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PREFACE 

In the complex world of today the study of mathematics is of 

increasing importance since mathematical knowledge is the Rey to our 

scientific advances. Many new ideas have arisen in recent decades 

that have given new insights into old problems as well as forming the 

basis for radically new techniques. Before a person can hope to succeed 

in the numerous new courses being offered by college mathematics 

departments, he must have a fim grasp of certain tool subject·s and 

some understanding of many new concepts. It shall be the purpose of 

this course to provide some of the needed tools. 

This shall be but an introductory course for use in the second 

semester of twelfth grade. It is intended only for those students 

having a thorough background in algebra, plane geometry, and trigonometry. 

The author realizes that the material here presented is somewhat sketchy 

with very few exercises given, and only bare coverage of some ideas; 

however he feels that the teacher can easily supplement this material 

with examples from his own experience or by reference to the various 

sources mentioned in footnotes or bibliography. 

The need for studies of this type is recognized by many agencies 

and is being advanced by three outstanding study groups, namely: The 

University of Illinois Committee on High School Mathematics, The Com

~..ission on ~athematics of the College Entrance Examination Board, and 

The National Science Foundation. 
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CHAPTER I 

THEORY OF SETS 

I. 1. Introduction and Examples. 

lfost of modern mathematics is founded upon the concept of sets •1 

It shall be the purpose of this chapter to introduce some of the basic 

vocabulary and algeb_ra of the theory of sets. This is in no way a 

complete treatment of the subject; but should contribute a nucleus of 

ideas for the better understanding of the later chapters of this course. 

The idea of set is probably as old as man himself. Surely early 

man thought in terms of collections of things -- items both similar and 

dissimilar in nature. He spoke of a "flock 11 of sheep and a Hherd" of 

cattle. Our language has a large number of such collective words: pair, 

class, group, family, school, state, set, and many others. The set is 

such a mental concept formed by thinking of several things as consti-

tuting a coherent entity. The items making up the set are said to 

belong to it, and are called elements or members of the set. 

Example 1. The people in your immediate family (father, mother, 

you, and your sisters and brothers) form a set. Each person in the 

family is a member or element of the set. 

lThe information for the chapter on sets is taken mainly from four 
sources: Robert L. Swain, Understanding Arithmetic (New York, 1957), 
po. 27-66; E. J. McShane "Operating With Sets", Insights Into Modern 
Mathematics (Washington, 1957), pp. 36-64; Commission on Mathematics, 
College Entrance Examination Board, Introductor Probability and 
Statistical Inference for Secondarv Schools New York, 1957), pp. 131-
151; High School Mathematics First Course (Urbana, 1957), Unit Four. 

1 
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Other examples of sets are: The group of students in your school 

who are in the band, the faculty of your school, the city nolice depart-

ment, the football team, the counties in your state, and the pieces of 

furniture in a room. 

Example 2. The set of numbersf4, ?, 10, 13, 16, 19~ Each 

number (element) of this set is three more th,m a number in the set 

f ;i, 4, 7, 10, 13, 16}. 

is 

Example 3. The set of roots of the algebraic equation 

(x - 7)(x f 5)(x f 3)(x2 f 3) = 0 

,,,~ - --i 
t:_7, - 5, - 3, j- 3, -v'- 3J 

This set contains subsets which are of interest, for example: 

set of real roots: i 7, - 5, - 3} 

set of negative real roots: i' - 5, - 3} 

set of imaginary roots : f...' \/-3, - J - 3} 
Example 4. The set of points whose x and y coordinates satisfy 

the equation 

Y = 4 - X 

is a straight line L. Its graph is shown in Fig. 1. 

y 

2. 3 

Fig. 1 
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Exercise'S for Section I. 1 

1. Describe and sketch the sets of points whose x and y coordinates 

satisfy each of the following conditions: 

a. x2 /. y2 = 9 

b. x2.;. y2> 9 

c. X f y ~ 6 -
d. x2 /. y2 < 9 

2. For each of the fol.lowing categories, give three examples of 

sets whose elements a re: 

a. animals 

b. four legged animals 

c. geometrical figures 

d. letters of the Greek alphabet 

3. Find the set, in each case, whose elements are the roots of 

the algebraic equations: 

a. x2 /. 4x /. 3 = 0 

b. x2 - 36 = O 

c. x3 -64x:O 

d. x2 /. 17 = 0 

e. x2 /. 1 = O 
g 

I. 2. Ways of Specifying Sets. 

Sets are usually specified in two different ways: 

a. By listing all the names of each element of the set; 

b. By stating the requirements which an item must meet in order 

to be an element of the set. 

Frequently a single letter is used to represent a whole set; and 

we enclose the names of the elements of the set or the requirements for 
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membership between braces. For example, suppose that S represents the 

set consisting of all integers less than 9. One method of designating 

this set is 

s = i 1., 2' 3 ' 4' 5 ' 6' 7' 8}. 
The other method might be S = [x I x is an integer and 1 =:. x < 9}, 
which would be read 11 S is the set of all elements x such that xis an 

integer and 1 ~ x < 911 • 

Example 1. Let S be the set of odd integers between 1 and 9 

inclusive, and let T be the set given by 

T = tx3 I x is an element of s}. 

Then we also have 

T = f 1, 27, 125, 343, 729j-. 

Ex.ample 2. The set of all fractions which are equal to! may be 

written: 

S =fy Ix and y are integers, y .f:, O, and y : 4~. 

Example 3. The set of all men who are members of the Masons could 

be designated: 

S = [ x I x is a member of the Ma.son~]. 

Exercises for Section I. 2. 

1. Use both: (a) "the method of listing all elements," and (b) 

"the stating of requirements method11 to designate the following sets: 

a. The odd integers less than 21 

b. The vowels 

c. The members of your mathematics class 

d. The subjects you are enrolled in this semester. 

2. Represent the following sets by one of the methods used in 
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exercise 1 and give reasons why the other method is difficult or 

impossible. 

a. The set of all odd integers 

b. The set of citizens of Nevada 

c. The set consisting of all words in Webster's Dictionary 

I. 3. Universal Set and Subsets. 

In some instances we may wish to think of items belonging to a 

large set. In geometry, we might want to talk about properties of 

quadrilaterals, such as similarity or congruence. We could think of 

the set of all quadrilaterals as the universal set. From this set we 

could then select particular subsets, as: the set of all squares, the 

set of all rectangles, the set of all parallelograms, the set of all 

trapezoids having equal midlines, and so on. 

Another example might be: 

U = set of all babies born in the United States in 1956. 

A= set of all boy babies born in United States in 1956. 

B = set of all boy babies born in 1956 (in the United 
States) to parents having no previous children. 

C = set of all sets of twins born in the United States 
in 1956. 

In above example, U, is the universal set, and A, B, and Care 

subsets of U. Are there other possible subsets of U? of B? of C? 

Exercise for Section I. 3. 

1. Make up at least six further examples of universal sets and 

some of their subsets; taking cases such as sets of places, plants, 

objects, people, or ideas. 



Inclusion is an important relationship between sets. If each 

element of a set A is also an element of a set B, then we say 11 A is 

contained in B11 or 11B contains A11 • These expressions are normally 

written: 

A e. B and B ::::> A • 

In other words A is a subset of B. 

6 

Venn Diagram. Sometimes it is helpful to have a schematic repre

sentation of the universal set and its subsets. One such drawing is 

known as a Venn Diagram as in Fig. 2. The rectangle represents the 

Universal set U. The elements of U can be represented by the rec

tangle. Sets of elements of U can be shown by circles within the 

rectangle, as for example A and Bin the figure. If every element of 

a set C is also an element of set A, then C is a subset of A. This is 

also represented in the diagram. 

u 0 
~··------------------,.; 

Fig. 2 Venn Diagram 

Example.l. Let Ube the set of all airplanes in the United States. 

Let A be the set of all military planes in the United States. Let B 

be the set of all B-52 bombers in the United States. Then Bis a 

subset of A, and A is a subset of U. Is Ba subset of U? 

Finite and Infinite Sets. A set is said to be finite if it has 

some natural number of elements in it. All other sets are said to be 

infinite. 
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Example 2. (Finite sets) The set of all babies born in New York 

City on a given date; the set of all odd integers between 1 and 49 

inclusive; the set of all girls in the Boy Scouts of America. 

Example 3. (Infinite sets) The set of all fractions; the set of 

all rhombuses; the set i (x, y) \ x and y are real members and y = x%. 

Subsets of a Given Set. Suppose we start with a finite universal 

set U. If we know how many elements the set U contains, can we say how 

many different subsets Uhas? Our reply is "yes", and we will demonstrate 

how to find the number of such subsets. First we will show the case where 

U :{.a, b, ~}, just three elements. Then we will extend our reasoning 

to the case where U has any finite number n of elements. 

Examnle 4. Let the universal set by U = ia, b, c}. We can select 

subsets of U in the following manner. We decide for each element of U 

whether or not we shall include it in our subset. If we decide to 

include it, we will show that fact by writing an x below it; and if we 

do not wish to include it we will place an O below it. Thus, the 

subset A =fa, c} corresponds to 

a 
X 

and the subset 

corresponds to 

a 
X 

b 
0 

b 
0 

C 

X 

C 

0 

To obtain all the possible subsets of U, we just write all possible 

arrangements of three zeros and/or x' s as in the following table: 



Case u -~a - ' b, c} Subset 

1 X X X Al =fa, b, c! 
2 X X 0 A2 =~a, b5 
3 X 0 0 A3 =€a} 
4 X 0 X A4 : ~a, cJ 
5 0 X X A5 : f b, c} 
6 0 X 0 A6 = fb} 
7 0 0 X A7 :,£C§' 
8 0 0 0 Ag = ? 

Since there are exactly 2 x 2 x 2 = 23 = 8 ways of filling the three 

spaces corresponding to the three elements of U, we have exhausted all 

possible cases. Let us discuss further, cases 1 and 8. 

The subset 11 A1 11 is identical with the universal set U. Should it 

be called a subset? It does satisfy the definition of subset -- namely: 

every element of Ai is an element of U, so we shall say it is a subset 

of itself. Therefore, "sub" does not necessarily mean "smaller" in 

this context. 

The subset "Ag" ended up with nothing. We describe this as the 

empty set, or the null set. Frequently it is denoted by the symbol¢, 

which is read as "null". We shall agree that if Sis any set whatever, 

then the null set is a subset of S. This makes it possible for us to 

write a very simple formula for the total number of subsets which can 

be made from the elements of any given finite set U. 

Theorem. Let Ube a finite set containing n elements. 
Then there are 2n different subsets of U (including U itself, 
as well as the null set). 

The proof is left to the student. Hint: The number of subsets of 

U is equal to the number of ordered arrangements (xi, x2, ••• , xn), where 

each Xi is either o or l; i = 1, 2, ••• , n. 
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Further Exercises for Section I. 3 

2. Let Ube the set of all positive integers smaller than?. 

How many different subsets can you make from U; (a) in case at least 

one element must be included? (b) in case the null set is allowed? 

3. How many non-emoty subsets can be formed from a set of 5 

elements? From a set of s elements? 

4. A proper subset of U is defined to a non-errroty subset which 

does not contain all the elements of U. How many nroper subsets can he 

formed from a set of 5 elements? Fr,@m a set of y elements? 

5. Let set U :fR, S, ·~}. C ~ Let set A : t_R, T.J. Let set B = ¢. 
Tell which of the following statements are true and which false. 

(a) U is a proper subset of U. (b) BC A (c) U c U 

(d) BC U (e) U::) A (f) B CA C.. U 

( g) B ·:, U -=, A 

I. 4. Operations with Sets. 

Let U designate our universal set, and let ifi, B, C , ... ' S be 

subsets of U. To deal with these sets, we must learn to deal with 

combinations of them, just as with numbers we deal with combinatfons 

which we call addition, difference, etc. Three important set operations 

are: union, intersection, and comnlementation. Let us define these 

terms, and illustrate each by means of drawings. 

Definition 1. The lmion of two sets, A and B, is the 
set of all elements of U which belong either to A or to B 
or to both. 

We denote the union by A U, B, which is read either 11 A union Bn 

or 11 A cup B". 



The union is designated by the shaded portion in the following 

diagram. 

Fig. 3. Union of A and B 

Definition 2. The intersection of two sets is 
the set of all elements belonging to both of the sets. 

10 

We denote the intersection by An B, which is read 11A intersect 

B11 or 11A cap B11 • 

The intersection is designated by the shaded portion in the diagram 

below. 

Fig. 4. Intersection of A and B 

Definition 3. Two sets Sand Tare said to be 
disjoint or mutually exclusive if they contain no common 
elements. 

In symbols, Sand Tare disjoint if and only if S () ~=¢,that 

is, if their intersection is the null set. 

- T 

Fig. 5. Dis.joint sets 



Definition 4. The complement of A is the set 
of. all elements in U which are not in A. We denote the 
complement of A by A which is read 11 A bar". 

A is the shaded area in the diagram below. 

u 

Fig. 6. Complement of a set 

11 

Examole 1. Let U consist of the nwnbers 1, 2, 3, ••• , 7 and the 

letters of the alphabet a, b, c, ••• , m. 

Let 

Then 

A = i 1, 2, 3 , 5 , a, c , fJ 
B =fl, 2, 3, 4, 5, a, b, c, d, g} 

A I) B = f 1, 2, 3 , 5 , a , c} 

A U B =fl, 2, 3, 4, 5, a, b, c, d, f, f} 

A =f4, 6, 7, b, ct, e, g, h, i, j, k, 1, ~ 

B = i6, 7, e, f, h, i, .i, k, 1, aj' 

A 5' B = € 4, b , d , g} 

Exercises for Section I. h 

1. Let U be a universal set and S a subset of U. Show by Venn 

Diagrams that: 

(a) s v s = u 

(b) s (\ s = ¢ 

(c) S U S = S 

(d) s ,ft s = s 

2. Let A, B, and C be subsets of a finite universal set u. 



Suppose: 

U = fx I x all integers less than 100} 

B : f x I x all odd integers less than 6~ 

C = f x l x all even integers below 8~ 

A = f x t x all integers less than 51.J 
How many elements in each of the following sets? 

(a) A (b) A (\ B (e) A u C (d) 

(e) BUG (f) B (g) A (\ C (h) 

(j) "in B (k) BUC (1) (AU B)U C 

(m) AU(B U C) (n) Al) (B (\ C) 

12 

c 
B (l C 

3. Let A and B be subsets of a universal set u. A and B are not 

disjoint. Show by a Venn Diagram that (A U B) = A () B 

4. A is read 11the comnlement of the complement of A11 • If A is a 

- ? subset of a 1miversal set U, does A = A· 

5. If A denotes the set of all domestic cats over 100 years of 

age and B denotes the set of a.11 women presidents of the United States, 

does A= B? Explain. 

i<I. 5. Some Further Remarks on Sets. 

This section on Remarks is starred to denote information that 

is not developed to any great degree of completemess in this paper, 

but is herein given to illustrate some further concents and to 

allow more coverage of set notions if so desired by the instructor. 

1. In algebra we learn that for ordinary number a, b, and c, the 

commutative, associative, and distributive laws hold: 

Commutative Law: at b = b ta ab= ba 

Associative Law: (a f h) f c =at (bf c) ab(c) = a(bc) 

Distributive Law: a(b t c) = ab tac 
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Similar laws hold for sets A, B, and C, and the operations U and 

('\ • They can be illustrated by Venn Diagrams. 2 

Commutative Law: A U B : B ii) A, A fl B = B f" A 

Associative Law: (A U B) UC : AV (B V C) 
(A(\ B)(IC: Af\(B (1 C) 

Distributive Law: A(\ (B U C) : (A f\ B) U (A () C) 
AV(B (\ C) =(AU B)()(A UC) 

2. If Sis a set with m elements, and Tis a set with n elements, 

and S and T are disjoint, the S U T has m /. n elements. 

If a set S has m elements, and n is different from m, then S does 

not haven elements. 

J. If A and B are sets, and A C. B and B c. A, then A : B. 

Some Further Exercises for Chapter I 

For all the following problems let us say we have given the 

fallowing sets: 

A= fschool, Church, Theater, Teacher, Pastor, Actor} 

B :.£Chair, Desk, Curtain, Pulpit} 

C = f Teacher, Church, Actor} 

Dt = f Theater, School, Actor, .r' astory

E ={Chair, Desk} 

F = fPulpit, Actor, Church} 

G = f Church} 

H = f Pastor, Actor} 

J = fTeacher, Actor} 

2The illustrating of the laws is left for the student. 
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1. Designate how many elements there should be after fulfilling 

the following set onerations: 

(a) A {\ B = ? (b) A V B =? (c) A () A = ? 

(d) B V D = ? (e) (G u A)() C '? = . (f) E u E = ? 

(g) H l) F = ? (h) (D (\ A) UH = ? (.j) (C U C){) C = ? 

(k) AU (B fl C) = ? (1) B (\ E = ? 

2. Answer the following questions: 

(a) Does D (\ H = A () C? 

(b) Does <T u G: C? 

(d) Is the statement true: E C 
't B· 

(e) Is it true that: J C. C? D :,, H? F C. A? 

(f) Does B U E: B? 

(g) Does C (\ J = J? 

(h) Does H n J=Dn F? 

( j) Is C fl E = ¢? 

(k) Does (B V C)UD = A (J B? 



CHAPTER. II 

STATISTICS .AND PROBABILITY 

II. 1. What are St;:i,tistics and Probability? 

Probability as defined by mathematicians is: "In the doctrine of 

chance, the likelihood of the occurrence of any particular form of an 

event, estimated as the ratio of the number of ways in which that form 

might occur to the whole number of ways in which the event might occur 

in any form (all such, elementary forms being assu_med as equally probable.) 111 

Statistics is the science of the collection and classification of 

facts on the basis of relative nu_rnber of occurrences as a ground for 

induction. The facts thus collected are used to show the truth of laws 

inferred from the observed particular cases. It is demonstrated that 

if the law holds in a certain case it must hold in the next similar 

case, and therefore in the next, and so endlessly. This is referred 

to as mathematical induction. 

Both the theory of probability, and the field of statistical 

inference are of extreme importance in today's scientific processes. 

Some of the basic ideas dealing with both will be presented in this 

chapter.2 

lWilliam Allan Neilson, ed., Webster's New International Dictionary 
of the English Language (Springfield, Massachusetts, 1946), p. 1971. 

2The data for this chapter is taken mainly from: Reginald Stevens 
Kimball, ed., Practical Mathematics (New York, 1945), II, pp. 506-562; 
Herbert Robbins, "The Theory of Probability," Insights Into Modern 
Mathematics (Washington, ili957), pp. 336-371; Introductor. Probability 
and Statistical Inference for Secondary Schools New York, 1957), pp. 
1-130, 152-180; Merle W. Tate, Statistics in Education (New York, 
1955), 1-525. ~ 

15 
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In the theory of probability, we deduce the probable composition 

of the sample from the composition of the original entire group from 

which it was taken. Statistics makes it possible for us to reverse 

this process so that we can infer the composition of the original 

entire group from the composition of a properly chosen sample. 

Statistics is further concerned with the analysis and presentation 

of data, decisions forming, and experimental design. 

II. 2. Putting Figures to Work. 

Frequently statistical: data must be organized in tables or graphs 

before the meaning becomes clear. These visual aids reduce the bulk 

of the data to a size that can be understood; and at the same time, make 

it easier to recognize similarities and differences within the presented 

data. 

In this section of the chapter we shall discuss some of the 

methods of organizing and presenting statistical data. 

One of the most common and simplest tables is the frequency 

distribution. The following illustrative problem will show what is 

meant by frequency distribution. 

A random sample of 30 aluminum castings, when tested, yielded the 

following tensile strength :in pounds per square inch to the nearest 

100 pounds: 

29,300 34,900 36,800 30,100 34,000 
30,800 35,400 31,300 32,200 33,400 
37,700 34,900 26,700 34,800 38,000 
25,700 25,800 26,500 28,000 24,600 
25,800 23,700 28,700 32,400 28,200 
34,000 34,500 29,200 28,700 29,800 

One description of the data could be a dot frequency diagram, 

which represents each of the measurements by a dot, the entire 30 dots 
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giving a graphical description of how the values are distributed. Such 

a diagram arranges the measurements in an order from least to greatest. 

It further provides information about the grouping of the values as 

well as the extent of distribution. In this sample the measurements 

fall between 23,000 and 3$,000, and they cluster arnoud 29,000 and 34,500. 

Number of 
Castings 

2 

1 

0 
23 24 

0 

25 

Fig. 7 

• . . 
26 27 28 29 30 31 32 33 34 35 36 
Thousands of pounds per square inch 

Dot Freguenci Diagram of Tensile Strength 
of 30 Aluminum Castings 

In figure 8, the ordinate of the step-i!;ike graph for 

• 

37 38 

any given 

abscissa x gives on the left-hand scale the frequency F, and on the 

39 

right-hand scale the percent p, of the castings having tensile strength 

less than or equal to that x. A comparison of the cumulative frequency 

and cumulative P3rcent scales shows that the 30 measurements represent 

the whole sample, or 100%. Likewise a frequency F = 6 corresponds to 

a percent p = 20. 

It is convenient for practical purposes to assign a value of x 

for every value of p. A rule for obtaining such a value of xis: 

(1) pick any percent p on the cumulative percent scale; 
{2) draw a horizontal line until it intersects a jump 

in the step-line graph, or until it strikes one of the plotted 
points and; 

(3) then draw a line vertically downward from the inter
section or point to the x-axis. 

The intersection with the x - axis is called the p - th percentile. 

Some special statistics' terms can now be explained. The 50th per-

centile is called the median of the measurements. The median tensile 
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strength in the example in Fig. 8 is 30,100. The 25th percentile is 

usually called the lower quartile; and the 75th percentile is called 

the upper quartile. The lower quartile in Fig. 8 is 28,000 and the 

upper quartile is 34,500. 

The difference between the largest and smallest measurements in 

a sample is called the range of the sample. In the example, the largest 

measurement is 38,000 pounds per square inch and the smallest is 23,700 

pounds per square inch. The range in pounds per square inch is 38 ,000-

23,700 = 14,300. 

Exercises for Section II. 2 

1. The following figures of production were reported by the fore-

man in a munitions factory: 

404 401 399 401 402 400 403 399 399 403 
403 402 401 404 407 403 400 403 401 403 
401 405 405 403 407 398 401 400 401 406 

¥.take a dot frequency diagram and a cumulative graph. What is the 

median production'? The 10 ..... rer quartile? The upper quartile? The range? 

2. The members of a rifle team made the following scores from the 

prone position: 

80 
87 

82 
93 

89 86 
88 83 

83 
90 

79 
89 

91 
93 

90 
7B" 

86 
81 

75 
81+ 

Make a dot frequency diagram and a cumulative graph. ·what is the 

median score? The upper quartile? The lower quartile? The range? 

3. The annual salaries of the office employees of a certain 

company were given as: 

$2500 *~3000 ~~1900 $2100 $2750 
2350 2975 2475 2250 2500 
2950 2825 2225 2875 2950 
2350 2475 2250 2750 2500 
2850 2925 2475 2100 1950 
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Make a dot frequency diagram and a cumulative graph. t'i1hat is the median 

salary? The upper quartile? The lower quartile? The range? 

II. 3. Other Graphical Presentations of the Frequency Distribution. 

When the sample becomes fairly large, the procedures for constructing 

a dot frequency diagram or a cwnulative graph become very tedious; there

fore other means of presenting the' data should be used. We can still 

show the main features of the sample by first grouping the rreasurements, 

and then constructing a frequency histogram instead of the dot frequency 

diagram, and a cumulative polygon instead of a cumulative graph. 

Our first work is to construct a frequency table. To proceed we 

cut the x - axis into intervals of equal length. Try to choose the 

intervals so they will have a rather simple midpoint, and so the total 

number of intervals is somewhere between 10 and 25. 

Returning to the table used in the previous section, it is found 

that the most convenient interval is one with length 1000 pounds and 

midpoints 24,000, 25,000, ••• , 38,000 on the x - axis. This choice 

gives 15 intervals which include all of the measurements, the boundaries 

being 23,500, 24,500, ••• , 38,500. Where a measurement falls on a 

point of division, we assign it to the interval lying at its left. 

We will now set up columns (a) and (b) in Table 1. Column (c) is 

set up next as a convenience, if we do not have a dot frequency Eliagram. 

Column (d) is obtained by counting the tallies in column (c). The 

entries in column (e) are those of column (d) expressed as decimal 

fractions of the total of the frequencies. Column (f) shows the cumu

lative frequences obtained by the successive summation of column (d). 

The final entry in this column should equal the total sample 30. Colunm 

(g) is the successive summation of column (e). It should total 1.00 

when completed. 



The frequencies in Table 1 can be represented by what is called 

a frequency histogram as in Figure 9. We lose some information here 

because we record only the intervals in which a measurement falls 

rather than its exact value. 

Table I 

Freauency Distribution for Grouped Measurements 
of Tensile Strengths of 30 Aluminum Castings 

(a) (b) (c) (d) (f) (f) (g) 
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Cumulative 
Internal Internal Tallied Relative Cumulative relative 
boundaries midpoints frequency Frequency frequency frequency frequency 

23500-24500 24,000 
24500-25500 25,000 
25500-26500 26,000 
26500-27500 27,000 
27500-28500 28,000 
28500-29500 29,000 
29500-30500 30,000 
30500-31500 31,000 
31500-32500 32,000 
32500-33500 33,000 
33500-34500 34,000 
34500-35500 35,000 
35500-36500 36,000 
36500-37500 37,000 
37500-38500 38,000 

Frequency 
Percent 

4 13.32 

3 9.99 

2 6.66 

1 3.33 ------i 
0 

1 
1 
4 
1 
2 
4 
2 
2 
2 
1 
3 
4 
0 
1 
2 

.0333 

.0333 

.1332 

.0333 

.6666 

.1332 

.0666 

.0666 

.0666 

.0333 

.0999 

.1332 

.0000 
,0333 
.0666 

1 
2 
6 
7 
9 

13 
15 
17 
19 
20 
23 
27 
27 
28 
30 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Tensile strength in thousands of pounds (psi) 

Fig. 9 Frequency Histogram of Frequencies in Table I 

.0333 

.0666 

.1998 

.2331 

.2997 

.4329 

.4995 

.5661 

.6327 

.6660 
~7659 
.8991 
.8991 
.9324 

1.0000 

38 
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Another graphical way of presenting the data in Table I which is 

often useful is the cumulative polygon as shown in Fig. 10. This graph 

is obtained by first piotting points ~hose abscissas as the right-ha..Dd 

end points of the intervals in column (a), and whose ordinates are the 

cumulative frequencies in column (f). Then these points are connected 

by straight line segments. If we think of the right-hand end points 

of each interval as x and the cumulative frequency as y, we have 16 

points: (23,500, 0),(24,500, 1),(25,500 2), (26,500 6), ... ' 
(38,500, 30). The cumulative polygon is such that for any x, the 

corresponding y gives, approximately, the number, or percent, or 

measurements less than or equal to that x. For instance, suppose 

x = 35,5000, then 27 is the number of measurements less than or equal 

to 35,500, or 90 percent. 

Frequency 
1 Percent 

...i,, J.. 
30 100 

II 
I './ 
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Fig. 10 Cumulative Polygon for the Cumulative Frequencies in Table I 



Exercises for Section II. 3 

1. Suppose the test scores of 200 seniors of a certain school 

range from 245 to 780. What interval boundaries and interval mid

points would you set up for a frequency table'? Make uo colu.mns (a) 

and (b) for s-c.ch a table. (See Table I). 
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2. For one of the problems in Section II. 2 construct a frequency 

table, a histogra:rr., and a cumulative polygon from the measurements 

given in the problem. Indicate the two quartiles and the median on 

the cumulative polygon. 

IIo 4. Statistical Inference Based on the Frequency Distribution. 

Our analysis of the ca.stings measurements has served to illustrate 

some general ways of summarizing data about a collection of measurements; 

however, 11,re can further use the measurements from this random saniple to 

make statistical inferences concerning the population of measurements 

from which the sample was drawn. 

These 30 aluminum castings had been taken at random from the 

specified population, namely, all the aluminum castings produced at 

this plant on a certain day. We can use the properties of the sample 

to estimate properties of the population. The percentile derived from 

the frequency distribution of the sample are useful estimates of the 

corresponding percentiles of the complete frequency distribution of the 

output for the entire day. For example, we note that 75% of the sample 

had a tensile strength of at least 28,000 pounds per square inch. We 

could estimate that the entire population would roughly be likewise. 
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II. 5. The Mean and Standard Deviation. 

We have noticed that the first step in the reduction and descrip-

tion of a long series of measurements is classifying the data in a 

frequency distribution and constructing the various diagrams. After 

thies is done, we can, by inspection, note points of similarity and 

difference. These comparisons tend to be inexact, and it is difficult 

to obtain agreement on them. As a rule, ,r.re use quantitative methods, 

rather than graphical methods, to compare frequency distributions. We 

shall now discuss two important descriptive statistics which are more 

suited to computation and interpretation: the arithmetic mean and the 

standard deviation. The first measures the magnitude and the latter 

measures the vari~bility of a set of measurements. 

The definition of the arithmetic mean i (read 11x-bar 11 ) of a set of 

measurements is simply, the sum of the values in a set divided by the 

number of items. Using x1, x2, x~, ••• , Xri to represent the value~ of 

the respective n items in a set, the definition may be written 

... t Xn 
n 

It may be stated more simply as: 

i = 4 x or more precisely 
n n 

which states explicitly that all of the items in the set are summed. 

The symbol ~always refers to sum in statistics. No new ideas are 

involved. The mean of n numbers is simply their average. Given four 

numbers 1, 5, 9, 13, the mean is: 

X = 1 t 5 t 9 t 13 = 28: 7. 
4 4 

The mean is used widely as a statistic, so it will be worth 

emphasizing some of its properties. 



From the definition of the mean, we have 
'l'\ 

-x -·~JG -~ 
- n 'n 

Therefore: nx = zxi• 
·, ::: I 
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Hence the sum of the measurements can be recovered by multiplying the 

mean by the number of measurements. Thus an employer would doubtlessly 

prefer the mean to the median as a measure of magnitude of salaries 

paid, since he can easily find out the total size of his payroll by 

multiplying the mean by the number of employees, whereas the median 

would seldom, if ever, present a true picture of total salary expense. 

Example. Suppose salaries average $10 per week for a factory with 

200 workers, and $110 per week for another factory with 40 workers. 

Then the total payroll in dollars for the two factories is 200 x 70 f 

4- x 100 = 18,000. The nean salary in dollars for the workers in the 

two factories is 18,000/240 = 75. 

More generally, suppose we have k sets of measurements, the sets 

having n1, n2, ••• , nk measurements, and corresponding me.ans XJ.., x2, 

o .. , xk• Then the grand mean of all the n1 f n2 f ... f nk = n 

measurements is 

X: ~ (nJ_ il f Il2 i2 f • • • f Ilk~) -Z'niXi , 
n 

where~ni Xj_ is the sum over the k sets of the products ni Xi• This 

formula gives the weighted mean of k means. 

Another important property of the mean can be demonstrated as 

follows: Consider a set of measurements 3, 5, 10. The mean is 6. If 

we subtract the nean from one of the measurements, we get the deviation 

of that item from the mean. Thus for our set, the deviations are: 

3 - 6 = -3 
5--- 6 = -1 

10 - 6 = .J±... 
sum= 0 



Note that the sum of the deviations is O. 

In general, if xi is a measurement from some set wltth mean x, 

the deviation of xi from xis defined as~ - x. Moreover, the sum 

of the deviations from xis always zero. For, 

n 
22 -i:l (xi - x) = (x1 - x) t (x2 - x) t ... t (xn - x) 

= x1 t x2 t ... f XrJ. - ni 
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We conclude that the mean typifies all the measurements since the sum 

of all the positive deviations equa:J_s the sum of all the negative 

deviations. 

Again the mean of a random sample can be used to estimate the 

mean of the population from which it is drawn. 

The standard deviation is the most used and important measure of 

·variability (the scatter of the items about the average value). The 

best way to describe this statistic is to state the operations by 

which it is calculated. In order of operations it is found as follows: 

a. Find the deviation of each value from the mean. 
b. Square these deviations 
c. Sum the squares 
d. Divide the sum by n 
e. Extract the square root of the quotient 

To illustrate, let us find the standard deviation of a set of test scores. 

Score 
X 

24 
22 
27 
32 
40 g:x:: 145 

x: 29 

Deviation from Mean 
x - x or d 

-5 
-7 
-2 
3 

11 

Deviation from Mean 
squared or ct2 

25 
49 
4 
9 

121 
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The standard deviation of this set, in which n = 5, is the square root 

of 208/5. Thus, S. D. = .j 41.6 or: 6.45. 

When we represent the deviation of an item from the mean of its 

set by d, we may define the standard deviation: 

S.D. = 1¥"' 
If ~re square both sides of this equation we have (S.D.) 2 = ~d2/n. 

This is designated the variance, and the quantity~d2 is desi~ated 

the~ Ef §9Uares. These are technical terms in statistics that are 

always defined as such. In other words, the sum of squares of a set 

is the sum of the deviations from the mean squared; the variance is the 

sum of squares divided by n; and the standard deviation is the square 

root of the variance. 

Exercises for Section II. 5 

1. The number of pupils in seven different general math classes 

are 22, 26, 37, 27, 28, 34, 36. Find the mean number of pupils per 

class, and compare it with the median number of students. 

2. In a certain math class the following grades were made on a 

test: 3 students got 53, 4 -- 64, 4-- 69, 6 -- 75, 5 -- 78, 3 -- 84, 

3 -- 93, and 2 -- 95. Find the mean grade of all the students. How 

does this compare with the median grade for the class? 

3. A dairy farmer found that his herd of cows averaged 210 gallons 

per day in a certain week. His records for six days of the week show 

the following totals: 190, 205, 220, 200, 230, 204, but he lost his 

record for the other day. What must it have been? 

4. a. We know that the mean of the measurements 3, 5, 10, is 6. 

If 5 is added to each of these measurements, what is the mean of the 
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new set of measurements? 

b. Given that the nmnbers xi, x2, x3, have mean x; if a constant 

k is added to each number to form a new set of numbers, what will be 

the rrean of the new set? 

c. From parts (a) and (b) generalize on the mean of a new set 

formed by adding a constant k to each member of a set of n elements 

with mean x. 

5. a. Given the set of numbers 3, 5, 10, with mean 6, form a new 

set by multiplying each of the original elements by 7. Find the mean 

of the new set and relate it to the mean of the original set. 

b. Given the set of elements xi, x2, ••• Xn_, with mean x, form 

the new set .zi = cxi, where i = 1, 2, ••• , n, and show that z = ex. 

6. a. Given the set of measurements 2, 7, 9, find the mean. 

Also find the mean of the new set obtained by multiplying each measure

ment by 5 and then adding 7 to the result. Relate the new an\i old means. 

b. Given the set x1 , x2, ••• , Xn_, ·with mean x, form the new set 

zi = cxi /. k, where i = l:, 2, ••• , n, and then find the mean z of the 

new set. 

7. a. What is the mean of the set of numbers: 1, 3, 5, 7, 9? 

b. ·what is the mean of the set of numbers: 1, 9, 25, 49, 81? 

c. Square your answer to problem ?a and compare it with your 

answer to problem 7b. Is the square of the mean of a. set always equal 

to the mean of the squares? 

8. If the foul-shooting averages of the five first string players 

of the school basketball team are 0.70, 0.25, 0.33, 0.65, and 0.66, in 

30, 16, 27, 40, and 21 tries, respectively, what is the foul-shooting 

average for the first team? 
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9. Compute the variance and standard deviation of the measurements 

in problem 1. 

10. Compute the standard deviation for the seven measurements in 

problem 3. 

11. Given the measurements 6, 10, 12, 22, 25, compute the variance 

and the stand~rd deviation. Then subtract 3 from each measurement and 

compute the mean and standard deviation of the new set. 

12. Compute the variance of the three measurements 3, 5, 10. If 

7 is added to each of these measurements, what is the variance of the 

new set? 

IL 6. Experimenting with a Coin. 

Let us consider the toss of a coin.1 It is often said "the chances 

are 50-50 that it comes up heads". By this people mean that, if the 

coin w~re tossed say 100 times, we should expect 50 heads and 50 tails. 

But we do not expect exactly 50 heads in every 100 tosses: the number 

will vary slightly from one set of 100 tosses to another. 

In the language of probability, we translate "50-50 chance for a 

head 11 as follows: 11 the probability of the outcome, the coin com.es up 

heads, is ! 11 • Similarly, the probability for the outcome "tails" is ! . 
We then say that the probability that a toss gives either "heads" or 

"tails" is ! f ! or 1. While the probability that neither 11heads 11 or 

"tails11 comes is G. In general, the numbers used for probabilities are 

positive or zero, and the sum of the probabilities of all mutually 

exclusive outcomes is unity. 

lAaron Bakst, Mathematics Its Magic and Mastery (New York, 1952), 
pp. 329-353; gives a good discussion on probability in this chapter titled 
11How to Have Fun with Lady Luck11 • 
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To get the probability of an outcome we count the number of possible 

favorable outcomes and diJtide by the number of possible outcomes. We 

might ~~ite, in the case of a coin: 

~-n_um_b~er~o_f~f_a._v_o_r_a_b_l_e~o_u_t_c_©_m_e_s..,.....(_h_ea_d~s~)~~~-,- - f = 1 
number of possible outcomes (heads or tails) n 2 

where f is the number of favorable outcomes and n the total number of 

possible outcomes. 

II. 7. Experimenting with a Deck of Cards. 

Suppose that we draw a card from a shuffled deck of bridge playing 

cards. What is the probability of drawing a spade? Since there are 13 

spades out of the 52 cards in the deck, there are 13 "favorable outcomes. 11 

It follows that 

.£ = 13 = 1 
n 52 4 

Exercises for Section II. 7 

1. The ordinary die has faces numbered 1 to 6. Such a die is 

thrown. Vfuat is the probability that an odd number appears on the top 

face? What is the probability that a number less than 5 turns up? 

2. Suppose we draw a card from a shuffled deck of pinochle cards. 

What is the probability of drawing a spade? Of drawing an ace? Of 

drawing the 9 of spades? 

J. What would be the probability of drawing a card of rank less 

than 10 in the previous exercise? 

4. What would be the probability of drawing a black card from 

a bridge deck? Of drawing a diamond? 
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II. 8. Sample Spaces. 

If we toss a coin, there are two possible outcomes which we can 

repre15ent thus: 

H, T, 

Wbere H stands for 11 heads 11 and 'l' for 11 tails11 • If we toss a single die, 

there are six possible outcomes which may be represented by a list of 

the numbers on the faces: 

1, 2, 3, 4, 5, 6. 

Such listings of all possible outcomes of an experi1nent are called 

sample spaces. 

Suppose a bag contains a number of balls, alike in every way 

except that soI!l.e are red (R), some yellow (Y), and some (G). We draw 

two balls froin the bag without replacement. What is the sample space 

for this experiment? It would be a listing of all possible outcomes 

for the first and second ball drawn. Here is the list: 

R,_T{ 

YR 
GR 

RY 
yy 
GY 

RG 
YG 
GG 

Suppose that we toss two dice, one yellow and one blue, and that 

we note the numbers on the top faces. The yellow die has six possible 

outcomes. So does the blue die. If we list the number appearing on 

the top face of the yellow die by y, and that on the blue die by b, 

then the outcome of a single throw of the two dice can be represented 

by the ordered number-pair (y,b). How many such ordered number-pairs 

are there? Since there are 6 possible values for y and, for each value 

of y, 6 for b, there are 6 x 6 or 36 ordered number-pairs. The student 

should arrange these ordered number-pairs ~n a table. 

The array shovm in the table will be the sample space for the 
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experiment of tossing two dice. It is also referred to as the univer

sal set for the experiment. The ordered number-pairs (y, b) are elements 

of the sample space or of the universal set. They are called samnle 

points, or briefly, points. 

II. 9. Events and Their Probabilities. 

A point or a set of points of the sample space is called an event. 

If we assume that each point in the sample space for the tossing of 

two dice has an equal chance of happening, then the probability of any 

one of these events is 1/36. If the event we are considering includes 

more than one point of the sample space, we find its probability as 

follows: 

a) count the number of points in it to get f, the 
number of favorable outcomes; and 

b) take f/n as the probability of the event where 
n is the number of points in the whole sample space. 

For example, consider the event de-scribed by the phrase "the sum 

of the dots on the two dice. is 7". This event contains the points: 

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), and (1, 6) and thus f: 6, 

n: 36, and its probability is 6/36 or 1/6. 

Notation: In the sample space for the two dice problems, the 

student has listed the points in ordered pair notation as (1, 2), (2, 3) 

and so on. Instead of the sentence 11 the probability of the event (2, 3) 

is 1/3611 , we write, in syinbols 

P ( (2, 3)) = 1-., 
36 

If no chance for confusion is involved we use only one set of parentheses. 

The inner set was needed for the notation of an ordered pair, so if we 

denoted the ordered pair by a symbol e, we would use P (e) for the 

probability. Here the parenthesis correspond to the outer set in the 
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original notation. We would now write: 

P (2, 3) = 1. 
36 

Using the sample space table for the two dice problems, and the 

concept of an event, we can answer some interesting probability ques-

tions by simple counting. 

Example 1. What is the probability that one die gives a 5 and 

the other a 4? 

Since the event contains the two points (5, 4) and(4, 5) we have 

P ((5, 4), (4, 5)): 2/36 = 1/18 

Example 2. What is the probability that the yellow die gives a 

3? Counting we see that there are 6 points w:hth,y = 3. Thus the 

probability is 6/36 = 1/6. 

Exercises for Section II. 9 

1. In the two-dice problems, what is the probability that the 

yellow die gives a number less than 2, and the blue die a number 

greater than 3? 

2. A man has a penny, a nickle, a dime, a quarter, and a half-

dollar in his pocket. He takes two coins out of his pocket, one after 

the other. List the sample space. Assuming all ordered pairs are 

equally like],y, what is the probability that both coins are silver? 

What is the probability that the coins total value is less than 40¢? 

Less than 20¢? More than 20¢? A prime number? A number divisible 

by 10? 

3. Suppose you plan to make a survey of families having three 

children (single births). List an appropriate sample space. How many 

11 points11 does it have? How many of these correspond to families having 
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two boys and one girl? How many to families in which the first born 

is a boy? Suppose that each point in the sample space is given the 

same probability. wbat i.s the probability that the first two are girls 

and the third a boy? What is the probability that at least two are 

girls? 

II. 10. Probability and Set Notions. 

In the foregoing discussions, we can use the language of sets. 

An event A is a set of points in the sample spaces. We define proba

bility of the event P (A) as the sum of the probabilities of its points. 

First we must identify the set of points involved. Since ,ve are 

considering sample spaces of n points, where each probability is con-

sidered equal to 1, we can obtain the probability of an event by counting 
n 

the number of points in it and multiplying that number by 1• From the 
n 

yellow and blue dice sample space, we shall take examples. 

Example: \'Vb.at is the probability that y S 2 or b ~ 3? in the 

two dice problem? 

For the event y ~ 2 the yellow die has to show either 1 or 2. 

'I'he corresponding set A consists of 12 points. For the event b ~ 3 

the blue die has to show either 1 or 2 or 3 •. • The corresponding set B 

consists of 18 points. But we cannot just add these numbers, because 

6 points are in both sets, and should not be counted twice. Thus for 

<. ..:::. the event y ·- 2 or b - 3 the count of different points is: 12 /. 18 

- 6 = 24. Therefore the desired probability is 24/36: 2/3. 

Note that in our calculation, 12 is the number of points in A, 

18 those in B, and 6 both in A and B. If we had divided by 36, we 

would have had: 12 /. 18 - 6 = 24. 
36 36 36 36 
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In the example we could have said: 

P(A) .j. P(B) - P(A and B) - P(A or B). 

II. 11. Mutually Exclusive Events. 

Example: What is the probability that the throw of the dice gives 

a total of 6 or 11? 

There are five sample points where the total is 6, and there are 

two where the total is 11. These sets have no. common points, therefore 

the probability is 7/36. 

When two events have no common points, they aire called mutually 

exclusive, or dis.joint. In set language, let A be the set of points 

for which the sum is 6 and B the set for which the sum is 11. Then 

we have ( when the sets are disjoint) 

P(A or B) - P(~ t P(B) = 5 t 2 = 7. 
- 36 36 36 

II. 12. Complementary Events. 

An event A and the event which consists of all other points of the 

same sample space are called complementary events. 

Any event A and its complement A together comprise the whole 

sample space. Therefore: 

P (A or A)= 1. 

Since A and A are disjoint, we can see that: 

P (A or A)= P(A) t P(A), 

so we would know that: 

P(A) = 1 - P(A). 

For the above reasons, complementary events are often used in 

arriving at the pbobability of any gi;V,en event. 
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Example: lfllhat is the probability in the two-dice experiment that 

y /. b -/:. 3? 

Let A be the event 11 the dots on the faces do not add to 3n. Then 

A is the event 11 the dots add to 311 • The set A consists of the two 

points (1, 2), (2, 1). Therefore: 

P(A)'= 1 - P(A) = 1 - 2 - 17. 
36 - 18 

Exercises for Sections II. 10 to II. 12 

1. In the two-dice experiment of Section II. 8, find the proba-

bility that: 

a. The sum of the spots is not 9. 

b. The two dice show only the numbers 2 or 5. 

c. Neither 3 nor 5 appears. 

d. Each die shows 3 or more spots. 

e. At least one die shows fewer than 4 spots. 

f. y,::;.2fb. 

g. y > 3 /. b. 

2. Five boys in a club want to select a committee of three. The 

boys' names are: Tom, Dick, Larry, Pete, and Lou. The committee is 

chosen "by lot" in such a way that all 10 possible committees are 

equally probable. 

a. Set up a sample space of 10 points to represent the 
10 possible committees. 

b. What is the probability that Lou is on the committee? 
Tba t Tom is not on the committee? 

c. 1.ifuat is the probability that Lou is on the committee 
and Tom is not? 

d. What is the probability that neither Lou nor Tom is on 
the committee? 
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e. What is the probability that Tom, Pete, and Lou are not 
all on the corrnnittee? 

f~ Suppose Tom and Pete are cousins, and that Dick and 
Lou are cousins. What is the probability that the committee 
has two cousins on it? 

II. 13~ Concluding Remarks on the Chapter. 

This has been an intuitive discussion of probability and it is 

hoped it will make the student desire further work in this area. 

The author believes the more formal approach should be left for 

college study and is passing over it in favor of work in elementary 

calculus. 



CHAPTER III 

INTRODUCTORY CALCULUS 

III. 1. Variables, and Functions. 

A variable is a quantity to which an unlimited number of values 

can be assigned in an investigation; while a quantity whose value is 

fixed (does not change) in any investigation is called a constant.l 

In the geometric formula for the circumference of a circle C = 21tr., 

we call C and r variables, and 2 and '1T constants. As r varies so will 

the value of C change. 

When two variables are so related that the value of the first 

variable is determined when the value of the second variable is known, 

then the first variable is said to be a function of the second. It 

might be said that a function is a correspondence that associates with 

·each number of a given collection of numbers a unique number. For 

example, the formula C = 21Tr defines a function. To each positive 

real number r, there corresponds a unique positive real number C 

given by the formula. 

lThis section on "Introductory Calculus", unless otherwise noted, 
is taken mainly from these sources: Reginald Stevens Kimball, ed., 
Practical Mathematics (New York, 1945), II, pp. 427-l~78; A. Albert 
Klaf, Calculus Refresher for Technical M:en (New York, 1956), pp. 1-88, 
163-216; William A. Granville, Percey F. Smith, and William R. Longley, 
Elements of the Differential and Integral Calculus (New York, 1941), 
1-337; and Richard E. Johnson, syllabus for course in "Calculus for the 
High School Science and Mathematics Teacher", unpublished material used 
in class during fall semester of 1957-58 academic year, Institute of 
National Science Foundation at Oklahoma State University. 

38 
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If r = 3, then C - 61T; if r = 5, then C = 10·11 ; if r = 7, then 

C = 1411; and so on. 

The linear equation y = 5 - 3x defines a function that associates 

with each real number x, a real number y given by the equation. If 

x = O, then y = 5; if x = -h, .then y = 17; and so forth. The graph of 

this equation would give a straight line through the points (O, 5) and 

<1, o), with slope -3. 

The collection ( or set) of numbers over which a function is defined 

is called the domain of the function. For example, the domain of the 

function defined by the equation C = 21Tr is the set of all positive 

real numbers; while that of the function defined by the equation 

y = 5 - 3x is the set of all real numbers. 

Just as letters x, y, z, and so on are used for convenience to 

designate numbers, so it is convenient to designate functions by letters 

f, F, g, G, and so on. If f is used to designate a function, then f(x) 

read "f of x", is used to designate the number associated with the number 

x by the function f. That is, a function f associates with each number 

x in its domain a unique number f(x). 

For example, if f is the function defined by the formula A =·TT r 2, 

then associated with each positive number r is the number f(r), where 

f(r) =11 r2. Thus, f(2) = '71"'22 : 417, f(4) = 71 .. 42 = 16?7, f ( V?) = 

''l{v ( ,fi) 2 = ?1i, and so on. 

Example 1. Let f be the function defined by the equation f (x) = 
Yl- f x - 3. The domain off is the set of all real numbers; f associates 

with each real number x the real number x2 f x - 3. Thus: 

f(O) = o2 f O - 3 = -3; 

f(2): 22 f 2 - 3 = 3; 

f(l) = 12 f 1 - 3: -1. 

f(-2) = -22 - 2 - 3 = -1. 



Example 2. Let F b~ the function defined by the equation F (y) -

,Jy - 5. Since Jy - 5 is a real number if and only if y > 5, the 

domain of F is the set of all nu.111hers x ~ 5. lifo have: 

F(5) = -./5 - 5 - O; F(9) = J9 - 5 = 2; 

F(l2) = J12 - 5 = ,/7; F(21) = 4. 

III. 2. Polynomial Functions. 

If for the function f ,and the number c, f(x) = c, for every real 

number x, then f is called a constant function. Thus, if f(x) = 7 for 

every x then f is a constant function. 

If there exists some numbers a and b such that f(x) =ax/. b for 

every number x, the f is called a linear function. The function f 

defined by f(x) = 3x /. 5 is a linear function. 

A function Fis called a guadratic function if F~x) = ax2 /.bx/. c, 

a t O, for some numbers a, b, and c, and every number x. 

Likewise, if g(x) = ax3 /. bx2 /.ex/. d, a,/:. O, g is called a cubic 

function and so on. 

The constant, linear, quadratic, and cubic functions are special 

cases of polynomial functions. If there exists numbers a0 , a1 , a2, ••• , 

an such that: 

f(x) = aoxn t a1xn-l /. ••• /. an-lX /. au 

for every real number x, then f is called a polynomial function. There-

fore if the functions F, g, and Gare defined by 

F(x) = x7 - x5 /. x2 - 7, 

g(x) = x5 - x!+ t x3 t x2 -1 -, 

G(x) = x3 - 9, 

then F, g, and Gare polynomial functions. 
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III. 3. Combining Functions. 

We can combine functions by the operations of addition, subtraction, 

multiplication, and division, just as we combine numbers i.D. arithmetic. 

Given two functions f and g, the function F edfined by F(x) = f(x) 

t g(x) is called the .§Bfil off and g. 

If F'(x) = f(x) - g(x), then F is called the difference of f and g. 

In each of these cases, the domain of F is the set of numbers in both 

the domain off and that of g. 

When F(x) = f(x) ., g(x), the function F is called the product of 

f and g. 

Similarly F(x) = f~xj ; Fis called the quotient off and g. 
gx 

Again the don~in of the product or quotient function is the set of all 

numbers common to the domain off and g, except that the numbers x such 

that g(x) = 0 must be excluded from the domain of the quotiento 

Example: The function F defined by F(x) = 5x2 f ?x - 9 is the 

sum of the function of f and g, where 

f(x) = 5x2 , g(x) = 7x - 9. 

Likewise, f(x) = G(x) 0 H(x), ·where G(x) = 5, H(x) = x2; 

and g(x) = D(x) -E(x), where D(x) - 7x, E(x) = 9. 

It is obvious that His the product of two functions 

H(x) = I(x) <!' I(x), where I(x) = x, 

and D(x) - ?I(x). 

The function I such that I(x) = x for every number xis called the 

identity function. 

When a function is defi.D.ed as a quotient 

F(x): ful 
g(xT 

where f and g are polynomial functions, then Fis called a rational 



function. Thus, if F is defined by 

F(x) = 5x2 i/. 3, 
X 4 

then F is a rational function. 
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The function F defined by: F (x) = ,/3x f 5 illustrates another way 

of compining functions. If g(x) = 3.x /. 5 then F(x) = .Jg@. Or, if 

we let f(x) = _,/'i, then f(g(x)) = JiGJ, that is, F(x) = f(g(x)). 

In this example, the domain off is the set of all non-negative numbers; 

that of g the set of all numbers; and that of F the set of all numbers 

X :::,. - 5/3 • 

If f and g are functions and if F(x) = f(g(x)) for every x such 

that g(x) is in the domain off, then the function Fis called the 

composite off and g. 

Example: If f(x) = x6, g(x) = x2 /. 3, then the composite F of 

f by g is defined by: 

F(x) = f(g(x)) = {i(x[l6 = (x2 /. 3) 6• 

Also, the composite G of g by f would be: 

G(x) = g(f(x)) = (x6) 2 /. 3 = xl2 /. 3. 

Observe that F and Gare different functions. The composite K of g 

and g would be: 

K(x) = g(g(x)) = (x2 /. 3)2 /. 1 = x!+ /. 6x2 /. 10 0 

Exercises for Section III. 1 -- III. 3. 

If f(x) = x2 - 5x /. 4, find: 

1. f(O); f(3); f(-2); f(- /5); f(a) 

2. f(l /. h); f(x /. h); f(-3 /. h) 

3o f(1 t. h2 - f(1L, h ;f O; f~x t hL - f(x), h fo 0 
h h 
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If F(x) = x - 2, x t -2, find: 
i"72 

4. F(O); F(l); F(2); F(a); F(y) 

5. F(l ./- b); F(x ./- h) 

6. F(l th) - F(l), ht O; F(x th) - F(x), ht O. 
h h 

7. F(5) - F(3); F(x) - F(3), x t 3. 
3 X - 3 

If f(x) = 3x2 - 7x, find the equation of the line through the 

following two points: 

8. (O, f(O)) and (2, f(2)) 

9. (3, f(3)) and (3 ./-2h, f(3 ./- h)), ht O 

10. (a, f(a)) and (a./- h, f(a ./- h)), ht 0 

If f(x) = x2 - 4 and g(x) = 5x ./- 1, define: 

11. (a) The sum off and g; (b) The difference off and g. 

12. (a) The product off and g; (b) The quotient off by g. 

13. (a) The composite off by g; (b) The composite of g by f. 

14. If f(x) = x3, find a function g such that f(g(x)): x. 

Is g(f(x)) = x also? 

15. If f(x) = ,/x, find a function g such that f(g(x)) = x. 

Is g(f(x)) = x also? 

III. 4. Average Rate of Change of a Function. 

You found out in algebra how to 'Write the equation of a line which 

passes through two given points. You know that the slope m of the line 

is the difference between they values divided by the difference between 

the x values of the coordinates (points)o 

In finding the equation of a line through the points (h, k) and 

(h1 , k 1 ), you find the slope m of the line is k - R1 • Then the 
h - h 1 

equation of the line is y - k = k - k 1 (x - h). 
h - h 1 
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It is convenient to use the Greek letter delta (.6.) to indicate 

11Difference between v~lues of". Thus 11 y means ''difference between 

values of y 11 , that is, k - k', and D. x means 11difference between values 

of x 11 , that is, h - h'. Using this notation we have m = ~. That is, 
bx 

the slope of the straight line through the points (h, k) and (h 1 , k') 

is the rate of change in the value of y. 

Example: In the function y = 3x2 - 2x t 6, find the average rate 

of change iny as x increases from -5 to -3. 

When x = -5, y = 3(-5) 2 -2(-5) t 6 = 91 

When x = -3, y = 3(-3)2 -2(-3) t 6 = 39 

Ax= -3 -(-5) = 2 AY = 39 - 91 = -52 

Then~= m = -26 
/J.x 

The average rate of change of the function is therefore negative. 

This means that, as the value of x increases from -5 to -3, the value 

of y decreases. 

In general, the average rate of change of a function f between 

x and xi can be defined as: 

f(x1 ) -f(x) 

Xl - X 

Example: If f(x) = x2 - 5 find the average rate of change off: 

(a) between x: 2 and x = 5; (b) between x and x f h. 

Solving we would have: 

f(5) -f(2): (25 - 5) - (4 - 5): 7 
5 - 2 3 

f~x f h1 -f(x) = /Cx t h) 2 -57 - ;;?- - 57 : 2x f h 
x-h -x h 

We can check (a) by using (b). Thus if x = 2 and h = 3, we get 7. 
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Exercises for Section III. 4 

1. Find the average rate of increaze in the circumference of a 

circle as the radius change from 5 in. to 10 in. 

In the following functions find~: 
Ax 

2. y = x2 - 5x /. 6 

a. from x : 2 to x = 4 b. from x = 0 to x = 3 

3. f(x) = x3 - 4 

a. from x = 0 to x = 2 b. from x = 4 to x = 6 

4. g(x): j X - 4 

a. from x = 3 to x = 6 b. from x = 9 to x = 15 

5. f(x) = 2 /. x - x2 

a. from x = 2 to x = 4 b. from x - a to x =a/. h 

6. Find the average rate of change of the force of attraction 

of two particles between d = 10 cm and d = 12 cm. 

III. 5. Limits. 

The idea of a variable approaching a lj.mit occurs in geometry in 

extablishing a formula for the area of a circle. The area of the 

regular inscribed polygon with any number of sides n is considered, 

and n is then assumed to increase indefinitely. The variable area 

then approaches a limit, and this limit is defined as the area of the 

circle. In this case the variable v(the area) increases constantly, 

and difference a - v, "Where a is the area of the circle, diminishes 

and finally becomes less than any preassigned nu.mber, however small. 

Definition. If a variable x approaches more and more closely a 

constant value c, so that c - x eventually becomes and remains less, 

in absolute value, than any preassigned positiverumber, however small, 



the constant c is said to be the limit of x. 

Example 1. Let the values of x be 2 /.1, 2 t ~, 2 t ~, ... , 
2 .f. !n' ••• , without end. Then, obviously, limit x = 2, or x 2. 

If we rrark on a straight line the point P corresponding to the 

limit 1, and from P lay off on each side a length S, however small, 
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then the points determined by x will finally all lie 1'Jithin the segment 

corresponding to the interval [J. - e , 1 .f. £J. 
Example 2. wnere f(x) = 2x /. 5, it is obvious that if xis close 

to -2, then f(x) is close to 1. Thus, f(-1.9) = 1.2, f(-2.01) = -.98, 

and so on. Since f(x) is close to 1 when xis close to -2, we shall 

say that the limit of f(x) as x approaches -2 equals 1, and write 

limit f(x) = 1 
x~ -2 

In both cases thus far the limits have been rather obvious; but 

this is not always the case as further examples will show. 

Example 3 . Find: limit Ji - 3 
x-49 x-9 

We can not guess the value of this problem by letting x = 9, since 

the fraction ( ./9 - 3) / ( 9 - 9) is not defined. But, we can change the 

form of the quotient as follows: 

Jx-3./xt:_3: x-9 
X - 9 Jx t 3 (x - 9) ( y'x f 3) 

= 1 , X t 9. 
Jx 7 3 

Now it is evident that fi. t 3 is close to 6 when xis close to 9, and 

limit Jx - 3 = limit 1 - 1. 
x~9 X - 9 X·-4 9 \(x .;. 3 -6 

In evaluating limit f(x), f\a) need not be defined in order for 
x-~a 

the limit to exist. The value of the limit is a number b that f(x) 

is close to when x is close to (but not equal to) a. Even if f(a) 

is defined, the lim.it of f(x) as x approaches a might be different 



from f(a). 
1 1 

Example 4. Find limit i ~ 3 
X·7-J X 3 
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Again, the limit can not be found by just letting x = -3. We, therefore, 

simplify 

then 

as follows: 
1 1 ~ 
u_J~~- 1, 
xl3 X f J - 3x 

1 1 

X ~ -3 

limit 
x~-3 }H= limit _L = - 1 

X'7 -J 3X 9 

since __l is close to - 1 when xis close to -3. 
3x 9 

Exercises for Section III. 5. 

1. limit x2 - 9 2. limit x 2 ./ 4x 
X"""? 2 xf2 X'""7" 2 

3. limit x2 - 4 4. limit x2 - 4 
x----::, 2 X f 2 x 7 2 X - 2 

x2 - 4 
1 1 

5. limit 6. limit X - 2 
x~ -2 xf2 X72 X - 2 

7. limit ~ - 1 8. limit {x t. h)2 - x2 
Y"'""7" l y - 1 h70 h 

9. limit {x t. h23 - x3 lo. If f(x) = x2 - 2x ./ 3 
h70 h (a) limit f(x) - f(l~ 

X7l x-1 
11. If F(x) 

find: 

= 25 - x2, find: 
limit F{x2 - F{42 (b) limit f~l I:. h2 - f{12 
x~4 x-4 h--7 0 h 

12. Find the average rate of change, f(h), of the surface area of 

a sphere from r: 3 tor= 3th. Then find limit f(h). 
h-?0 

III. 6. Continuous and Discontinuous Functions. 

In many cases it is noted that the limit of f(x) ~s x approaches 

a is just f(a). Thus if f(x): x2 f 4x, 

then: limit (x2 t 4x) = 12, 
X"72 
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we see that the answer is the value of the function for x = 2. Here 

the limiting value of the function when x approaches 2 as a limit is 

equal to the value of the function for x = 2. The function is said to 

be continuous for x = 2. The definition is: 

A function f(x) is said to be continuous for x = a 
if the limiting value of the function when x approaches 
a as a limit is the value assigned to the function for 
x = a. In symbols, if 

limit f(x) 
x~a 

- f(a) 

then f(x) is continuous for x = a. 

The function is said to be discontinuous for x = a if this condition 

is not satisfied. 

Consider the function f(x) = .x2 - 4. For x = 1, f(x) = f(l) = 3. 
X - 2 

Moreover, as x approaches las a limit, the function f(x) approaches 3 

as a limit. Hence the function is continuous for x = 1. 

However the function is not defined for x = 2 (since then there 

would be division by zero). 

x2 - 4 : X f 2; 
x- 2 

therefore limit x2 - ~- = 4. 
x--;) 2 X - 2 

But for every other value of x, 

and limit (x /. 2) = 4; 
x~2 

Although the function is not defined for x = 2, if we arbitrarily 

assign to it the value 4 for x = 2, it becomes continuous for this 

value. That is, if f(x) is not defined for x = a and if limit f(x) = B, 
x-4a 

then f(x) will be continuous for x = a, if Bis assumed as the value 

of f(x) for x = a. A function f(x) is said to be continuous in an 

interval when it is continuous for all values of x in this interval. 

III. 7. The Limit Theorems. 

There are fundamental limit theorems that state the limits of 



various combinations of functions. The proofs of these theorems are 

left for the student. The theorems are as follows: 

If the limits of f(x) and g(x) as x approaches a exist, then: 

(a) limit /J(x) /. g(xi] = limit f(x) /. limit g(x) 
X----:r a x-;. a X-t" a 

(b) limit [i(x) - g(xj] = limit f(x) - limit g(x). 
X-7a x~ EJ. x-~~ 

( c) limit [i(x) • g(xi} = limit f(x) • limit g(x) 
x-=,, a x-;. a X-7 a 

limit f(x) 
(d) limit ~=x~a if limit g(x) t 0 

x--=r a g ) limit g(x) X--'7 a 
X-"7' a 

(e) limit /J(xJ.°11 = /limit f (x)-;r1, n a positive integer. 
x-~a L x--4 a _I 

(f) limit ~/~ = ~limit f(x), n a positive integer. 
x~a \ X-?a 

Ex.ample~. Use the limit theorems in evaluating: 

limit 
x~~3 

(x2 /. 7x - 5) = limit x2 /. limit 7x /. limit - 5 
X-~ J X·"-7 J X~ J 

- limit X d limit X f 7 limit X - 5 
x4 3 x.-'.r 3 x~ 3 

= 3 ~ 3 /. 7 ~ 3 - 5 = 25 
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If we let f(x) = x2 /. 7x - 5, then f(3) = 25. Since limit f(x) _.,, 
x~J 

f(J), f is a continuous function at J. 

Example 2. Use the limit theorems in finding: 
limit X f 1 limit X f limit 1 

lin1it ll.1 = x-3- -3 = x-;) -3 X·-* -3 = 
x~ -3 x- 1 limit x- 1 limit X - limit 1 

x-~ -3 x~ -3 

-3 t 1 = -2 = 1 
-3 - 1 -4 2 

III. 8. Infinity ( CO ) • 

If the numerical value of a variable x ultimately becomes and 
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remains greater than any preassigned positive number, however large, 

we say x becomes infinite. If x takes on on1y positive values, it 

becomes positively infinite; if negative values only, it becomes 

negatively infinite.. In these cases x does not approach a limit as 

previously defined. The notation limit x = 0JJ or x-..:,- <:P , must be 

read 11x becomes infinite", not 11x approaches infinity". Infinity is 

not a limit, since infinity is not a number at all. 

zero. 

We can now write, for examp1e, 

limit 
x-~o 

1_ = oo, meaning that 1 becomes infinite when x approaches 
X X 

If limit f(x) =Cl), that is, if f(x) becomes infj_nite as x approaches 
X'""7 a 

a as a limit, then f(x) is discontinuous for x = a. 

A function may have a limiting value \l\i:hen the indenendent variable 

becomes infinite. For example, limit 1 - 0 - -
X-4.DD X 

In general if f(x) approaches a constant walue A as a limit when x --;. 6? 

we write: limit f(x) - A 
x--) 00 

Certain special limits occur frequently. The constant c is not 

zero in these given below. 

(a) limit .£ = CX:J (b) limit ex =oo 
X'"7 0 X x,7CO 

(c) limit ~ :00 (d) limit C - 0 - -
x-)00 C x-~ClD X 

These special limits are useful in finding the limits of the 

quotient of two polynomials -when the variable becomes infinite. 

Example: Find: limit 2x3 - Jx2 /. 4 
x-',,DO 5x - x2 - 7x3 

Divide numerator and denominator by x3, the highest power of x 
2. _l+ 

present in either. Then we have: limit 2 - x /. x3 = - 2 
x,~Ll? 5 - 1 - 7 7 

-Z X 
X 
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since the limit of each term in numerator or denominator containing 

Xis 0. 

Exercises for Section III. 6 -- III. 8. 

1. Find: limit JS - 2x2 2. Find: 
X·~<fl 3x 7 5x2 

3. Find: limit xfa. - a4 4. Find: 
X _.;;.a x2 - a2 

5. Given: f(x) = x2, find 

limit f(x f h) - f(x) 
h40 h 

6. Given: f(x) = ax2 f bx f c, find 

limit 
b-~O 

III. 9. Derivatives. 

f(x .J. b) - f(x) 
b 

limit 
x-40 

limit 
Y-~ 2 

l+x2 t. 2x ./:. 2 
~ f 2x - 6 

-y:_2 t. I - 6 
y2 - 4 

The instantaneous rate of change of a function is of sufficient 

importance in the calculus to warrant a special name. It is called the 

derivative of the function. The derivative of a function fat a number 

a, designated f 1 (a), is defined as: 

A) f 1 (a) = limit f(x) - f(a) , 
X - a. 

if the limit exists. If the limit does not exist, f does not have a 

derivative at a. 

The domain of f 1 is the set of all nu~bers a such that f'(a) 

exists. 

An alternate definition of the derivative, which is usually 

simpler to apply is: 

B) f 1 (x) = limit f(x th) - f(x) 
h~O h 
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Ex.ample 1. Find f 1 , if the function f is defined by f(x) -

3x2 - 2x /. 6 

f 1 (x) = limit l§ (x /. h) 2 - 2(x /. h) f fiJ - [5x2 - 2x /. 6 
h-"r O h 

= liroit 
h·-t 0 

3x2 /. 6xh /. 3h 2 - 2x - 2h l 6 - 3x2 f: 2x - 6 
h 

= limit 
h-~O 

6xh /. 3h2 - 2h 
h 

= limit 
h-~O 

(6x /. 3h - 2} = 6x - 2 

Exa.~ple 2. Find g1 , if the function g is defined by g(x) = x2 - 7 

g 1 (x) = limit g(x /. h) - g(x) = limit /Jx /. h)2 - jJ - [;.2 - j] 
h""7' 0 h h·'--7 0 h 

= limit x2 /. 2xh /. 112 - 7 - x2 /. 7 = limit 2x /. h = 2x 
h~O h-r O h 

Exercises for Section III. 9. 

Use definition A to find the derivative of each of the following 

functions. 

1. f(x) = 2 - 3x 

3. g(x) = x2 /. l 
X 

2. f(x) = 3x2 - x.3 

Use definition B to find the derivative of each of the following 

functions. 

4. f(x): 4x2 /. 2x3 

6. f(x) : C -z 
X 

5. f(x) = Jx2 - 5 

Find the derivative of each of the following by applying either 

definition A or B. 

7. f(x) : x3 S. g(x) = X 

r(x) - 1 - -X 
10. g(x) - 1 - ;J 
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11. G(x) = 1 12. F(x) = 1 -= 0 ,Ix 
13. f(t) = _1_ 

t/t 

III. 10. Formulas for Differentiation. 

The process of finding the derivative of a function is called 

differentiation. Some basic formulas will be given in this section. 

Sometimes it is convenient to use another notation for the derivative 

of a function. Thus, f 1 (x) will also be designated Dxf read "the 

derivative of the function f at the number x. 11 

If each of the functions f,and g has a derivative at x, then so 

does the function ff g, and 

That is, the derivative of a sum is equal to the sum of the derivatives. 

Proof: Recall that the sum of the functions f and g is the 

function ft g such that (ft g)(x): f(x) t g(x)o Then Dx(f f g) 

= limit {f(x t h) /. g(x /. hfJ - /.J(x) f g(x'J] 
h---70 

= limit 
h--7 0 

= limit 
h·"""7 0 

h 

/J(x f h) - f(x'J] f /i,(x /- h) - g(x'J] 
h 

f (x f h) - f (x) 
h 

/- g(x th) - g(x) 
h 

= Dxf /- Dxg 

Similarly: II. Dx(f - g) = Dxf - Dxg 

What is the derivative of a constant?· The derivative of a constant 

is zero. That is: III. Dxc = O, since c does not change while the 

variable grows. 

Example. If f(x) = 6, then f 1 = 0 



The identity function I (such that I(x) = x for every x) may be 

differentiated thus: 

D I - limit X -
h '"7 0 

I(x f h) - I(x) 
h 

= limit (x /. h) - x 
h-~O h 

= limit l = l 
h-~O 

That is: IV. DXI = 1 

By this an immediate further rule is that: Dxin: n:x.D-1 for 

every integer n. This can be written: 

Example. Find Dx(x5) = 5x/+ 

v. D __ n - nxn-1 xX"- -
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Three other formulas are: The derivative of the product of two 

functions is the first function ti-rnes the derivative of the second 

one plus the second function times the derivative of the first one. 

The derivative of the quotient of two functions is the denominator 

times the derivative of the numerator minus the numerator times the 

derivative of the denominator all divided by the square of the denom-

inator. As a formula: 

VII. DX i = g(x)Dxf - f(x)Dxg 
[i,(xl72 

A special case of formula VI occurs if f and g are equal. Then 

we get 

D:,f ~ f = f(x)Dxf f f(x)Dxf = 2f(x)Dxf• 

We shall designate the function f ,, f as f2. More generally, we designate 

by rn then the power of the function f for any integer n. Thus, the 

function fn is defined by fn(x) = /_f(x)]Il. 



We saw that Dxf2 = 2f(x)Dxf. Then, 

Dxf 3 = Dxf 2 J f 

= r2(x)Dxf ./- f (x)Dxf2 

= f2(x)Dxf ./- f(x) I}-. 2f(x)Dxf 

= 3f2(x)Dxf 

Whenever it is true that: 

for the positive integer n, then: 

Dxfn = Dxrn-1 '"' f 

= rn-l(x)Dxf ./- f(x)Dxfn-l 

= rn-l(x)Dxf ./- f(x) ., (n - l)fn-2(x)Dxf 

= rn-l(x)Dxf .j. (n - l)rn-l(x)Dxf 

= nfn-l(x)Dxf 

Thence: VIII. Dxfn = nrn-l(x)Dxf. 

Example 1. Find: Dx(x2 - 5) 

Dx(x2 - 5) = D:x?C2 - Dx5 

= 2x 

Example 2. Find: Dx(?d+./- 5x3 - 3x2 ./- 7x - 1) 
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Dx(7Y!.+ ./- 5x3 - 3x2 ./- 7x - 1) = Dx7x4 /. Dx5x3 - Dx3x2 /. Dx7x - Dx_l 

= 7D x?C4 ./- 5D xx3 - 3D xx2 /. 7D xX - D x1 

= 7 ~ 4x.3 t 5 "' 3x2 - 3 » 2x /. 7 • 1 - 0 

: 2sx3 .j. 15x2 - 6x /. 7 

Examnle 3. Find: Dx(5 - x2)6 

Dx(5 - x2)6 = 6(5 - x2)5 Dx(5 - x2) 

= 6(5 - x2) 5/J5x5 - Dxx'3:l 

= 6(5 - x2 )5Lo - 2"JSJ 

= -12x(5 - x2)5 



Exercises for Section III. 10 

Find each of the following derivatives. 

1. D (7x6 - 5x5 /. 3x3 - x /. 9) 
X 

3. Dx(3x /. 1)3 

5. D (y27 - 7y6) y 

III. 11. Higher Derivatives. 

2 1 
2. Dy(Y - r) 
4. Dx (x2 - 2x t 2) 

X - 1 

6. D ( x - 1 ) 
x x2-2xf2 
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The derivative f 1 of a function f is called the first derivative. 

In turn, the derivative of f 1 is designated f 11 and is called the 

second derivative of f. Likewise f 111 is the third derivative of f 

and so on~. These could be denoted by Dx2f, Dx3f, and so on. 

off. 

Example: If f(x): x!+ - 5x2 /. 1, find the first four derivatives 
X 

We have D (x!+ - 5x2 /. x-1) - 4x.3 - lOx - x-2 
X -

Dx2(x4 - 5x2 /. x-1) = Dx(4x3 - lOx - x-2) 

: 12x2 - 10 /. 2x-3 

Dx3(x!+ - 5x2 /. x-1) = Dx(l2x2 - 10 /. 2x-3) 

= 24x - 6x-4 

Dx 4(:x!+ - 5x2 /. x-1 ) = Dx(24x - 6x-4 

= 24 /. 24:x-5 

- 24 /. 24 - 3 
X 

Exercises for Section III. 11 

F'ind the first three derivatives of each of the following functions. 

1. g(y) = y3 - 1 
y 

2. f(x) - x2 1 2 - .,. :::2' 
X 



3. g(x) = x7 - 6x5 f 3x2 - 5 4. G(y): y7 - y4 f y3 _ y 

5. f(x) = 2x - 1 
2x 7 1 

III. 12. Geometric Applications of the Derivative. 

Consider a secant which intersects 

a curve in two points P and Q, and -which 

revolves about the point P so that point 

Q appraoches point P along the curve. 

The limiting position of PQ is called 0 

t 
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the tangent to the curve at P. The derivative at Pis the slope of the 

tangent and of the curve. Thus the secant through points P(x, y) and 

pt (x1 , y1) has a slope RP'=~. The limiting value of this, as b.. x 
~· ~ ffi ~x 

t; approaches zero, is 9Z, the slope of the 
dx 

·tangent at P. For, as D. x approaches 

zero, pt approaches P and ptp approaches 

X the tangent t. 

Example 1. Find the slope of f(x) = ~x2 at the point (2, l)o 

y f(x) = ~ ft(x) = ~ • 2x = !x 

thus, whet'.!- x = 2, f"(,x) = 1. 

t The slope of the curve at the point 

(2, 1) is L 

What is the equation of the 

tangent line t? Since the slope of 

t = 1, an equation is given by y - 1 = l(x - 2) or y - 1 = x - 2, which 

is X - y - 1: 0. 

Example 2. Find every point on the graph of y = x?- - 4 at which 
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the tangent line has a slope 2. 

The graph of the given equation is the graph of the function f, 

where f(x) = x2 - 4. At the point (x, f(x)) ori this graph, the tangent 

line has a slope f 1 (x) = 2x. 

Then f 1 (x) = 2 if and only if 2x: 2, or x = 1. The point (1, -3) 

is where f 1 (x) = 2. The tangent line has the equation: 

y - (-3) = 2(x - 1) 
Yf3=2x-2 
2x-y-5:0 

Exercises on Section III. 12 

In each of the following, find an equation of the tangent line to 

the graph of the given function at the given point. Sketch the graph 

of the function and the tangent line. 

1. f(x) = 2x2; (2, f(2)). 

2. g(x) = x3; (2, g(2)). 

3o G(x) = x!+; (1, G(l)). 

4. Find the points on the graph of y = 3.:x:2 - 4x3 at which 

the tangent lines have slope -6. 

III. 13. Other Applications of the Derivative. 

Important applications arise when the independent variable in a 

rate is the time. The rate is then called a time-rate. Velocity in 

rectilinear motion affords a simple example. 

s 
A 0 p p 

Consider the motion of a point Pon the straight line AB. Lets 

be the distance measured from some fixed point, as O, to any position 

of P, and let t be the corresponding ela~sed time. To each value oft 
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corresponds a position of P and therefore a distance s. Hence s will 

be a function oft, and we may writes= f(t). 

Now let t take on an increment flt; then s takes on an increment 

6. s:, and A s =-the average velocity of P when the point moves from 
.b.. t 

P to P 1 , during the time interval D,. t. If P moves with uniform motion 

(constant velocity), the above ratio will have the same value for every 

interval of time and is the velocity at any instant. 

For the general case of any kind of motion, uniform or not, we 

define the velocity (time - rate of change of s) at any instant as the 

limit of the average velocity as D. t approaches zero as a limit; that 

is v = ds. 
dt 

The velocity at an;y instant is the derivative of the distance with 

respect to the time, or the time - rate of change of the distance. 

When vis positive, the distances is an increasing function oft, 

and the point P is moving in the direction AB. When v is negative, s 

is a decreasing function of t, and P is moving in the direction BA. 

If we think of the point Pas having the coordinate s(t); then the 

velocity v( t) of P at the time t is v( t) = s 1 ( t), the derivative of 

s at t. 

Since the acceleration a(t) of the moving point Pis the instan-

taneous rate of change of the velocity function at t, a(t) = v 1 (t), 

the derivative of vat t; or a(t) = s 11 (t). 

Example 1. The position functions of an object moving along a 

line is given by s( t) = 6t /. 1. Describe the motion of the object. 

The velocity of the object is v(t) = s 1 (t) = 6. 

Clearly a(t) = O; since a(t) = v•(t). Starting at t = O, s(O) = 1 

and the object is at the point vdth coordinate 1. The object then moves 



·with a constant velocity of 6 towards the right, and is at the noint 

with coordinate 7 at t = 1, 13 at t = 2, and so on. The motion is 

shown in Fig. 11. 

> t:l 

0 l 2 3 I+ 5 6 7 8 

Fig. 11 

Example 2. A ball thrown vertically upward from the ground is 

s(t) ft. above the ground after t-seconds, where s(t): 400t - 16t2o 

Describe the motion of the ball. 
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The velocity of the ball is v(t) = 400 - 32t, and the acceleration 

is a(t) = -32, which is the acceleration of gravity. The initial 

velocity is v(O) = 400 ft/sec, the velocity at time t = O. How high 

does the ball go·? The ball will come to rest when it reaches its 

highest point; that is, its velocity will be zero at the highest point 

of its path. Since v(t) = 0 if and only if t = 25/2 sec, evidently the 

highest point will be reached 25/2 sec after it is thrown. Thus s(t) = 
400 (25/2) - 16 (25/2) 2 = 2500 ft. as the maximum height. The ball will 

reach the ground 25 sec after it is thro-wn, since s(t) = 0 if and only 

if 16t(25 - t) = O, that is, if and only if t = 0 or t = 25. 

Besides the use of the derivative in solving problems dealing with 

tangent lines, velocity and acceleration, mapy other uses are found in 

economics, physics, chemistry and other sciences. Some illustrations 

are now given. 

Example J. A gas is expanding according to Boyle's law, PV = C, 

where Pis the pressure and Vis the volume of the gas, and C is a 

constant. At a certaininstant, P = 2000 lb/ft2 and rt= 4ft3. If at 

this instant the volume is incre1&sing at the rate of 2 ft3/min (that 
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is Dt,V = 2), find the rate of change of the pressure. 

PV = C, therefore C = 8000 in the given instance. The derivative 

of the volume with respect to the pressure is given by DpV: - C 
' p2 

since V - C • - - The derivative with nespect to the time tis given by: 
p 

DtV: - Q_ DtP 
p2 

But DtV = 2 so we can solve for DtP: 

: - 2P2 = - 2(2000) 2 : - 1000 lbs/ft2 
C 8000 

That is, as the volume increases the pressure decreases. 

In economics, if C(x) is the cost of producting x units of some 

commodity, then C is called a cost function. We can assume that the 

domain of C is the set of all positive real numbers. The instantaneous 

rate of change of Cat xis called the marginal cost at x; it is the 

approximate cost of producing one more unit at the instant x units are 
I 

being produced. Clearly C (x), the derivative of Cat x, is then the 

marginal cost at x. We will call C the marginal cost functio~. 

The dems.nd function D is defined as: D(p) equals the number of 

units of a commodity that can be sold if the price of each unit is P. 

On the other hand, the price function pis such that P(x) is the price 

that can be asked for each unit of a commodity in order that x unit~ 

may be sold. In an ideal economy, the domain of D and P would be the 

set of positive real numbers. 

The revenue function R is defined by R(x) = xP(x), where xis the 
I 

number of units sold and P(x) is the price per unit. The function R 

is called the marginal revenue function~ It is obvious that R1 (x) = 
xP1 (x) /. P(x). 

If S(p) designates the supply of a certain item, if the selling 

price is p, then Sis called the supply function. Equilibrium conditions 
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will exist for an item selling at price p if S(p) = D(p), that is, if 

supply equals demand. The price p of an item is called the equilibrium 

price when S(p) = D(p). 

Example 4. Let us assume that the price P(x), in cents, of a 

bushel of potatoes is given by P(x) = 220 - 5x, where xis the number 
fc57 

of bushels of potatoes grown in. the United States. Find the revenue 

and marginal revenue functions for potatoes. 

We have R(x) = x(220 - 5i) = 
107 

or R(x) = 

220 - . X • 

106 
R' (x) :: 

220x - 5x2, 
10'1 

If 108 bushels of potatoes are produced, R(108) = 120, that is, an 

additional bushel of potatoes produced increases the revenue by 

approximately $1.20. 

Exercises for Section III. 13 

1. Describe the motion of an object whose position functions, 

on a line, is given by s(t):: 4t f 1. 

2. Describe the motion of an object moving on a line ~~ose position 

function is given by s(t): 4t - t2. 

3. Describe the motion of a ball thrown vertically downward from 

a point 200 ft above the ground, if_ the distance s(t) of the ball above 

the ground t-seconds after it is thrown is given by s(t) = 200-4ot-16-f'? 

4o Sand is being poured on the ground at the rate of 12ft3/min. 

If the pile always has the form of a right circular cone having the 

same height as diameter of the ba:se, find: (a) h(t), the height of the 



pile after t minutes; (b) The time it takes to get a nile 4 ft high; 

(c) The rate of change of h when the pile is 4 ft high. 
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5. The equilibrium. constant of the reaction P c15~ P c13 /. Cl2 

is given by K = x2 , where xis the amount of Cl2 and P Cl3, 
(a - x) V 

Vis the voltune of the gas, and a is the original amount of P Cl5. 

Find the rate of change of V with respect to x. 

6. In special relativity of a free particle P of mass m, 

where E is the energy of P, p is the momen,tu», of P, and c is the velocity 
I,,__ __ 

of light. If v = DpE, show that p = mv/'1'1 - v2/c2 

7. The cost C(x), in dollars, of producing x dozens of pairs of 

socks in a certain hosiery mill is estimated to be given by C(x) = 3000 

f 2x.. Find the marginal cost function. If the price P(x), in dollars, 

asked for each dozen pairs of socks is given by P(x) = 2.30 /. 102, 
7" 

where x is the number of dozens of socks produced, find the revenue 

and marginal revenue functions. Also find R1 (104). 

8. The demand D(p), in millions of bushels, for wheat in a certain 

nation is given by D(p) = .J:., where pis the price of a bushel of wheat 
vP 

in cro~m.s. Find the revenue and marginal revenue functions for wheat. 

If S(p) = 2.fp, what is the equilibrium price of wheat? 

III. 14. Maxima and Mi:,nima. 

Fig. 12 shows the graph of the function y = x3 /. L~x2 - t+. Its 

derivative is 3x2 f Sx. 

This means that, at any point xi, the rate of change of the function 

Putting the derivative equal to zero and solving, we have 3x2 /. 8x=O; 

X : 0, - .§_ 0 

3 
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At any value of x less than - 1, 3x2 f 8x is positive. Thus for 
3 

values of x less tha.'1 - .§. the function is increasing, as from A to B. 
3 

The derivative is also positive for values of .x greater than O. Thus 

it is seen that the function is also increasing from C to D. 

·o 

6-

. .---1,_,__,_._.....,..,._.._......._...._.-<-_ 
·-!f' ~If i ~3 = 2. 

,.....,...........,~'--,......LJ.......,_,,_ ______ ______,, x· 
Q. 3 

Fig. 12 

For values of x greater than - .§. and les.s than O the derivative is 
3 

negative and the function is decreasing, as from B to C. 

At point B(x = - 8) and at point C(x = 0) the value of the derivative 
3 

is zero. The values of the function at these points are called critical 

( 3 2 
values. Thus, at point B, x = - .§., y = -~) f 4(- .§.) -

3 3 3 
Since the value of the function is less than 5 13 on each 

27 

4, or 5 13. 
27 

side of this 

point, the value y = 5 13 is called a maximum value of the function. 
27 

At point C, x = O, and y = -4. Since the function is greater than 

-4 on each side of this point, the value y = -4 is called a minimum 
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value of the function. 

At a critical point the slope is zero or infinite. 

Using the first derivative we can test for maxima or minima as 

follows: 

F'irst find f 1 (x) and the critical values by setting f 1 (x) equal 

to zero. Then for a critical value X = x1, 

f(x) has a maxima -- f(x1) if f 1 (x) changes from f to -, 

f(x) has a minima = f(x1) if f 1 (x) changes from - to /.' 
f(x) has neither if f 1 (x) does not change sign. 

A second derivative test is sometimes used also. 

First find f 1 (x) and the critical values. Then find f" (x) o For 

a critical value x = xi, 

f (x) has a maxima : f (x1) if f" (xi.) L... 0, 

f(x) has a minima = ,tr,(:,q) if f 11 (x1) ) 0, 

the test fails however if f" (x) = 0 or becomes infinite. 

Example 1. Find the maximum and minimum values of the function f 

defined by f(x) = x3 - 12x2 f 36x. 

f 1 (x) = 3x2 - 24x f 36 = 3(x - 6)(x - 2) 

Then f 1 (x) = 0 if and only if x = 6 or x = 2. Thue these are the only 

critical points. We can check to see which points they are -- maxima 

or minima. By the following table: 

f is increasing at 1 and decreasing at 3; therefore f(2) = 32 is a 

maximum value off. And f is decreasing at 3 and increasing at 7, so 

that f(6) = 0 is a. mini.mum value off. 
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Exercises for Section III. 14. 

Find the :maxim.um and minimum values of the following functions and 

tell where the function is increasing and where decreasing. Draw the 

graphs. Be sure to show the work where yoµ test for maxima or minima. 

1. f(x) = x2 - 10 4. f (x) = x!:+ - 32x2 

2. f(x) = x2 - 6 5. f(x) = x3 ~ 14x f 49 

3. f(x) = x!+ - 2x2 6. f(x) = x3 - 3x2 

III. 15. Applications of Maxima and Minima. 

}Jany problems in mathematics ask for the largest or least value 

of some function. Several types shall be used here to illustrate such 

problems. 

Example 1. A farmer has 200 rd. of fence which he wishes to use 

in enclosing a rectangular pasture to have the greatest possible area. 

What must be the dimensions? 

Let x be the number of rods in one dimension of the field. Since 

the perimeter is 200 rd., the other dimension will be 100 - x. Then 

the area A will be: 

A= x{lOO - x): lOOx - x2 o 

Since we wish to have a maximum value of A, we must find the 

derivative and set it equal to zero. 

DxA = 100 - 2x 100 - 2x = 0 
X: 50 

and 100 - 5 = 50 

The dimensions therefore are 50 rods by 50 rods. 

Example 2. What number subtracted from its square will give the 

least result? 
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Let x be the number. Then S = x2 - x 

DxS = 2x - 1. When 2x - 1 = O, x = ! 
S=i-!=-i, 

Any other number such as 1/3 or 2/3 will give a greater result 

since 1 - 1 = - ~and!±. - ~ = - ~, each of which is greater than - i, 
9 3 9 9 3 9 

Example.?• A farmer wishes to use 80 rd. of fence to enclose the 

greatest possible rectangular pasture along a river. Ir no fence is 

needed on the river side, what dimensions should he use? 

Let x be the number of rods in one dimension of the field (the 

one parallel to the river). Since there is 80 rods of fencing, 80 - x 

rods is left for the other sides to be fenced, or 80 - x rods per side. 
2 

The area will be: 

A= x(80 - x): 40x - x2 
2 2 

The derivative DxA = 40 - x 

Set 40 - x = O, therefore x = 40, and 80 - x = 20 
2 

The field should be 40 rods by 20 rods. 

Exercises for Section III. 15 

1. What positive number exceeds its cube by the greatest amount? 

2. An open box is to be made by cutting out squares from the 

corners of a rectangular piece of cardboard and then turning up the 

sides. If the piece of cardboard is 12" by 2411 , what are the dimensions 

of the box of largest volume :rn9.de in this w~y? 

3. ·what number exceeds twice its square by the greatest amount? 
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III. 16. Integration and Applications. 

This section on integration is given solely to introduce the 

student to the concept of this part of the calculus and some of its 

uses; it is not intended to show the derivation of the integral in a 

formal way. 

We have learned how to find the exact rate of change of a function; 

that is, given a function, to find its derivative. Now we shall see 

how to integrate; that is, given the derivative, to find the original 

functiono 

The inverse process to differentiation is called integration. 

Integral calculus is the inverse of differential. Its fundamental 

object is to find the function, the realtion between the rates or 

differentials of the variables which enter it being given. 

A function is called the integral of its differential, and the 

process by which we derive it is called integration. Differentiation, 

as its name implies, is closely related to the operation of taking 

differences. Integration, on the other hand, is closely allied to the 

operation of taking sums. In fact, the symbol,~, which is read 

"integral of", is nothing more than a long S-sign, and stands for the 

Latin word, 11 summa 11 , or sum. 

The process of integration is just the reverse of the process of 

differentiation, thus: 

x3 has as its differential 3x2 dx 

y) therefore is the integral of 3x2 dx. 

In integral calculus, we write this as: 

f3x2 dx = x3, 

read "the integral of 3x2 dx is x3 11 ; where dx specifies the variable. 



If C is any constant, we have 

dC:?.: o, so that fo dx = c. 
dx 
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The integra,l of zero is an arbitra!"J constant, and the integral 

6f the sum of two functions is the sum of their integrals; therefore, 

the integrals 'Which we give are not fully determined functions, but are 

determinate except for the possibility of an indeterminate constant. 

Hence, two expressions for the integral of a function, obtained in 

different ways, need not be e.xa.ctly the same, but may differ by a 

constant. It is essential when integrating to add. a constant, thus: 

)f'(x)dx = f(x) /- C. 

You know that the derivative of 3x2 is 6x; an integral of 6x dx 

is 3x2. However, note: 

g_ 3x2 = 6x; d (3x2 /- 2) - 6x; d (3x2 - 8) = 6x; etc. 
dx dx dx 

That is, d (3x2 t k) = 6x. Hence f6x dx = 3x2 /. k, where k 
dx 

represents any constant. 

Examples: 

(a) 

(b) 

( e:) 

d 
dx 
g_ 
dx 

(Li-X /- 9-) = 4; so, }4dx = 4x /. k 

(2x2 t 3x): 4x /- 3; so, .{(4x /- 3)dx = 2x2 /- 3k /- k 

g_ ( . .1...) = - ~x6 ; 
dx x2 vJ 

so, f (~) dx = ~ /- k 

The integral of the sum of any number of differentials is the sum 

of their integrals. This follows from the rule that the derivative of 

a sum equals the sum of the derivatives. Thus: 

s(dutdv) = fctui jdv. 

The integral of a constant multiple of a variable is the constant 

multiplied by the integral of the variable. Thus: 

)Cdu : C Sdu. 
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The integral of a variable with a constant exponent in the differ-

ential of the variable is the variable with an exponent increased by 

one;divided by the increased exponent. Thus: 

fundu = unfl, (n ~ -1). 
)' ~ 

Examples: 

(a) 

(b) 

(c) 

5'x6dx = x6/.1 ./- C : x7 .J. C 
671 V-

JJxdx = 3 f xdx = ix2 ./- C 

S ( 5x2 .J. 4x) dx = ) 5x2dx ./- ) 4xdx 

= 5 [ x2dx ./- 4) xdx 

= 5x3 ./- 2x2 .J. C 
3 

(d) ( dx = ( x-!ctx = x-!tl .J. C = 2VX ./- C 
) ~ ) ! 

(e) I 2dt = 2 ( t-2dt = 2 t-2fl /. C = - g /. C 
) ~ ) -1 t 

One of the practical uses of integration in mathematics is to 

find the area of a section under a curve. 

Without proof we shall take the formula.: 

A = fbydx 
a 

y where A is the area bounded by the curve 

axes. 

y : f(x), the x-axis, 1rnd the ordinates 

at x = a, and x = b. The symbol fbydx 
a 

means that the integral of ydx is found 

and x = b and x = a a.re substituted. 

Then the difference between them is 

found. This is the area. 

Example 1. Find the area bounded by the line y = 4 - x and the 



X 5 

The area extends from x: 0 to x = 4. 
4 4. 

Hence A = f y dx = S (4 - x)dx 
0 0 J ( 4 - x) dx = f 4dx - S x dx = 4x - x2 /. k 

2 
at x: 4! 4x - 3 f k = 8 /. k 

2 
at x = 0: 4x - 3 f k = k 

2 
(8 f k) - k = 8. The area is 8 square units. (Note: It 

is not necessary to bring in the constant of integration, since it 
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always disappears in subtracting. We will leave it off in the future.) 

Example 2. Find the area under the curve y = x2 from x - 2 to 

X: 4. 
...,. 

Ii> 

-------·-----o-1<:::......1..--1.zl,i...L.n3~ ..... 'f-.:J ..... --"'-. --- ;A 

The area desired is A 

fx2 dx = x3 f k 
3 

Atx=4: x3=64 
3 3 

At x = 2: x3 - g_ 
3 3 

A= 64 - 8 56 3 -3 = _ squa.re 
3 

.4 
= $ x2 d.x 

2 

units, 

The area enclosed by the graphs of two different curves can likewise 
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be found by integration. 

Ex.ample 3. Find the area of a region bounded by the graphs of 

functions f and g, where 

f(x) = 2x - x2, g(x) = x - 2. 

'i l 

Fig. 13 

Fig. 13 shows the graphs of the functions. The region between 

the graphs off and g is between the lines x = -1 and x = 2. Hence, 
2 2 

A = J (f - g) = r }J2x - x2) - (x - 2[/dx 
-1 -1 

2 
= f (-x2 f x f 2)dx 
-1 

{ (-x2 .j. x /. 2)dx = -x3 .j. x2 f 2x 
3 2 

When x = 2: - x.3 /. x2 f 2x = 10 
3 2 3 

When x = -1: - x3 /. x2 /. 2x = - 1 
3 2 6 

Therefore the Area= 2 square units. 
2 

Exercises for Section III. 16. 

4 
1. Find { x2 dx 

1 
a 

2. Find { (a2x - x3)dx 
0 

3. Find the area bounded by the parabola y = x2, the x-axis, and 

the ordinates x = 2 and x = 4. 



4. Find by integration the area of the triangle bounded by the 

line y = 2x, the x-axis, and the ordinate x = 4. Verify your answer 

by finding the area as half the product of the base and altitude. 
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5. Find the area of the trapezoid bounded by the line x f y = 10, 

the x-axis, and the ordinates x = 1 and x = 8. Verify your answer by 

finding the area as half the product of the sum of the parallel sides 

and the altitude. 

6. Find the area bounded by the parabola y2 = 2x and the straight 

line x - y = 4. 

This, then, has been a brief look at integration. It is true that 

many more uses of integration are possible; but it is hoped this very 

short section shall serve as a stimulus to further study by the interested 

pupil. If such is the case, the insertion shall have served its purpose. 

The interested student can find much fuller development of the 

calculus, and the topics of the first two chapters, if he or she will 

but look at the various books listed in the bibliography at the end of 

the paper, or by referring to many other volumes dealing with advanced 

mathematics. 
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APPENDIX A 

Symbols Used in Set Theory 

••• , Xn 1 A is a set containing the elements xi, • o., Xri 
and no others 

A is a subset of B 

Bis a superset of A 

Intersection of Sets A and B 

Union of sets A and B 

Complement of set A 

The empty of null set 

Symbols Used in Statistics and Proba.bility 

Arithmetic mean 

Summation 

Deviation of an item from the mean 

The Sum of squares 

Symbols Used in Introductory Calculus 

g(x), etc. Functions of x 

Difference between values of 

Slope of a line 

Infinite 

or Dxf First derivative of the function f(x) 

Integral of 

d f(x) Derivative of a function in regards to x 
dx 

dx, dy, etc. Differentials 
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APPENDIX B 

Some Useful Formulas 

C = 2f;""r; C = }7d Circumference of a circle with radius r, with 
diameter d 

A: bh 

A= ! bh 

V = b3 

s = 4·rrr2 

V - 411r3 
3 

A = '.Ed2 Area of a circle with radius r, with diameter d 
¥-

Area of a square with side b. 

Surtace area of a cube with edge b. 

Area of a rectangle with sides band h. 

Area of a triangle with baseband altitude h. 

Volume of a cube with edge b. 

Surface area of a sphere of radius r. 

Volume of a sphere of radius r. 

A = nr2 tan (180) Area of a regular polygon of n sides circumscribed 
about a circle of radius r. 

V : r,r2h 

S = 217'rh 

F : nnn1 
d2 

F: qcn. 
? 

n 

Volume of a right circular cylinder of radius r 
and altitude h. 

Volume of a right circular cone of radius rand 
altitude h. 

Lateral ~urface area of a right circular cylinder 
of radius rand altitude h 

Force of attraction of two particles of masses m 
and m1, at a distance d units apart. 

Force of attraction (or repulsion) of two electrical 
charges q and qi, at a distanced units apart. (A 
similar formula is used for the force of attraction 
of two magnetic poles. 



Arithmetic Mean 

Constant 

Derivative 

Differential 

Differentiation 

Disjoint 

Dornain 

Eleroont 

Function 

Integration 

Median 

Probability 

Range 

Set 

Statistics 

Variable 
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APPEJ\TDIX C 

Glossary of Frequently Used Terms 

The simple average formed by adding quantities 
together in any order and dividing by their number. 

Quantity whose value is fixed (does not change) 
in any one investigation. 

The instantaneous rate of change of a function. 

The differential of the independent variable is 
its increment; while the differential of the 
dependent variable is the product of a derivative 
and the increment of the independent variable. 

Process of finding the derivative. 

Sets that contain no conunon elements. 

Collection of numbers over which a fu.~ction is 
defined. 

The items that belong to, are members of, or 
make up the set. 

A correspondence that associates with each number 
of a given collection of numbers, a unique nu.~ber. 

Process of finding the function from its derivative. 

The fiftieth percentile of a group of measurementso 

When a given event can happen in h ways and fail 
to happen if f ways, and if each of the hf f 
ways is equally likely to occur, then the probability 
of the event happening is p = h 

. h ./- f 
The difference between the largest and smallest 
measurement in a sample. 

Totality of all points or numbers that satisfy a 
given condition. 

The theories and techniques involved in collecting, 
summarizing, and interpreting numberical facts. 

Quantity which can be assigned an unlimited number 
of values in an investigationo 
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