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PREFACE

The optical interference patterns observed in a flow-birefringent
fluid when viewed between crosged plane-polarizing plates are related
to the fluid motion. Previous studies of this relation have been made
using steady fluid flow conditions for which analytical solutions are
aveilable, The results have been used to study two-dimensional, steady,
laminar flow conditione for which analytical solutions are not avail-
able,

The present work is a study of the observed optical interference
patterns and a wave of transverse fluid vibrations propagating from the
surface of an oscillating plane immersed in a flow-birefringent fluid.
The fluid is an aqueous solution of milling yellow dye, a commercial dye
product of the National Aniline Division of the Allied Chemical and Dye
Corporation, The principal emphasis is placed on the relationship bétween
the wave properties of the observed patterns and the wave of transverse
fluid vibrations. This work is among the first done with flow=-birefrin-
gence and unsteady (sinusoidal) fluid motion viewed specifically as a
wave propagation problem., |

Indebtedness is acknowledged to Dr. George B, Thurston for his
valuable guidance as research and thesis adviger; and to the faculty and
staff of the Department of Physics for their assistance; and to the
Special Services Department of the Library for assistance in securing
literature; and to the Office of Crdnance Research of the United States
Army and the Research Foundation of the Oklahoma Agricultural and Mechani-

cal College, without whose support this study would not have been possible,
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CHAPTER I
INTRODUCTICN

The optical interference patterns observed with a flow-birefringent
fluid when viewed between crossed plane-polarizing plates are ;elateq_to
~the fluid motion. Studies of this relatlon hawve been made by previous
investigators. The bulk of these studies has been made using steady
fluid flow conditions for which analytical solubtions are available,r
Results have been used to study two-dimensional, steady, laminar flow
conditiong for which analytical solutions are not available.

43 early as 1866% Maxwell made attempts to ascertain whether the
state of strain in a viscous fluid might be detected by its action on
polarized light., In 1873 he described an experiment with Canada balsam.
The fluid was observed between crossed Nicol prisms while a flat spatula
was moved up and down in the fluid. The appearance of light on both
sides of the spatula, only so long as the spatula was in motion, was
reported, Maxwell stated that he was not aware that this method of
rendering visible the state of strain of a viscous fluld had hitherto
been employed, and suggested it appears capable of furnishing important
information,

Use of a flow-birefringent fluid for analysis of fluid motion was

17, ¢. Maxwell, "On Double Refraction in a Viscous Fluid in Motion",
Proc. Rov. Soc., 22, 46=47 (1873).




described by Humphry2 in 1823, Bome gualitative results were obtained
2

using a vanadium pentoxide sol. In 1935 Alcock and Sadron” calculated

local veleeity gradients from measured values of double refraction in

4

gesame oil and suggested further applieations. Hauser and Dewey” report-
ed on experiments in progress in 1939. DBentonite sols were used, In
1941, Dewey5 gave the results in a thesis., Methods for gquantitative
caleculations of local velocity gradients and streamline directions were
given. ¥Flow facility description, calibration data, and photographs of
flow patterns were also presenfted. A similar analysis was presented by
Weller69 7 in 1942, Some fifty liquids were tried.

In 1952 a summary and extension of the work of Dewey and Weller
was presented by Rosenberg,8 A survey of literature pertaining to flow-

. _ 29 . L .
birefringence was also presented, Ballnt), in 1953, reviewed methods of

“R. H. Humphry, "Demonstrations of the Double Refraction Due to Motion
of a Vanadium Pentoxide Sol and Some Applications", Proc. Roy. Soc.
(London), 35, 217-218 (1923).

3k, D. &lcock and C, D, Sadron, "An Optical Method for Measuring the
Distributicon of Velocity Gradients in a Two-Dimensional Flow", Physics, 6,
92-95 (1935).

48, A, Hauser and D. R. Dewey, "Study of Ligquid Flow", Ind. Eng.
Chem., 31, 786 (19392) .

5D° R. Dewey, "Visual Studies of Fluid Flow Patterns Resulting From
Streaming Double Refraction', Unpublished Doctoral Dissertation, Massa-
chusetts Institute of Technology, 1941.

6R0'Weller, Jo. J. Middlehurst, and R. Steiner, "The Photoviscous
Properties of Fluids", NACA Tech. Note No. 841 (1942).

7R°‘Wellers "The Optical Imvestigation of Fluid Flow", J. App. Mech.,
14, 103-107 (1947,) °

8Bo Rosenberg, "Ihe Use of Doubly Refracting Solutions in the Investi-
gation of Fluid Flow Phenomena', Navy Dept. David W, Taylor Model Basin,
Washington 7, D, C., Report Neo., 617, 1952,

9E. Balint, "Techniques of Flow Visualimation", Aircraft Engineering,
25, 161-167 (1953).



flow visualization,

In 1953 it was found that aqueous solutions of willing yellow dye
exhibit flow=-birefringence. Milling yellow dye is a product of National
Aniline Division of Ailied Chemical and Dye Corporation, 3355 West 48th
Place, Chicago 32, Illinois. 4 brief description of the flow~birefringence
of aqueous solutions of milling yellow dye was presented by Peebles, Gar-
ber, and JtryolO They oubtlined future quantitative experiments using the
_&yeo Office of Naval Research Contract Nonr=-811(04) reportsll’ 12, 13
describe determination of flow double refraction and rheological proper-
ties of aqueous solutions of milling yellow dye.

In 1954, Hargrove and Thurstonl4 became interested in using aqueous

milling yellow solutions to facilitate a study of fluid motion in the

10p, w, Pesbles, H. J. Garber, and 8. H., Jury, "Preliminary Studies
of ¥low Phenomena Utllizing a Double Refracting Liquid"; Proc. Third
lMidwestern Conference on Fluid Mechanics, Minneapolis; The University of
llinnesota Press, 1953.

liFa N. Peebles, J. W, Prados, and E. H. Honeycutt, Jr., "4 Study of
Laminar Flow Fhenomena Utilizing a Double Refracting Liquid", Progress
Report 1 under Contract No, Nonr=811(04), Knoxville, Tennessee, Engincer-
ing Bxperiment Station and Department of Chemical Engineering of the
University of Tennessee (1954).

127, W, Prados and T. W, Peebles, "4 Study of Laminar Flow Phenomena
Utilizing a Double Refracting Liquid", Progress Report 2 "Determination
of the Flow Double Refraction Properties of Aqueous Milling Yellow Dye
Solutions®, Published Master's Thesis under Contract No, Nonr-811(04),
Knoxville, Tennessee, Engineering Experiment Station and Department of
Chemical Engineering of the University of Tennessee (1955).

g, H. Honeycutt, Jr. and F. N. Peebles, "A Study of Laminar Flow
Phenomena Utilizing a Doubly Refracting Liquid', Progress Report 3
W"Rheological Properties of Aqueous Solutions of Milling Yellow Dye®,
Published Mester's Thesis under Comntract No. Nomr-811(04), Knoxville,
Tennessee, Engineering Experiment Station and Department of Chemical
Engineering of the University of Temnessee (1955).,

L4y, &, Hargrove, Jr. and G, B. Thurston, "Photographic Method for
Analysis of Fluid Motion", J. Acoust. Soc. &m., 29, 179 (4) (1957).



vicinity of an orifice., In this work, sinuscidal oscillation of the
fluid in the orifice and sinusoidal oscillation with a steady flow compo-
ment were considered. With such flow cases, the fluid motion is periodic,
Furthermore, the fluid motion is neither two-dimensional nor entirely
laminar, Investigation was initiated to determine the flow-optic rela-
tions for time varying fluid motion. It 1s with this investigation that
the present work is concerned.

The solution to the problem of Stokes' oscillating plane represents
a wave of transverse fluid vibrations propagating from a plane boundary,
The present work is a study of the obgerved optical interference patterns
and the wave of transverse fluid vibrations, The chief emphasis is placed
on the relationship between the wave properties of the observed patiterns
arnd the wave of transverse fluld vibrations. This work is among the
firstl® done with flowsbirefringence and unsteady (sinusoidal) fluid motion

viewed specificelly as a wave propagation problem.

155, b, Ferry, "Studies of lechanical Properties of Substances of
High Molecular Weight, I. A Photecelastic lMethod for Study of Transverse
Vibrations in Gels", Rev. Sci. Inst., 12, 79-82 (1941).

e



CHAPTER II

THEORY

(a) The Flow-optic Relation

The optical theory of double refraction is presented in Aﬁpendix B.

A general treatment of the subject of streaming birefringence and many
references are found in a bock by Eirich.16 A flvid which exhibits the
phenomenon of flow birefringence (alsc called flow double refraction and
streaming birefringence) behaves optically no differently from other
fluids when it is at rest. Light travels through the fluid with a velo-
¢ity inversely proportional to the index of refraction., The index of
refraction i1s independent of the direction of propagation of the light and
the orientation of the plane of polarigation., When the fluid at rest is
viewed between crossed polarizing plates, the plane of polarization is
unchanged during passage of light through the fluid and thus light trans-
nitted by the first polarizer is extinguished by the second polarizer.

| When a flow-birefringent fluid is in motion with internal stresses
due to viscosity and veloecity gradients, the optical properties of the

fluid are changed. The velocity of propagation of light through the fluid

16F,'Ro Eirich, Rheolog: (Academic Press, Inc., New York, 1956),

Vol., I, Chapter 15.



is no longer independent of the direction of propagation and the plane of
polarization, The fluid is therefore temporarily optically anisotropic.

Consider a path of light propagation through the fluid., At any point
on this path there are two mutually perpendicﬁlar directions along which
the electric Vector may point and for which the electric vector will under-
go no rotation due to pagsage through the medium. However, the velocities
of propagation associated with these two orientations of the electric
vector differ. The velocity of propagation associated with oriemtation I
is inversely proportional to the index of refraction V]I for this orienta-
tion. Similarly for the second orientation II the index of refraction is
TWH o Should the electric vector have an orientation different from I
and II, the medium will effectively resolve the vector into components
along the directions I and II, The two resolved components will then
propagate with velocities associated with Y\I and V\n » Depending on
the total path of propagation under these conditions, the lighp emerging
from the medium may be plane polarized with the electric vector having its
original direction, it may be plane polarized with the electric vector
being at right angles to the original vector, or it may be elliptically
polarized. The orientation of the electric vector entering the medium is
established by the first polarizer. A second polarizer on the exlt side
of the medium and oriented at right angles-to the first will then transmit
in accordance with the degree of rotatlon produced by the medium.

In order to describe how a flow-birefringent fluid produces a pattern
which is characteristic of a particular condition of fluid motion, consider
the simple case of an element of moving fluid illuminated by parallel rays
of light through crossed plane-polarizing plates. Refer to figure 1.

When the plane polarized light with the electric wvector oriented in a

direction parallel to O0X is transmitted by the first pclarizer and then



Y Y
Second Polarizer

Moving Fluid

R ¢
First Polarizer

Figure 1. A schematic representation of plane polarized 1ight'passing
through an element of flow~-birefringent fluid.



passes through the flow-birefringent fluid, it is broken inte two plane
polarized components directed along directions I and II, If the equation

for the plane polarized light is eipressed as a function of time by

u=a_S\N—Q~‘l(Ct«-x) C (2.1)
A
where
Il = electriec vector
A = amplitude:
A = wavelength
X = arbitrary phase retardation indicating that the electric
vector is.not necessarily zero at -t‘ = 0
C = velocity .of light in vacuo,

then the equatiocns. for the components I and II respectively, for light

entering the flow-birefringent fluid, are

Xl o

u=acose SH\I—?C— (Ct-x) (2.2)

and
, 2T : .

u=2a SIN® SIN ~ (Ct-R) (2.3)
where

U_i = component of the electric vector in the direction I

le = componsnt of thebelectric vector in the direction II

_G,

angle made by I with OX.

Since the two components U.\ and U‘z do not travel at the same velocity



through the flow-birefringent fluid, the slower will emerge some distance
fs behind the faster. This relative retardation can be expressed quanti-

tatively by the equations for the light leaving the fluid as

2T
LLT‘-‘-E)COSC‘) S\NT(C‘E'X) (2.4)

and
277 )
L,L'z=a S\NCPS\N—?:—(C"L'X-S) ~ (2.5)

where
LL/ = component of the electric vector direction I, leaving the flow-
birefringent fluid
. = component of the electric vector direction II, leaving the flow-
birefringent fluid
<§ = relative retardation produced by passage through the flow-
birefringent fluid.
When LL{ and LL; reach the second polarizer, ogly the component of the
electric vector parallel to OY is transmitted. Thus the equation for the
light transmitted through the second polarizer can be expressed as a
resultant obtained by adding thelcqmgppents of Ll: and LL; parallel to OY,

This resultant \W is given by
w=Uu siNd - U cos b, (2.6)

/
Combining the values of Ll( and LLZ given in equations (2.4) and (2.5)

with equation (R.6) and simplifying gives



10

T 2
W = {a SIN 2¢ 5\1\1—-?—?} COS—:}(C‘t“)&-

8
ji') (2.7)
where {a SIN ZC‘D SIN ——"} represents the amplitude of the resultant
electric vector, Equati;zs(2n7), giving the final resultant electric
vector W which is passed by the second polarizer, indicates the condi-
tions for existance of points of gero light intensity. Since the intensity
of the transmitted light is proportional to the square of the amplitude,

zero intensity requires that

™o 12
A SIN 24 s\NT} =0, (2.8)

This requirement is satisfied for

2% =NTT | (2.9)

and

T

= N T (2.10)

or, expressed in terms of Cb and O s

N TT
P = > (2.11)
and
& =N~ (2.12)

where N 1 zerc or an integer. These relations indieate that zero

resultant intensity occurs where

NT
2

(1) direction I is oriented at an angle d = with respect to
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the transmission direction OX of the first polarizer, or
(2) the relative retardation O produced by the passage of plane
polarized light through the flow-birefringent fluid is a distance
equal to an integral number of wavelengths of the incident light.
Consider the second condition for zero resultant intensity of light
transmitted by the second polarizer. The velocities of the component

rays are given by
c.=¢Cc/n (2.13)
e s

and

C.= c/ n_. (2.14)

If >N component I will be slowed behind component II and will emerge
T
from the fluid element a small time interval after component 1I. This
time interval is
S S S

At = - =—(h-Nn) (2.15)
c:/r\I C/nn C Iz |

where

At
S

. K3 L‘l » ’ -
Since both components travel in air with a veloclty approximately equal to

f

time interval between the emergence of components II and I

it

length of the light path through the fluid element.
the velocity of light in wacuo, I will be retarded behind II by a distance
& given by
= = - 2.16
6=Cat=5(n-n_). ( )

The factor (N - N )is called the amount of birefringence.
b S
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It is reported in page 616 of reference 17 that

i
(h:-hn) =4 *E—J (2.17)

2N

where 4 is a functional notationm, % is the fluid velocity, and R is
in the direction normal to the plane flow lamina. Thus from equation

(2.16), the relative retardation & is given by

=S4 {Q] (2.18)
2n

Furthermore,

£ [O} = 0. | ‘ (2.19)

Equations (2,18) and (2.19) shall be called the flow-optic relation,
For plane laminar fluid motion, the stress in a viscous fluid is

given by
L33 '
shearing stress = /U — (2.20)
N ’

where /U. is the fluid viscosity. This suggests that the optical effects
may be related to the stresses in the fluid. Discussion of stress depend-

ence of birefringence is presented in Appendix B.

(b) Stokes'! Oscillating Plane

Consider the classical hydrodynamic problem known as Stokes! oscil=-

lating planeol7 Refer to figure 2. 4 plane, infinite in extent in the

1/1{0 Lamb, Hydrodynamics (Dover Publications, Inc., New York, 1932),
ppo 619""6210




Oscillating Plane

Volume Element
of Viscous
Fluid

ws—t. nit Area

d»

r

Figure 2. A pictorial representation of a finite section of Stokes®

_ oscillating plane, a plane of infinite extent immersed in a viscous .
fluid and oscillating in its own plane. A volume element with unit
area in the Y~Z plane is shown. ' :

13
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Y and Z directions, oscillates in its own plane in the Y direction.
Let the plane be immersed in a viscous fluid, and describe the motion of

the plane by
§=¢ exp[twt] (2.21)

where

i

velocity in the Y direetion

it

peak velocity amplitude of the plane

:
%

0

N \/%

L ==

oo = angular frequency of oscillation
t = time.

Consider the forces acting on a volume element having unit area in the

Y-7 plane, The inertial force on the volume element is

ﬂ=ma=/oclx'§ (2.22)
where

"FL = inertial force

M = mass

&L = acceleration

fD = fluid density

#

thickness of volume element in X direction

dx

8%

§

The shear force acting oh the volume element 1s

it

second time derivative of displacement in Y direction.

£ = “(/u*)dx | (2.23)

where
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il

shear force

£

S

/l

Equating the forces given in equations (2.21) and (2.23) and simplifying

it

coefficient of viscosity.

results gives the partial differential equation

'€ X
— = —— (2.24)
/ubx‘ P % |

whers AJ, is considered a constant, Assume the fluld does not slip at
the plane surface and thus is moving in the same manner as the plane. A

solution may be assumed to be of the form
€= 8. enp [L(wt-KM] (2.25)
where K‘ is a constant to be evaluated. Substitution of % from éQﬁng;v

tion (R.25) into equation (2.24) gives

31

M&{iexﬂﬂwi*“ﬂ} =0 %{éoe XP[L (wt- KX)I} (2,26)

or
_ , L |
— Mg K exp {L(w'\:‘l(ﬁ)] =lpgw exP[u(ch-Kx)] (2.27)
giving
2 LOO/D
= - . (2.28)
K » |
sinee (-1)*= (1-1) / (27", K is given by
i/ i/
K= (,o_w_) -1 (&) : (2.29)
2 2/&
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Having evaluated K , replacing ¥ in equation (2.25) gives
. W \/* wo |72 _
£=5, exp{-(—p> X} e)tp{h{wt*( P ) X” . (2.30)
s Q+L

Equation (2.30) has the form

. 2T IO N
=g, expl- exp L(w-&-“) (2.31)
n
where A. 1s the viscous wavelength, and represents a wave of transverse
fluid vibrations propagated from the plane surface. The viscous wave-

length is given by |
n /2
=AM (;}%> . (2.32)

. AL . ' . .
and since V = DXl where V 1s the velocity of propagation of the wave

9] w \/z
\/ = <————g ) " (2033)

The amplitude factor EXP

then

LX

indicates a velocity amplitude attenua-

tion of exP (=27 per wavelength.
Let the equation of motion of the osecillating plane be

g = ‘%0 SIN wt. | (2.34)

The corresponding form of the equation of motion for the viscous fluid

becomes

T TR
- o (k- 2T (239

ggexF
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where A_ is given by equation (2.32). A plot of the function expressed
by equation (2.35) is presented in figure 3.

Associated with the wave of transverse fluid vibration is a viscous
shear wave, related to the velocity gradient by the fluid viscosity, as

given in equation (2.,20). Equation (2.20) becomes
05
shearing stress = /{L — (2.36)
(DN

From equations (2.12), (2.18), (2.19), (2.32), (2.33), and (2.35), rela-
tions can be formulated between the optical phenomena and the viscous

shear wave,

(¢) The Flow-optic Relation and Stokes' Oscillating Plane

Consider the previously derived condition for zero resultant intensity
of transmitted light given in equation (2.12). With monochromatic light
the light will be completely extinguished for all 1light paths for which
the relative retardation is zero or an integral number of wavelengths.

The light will be partially transmitted in varying intensities for other
light paths.

If, rather than monochromatic light, white light is used, a continu-
ous range of wavelengths of light pass through the fluid. The transmission
over this range will also depend on the inherent optical transmission of
the undisturbed fluid, From point to point, the successive colors will
be extinguished as the relative retardation equals an integral multiple
of its own wavelength, the remaining colors being transmitted with varying
intensities according to the nearness of the relative retardation to an
integral multiple of their own wavelengths, However, for the special case

PJ = 0, zero intensity will result for any wavelength, producing a zero
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order fringe which can be identified in a field of higher order fringes
by its characteristic lack of color, White light is used in the present
work and primary consideration is given the zero order fringes.

Let the X-Y plane of figure 1 be coincident with that of figure 2.
Then the light path 0-~0 will be parallel to the Z axis in figure 2, Then
for an infinite oscillating plane, the velocity gradient at péints along
the light path is uniform. Furthermore, the velocity gradients are in the
X-Y plane only. Thus the thin section analysis as presented in figure 1
is applicable to a thick section in the neighborhood of an infinite oseil-
lating plane. .

Equations (2.18) and (2.19) indicate that § = 0 for % = 0, A
zero order fringe results for <5 = 0, If the optical effects are shear
dependent, as discussed in Appendix B, equations (2.18) and (2.19) still

%

give the condition for (5 = 0, This follows from the fact that if-ggjz 0

then the shear stress is zero. From equation (2.35)

2 2t O 27T % TR T
——g—=~(’2.)/ & — exP{- —} SIN (Wt~ ——+—). (2.37)
DX A n ~ 4
For §fi—= 0 in equation (2.37)
DA
2LTTR T
SIN (wt-—+—)=0 (2.38)
n 4

from which the equation for propagation of zero order fringes from the

plane surface becomes

o NA
X=V-1 +~gi’“‘2—;‘ (2,39)
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where {1 is an integer or zero and . and \} are given by equations
(2.32) and (2.33). Methods for measurement of zero order fringe propa-

gation and related parameters are discussed in the following chapter.



CHAPTER III

EXPERIMENTAL METHODS

m

(a) The Experimental Apparatus

The experimental apparatus used in this study approximates Stokes!
oscillating plane with a plane of finite dimensions. The flow facility
and associated equipment is shown in simplified form in figure 4. A
Plexiglas plastic plate 1/16 inch thick was caused to oscillate in its
own plane, Plates of width varying from 5.12 om to 0.64 em in approxi-
mately 0.64 cm steps were used. Approximately 2 inches of the plate was
immersed in the flow-birefringent fluid, an aqueous solution of milling
vellow dye. The milling yellow solution was contained in a 1/4 inch
Plexiglas plastic tank 2 inches by 2 inchesvby 4 inches deep, inside
dimengions., The plate was driven simisoidally, as required by equation
(2.21), by a geophone type driver. The velocity of the plate was monitor-
ed and measured by the electrical oﬁtput of an elecprodynaﬁic monitor. A
common shaft connects the plate holder, geophone driver, and velocity
monitor. The velocity monitor was calibrated from measurements of its
electrical output and determinations of its excursion made with a travel-
ing microscope under stroboscopic illumination. The velocity monitor
output was measured with a Hewlett~Packard Model 400D vacuum tube volt-
meter. »

The driving energy for the system was provided by a Hew}ett-Packard
lodel 200CD Wide Range Oscillator. The output of this oscillator was

channeled through an attenuator to the geophone driver.

21
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Figure 4, The flow facility and associated equipment in simplified form.
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Stroboscopic illumination was furnished by a General Radio Type 648-A
Strobolux. The Strobolux was triggered by a General Radio Type 631-4
Strobotac, which could be externally controlled, To insure exact fre-
quency synchronism of the light source with the oscillating plane, a
circuit was provided to control the Strobotac externally with a pulse
derived from a portion of the output of the oscillator which drives the
plane, A variable phase shifting circuit was incorporated in the trigger
circuit so that the observed phase of plane velocity could be varied. The
schematic diagram of the variable phase synchronous trigger circuit is
presented in figure 5.

A diffuser and polarizers are placed as shown in figure 4. A photo=
tube pulse circuit, shown in figure 6, detects the flashing light from the
Strobolux and produces an elsctrical pulse., The output of this pulse
circuit and the output of the velocity monitor are presented on the
separate channels of a Dumont Type 322-A Dual Beam Cathode Ray Oscillo-
graph where they are swept with a common sweep generator. Determination
of the observed phase of plane velocity was made graphically from enlarged
photographs of the cathode ray oscillograph display, taken with a Dumont
Type 296 Oscillograph-Record Camera., Phase determination was also made
by visual inspection of the oscillograph display.

Measurements of fringe coordinates were made directly, using a
Gaertner traveling microscope focused in the fluid, A short focal length
microscope was filtted with a polarizer. When a long focal length micro-
scope was used, a fixed polarizer was used. Zero order fringes are
identified at small velocity amplitudes where they are more easily distin-
guished from higher order fringes. The traveling microscope cross-hairs
are set on a zero order fringe and the fringe is observed while the velo-

city amplitude is slowly increased by adjustment of the driver attenuator.
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At the same time, the setting of the microscope is refined as the zero
order fringe becomes narrow but less distinguishable from higher order
fringes.

The main supporting structure of the apparatus, exclusive of asso-
ciated electronic equipment, was a General Radio Type 1534-A Polariscope
with some supplementary attachments. The geophone driver and velocity

monitor were mounbed on a removable stage above the tank,

(b) Milling Yellow Dye Solutions

It has been found 0’ T1e 125 13

that agqueous solutions of milling
vellow dye in concentrations from 1.2 to 1.5% by weight are strongly bi-
refringent. The viscoglty is reported non=-Newtonian, ranging from 1 to
200 centipoises, depending on dye concentration, temperature and shesr-
rate, The solubtions are stable in contact with common materials.,

Milling yellow dye, in dry powder form, is almost insoluble at room
temperature., The dye maferial will go into solution at near boiling and
will not precipitate when cooled. Solutions are prepared by mixing the
necessary amount of dye material with approximately 20% excess distilled
water and then heating the mixture to completely dissolve the dye material
and evaporate excess water, After the solution is cooled; the conecentra-
tion may be computed using the weight of dye material used and the weight
of the final solution. An alternate method consists of drying a sample

of know weight and then welghing the residue. This latter method is the

more accurate of the two methods.

(e) Description and Anslysis of the Experiment

The characteristics of the optical interference patterns observed

in the vicinity of an oscillating plane are shown in figure 7. The -
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symbols used in describing the patternsaré aléo explained in the figure.
The separate horizontal strips represent typical patterns observed in an
interval [\ and show the progression of the observed pattern as the
velocity amplitude is increased. The particular case shown in figure 7
is for a 5.12 cm plane oscillating at 25 cps with peak velocity ampli-
tudes from zero to 0,872 cm/sec in a 1.30% milling yellow solution. The
observed plane velocity 1s positive maximum, where positive is taken as
up. With further increase in velocity amplitude, colors continue to
successively appear in the central section of the interval, appearing in
the order yellow, red, and green. Blue is not observed in the patterns.
Aqueous solutions of milling yellow dye do not transmit the blue portion
of the spectrum., 4 plot of the opltical transmittance of approximately
1,30% milling yellow solution is presented in figure 8., The per cent
transmittance is taken with respect to air and was measured using a Model
DK Beckman Recording Spectrophotometer. |

When a new color band appears in the central section of the interval,
the bands already present remain and "pack" against the black zero order
fringes which define the interval. These observations are typical of
any interval A . It will be noted that the patterns are not symmetric
with respect to a line mid-way between the zero order f?inges, but that
the pattern is shifted in the direction of the oscillating plane. This
is in general agreement with the fact that the amplitude at the midpoint
of the interval is less than the average of the values at the exiremes
of the interval,

Experimental data were obtained in order %o determine the effects
of various paramebers related to the geometry of the flow facility and
optical gystem. Based on measurements of fringe coordinates, the error
was analyzed with respect to

(1) plane width in the direction of the optical path
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(2) height of observation with respect to the bottom of the plane

(3) spacing between the plane and the tank wall

(4) aligmment of the polaroids for extinction

(5) alignment of the plane, tank and microscope with respect to each

other

(6) tilt of the oscillating plane so as not to oscillate in its own

plane

(7) precision»of‘reproduction;of measurements.

To study the effect of varying the plane width, zero order fringe
coordinates were measured for several plane widths. Results obtaiuned for
five different planes oscillating at 25 cps with a peak velocity aﬁpli-
tude of 1,745 em/sec in a 1,30% milling yellow solution are presented in
figure 9., The observed plane velocity is positive maximum. The devia-
tions in l;i represent *3% of L;\ . Similar deviations appear in ZL:%L&Z
and AN +A +A

) 2 3

To determine the maximum distance from the plane for which a plane
of finite extent approximates an infinite plane, le as a function of
;{ was determined for two successive /\ 's. Figure 10 shows results
obtained for a 2.56 cm plane oscillating at 25 cps with a peak velocity
amplitude of 4.362 cm/sec in a 1,30% milling yellow solution. Figure 11
shows results obtained for a 5.12 cm plane oscillating with a peak velocity
amplitude of 2,181 cm/sec. Slight temperature difference is responsible
for the lack of internal consistancy in the data of figures 10 and 1l.
The deviations in the [S 's with increased distance from the plane for
the narrower plane are more pronounced than for the wider plane. These
results show that measurements using the 2,56 cm plane at 25 cps should
be limited to §Z<:o°4 cm and measurements using the 5,12 em plane should

be limited to X< 0.8 cm for an acceptable approximation to an oscillating
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plane of infinite extent.

The effect of height of observation with respect to the bottom of
the ogscillating plene was determined from measurements of LL\ and £;1as
a function of height of observation. The results presented in figure 12
are for a 5,12 c¢m plane oscillating at 25 cps with a peak velocity ampli-
tude of 2,181 cm/sec in a 1.,30% milling yellow solution., The observed
plane velocity is positive maximum. The deviations in At and Azare
approximately +3%.

The spacing between the oscillating plane surface and the tank wall
wes varied and ZS‘ and [.‘lzmeasuredo Results presented in figure 13 are
for the same width, amplitude, concentration, and phase as for figure 12,
The deviations in ﬁ&land sz.are approximately =3%.

In determining the pogsgible effects of improper aligmment of the
polaroids for extinction, less than 3% deviation was observed in the
coordinates of mero order fringes when the polaroids were ihtentionally
misaligned as much as 22.5°. Rotation of the entire polarizing system
and measurvement of zero order fringe coordinates showed similar devia-
tions for rotations and misalignments of as much as 22,5°,

It was found that measurements of zero order fringe coordinates are
reproducible to approximately %.005 cm when the alignment of the micro=-
scope, plane, and tank 1s altered and realigned, Greater deviations are
observed in X and lesser deviations are observed in the /\ ‘s,

Tilting the oscillating plane so as not to oscillate in its own plane
results in approximately 13% deviation in the measured values of Zk‘ o
For moderate degrees of tilt, no definite trend is indicated in the devia-
tions. The observed optical interference pattern appears to remain
parallel to the oscillating plane.

For no change in the parameters of the flow and optical system, it
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is found that a measurement of a coordinate of a fringe is reproducible
to approximately +,002 cm for a very well defined fringe., This represents
+1% of a typical value of A ., For a less distinct fringe a coordinate
meesurement is reproducible to *.005 em or #2% of /\ . Therefore, in a
determination of A\ s Ghe cumulative error due to errors at both ends of
the interval could be #3%,., This error is comparable to the deviations in
A\ vs observed in study of the effests of geometric parameters of the
gystem. It is therefore concluded that the effects of reasonable varia-
tions in the geometric parameters result in variations, if any, which are
less than the accuracy of measurement realized experimentally. It should
be noted that temperature control was not provided in the experimental
apparatus, Measurements were made at room temperature. Most measurements
were made at 25°C, ilOC,’ Data taken at different times may show slight
lack of internal consisfancy due to changes in the fluid properiies. with

temperature.



CHAPTER IV
EXPERIMENTAL RESULTIS

(a) Zero Order Fringe Propagation

The propagation of an observed zero order fringe was determined
using techniques previously described. Results obtained for a 5.12 cm
plane and for a 1,25 cm plane oscillating at 25 cps with peak velocity
amplitudes of 1.507 cm/sec and 3,013 cm/sec respectively in a 1.30%
milling yellow solution are presented in figure 14, Within the range of

experimental errors, these data may be expressed in the form
X= 14t t.28n o (4.1)

where SZ is the zero order fringe displacement in centimeters, ¥, is
time in seconds, and YY) 1s dn integer or zero, ;{ = 0 is taken at the
plane surface and 1 = 0 is chosen such that the plane velocity is zero
when 5 = 0. The term ,2BY\ appears to generalize the expression for
any zero order fringe.

The experimentally determined zero order fringe propagation expressed
in equation (4.l) indicates that the position of the zero order fringe
approximately coincides with the point of zero velocity in the medium.
That is, the fringe starts at the plane surface when the velocity of the

plane is zero., This result differs from the theoretical equation for pro-

pagation as expressed by equation (2,39), Interpreting A +to represent

38



Zero Order Fringe Displacément in Centimeters

o7

o5

ok

o3

02

/ Y
/ )4
)4 4
/|
Vil
N A ’
4
UN A
/ V.4
Thooretical-Liu= A
/ .4
I p4
_ - . 7 ||
""ﬂ ' y) )84
4 _ ¥ )4
¢ /
¥ ¥
na o pd )4
st T Y
/’
r (D
D) o 1] )
/, //
y
A y a4
Y 4
/1A
A .4
P4 B4
N
UNrz
yd X
0
y. 4
)4 4
/1 /
Vi .4
J 4 4
7
p /V
a4
v
r / ¥
] AL
b4 P4
S
P4 V4 i
V
/
/! y4
4 Y
[V
)4 p a4
/)
. AX
V (
f/
A /
V
717
y i )4
4
A A
)4
/V
17
V4 i .
0 ©10 20 30 40 50 60

Time in Milliseconds

Figure 14, Zero order fringe displacement as a functiom of time for a |
5,12 cm plane and for a 1,25 cm plano oscillating at 25 cps with peak
velocity amplitudes of 1,507 cm/sec and 3.013 cm/sec respectively in
a 1,30% milling yellow solution. Also shown is the theoretical
propagation curve as given by equation (2.41), assuming the experimental
slope.
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7\,/24 the points of Zero shear in the sghear wave would have to be shifted
a distance of approximately /B to coineide with the predicted zero order
fringe location, Thig spacial shift corresponds to a phase shift of
TT/Q+radians° Assuming the same velocity of propagation as experimentally
determined, the theoretical propegation curve is also presented in figure
14, More precisely, the phase shifts for the two experimental curves of
figure 14 are 41 degrees for the 1.25 cm plane and 54 degrees for the

5,12 em plane.

(b) The Effect of Frequency of Oscillation

To study the effect of frequency of ecscillation, l; was determined
as a function of frequency at a constant peak velccity amplitude and»
observed velocity phase of the oseillating plane. The frequency range
cbtainable at a given velocity amplitude was limited by the apparatuso
Valueg of Z} were obbtained for a 2,56 cm p;ane cscillating in a 1.30%
milling yellow solution. The observed plane velocity was a positive
maximum, Data obtained for a peak velocity emplitude of 0.436 cm/sec in
the frequency range from 5 cps to 200 c¢ps are presented in figure 15.
The best straight line fit to these data, plotted on logarithmic coordi-

nates, may be expressed by
-.85

A= 3.9+ (402)
where 'F is the frequency in cps. Results of similar measurements at
a peak velocity amplitude of 1,745 cm/sec in the frequency range from
6.5 cps to 70 cps give the same expression as equation (4.2).

Further study of the effect of frequency of oscillation was made
utilizing the higher order fringes observed in an interval ﬁ; . Tor the

observed plane velocity fixed at positive maximum, the peak plane velocity
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at which the sharp transition from pattern (d) to pattern (e), as shown
in figure 7, occurs was noted at various frequencies in the range from 5
cps to 50 cps. The occurrence of this transition indicates some charac-
terigbic magnitude of optical effect. Results obtained for a 2.56 cm
plane oscillating in a 1.30% milling yellow solution are presented in
figure 16. It is suggested that the increase in the transition peak plane
velocity at frequencies below 15 cps may be due to wall interaction and/or
the influence of finite extent of the plane. The increased viscous wave-

length with decreased frequency supports this view,
(¢) The Effect of Velocity hmplitude

Study of the effect of the peak velocity amplitude of the plane on
the observed zero order fringes was made from various measurements of the
interval ZL o UNo significant changes in [\ are observed to occur with
variation in the peak velocity amplitude of the oscillating plane. Re-
ferring to results presented in figure 11, the zero order fringe spacing
A is presented as a function of the distance ;Z from the plane surface
to the near side of the interval. These results show that [\ is constant
for S{ ranging from essentially zero to approximately 3N . If A is
interpreted aS_?L;’EL , and since equation (R2.37) indicates a spacial
attenuation rate of ex\;(-l'rﬂ per wavelength ‘A, , then the velo.c_ity'
gradient varies by a factor of EX? (= 377) s which is approximately
equal to 1.2 x ,104c If the fluid ecan be characterized by a coefficient
of vigcosity, the constant value of AN , lnterpreted as 7\w/2_ indicates
that under these experimental conditions, the coefficient of viscesity,
related to ™\ by equation (2.32) is constant, This holds for a quite

large variation of velocity gradient. TFor the data in figure 11, the peak

magnitude of the velocity gradient at the plane surface is 35.6 sec_l°
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The range of-velocity gradients for this case essentially covers the range
of velocity gradients for which a 1,32% milling yellow solution is shown
to be non-Newtonian in figure 17 of reference 12. The results are there-

fore not in agreement,



CHAPTER V
DISCUSSION OF RESULTS

It is found (see figure 14) that the velocity of propagatidﬁ of a
zero order fringe from an oscillating plane in aqueous nilling yellow
solution is constant when observed sufficiently close te the plane., This
limit is determined by how nearly the plane of finite extent approximates
a plane of infinite extent. A4s shown in Chapter IV, a phase discrepancy
of approximately /44 radians is found between theoretical and experi-
mental results for zero order fringe propagation. It is possible that an
optical end correction may be an important factor in accounting for the
phase discrepancy. This optical end correction effect is due to the
curved flow laminaearound the edges of the osecillating plane. Some of the
geometrical features applicable to edge effects are presented in Appendix
B, Let the plane section of the oscillating plane approach zero, leaving
only the edge condition, WMeasurements were made using an oscillating
cylinder whose diameter is approximately squal to the thickness of the
oscillating planes. Results of zero order fringe propagation measurements
shown in figure 17 indicate that this limiting case of an oscillating
cylinder differs from the experimentally determined propagation from an
oscillating plane by a phase difference of approximately‘T(/‘+ radians.
Also shown in figure 17 is the fact that the observed zero order fringe
propagation for an oscillating cylinder differs approximately TW/2 radi-
ans in phase from the theoretical phase. This assumes that for the theo-

retical case a thin section normal to the optical path and passing through
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the axis of the cylinder could be viewed. If the observed zero order
fringe shift for an oscillating cylinder were used as an end correction
and combined with the plane laminar section due to an oscillating plane,
there would not necesgsarily result a full TT/ 2. radian shift in observed
zero order fringes. As these shifts are in the same direction, the phase
difference between theoretical and experimental results for zero order
fringe propagation from an oscillating plane is possibly due to an optical
effect in the fringe areas at the plane edges. More detailed analysis of
the oscillating eylinder is given in Appendix A.

Seeking further possible explanation for the phase diserepancy, con-
sider the rheological properties of the medium, If the medium were behav-
ing as an elastic solid, equation (2.36) becomes

0§

shearing stress = (5.1)

2K

where & is a modulus of shear rigidity, With some elaboration on a

treatmént given by Eirichla, the equation of motion for the purely elas-

tic case and an ogcillating plane becomes

\/%
£ = —-z—j— COS [w't —(—g—) wx} (5.2)

for the boundary condition that the plane velocity be given by

%” %o SIN wt. (5.3)

28

Then from equation (5.1) the shearing stress is zero for —— = 0,

180hapter 11, reference 16.
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From equation (5.2)

. /2 /2
?S.g_’ (ff_> SIN [wntm(fo—) o_)x} . (5.4)
(7} 8 \ & G

Tollowing the same type of development as used in the derivation of equa-
tion (2.39) the propagation equation for a zero order fringe for the

elastic case becones

v
X;(—§r~—> J:t iﬂ]. (5.5)
Je W |

This indicates that the position of & zero order fringe coincides with the
point of zero velocity in the medium., The fact that this theoretical
result gives agreement in phase with the experimentally determined zero
order fringe propagation is not sufficient to establish that the medium
is purely elastic. The experimental observations do indicate that the
medium is behaving as if it were elastic. However, simply the fact that
the medium is a fluid capable of unrecoverable viscous flow indicates that
it is not purely elastic., The rheological characterization appropriate
to the fluid may be that of a viscoelastic medium, where the elastic
behavior is dominant for the experimental conditions here employed.
Another possible source of the phase diserepancy between theoretical
and experimental results for zero order fringe propagation may be the flow=-
optic relation. The possibility that the stress dependence 1s totally
erroneous is mentioned but will not be further considered, Howevér, it
should be noted thet for a viscoelastic medium, the stress-straln relation
involves both the displacement gradient and the velocity gradient.
Consider the experimentally determined frequency dependence of

as expressed in equation (4.2). This states that A\ _is proportional to
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the (-.85) power of the frequency, From theoretical equation (2.32),
interpreting /A to represent A. /%2 , the frequency dependence of 2\
should be on the (-.50) power of the frequency. For an elastic medium,
the wavelength of a transverse wave i1s inversely proportional to the
first power of the frequency. The fact that the experimentally determined
frequency dependence of /\ falls between the theoretical frequency de-
pendence for the viscous and for the elastic case is an indication of
viscoelastic bshavior, Here, as 1ln the consideration of the phase dis=-
crepancy, the results indicate a dominance of elastic behavior. This
dominance follows from the fact that (-.85) power is mnearer to (-1.0)
power than to (-.50) power dependence.

Interpreting /\ to represent A\ /2. and neglecting the phase dis=~
crepancy, an apparent coefficient of viscosity may be derived. From the
data presented in figure 14 and as expressed by equation (4.1), the velo-
city of propagation VW is 14 em/sec. Using equation (2,33) which expresses
in terms of viscosity, density, and angular frequency, the expression
for the coefficient of kinematic viscosity A) = )_,L/ is

2

,@“—\/—— 6
> W (5.6)

where A) is in stokes when the cgs\sYstem/of units are used. Denoting

an experimental value by_;5 P thé éxpérimental conditions of figure 14
give ;3 = 62,4, centistokes, This value is in the range of values report-
ed elsewhere013 A , and therefore the velocity of propagation, has
been found quite insensitive to variationg in the velocity gradient by a
factor of 1.2 x 1040 This indicates a constant apparent ccefficient of
kinematic viscogity over a wide range of velocity gradients. The velocity

gradients are within the range of gradients for which the viscosity is

reported non-Newbonian in figure 17 of reference 12,
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It is proposed that the application of the oseillating plane to the
determination of the amount of birefringence (difference between indices
of refraction) be investigated. The basis.fbr measurement of this amount
of birefringence is the equation for relative retardation as pertains to
appearance of higher order fringes as is given by equation (2.,16). Work-
ing with monochromatic light, stroboscopic illumination, and starting with
sufficiently low amplitude that the entire field of view is dark, the
amplitude of oseillation of the plane is increased. Light areas will
then appear thus revealing the location of zero order fringes. When the
amplitude of vibration is sufficient a dark fringe will appear in the
bright area nearest the plane. This ig then a first order fringe for
which the relative retardation is one wavelength in air. EKnowing the
wavelength of the light and the effective length of the optical path
(which due to edge effects may differ significantly from the plane width),
the differences of the indices of refraction may be computed. OCorres-
ponding to the appearance of this first order fringe, the velocity of the
oscillating plane may be determined and based on the work described here-
in, the velociby gradient at the location of the fringe may be delermined.
The amplitude of oscillation may then be increased., The first order
fringe will then divide and at a sufficiently increased amplitude a second
order fringe will appear. Again the amount of birefringence and vglocity
gradient may be determined. This may be contimued for stiil higher order
fringes., By varying the plane width the part piayed by the edge effects
might be eliminated. Also by varying plane width intermediate values of
anount of birefringence for intérmediate velocity gradients may be deter-
mined, An optical compensator may also be used to determine intermediate
values. Thus the effect of velocity gradient on the differénce of indices
of refréction may be studied, This method would.have. the distinet advant-

age over the conventional method of the rotating concentric cylinder
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apparatus in that ffequemcy dependence of the amount of birefringence.may
also be studied. It should be noted that should edgeveffects not inter-
fere, the location of these higher order fringes with respect to the zero
order fringes may be used as a check of the spacial decrease of velocity
gradient as the higher order fringes will first appear at the point of
maximum velecity gradient between the zero order fringes.

Consider the instantaneous state of stress of the medium along a
line perpendicular to an infinite oscillating plane, Shearing stress at
all points along this line will be directed parallel,to the plane but with
varying magnitude and direction, Similarly the orientation of the princi-
pal stresses will be the same at all pointé but with varyingjmagnitude and
direction., If the extinction angle (see Appendix B) were independent of
the magnitude of the principal stresses and dependent only on their orien—
tation, then by Viewing the region with crossed polarizers and rotating
the plane of the polarizers with respect to that of the osecillating pléne,
the entire field would darken when the angle between the two planes was
the extinction angle. However, as in general the extinction angle is
dependent on the magnitude of the principal stresses the darkening would
occur in bands parallel to the oseillating plane and at positions dependent
on the relation between the extinction angle and the velocity gradient.
Shouid these bands (isoclines) be sufficiently well defined this might be
used as a basis for study of stress and frequency dependence of extincﬁion
angle for the medium.,

| It is suggested that further work be carried out to investigate ﬁhe'
possibility of viscoelastic properties of aqueous milling yellow solutionso
4 dynamic technique, as here emplOyedglwith pfovisioné for ﬁorking at largwl
er velociby amplitudes and over a wider range of f:equencies, may reveal
significant indications of non-Newtonian viscosity and-%iscoelﬁstic'be; ,

havior. Results could be presented in terms of an impedance %o shear.
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Temperature and concentration effects should be investigated under dyna-
mic conditions. Study of the basic structure of milling yellow solutions
and the physical mechanism of the optiecal birefringence shoﬁld be under-
taken, In view of the importance of edge effects,vfurther study directed
specifically toward determination of these edge effecté would be of con-

siderable wvalue.



BIBLIOGRAPHY

Alcock, E. D., and C, D. Sadron, "An Optical Method for Measuring the
Distribution of Velocity Gradients in a Two-Dimensional Flow',
Physics, 6, 92-95 (1935).

Balint, E,, "Techniques of Flow Visualization", Aircraft Engineering,
25, 161-167 (1953).

Coker, E. G., and L, N, G. Filon, 4 Treatise on Photo-Elagticity (Gamé
bridge University Press, London, 1931). :

Dewey, D. R,, "Visual Studies of Fluid Flow Patterns Resulting From
Streaming Double Refraction", Unpublished Doctoral Disgertation,
Massachusetts Institute of Technology, 1941,

Edeall, J. T., "Streaming Birefringence and Its Relation to Particle
Size and Shape", Advances in Colloid Science (Interscience Pub-
lishers, Inc., New York, 1942), Vol. I.

Bdsall, J. T., A. Rich, and M. Goldstein, "Instrument for the Study of
Double Refraction of Flow at Low and Intermediate Velocity Gradi-
ents", Rev. Sci. Inst., 23, 695'_(1952) o

Birich, F. R., Rheology.(Academic Press-Inc.; . New York, 1956), Vol: I, .
Ferry, J. D., "Studies of Mechanical Properties of Substances of Higﬁ'

Molecular Weight, I, A Photoelastic Method for Study of Transverse
Vibrations in Gels", Rev. Sci. Inst., 12, 79-82 (1941).

Frank, N, H., Introduction to Electricity and Optics, Second Edition
(McGraw-Hill Book Company, Inc., New York, 1952).

Frocht, M. M., Photoelasticity (John Wiley and Sons, Inc., Hew York,
1948), Vol. II.

Hargrove, L, E., Jr., and G. B. Thurston, "Photographic Method for
Analysis of Fluid Motion", J. Acoust. Soc. Am., 29, 179 (&) (1957).

Hauser, E. A., and D, R. Dewey, "Study of Liquid Flow", Ind. Eng. Chem.,
31, 786 (1939).

Honeycutt, E, H., Jr., and F, N. Peebles, "4 Study of Laminar Flow
Phenomens Utilizing a Doubly Refracting Liquid", Progress Report
3 Y"Rheological Properties of Aqueous Solutions of Milling Yellow
_Dye, Published lMaster's Thesis under Contract No, Nonr-811(04),
Knoxville, Tennessee, Engineering Experiment Station and Depariment
of Chemjcal Engineering of the University of Tennessee (1955).

53



54

Humphry, R. H., "Demonstrations of Double Refraction Due to Motion of a
Vanadium Pentoxide Sol and Some Applications", Proc. Roy. Soc.
(London), 35, 217-218 (1923).

Jessop, H, T., and F. C. Harris, Photoelasticity: Principles and Methods
(Dover Publications, Inc., New York, 1950).

Lamb, H,, Hydrodynamics (Dover Publications, Inc., New York, 1932).

NMaxwell, J. G., "On Double Refraction in a Viscous Fluid in Motion",
Proc. Roy. Soc., 22, 46-47 (1873).

McLachlan, N. W., Bessel Functions for Engineers (Oxford at the Clarendon
Press, London, 1955).

Peebles, F., N., H, J. Garber, and S, H. Jury, "Preliminary Studies of
Flow Phenomena Utilizing a Doubly Refracting Liquid", Proc. Third
Midwestern Conference on Fluid Mechanics, Minneapolis: The Uni=-
versity of Minnesota Press, 1953.

Peebles, F. N., J. W. Prados, and E. H, Honeycutt, Jr., "A Study of
Laminar Flow Phenomena Utilizing a Doubly Refracting Liquid", Pro-
gress Report 1 under Contract No, Nonr-811(04), Knexville, 1enne ssee,
Engineering Experiment Stetion and Department of Chemical Engineer=
ing of the University of Temnessee (1955),

Prados, J, W., and F. N, Peebles, "4 Study of Laminar Flow Phenomena
Utilizing a Doubly Refracting Liquid", Progress Report 2 "Deter-
mination of the Flow Double Refraction Properties of Aqueous Milling
Yellow Dye Solutions", Published laster's Thesis under Contract
No. Nonr=-811(04), KnOXV1lle Tenmessee, Engineering Experiment Sta-
tion and Department of GhGMICdl Engineering of the University of
Tennessee (1955).

Rosenberg, B,, "The Use of Doubly Refracting Solutions in the Investiga-
tion of Fluid Flow Phenomena", Navy Dept. David W. Taylor Model
Bagin, Washington 7, D. C., Report No., 617, 1952,

Sears, F., W,, PrlnCnglS of Physics - Opticg (4ddison-Wesley Press, Inc.,
Cambridge, 1948).

Weller, R., "The Optical Investigation of ¥Fluid Flow", J. App. Mech., 14,
103-107 (1947).

'Wéller, R.y D, J. Middlehurst, and R, Steiner, "The Photoviscous Pro-
perties of Fluids!, NACA Tech. Note No. 841 (1942).



APPENDIX A

THEORETICAL AND EXPERIMENTAL CONSIDERATION

OF AN OSCILLATING CYLINDER

(a) Theory

Consider the problem of an oseillating cylinder with its axis
coincident with the Y axis. The cylinder, infinite in extent in the Y
direction and of radius ro s is immersed in an infinite expanse of
viscous fluld and is caused to oscillate along its axis. Let the motion

of the cylinder be given by
€= 5, exP[Lw-l:} (4.1)

where

first time derivative of displacement in the

~mM
it

Y direction

%

Consider the forcesécting on a cylindrical volume element of fluid. The

i}

peak velocity amplitude of the eylinder.
o /

inertial force is
f,=ma=2TrLoedrs (4.2)

where

Li}

mass

acceleration

it

length of the element in the Y direction. .

fluid density

o = 3
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thickness of the volume element in the I direction

dr
§

The shear force acting on the volume element is

#

second time derivative of displacement in the Y direction.

? X

f = — Q.Tl‘rl/J.——i ar (4.3)
r ?r

where /,,L is the fluid viscosity. Equating the forces given in equations

(A.2) and (4.3) and simplifying results gives the partial differential

equation |

(/P —5 o
Nﬁ{r’ér 2r ot .

where the fluld viscosity has been considered constant. Assume a solu-

tion of the form

¢ =R (r) T () (4:3)

where R (Y') and T(t) represent functions of ¥ alone and +
alone, respectively. Substitution of % from equation (4.5) into equa-
tion (A.4) permits separation of the variables. Setting the separated

members equal to a constant K gives the two ordinary differential

equations

4R 1 IR
+

—a;'{'—‘ ‘? Jar "P;f R(r) =0 (A,é)

and

d T(t)
dt

-KTwy=0. (87)
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A solution to equation (4.7) is
T = exp|Kt]. e
From equations (4.1) and (4.8) it follows that
K=1w - (4.9)
and
Tt =exp {Luﬂ:’] : | | (4.10)

Combining equations (4.6) and (4.9)

dZR(T) AR . wae
“—‘“*“—“—“—_—"“"L 4

(ry=0. .
qr? P M R{r) (4.11)

1
Equation (4.11) is Bessel's differential equation. 4 solution 9 to

equation (4.11) is

RN =AJ R%ﬁ)?’ L m} + B KO[(%)V;LVT (4.12)

where
J&3)= functional notation for a Bessel function of the first kind
of order N and argument % o
K£5)= functional notation for a modified Bessel function of the
second kind of order Y\ and argument 3 .

Since

o

o

W\t Y]
[(“L°) L J —= 0 az [ — 0 (4.13)
/u./

19
)N, W. McLachlan, Bessel Functions for Engineers (Oxford at the
Clarendon Press, London, 1955).




then the constant ?\ must be zero., The solution becomes

é=- B @x?{lwt] K, {(%Q)v; L\/T ,

When [ = fa , equation (A.1) requires that
S
/U)F) V&2
KQ[( /u) f, L

and the solution to equation (A.4) becomes

Sl

B

s
=5

% = %oaxF[Lw-t]
K

Q

Usging the relation
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(A.14)

(4.15)

(5.16)

U, GU M < ker yr kel 3= N (3 exs[La (3)]

equation (4,16) may be written in the form

o

. & (3?) V; | | l/z /2
§=¢ :’L —exp|ll wt+¢[(/f) }_cb[(ﬂ)/uﬁ)r

°

|

T

.(A,l?)

Let the equaticn of motion of the oscillating cylinder be defined by

°

§=éoS\N wt .

(4.18)
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The corresponding form of the equation of motlion for the fluid becomes,

from equations (4.17) and (4,18),

|

L ¢

§° &

“88\‘/2
e

V2
SIN < wh+de BGQP)
we) ¢ >
N ( j J L

wp\ /% )
- cﬁ[(-/aﬁ)ro]j (4.19)

o

Also, for the eguation of motion as specified by equations (A4.18) and

(4.19), the gradient of the velocity is

2 oyo‘/JV‘Kégé)vz_ | 0| 72 we) 2] T
%Tgo(}l) Nmsm m-vq:[(») cg[(ﬁ)r;]m; . (4.20)
!

o

L -

Values of FJO s %li 9 Cﬁ; sand d% are tabulated in McLachlan19 and in

?
other tables of Bessel functions. By letting Eg%—z 0 in equation (A.20),

the equation for propagation of a point where the gradient of the velocity

is zero is found to be

Wt = %N 4@2; + %K%)VFOJ— ¢ K%}VF J : (4.21)

/2
For &EA?O /}A, TOJ‘> |Q , equation (4.21) may be approximated by

/2 37

[(w/u)/(z/u.‘)} (r- r)*:*h”‘r (4.22)
with errors S 20, Solving equation (4,22) for (f-Y;} gives the dis-
vance from the cylinder boundary to a point where the gradient of the

velocity is zero as a function of time. The expression is
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/2 T '
{r-r)= [(2}4)%(@@)} (wt =+ " Int. (4.23)

(r —'ro) as given by equation (A.23) is identical in form with equation
(2.39). This is to be expected since in the derivation of equation (4.23)
/%

an approximation is made which is permissible only fqr[(u%04ﬁg> nJ >\0.
This condition validating the approximation infers that the ratio of the
radius of curvature of the cylinder to the viscous wavelength must be
large, Obviously, for rs much greater than the viscous wavelength, the
case of the oscillating plane is approached.

A distinguishing factor between the oscillating cylinder and the
oscillating plane of finite dimensions is that for the cylinder the fluid
motion along an optical path can e analytically expressed. For the

oscillating plane, an unknown edge condition exists.,
(b) Ixperiment

The propagation of obgerved zero order fringes due to oscillating
cylinders was determined. Results obtained for a 0,616 cm radius cylinder
and for a .0824 cm radius cylinder oscillating at 25 cps with a peak
velocity amplitude of 5.081 em/sec in a 1.30% milling yellow solution are
presented in figure 17, Within the range of experimental errors, these

data may be expressed in the form

(r-r) =14 (£t-005)*.28n (8.24)

where (f“‘fc) is the zero order fringe displacement in centimeters, T
is time in seconds, and 1) is an integer or zero, Y =0 is chosen such

that the plane velocity is zero when T = 0. The term .28 appears to
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generalize the expression for any zero order fringe.

Assuming that a thin section normal to the optical path and passing
through the axis of the cylinder could be viewed, equation (A.23) would
be the theoretical equation for propsgation of a zero order fringe. How-
ever, the result expressed by equation (A.24) is integrated optical effect
along the entire p:ith° Assuming the experimental slope, equation (4,23)
is represented in figure 17. TFrom the collected results shown in figure
17, it is likely that the result of the integrated optical effect along
the optical path is to cause the observed zero order fringe propagation to
differ from equation (4.23) by a phase of approximately 85 degrees. How-
ever, this conclusion is subject to the same uncertainties as pertain to

the properties of the fluid as are discussed in Chapter V.



APPENDIX B

STRESS=0PTIC AWD FLOW-OPTIC RELATIONS

(a) Methods of Descripbion of Optical Effects

A uniaxial crygtal has only one optic axis. In the ray treatment of

double refraction this optic axis is defined<®

ag a direction of light
propagation for which the velocity of propagation is independent of the
plane of polarization of the light. This propagation velocity is called
the ordinary velocity. Expressed in terms of the direction of the elec-
tric vector, if the x axis of an x-y-z-rectangular coordinate sysitem is
taken as the optic axls, then the velocity of propagation along the x
axls is independent of the orientation of the electric vector in the y-z
plane, Should the electric wvector point in the y direction light will
propagate in the z direction with the ordinary velocity. However, for
propagation in the gz direction with the electric vector in the x direction,
the velocity of propagation will have an extreme difference from the
ordinary velocity. This velocity 1s then called the extraordinary velo-
city. The crystal is then termed positive or negative unlaxial in accord-
ance as the ordinary velocity 1s respectively greater than or less than
the extraordinary velocity., 8Should the electric vector have both x and ¥y

components, the two components will propagate in the z directicn with

204, H, Frank, Introduction to Electricity and Optics, Second Edition
(McGraw=Hill Book Company, Inc., New York, 1950), p. 345.
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different velocities, thus undergoing relative phase shift., This will
generally give rise to elliptically polarized light,.

Description of double refraction according to Huygen's waveletszl in
the case of a uniaxial crystal is accomplished by assuming that each
point on a wave front gives rise to two wavelet surfaces. One of these
surfaces is spherical as 1s normally assumed for isotropic media. The
second surface 1s ellipscidal, The ellipsoid is in contact with the sphere
at two points on a diagomal of the sphere. The direction defined by this
diagonal is that of the optic axis of the crystal. This is equivalent to
defining the optic axis as that direction of propagation for which the wave
fronts constfucted from the two wavelet surfaces propagate with the same
velocity. Propagation in other directions gives rise to two wave fronts
propagating with different velocities., In some cases the ray directions
derived from these wave fronts are also different. This simplified wave-
let treatment of double refraction 1s useful in describing the displace-
ment of ordinary and extraordinary rays sometimes obtained on passage
through crystal elements. However, lack of reference to plane of polari=-
zation in definition of optic axis limits the gemeral utility of this
method of description.

The properties of the medium determining the propagation of light
can be measured along three mutually perpendicular directions, called
principal axeso22 Call these axes x, ¥y, and z, Locate a point x' on the
x axis such that x' equals the reciprocal of the velocity of propagation

in the y-z plane and for the electric vector having only x component.

21Fa W. Sears, Principles of Physics - Optics (Addison-Wesley Press,
Inc., Cambridge, 1948), p. 176.

224, T, Jessop and F. C. Harris, Photoelasticity: Principals and
Methods (Dover Publications, Inc., New York, 1950), p. 56.
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Similarly locate y' and z°' corresponding to electric vectors oriented in
the y and z directions. Torm an ellipsoid x' , y', and z' located on its
surface, This ellipsoid so formed is called Fresnel's ellipsoid of elasti=
city. For an electric vector of arbitrary direction the distance from the
origin to the point on the ellipsold defined by that direction gives the
reciprocal of the velocity of propagation of the ray. Consider the case
where y' and z' are equal, Then the x direction is that of an optic axis,
Let a ray pass through the origin and locate i1ts wave front in coinci-
dence with the origin. The point at which the wave front cuts the circle
of radius y' (z') in the y-z plane may be used to define an axis which
passes through the origin and this point of intersection. A second axis
is selected perpendicular to the first. These two axes are called princi-
ral axes in the plane of the wave front. Light will be resolved into two
components along these two axes, The component resolved along the first
axis will propagate with the ordinary velocity and the other component
with some other velocity. In the case x', y', and z' are all equal the
nedium is isotropic., In the case no two of these are equal the system

acts as a biaxial crystal.

(b) Stress-optic Relations of Maxwell and Neumann for Solids

The streéa«optic relations as developed by Maxwell and Neumann for
2
solids are clearly enunciated by Frocht 3 as follows:

, We define secondary principal stresses for a given direction
(L) as the principal stresses resultlng from the stress components
which lie in a plane normal to the given direction (L) , and denote
these by (P, Q' Mo

At each point of a stressed body there exists only one set of
primary principal stresses. However, there exists at the same point

]

ZJM, M. Frocht, Photoelasticity (John Wiley and Sons, Inc., New York,
1948), Vol. 1I, pp. 333-335.
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an infinite number of secondary principal stresses, depending on the
choice of direction through the given point.,

When a polarized beam enters a stressed medium it is resolved
into components which are parallel to the secondary principal
stresses corresponding to the given ray at the point of entrance.

The vibrations associated with the beam of light passing through
the stressed body are at each polnt parallel to the directions of
the secondary principal stresses, for the given ray.

When the secondary principal stresses remain constant between

the point of entrance and the polnt of exit, the retardation in
wavelengths or fringes is given by

! /
N=C(P-Q)T (B.1)

in which C; is the usual stress-optic coefficient, mr is the
actual light path, and P’ and Q' are the secondary principal
stresses for the direction of the given ray.

If only the directions of the secondary principal stresses
remain constant and the magnitudes vary, then

4 ¢
ﬂ%@f(%@)d“i‘. (B.2)

Stress=optic Relations for Fluids

The statement that the vibrations associated with the beam of light

passing through a stressed solid are at each point parallel to the direc-

tions of the secondary principal stresses does not necessarily apply to

fluids. In a viscous fluid in laminar motion the primary principal

stresses at a point consigt of a tension and a compression oriented at

2
45° to the flow line at the point. 4 To investigate the corientation of

the vibrations of a beam of light with respect to the stresses, a concen-

24Eo G, Coker and L. N. G. Filon, A Treatise on Fhoto-Elasticity

(Cambridge University Press, London, 1931), p. 284.
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tric cylinder apparatu325 is used. The fluid is contained in the anmilar
gap between concentric cylinders, one fixed and the other rotating with a
uniform angular velocity. The apparatus is placed between crossed polari-
zers, It follows from extension of the behavior of golids to fluids that
if the directions of polarization in the fluid are along the directions

of principal stresses, dark lines should appear along radii which are
oriented at 45° with respect to the axes of the polarizers. However, it
is found that the dark lines make an angletjﬁa s called the extinction
angle, with the axes of the polarizers. Observed values of the extinction
angle range beltween the limits of 0% and 45° and are also found to be a
function of the velocity gradient,26 The extinction angle is defined by
Edsa1127 as the angle made by the optic axis of the flow-birefringent
fluid with the streamline. The measurement of extinetion angle with the
concentric apparatus does not specifically test for the existance of optic

axes as defined in section (a) of this appendix.

(d) lechanisms for the Optical ngectsl6

te e N

Birefringence has been observed in suspensions of geometrically and
optically anisotropic molecules or particles, In laminar flow, the
Brownian motion tends to counteract the hydrodynamic orientation. Both
influences establish the actual angular distribution of the particles and
yvield the extinetion angle as the direction of maximum or minimum angular

density. The birefringence follows as the difference of the corresponding

253, T, Bdsall, &. Rich, and i, Goldstein, Bev. Scl. Inst., 23,
695 (1952).

26po 616, reference 16.

”73. T. Bdsall, "Streaming Birefringence and Its Relation to Parti-
cle Size and Shape", Advances in Colloid Science (Interscience Publishers,
Inc., New York, 1942), Vol. I, pp. 296-316.




densitles multiplied by the optical anisotropy of the single particle.

In generalj the direction of the maximum and minimpm angular densities are
not simply related to the streamlines, but differ by the extinction

angle. The extinction angle becomes a function of the velocity gradient
causing the hydrodynamic orientation. These general idess are applied

to various species of molecules and particles., IFor the small rigid parti-
cle view, in laminar flow the anisotropic particles are compelled to
rotate with a nonuniform angular velocity, In more complicated systems,
the hydrodynamic forces may indﬁce structural orientations and modifica-

tions,

(e) Integrated Optical Effect for a Cylinder or an Edge

Assume that the stress-optic relations for solids are directly
applicable to fluids. The integrated optical effects as encountered
with an oscillatihg cylinder or at the edge of an ogecillating plane may
then be dealt with as follows. Consider the sections A-A and B-B normal
to the light path as shown in figure 18. The plane is oscillating into
and out of the plane of the page.

In sectionAa& the principal stresses are oriented as shown in
figure 18, For a given light path, the directions and magnitudes of
these principal stresses are constant, depending on the distance from the
oscillating plane, in all sections parallel to section A=A and lying
between the extremes of the eoscillating plane, Within the interval, the
fringe order is given by equation (B.1).

For treating a section such as section B-B in figure 18, assume
that the flow laminae curve around the edges of the plane as they do for
an oscillating cylinder. Then, since the distance cd is greater than the

distance ab, the magnitude of the secondary principal stresses in section
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Figure 18. Principal stresses and secondary principal stresses in
typical sections normal to the light path for an escillating plane,
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B, Obgserved Zero Order Fringe for aﬁ Oscillating Cylinder

C, Observed Zefo Order Iringe for an Oscillating Plane

D, Theoretical Zero Order Fringe in a Thin iid-Section of
the Fluid for an Oscillating Cylinder or Plane

Figure 19, Summary of resulis showing the relative positions of
observed and theoretical zero order fringes for ecscillating
cylinders and planes when the surface velocity is positive

maximum,
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B-B will in general be different from the magnitudes of the principal
stresses in section A-A, The orientations will be the same. Thus,
beyond the edges of the oscillating plane, the fringe order will be given
by equation (B.2), where the integration is made over the portions of the
light path lying beyond the plane laminar regilon,
To get an expression for the resultant fringe order, combine equa-

tions (B.1) and (B.2). The expression is

N=C(P-Q)T *Cg(}? Q)dT (8.3)

pe th

For a zero order fringe to result requires that [ = 0 or

(P-QOT “‘”g(P Q?d”‘( O (B.4)

Fa%h

rather than simply ( FL'CQ) = O where the end effects are neglected.
Experimental and theoretical results are summarized in figure 19,
These show that for the oscillating plane, the shift in position of an
observed zero order fringe from its theoretical position is in the same
direction as the shift{ observed for an oscillating cylinder. These obser-
vations support the concept of zero order fringe shift due td optical end

effects.
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