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PREFACE 

Several factors have prompted us to attempt a project 

that would be of direct and practical value to the teacher of 

physics and/or mathematics. We believe that a definite pro­

gram of mathematical training for the prospective physics stu­

dent is badly needed. An inadequate mathematical background 

leads to failure in physics and a consequent lack of interest. 

In this paper are many of the basic formulas that should 

be an important part of the high school mathematics courses. 

Included, also, are numerous examples of the various types of 

verbal problems from physics with a suggested method of analy­

sis. The use of this material in the mathematics courses 

would generate more interest and make the mathematics courses 

more meaningful. 

Perhaps the most important part of the paper is tha_t which 

deals with a review of basic mathematical princ'iples and skills. 

This material should precede the work in physics. A review of 

this material would emphasize the importance of mathematics in 

physics and would prepare the students to solve the nroblems 

tha.t he will encounter in his study of physics. 

We make no claim to originality, except perhaps to the 

aPrangement of materials. We aclmowledge the valuable assist­

ance and suggestions from our colleagues in the National Sci­

ence Foundation Institute and especially to Dr. James H. Zant, 
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the Director. Also, we are grateful to Dr. Frank M. Durbin, 

Professor of Physics at the Oklahoma State University, from 

whom we received many important suggestions. 

Finally, we express our sincere appreciation for this 

year of academic training made possible by the National Sci­

ence Foundation. 
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CHAPTER I 

INTRODUCTION 

It is obvious that students who have an inadequate 

background in ma thematics aI•e not going to succeed in physics. 

The Joint Committee A.I.P., A.A.P.T., N.S.T.A., on Te,aching 

Materials makes the following statements about high school 

physics: 

11 There should be more use (than at present) of 
algebraic, trigonometric, and geometric expressions 
and of other simple mathematical techniques. They 
(texts on physics) make a fetish of avoiding even 
the simplest mathematical reasoning. 111 

There is, the writers feel, an urgent need for a defi­

nite and purposeful attempt to insure adequate mathematical 

preparation of potential physics students. 

The purpose of this report is to prepare materials that 

will help to improve the mathematical preparation of high 

school physics students. The use of this material should 

facilitate the development of an adequate mathematical back-

ground for those students who plan to study the physical 

science courses in high school, especially physics. An 

auxiliary result should be an increased interest in mathematics. 

lFred T. Pregger, Chairman, nHigh School Physics," A Report 
of the Joint Go:mrhittee on High School Teaching Materials, 
Physics Today, Vol. 10, No. 1, (January, 1957), pp. 2()-21 .• 
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One reason for the lack of interest in mathematics may 

be attributed, in a large measure, to the inability of stu­

dents to see any practical use for mathematics. At the high 

school level, many students must see the purpose for learning 

something if they are to be interested and to do their best 

work. Remarks by parents, educators, and other adults to the 

effect that they have never used any mathematics beyond arith­

metic tend to develop attitudes in youngsters that dull their 

interest in algebra, geometry, and trigonometry. As a conse­

quence, many students fail to take the mathematics courses 

offered, or if they do· take them, they do not try to learn 

much. Failure to see and to appreciate the relationship be­

tween mathematics and science has, no doubt, been a very 

large factor in the lessening of interest in mathematics. 

The beginning science courses in high school, that is, general 

science and biology, have very little mathematics and often 

the student develops the impression that there is little or 

no connection between science and mathematics. In the later 

courses, chemistr•y and especially physics, which require a 

reasonably good grasp of high school mathematics, the student 

finds that he cannot succeed because he is unable to solve 

the problems. By this time, it is usually too late for him 

to overcome his deficiency in mathematics, and rather than 

repeat certain courses or take additional courses in mathe­

matics, he decides to study something requiring less mathe­

matics. 
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Use of the material suggested here should Teduce the num­

ber of failures in physics due to inadequate mathematical prep­

aration. Some of the weaknesses in mathematica'l preparation 

which the use of this material should correct are described 

by the staff members of the Department of Physics, University 

of Nebraska, in their paper, Secondary School Preparation~ 

College Physics Students. They list the following as weak­

nesses in mathematical preparation for college physics stu-

dents: 

1. Students are afraid of mathematics, so that they react 
negatively to the mathematical treatment of a uhysical 
concept. It is felt that mathematics as a tool in think­
ing is avoided in the public schools, and that this pro-

·vides a disservice to the terminal student as well as 
_the college-bound student. The habitual use of mathe­
matics as an analytical tool in the understanding of 
concepts in junior high school and high school could 
help overcome this difficulty. 

2. Students do ~ot ~ the ability to analyze.! 
problem. Often a student can memorize and manipulate 
formulae and substitute numbers in formulae, but hits 
a stone wall when he is required to use a formula to 
explain a physical situation. It is felt high school 
students should be given problems complicated enough 
to require some analytical thinking, and less emphasis 
should be put on learning to work a certaiN type of 
problem by memorizing rules. 

3. Students~ little understanding of mathemgtical 
manipulations. These students are apt to rail in phys­
ics. Others can perform most of the mathematical ma­
nipulations required, but have little understanding of 
these processes. These students make a better showing, 
but make many errors, and are usually not adept in ana­
lyzing problems and situations. The best student is 
no doubt the one who can perform the manipulations as 
second nature and, in addition, understands therii well.2 

2 11 secondary School Preparation for College '.Physics Students." 
An opinion of Staff Members of the Department of Physics, Uni­
versity of Nebraska. 



They make the following statement concerning science 

courses in the high school: 

11 Concerning science courses in high school, · the depart­
ment members agree that it is not essential for the 
physics student to have had high school courses in 
science--that it is of far more importance·that mathe­
matical background be firmly established. · However, 
it is realized that most students develop strong 
interests in the secondary schools, and the role which 
science.courses nlay in helping to develop these in­
terests is not to be minimized. 113 

The statements concerning the mathematical preparation 

of college physics students are equally apropos to the prep-

aration of high school students. 

4 

Selection of materials for this paper has been based on 

a careful analyses of the problems in five typical high school 

physics texts. Also, the problems in a first-year college 

physics book were analyzed to determine the mathematics pre-

requisite for successfully solving the problems. 

'11he writers used their own judgment in the selection of 

topics; however, they received many suggestions from teachers 

of high school physics. The writers suggest tha.t the second 

chapter of this material be covered thoroughly the first few 

days of the physics course. The other material may be taken 

up at any appropriate time in the course. 

3rbid. 



CHAPTER II 

REVIEW OF BASIC MATHE:MATICS FOR PHYSICS 

The following questions in science must be answered by 

recrouse to mathematics; How much? How many? How large? 

How long a time? The mathematical skills and knowledge 

necessary to find the answers to these questions in physics 

are often lacking in students beginning a course in high 

school physics. Either they never did know or they have 

forgotten. 

"The science teacher must assume some of the responsi­
bility for reteaching and for presenting new material 
regarding applications of processes apd principles as 
well as symbols and formulas needed. n4 .· 

Mathematical skills and principles dealing with ratio 

and proportion, scientific notations, etc., that are consid-

ered essential for success in a well-taught high school phys-

ics course will be discussed in some detail in the following 

pages. 

RATIO AND PROPORTION 

Since a great number of problems in physics involve ratio 

and proportion, it is important that this type of an equation 

be thoroughly understood. 

4.rames H •. Zant, ":Mathematics in Science, 11 Science Education, 
Vol. 25, No. 6, (November, 1941), p. 335. 

5 



6 

The ratio of two numbers a and b is the quotient of!. 

divided by b or%• A statement of the equality of two ratios 

is called a proportion, thus: 

2 4 X 8 a C 

- • • . = - ' ' 
3 6 5 15 b d 

All of these are statements of equality of ratios and are, 

therefore, proportions. Since 1)roportions are algebraic equa-

tions, they may be rearranged in accordance witn the laws of 

algebra, that is, we may add, subtract, multiply, or divide both 

sides by the same quantity without changing the equality. For 

example, suppose we wish to solve the following proportion for x: 

X b 

= 
a C 

(1) Multiply both sides by a. 

1 
tx 

t 
1 

= 
ab 

C 

ab 
X Ili­

c 

Thea's in the left member of 

the equation cancel. 

Notice that multiplying both sides of the equation by!. 

removed the a from the denominator of the ratio on the left 

side of the equation and introduced an !_into the numerator 

of the ratio on the rir)lt side of the equation. From this, 

we may deduce the following rule: A factor of the denominator 
"--~~ ~ ~- ------------

of either ratio may be replace3 ,£Zone if the factor is written 
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~ the numerator of the other ratio, and conversely,~ fac­

~ of either numerator may be replaced~ the number one and 

written into the denominator of the other ratio. --- ---
This procedure is illustrated below with a more compli-

cated problem: For ex~mple, solve the following equation for v. 

mv2 m(6.6 X 108) (6.03 X 1027) 

The problem is to isolate the v2 on the left side of the equa­

tion, then take the square root of both sides of the equation. 

Them from the numerator of the left member is moved to the" 

denominator of the right member. The quantity 4.27 X 105, in 

the denominator of the left member is moved to the numerator 

of the right member, thus: 

,n(6.6 X 108) (6.03 X 1027) L.4,,;i7 JC 105f 

,n~ ··27 X 105)~ 
(4.27 X 105) 

The m's cancel and the 4.27 X 105 cancels with one of the fac­

tors of the squared quantity in the denominator. Taking the 

square root of both sides, 

(6.6 X 108) {6.03 X 1027) 

(~_.27 X 105) 

)
6.6 X 6.03 

= 1015 
4.27 

4.27 
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It is seen that moving quantities from the denominator of one 

member of the equation to the numerator of the other member of 

the equation enables one to simplify a problem rather quickly. 

Once the mechanics of this simple procedure is grasped, one· can 

simplify proportions rapidly. The student should notice that 

powers of 10, like any other quantity, may be moved from numer­

ator to denominator or vice versa by changing the sign of the 

exponent. Powers of 10 are combined by adding their exponents. 

Careful study of the above example will make this process clear. 

SCIENTIFIC NOTATION 

Many of the problems in physics involve very large numbers 

or very small numbers. The student must learn to write these 

numbers in a convenient manner or he will have difficulty mani-

pulating the numbers. A review of the scientific notation is 

appropriate at this time. 

From arithmetic, it is known that division by 10, 100, 

1000, etc., moves the decimal one place, two places, or three 

places respectively, to the left. Whereas multiplication by 

10, 100, 1000, etc., moves the decimal to the right in like 

manner. 

10°. 1 10° = l 

101 II 10 10-l = 1/10 = .1 

102 • 100 10-2 = 1/100 - .01 -
103 = 1000 10-3 = 1/1000 = .001 

104. 10,000 10-4 = 1/10000 = .0001 

etc. etc. 
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It,is seen from the preceding figures that multiplying by 1/10, 

1/100, 1/1000, etc., is the same as dividing by 10, 100, 1000, 

etc., therefore, multiplying by 10 to any positive power moves 

the decimal point the number of places to the right indicated 

by the exponent. The number 660,000,000 may be written as 

6.6 X 108 or 66 X 107 or 660 X 106. In each case, the expo-

nent of 10 indicates the number of places the decimal point 

has been moved to the left. Now every positive·nurnber can 

be written in the form g X 10k where n is greater or equal 

tol but less than 10, and k is a positive or n~gative inte-

ger, or zero. To change a positive number given in decimal 

form, to this form, first write the non-zero digits of the 

number and place the decimal point after the first such digit 

counting from the left. A decimal point thus placed'is said 

to'be in standard position. Then k is the number of 'places 

the decimal point in the original number is removed from the 

standard position. The exponent k will be positive o,r zero - -

(6.6429 = 6.'6429 X 10°) if the original number is greater 

than 1 and negative if the original nUJ.uber is less than 1. 

Writing a number in this manner enables one to ~scertain 

rather easily the magnitude of the product. When a number 

is·written in this manner, the integer k is thee characteristic 

of' the logarithm of the number. ·Another advant~ge is that it 

enables one to locate the decimal point accurately when using 

the slide rule. 

The advantages of this notation are illustrated by several 

examples. 
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To calculate the value of the acceleration due to the force 

of gravity on an object 2000 miles from the earth, this formu-

la is used: 
G mM 

mg= 
r2 

or 
GM 

g=­
r2 

Given: 

G = 6.66 X 10-8cgs units (G is the constant of proportionali 

r = 6000 miles = 6000 X 5280 X 12 X 2.54 centimeters. 

M (mass of earth)= 6.03 X 1027 grams 

Find: g (the acceleration of a body due to the force of gravity. 

Substituting in the equation and writing the numbers without 

using the scientific notation gives this equation: 

l 

l 
(.000000066) (~) (6,030,ooo,ooo,ooo,ooo,ooo,ooo,000,000) 

~=~~~~~~~~~~~~~~~-

[{"6000) (5280) (12) (2.54J7 2 

Dividing both sides by!!! leaves the factor 1 in their places. 

Now the equation is written using the scientific notation. 

(6.6 X 10-8) (6.03 X 1027) 

-·--···---------
[{"6 X 103) (5.28 X 103) {1.2 X 101 ) (2.54.27 2 

• 

3.98 X 1020 3.98 

: = --- X 103 
8.23 X 1017 8.23 

= 484 cm/sec.2 
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It is obvious that much time and trouble is saved by using 

the scientific notation. Also, there is much less chance of 

an error. Using simpler illustrations, the use of the sci­

entific notation will be shown in detail. 

One of the very great advantages of using the scientific no­

tation is that it enables one to locate the decimal point 

accurately. Looking at the problem below, it is rather diffi­

cult to tell by inspection where the decimal point would be 

located in the answer • 

• 00042 X 756 

1400. 

Now this is written using the scientific notation. 

(4.2 X 10-4) (7 .56 X 102) 

It can be seen that 1.4 will go into 4.2 three times and that 

three times 7.56 is roughly 22 or 23. the answer is roughly 

22 times 10 to some power. The actual answer will be 

3 X 7.56 X lo?. H th ft b d t i dn ow may e power o en e e errn ne T 

One merely has to remember and apply one of the·· basic rules 

of exponents, that is, any factor to a power may be moved 

from the numerator to the denominator of a fraction by chang-
m2. 1 ing the sign of the exponent. m-2 In the above problem, 

take the 103 from the denominator and place it in the numerator 

and change the sign of the exponent to minus. Th.en 10-4; 102 ; 

and 10-3 is in the numerator. Adding the exponents -4, +(-3), 

+2 = -5. The answer is 22.68 X 10-5 or 2.268 X 10--4 : .0002268. 
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The scientific notation is also very helpful when finding 

square roots of very large or very small num.ber·s. Suppose 

one wishes to find the square root of •• 0000000016. Using the 

scientific notation this would be written as 

V 1.6 X 10-9 

This is = to v 16 X 10-10 

The latter form. is the form needed for this reason: 

Finding the square root of a number to a power is merely a 

matter of dividing the exponent by two. If the exponent is 

an even number, the exponent of the square root will be an 

integer; thus, fractional exponents are avoidedr, in ta:king the 

square root when the exponent is an even number. Going back 

to the problem of finding the square root of 16 X 10~10 the 

exponent -10 is divided by two which gives -5 for the exponent 

of the square root of 10-lO. Now all that is necessary to 

finish the process is to take the square root of 16 •. The ans­

wer, then, is 4 X 10-5. Had the form 1.6 X 10-9 been used, 

the answer would have been l..265 X 10~4! which is the same 

answer, but this answer would have retquired the use of log 

tables to evaluate. 

CONSTANTS, VARIABLES, AND VARIATION 

In the formulas in physics, as well as in other branches of 

science, some of the symbols are intended to represent fixed 

numbers, while to other symbols various values may be assigned 

according to the conditions of the problem. 
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A symbol which, throughout a discussion, represents a fixed 

number incapable of change is called a constant. A symbol 

which, throughout a discussion, may assume different values 

according to some rule, is called a variable. For example: 

the area A of a circle in terms of its radius is given by the 

formula A = 1rr2. The number represented by the symbol 1!' is 

a constant, but rand A are variables, but must be positive 

real numbers in this case. 1T is an absolute constant since 

it has the same value in all discussions. Arbitrary constants 

retain the same values throughout any one discussion. 

If two quantities,.! and z, are related in such manner that 

however the value of.! may change, within its domain, a corres-

ponding value of z is determined and the ratio of z to x: is 

always constant, then z is said to vary directly as.!• That 

is, z varies directly ~s ·~ if l = k, or y = kx, k being a x 
constant. The constant k is called the constant of variation 

or the proportionality factor. The amount of energy that is 

released when matter is converted to energy varies directly 

with the mass. In equation form, this relationship would be 

written as: 

E oc. m or 

To write thp relationship without the variation symbol, a 

constant has to be introduced. This equation shows that if 

the mass is doubled, the amount of energy would'be doubled, 

i.e., the energy varies directly as the mass. Another type 

of variation comraonly encountered in physics is called inverse 

variation. If two quantities,~ and z, are so related that 

however their values may change their product equals a constant, 
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then the two quantities are said to vary inversely. In other 

words, if the quantity z increases as the quantity~ decreases, 

then the two quantities are said to vary inversely. The equa­

tion expressing the relationship between the pressure and 

volume of an ideal gas illustrates inverse variation. 

PV = K or p = K 
V 

If the volume is doubled, the pressure decreases to one-half 

the original amount~ If the volume is reduced by one-half, 

the pressure must be doubled. Many formulas in physics in-

volve more than two variables, some of which may vary inversely 

and others which may vary directly. For example, the formula 

expressing the relationship between the gravitational attraction 

between two bodies and the distance between them illustrates 

both direct and inverse variation. 

This formula states in·mathematical 

F -- form that the force of'attraction 

between two bodies of fuasses m1 

a.rid m2 varies directly as the product of their masses and 

inversely as the square of the distance between their centers 

of' gravity. 

K is the constant of proportionality. It cannot be e·mphasized 

too strongly the importance of the ability of t~e student to 

translate formulas into a language expression and vice versa, 

i.e., to translate language expressions of relationships into 

a mathematical equation. Suppose one knows tnat the volume of 

a gas varies directly as the absolute temperature and inversely 
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as the pressure. In mathematical symbols, these expressions 

could be stated as follows: 

V ex:: t and V cC 1 -p 

Putting the two statements together would give: 

V oc __:12_ 
p 

The variation symbol may be replaced by an equal sign if a 

constant is used. 

V • kt 
p 

K is the constant of proportionality for a given mass of gas. 

The student will learn later that this constant is equal 

to ..2:_, for an ideal gas. 
273 

The value of constants in physics are usually determined from 

experimental data. Occasionally the student may be given ex­

perimental data,from_which.he is to ascertain the value of a 

constant to solve a similar problem. The following probl~m 

will illustrate this procedure: 

The centripetal force requir>ed to constrain the motion 

of a particle to a circle varies directly as the square of 

the velocity V and inversely as the radius r. If the force 

is 80 when V • 9 and r = 4, find the force when V = 10 and 

r = 4.5. First an equation is written expressing the rela-

tionship between the quantities. 

f = KV2 
r 
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Here, again, K is the constant of proportionality for the mass 

involved. Putting in the equation the values given for the 

various quantities enables one to solve for K. 

80 K X 92 
= 4 

4 X 80 : 81 K 

K : 4 X 80 = 320 · · e1 · ·ai· 

Having fo,md the value of K from experimental data, this value 

can now be used to solve other problems of the same na tur•e. 

The value of K can now be used to find the force required 

when V = 10 and r = 4.5. 

f = 
~ X 102 

4.5 = 32000 
81 x·40 = 

Later the student will encounter this formula in physics and 

will find it written like this: 

r = 
The student will notice that there is no symbol '.for a constant. 

That is because the units have been chosen to make the constant 

equal to one. In order to have the constant equal to 1, the 

force has to be in dynes, the mass in grams, the velocity in 

centimeters per second, and the radius in centimeters. 

The procedure for developing a fo:emula will be illustrated 

by the following: 

The factors involved in centrifugal force are the mass, 

radius, and velocity. The general character of the variation 

can be determined by three simple experiments. T'ne students 

whirl weights at the end of' strings and note how hard the 
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string pulls on th~ir fingers. The experiment is varied as 

follows: 

1. Rubber stoppers of different weights but with strings 

of the same length are whirled at the same rate of speed. 

2. A single stop9er is whirled at dif'ferent rates of 

speed but with the string of constant length. 

)". A single stopper is whirled with as nearly as possible 

a constant linear speed but with varying lengths of string. 

It will be obvious to the student that as the mass is 

increased, the centrifugal force is increased, therefore, 

this relationship may be stated symbolically as~ 

C.F.oc. 1M., i.e., centrifugal force varies cl.irectly as 

some power of the mass. 

It is also obvious that the centrifugal force increas,es as the 

radius decreases provided the other factors remain unchanged. 

Thus: 

C F «11 .... ~·- The centrifugal force varies inversely as 
I"r 

some power of the radius. Since the centrifugal force increases 

with increasing velocity, another equation can be written: 

C.F.oc.V The centrifugal force varies directly as some 

power of the velocity. In each of the above equations, it is 

assumed that the other quantities are constant. 

All these statements can be written together as, 

C. F.oc!!Y 
r 

The exponents of M, V, and rare not known from the experiments. 

These exponents could be determined by careful experiments 

or they may be determined by mathematical processes from 
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known relationships. A method for determining the exponents 

mathematically will now be explained. 

A general equation involving these three variables and 

centrifugal force might be: 

(1) C.F. = KMXVYrZ 

Notice that r does not have to be in the denominator 

since its exponent may have any value, negative as well as 

positive. The problem becomes one of assigning value·s to 

~' z, and~ so that the product of the three quantities may 

be expressed in terms of three basic quantities or dimensions-­

length, mass, and time (L,M,T). Ea.ch of the quantities M, V, 

or r can be expressed in terms of the basic dimensions. Be­

cause force equals mass times acceleration, centrifugal force 

has the dimensions: 

Centrifugal Force= M X \L = MlLlT-2 
T2 

Mass cannot be expressed more simply, velocity has the 

dimension ~' and the radius has the dimension L. Hence, 

since K, a constant, has no physical dimensions, equation {)l) 

C.F. = KMXVYrZ may be written, 

(2) MlLlT-2 and this equals Mx (¥)Y Lz 

or 

By comparing the exponents of M, L, and T, the following 
. - - -

equations in~' z, and~ may be obtained: 

1 (unity)= X 

1 (unity)= y - z 

-2 • -y 
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Hence, solving, x = 1, y = 2, z = -1 

Substituting these values of~' z, and~ in equation (1) gives 

(4) C.F. = KI~lv2r-l or KMV2 
r 

Subsequent work can establish the fact that with the proper 

consistent units, k has the value of 1, or convert the equation 

into the form more useful for high school use. 

c.F. = wv2 
gr 

EQUATIONS 

Methods of writing equations have been diseussed during 

the last few pages. To succeed in physics students must be 

able to translate verbal statements into mathematical state-

ments. He should be able to translate a statement such as, 

"The volume of a gas varies inversely as the pre'.ssure· if 

the temperature remains constant, 11 or, "The vol1lllne of two 

gases is inversely proportional to the -pressures, 11 into 

the algebraic equivalent: 

and 

then 

or = 

In general, the student should see that the equation 

is the algebraic statement of direct proportion while if the 
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order of subscripts of either A or Bis changed, the resulting 

expression such as 

indicates.an inverse proportion, i.e., as one quantity in-

creases, the cor,responding quantity decreases. The s·tudent 

should have the ability to go from expressions 'such as Acx. B 

and A ct. C to the equation A = KBC; or from expressions A oe. D 

and A ex.+ to the equation A = ~D. The student should recog­

nize in A a:. B an alternative expression for dirBct variation 

and in A a::. + an alternative expression for inverse variation. 

To develop an understanding of the use of literal ntunbers, 

frequent use of symbols other than x for the unknown should be 

used. In this connection, it is helpful to use the first 

letter of the word, such as D for dollars, A foT area, F for 

force, V for velocity, etc. All quantities should always be 

labeled as to units. The writers suggest that the student 

memorize a particular form of an equation and s0lve the equa­

tion for any particular quantity when the need '!lrise s. In 

memorizing this form, the student should state the equation 

in words. The equation expressing the relationship between 

the time for a complete oscillation of a pendulum and its 

length may be written as 

T : 2~
1 ~ 

In words, this equation states that the time in seconds for a 

complete oscillation of a pendulum varies jointly as the 

product of 2 n- and the square root of the length and varies 
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inversely as the square root of the acceleratiom. of gravity. 

It is understood that Land g are expressed in the same 

units. 

"A physics formula is a shorthand notation of the 
rela~ionship that exists between physical quan­
ti t-fes, and- this idea· should be read into every · 
equation. 115 

5Frank M. Durbin, Introduction to Physics, (Prentice-Hall, 
: Englewood Cliffs, N .J., 1955), p. 7-;-



CHAPTER III 

HIGH SCHOOL PHYSICS FORMULAS 

Most of the basic formulas in high school physic's will 

be given in this section with comments upon their meaning 

where the writers feel that more than a mere statement of 

the formula is needed. The significance of units in which 

quantities are expressed cannot be over-emphasized. Students 

should understand that all uni ts of measurement are deter- ,; 

mined, either directly or indirectly from three·rundamental 

units.· The three fundamental units are the units of time, 

length, and mass. For example, velocity is L the L can 
T' 

be in any unit of length and the T can be in any unit of 

time. With reference to the velocity of an automobile, L 

is usually expressed in miles and Tin hours. In other 

countries, however, Lis in kilometers. As has been pointed 

out, relationships exist between various quantities s,tudied 

in physics that can be expressed in mathematical language. 

A formula is a brief statement of the relationship between 

the quantities represented in the formula. To use the for-

mulas effectively, the student must be able to state.the for-

mula in words and he must know what units the formula is 

based on. For example the formula f = ma expresses a di-

rect relationship between force, mass and acceleration. This 

formula is true only when the proper units are used. This 

22 
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formula is true when the force is in d-ynes, the mass in grams, 

and the acceleration in centimeters per second per se,cond. It 

is also t:rue when the force is in poundals, the mass in pounds, 

and the acceleration in feet per second per second. It is, 

therefore, extremely important that the student understand 

that a particular formula requires particular units for the 

quantities involved. The formulas listed below include nearly 

all that a student will encounter in physics. 

FORMULA 

(1) f = ma 

MEANING 

This equation states that -the force varies 

jointly as the mass and acceleration. 

Where these quantities are expressed in 

proper units, the force is equal to the 

product of the mass and acceleratton. As 

has been stated before, units are inven­

ted or chosen such as to make the constant 

equal to one in the formula. Many units 

of measurements in physics have been in­

vented for this purpose. In this formula, 

the quantities may be expressed in these 

units: 

fin dyhes or poundals 

m in grams or pounds· -

a in cm./Sec.2 or ft./Sec.2 

Centripetal force equ~ls the product of 

the mass and the square of the velocity, 



FORMULA 

(3) 

~ + 
(Ld f=kF 

Grom' 
a_2 
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MEANING 

divided by the radius of the circle, where 

f is in dynes 

m is in grams 

V is in centimeters -per second 

r is in centimeters 

This is a statement of the }aw of gravita-

tional attraction between two bodies. It 

states that every body in the universe 

attracts every other body with a force 

that is proportional to the product of 

the masses of the bodies and inversely 

proportional to the square bf the dis-

tance between their centers of gravity, 

where m and m' are the masses of the two 

bodies, dis the distance betweert their 

centers of gravity, and G is the constant 

of proportionality. The value of G has 

been determined by experimentation. 

The force of friction is equal to the 

coefficient of friction times the force 

pressing the surfaces together. The arrows 

near the symbols indicate that f and Fare 

at right angles to one another, f (friction) 

being parallel to the surface separating the 

objects and F being at right angles to it. 



FORMULA 

(5.) V : gt 

(6) s :: fgt2 

(7) 
v=~ 

v(2g) (~) 

= gt 

(8) v2 a = -r 

(9) 

25 

MEANING 

The velocity in feet per se,cond of a freely 

falling body is equal to the acceleration 

due to gravity times the time in seconds. 

The distance a freely falling body will 

fall int seconds equals one-half the 

acceleration due to gravity times the 

time in seconds squared. 

This formula for the velocity of a freely 

falling body in terms of sis d~rived from 

( 6) • Since gt = -v, or (i:$ = v 1:1 gt in 
dt 

terms oft, formula (6) may be written 

s = fvt or solving for v this 

equation becomes v = ~· Then if equation 

(5) or (6) is solved fort and substituted 

in the formula v = 2ts, the resulting formula 

is V: ~ • 

NOTE: The acceleration due to gravity is 
I 

approximately 32 feet/Sec. 2 or 980 cm./Sec.2 

A body moving in a circle at constant 

sp~ed has an acceleration equal to the 

square of the speed divided by the radius. 

The average linear acceleration of an ob-

ject equals the final velocity minus the 



FORMULA 

:(10) a = Av ave. 4 t 

MEANING 

initial velocity divided by the time. 

It is assumed that the acceleration is 

uniform over the time interval. 
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Equation (9) may be written in this form. 

The Ll. sign means a small ·change in the 

quantity before which it is placed. It 

is called an increment. 

(11) ai t: Limit 
ns • 6t~O 

1::,..v 
2i t 

This equation states that the 

(12) w 
D = V 

instantaneous acceleration is 

equal to the ratio of the incre-

ment of the velocity to the 

corresponding increment of the 

time, when the in'erement of the 

time approaches zero. 

The density of an object equals the weight 

divided by the volume. 

{13} SpG = D of Sub. The specific gravity of' a sub­

stance equals the density of the 

substance divided by the density 

(14) 

D of' water 

SpG : Wt. of Sub •. 
Wt. of equal 

volume of water 

of water. 

Equation (13) may be stated in 

this form. The specific gravity 

of a substance equals the weight 



FORMULA 

(15) P = F 
A 

(16) I?= HD 

(17) F -r = A -a 

(18) PV = K 

,-,n2 or 1..., 

d 
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'" MEANING 

6f the substance divided by the 

weight of an equal volume of 

water. 

Pressure is force per unit area, therefore 

it is equal to the force divided by the 

area over which the force is distributed. 

The pressure of a liquid is equal to the 

product of the height and density. 

The ratio of the forces on two 

pistons equals th~ ratio of the 

areas of the pistons (or the 

diameters squared if they are 

dircular pistons.) This equation 

state's Pascal's Law. Pressure 

applied to a confined liquid is 

transmitted undiminished through-

out the entire liquid. 

For a given mass of gas, the pressure times 

the volume equals a constant, if the temper-

ature remains the same. 

This is another way of stating (18). The 

pressure times the volume for a given mass 

of gas equals the new pressure times the 



FORMULA 

(21) --t ~ 
W: Fd 

(22) P -- W Fd or-
t ' t 
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MEANING 

new volume, if the temperature remains 

the same. 

This equation expresses the relationship 

between the pressure, volume, and the 

absolute temperature of an ideal gas. 

Work equals the product of the force 

which is acting and the distance through 

which it acts. The arrows indicate that 

that force must act in the direction of 

the motion. 

Power is the rate of doing work and is 

found by dividing the work by the time. 

(23) H.P. = Ft.-lb. 
{33,000) (:rnlfi.) ~ 

A horsepowerequals 33,000 

~oot pounds of work per 

(24) M.A. = R 
T 

minute, thus, horsepower 

may be found by dividing 

the foot pounds of work 

done by 33,000 times the 

number of minutes involved 

in doing the work. 

The mechanical advantage of a machine 

equals the resistance divided by the 

effort. 



FORMULA 

(25) Fa= Ea 

(26) Fd = fD 

(28) C 

or 

: 5 (F - 32) 
9 

(29) V = fL 
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MEANING 

This equation refers to the lever and 

states that the force times the length 

of the force arm equals the effort times 

the length of the effort arm. 

The work done by a machine equals the 

energy supplied to it. The force F the 

machine exerts, times the distanced 

through which F operates eqtlals the 

force f applied to the machine, times 
- .<.·-

the distance D through which the force f 

operates. 

The coefficient of linear expans:Lon of a 

solid is the amount which a unit'length 

of a solid expands per degree rise in 

temperature. The two formulas given 

express this relationship mathematically. 

To change Fahrenheit temperature to centi-

grade, subtract 32 from the Fahrenheit 

and multiply by 5. 
9 

The velocity of a sound wave equals the 

frequency times the wave length. 

The number of beats per second produced by 

two sounds of different frequencies is 

equal to the difference of their frequencies. 



(31) 

FORMULA 

n' = __ n_v_ 
V + V 

(when source 
moves) 

30 

MEANING 

Equations (31) and (32) are mathematical 

statements of the Doppler effect. In 

these equations n' is the apparent pitch 

or observed frequency;~ is the true 

(32) rt' = n(V ± v) pitch or frequency; V is the spetJd of 
V 

(when observer 
moves) 

(33) W: EI 

(35) E = IR 

2 (36) H: .24I Rt 

sound; and vis the speed of moving body. 

In equation (31) the negative and positive 

signs refer respectively to the approach 

and recession of the sounding body. In 

equation (32) the positive and negative 

signs refer respectively to the approach 

and recession of the observer. 

Watts equals the potential in volts times 

the current in amperes. 

This equation is derived from (33) by 

substituting 1B for E. 

The potential in·volts equals the current 

in amperes times the resistance in ohms. 

This formula gives the number of calories 

(since I2R equalsof heat generated when I refers 
watts, this · -

to amperes; 

formula may be R to ohms; and t to seconds. 
written 

H = .24wt ) 
(37)..1:.._ = 1.,+ l+l, etc. 

R r 1, r2 r3 
This is the formula for resisj:;-

ances in parallel. 
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FORMULA MEANING 

{38) R = r 1 + r 2 + r3, etc. The formula for resistances in 

(39) ~ 
s 

(41) Ie: Im 
;::rz-

= .707 ~ 

(42) Ee: F'..ni 
~ 

= .707 ~ 

( 43 ) XL : 2 ,rfL 

(44) Xe =_.l.....,. 
211'fC 

series. 

This equation states that in a trans.f6rmer, 

the ratio of the voltage in the primary 

winding to the voltage in tti:e sec·ondary 

winding equals the ratio of the turns of 

the primary winding to the number of turns 

in the secondary winding. 

Neglecting losses, the input in watts 

equals the output in watts. 

The effective amperage in a:n alte·rnating 

current equals the maximum a:mp~I?.gge,'..cii~., 

vided by the square root of two. 

The effective potential of an alternating 

current equals the maximum potential 

divided by the square root of two. 

~ne inductive reactance of an alternating 

current where f equals frequency and L 

equals inductance in henrys. 

The capacitive reactance of a circuit 

when f = frequency and C equals the 

capacitance in farads. 



FORMULA 

(46) E • IZ 

(47) 1 = 
C 
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MEANING 

When a circuit contains 

resist~n._¢~, capacitance_:,;r: , 

and inductance in series, 

the voltage is given by 

this formula. 

The potential of an alternating current 

in volts equals the product of the 

current in amperes and the impedance in 

ohms. 

This is the formula for calcu-

lating the total capacitance of 

condensers in series. 

(48) C = c1 + c2 + c3, etc. This is the formula for calcu-

lating the total capacitance of 

condensers connected in parallel. 

This is the formula for finuing the candle 

power of' an unknown lamp by the use of the 

Bunsen photometer. It states that the 

candle power of a known lamp divided by 

the distance squared from the lamp equals 

the candle power of an unknown lamp di~ 

vided by the distance from it squared. 



FORMULA 

(50) 1 = 
f 

(51) 

(52) Ir: 

1 1 
D t D• 0 J. 

= 

sine i 
sine r 

MEANING 

The relationship between the distances 

of the object and of the image with the 

focal length is given by this formula. 

The relation between the Size of the 

object and of the image is given by 

this formula. 

The index of refraction equals the sine 

of angle of incidence in air divided 

by the sine of angle of refraction in 

substance. 

The index of refraction of ll..ight equals 

the speed of light in air divided by 

the speed of light in the substance. 
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The kinetic energy of an object equals 

one-half the mass times the· square of the 

velocity. The kinetic energy is in ergs 

or foot poundals depending upon whether 

or not the mass is expressed in grams or 

pounds. After finding the kinetic energy 

in either of these units, the kinetic 

energy may be converted to gram-c·entimeters 

or foot-pounds by dividing by the proper 

numerical value of g, i.e., 980 or 32. 



FORMULA 

(55) E = mc2 

MEANING 

The energy in ergs that a mass m of 

matter will liberate when transformed 

to energy equals the mass in grams 

times the velocity of light in 

centimeters squared. 
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CHAPTER IV 

METHODS OF PROBLEM SOLVING 

First, the use of vectors in solving problems in physics 

will be discussed in this chapter. Vectors are used exten­

sively in solving problems in both elementary ahd advanced 

physics. The importance of vectors in physics may be app:re­

ciated when one realizes that motion, displacement, velocitn. 

acceleration, force, electric current, magnetic flux, lines 

of force, stresses and strains, and flow of hea't and fluids 

are all vector quantities. A vector quantity has both mag­

nitude and direction. The RESULTANT of a number of vectors 

is that vector which would have the same effect as all the 

original vectors together. The COMPONENT of a vector is its 

effective value in any given direction. A vector may be con­

sidered as the resultant of two or more components, the vector 

sum of the components being the original vector, Vec;tors are 

added by geometric means. 

To add vectors, the line segments representing them are 

placed in a linear series without changing their dire·ction 

so that each line after the first begins where the orle before 

ends. The line joining the initial point of the firs;t line 

to the terminal point of the last line is said to be their 

sum or resultant. Vectors are represented.by arrows with 
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the head of the arrow at the terminal end and the tail of the 

arrow the initial end. Any vector may be resolved into com-

ponents in any desired direction; however, the sum of the com­

ponents of a vector.added to the vector equals zero while the 

component of a vector parallel to a vector is e~ual to the 

vector itself. This fact enables one to move vectors, to any 

desired location so long as the positive and negative direc-

tions are retained and the vector is kept parallel to the 

original vector. Although vector quantities may be resolved 

into any number of components and in any direction whatever, 

usually only two at right angles to each other are useful or 

needed. To do this, a line is dra-1,m from the i:hi tial point 

of a vector in the desired direction. Then from the terminal 

end of the vector another line is drawn perpendicular to the 

first line. The t-wo line segments ending at the point o.f 

intersection represent the components of the original vector. 

\ 
I (\d 

('\~ \ 
0 

Fig. 1 

The following illustrative problems will show this more 

clearly. 

A force of 300 pounds is being exerted on an object in 

a direction 30 degrees east of north. How much is the .force 
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on the object in a due east direction? First draw the vector 

to any convenient scale, say one inch to 100 po'i!l.nds. Then 

from the initial point of the vector, draw a liID.e due east. 

From the terminal end of the vector draw a line perpendicular 

to the first line. The length of the first line from the ini-

tial end of the vector to the point of intersection with the 

second line will represent the vector in a due e0ast direction. 

Measure this in inches and multiply by 100 to get the size of 

the vector. The following diagram will make this procedure 

clear. 

Seu le 
1 ~·100 rouri Js 

fine Z 

£ 
line 1 

Fig. 2 
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One and one-half times 100 would give a force of 150 pounds 

in a due east direction. 

The following problem will illustrate the use o'f vectors in 

solving problems. Three different solutions are given for 

the problem. 

PROBLEM: A weight of 1000 pounds is supported by two 

cables which make angles of 30 degrees and 40 degrees, 

respectively, with the horizontal. Find the tension 

in the cables, neglecting the weight of the cables? 

Given: w : 1000 pounds 

Solution 1. 

angle 9 

angle 1 
--
= 

30 degrees 

40 degrees 

find r1 and r 2 the forces-in the cables 

There are three forces acting on the weight; the pull 

of gravity, which is 1000 pounds directed downward, and the 

two tensions, each acting along the respective cables. 

f" 
:l. f'' 

I 

f' r 

Fig. 3 
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Since this system of forces is in equilibrium, their sum is 

zero, the sum of the horizontal components must be zero and 

the sum of the vertical components must:. be zero. In other 

words, the sum of the forces upward equals the sum of the 

forces downward and the sum of the fo1~ces to the left equals 

the sum of the forces to the right. The forces r1 and f 2 

can be resolved into horizontal components f 11 and f" respec-1 . 2 

tively, and vertical components fl and f2• Then 

f1 ··=. .. f 2 (forces to right - forces to the left.) and 

ft f-? ff 
1 2 -~ 1000 (upward forces= downward forces.) 

To find the value of the components, it is necessary to ex-

press them in terms of f 1 and f 2 , thus, 

(1) 

and (2) 

ffl 
1 

fl 
l = 

f" 2 

ff = 
2 

f sin 40° 
2 

By putting in the values of the trigonometric functions and 

since f" 1 = · r2, the following equations result: 

(3) --
and since ff + fl - 1000 -·l 2 

(4) .500 f1 + .6428 f2 = 1000 

From equation (3) fl = .8845 f2. Substituting this value 

of r 1 in equation (4) gives 

.8845 f2 + .6428 f2 = 1000 
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f2 - 922 pounds to the nearest pound. -
then r1 - .8845 f2 -

- .8845 X 922 -
= 815 pounds to the nearest pound. 

Solution 2. 

In order that there may be translational equilibrium, 

the vector sum of the forces acting at a point must be zero. 

This fact enables one to sketch a diagram that will form a 

triangle which will represent the forces involved. The dia­

grams below illustrate how to construct the triangle of 

fo1"ces. First, one should always a,raw a sketch of the physi­

cal situation. From this sketch, one can see the forces that 

are involved and he can construct an accurate representation. 

_10'_cp_ 

B 

Fig. 4 
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Line AB is drami straight downward and this represents the 

gravitational pull of 1000 pounds. Line BC starts from the 

terminal end of AB a.nd is dra-t·m to the right at an angle of 

300 with the horizontal. The force in the other cable is 

represented by the' third vector CA which begins at the 

terminal end of BC and ends at the initial end of AB, thus, 

fbr.rning a triangle of forces. From the statement of the 

problem, all the angles of the triangle are known and one 

side. This enables one to use the law of sines to solve 

sin 70° 
1000 -- --
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Solution 3. 

If the diagrrun in Solution 2 is drawn to scale, one may 

calculate the forces quite accurately. If one inch repre­

sents 200 pounds, ,,the diagrrun would look as shown below. 

Fig. 5 

By careful construction and accurate measurement, one may 

determine the forces to within two or three pounds. 
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To facilitate accurate analysis and to avoid errors, the 

student should develop a method of setting down data and a 

general proce·dure that he uses with all problems. In general, 

:the following procedure is recoI1U11ended: 

(1) If one is not given, write a clear statement of' 

the problem. 

(2) Put down in tabular form the facts and' figures 

that are given by the statement of the problem.· 

(3) If possible, draw a sketch of the physical situa-

tion. 

(4) Write as many equations containing the unknown 

a.s possible. 

(5) Solve the equations by whatever means possible. 

PROBLEM: A lead plummet weighs 1000 grams in air 

and 912 grams when immersed in water. What is the 

specific gravity of lead? 

Given: w a 

w w 

--

= 

1000 grams W refers to weight; the 

subscript~ refers to air. 

912 grams Ww = weight in water 

Find: The Sp GL (specific gravity of lead) in grn/cm.3 

(1) Sp GL: DL (density of lead) Note: -:(;his statement 
-

I\, (density of water) is true by definition. 

See formula no. 13. 

(2) Dr, = WL (weight of lead) By definition. 

~ (vol1U11e .of lead) See formula no. 12 



{3) VL: Vwd {Volume of lead equals the volume of 

water displaced) 

(4) Vwd: BF {volume of water displaced equals the 

bouyant force.) 

{5) BF= Wa - Ww (Bouyant force equals the weight in 

air minus the weight in water.) 

The fl ve equations state the relationships of the various 

quantities involved and solving them enables one to :rind the 

answer. To solve equation (1) for the specific gravity re­

quires that the density of lead be known. The real problem 

here is to find the density of lead. Solving the above 

equations gives us the following: 

BF= 1000 - 912 = 88 grams 

Vwd = 88 cm.3 {from Archimedes• principle, i.e., the 

weight of the liquid displaced equals the 

bouyant force. This weight in grams, when 

the liquid is water, equals. the volume in 

cm.3 

Vwd: v1 : 88 cm.3 (Volume of water displaced equals the 

volume of lead.) 

-- 1000 
~ 

{density or lead equals the weight divided 

by the volume • ) 

= 11.4 grams cm.3 

SPGL: 11.4 (the specific gravity or lead equals the den­

sity of lead divided by the density of water.) 
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PROBLEM: 

Two perfectly elastic balls, one weighing 1000 grams and 

the other weighing 400 grams, are suspended by eords so that 

the distance between the cords and the centers of gravity of 

the balls is equal to the sum of the radius of the balls. The 

distance from the support to the centroid of ea.eh ball is equal. 

The large ball is pulled aside so that it has a velocity of 

30 cm./sec. when it strikes the smaller ball. What will be 

the velocity of each ball after the first impact? What will 

be the velocity after the second impact? W'hat will be the 

position of the balls at the moment of the second impact? 

Explain why they will be at this position at the instant of 

the second impact. 

This problem is purely hypothetical, since!, there are no 

perfectly elastic balls; however, it does illustrate several 

important principles in physics and is included'here for that 

reason. This principle may be demonstrated fairly well with 

proper equipment. 

Fig. 6 



Given: 

Ml : 1000 gms. 

M2 : 400 gms. 

Vl : 30 cm./sec. 

Find: 

Vil the velocity of r-;_ after the first impact. 

vi2 the velocity of M2 after the first impact. 

(1) M1V1 -- M1V11 + M2Vi2 (Law of conservation of 

momentum) 

(2) M1Vf M1Vf1 
2 (Law of conservation of = +M2Vi2 

kine tic energy. ) 

Substituting the known values in the first equation gives 

the following: 

(a) (1000) (30) = 1000 v11 +4oo vi2 

Solvin~ for v11 : 

Vil: 30,000 - 400 Vi2 
1000 

Substituting the known qµ.antities in equation (2) gives: 

(b) (1000) (900) = 1000 vf1 + 400 vf2 

46 

Rewriting this equation with the value of Vil obtained from 

equation (1) gives an equation in one unknown. 

9 X 105 • 1000 (30,000 - 400 Vi2 2, 
1000 · + 4oo Vf 2 

Solving for vi2 : 

9 X 108 = 9 X 108 

5.6 vf2 - 240 v12 = o 
Vi2 (5.6 V12 - 240): 0 
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v12 = 0 

or 5.6 V12 - 240 -
v12 = 42.7 cm./sec. (Velocity after first impact.) 

Substituting this value for v12, equation (a) may be solved 

for v11 • 

30,000 = 1000 v11 ·+ (400) (42.7) 

10 v11 : 129.2 

Vil= 12.92 cm./sec. (Velocity of M1 after first 

impact.) 

In solving the equation::·for v12, there are two roots, 

one of which is zero. Since the physical conditions of the 

problem makes this answer impossible for the velocity after 

the first impact, the question might arise as to the· signi-

ficance of the zero root of the equation. It may be found 

upon further consideration of the problem that this is, in 

fact, the velocity of the small ball after the second impact. 

One may see this intuitively by thinking. of what must take 

place at the second impact to fulfill the law of conservation 

of momentum. In order for the large ball to have the momen­

tum to carry it back to its initial position, the small ball 

will have to give b~ck all the momentum it received from the 

large ball; therefore, its velocity will be reduced to zero. 
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PROBLEM: 

A skater weighing 180 pounds has a velocity of 25 feet 

per second. What must be the coefficient of friction between 

the ic~ and the skater such that the force of friction will 

reduce his velocity to zero in a distance of 200 feet? 

Given:: 

M = 180 pounds 

V = 25 feet per second 

d = 200 feet 

Find: C (the coefficient of fric:tion.) 

(1) C : ~ (The coefficient of friction equals the 
M 

force of friction in pounds divided 

by the mass in pounds.) 

(2) _ 1 MV2 (The kinetic energy the skater possesses 
Frd -~ 

32 must equal the energy he loses by stop-

ping. This energy is expended in the 

work done against friction'which equals 

the force of friction times the dis­

tance. Since the formula }MV2 is the 

kinetic energy in poundals, it must be 

divided by 32 to get it into pounds.) 

(3 ) Ff: !(180)(25)2: 

(32)'(-200) 

1125 
128 

.049 to the nearest thousandths. 

Another solution of this problem, presented on the next page, 

is given to illustrate other principles of physics. 
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Solution 2. 

The unknovm sought in this problem is the coefficient 

of friction between the skater and the ice. In accordance 

with the suggestions given in this paper, the first equation 

one should write is one containing the quantity to be found. 

{l) C 

(3) d 

(The coefficient of friction equals the 
M 

force of friction in pounds divided by 

the mass in pounds.) 

= Mu - MV 
32 

= (u + v) t 
2 

(The force of friction in pounds 

times the time in seconds equals 

the mass in poundals times the 

initial velocity in feet per second 

minus the final velocity in feet per 

second times the mass in poundals. 

The right side of the equation is 

divided by 32 to change poundals 

to pounds.) 

(The linear distance an object will 

travel equals the average of the 

initial and final velocity times 

the time in seconds.) 

Substituting the known quantities in the third equation 

enables one to find the time in seconds. 

200:.(2510) t 

t = 16 seconds 
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Substituting the known quantities in the second equation 

enables one to find the force of friction in pounds. 

Fr(l6) = (180) (25) - (18Q_L{Ql 
32 

Ff - 1125 - 128" 

Substituting the known quantities in the first equation 

one may solve for the coefficient of friction. 

1125 
C : """I28° 

180 

C = .049 to the nearest thousandths 



PROBLEM: 

A resistance of 8 ohms is in series with a capacitance 

of 100 micro£:a.ra.ds and an inductance of .1 henry.. A potential 

difference of 120 volts is impressed across the terminals of 

the combination. The frequency is 60 cycles/see. Compute 

the power for this circuit. 

(1) P: VIK (The power of an alternating current 

equals the potential in volts times the 

current in amperes times a p·ower factor.) 

(2) K : R (Where R is the resist-

f R2 t ( 2 1T fL (_ 1 ) 2· 
'\j -\21rrc 

ance in ohms; f is the 

frequency in cycles per 

second; Lis the induct-

ance in henrys; and C is 

the capacitance in farad~) 

(3) I: V 

Given: 

R = 8 ohms 

L = .1 henry 

C = 100 microfarads = 10-4rarads 

V = 120 volts 

f = ~O cycles/sec. 

Find: The power in watts. 

Since inductance causes the current to lag behind the 

E.M.F. and capacitance causes the current to lead the E.M.F., 



52 

their combined effect is to cancel each other (X = XL - x0). 

When they are combined in a circuit with a resistance, the 

combined impedance will equal their vector sum. Thus, a 

vector diagram of this problem may be drawn as shown below. 

2 
~ 
-~ 

~~ ~ 

1~ 1-\ ~ z}" "' '\,~ k --4-> l.c') II 0 '"" t= -..0 
\I) - \ , f\. > I:',( E ::> ' k'v t--.. ~ -.i. 

(> I 0 

~ ~ ~/' II --.I ~ 

c:-... c... ""'1 // I o 
'° ~- ~ ":., > ~ r-..: l ~ 

I\.>· ::::,, ~ M -. \ II II II Ir ii 

>' -
Cl:: 

- II 

Fig. 7 



Substituting the known quantities in equation (2), 

K : ;==::;:::=::::R==::===::;.. 
_ / R2 + (2 11' fL -p- 1 ~ 2 
V 2'fffC/ 

= ~~~~~~~~~~8.;;_.~~~~~~~~~~ 

64 + [2 (3.14)(~0)( .1) - ( 1 4)2 
, . 2(3.14)(60)(10- )]1 

= .582 

Substituting the known quantities in equation (3) enables 

one to determine the current. 

64 t [2 ( 3 .14) ( 6 o) ( .1) -( 1 . ] 2 

2(3.14) (60) (10-4~ 

= 8. 7 amperes 

Substituting in equation (1): 

P = (120)(8.7)(.582) 

= 608 watts 

PROBLEM: 

The musical note, orches,tra A, has a frequency of 

440 vib/sec. What is the velocity of sound in a medium in 

which this note has a wave length of 75 cm? 
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Given: 

L 

f 

--
= 

75 cm 

440 vib/sec 

Find: Vin cm/sec. 

(1) V = 75 X 440 fL --
PROBLEM: 

= 33000 cm/sec 

A particle has a displacement of .6 cm at the instant 

it has completed 5/6 of a cycle starting from rest. What 

is its amplitude of vibration? 

Given: 

w = 5 X 2?r {angular rotation in radians completed) 
6 

B = ¥ Radians 60° (from statement of the problem) 

d = .6 cm 

Amplitude = Radius of reference circle 

Find: A in cm. 

This problem may be more 

easily comprehended if this 

diagram is made showing the 

conditions of the problem. 

Fig. 8 



(1) A = R 

{2) sin B d = R 
(Subs ti tutinr1; in eqg-ation 2) 

sin 60° = q = ~ = .:.£ 
A 2 A 

(3) A = .6 X ~ = .692 
V3 

PROBLEM: 
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A concave mirror has a focal length of 60 em. An object 

is placed at a distance of 100 cm from the mirror. 1.rfuere is 

the image? 

Given: 

f - 60 cm -
Do = 100 cm 

Find: Di in cm 

Fig. 9 

Ima~e L .. CObje~---.- _ ----~_::::::::-- ~-
- ----- -- -- F -- --

~----_::::-_. - -· - - -· - - -- _-- .,,___ 

~----------~ Di 

A Real Image 

f is the focal length of mirror or lens; 

D0 is the distance to the object from mirror or lens; 

D1 is the distance to image from mirror or lens. 

(1) 1 1 _ 1 
D0 - D1 - ""7 

( 2 ) 180 - 1i = k 
l 
Di -- 1 1 

bO - 100 = 2 
300 
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In a probler1 of this nature a scaled drawing shoUld be 

made using the data of the problem and two of the following 

rays. 

1. A ray parallel to the principal axis passes through 

the principal focus after pas·sing through a lens and is 

reflected through the principal focus of a mirro·r. 

2. A ray through the center of curvature is undeviated 

as it traverses the lens or mirror. 

3. A ray passing through the principal foams le·aves the 

lens (or mirror) parallel to.the principal axis. 

If the diagram is drawn to scale, the image can'be 

located quite accurately by measurement. This serves as 

a check on computation and vice versa. 



CHAPTER V 

TABLES IMPORTANT TO PHYSICS 

Length 

1 in. = 2.54 cm 

1 m = 39.37 in. 

30.5 cm= l ft. 

l mile = 1.61 Km 

1 mile= 5280 ft. 

1 Km= 0.62 mi. 

1 m = 3.28 ft. 

1 yd.= .9144 meters 

Mass 

1 lb.= 4.54 gm 

1 pz. = 2835 gm 

1 Kg= 2.2 lb. 

Volume 

1 m3 = 264~2 gal. 

1 m3 - 35.3 ft.3 -
l gal. - 231 cu. -
1 in.3 - 16.4 ·~m3 -
1 ft.3 - 0.028 m3 -

in. 

1 cm3 = 0.061 in.3 

1 m3 = 1.308 yd.3 
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= 3785.432 cu. cm 



Handy Equivalents 

1 H.P. = 550 ft-lb/sec = 33,000 ft-lb/min = 71.J.6 watts 

1 ft-lb= 13.56 X 106 ergs 

1 Joule = 0.738 ft-lbs 

1 gm f = 980 dynes 

60 mph = 88 ft/sec 

1 ft3 = 7 .48 gal. 

1 cal = 3.97 BTU= 4.19 Joules 

1 BTU = 252 cal = 778 ft-lb 

24 hrs = 86,400 sec 

1 volt = 108 emu 

1 electron volt = 1.6 X 10-12 erg 

1 emu of charge = 3 X 1olO esu 

1 emu of charge = 10 coulombs 

1 emu of current = 10 amps 

1 esu oS Pd= 300V 

1 watt= 107 ergs/sec or 1 Joule/sec or 1 volt X 1 amp 

1 Joule= 107 ergs 

1 Kilowatt hr= 36 X 1012 ergs 

1 megacycle= 106 cycles 

vJ = 1.73 2 = 9.87 

57 

Velocity of light c = 2.998 X 108 cm/sec or 186,000 miles/sec 

1'Tumber of molecules of gas/cm3 where p = 76 cm of hg 

and T = OOC. is 2.69 X 1019 

Nuinber of molecules/gm molecule= 6.023 X 1023 

Volume of gram-molecule of gas normal p and t = 22,415 cm3 



Faraday= 96,520 coulombs/gm-mole 

Charge on electron e = 4.8 X 10-10 esu 

16 X 10-2 emu 

Mass of an electron= 9.1 X 10-28 gm 

58 

Ratio of charge to mass of electron e/m: 1.76 X 107 emu/gm 

Mass of Hydrogen AtOm: 1.67 X 1024 gm 

Planck's constant h: 6.62 X 10-27 ergfsec 

Boltzman's constant k = 1.38 X 10-16 erg/deg c 

One atomic mass unit -- 1.66 X 10-24 gm or 931 mev. 

Gravitational constant -- G = 6.66 X 10-8 cgs units 

Gas constant R = 8.315 X 107 ergs/mole/k0 

Atomic wt. of H = 1.008 

Density of water = 1 gm/cm3 or 62.L~ lb/ft3 

Density of Hg• 13.6 gm/cm3 

Density of Air= 0.00129 gm/cm3 Normal p and t 

Heat of fusion of ice= 80 cal/gm 

Heat of vaporization of water: 540 cal/gm 
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