can no more transfer shear 

load. 

In this chapter, ZnO nanowires grown on carbon fibers were used to develop hybrid 

composites. Individual carbon fibers in the diameter of several micrometers were surrounded by 

ZnO nanowires. Nanoscale ZnO seeds were first deposited on single carbon fiber using ALD 

method, then aligned 1D ZnO nanowires were synthesized using hydrothermal treatment. The 

synthesized ZnO nanowires on carbon fibers were characterized by field emission scanning 

electron microscope (FESEM), energy-dispersive x-ray spectroscopy (EDX), X-ray diffraction 

(XRD) and thermogravimetric analysis (TGA). The influence of this selective, nanoscale 

reinforcement on the mechanical properties of fiber/matrix interfaces was investigated using single 

fiber fragmentation test. The ZnO nanowires with optimal diameter and length to diameter ratio 

resulted in improved fiber/matrix interfacial load transfer capability. The improvements in 

interfacial strength of the ZnO nanowire-reinforced composites can potentially increase shear 

modulus and yield strength of polymer matrix composites.  

6.2 Experiments 

6.2.1 Materials 

All chemicals were used as received. Diethylzinc (DEZn, Zn(C2H5)2) and deionized water 

(DI water) were received from Sigma–Aldrich to grow the ZnO nanoparticles in the first step of 

hydrothermal method. Zinc nitrate hexahydrate (Zn(NO3)2 · 6H2O) and Hexamethylenetetramine 

(HMTA) were purchased from Sigma–Aldrich to synthesize the ZnO nanowires in the second step 

of hydrothermal method. 
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6.2.2 Growth of ZnO nanoparticles 

Single carbon fiber was stripped from carbon fabric, fixed on a Teflon frame by carbon 

tape. A customized 3” ALD system was used to execute the growth of ZnO nanoparticles on single 

carbon fiber at the temperature of 200 °C and background pressure of 0.5 Torr for total 300 growth 

cycles. The vapor ratio of DI water and DEZn was about 2 and ultrahigh purity N2 gas was purged 

after each dose for 20 seconds. These growth parameters were the optimized results reported in 

our previous publication[74].  

6.2.3 Growth of ZnO nanowires 

Zn(NO3)2 and HMTA powder were dissolved in DI water to prepare the growth solutions. 

Each solution was heated to 90 °C and stirred at 800 rpm for 10 minutes on hotplate, then combined 

together in a beaker. The single carbon fiber on Teflon frame was immersed in the beaker covered 

with wrap. The beaker was stored in a water bath at 95 °C for 17 hours. The concentration of 

Zn(NO3)2 and HMTA from 25 mMol/L, 50 mMol/L and 100 mMol/L at a molar ratio of 1:1 were 

prepared to vary the morphologies of ZnO nanowires. 

6.2.4 Characterization 

The FESEM was used to investigate the morphologies of ZnO nanoparticles and nanowires. 

The software ImageJ was used to measure the length and analyze the statistical diameters of ZnO 

nanowires based on the FESEM images. EDX spectroscopy was employed to conduct the 

elemental analysis of hybrid carbon fiber. Rigaku Ultima IV diffractometer was used to carry out 

the XRD measurement of ZnO structure.  

6.2.5 Single fiber tensile test 

Single fiber tensile test was carried out to measure the tensile strength of bare carbon fiber 

and carbon fiber with ZnO nanowires and to identify the effect of ZnO nanowires on carbon fiber. 



63 

It is important to obtain this value to calculate the IFSS of single fiber fragmentation test. The 

major benefit of growing ZnO nanowires on carbon fiber is the preserving of tensile strength of 

carbon fiber with little loosing. The gauge length of single bare carbon fiber and carbon fiber with 

ZnO nanowires is 25.4mm and 15 fibers of each concentration growth were tested by DEBEN 

tensile stage with a 2N load cell applying displacement rate of 0.1 mm/minute.  

6.2.6 Single fiber fragmentation test 

SFFT is an essential technique to determine the interfacial properties between polymer 

matrix and carbon fiber [42]. A dog-bone specimen embedded with single carbon fiber inside is 

prepared to do the tensile test under an optical microscope. Stress is transferred to the fiber in shear 

direction when the specimen is tensile status. Fiber fracture will occur when applied external force 

exceeds its tensile strength. The new segmented fiber can continue to transfer load when the tensile 

force increases. The number of cracked carbon fiber will increase until reaches to a saturation 

which means the existed fiber segment cannot transfer load to generate new fractures of carbon 

fiber. After saturation, the average IFSS can be calculated by following equation (1), 

 τ =
𝛿𝛿𝑓𝑓𝑑𝑑
8
3 𝑙𝑙
̅
 (1) 

where 𝛿𝛿𝑓𝑓 is the tensile strength of single carbon fiber at the critical length, 𝑑𝑑 is the diameter of 

carbon fiber and 𝑙𝑙 ̅is the average length of fragmentation. 

Single carbon fiber was clipped by two small clamps and transferred to the middle of a 

silicone mold (Bluesil V-340/CA-45Mold Making Silicone Rubber) before infiltrating the epoxy. 

Pre-tension was applied to the carbon fiber due to the shrinkage of epoxy during curing. Epon 862 

and Epikure 9553 were used to prepare for the polymer matrix due to its high tensile strain over 

9% which is much larger the tensile strain of carbon fiber and clear transparency after curing which 
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helps the observation of counting crack under optical microscope. They were mixed at a weight 

ratio of 100:16.9, and degassed in a vacuum tank for 3 minutes. The epoxy solution was infiltrated 

to the mold by a syringe to reduce the potential air bubbles before curing. Then the mold was left 

at room temperature for 16 hours and put in oven at 100 °C for 1 hour and 160 °C for 1 hour.  

After curing, all specimens were polished by Struers with following steps. SiC foil 320 

paper put on MD GEKKO was used to remove extra materials and make the specimens be the 

thickness of near 1.1 mm to meet the range of 200N load cell of tensile stage. Then the specimens 

were polished on both sides by MD LARGO with 9 micron diamond spray, MD MOL with 3 micro 

diameter and MD CHEM with silica suspension. Each of these three steps was polished for 3 

minutes at 150 RPM under 30N. Finally, specimens with smooth and transparent surface were 

obtained for later SFFT. 

6.3 Results and discussion 

Multiple parameters including ZnO nanoparticles determined by the temperature, 

background pressure and cycles of ALD process, temperature, growth time and concentration of 

Zinc nitrate hydrate and HMTA have a critical effect on the morphologies of ZnO nanowires. 

Based on our previous report, lower temperature, higher growth time and higher concentration of 

Zinc nitrate hydrate and HMTA will lead to the larger diameter of ZnO nanowires. Undesired ZnO 

nanorods or nanoflakes will occur when the diameter is too large which are too dense and 

impossible for liquid epoxy to infiltrate in. Considering multiple parameters will results in a large 

group of ZnO nanostructures in different morphologies, we keep constant parameters of ALD 

process, and only choose concentration of Zn(NO3)2 and HMTA ranging from 25mMol/L, 50 

mMol/L and 100 mMol/L at 95°C for 17 hours to investigate its effects. 
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The shape of ZnO nanoparticles as seed layer was rice like with random orientation, 

illustrated in Figure 6-1 (a). The length of ZnO nanoparticles ranged from 15 nm to 30 nm, and 

width ranged from 7nm to 15 nm. ZnO nanowires vertically grew on the surface of single carbon 

fiber with relatively uniform length and diameter, but some large nanowires can be also seen in a 

random distribution. When the reagent concentration increases, the morphologies of ZnO 

nanowires change from needle liked tip (Figure 6-1(b)) to hexagonal column (Figure 6-1(d)) and 

the length of ZnO nanowires varied greatly. The length of ZnO nanowires was defined as the half 

value of the diameter of carbon fiber with ZnO nanowires subtracting the diameter of bare carbon 

fiber. The diameter of bare carbon fiber was 6.972 um, so the average length of ZnO nanowires 

under different growth condition was 0.811 um, 1.853 um and 2.490 um, respectively. 

 

Figure 6-1 FESEM images of ZnO nanostructure on single carbon fiber (a) ZnO nanoparticles via ALD, (b) ZnO nanowires via 

25mMol/L, (c) Zn nanowires via 50 mMol/L, (d) ZnO nanowires via 100 mMol/L. 
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Much higher magnification (30 kx to 60 kx) of FESEM images were taken and software 

ImageJ was used to measure the diameter of ZnO nanowires from corresponding images. The 

diameter distributions of ZnO nanowires under different growth conditions are manifested in 

Figure 6-2(a-c). The diameters of ZnO nanowires shift in the trend of increasing of reagent 

concentration, so we know that the average diameter of ZnO nanowires can be controlled by 

reagent concentration. Diameter of each is 24 nm, 58nm and 99 nm when the reagent concentration 

is 25 mMol/L, 50mMol/L and 100 mMol/L. The largest diameter is almost close to 200nm which 

can be also in Figure 6-1(d). The statistical quantity of ZnO nanowires was more than 200 for each 

concentration, and the statistic is closely consistent with normal distribution. The dispersity of 

diameter is believed to relate to the inhomogeneous rice-like ZnO nanoparticles by ALD process. 

Figure 6-2 (d) shows the length to diameter ratio of ZnO nanowires under different concentration. 

The ratio is 33, 31 and 25 when the concentration is 25 mMol/L, 50mMol/L and 100 mMol/L. It 

can be seen that the increased growth concentration will result in smaller length to diameter ratio 

of ZnO nanowires. 

 

Figure 6-2 Diameter distributions of ZnO nanowires under different concentration: (a) 25 mMol/L, (b) 50 mMol/L, (c)100 mMol/L, 

and (d) length to diameter ratio of each concentration. 
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EDX analysis was performed to detect the material composition of ZnO nanowires on 

single carbon fiber. Figure 6-3 (a) illustrates the EDX spectrum of ZnO nanowires on carbon fiber 

under different growth concentrations. It is observed that Zinc and oxygen elements were all 

detected for 3 groups, but carbon was almost missing when the reagent concentration was 100 

mMol/L due to the high volume of ZnO with largest length and diameter on carbon fiber. The peak 

height of zinc increases compared to the peak height of oxygen when the growth concentrations 

increase, so does the relationship between oxygen and carbon. The EDX results confirme that the 

nanowires on carbon fiber is formed by ZnO. 

 

Figure 6-3 In different concentrations: (a)EDX spectrum of ZnO nanowires on single carbon fiber, (b) XRD diffraction of ZnO 

nanowires.  

The crystal structure of ZnO nanowires was investigated by XRD, as indicated in Figure 

6-3 (b). The record range is between 10° and 70° with a speed of 2 degree/minute at a scanning 

step of 0.02°. For the ZnO nanowires grown in concentration of 100 mMol/L, 2𝜃𝜃 value of 31.8°, 

34.48°, 36.3°,47.6°, 56.62°, 62.88°and 67.98° are found for the diffraction peaks which are 

identified for (100), (002), (101), (102), (110), (103) and (112) of the ZnO planes. There is a very 

slight difference of 2𝜃𝜃 peak for each concentration which is difficult to discern in graph. JCPDS 

card number 80-0075 was used to identify all the XRD diffraction patterns of ZnO nanowires 

which show that ZnO nanowires are wurtzite crystal structures. Of all the diffraction patterns, 
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planes of (100), (002), and (101) dominate the main crystal structures. With an increase in reagent 

concentration, the intensities of all ZnO peaks increase compared to the intensity of carbon. Within 

the three dominating peaks, peak (002) improves strongly and the peaks (100) and (101) become 

weaker compared to the peak (002). The intense peak of (002) plane shows that the preferred 

growth orientation of ZnO nanowires is along the c-axis direction. 

 

Figure 6-4 (a) TGA of bare carbon fiber and carbon fiber with ZnO nanowires, (b) Tensile strength of bare carbon fiber and 

carbon fiber with ZnO nanowires. 

In order to identify the weight of the ZnO nanowires on carbon fiber, TGA analysis was 

performed, as the decomposition temperature of ZnO is about 1,974 °C [145] which is much higher 

than the decomposition temperature of carbon fiber that can be mostly burned off in air at the 

temperature less than 1000 °C. The temperature range of TGA test is from 35°C to 900 °C with a 

ramp of 10 °C/minute. As shown in Figure 6-4 (a), the starting decomposition temperature of all 

carbon fiber with ZnO nanowires is about 600 °C which is earlier than bare carbon fiber’s at about 

620°C. After all carbon fiber is burned off, the residual weight fractionof each is 0.92%, 7.01%, 

11.82% and 14.33%, which indicates that the growth of higher reagent concentration results in 

higher weight fractionof ZnO. There is no weight loss before the temperature rose to 300 °C which 
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means no moisture was inside. Less than 1% of weight loss is found when the temperature ranges 

from 300 °C to 550 °C which is believed that the sizing on the carbon fiber was being burned off. 

The tensile strength of single carbon fiber under different concentrations are demonstrated 

in Figure 6-4 (b). The tensile strength of bare carbon fiber and carbon fiber under growth 

concentration of 25mMol/L, 50mMol/L and 100 mMol/L was 3.676 ± 0.286GPa, 3.588 ± 0.343 

GPa, 3.529 ± 0.337 GPa, 3.47 ± 0.362 GPa, respectively. As the highest temperature during the 

ALD processing is only 200 °C, there is no significant degradation of carbon fiber with ZnO 

nanowires under different growth concentrations. The slight decreasing of tensile strength is 

guessed to be caused by the weight of ZnO nanowires. 

 

Figure 6-5 (a) Setting up of single fiber fragmentation test, crack patter of bare carbon fiber and carbon fiber with ZnO nanowires 

under different growth concentration, (b) bare carbon fiber, (c) 25mMol/L, (d) 50 mMol/L, (e) 100 mMol/L. 
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The setting up of SFFT is demonstrated in Figure 6-5 (a). The specimen was fixed on the 

tensile stage with a 200N load cell, and the gauge length of dog-bone specimen was 15mm applied 

with strain rate of 1 mm/minute. The quantity of cracked fiber was counted by the feature of 

birefringence under the optical scope at 10x magnification through polarized light. The quantity 

of fragmentations was recorded after every 0.1 mm displacement was applied until saturation was 

observed for multiple times. In Figure 6-5 (b), (c), (d), (e), debonding of adhesive failure can be 

seen. Under the similar magnification of each, 2 cracks can be seen for bare carbon fiber and more 

cracks for the carbon fiber with ZnO nanowires. 

When the growing concentration increases, the number of cracks increases greatly, detailed 

in Figure 6-6 (a). The crack number of bare carbon fiber in saturation is 21, and highest number 

of fragmentations is 50 that can be seen for the carbon fiber with ZnO nanowires under the growth 

concentration of 100 mMol/L. The cracks of all specimens occur when the strain was at 3.33% 

which is much higher than the general tensile strain (1.7%~2.2%). This is believed that the pre-

tension load during the specimen curing is not enough to keep the fiber aligned and the shrinkage 

of epoxy may affect it. The saturation strain for all specimens is 5.33%. After reaching to the 

saturation, no more cracks of carbon fiber are found when external force was applied to the strain 

of 6.67%.  
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Figure 6-6 (a) number of fragmentations of carbon fiber with and without ZnO nanowires, (b) IFSS of carbon fiber without and 

with ZnO nanowires under different growth concentration. 

By now, increased fragmentations will lead to lower average length of fragmentations 𝑙𝑙 ̅, 

and increased length of ZnO nanowires will result in larger diameter of carbon fiber 𝑑𝑑. The tensile 

stress of carbon fiber changed little, based on the calculation equation of interfacial shear stress 

considering all these factors, so the IFSS is greatly improved, changing from 13.4 ± 1.1 MPa to 

51.8 ± 5.4 MPa as demonstrated in Figure 6-6 (b). The larger and longer ZnO nanowires can have 

a larger volume to transfer the load and enlarge the contact area for the epoxy. The IFSS increases 

when the diameter and length of ZnO nanowires increases leading to an increased surface area and 

mechanical interlocking. ZnO nanowires work as an interphase between carbon fiber and polymer 

matrix to improve the bonding. Although the IFSS has a positive correlation with the reagent 

concentration which can be presented by larger diameter and longer length of ZnO nanowires, 

maximum diameter and length to cause the highest interfacial shear stress are believed. If the 

diameter continues increasing, the space between nanowires will be crowded and become difficult 

for liquid epoxy to wet, so the bonding becomes weaker and less load can be transferred.  
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6.4 Conclusion 

In this chapter, we have investigated a novel approach to grow ZnO nanowires to be used 

as an enhanced interphase between carbon fiber and polymer matrix. The diameter from 24.491 

nm to 99.303 nm and length from 0.811 um to 2.49um of ZnO nanowires were controlled by 

adjusting the growth concentration of Zn(NO3)2 and HMTA. Single fiber tensile test was 

performed, identifying that little influence of ZnO nanowires was on the tensile strength of carbon 

fiber. IFSS was great improved as much as 286% with the incorporation of ZnO nanowires under 

the concentration of 100 mMol/L. This result proved that ZnO nanowires as an interphase can be 

an effective approach to enhance the bonding between carbon fiber and polymer matrix. 
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Chapter 7 Reinforcement of Carbon Fiber Reinforced Composites by 

ALD Seeded ZnO Nanowires 

7.1 Introduction 

Carbon fiber composites have been playing a critical role in industry due to their high 

specific strength and stiffness, and flexible tailoring[104]. The performance of composites not only 

depends on the interfacial phase between fiber and polymer matrix which determines the in-plane 

properties such as interfacial shear stress (IFSS), but also on out-of-plane properties such as 

interlaminar shear strength (ILSS)[146]. High performance composites are always desirable, but the 

surface of carbon fiber is inert and smooth leading to the limitation of composites[147].  

Various surface modifications of carbon fiber have been investigated to improve the overall 

performance of composites including surface roughening[148, 149] and designing architecture[150, 151]. 

The fibers are roughened to obtain a reactive surface using methods such as chemical oxidation[152], 

high energy radiation[153] and plasma[154]. The fiber surface will be etched by these methods, and 

the roughened surface will be mechanically interlocked with polymer matrix. Chemical bonds can 

also be generated by adding functional groups[155] to make strong connection between carbon fiber 

and polymer matrix. However, these methods will decrease the tensile strength of fibers resulting 

in the decreasing of in-plane properties[156]. 

Designing architecture to build high strength of nanostructures on fiber surface has been a 

popular method to improve delamination resistance[146]. Aligned carbon nanotubes (CNTs)[146, 157, 

158] as interphases have been employed to improve the interlaminar shear strength. These 

interphases have a good bonding with carbon fibers and enlarge the surface area of interaction to 

polymer matrix. However, the synthesis of these nanostructures is usually in high temperature 
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environment (over 900 °C) using chemical vapor deposition (CVD)[159] process. The extremely 

high temperature will cause degradation of carbon fiber, and also the introduction of catalyst 

during the fabrication of CNTs will significantly lower down the tensile strength of carbon fiber, 

thus, decreasing in-plane properties of composites. 

Consequently, it is very important to find a successful approach to improve the out-of-

plane properties by preserving the tensile strength of in-plane properties of carbon fibers. Lin et 

al.[29, 160]demonstrated a designed architecture of ZnO nanowires on carbon fiber surface using a 

two-step hydrothermal method. The IFSS was improved more than 110% and the tensile strength 

of carbon fiber was preserved due to the low temperature (less than 100 °C) in hydrothermal 

growth process. Malakooti et al.[161] fabricated aligned ZnO nanowires on the surface of aramid 

fibers using the two-step hydrothermal method. He characterized the hybrid composites by tensile 

test and found that the elastic modulus and tensile strength of composites improved by 34.3% and 

18.4%. This high strength composites can be also used for energy harvesting as ZnO is a 

piezoelectric material. Fei et al.[162] chemically treated the carbon fiber surface and synthesized 

ZnO nanorod on carbon fabric using the two-step hydrothermal method. He showed that the ILSS 

was improved by incorporating the ZnO nanorods in carbon fiber composites. The wet tribological 

properties of this composites were also studied and the wear rate decreased significantly by 81.5% 

compared to the carbon fiber composites without ZnO. 

For the hydrothermal method the above researches used, dipping[160, 163] was the first step 

to form nucleation sites of ZnO nanoparticles as seed layers for the growth of ZnO nanowires in 

the second step of hydrothermal. However, there are some disadvantages for dipping as a step for 

seed layers that the process is not easy to control, some substrates are difficult to be deposited and 

the seed layers may not be very uniform. The morphologies of ZnO nanowires are determined by 
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the grain size and quality of seed layers of ZnO nanoparticles[75], so an approach that can produce 

high quality seed layer with smaller grain size is necessary. ALD has been one of the most popular 

thin film deposition methods due to its low defect density, fine control of thickness deposition, 

excellent uniformity and conformality, and lower deposition temperature as low as 100 °C which 

is close to the growth temperature of hydrothermal method[74]. A favorable vertical orientation and 

high quality of ZnO nanowires will be obtained by ALD seeded ZnO nanoparticles as first step in 

hydrothermal method[76, 77]. The tensile strength of carbon fibers will be preserved because the 

temperature of ALD will not be harmful for carbon fibers. 

In this chapter, different morphologies of ZnO nanowires were synthesized on carbon 

fabric by controlling the growth parameter of hydrothermal step. Nanoscale ZnO nanoparticles 

were deposited on carbon fabric by ALD, working as seed layers for growth of aligned ZnO 

nanowires. Hydrothermally synthesized ZnO nanowires on carbon fabric were characterized by 

field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy 

(EDX), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The carbon fabric coated 

with ZnO nanowires were stacked in different plies to manufacture the composite laminates. The 

mechanical properties of laminates were characterized by dynamic mechanical analysis (DMA), 

3-point bending test and short beam 3-point bending test to investigate the effect of reinforcement 

of ZnO nanowires. The results show that carbon fiber composites decorated with ZnO nanowires 

as interface between filler and polymer matrix have a significant improvement in flexural strength 

and interlaminar shear strength.  
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7.2 Experiments 

7.2.1 Materials 

The type of carbon fabric was AGP193-P supplied by Hexcel® HexForce™. Diethylzinc 

(DEZn, Zn(C2H5)2) and deionized water (DI water) were purchased from Sigma–Aldrich and 

worked as precursors to deposit seed layers of ZnO nanoparticles for later hydrothermal growth. 

Zinc nitrate hexahydrate (Zn(NO3)2 6H2O) and Hexamethylenetetramine (HMTA) were received 

from Sigma–Aldrich to synthesize the ZnO nanowires in hydrothermal step. Resin INF-114 and 

hardener INF-211 were obtained from PRO-SET® to make composite laminates. All materials 

were used as received. 

7.2.2 ZnO nanoparticles seeded by ALD 

The carbon fabrics were cut into dimension of 2.75 inch by 2.75 inch and used as the 

substrate of ZnO nanoparticle growth. They were fixed on a glass sheet (3” * 3” * 1/8”) by high 

temperature Kapton tape. Considering the carbon fiber composites were usually fabricated in a 

non-sensitive environment, the carbon fabrics were not cleaned. A self-built 3” ALD system was 

used for the deposition of ZnO nanoparticles which work as nucleation sites of ZnO nanowires in 

later hydrothermal growth. The growth parameter of ALD process is the optimal results of our 

previous works. The pulse time of DEZb and water is 0.3 second leading to a vapor ratio of DEZn 

and water over 2. The growth temperature is 200 °C with a background pressure at 0.5 Torr and 

growth cycles at 300. The purging time of ultrahigh purity N2 is 20 second after each pulse of 

precursors to remove the residual vapors in chamber and avoid the potential CVD reaction. 

7.2.3 Hydrothermal growth of ZnO nanowires 

The growth solution of ZnO nanowires in a beaker was made by combining the Zn(NO3)2 

and HMTA solutions which were prepared by dissolve the powders of each in DI water. Before 
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mixing, each solution was heated to 90 °C and stirred by magnetic bar at 800 rpm on a hot plate. 

The carbon fabrics on the glass sheets coated with ZnO nanoparticles were immersed into the 

growth solution. The substrates were supported by a four-leg Teflon structure and faced downside 

in the beaker. Facing downside of growth substrate will avoid the situation that the generated ZnO 

in solution covers up the substrate and inhibits the ZnO nanowires growing. The beaker was 

transferred into a PolyScience water bath for hydrothermal growth. The temperature was set at 

95 °C and the time was kept for 17 hours. After growth, the samples were moved out and flushed 

by Di water for 1 minute to remove the residual on surface, then dried on hotplate at 125 °C for 15 

minutes. The concentration of Zn(NO3)2 and HMTA ,temperature and growth time in hydrothermal 

step play a critical role in determining the quality of ZnO nanowires. Larger diameter of ZnO 

nanowires would be obtained with lower temperature, higher growth time and higher concentration 

of Zn(NO3)2 and HMTA based on our previous reports. Among them, adjusting the concentration 

of Zn(NO3)2 and HMTA will significantly affect the quality of ZnO nanowires, so in this chapter, 

we controlled the both concentration of Zn(NO3)2 and HMTA at 25 mMol/L, 50 mMol/L and 100 

mMol/L to verify their influence in mechanical properties of carbon fiber composites incorporated 

with ZnO nanowires as interface.  

7.2.4 Manufacturing of carbon fiber composites 

Considering the economic and labor cost, four and ten layers of carbon fiber composites 

with and without ZnO nanowires were fabricated by VARTM technique. 4-ply carbon fiber 

composite laminates were used to do the 3-point bending test and to verify the effect of ZnO 

nanowires in flexural strength. 10-ply composite laminates were used for the short beam 3-point 

bending test and to investigate its influence in interlaminar properties. Resin INF-114 and hardener 

INF-211 with a weight ratio of 3.65:1 were used to prepare the polymer matrix. This epoxy has 
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medium curing speed which provides a pot life near 2 hours. They were mixed by an overhead 

stirrer at 600 rpm for 5 minutes, then degassed for 50 minutes to remove the air bubbles. The 

infiltration time of epoxy was decreased greatly from about 5 minutes to about 2 minutes for the 

composite laminates with ZnO nanowires. Once the carbon fabrics were fully wetted, the laminate 

was compressed by the Instron universal testing system 5960 at a pressure of 1 MPa. The external 

pressure will result in the uniform thickness laminates with ZnO nanowires. Without external 

pressure, the thickness of composites modified by ZnO nanowires will increase greatly which leads 

to the relatively low volume fraction of carbon fiber causing lower mechanical properties of 

composites. The composite laminate was left at room temperature for 17 hours to be initial cured, 

then post cured at 80 °C for 8 hours. 

7.2.5 Material characterization  

The morphologies of ZnO nanoparticles and nanowires on carbon fabric were examined 

by high resolution Zeiss Neon EsB FESEM with Oxford EBSD capabilities at a working distance 

of roughly 6 mm at an accelerating voltage of 5 kV by in-lens signal. The diameters and densities 

of ZnO nanowires in different morphologies were analyzed by software ImageJ. The elemental 

analysis was conducted by EDX spectroscopy in Zeiss Neon EsB FESEM. The crystal structures 

of ZnO nanowires were determined by a Rigaku Ultima IV diffractometer with Cu-K-alpha 

radiation (40 kV, 44 mA) via a Bragg-Brentano detector. The mass fraction of ZnO nanowires on 

carbon fiber was investigated by TGA of TA Instruments Q50. The temperature ramp was 

10 °C/min going up from 35 °C to 900 °C. 

The viscoelastic properties of composite laminates were studied by DMA (TA Instruments 

Q800) in 3-point bending mode with 20mm span length. The loading frequency is 1Hz and the 

temperature ranges from 35 °C to 180 °C at a ramp of 3 °C/min. The dimension of specimens using 
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10-ply laminates for DMA is about 45 mm in length, 4 mm in width and 2.1 mm in thickness. The 

flexural strength of laminates was investigated by 3-point bending test using Instron universal 

testing system 5960. The specimens of 4-ply laminates were cut into dimensions of 2 in. in length 

and 0.5 in. in width with a thickness about 0.8mm. The span length is 1 in. and the crosshead speed 

is 2 mm/min. The short beam 3-point bending test following ASTM D2344 standard was 

performed to investigate the ILSS of 10-ply laminates at a crosshead speed of 2 mm/min. The 

thickness of laminates with and without ZnO nanowires was about 2.1 mm and 2.0 mm. 

7.3 Results and discussion 

The morphologies of ZnO nanoparticles by ALD process and ZnO nanowires by 

hydrothermal process under different concentration are shown in Figure 7-1 (a) to (d). ALD seeded 

ZnO nanoparticles seem to be long rice-like, and the orientation is random. The length of ZnO 

nanoparticles is 15nm to 30 nm and width is 7nm to 15 nm. The morphologies of ZnO nanowires 

under different concentration can be distinguished from FESEM images. When the concentration 

increased from 25 mMol/L to 50 mMol/L, slight changes can be seen in diameters and densities. 

When the growth concentration continues up to 100 mMol/L, obvious changes can be seen that 

hexagonal column of ZnO nanowires appear. The higher concentration offers more growing 

materials resulting in larger diameters. The space between ZnO nanowires is very crowed 

compared to the ZnO nanowires grown in lower concentration. Some larger nanowires extruded 

out when the concentration is lower. It is believed that the nucleation sites of ZnO nanoparticles 

are combined with each other leading to the larger nanowires. The length of nanowires is restricted 

as the space between each single fiber is limited. It seems that ZnO nanowires stop growth when 

the nanowires on neighbored fibers touch each other. 
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Figure 7-1 FESEM images of ZnO nanostructures on carbon fabrics  (a) ZnO nanoparticles via ALD, (b) ZnO nanowires via 

25mMol/L, (c) Zn nanowires via 50 mMol/L, (d) ZnO nanowires via 100 mMol/L. 

The quantitative analysis of diameter distribution and densities of ZnO nanowires is 

demonstrated in Figure 7-2 (a) to (d). FESEM images at higher magnification of ZnO nanowires 

in different concentrations are used to do the statistical analysis. The distributions of ZnO 

nanowires are influenced by distributed size of ZnO nanoparticles, gravity and angle of images. 

The average diameter is used to represent the distribution of ZnO nanowires. The average dimeters 

of each concentration are 29.194 ± 11.034 nm, 49.804 ± 19.94 nm and 97.421 ± 24.161 nm, 

respectively. ALD process is believed to influence the dispersity of ZnO nanowires due to the 

inhomogeneous rice-like ZnO nanoparticles. It can be concluded that adjusting the growth 

concentration of Zn(NO3)2 and HMTA will lead to the controllable morphologies of ZnO 

nanowires. The average diameters shift in a larger trend when the reagent concentration increases. 

During the statistic of diameters, the densities of each morphologies can be also calculated. The 
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densities for each are 695, 580 and 400 per um2. The decreasing of density is mainly caused by the 

enlargement of ZnO nanowires under higher reagent concentration. 

 

Figure 7-2 Diameter distributions of ZnO nanowires under different concentrations: (a) 25 mMol/L, (b) 50 mMol/L, (c)100 mMol/L, 

and (d) densities of each concentration. 

The elemental composition of ZnO nanowires on carbon fabric is analyzed by EDX 

spectrum, indicated in Figure 7-3 (a). All peaks of carbon, oxygen and zinc elements are detected. 

The weight fraction of carbon decrease significantly from 13.2% to 2.8% when the growth 

concentration increase. However, the weight fraction of zinc increase from 69.3% to 78.1%. The 

change of oxygen element is steady compared to the other elements. It is believed that the higher 

reagent concentration will boost increased volume fraction of ZnO. It is confirmed that the 

nanostructures synthesized on carbon fabric is composed of ZnO by EDX results.  
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Figure 7-3 In different concentrations: (a) EDX spectrum of ZnO nanowires (b) XRD diffraction of ZnO nanowires. 

 The crystal orientations of ZnO nanowires are investigated by XRD analysis, shown in 

Figure 7-3 (b). The scanning angle was between 10° and 70° with a step of 0.02° and the scanning 

speed is 2°/min. Common crystals of plane (100), (002), (101), (102), (110), (103) and (112) are 

all detected. Plane (100), (002), (101) dominate of all crystal orientations and the intensities of 

them increase greatly when the reagent increase. The intensity peaks of plane (002) under different 

concentration is smaller than, close to and exceeded the intensity peak of carbon, when the 

concentrations are 25 mMol/L, 50 mMol/L and 100 mMol/L. With the increasing intensity of plane 

(002), the intensity of plane (100) and (101) decrease compared to plane (002). Plane (002) shows 

that the preferred growth orientation of ZnO nanowires is along the c-axis direction. The higher 
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growth concentration leads to the better vertically aligned ZnO nanowires on the radial direction 

of carbon fiber. 

 

Figure 7-4 TGA  for different concentation: (a) bare carbon fabric and carbon fabric with ZnO nanowires, (b) partial enlargement 

of (a), (c) carbon fiber composites without and with ZnO nanowires, (d) partial enlargement of (c). 

TGA analysis is employed to investigate the weight ratio of ZnO nanowires on carbon 

fabric and in hybrid composites, as shown in Figure 7-4 (a) to (d). The deposition temperature of 

ZnO is very high near 2000 °C, but for carbon fiber and epoxy, the temperature is only about 

620 °C and 320 °C, they can be totally burned off in air environment before the temperature goes 

up to 1000 °C. As light-weight is one the advantages of carbon fiber composites, the involvement 

of ZnO is expected not to add too much weight to the hybrid composites, so TGA analysis is 

necessary for burning carbon fiber coated with ZnO nanowires. In Figure 7-4 (a) and (b), no weight 

loss is found before the temperature reaches to 300 °C indicating no moisture inside. Then, there 

is about less than 1% weight loss when the temperature continues going up to 550 °C. This loss is 

believed to be the decomposition of sizing on fabric. Clear drops are found at 620 °C and 600 °C 

for carbon fabric with ZnO nanowires and bare carbon fibers. Before temperature reaches 900 °C, 
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all carbon fiber is burned off and white ZnO powder was left inside. The weight fraction of ZnO 

is 6.95%, 11.76% and 14.29% when the growth concentration is 25 mMol/L, 50 mMol/L and 100 

mMol/L. 

For burning the carbon fiber in hybrid carbon fiber composites enhanced by ZnO nanowires 

in Figure 7-4 (c) and (d), there is 25% weight loss when the temperature ranges from 300 °C to 

400 °C which is the decomposition of epoxy. The epoxy is continuously burned when the 

temperature goes up to about 600 °C and 620 °C for the composite. When the temperature 

continues going up, the decomposition of carbon fiber occurs. After completing the burning, 0.52% 

weight is left for hybrid composites without ZnO. 4.65%, 5.89% and 7.27% are the weight fraction 

of ZnO in hybrid composites at each concentration. As the maximum weight fractionof ZnO is 

only 7.27% in composites and the multifunctional ZnO will work as a reinforcement in composites 

which can also be used to harvest energy, applying ZnO in carbon fiber composites is promising 

and significant. 

 

Figure 7-5 DMA results of hybrid composites: (a) storage modulus, (b) loss factor. 

DMA analysis is used to the study the influence of nanostructures as an interphase on the 

stiffness and damping properties of composites. The effect of ZnO in composite laminates on 

storage modulus and loss factor is presented in Figure 7-5 (a) and (b). DMA gives the storage 

modulus and loss modulus of material. The storage modulus measures the stored energy which 
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relates to the elastic response of material. The loss modulus measures the dissipated energy as heat 

which relates to the viscous response of material. The ratio of loss modulus and storage modulus 

is the loss factor (tan delta) which means the damping properties. The storage modulus of hybrid 

composites with ZnO nanowires increase when the volume of ZnO is more involved. The 

introduction of ZnO improves the elastic properties of composites which suggests that the hybrid 

composites are more resistive to the shear deformation. For loss factor, the value decrease as more 

volume of ZnO nanowires are fabricated in composites. The aligned ZnO nanowires take up the 

space of interphase between carbon fiber and polymer matrix. As ZnO is rigid and stiff, it may 

decrease the energy dissipating in composites. The more ZnO nanowires is involved, the lower 

damping property is obtained when the growth concentrations increase from 25 mMol/L to 100 

mMol/L. It can be also found the glass transition temperature shift in a larger direction when the 

growth concentration increase. 

 

Figure 7-6 Hydrid composites: (a) flexurak strength, (b) ILSS. 

The flexural properties of composites are demonstrated in Figure 7-6 (a). The flexural 

strength of hybrid composite laminates incorporated with Zno nanowires is all improved with a 

maximum enhancement of 45.6%. The improvement of flexural strength can be explained 

associate with the ILSS. The ILSS with and without ZnO nanowires were measured by short beam 

3-point bending test in Figure 7-6 (b). All hybrid composites with ZnO exhibit an improvement in 
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ILSS. The ILSS of each are 38.4 ±1.5 MPa,45.8± 1.1 MPa,47.2 ± 1.23 MPa, 50.4 ± 1.1 MPa, 

corresponding to an increasing of 19.2%, 22.9% and 31.1%. The interfacial adhesion and boding 

are usually low in neat hybrid composites, as the surface carbon fiber is inert and smooth. The 

polymer matrix will typically separate from fiber when suffering the large shear stress. However, 

the decoration of ZnO nanowires on fibers will increase the interaction between fiber and polymer 

matrix due to the mechanical interlocking and enlarged contact area. Both interphase of composites 

and shear properties of polymer matrix can determine the ILSS. ZnO nanowires enhance the 

interphase and improve the shear resistance of polymer matrix to the crack as ZnO is stiffer and 

more rigid than epoxy. The initial crack and its propagation will be impeded by the existence of 

ZnO nanowires, which needs higher stress to crack the ZnO. 

7.4 Conclusion 

This chapter demonstrated a novel approach of employing ZnO nanowires as interphase in 

carbon fiber composites using ALD seeded hydrothermal methods. Different morphologies of ZnO 

nanowires were obtained by controlling the growth concentration. The diameters of ZnO 

nanowires are 29.194 ± 11.034 nm, 49.804 ± 19.94 nm and 97.421 ± 24.161 nm for these typical 

growth concentrations. Hybrid carbon fiber composite laminates were manufactured using the 

carbon fabric coated with these 3 morphologies of ZnO nanowires. Multiple mechanical properties 

of these laminates were tested including damping, flexure strength and ILSS. The results show that 

the larger ZnO nanowires are involved, the higher flexural strength and ILSS are improved. The 

maximum improvements of each are 45.6% and 31.1% for incorporating the largest ZnO 

nanowires at growth concentration of 100 mMol/L. 
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Chapter 8 Conclusions and Future Research Directions 

8.1 Summary 

In this dissertation, ALD replaced the conventional dipping coating to grow ZnO 

nanoparticles as the seed layer to fabricate ZnO nanowires using a two-step synthesis method. 

Multifunctional ZnO nanowires were grown on carbon fibers as the reinforced interphase in 

composites, resulting in novel composites with improved interfacial strength. 

First, silicon wafer was chosen as the substrate to deposit ZnO seed layer using the ALD 

method. Key ALD parameters including H2O/DEZn precursors dose ratio, background base 

pressure and growth temperature were systematically studied. The scanning electron microscopic 

and atomic force microscopic images revealed that the H2O/DEZn precursors dose ratio was 

critical to control the morphology of ZnO nanoparticles. To achieve high uniformity, the H2O dose 

amount needed to be at least twice of that of DEZn. If the background pressure drops below 400 

mTorr, a large amount of nanoflower-shaped ZnO grains would emerge and significantly increase 

surface roughness. In addition, the temperature ranging between 200 °C and 250 °C was found to 

be the optimal growth window. Moreover, the crystal structures and orientations of ZnO 

nanoparticles were highly correlated to the synthesis temperature as proved by electron back-

scattering diffraction and x-ray diffraction results. 

After successfully depositing ZnO seed layer on the silicon substrates, carbon fabrics were 

used as new substrates to grow ALD seeded ZnO nanowires using the developed two-step 

synthesis method. The effects of ALD parameters including temperature and growth cycles on the 

hydrothermal growth of ZnO nanowires were investigated. The growth of ZnO nanowires would 

be inhibited when the extreme high temperature was at 300 °C or lower growth cycles was for 100. 
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The maximum adding weight by ZnO nanowires on carbon fabric was only 10.31% which was 

acceptable and made this method promising applied in reinforcement of carbon fiber composites. 

As the effect of parameters of ALD process was studied, the influence of parameters of 

ZnO nanowires growth in second step hydrothermal process was also investigated. These 

parameters included temperature, growth time and concentration of Zinc nitrate hydrate and 

Hexamethylenetetramine (HMTA). It was found that high growth temperature, lower growth time, 

and lower concentration of Zinc nitrate hydrate and HMTA would result in fine ZnO nanowires. 

Serval morphologies of ZnO nanostructures were obtained including fine nanowires, fuzzy 

nanowires, fine nanorods and compact nanorods. 

Completing systematical investigation of growth parameters in this two-step hydrothermal 

method, the carbon substrates including single carbon fiber and carbon fabric decorated with 

different morphologies of ZnO nanowires under different growth concentrations of Zinc nitrate 

hydrate and HMTA were applied into polymer matrix composites. The tensile strength and in-

plane properties of single carbon fiber preserved as the maximum temperature in whole growth 

process was only 200 °C. Mechanical properties including IFSS, flexure shear strength and ILSS 

were all improved as much as 286%, 45.6% and 31.1%, respectively. The reason for these 

enhancements was that ZnO nanowires worked as an interphase between carbon fiber and polymer 

matrix to transfer the shear load. The incorporation of ZnO nanowires on the carbon fiber surface 

would increase the contact area and mechanically interlock with polymer matrix. 

8.2 Contributions 

1. For the first time, ZnO nanowires was grown by ALD synthesized ZnO nanoparticles as seed 

layers on the surface of carbon substrates including single carbon fiber and carbon fabric. 
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2. The effects of growth parameters of seed layers by ALD and nanowire growth in hydrothermal 

method were systematically investigated. Several morphologies of ZnO nanostructures were 

obtained which laid a foundation of investigating the properties determined by unique 

structures. 

3. Single carbon fiber and carbon fabric with different morphologies of ZnO nanowires in length 

and diameter were manufactured into carbon fiber composites. The introducing of ZnO 

nanowires as an interphase in carbon fiber composites significantly improved the mechanical 

properties including IFSS, flexure shear strength and ILSS 

8.3 Future research directions 

Due to the limitation of chamber size in ALD system, the maximum size of carbon fiber 

composite laminates was only 2.5” by 2.5”, which limited the further testing and application of the 

developed nanocomposites. Although using ALD to deposit the seed layers of ZnO nanoparticles 

offers a more option in fabricating ZnO nanowires, the current research only provides a prototype 

to demonstrate the possibility. A much larger ALD system is preferred to manufacture larger 

composite laminates. In addition, an ALD system can continuously deposit ZnO nanoparticles on 

continuous carbon fiber is necessary for further study and application in aerospace engineering 

structures. The dimension of laminates can meet the requirement of most mechanical property tests 

including tensile test, fracture test of mode I, II and III, and toughness tests to verify how the 

incorporation of ZnO nanowires will reinforce the mechanical properties of carbon fiber 

composites[164-168]. 

Since this dissertation only focused on experimental study, but the mechanism of 

reinforcement of ZnO nanowires as an interphase in carbon fiber composites can be studied using 

the modeling approach[139, 169-171]. We need to know the mechanisms that how the ZnO nanowires 
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bond with carbon fiber and how strong is the adhesion between carbon fiber and ZnO nanowires. 

In addition, it is critical to identify the relationship between the dimensions of ZnO nanowires and 

the reinforced mechanical properties of composites. A multiscale analysis of fiber-matrix 

interfacial enhancement is recommended and molecular dynamics simulations (MD) should be 

useful to investigate the adhesion[172-175]. Combining the experiment and simulation results, the 

properties of composites involved with ZnO nanowires can be tailored and designed. 

This work mainly used ZnO nanowires as the reinforcement structures in the enhanced 

mechanical properties of carbon fiber composites. As ZnO is the multifunctional material that has 

piezoelectric and semi-conductive properties, more applications of this hybrid carbon fiber composites 

can be explored such as in-situ load and deformation sensing[98, 176-187], real-time damage state 

awareness and prognostics[175, 188-196], nondestructive evaluation[197-200], energy harvesting[201, 202], and 

temperature sensing[203]. Multifunctional carbon fiber composites of high performance are always 

desirable and the research trend in the future.  
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