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PREF ACE

In selecting a subject on which to do my graduate work,
as a summer employee of Convair - Fort Worth, I asked my
lead-man for advice concerning a thesis topic. Under the
heading "Work Program for High Altitude, High Mach Number
Study", he presented an outline for attempting to find the
areas where conventional analysis is inadequate in deter-
mining dynamic characteristics of high speed, high altitude
vehicles. This outline, when carried to completion, includes
the very general case. It also suggested, in reaching the
ultimate end, that analyses be made in successive degrees
of complexity. This thesis is an attempt of the simplest
of these complex analyses, with the equations of motion
retained in the most general form as long as possible as an
aid to the next step.

A note of explanation with reference to the list of
symbols is in order. The symbols which are used in the
body of this thesis but do not appear in the list of symbols
have meaning only in the particular chapter or subtitle in
which they occur, whereas, those appearing in the list of
symbols apply throughout this study.

I would like to acknowledge my indebtedness to Mr. H. 0.
Ankenbruck and Mr. E. L. Kistler for guidance in developing
the equations of motion, to Dr. L. Wayne Johnson and the
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" Oklahoma A. and M. Cpllege Computing Center for aid in
solutions to the equations, to Mr. Charles Brown for pro-
gramming the non-linear equations for the electronie com-
putér, to Mr. Gary W. Réid and Rodene T. Capalongan for
typing the study, and to Mr. L. J. Fila, my major advisor,
for his guidance, encouragement, and'understanding through-

out this undertaking.
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CHAPTER I
INTRODUCTION

The official decision to attempt to materialize an
earth satellite has brought the concept of space travel
from the realm of fiction to present day possibility. A
great deal of investigation and research will be required
to predict and plan for the invasion of what presently is
not well understood.

One of the problems of interest is the stability and
control of a vehicle at high speeds and high altitudes. As
higher and higher speeds are encountered, the neglected
higher order effects of linear supersonic theory begin to
grow until the linear theory no longer adequately describes
real phenomena. It would be desirable to know to what ex-
tent the application of linear theory is satisfactory as
far as dynamic stability is concerned.

As an approach to this end, a simple hypersonic theory
with corrections for supersonic flow is applied to a simple
configuration, and an investigation of the dynamic proper-
ties is pursued. These properties are then compared to
those found by ordinary linear theory applied to the same
configuration in the same flight condition.

For the non-linear investigation, the corpuscular

theory as outlined by Isaac Newton, or Newtonian Impact

1



Theory, is employed. Although there exist several theories
which are more aécurate, perhaps, in the flight regimes of
interest here, the Newtonian theory is chosen because of its
simplicity. 8Since Newtonian theory is exact at infinite
Mach number, an appropriate correction to it is used to
compensate for finite speeds.

The equations of motion are developed in the general
case; the ones pertaining to longitudinal motion are re-
tained. These equations are applied to the relatively
simple flight conditions, constant altitude and constant
Mach number. After dynamic characteristics are examined
for these conditions, more realistic conditions should be
attempted, namely varying altitude, varying Mach number,
varying altitude and Mach number sumultaneously, and final-
ly, varying altitude, Mach number, and mass simultaneously.
It is hoped that the investigation of the most simple flight
conditions yields some experience and insight to suggest
means of handiing the more complicated flight conditionso.
Only the constant altitude and constant Mach number condi-

tion will be investigated here.



CHAPTER II
DERIVATION OF EQUATIONS OF LONGITUDINAL MOTION

From Newtonian mechanics:

1. The time rate of change of linear momentum equals the
applied external force.

2. The time rate of change of moment of momentum equals
the applied éxternal torque -

General motion consists of translation of the center of
gravity of the body and rotation about the center of grav-
ity, the axes system being inertial or fixed in space.

These following assumptions are utilized for the anal-
ysis: |
1. The vehicle is a rigid body.

2. The earth is fixed in space.

3o The atmosphere is stationary relative to the earth.
Under these assumptions, Newton's equations may be applied
without modification.

For convenience a right handed Cartesian co-ordinate
system is established with the origin at the center of
gravity of the vehicle, the positive x axis fixed relative
to the vehicle along the body axis pointing upstream. The
z axis is perpendicular to the x axis, and it is positive
downward. It is necessary to relate these Buler axes moving

with the vehicle to the inertial axes fixed in space.
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Fig. 1
VELOCITIES WITH RESPECT TO EULER AXES
The equations for moments of momentum are obtained
from figure 1.
.Jl«x = Wﬂm + z¢z dm - Z¥x dm —yex dm
= <P(y+zz) dm —‘sz a’m -9)(;( dm
If the angular velocities&>é . are independent of changes

in mass, the moments of momentum are
hy = Q/G'+Z)dm - %/}ZJm ~é/yydno

(1a) = 6L - v -6y
(1b) h7: BI ¥ Jye —CPJ"X
(1e) h, = é Je -6z
It must be remembered,that the preceding eqﬁations are
taken with respect to axes moving with the vehicle.

Figure 2 shpws the accelerations due to the velogities
u,v,w,é,é,? in the general case. Figure 3 shows the moments

of momentum due to the momentums hy,hy,h, and the velocities



&,Y,é in the general case. In both figures the motion is

referred to the moving axes-

Fig. 2
ACCELERATION COMPONENTS REFERRED TO MOVING AXES

Y
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X by rway—- hy @
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Fig.3

MOMENT OF MOMENTUM COMPONENTS REFERRED TO MOVING AXES



With respect to fixed axes, the accelerations from

figure 2 become

(2a) ‘ g%L = G-V + O
(2b) W= g tuy
(2¢) %¥'= wir = ub ”+Ar¢'

From figure 3 the rates of change of moment of momen-
tum relative to fixed axes become
(3a) = h ~ht ths
(3b) = h, —hO thyV
(30') Hz = hz - 1";8 + hycp.

dt :
Using equation (2a), the longitudinal equation of

~
|

|1

|

motion changes from
Sh o= EHml) = mU +Unm
to
(42) ZSFh= mi -Vt +Un
Using equation (2c¢)
_ d - ' .
2 F "JT(m ) = mW + Wm
becomés '
(40) 2k = mlr-ub + @) +Win.
The summation of moments is
SM=%(H) =h, —h, 0 th
which, with equations (1) become
s 0 .o o ./ e , . .’
SM= 6L +8L -vJ.-¥J.-0 J,
Y N . 12 1. 4 ’ A 1 7 d 4
0 Jy G+, 08 + 901, -V o -6, -
If the XZ plane is assumed to be the plane of symmetry,
and since the origin is at the center of gravity, the terms

Thas Tz Ty Thy

&z’ vanish.



40y SM =16+L6 +09(I- )+sz(¢ -+)

- It is assumed that the symmetric degrees of freedom do
not couple with the asymmetric degrees of freedom. Longi-
tudinal motions have a negligible tendency to excite or
effect lateral or rolling motionsal The converse 1is pron
ably not true. Since this study is in the interest of
longitudinal disturbances, the above assumption seems to

be tenable. The equations of motion then réduce to

(5a) SE= m(u +wb)+ Um
(5b) SF,z mlur-ub) + Wm
(5¢) M = L6 + I,6

wheré the left sides of the equations are the external

aerodynamic forces or moments.

horizontal

Fig. 4

AERODYNAMIC FORCES O VEHICLE

lcourtland D. Perkins, Robert E. Hage Airp ane Per~
formance, Stability and Control, (New York, 194 5 383 .



The aerodynamic forces and moments on the vehicle in
flight are shown in figure 4. The equilibriwn éduafions
written from this figure are e
(62)  2fx= T-D - mgq sin@

(6b) " ZFz = mg cos & -N
(6c) ZM= M.

It is emphasized that the drag does not act along the
flight path, but it is defined as acting along the negative

x axiss



CHAPTER III
NON-LINEAR AERODYNAMIC FORCES - WING

It is assumed that the coefficient of 1ift force can

be expressed as
Cy ®=Cy+ Cy + Cy +Cy + Cy + Cy + Cy
= (% (4 tﬁrg () (6 (o)

where Cy is the coefficient of 1ift due to elevator deflec-
(el

tion, Cy is the coefficient of 1ift due to a velocity of
the elgiator deflection, etc. A similar expression for Cp
and C, is assumed to exist; the thrust coefficient Cqp in
the real case probably will be a function of time. Other
parameters which may contribute to the aerodynamic forces
are assumed to be negligibly small for this study.

The contributions of some of these parameters may be
Obscure. They would require a complex investigation which
is beyond the scope of this study-.

 There are several aerodynamic theories which could be
utilized for finding the effects of the various parameters.
Some of these theories are basic while others are complex
combinations of two or more fundamental ones. In this study,
the corpuscular theory as outlined by Isaac Newton is chosen

because of its simplicityl and its applicability2. This

la. F. zahm, "Superaerodynamics", Journal of the Franklin
Institute, CCXVII, Feb. 1934, p.l54.

2G. Grimminger, E. P. Williams, G. B. W. Young, "Lift on
Inclined Bodies of Revolution in Hypersonic Flow", Institute
of Aeronautical Sciences, XVII, 1950, p. 677.

9
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corpuscular theory or Newtonian impact theory is exact at
infinite Mach number. To adapt this theory to Mach numbers

less than infinite, a correction term is added.,
The Effects of Angle of Attack - Flat Plate

Newtonian impact theory yields
Cy= 2 sin“<.
At hypersonic speeds the angle of attack is necessarily
small because of power considerations. For small angles,
sin«( is approximately equal to «.
(:N = 2 o > 0

Linear supersonic theory yields
C e .‘-’-g-l:— = .i.o(
L d« M
This term is the one to be used here as a correction to

the Newtonian impact theory.

- .
(?) CN = 20<2 + M < "

This expression is valid only for angles of attack greater
than zeros It is desirable to have a continuous function
for positive and negative values of angles of attack. The
squared term in equation (7) is approximated by a cubic of
the form &fx3 for the range of angles of attack of interest
in this study. Sucha substitution would permit one func-

tion to represent Cy for all values of angle of attack .3

3another alternative would be Cy = 2«k/+#= , but,
because of the absolute value sign, later mathmetical
manipulations become difficult. Various methods utilized
by high speed computing machinery can handle this type of
expression, and it is for this reason the alternate ex-
pression is shown.
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To determine the coefficient Aj, it 1s assumed a priori
that the maximum angle of attack to be experienced will
ndt be greater than 0.35 radians or approximately 20°.
The constant is to be chosen in such a manner that the
approximate cubic function will be exact with respect to

the squared functicn at =0 and o(=0.35 radians.

Zogni.x = A'drjax
2(0.35° = A (.35
A= 5.7
(8) Cy= 57« 1 %

The maximum difference between equation (8) and equation

(7) occurs when K =0.234, the exact error depending on Mach
number. The largest this error could possibly become is
approximately 30 per cent, which occurs at infinite Mach
number. At a Mach number of ten, this maximum error is ap-
proximately 15 per ceﬂt° An error of this magnitude is not
intolerable for a study of this kind. Equation (8), then,

is the angle of attack contribution to the normal force.
The Effects of Angular Velocity - Flat Plate

‘The effect of angular velocity is divided into two
parts: fhe apparent increase in angle of attack due to
an angular velocity and the effects of pure rotation, éﬁ
and éﬁ respectively . |
| ‘Figure 5a shows the orientation offé with respect to
the vehicle. Figure 5b is a simplification of 5a showing
the vertical velocity of the flat plate due to the angu-
lar velocity Ci and the arm C. P. Figure 5c¢ is the veloc-

ity diagram taken with respect to the flat plate. From
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trigonometric relations the increase in angle of attack is

.66 ¢ P&
(9) Ax = tan T 0% U

Non-dimensionalizing the length C, P. by dividing by the

mean aerodynamic chord ¢, and non—dimensionalizing‘the

angular velocity & by multiplying by f , eduation (9) be-

comes
The CN is
(ll)(é)c - ¢ c
= Cy - .
g) (etad <§ N ’
(l2) Cy = 5.7(x+25p8) + H(t+259)
(et

(13) = 3 L4
3 Hgﬁ, 5.7« +35
Utilizing equations (12) and (13), equation (11) becomes

- . 2 . 2 .3 Bg-é-a
(14) C(%g) s (8.4 902-9-0( +34.7 cp T + 45,6 cfj-e' + T
i (C'f’ 7 .
(15) "= 8.4 o/oj S +34.2 ofzéo(z +45.6 0/94 &+ &ﬁi

Drag due to 6 is assumed zero.

Cge

~l

P B

Ak U

C.

Fig. 5
EFFECTS OF él ~ FLAT PLATE
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Fig. 6
EFFECTS OF 6, -~ FLAT PLATE

Next to be considered are the effects of 62 of pure
rotation about the center of pressure of the flat plate.
In figure 6, the axes x', y', and z' are used briefly to
déscribe conveniently the flat plate and are not to be
confused with the Euler axes. A trisngular planform flat
plate is chosen. The following refer to figure 6.

B
%/ :z’ﬁx

dA = Z%’ dxr = -F%‘X'C/X'

w! = increase in normal component of veloclity
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(in excess of normal component due to «() due
to é
The force on the area dA.due to an angular velocity & about
the horizontal axis e'e! is
dF = (pdA W)W
. ) 2 o= 2 .
a0 = paabe30d)e-598]
The moment resulting from the forces on the area dA is
V4
(17) dM = |x-5R| dF.
Equation (1b) is substituted into (17) and the result is

integrated. R
B 114 ’ s 2 3
M = ’ﬁloalﬁla/)( (X‘-gR) dx
_ | 516 r*
(18) | = _2_7_0_/015(9'6IR
Non-dimensionalizing by dividing by @56 and utilizing r=

3
2

from the geometry, equation (18) becomes

_ M _ 2z GBIR_ _8 3.1
%rgw T g5¢ i35 [)Zc 135 © 6_\6\
(19) = -+ &[4 .

The Effects of a Change in Forward Velocity - Flat Plate

Equation (8) is differentiated with respect to Mach

number.
3 4
(8) Cy = 27« + 3
dly = _ 4=
dM M2 )
dau . v*
| déy = - 77§
The preceding equation when integrated becomes
Cy = ———4J‘“ + c
when = 0 Cy = 0 Soe'= 0
C = 4xa

N U
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This shows the effect onGy due to a change in forward
velocity U in the general case, but it is not added to the
Cy function of angle of attack (since it was here that the

Cy was derived) -
( Y)
In a point dynamic study with a given sngle of attack

using small pertubations about a constant Mach number, the

<
the value given above for Cy would not be the correct one.
()
This function of Cy is not well understood at the present
(W
- and would require-involved study. It is assumed that the

CN function would be added to the CN function. However,
(v

Cy function is already included in the expression CN pre-
()] ‘ 1)

viously derived.
The Effects of Other Parameters - Flat Plate

The‘term‘gm is expressed as C o This term is the
coefficient of moment necessary to trim the vehicle at a
particuiar set of givén flight dbhditions, aﬁd it embfaéés
any means whatever to obtain the necessary moment including
elevator or canard deflection, jet reaction, or gyrbscopic
action. 'The aéfodynamic effects of all other parameters
are assumed either to be negligible or to have been consid-
ered in parameters previously discussed.

As a summary of the aerﬁdynamic effects on a flat

plate, Table I is shown below.
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TABLE I
AERODYNAMIC FORCES AND MOMENTS

FLAT PLATE
Parameter Cx o C,
e 5.7 4 e 0 | (57 +5)
N O e, 0
u O O 0
Je O O 0
S 0 0 | 0
a 0 O | 0
N | 6£6.4 902920( 13426 "| O '65,49036'»2« +34.2 cpPur’
t45.6 7% 18 opo- Hibgts +Eqs
- 6|4




CHAPTER IV
VEHICLE CONFIGURATION

Before proceeding to find the aerodynamic effects of
the body of the vehicle, the configuration must bé known.
In accordance with some assumptions already made the wing
is chosen to be a triangular flat plate. It is realiged
that g flat plate wing is not structurally possible, but
for purposes of preliminary investigation such as the
present case, thé simplicity of the flat plate lends it-
self more readily to analysis. The structural aspects
are therefore deliberately ignored. To get a somewhat
realistic configuration the following ériteria are assumed:

a. The body is a cone with a slenderness ratio of 8.

b. The wing is a triangular flat plate with a 70°

leading edge sweepbacks |

c. The vehicle weight is 20,000 pounds.

d. The entire volume is occupied by fuel with a

specific gravity of unity.

e. The wing loading is 100 pounds per sguare foot.
These criteria are used merely to obtain the general size
and shape of the vehicle and need not be rigidly followed.

Criteria ¢ and d require that the vehicle contain
320 cubic feet. Letting L be the cone altitude and d be

the base diameter, criterion a requires L = 8d. The

17
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expression for the volume is

ad‘L _ z
5 = 320,

from which d = 5.37 feet, L = 42.4 feet. For convenience

make L = 40 feet and d = 5 feet. The moment of inertia
of a right circular cone about an axis parallel to the

base through the center of gravity is

I %g(dz+LF) = 380,000 ft. 1b. sec.<.
Criterion e requires the wing area S be
_ 20,000 16
S = j@;j;;ﬁ? = 200 square feet.

In accordance with criterion b and the wing area S the

geometry from figure 7 yields

(20) S = 200 = #BR

B

(21) tan 20° = 5= = 0.364.

9l

Simultaneous solution of (20) and (21) yields
R = 23.5 feet

B 17.1 feet

it

[

c %R% 15.5 feet.

Figure 8 is the top view of the vehicle.



Fig. 7
WING PLANFORY

Fig. 8
VEHICLE CONFT GURATION



CHAPTER V
NON-LINEAR AERODYNAMIC FORCES - BODY
Effects of Angle of Attack - Body

In much the same manner used in finding the normal
force on a flat plate,

N = k sin® + %&%ﬁc(
is assumed for the cone. The slope of the 1ift curve is

1
dlv o 2 05?2 §
de

where &= cone semivertex angle and

= N

The effects of the second order terms in relation to the

linear term are hegligible for the cone shaped bodyo2 To

satisfy this the constant k must vanish. The Cy term is
Cy = 2 cosd ( |

and is based on the cone base area. Since it is desirable

to have the serodynamic effects for both the wing and body

non-dimensionalized with respect to a common area,

(22) oy = Z.d.gé cos?d .-

For a&ione of this slenderness ratio, the semivertex angle

§ is small and cosd =1.

l1bid., p. 681.

2%. Kopal, "Supersonic Flow Around Cones of Large
Yaw", Massachusetts Institute of Technology Technical

20
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Equation (22) then becomes
_ 5
(23) C.Ng ZO(‘Sk'

)
The cone's contribution to drag is3

(24) Cp = 2 sin®d 4 sin* (/‘ 35/an).

The term (1 - 3sin25) is replaced by the term (1 - sinZs).
With a cone of slenderness ratio of 8, this substitution
can be performed with a resulting error less than one per
cent. In accordance with the assumptions previously made,
equation (23) beconmes

(25) Cp = 28+ + fricton drag.

The friction drag is very small in comparison to wave drag
at hypersonic speeds and is considered zero. Equation (24)
based on wing area becomes

4
(26) ¢p = (28*+x*) 5"
(=)
The center of pressure on a right circular cone is
located at a point one-third the height of the cone4, and
the center of gravity is located at z point one-fourth

the height of the cone. The moment coefficient due to

angle of attack is

L LY.L
w = Cy(F-%)%
) I 9%
(27) = fé‘o(,f-s'“ .

It is noticed that the right circular cone has an unstable

moment, thst is, %%ﬂis positive.

3Grimminger, Williams, Young, p. 681.
4Ibid.
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The Bffects of Angular Velocity - Body

As in the case of the flat plate wing, the cone effects
of angular velocity are separated into tWo parts, él and é2°
In obtgining the effects of él reference is made to
figure 9 where the geometry of the body is sden in a, the
vertical velocity due to © is shown in b, end the velocity
diagram as seen by an observer on the cdne in c». Trigbnba

metric relations from figure 9c yield

-l £ 6T
(28) A = tan Qul = -
The distance J from figure 9a is
L.
J =17

Non-dimensionalizing J and é and substituting into (28) yield
(29) 4 = g Ao
Substituting equation (29) into (23), ﬁy becomes

5 I ,.5 °
(30) C. = 2fat)t = L 22,
G (ax) 3 3

cenfer of
ﬁ’}!!!ur&.

, —_
A
il 5 /FO
| b l’fé
76
as U
Fig. 9

EFFECTS OF 6; - BODY
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The drag contribution is

(31) Gy = Cy - Cp
(9, (a+a=) =) S
(32) (CD): [252 + («+A=<)"E| =
of 40
: 2 /%
(33) Cp = (28%+ %) 5
R N s

The moment contribution is
(35) Cy = Oy ;= "3%129%' ”
Now the effects of pure rotation are considered. The
normal and drag forces are assumed zero. The effect of é2
may be visualized as the moment resulting from the cone
being rotazted about a fixed axis parallel to the base and
passing through the center of gravity While the atmosphere

surrounding the cone is stationary but corresponding to

the flight conditions of the free streams

Fig. 10

EFFECTS OF 0, - BODY



24

In figure 10, the axes system X'Y'Z' and the values
¢’, x', y'y, and W' are used briefly to describe conveniently
the effects of ©,. They have meaning only in this subtitle
section. The term W' is the component of velocity normal
to the area dA. The moment about the axis e'e'! due to the
angular rotation é is expressed as
(36) M = (vertical compcnent of) [component of force

normal to surface dA] multiplied by moment
arme.

The following are referred to figure 10.

W' = (éL‘xjé sin Q°
dA = y’d#dx’-= {%X’JNJX’

The bracketed term in equation (36) is

4

(37) jﬁomponent of force normal to surface dél =/0(AANN/JVV

—p (B da dx)(~[30-06 )| (51-%)6 sy,
To obtain the vertical component of (37) it is necessary

to multiply (37) by

(38) | sin 9] .
The moment arm is
(39)  FL- %

Then substituting (38), (39) and the right hand side
of (37) into the proper place and taking the necessary

summations, equation (36) becomes

M= 268l [ [5i-x]x sy dodn,
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which, after the indicated integrations, becomes

_ _ 2 .y +
M = -5z p 616l %L
A slenderness ratio of 8 requires
r = L..
b 16

- ——L— P e 5

M 295/ 816l L

This moment when non-dimensionalized and changed to coef-
ficient form becomes

(40) Lo L8 g
%'" T 405 S :

Effécts of a Change in Forward Velocity - Body

Thé quantity j%% at «= 0 shows very little variation
for increasing Mach numbers .D Since the variation of CN
with respect to angle of attack is a linear variation, the
normal force coefficient does not vary with Mach number

nor u.
Bffects of Other Parameters - Body

"Théhaérodynamic‘effects of all other parameters are
assumed either to have been considered in parameters al-
ready discussed or to be negligible.

Table II shows a summary of the aerodynamics on the

cone shaped body.

SGrimminger, Williams, Young, p. 676.
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AERODYN AMIC FORCES AND MOMENTS - CONE BODY

Parameter

Cp Cm
< (2574 k2 24 %
& o 0
u o 0
Se o 0
5. " 0
6 z 0
é R Oy AT X S
Lo pl6]
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CHAPTER VI
NON-LINEAR AERCDYNAMIC FORCES ~ VEHICLE

The gerodynamic effects of the verious parameters, «
Q?é,u,&,él, etc., are to be summed, and this summation is
to represent the total aerodynamic forces and moments acting
on the vehicle. The effects of interference are neglected
even though they may be of the same order of magnitude as
the aerodynamic forces themselves. The present method of
approach to this problem does not readily suggest a theory
for considering these effects.

A set of typical, realistic conditions are assumed and
the total aerodynamic forces and moments are calculgted to
investigete the individual effects of the various para-

méterso The following conditions are assumed:

M = 10 H = 200,000 feet
K = 0.10 radians & = 0.03 radians per second
¢ = -0.30 § = 0.087 radians.

The configuration in figure 8 is utilized.
- 4- -
5757 (5700010 + 15 < [400005 107"
. i . e -6
t68.4cp 6" [o.ooozzz:m | +342 tp &K [—l.ﬁjxm ]

'CN

i

. . s -6
+45.6 o5& [0.00000000844- 10+ B p & [4.55 107
" Sy e -4
+zo<53”- [la,gooxzu 6] + 3’%3‘-9 [l.é /0 J
The numerical value in the bracket is the value of the term
ad jacent to it for the above chosen conditions; the brackets

are used here merely to simplify notation.

27
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Cp = ZJZE" ﬂ480x/0 }Jr o<5 [980 0°°
sL6 2 Pagrio] + g‘gfé‘f; 0.00000654:107]
tn = 5T [—/7/040‘6] t Feep 12000+ 1077
r Lo k2 4220410 +68.4 &' -0.0000666« 107
-34.2 piéc’ [F0.000001Zx 10 ~456 o' e’
&100000000005900253*}0%}"ﬁtfzi &/“15%10'ﬂ
-+ &4 [—0.00007z3~ 1074 36125" ; [ 0.344 x m’ﬂ
4—0’3—545czé]é| - o.0001z2 % 107 d
The relztive sizes of the various terms for this par-
ticular configuration at the above assumed conditions in-
dicate that the terms containing-4 and 4° are smaller than
the terms containing < by several orders of magnitude.
These smgll terms are omitted. The summations of the aero-

dynamic forces and moments are shown in equation (41); the

terms to be considered negligibly small are crossed out.

(1) ¢, - 570+ ;;o( rend [emspin e

E g

(41p) C, = (26 +«?) /5‘ '

(4le) C,, = (5.7« +%— )o/o o</ + Cmt

+684'%-&2§{j341 945‘

It is realized that only with this very particular
set of conditions are the crossed over terms negligible,
" but because of the very large difference between the crossed

over terms and the retained terms in this genersal case, it
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is believed that the crossed over terms will never become

of appreciable magnitude in flight regimes of interest.



CHAPTER VII
LINEAR AERODYNAMIC FORCES - VEHICLE

In determining the linesr aerodynamic forces and moments
on the vehicle, it is assumed that the effects deemed negli-
gible in the non-linear case are also negligible in the
linear case. It is necessary then to consider only the
linear effects of angle of attack on the vehicle. This is
accomplished by determining the angle of attack effects for
the wing and body sepafately, then taking their summation
and neglecting interference effects as in the non-linear

case .
Effects of Angle of Attack - Flat Plate

The Cy is obtained from ordinary linear supersonic

theory .
4o

Since high Mach numbers zre of interest here, the following

substitution is made.

ma-1 = M
Hence, (42) beccmes
e 4
(43) g w -
(44) Cp = O
%
(45) ¢y = Lip
’ & m= P

In addition to the C, due to angle of attack term, the term

30



31

Cm is also introduced and has the same meaning as in the
trim

non-linear case.
Effects of Angle of Attack - Body

Based on cone base area, linear theory yields

(46) CN

Based on wing area, equation (46) becomes
(47) Oy = 2ot

48) 6= Cy (5-%2) = L2

(=)
To be considered next is the drag component.

(49) CD g X

()
Equation (49) is based on cone base area.? In terms of wing

2

area (49) becomes
(50) ¢y = "%

ﬂ S
In addition to the drag effects due to angle of attack,
Sears (1954) finds the drag effects due to body thickness,

= 2eti, 2 )2
(51) CD ZTTZJ(/&?M—J‘Z>5
Combination of the effects due to thickness with the effects
of angle of attack yields
2 2 I Sb

(52) ¢p E;(“an[Zo‘ (Am"fz‘ﬂ“ﬁ"

Equations (53) show the summation of the linear aero-

i

dynamic forces and moments with the effects of interference

neglected.
5.
(532) oy = (5 +2%

lantonio Ferri, Elements of Aerodynamics of Supersonic
Flows, (New York, 1949), p. 229,

2W. Sears, General Theory of High Speed ferodynamics,
VI, (Princeton University, 1994), p. 240.




(53b) Cp
(53¢) Cm

]

[o(z + 2 %8 (s ,WZ;,-—})J

&W“"P +éoc[-53b + Cmt

9

5
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CHAPTER VIII
DIFFERENTI AL EQUATIONS OF MOTION

After non-dimensicnalizing equations (5) and (6) by
dividing (5a), (5b), (6@), and (6b) by the quantity 655 R
(5c¢) and (6c) by 55(: » then substituting equations (41)
into (6) and equating this result to equations (5) the
following differential equations of motion are obtained:
(540) 7% (i +awrb) + 8 = Co G ¥ Edsme =0
(54b) %%’L(w’uﬁ) +%\/3-’—"" + Cy -;5—”—53 cos 8 =0
(540)53%-1“#-?— - Cph = 0. |
In g first attempt for a solution to these equations, the
following assumptions are méde:

a. Forward velocity is constant.

b. Vertical oscillations take place about a constant

altitude .

c. Mass remains constant.

Assumption a immediately reduces the system to one with two
degrees of freedom. The geometry of the body axes system

yields
s =W SN X T oYy

Assumption a requires

(55) .. L = UK
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The equations of motion as they stand do not consider
the effects of centrifugal force on the vehicle as it trav-
els in level flight in its curved path about the earth.
Since the speeds of interest approach orbital\velocity,
these centrifugal force effects can not be ignored. This
correctibn is made by adding the term

1
cos @

mu”

g9 (R+H)
where R! is the radius of the earth and H is the altitude,
to the weight term in equation (54b). After substitution
of this correction and (55) into (54) and applying the
assumptions listed above, the differential'equations beconme
for the non-linear case,
~(56a) X -6 +——i—d +,ﬂu(ﬂ“+249q (L‘—J?)
(560) & - —7—ﬁ5—°“"’ (o + i3« - ¥ =0

and for the llnear case,

(570) % -6 +E (R 2= - (F- mH)—O
(570) & - ff5° (qur’z—%x - _11% -
J

where cosine © 1s assumed to be unity.

1This term is the vertical component of the non-
dimensionglized force due to the normal acceleration of
a mass traveling in a circular path.



CHAPTER IX
SOLUTION OF EQUATIONS

"This chapter is devoted to solving the equations of
motion in both the linear case and the non-linear case. The
linear equations are solved by ordinary analytical mezns.
The non-linear equations are solved by a numericasl method.

For cénvenience the equations of motion (56) and (57)

are written with the folloWing notations.

(58a) & -8 + Ax® + B + C =0
(58Db) 6 + Do’ +Ex + F, =0

Equations (58) are the non-linear ones.
(592) % -8 +Bx +C =0

(59b) & +Ex +F, =0

lin
Equations (59) are the linear ones. The upper case letters

in (58) and (59) are

5 , 5 2
(60) & = LB D = -57lf°
- g7 (4 5% - g5c [ 4 55 N L
B =L (523 E= B +2e3) o
- g __4_ ' = Cm, 45
Cw—(—“— R'?H) F __xfﬁ__c.-

The value of each of the items in equations (60) depend
on the flight conditions. It is desirgble to select a set of
flight conditions which a vehicle such as the one chosen might
encounter in high speed, high altitude, level flighto The
following conditions are selected.

M =28 H = 100,000 ft. cp = -0.25

35
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m = 70% take-off mass = 439 slugs
From assumptions already made concerning the size and shape
of the vehicle and these flight conditions, the following

quantities are calculated,

(61) 8 = 200 ft.2 u = 7768 fps.
Sp = 25mft.2 g = 32.2 ft./sec.2
I, = 26,800 slug ft.2 R'= 4000 mi. = 21,120,000 ft.
qQ = 1005 1b./ft.2 (using standard NACA atmosphere)
L = 40 ft. ¢ = 15.5 ft.

Using the flight conditions and equations (61), equation (60)

becomes
(62a) & = 0.33596
B = 0,075761 oo

C = -0.003779 , °F

For steady state conditions the linear equation (59a) becomes

Bx +C =0
from which steady state « is dbtained in the linear case.
C
= ol = -F = 0.04988 radians
steady state trim- lin.

The non-linear equations (58a) in the steady state become

A<l + Bx +C =0
from which °&gm is found to be 0.049295 radians.
| It is found that the vehicle is statically unstable in
these flight conditions for the linear casse. This will be
- discussed in detail in Chapter X. In order to have a stati-
cally stable vehicle, the flight conditions should be changed.
Static stability can be obtained readily by lowering the Mach

number to below .92 or decreasing the cp at least to ~0.3378.
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Since it is desirable to stay in the truly hypérsonic région,
the op is changed rather than the Mach number° Tﬁe ¢ is
arbitrarily placed at -0.4000. Changing the qé (as ¢p is
defined in this study) to & greater negative number, in
effect, shifts the wing farther aft. Using the new vaiﬁe
-0.4000 for ¢ » the remaining quantites in (60), in addition
to<£t,hand d% _are shown in (62b) .
(620) E = -3.61382 Lt
D = 265o0500 B o g

0.04988
0.049295

F = -quqm- -o°180257 oo { £
Analytical solutions to the linear equations are pursuéd
first. After differentiating équation (59a) with respect to
time, the quantity § is eliminated from (59a) and (59b).
(63) X + B + Exx + £, =0

Equation (63) written in operator form becomes

(07 + 8D, +E)x = - F.

The characteristic equsticn becomes

and a = —2"5 = -0.038
b= ZzJ4E-B* = 1,200
Therefore the general solution is
X = L e(wbd)tﬂ“/cz e(a’bm = edt < cos bt + /cz sin Lt).

The particular sclution 1s obtalned from

°C‘(D+BD+E) .
:—(——__B_.Dﬂ_+ )F =—-—t;f'—"--
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In order to determine the constants;cl,,cé,_ci, and b, it
is necessary to establish initial conditions.

The initial conditions are derived from the following
statements. The véhicle is assumed to be in level flight
in a pitch attitude 0.35 radians greater than trim for level
flight with zéro velocity of angle cof attack. Thé vehicle is
released from this attitude and alloWed to move unhampered

thereafter. These initial conditions are written as
< =6 = 035 +oCt

o =0 ; t=0

or for the non-linear case

& = 60 = 0339235

or for the linear case

039986

&
]
N
il

Using the initial conditions, the constants in equa=-

tions (64) become

ey = 0.175(1+ $4) <{ = 035
€5 = 0.175()-%4) | <b = 0,00698 .
Equation (64a) becomes ,
(@ +ba)t @bt F.
(65) o = 017501+ %4)e to175(1-F)e -
The term & is obtained by differentiating (65).
(atbo)t (a-bi)t

(66) & = 01750+ 2i)a+bs) € + 0.175(1-%4)a-bs) €
Substitution equation (66) and (65) into (59a), then inte-
grating with definite limits (& from 6, to#, t from O to t),

after simplification ¢ is obtained as
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240 a
6 = C’ [035(1'!’4”,)605“ + 035{ + b+a)} smbi]
-035[1+ 28] - Bhe 4 ¢ +90
which, when numerically evaluated becomes

—08

(67a) O = [035 cos 1.9t + 00209 sin iaﬂ + 0.04388.
Nﬁmerically evaluated, equation (é4b) becomes
(670) o = 77035 wos 19t + 000698 1.94] + 004998,
Equations (67) are the solutions of the linear différéntial
equations for this particular set of flight and initial
conditions- |

The non-linear equations, bécause of the difficulties
encountered in analyticasl solution, are solved by a numeri-
cal method for systems of simultaneous equationsol Values
of « and 6 in the neighborhood of « and & at time eguazl to

zero are assumed to be represented by these Taylor's series.

(68a) o= oL, + ot + dl_t + ';j‘a -+ “ét4 + °‘f—5—t5

(68D) 6 = 6, +4t +&E +1Li *QE +_a;_t_

For convenience equations (58) are rearranged and written as
(692) % = 6 - [As’ +Bux +(]

(69D) § = [0+ Ect + Fop]

The initial conditions provide enough information to calculate

9 from (69a) and 9 from (69b) .
b, = % + Al + B, +( = 0.047860

8, = -[b + Ex, +F,] = -1817024

nen-h
The derivative o, is obtained by differentiating (69a), then

substituting values now known.

X, = 6 -[3Ax'+B]lx, = -18.17024

ljames B. Scarborough, Numerical Mathematical Analysis,
(Baltimore, 1950), pp.271-273.
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The derivative 6% is obtained by differentiating (69b), then

substituting values now known.

e 2 . _
6, = -[3D«* +E]x, =0
The derivative ai is obtained by differentiating é&, then

substituting known values.

L = 8, ‘EA«ﬁEﬂééa - 6A x, % = 4.29640

By differentiating 6, the value of 6 is found.
v ol N Z
6, = B0t +E[% -6 Do, = 2369.21

This alternating process is continued.
v

o = G -BA+ BJZ - 1BA%, X, -~ bAK, = 2368.19

6, = -[BD«+E)E, - 1BDx,L,&, -6 D% =-5602058
« = 6 -[Ac 1Bl ~36AL, +I8AL X,

T 24 Atok, &, = —322.959

Equations (68) and (69) become

(70a) & = 03992395 + 004786t - 9.065121
+98 7170t* - 4.46838t°

(70b) o = 0.399295 - 9.0851zt° + 0.716066t
t9g8.6747t* - 2.49132%¢
(70¢) < = - )B.17024t + 2./4819t% + 394.6988%1
-13, 4566 t*
(704) O = o + 03359« + 0075761 «x - 0003779
(70e) 8 = —26505000° -3.61382 = + 0.146396.

Selecting a time interval h of 0.0l seconds, equations (70a),
(70b), and (70c) are calculated for values of t equal to -0.02,
~0.01, 0, 0.01, 0.02. These values are shown in Table III.
Equations (704) and (70e) are calculated for the same values

of t by using the proper values of oC. The higher order
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differences 48,86, A6 , A6 , etco,”are found by taking the
difference of the ﬁreceding two numbers in the preceding
column. The new line of the table is found by

(71la) ABO = k[é’ SEDAG -5 0.6 -3y 0:6 - 55 A4é]

(71b) A6 = h[6 +7a8 + 508 + 54,6 +-§'—A4§]
(71c) Ax = h[d - Lak - A - ok - 8]
(71d) & = ‘265.05.’"0“0063 —3.51382% + 0146396
(71le) o = é - 0.33596°C - 0075761« + 0,003779 

For the new line t = C.03 equations (71) become

A8 = 0.002232 & = -17.359053
A6 = -0.174375 o = -(0.533135
AL = 0002715 .

After entering these values into Table III the new values
for ¢, <, é, and the higher order differences are.found,
thereby completing the line for t = 0.03. The next line for
t = 0.04 is found in the same manner using equations (71) .

In this way the values of 8,<, #, &, and & can be found at
any time t by continuing to lengthen the table. This reiter-
ative method of the solution of the non-linear equations
readily lends itself to computation by high speed computing
equipment. Since the accuracy of the answer depends on the
smallness of the time interval h%&éﬁch a means of computing
will render answers as accurate as desirable over a lengthy
time period without involving much more work. It is necegs-
sary, in any case, to have accurate starting values. Fig-

ure 11 shows « and & for the first 900 lines.
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I

NUMERICAL SOLUTIONS OF NON-LINEAR EQUATIONS

t 6 100 | oK AL | 8 |66 0.8 |0,6 18,0 | ¢ |ak o laclax| & |88 (0.8 |88 (a6
-0,02 394720 39567/ 408112 361103 b7, 701851 |-
-0.01 397303 003182 .398387 looz716 229167 178945 ,181522 |-.179581 -18.052096| 350245

O 1399295 |p01386 1399295000908 |047860 |18|307 [-00Z362 0 181522 (001941 H&ITO250 L1815 4. |, 23209/

0.01 1398865 500430398389 000906 |-133446 1181306 000001 |.002361 -181092 |-,181092|.000430 | 00237/ -18052368,1/7882 |.236036 | pp3945

0.02- ‘395634' 002231 | 395683 |~002706 |~312380 |~176934 |.002372 |.002373 000012 |~359391[~178293 .002733 |.002363 |.000008 |-17203#051,348963 | .23 108/ |~ 00£955 | ~.p0gage
0.03 394402 \-002232).392968 002115 [-486755~114375 | 004559 002187 {-000186 |~533135 - 143974 034325 | 031532 |.029169 |-17352053 344351 |~004612 |235693 |<230738

ct
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CHAPTER X
CONCLUSIONS

Figure 11 is a displacement-time graph of 6 and « for
the linear and the non-linear cases for the first nmine sec-
onds after the vehicle has been relegsed from disturbed
conditions. This figure will be the basis on which the
conclusions are drawn. The non-linear results, as they
were found by the numerical method and shown in Table III,
depend on the accuracy of the starting values and the time
interval h. It is possiovle that the equations (71) for
starting the new lines in Table III at some time a number
of h intervals after the start no longer converge properly
because of large higher order differences. However, since
the machine computed values coincide with hand computed
values, at least for the first new line (t = C.03), and
since thg starting values are correct to six decimal places
and the interval h is 0.0l seconds, it seems reasonable to
assume the machine computed values are correct to two deci-
mal places, the accuracy shown in figure 11.

«+ In the introductoery chapter it is suggested that it
would be desirable to find the degree to which linear super-
sonic theory could be utilized in predicting dynamic stabil-
ity at high speeds compared to Newtonian theory. In the

development of the equations of motion, in finding the

44
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aerodynamic effects, and in solving the equations of mofion,
numerous assumptions are made. The results can be evaluated
only within the limitations imposed by all these assumptions.

It might be desirable, at this point, after having ap-
plied these assumptions, to examine the aétual situation
under consideration. A simple éonfiguration consisting of
a flat plate and cone is disturbed approximately twenty
degrees from trim, level, hypersconic flight and allowed to
oscillate as a two degree of freedom system. The aerodynam-
ic forces acting on the vehicle emanate from a straight line
1lift curve in the linear case and f;om a cubic 1ift curve
fitted to a Newtonian impact theory plus a linear term curve
in the non-linear case. This’cubic approximation fits ex-
actly at only three points. 'A particluar set of flight
conditions is chosen and the results of the soluticns ©f the
equations of motion are shown in figure 11.

In selecting the flight conditions a rather interesting
phenomenon is observed. For the conditions M = 8, H = 100,000
feet, ¢ = -0.25, the serodynamic moments for the linear case
and the non-linear case, equations (53c) and (4le) respec-

tively, are shown in figure 12.

Cm Cm

mea-' /f\
H +0,1

o ol \j/ o
/ |
|

L ' Fig. 12
MOMENT CURVES FOR cp = -0.25
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Since a positive slope in the Cp verses o curve indi-
cates static instability, the linear case is everywhere un-
staeble. The non-linear case, however, is ststically unstable
in a narrow band extending aepproximately O.1 radians on each
side of zero angle of attack. Outside this region the ve- -
hicle is statically stsble. If the wvehicle in the non-linear
case trims at some angle of attack greater than 0.1 radians
and never oscillates to engles of attack in this beand, it
would be statically stable and have possibilities of being
dynemically stable. In these given flieht conditions the
vehicle trims at 0.049295 radians which is within this static
instability band. The vehicle would move either to negative
angles of attack or to positive angles of attack outside this
static 1nstability band but never trim at 0.049295 radians.
This shows only one case in which & vehicle may be statical-
ly unstgble in the linear case yet statically stable for
the non-linear case and demonstrates one of the effects of
higher order terms. Since dynamic stability presupposes
static stability, the & is changed to -0.4000 to obtain a
statically stable vehicle in both the linear and non-linear
cases.

Attention is now turned to figure 11 in which are
shown the dynamic characteristics of the vehicle in flight
conditions producing static stability. In the linear case
the displacements € and < are almost ceincidental. This
means that the vehicle maintains very nearly a level flight
path. These displacements dampen to one helf the initial

amplitude in approximately eighteen seconds. The freguency
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of the linear oscillations is

f= %%— = 0.303 cycles per second.
The period is 3.30 seconds per cycle.

(The non-linear displacements demonstrate a tendency of
dynamic instability from the outset. During the first cycle,
the period is approximately 0.96 seconds per eycle. The
period becomes shorter for each successive cycle. The period
at t = 9 seconds is approximately 0.37 seconds per cycle.
The median of the 6 oscillations tends to drift in the neg-
ative direction while the median of the « oscillations
stays rather well centered along trim o(. This drift seems
to indicate a diving tendency of the flight path. There
appears to be no positive correlation between the linear
and the non-linear displacements. Since the displace-
ments approach the order of magnitude of two radians, it
seems of little value to consider any time after nine seconds
since the Newtonian theory and the equations of motion are
not valid for so large a displacement.

There are several possibilities for the large discrep-
ancy in the linear and the non-linear results. The essen-
tial difference between the'eqaétions of motion in the non-
linear case, equations (58), and the linear case, equation
(59) is the non-existence of the‘constants 4 and D in (59).
Examination of equation (62) with reference to the relative
magnitudes of the constants reﬁéal”thétD, the constant for
the o term in the moment equation, is almost a hundred

times greater than the largest of the others. This makes
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D an extremely powerful and most probably the controlling
factor in the discrepancy between the displacements in

figure 11. From equation (60) it is noticed that the wvalue
of D depends not only on g, S, ¢, and Iy, which are functions
of the configuration and flight conditions, but, more im-
portantly, from the discussion preceding equation (8), it
depends on the manner in which the SN cubic is fitted to

the Newtonian quadratic. Even though Newtonian theory has
merits for predicting steady state aerodynamic forces at

high speeds, it may not be readily applicable for prédicting
aerodynamic effects in dynamic situations. This question

of applicability probably will remein for experimentation

to answer. It is possible that quite different displacements
for § and o€ may have been attained if the system were treated
with three degrees of freedom allowing fore and aft motion
rather than limiting the vehicle to two degrees of freedom

as 1n this study. This treatment might be considered for
subsequent investigations. However, the extreme size of the
constant D seems to offer the most plausible explanation for
the contrast. It would be of interest to investigate several
different means of approximating the g Guadratic to get a
continuous function as well as investigating the results of
using the quadratic itself. These investigations would be
desirable before disregarding the Newtonian theory for
dynamic situations, even though the manner in which New-
tonian theory plus the correction and its cubic approxima-
tion has been used in this study suggest that such a discharge

be made.
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