Name: Willard William North
Institution: Oklahoma State University

Date of Degree: May 25, 1958
Location: Stillwater, Oklahoma

Title of Study: the place of physics in secondary education
Pages in study: 30 Candidate for Degree of Master of Science
Major Field: Natural Science
Scope of Study: During the last few years there has been an increasing awareness of the inadequacies of present-day teaching of physics in the American secondary school. The traditional physics course has been subjected to much criticism and concern has been expressed in many quarters over its deficiencies. The purpose of this report is to consider some of the criticisms which have been leveled at the teaching of physics at the high school level and some of the saggested means for its improvement. This has been done by surveying sone of the literature which has been written in the last few years by prominent educators and scientists regarding this subject. The report covers briefly the history of physics teaching in the United States, a review of some statistics on the enrollment in high school physics and a discussion of the aims and objectives of physics teaching. The present status of physics teaching is evaluate with consideration of the physics teacher, the course content and methods of teaching. The work of the Physical Science Study Committee is reviewed and consideration is given to the use of the general physical science course.

Findings and Conclusions: The diversity of opinion encountered in reading current material seems to indicate that the problems are complex and that there is no simple so union to the problems facing high school physics courses. This report does not attempt to suggest any such solutions but concerns itself with apparent trends and some of the more commonly expressed ideas. Most critics seem to agree that there is need for a change in many aspects of the physics curriculum but specific suggestions on what these changes should be vary greatly. Surveys indicate that there has been a steady decrease in the percentage of high school students taking a course in physics. Most critics agree that the conventional physics course tries to cover too much material and chooses that material unwisely. The key to the problems probably lie with the physics teacher himself. There is a great need for improvement in the status and quaifictions of the secondary school physics teacher. The Physical Science Study Committee has proposed an interesting and entirely new type of physics course which they hope will answer many of the needs of high school physics.

by

WELLADD GIEEIAM RORTH
Bachelor of Arts
Warne State Teachers College
Tayne, Nebraska

3950

Submitted to the facusty of the Graduate School of Ok ahoma State University
in partial fulfillment
of the requirenents
for the degree of
MSTER OR GCIENCE
May, 1958

Report Approved:

ACWOMEDGBENTS

The writer wishes to express his sincere appreciation to the Wational Science Foundation for making this years work possible. The writer also wishes to express his sincere appreciation for the helpful guidance of Dr. James H. Zant, Professor of Mathematics, which has culminated in the prescatation of this report.

TABLE OF COMTENS

Chapter Page
I. TNRRODUCTECH 1.
II. TE IIISTCNY Ci HMG SCHOOE PHYSICS 4
 7
IV. THE AIMS MD OBjECTVES OP RHSICS TEACHMG 11
V. Te COURS COMSNT. 1.6
VI. THE PHYSICS TEACHER 21
VII. SUGGESTICNS FOR IRPRONEMENT 24
veir. conclusjon 29
BIBI ICGRAPHY 31

Chapter I

INTRODUCTION

During the last few years there has been an increasing awareness of the inadequacies of present-day teaching of the physical sciences in secondary schools. The dissatisfaction is general, and efforts to improve the situation have generated various views concerning the fundamental puxposes of science teaching, the material to be taught, and the teaching nethods.

Renewed interest in the science of the secondary school program is evident today. Nany citizens recognize that science and the applications of science have a profound relationship to their living. Professional societies concerned with ous supply of scientists and engineers are interesting themselves to a considerable extent in attempting to shape the secondary school curriculum to meet the needs of students interested in science and technology. Organizations in professional education are concerning themselves on a broad basis with the nature of the curriculum and with the improvenent of curricular offerings. Organizations of science teachers are showing concern for the problems of the field. The launching of the Russian satellite has done a great deal to arouse the Anerican public to the realization that there is a need for improvement in many phases of our educational systen.

The purpose of this report is to consicier sone of the criticisms which have been leveled at the reaching of physics in the secondary school and some of the suggestions which have been made for its improve-
ment. This has been done by surveying some of the literature which has been written in the last few years by prominent educators and scientists regarding this subject. Criticism has not been ifmited to educators and scientists. Politicians, businessmen and many plain citizens have become concerned with the chalienge to the scientific and techological supremacy of the United States. Today's newspapers and magazines contain many articles comenting on the present state of our system of education. A majority of the writers agree that there is need for improvenent but specific suggestions on how to achieve these improvements vary grearly.

The diversity of opinion encountered in readins current material makes it obvious that the problems are complex and that there is no simple sopution. This report wiy not attempt to suggest any such solution, but will concern itself with apparent trends and some of the more commony expressed ideas.

The report will first strvey the history of physics teaching in the United States, with the hope that a review of the past will give a Detter insight into our present situation.

Since the objectives of physjes teaching have been subjected to a great deal of scrutiny, the report will try to survey the traditional objectives of physics teaching. Special attention will be given to detemining if these objectives have been achieved in the traditional physics course and whether these objectives apply to our modem concept of education.

The report will then attempt to evaluate the present status of physics teaching in the United States. This will be done by considering some of the nore common criticisms of our present secondary school
physics course. This will inciude a review of course content, methods of teaching and the status of the physics teacher.

The remaining portion of the report will consider some of the suggested ways of improving physics instruction. Special attention wisi be given to a look at the general physical science course and to the work of the Physical Science Study Conmittee.

The report is designed to present a study of the place of physics in the secondary school curriculum. Traditional physics has been subjected to much criticism by advocates of "modern" education and by many college and university physics instructors who have found that many of their students are poorly prepared for college work in physics. The extent of this criticism demands that the high school physics teacher take a good look at his methods of teaching and the content of his course. It is hoped that this report will heip to understand the importance of teaching physics and suggest methods by which physics instruction nay be inproved.

CHAPTER II

THE HISTORY OP HIGH SCHOOL PHYSICS

In order to fully understand the problem it is necessary to review the development and evolution of physics in the American secondary school. Science as a secondary school subject was apparently first taught in the public academies. The first of these academies was begun by Fenjamin Franklin in Philadelphia in 1751, its announced purpose being to provide practical education. His acadeny included in its curriculun a course in natural philosophy whose content evolved, in part, into present day physics; another part of the course included content from earth science and astronomy Even though academies were established with itilitarian values in mind, ovei a period of a few decades they evolved into college preparatory institutions.

The first high school was estabiished in Boston in 1825. The Curriculum of this school inctuded natural philosophy, chemistry and natural history. Science in the high school at that tine included little or no laboratory wort and few demonstrations. There was emphasis on the learning of facts. The primary objective was the acquiring of information that seemed to have practical value, although it was believed that nature study also served to reveal the glories of God. Initially there was no particular emphasis on college entrance requirements, the high school having been planned to meet the functional needs of young people.

The acceptability of high school science courses for college
entrance was amounced by Harvaxd Coliege in 1872; other colleges soon followed suit. Following this statement of the acceptability of high school science courses the colleges and universities soon provided lists of acceptable and required experinents. These institutions also provided courses of study and syllabuses to be followed as prerequisite to college entrance. Soon many colleges were regiring courses in science for entrance. Acded to such factors as the courses of study and the lists of required experiments was the influence of the science teacher who brought to his work in the high school a fresh recollection of his experiences in college. Perhaps unconsciously the high school physics course becane an initation of the college course with reduced content. This natural tendency was encouraged by the entrance requirements of the colleges and universities, with the result that before many decades had passed the domination by the college was quite strong.

Since 1900 the formal domination of high school science by the colleges has dininished. The hirh school has become the generat or comon school, being a required experience for a lange majority of the nations children. As a general school, the secondary schoo1's major function is to serve the needs of young people in all aspects of their living. This point has become one of the major areas of contention in the criticism of the present high school physics situation. Many of the critics have contended that secondary school physics has retained too much of its coljege preparatory characteristics and in its traditional form does not provide for the needs of a majority of the present high school populationo This question will be further explored in one of the following chapters of this report.

In 1900 the physics syllabus consisted essentiaily of Newtonian physics and was divided into the traditional areas of mechanics, light, sound, heat and electricity and magnetism. Since that time the syllabus has remained essentially the same with the addition of what is generally called "modern physics" which covers sone of the newer discoveries in the field. In addition to this more and more modern technology has been added.

In recent years many schools have introduced subjects related to physics under such tities as senior science, applied science, physical science, applied physics, photography, electricity, household physics and aeronautics. These have been an attempt to teach many of the principles of physics in a form related to the everyday experiences of boys and girls. The development of this group of subjects is one of the best indications that physics in its traditional forn does not meet the educational needs of many students.

CHAPTER III

ENROLLMENT IN HIGH SCHOOL PrISICS

Surveys on the enrollment in secondary school physics have shown that although the number of students who taire high school physics has increased in the last few decades the increase has not been in proportion to the increase in over-all high school enrollment. The surveys do not agree in the extent of decrease but they show that there has been a gradual but definite drop in the percentage of secondary school students taking physics since 1900 .

Much publicity has been given in recent years to the fact that enrollments in high school physics have not been increasing along with total high school enrolments. In fact, in the October, 1957 issue of School Science and Mathematics, Sumerer ${ }^{1}$ has reporied that physics enrollments have been decreasing for the 1 ast six decades. This report stated for instance, that in 189523% of all high school students were enrolled in physics and that 95% of the students that graduated that year had taken a course in physics. This becomes rather starting when it is pointed out that in 1952 only 403% of all high school students were enrolled in physics and about 21% of that years graduating class had studied physics. This low percentage of students enrolied in physics,
${ }^{1}$ Kemmeth H. Summerer, "Some Suggestions for Unifying High School Physics Around the Concept of Energy," School Science and Mathematics, October, 1957, p. 536。

When viewed along with the well publicized national problem of the shortage of scientists, makes it necessary to scrutinize the curriculum of high school physics.

Dees ${ }^{2}$ also comments, "Although the studies available relative to high school physics enrollments over the past several clecades are somewhat less than adequate, there seems to be rather convincins evidence that there has been a significant drop in the percentage of high school students taking physics in this country since 1900." Mallinson ${ }^{3}$ in 1955 reported that less than one-half of the secondary schools in the United States offered physics.

The Board of Directors of the National Science Teachers Association ${ }^{4}$ in a study published in 1957 took a more optimistic view of physics enrollments. Using data compiled by the United States Bureau of the Census and from publications of the United States Office of Education they presented the comparisons reproduced below in part.

| HERE ARE SOME COMPARISONS | 1900 | 1954 |
| :--- | :--- | ---: | ---: |
| (a) Total youth aged 14-17 in U.S. population | $6,131,000$ | $9,011,000$ |
| (b) Total enrolment grades $9-12$ | 500,000 | $6,500,000$ |
| (c) Actual enrolinent in high school physics | 98,846 | 302,800 |
| (d) Per cent (c) is of (a) | 1.6% | 3.4% |
| (e) Per cent (c) is of (b) | 19.0% | 4.6% |

The writexs of this article pointed out that there has been a
${ }^{2}$ Bowden Co Dees, "Some Current Problems and Needs in Science Edum cation," American Journal of Physics, December, 1956, pp. 616.623. $3_{\text {George G. Mallinson, The Role of Physics in the Emerging High }}$ School Curriculum," Schoo1 Science and Mathematics, March, 1955, pp. 211-216.

4Board of Directors of the National Science Teachers Association, "On the Target," The Science Teacher, April, 1957.

200 per cent increase in the actual enrollment in high school physics, although the percentage of those taking physics when compared to the total enroiment has decreased from 19 per cent to only 4.6 per cent. This report also stated that although about 23 per cent of the high schools in 1954-55 offered neither chemistry or physics; these schools enrolled only about 5.8 per cent of all high school students. It thus appears that nearly 95 per cent of all students reaching the twelfth grade have the opportunity to take chemistry and physics.

It is apparent from these studies that the popularity of physics as a high school subject has been decreasing. Many theories have been advanced in an attempt to explain this decrease in enrollment. Most of them are related to the basic objectives of teaching physics and the fundamental nature of our educational system and educational philosophy. One of the more obvious reasons can be found in the increased mabor of elective subjects the high school student of today is allowed to take. Dees ${ }^{5}$ be?ieves that this situation has caused some students, who under different circtinstances night have becone productive scientists, to take vocationallymoriented courses directed toward training salesman, printers and mechanics. He argues that it is often, if not always, unvise to allow ninth grade youngsters to determine irrevocably their future careers through electing with little or no guidance special terninal courses upon entry into high school.

Others have piaced the blame squarely upon the course itself. They contend that the comse, as it is usually taught, does not meet the needs of many students and is avoided as having little meaning or

[^0]value to then. Hurd, in a strong denunciation of the traditional physics course has said; ${ }^{6}$

One of the most incongruous situations in secondary school science is to be found in the teaching of high school physics. As a science physics has played an important and dynamic role in the development of our scientific age yet it is the most likely subject to be eximinated from the high school curiculum within the next decade as a separate science. A review of the data seems to indicate that physics with its traditional objectives, orcanization and content has lost its place as a high school subject. It does not fit into either the high school or college pattern for modern education. Over fifty years of continuous emphasis on the need to make high school physics more functional in terms of the everyclay life of the learner has been largely ignored by those responsible for clementary physics courses.

It appears that many students who could benefit from taling the physics course in its present form are not doing so. The need for improved guidance in the secondary school is evident. It seems that the public and educators thenseives have not been "sold" on the importance of physics and that this attitude is reflected in the decrease in enroliment.

[^1]
CHAPTER IV

THE AIMS AND OBJECTIVES OF PHYSICS TEACHING

Who should take high school physics? This is a question which must be considered in determining the aims and objectives of the hish school physics course. In the previous chapter it was estabished that a relatively small percentage of the high school students take a course in high school physics. This group is made up essentially of the brighter students, most of them preparing for coliege entrance. Physics is avoided by most of the secondary school population as being too hard or because it does not apply to their daily livinge

Recently many scientists and educators have asserted that a know ledge of many of the principles and subject matter of physics has become necessary to any intelligent citizen. The areas of science in Which greatest progress have been made in the last few years (rocirets, jets, television, electronics, atomic fission, themonuclear fission) and which denand of the layman more and more attention, require a mowledge of physics. Nallinson ${ }^{7}$ has stated, "The physicist and teacher of physics must realize that the study of physics is of value for many persons other than the genius, the coilege bound and the future physicist and physics teacher." Eriedman ${ }^{8}$ expressed a similar idea when he wrote, "The history of discovery and invention in physical science is

[^2]interwoven with all humn history, and our picture of the physical world is one of the trimmp of thought. Both the present picture and the story of how we are extending it are an essential part of our culture. We need some understanding of both the state and the process of physical science to live effectively in our world. The future lawyers, doctors, politicians, and "candlestick makers" should have an opportunity to learn how science evoives.

Several studies of the objectives of science teaching have been made. These reveal a wide variety of goals, some stated very spem cifically, others quite generally. However justifiable they may be, from the standpoint of the classroon teacher such lists suffer from their lack of conciseness. In spite of the possible variety and complexity of the statenents of objectives which scjence teaching can serve, it should be possible to formulate a relatively simple series that can be used by the teacher. The acceptance by the science teacher of some series of objectives is necessary if his teaching is to have direction. It is relatively easy for the teacher to accept as his goal the surveying of enough information by the students to enable them to answer from memory a minimu percentage of the questions on an examination. But many teachers will not accent such a limited goal.

Richardson ${ }^{10}$ has listed six objectives for science teaching in general but which apply very well when considering physics alone. He has hypothesized that the science teacher should teach in such ways that the student wiz1:

1. Develop the ability to think critically, to wse the method of science effectively.
2. Acquire the principies, concepts, facts, and appreciations through which they can better understand and appreciate the nature of
${ }^{10}$ Jom S. Richardson, Science Teaching in Secondary Schools, (Englewood Citiffs, N. J., 1957), pp. 8-9.
the earth, its inhabitants, and the universe.
3. Use wisely and effectively the natural resourses of our earth as well as the products of science and technology.
4. Understand the social function of science and think and act in relation to the implications of science and technology for society.
5. Develop understanding that will contribute positively to their physical and mental health and their recreational interest.
6. Acquire infomation, understandings, and appreciations that wis1 contribute to their educational and vocational guidance.

In defining the functions of science in the adjustment of the individual, Heiss, Obourn and Hoffman ${ }^{11}$ have set forth what to them would seen to be the major goals of science teaching. They are to develop;

1. A fund of interpretive uncierstandings.
2. A fund of appreciations.
3. A group of attitudes or mind-sets.
4. A method of attack on problems.

These lists of objectives show that science instivetion must do more than teach factual material. It must be concerned with the values of science materials as they may help the individual to interpret and adjust hinself to the problems of modern living which have techom logical implications.

Many critics of high schoo1 physics have emphasized that a high school course in any science cannot be vocational preparation. Dees ${ }^{12}$
$11_{\text {Eiwood }}$ D. Heiss, Blisworth S. Obourn and C. Wesley Hoffman, Modern Methods and Materials for Teaching Science, (New York, 1940) pp. $9-18$.
${ }^{2}$ Dees, p. 617.
considers one of the major problens in science education today to be over emphasis on the contribution which a specific science course can make to vocational preparation of students taking the course. Ds pecially in high school, science courses should aim to be something more than pre-professional courses for future scientists.

Teaching high school physics with the sole aim of preparing students for work in college has also been subjected to a great deal of coment. Many college physics instructors seem to feel that even a good physics course in high school has little, if any, effect on the work done in college. Some have even gone so far as to suggest that it does more harn than good. Dees in commenting on the decreasing enro11ment in high schoo 1 physics has said; ${ }^{13}$

A few years ago when I was teaching physics to freshman engineers this (eliminating high school physics) would probably have struck me as being good news, for 1 often felt that the problen of knocking out of some students minds misconceptions acquired in high school physics counses was more difficult than teaching them from a fresh start when they got to coliege. I suspect that quite a few coliege physics teachers still feel much the same way. However, more considered judgment suggests that to remove physics from the high school curriculum would be an extremely unvise step lest many youngsters who do not go to college be denied the opportunity of learning any physics - at least while they are in school. Furthermore, if available studies are trustworthy, the motivation for a large fraction of students who eventually become physicists receives its major impetus from high school courses in physics. Although one way of elininating inept teaching of physics in high school is to eliminate all teaching of high school physics, in my view this is a case of the cure being worse than the disease.

In surveying the aims and objectives of the physics course it can be seen that the teacher is faced with two distinct groups of students, the college-bound and the students who will temminate their formal education when they graduate from high school. In considering the goals

$$
13 \mathrm{Ibid}, \quad \text { p. } 620-621
$$

of the physics course the teacher must consider the needs of both groups. The question then arises, "Can a single course possibly meet the needs of both of these distinct groups?" Some educators and scientists beieve that this can be done. Dees ${ }^{14}$ has suggested that one of the ways we should consider modifying our thinking about science education is in the direction of humanizins science, of making it accessible to all future citizens and not soly or chiefly to those planning careers in science. The likeinood of freely accomplishing one of our major educational tasks in science - encouraging more able students to consider science as a career - would at the same tine be tremendously increased.

CHAPTER V

THE COURGE CONTENT

With the possible exception of the physics teacher hinserf, the phase of physics instruction which has been subjected to the most discussion and criticism has been the course content. It has been variously described"as being, "Outmoded", "Too cumbersone and volurinous for effective teaching", and as consisting of "Eightecnth century physics with twentieth century technology".

Hurd has described the typical physics course in the collowing manmer. 25

Physics courses and their organization are about the sane now as fifty years ago. The volume of content is greater for each topic, but the five niajor divisions remain the same. The most notable innovation is a sixth section to nany physics books, variousiy called, but all implying something described as "modern physics". This section is usually found at the end of the textbook. The standard content of high school physics is being and has been rejected by students and curriculum advisers for decades. Yet it persists, where physics is still offered.

In discussing the problems whin are of greatest concen in regard to the secondery schoul syllabus, Little has described it in this

```
    16
```

way.

Structurally it goes back to the early part of the century, and despite the adjustments of the past five decades it represents quite clenty the state out of which science was even then besinning to pass. The sylubus is buitt around Newtonian mem
${ }^{15}$ Hurd, $\mathrm{p}, 445$.
$16_{\text {Eibert }} \mathrm{P}$. Little, "From These Beginnings," The Seience Teacher, November, 1957. pp. 316-317.
chanics, which ruled physics for more than two centuries. The universe, as the physicist then saw it, was a Newtonian universe. A diagram of the solar syatem constituted a most appropriate frontispiece for a textbook on physics, for the universe as a whole was the solar systen in the large, just as atoms and molecules were the solar system in the small. Accordingly, the course begon with statics, went on to kinematics and dynamics, and in the tight of these disciplines undertook to explain, one after another, heat, light and sound. Such an organization of the subject was beyond criticism; it had a logical unity and it reflected both the current state of knowledge and the general attitude of the physicists.

Since the beginning of this century physics has thrust wht much wider routs. Guantum theory and relativity have been postuated and developed; wave mechanics has cone into being and recreated the physicists basic outlook; attention has shifted fron the particle to the aton, afll then to the nucleus. Newtonian mechanics has lost none of its significance, but its status has changed; it no longer represents the manner in wich the physicist regards his universe.

The physics syllabus couid not possibly remain isulated fron all these changes. As the science developed, the new subject matter was interpo ated or added, as seemed most suitable. Techozogy was crowded in mere it seened pertinent. Textbooks grew in size and consequenty diminished in comprehensibility. Because Newtonian mechanics rapidyy ceased to seive as a mifying concept, the subject compartmentalized; bhysics became several distinct and disconnected subjects - nechanics, optics, heat, sound, electricity, the atom, the nucleus - grouped into one for pedagogic purposes.

For some time, scientists and educators have been aware that this aitered state of affairs is inadequately represented in secondary education. They contend that the conventional physics course must be changed to more adeguately represent the true nature of physics today.

Eittle in diseussing the need for revision of the physics cursiculum has said; ${ }^{17}$

The teaching of science in the secondary school has indeed changed, and changed substantially, in the last half century, both in content and technique. But on the whole, the changes have consisted in additions to the structure that existed 50 years aso, or in alterations to the existing structure. Eately there have been intimations that this piecemeal reconstruction has long since failed in tis purpose; that a new structure is now necessary; and that it must be designed from the ground up.

He further asserted that since none of the tremendous vo:une of material now contained in the physics course could be covered as well as it shou d be in the time ot the teacher's disposal, the temptation has grown to shift the emphasis from the science to the technology. The student could then be given, at the least, some insight into the workings of an internal combustion engine, a refrigerator, a radio, and (more recentiy) a space ship, thus answering at least to the superficial interests of the student and rendering the subject matter manageable. Under circumstances such as these, the task of the science teacher has become increasingly onerous. More and more, he teaches a subject that he himself does not recognize as science. If the brighter student is momentarily challanged to look upon the wider aspects of science, the syilabus is too hurried and too episodic to enabie him to grasp any phase of it.

Several surveys were recently taken by educational groups all over the country. A special survey of physics textbooks was carried out by the American Institute of Physics, the American Association of Physics Teachers, and the National Science Teachers Association. All surveys reached the concrusion that high school physics courses present too much

$$
{ }^{17} \text { Ibid, pp. } 316-317 \text {. }
$$

material, and choose that material unwiscly
In the report of a conference sponsored by the American Association of Plysics Teachers 18 the fotlowing statenent was made;

The conference feit most strongly that physics teachers must reduce drastically the number of topics discussed in introductory physics courses. A more critical and parsinonious selection of content wout permit a pace that encourases both refjection on the part of the student and a proper rogard for depth and intevectual vigor. Physics as a bocy of knowledge, is now too extensive to receive adequate general coverage in an introductory course. The instructor must not sacrifice depth and understanding to cover too many topics in encyctopedic fashion.

Granting that the high school physics course contains much nore than can be effectively taught, the physics teacher is then faced with the problem of detemining what parts of the traditional course can be elininated. Here he receives little heip from the conventional. textbook. He must therefore detemine what parts of the course are basic to the understanding of the field. A conclusion reached by many witers seems to be that it is much better to teach a limited amount of material well, than to try to cover a larger ancunt less risorously.

The importance of the individual teacher camot be over emphasized. In any analysis of the effectiveness of a course it must be concuded that any course can be no better than the individual that teaches it.

In an attempt to summarize the concensus of opinion regarding the course content of high school physics we can make the following statements: The amount of accumulated physical tnowledge has grown rapidy, but the time available for teaching it in high school has remained the same. The attempt to continue to survey the entire fiesd of physics in

[^3]a one-year course has resulted in a loss of depth and coherence. Since the course cannot illustrate the development of ideas for shortage of time, it is filled only with results of physics and laws to be learned by rote or through mathematical formulas. It becomes hard to understand and of limited interest. To enliven it, technological applications are often added and thus the bulk of material to be leamed is further increased. The tendency to dress up science with the appications of its developments may stress its practical value, but further dims its culturat aspect. It fails to show science as a human activity, as the product of hunan thought. A11 the results surveyed in physics were obtained through the mental process of human beings; all the laws expressed by dry words and mathematical symbols were arrived at by men who possessed in high derree such human attributes as vivid imagination, power of abstraction and synthesis, perseverance and patience. Many critics believe that much of this is now lost in a high school course.

CHAPTER VI

THE PHYSICS TEACHER

The shortage of weit-guatified science teachers in secondary education has been an achnowedsed fact for sone time and concenn has been increasing in recent years over this situation. The reasons for this shortage are obvious, the chief reason being that other occupations are much moxe financially rewarding to those wellmquififed in science. The National Science Teachers Association ${ }^{19}$ has reported that in 1955 the number of new teachers prepared and available to teach ohysics was 50 per cent of the number who coutd have been enployed. In addition to this they reported that on?y 56 pex cent of the newly certified science teachers graduating in June of that year actually accepted jobs in September. Gf those who did not enter teaching, many took jobs in industry; some entered miritary service; and a few continued with graduate studies.

The fact that a sreat many of the individuals who are now teaching high school physics have inadequate preparation in that field must a. so be considered. One of the reasons for this can be seen in the fact that in most schools the physics teacher must also teach a variety of other subjects. In preparing for a career as a science teacher, the college student is obliged to spread courses over a variety of broad
${ }^{19}$ Board of Directors of the National Science Teachers Association, "On the Target," The Science Teacher, April, 1957.
fields. The future physics teacher must take several courses in physics, chemistry and mathenatics. In addition to these it is desirable that he have at least a minimum of mowsedge of bjology, geology and astrom nony. As a result of this diversity the student ends up with Eittie moxe than the introductory course in cach field. Thile the future history or angish teacher can concentrate on a particular fieid, the science teacher finds this impossible.

Individual teachers who might Inke to improve the physics course are usually prevented from doing so by the existins conditions; science teachers are usually overloaded with wonk they must not only teach, but also plan, set up, and dismantle classroom demonstrations; take care of iaboretory equipnent; comsel students; tait with parents; attend several finds of meetinss, and often sponsor science clubs and special science activities such as fairs, exhibits, etc. If they wish to keep up with science and further their own studies, they must do so in the sumar, senouncing sumer employnent, which they usualiy need to supplement inadequate salaries. Great load, low salary, and poor status in the communty all contribute to generat dissatisfaction. if, despite these conditions, teachers find time and energy to plan new teaching procedures, they usually meet with administrators' resistance to innovations and with lack of funds for purchasing the necessary materials. At the same tine textbooks are eneroliy based on the traditional pattern of a physics course, and books deviating from this pattern are not ifkely to be accepted by either publishers or school systens. Thts the traditional pattern becones more and more firmy established.

Three methods by which the developnent of increasing numers of
science teachers can be encouraged have been listed by the Mational Science Teachers Association. ${ }^{20}$ They are as follows:

1. The supply of teachers available to local school sjstems can be increased by efforts of school boards and citizens' groups to inprove samaries so as to provide effective economic cometietion with the salaries now offered by industry and business.
2. The retention of science teachers can be enhanced by improving their conditions of employment. Scicnce teachers lack equipment and instructional materials; they lack tine to pian for laboratory teaching and to work with superior students; many want refresher courses during the year and in the sumer; sone could make effective use of laboratory assistants.
3. A more intensive effort is needed to increase the number of high school and college students who are planing to prepare for science teaching. This effort should be ajded and encouraged by high school science teachers, counselors, industry, and college professors in science as well as in science education.
${ }^{20}$ Ioid, p. 3.

CHAPTER VII

SUGGESTIONS FOR IMPROVEMENT

Sugestions for improving the course content and instruction in high school physics have been both many and varied. The most obvious and basic need for improvement is in securing and keeping better teachers. Any sugsested revision in couxse content camot be effective if physics instruction is inadequate. Since the previous chopter was concerned with the physics teacher, this chapter will consider chiefly some of the proposed changes in curriculum and course content.

One of the most recent innovations in the secondary school curriculun has been the introduction of a course in general physical science. This has been introduced at various leveis and with varied content. In most cases it has consisted of a survey of physics, chemistry, astrom nomy and geojogy, with the purpose of providing students who do not intend to pursue scientific careers with at least a basic understanding in those fields. A properly constructed course of this nature is considered by some to be the answer to one of the more pressing problems, providing a background in physical science for the student who does not plan to attend college and take furcher work in science.

Several difficulties in introducing a course of this nature are immediately evident. In the first place, it introduces another course into the already crowded schedure of the science department. Another difficulty lies infinding teachers adequately prepared in the variety
of fields covered in a course of this type. It might be suggested that it wound resu"t in the "watering down" of the material to the point where it would be of ittie vaiue to the student. Another danger frequently mentioned is the idea that a course of this type would cause students looking for an easier course to further avoid chemistry and physics. Some have suggested that a general physical science course be made a prereguisite to high school chenistry and physics courses. In this way it would serve two purposes, enrich the progran of science interested students and serve as a terminal course for the rest. Ma1 inson in discussing the use of the general physical science course has said; ${ }^{21}$

General physical science is designed to stand on its own feet as a general education course in physical science for all students. It is designed to serve as a terminal course for those who do not desire to tale the more specialized courses in plysics and chemistry in the junior and senior years of high school, and to serve as a prerequisite for physics and chemistry for those who desire to take them. The students who do take chemistry and physics wins thus be better prepared. There such a plan for general physical science has been followed, enroliments in physics have increased, which is heartily to be comended.

In Novenioer, 1956, the National Science Fotnclation made a grant to the Massachusetts Institute of Techology, in support of an effort to improve the teaching of physics in secondary schools. The Physical Science Stuci Comittee, established under this grant, consists of scientists from various miversities, colicges, and industrial laboantories, and of high school teachers and educators. The work of this group has resulted in the development of a new and revolutionary type of physics course. The progran is ained at the same section of student population that is now taking physics in high schoo1. The program

21 Man1inson, p. 214.
does not aim specifically at preparing students for college physics. According to Finlay 22 the program is not intended as an "advanced" secondary school course. He states that the program is intended not onfy for the physics training of the future scientists but also for the general education in science of sthdents looking ahead to nonscientific carcers.

This comittee is not trying to revise the present phrsics course but is attempting to set up a new and different type of progran which they hope will more adequately meet the needs of high school students. Anong the materiais which this comittee is preparing for both teachers and students are a detailed syllabus and a textbook, films and film strips, manuals for teachers and for students, suggestions and equipment for classroon demonstrations and laboratory work, kits for students, monographs and selected bibliography, questions for tests and exans, and other material.

In sumarizing what this course has tried to do, Priednan states; ${ }^{23}$
In this course the logical unity of the subject is apparent. This integration of mowledge makes it possible for understanding to aid menory far more than usual. In addition, the integration of ideas gives the student the sense of continuing development which in itself is intellectually excitinc. The repeated appearance of certain concepts, such as subnicroscopic particles, is essential. So also is the patient and detailed treatment of certain subjects. de explore parts of optics, nechanics, and atomic piysics more deeply than usual in order to show how we develop a field of thought. The price is the subordination and even omission of many subjects commonly covered in high school. courses. Heat and sound are not treated as independent subjects, but more nearly as examples; sound as an exampe of waves, heat as related to linetic theory and to the conservation of energy . Wirostatice and hydrodynamics are out. Technologicel applications are cut far bact at all points.

[^4]Such redical onissions are necessary. In fact, the committee's deliberations began with pleas from science teachers to reduce substantially the sheer bulk of the current phasics course in order to fulfill its purposes within the time allotted to the subject. The material that remans in our selection still leaves a onc-year course nore crowded than the teacher wolld like. In the next phase of our work, we may learn where to cut stigl further.

The Physical Science Study Comnittee rearizes that a course as new and different as the one they are trying to set up will need ruch study and revision. They do not propose that they have all the answers. The improtant point is that a group of peopie interested in inproving science education have devcloped a definite proposal for its inm provenent. The true worth of their program can be seen only after it has been actually used and fuly tested.

One of the difficuties in estabighing a progrom of this type is that many physics teachers will not have the training necessary for the proper use of it. The committee hopes to remedy this aituation by providing special instruction for those who will teach the course. The program involves a sufficient departure from the content and approach of standard secondary schoot courses jn physics that, in the opinion of those who have worked cosely with it, it cannot be adopted as one wourd adopt a new text. To help meet this need, the Hational Science Foundation has established five institute programs for the sumer of 1958 to enable sefected secondary school physics teachers to siudy and evaluate the nev approach. They hope to expand this sumer institute program in the future.

The introduction of the general physical science course and the work of the Physical Science Study Comittee have been the two most definite suggestions wich have been rede in an attempt to solve some of the problems which face science education. Neither of these supplies
ail the answers, but they seem to be a step in the right direction. Another suggestion which has often been made is that physics courses should be more practical. Chers have said that it shound be mone closely related to daily fiving and be concerned more with social prob ems as thoy are related to science. Hurd 24 has suggested that a11 science courses should work for the developrent of an appreciation of science and its methods, its attituce in approach to problens, its significance in present day society and its potentialities in improving nodern İving.

The physics laboratory has been subjected to much criticism. The Jaboratory is of miajor jmportance as a tool of instruction in high school physics. Cnly through the laboratory does the student come into direct contact with physical phenomena that will give hin an adequate basis for understanding physics. There is much room for inprovenent in the quality and effectiveness of the introductory physics laboratory. In particular, the use of stereotyped reports fails to make use of the students initiative and curiosity. The recent gain in use of the science project and the science fair have done much to stimulate students to do original and exploratory laboratory work. They have also scrved the valuable purpose of creating public interest in the work of science. Their continued use and popularity is one of the surest signs that progress is being made in getting more and better stucents into secondary school science classes.

CONCEUSION

The problens which face high school physics are many and complex. The improtance of good secondary school science instruction camot be too strongly mphasized. We are living in an age wich is becoming more and more dependent on science and the fiture of America as a word power will depend laxgely on her scientific man-power. We must not only produce more scientists and engineers, but perhaps even more important, educate 0.11 Americans to an understanding of science and its importance.

The most important factor in improving science instruction is the development of understanding by the public. When the American public can be made to see the need for better education in science and is willing to provide it, the greater part of the battle wirs have been won.

This report has been concerned with physics teaching in the high schoo1. Fovever, it must be rencnbered that much of a stadents edum cation is received before he enters the physics classroom. Perhaps more emphasis shou"d be placed on the students science education at this level. Teachers at the elementary and junior hich levels can do a great deal to stimulate interest and provide basic knowledge in science. This is an area which must not be neglected in any attempt to inmrove the science program. Colleges cou'd he"p a great deal in this area by providing moxe descriptive and quatitative courses in the field of
science for elementary teachers. Many elementary and junior high teachers now avoid the introductory course in college physics because it has little or no application to their work.

In the final analysis the heart of the problem lies in the physics teacher. No amount of curriculum revision, visual aids or laboratory equipment can be effective without a well-prepared, dedicated and enthusiastic teacher. The improvement of teacher preparation is an area which should certain!y be considered.

Physics has been an inportant part of the hish school curriculum for a long time and will probably continue for some time to cone. Its content and form may have to be changed but the world has changed a great deal too since the beginning of the ninteenth century If a student is to live in an age of earth sateliites, jet airplanes and space travel his education must be adapted to fit his enviroment. Education can only keep up with the world by constant inspection and improvement.

This report has tried to inspect the state of physics teacining today, to see what seems to be wrong and what might be done about it. In the end, the individual teacher must decide for hinself what his aims and objectives are, what is good and what is bad and how he can do the most effective job. It is hoped that this report has provided enough of a glance at high school physics to heip the individual teacher to form a philosophy which can help him better understand his work.

Board of Directors of the National Science Teachers Association, "On the Target," The Science Teacher, XXIV (Aprir, 1957).

Conference sponsored by the American Association of Physics Teachers, "Improving the Quality and Affectiveness of Introductory Physics Courses," American Journa1 of Physics, XXV (October, 1957), 420-421.

Dees, Bowden C., "Some Current Problens and Needs in Science Education," Anerican Journa1 of Physics, XXIV (December, 1956), 616-623.

Finlay, Gilbert, "What are the Questions?" The Science Teacher, XXIV (November, 1957), 327-329.

Friedman, Francis L., "A Blueprint," The Science Seacher, XXIV (November, 1957), 320-332.

Heiss, R1wood D., Obourn, Bt1sworth $S_{\text {. , }}$ and Hoffran, C. Westey, Modern Methods and Materials for Teaching Science, (New York, 1940).

Hurd, Paul DeH., "The Case Against High School Physics," School Science and Mathematics, LIII (June, 1953), 439-449.

Little, Elbert P., "From these Besinnings," The Science Teacher, XXIV (November, 1957), 316-319.

Mallinson, George Greisen, "The Role of Physics in the Emerging High School Curriculum," School Science and Mathematics, LV (March, 1955), 211-216.

Richardson, John S., Science Teaching in Secondary School, (Englewood C1iffs, N. J., 1957).

Summerer, Kenneth H., "Some Suggestions for Unifying High School Physics Around the Concept of Energy," School Science and Mathemetics, LVII (October, 1957), 536-540.

Willard Willian Korth
Candidate for the Degree of
raster of Science

Thesis: THE DLACE OR pHystcs IM SECOMDARY BDUCATTON
Major Ficid: Natural Science
Biographical:
Fersonal data: Born in Fierce, Nebraska, December 29, 1927, the son of Timer A, and Esther Korth.

Education: Attended rural stade school in District $\# 46$, Pierce Cownty, Nebraska; graduated from Piezce Hich School, Pierce, Nebrasla, in 1945; received the Bachevor of Arts dearee fiom Wayne State Teachers College, Wayne, Nebraska, with najors in education and physical science, in Auşust, 1950; attended Stanford University, Stanford, Caifornia in sumaer of 1957; competed the requirements for the Master of Science degree in lay, 1958.

Frofessional experience: muployed by the Wyot Public Schools, Wnot, Nebraska, September 3950 to May, 1953, as science and mathematics teacher; employed by the Butte Public Schoo1s, Dutte, Nebracka, Septenbex, 1953, to May, 1954, as principal, science and matheratics teacher; employed by the Madison Pubic Schools, Madison, Nebraska, Septenber, 1954, to koy, 1957, as science teacher.

[^0]: $5_{\text {Dees, }}$ p. 617.

[^1]: ${ }^{6}$ Paul DeH. Hurd, "The Case Against High School Physics," School Science and Mathematics, June, 1953, pp. 439.449.

[^2]: ${ }^{7}$ Mallinson, p. 212.
 Brancis L. Friedman, "A Blueprint," The Science Teacher, Novenber, 1957. pp. 320.332.

[^3]: ${ }^{18}$ Conference sponsored by the Anerican Association of physics Teachers, "Improving the Qulity and Effectiveness of Introductory Physics Courses," American Journal of Physics, October, 1957. pp. 420. 421.

[^4]: ${ }^{22}$ Gibbert Pintay, "What are the Questions?", The Science Teacher, Novenber, 1957. pp. 327-329.

 23Iriedman, p. 322.

