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Abstract 

DNA is organized within chromosomes not only to permit a large amount of DNA to 

occupy a very small space, but also to serve essential functional roles.  Varied levels of 

organization enable proper DNA replication, repair, transcription, segregation and cell division.  

A key player in maintaining proper global organization of the chromosome are condensins.  

Condensins dynamically interact with DNA and play critical roles in chromosomal duplication 

functions, including DNA segregation.   

Pseudomonas aeruginosa (PA) is a virtually ubiquitous gram-negative bacterium capable 

of inhabiting a wide range of ecological niches, including the human host. A key to the survival 

and pathogenicity of PA in such diverse environments stems from its metabolic versatility, a 

large regulatory network including multiple virulence factors, and its dynamic ability to adapt 

via epigenetic factors and mutational plasticity.   The evolution of PA during lung infections is of 

particular concern on account of its devastating impact on lung function for cystic fibrosis 

patients.  PA has the ability to differentiate into different physiological states allowing it to 

adapt to different environments.  This lifestyle switching is involved in the progression of 

infection as seen by the different growth morphologies during acute and chronic infection 

states.  Therefore, a better understanding of how these genes are regulated and capable of 

switching into different physiological states could significantly help in preventing and treating 

PA progression during infection.   

Typically, condensins are known for their roles as chromosomal organizers and 

maintainers. One of the key findings in this study showed that they are also global regulators of 

gene expression where phenotype is both context and strain dependent.  Condensins can bind 
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DNA throughout the chromosome making it the ideal mediator between the control of gene 

expression and alterations in DNA structure.  Here, we investigated the roles that PA 

condensins, SMC-ScpAB and MksBEF have on cell physiology and gene regulation in PA.   

Transcriptomic analysis of PAO1 condensin deletion mutants revealed substantial changes 

in gene expression, in particular, for pathways involved in virulence.  Many of these affected 

pathways were found to be oppositely regulated for ΔmksB and Δsmc, reminiscent of acute and 

chronic infection phases, respectively.  ΔmksB revealed upregulated genes in the type 3 

secretion system (T3SS), and downregulated type 6 secretion system (T6SS), iron uptake, 

biofilm and adhesion genes while Δsmc gene expression was opposite.  Interestingly, the 

double deletion mutant (ΔΔ) revealed significant overlap with ΔmksB for T3SS and 

biofilm/adhesion genes however overlap was also seen with Δsmc for iron uptake genes related 

to siderophores.  ΔΔ also revealed hundreds of uniquely upregulated genes including the 

pyochelin regulon, several virulence effectors, as well as quorum sensing and cell motility 

genes.  Overall, each condensin deletion strain, showed a unique transcriptional profile (100+ 

uniquely regulated genes) implicating different regulatory pathways.  

Physiological studies on condensin deletion strains in PAO1 were in line with 

transcriptional analysis, showing opposite differentiation states where deletion of smc 

produced sessile biofilm growing cells and deletion of mksB produced planktonic growing cells 

with reduced biofilm formation [1].  Physiologically, ΔmksB and ΔΔ look very similar for growth 

where phenotype of the double knockout was dominated by an absence of MksB [1] reflecting 

the prominent overlap seen in transcription for biofilm related genes.    
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Using biofilm formation as a reporter for mksB phenotype, complementation studies 

unexpectedly revealed that the link between MksB and biofilm is context dependent.  Using the 

degron system and ATPase MksB point mutations, MksB was confirmed to be directly linked to 

biofilm formation while complementation of the mksB gene after a full mksB deletion, 

however, was not possible.   These results indicate significant changes to cis effects in the mksB 

region of the chromosome or even secondary consequences resulting from the mksB deletion.   

ATPase MksB point mutations also revealed that the link between MksB and biofilm is 

conformational dependent.  ATPase point mutants have been previously shown to generate 

specific conformational intermediates of the MksB ATPase cycle  [2, 3].  Two of the three 

generated ATPase MksB mutants, E864Q and S829R, reflected severe biofilm defects.  

Strikingly, a third mutant, D864A, was capable of full biofilm function.  All of these mutations 

interfere in some aspect of dimerization of the SMC head domains.  These results reveal that 

MksB intermediate conformations, rather than ATPase activity, is relevant for MksB regulatory 

function.  Conformational dependence on phenotype was also seen for SMC [1]. 

Notably, physiological studies on PA14 condensins revealed that condensin phenotypes 

are largely strain dependent.  Although slight deviations were seen for growth studies, 

condensin deletions revealed a much smaller effect than PAO1. Overall, this implicates 

significant differences in how condensins are integrated into the regulatory networks of the 

PAO1 and PA14 strains and highlights a possible fortuitous integration by condensins into the 

regulatory system of PAO1. 

Strikingly, when mksB is removed in PAO1, a significant inversion in the chromosome 

occurs at two rRNA sites separated by 2.2 Mb [4].  This inversion altered the layout of key 
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markers in segregation (the chromosomal dimer resolution site, dif, found at the terminus of 

segregation) and replication (the origin of replication, oriC) illuminating asymmetry in the PAO1 

chromosome. These markers are highly coordinated with nucleotide bias or (GC skew), which is 

an underlying signaling code in bacterial DNA where there is an abundance of guanines on the 

leading strand and cytosines on the lagging strand. Typically, the terminus of replication and dif 

align as most bacterial chromosomes are symmetric, making differentiation between their 

underlying processes difficult.   

Therefore, we used the asymmetric PAO1 chromosome as a model to study the 

coordination between segregation, replication and nucleotide usage bias. Experimentally, 

replication was found to terminate opposite from oriC while segregation terminated at the 

asymmetric dif  [5].  GC skew analysis showed switches in polarity at the oriC and dif sites, while 

the terminus of replication was almost 700 kbp away.  Overall, this shows a lack of coordination 

between replication and segregation and that nucleotide bias is aligned with both processes. 

Using location markers for replication and segregation, we bioinformatically analyzed all 

complete sequenced bacterial chromosomes from NCBI [6].  Our findings show that nucleotide 

bias is correlated with dif but not the terminus of replication for all chromosome types, 

implicating the segregation process as a contributor to the nucleotide bias phenomenon.   
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Chapter 1:  Introduction 

Pseudomonas aeruginosa (PA) has reached a critical threat status after developing 

resistance to last line carbapenem antibiotics.  “Superbugs” have increasingly emerged in the 

headlines as lethal outbreaks of bacterial strains completely resistant to antibiotics.  These 

outbreaks are a grim realization that multi-drug resistant strains have inherent mechanisms in 

place for developing full resistance to currently available antibiotics.  Over 2 million illnesses and 

23,000 deaths occur annually from multi-drug resistant bacteria, a figure put forward by the US 

Centers for Disease Control and Prevention (CDC) in a 2013 report, and the figure is expected to 

rise as drug resistance develops [7].  Antibiotics which were once regarded as cures for infections 

are now understood to be a depleting treatment option. Combatting multi-drug resistant strains 

and the development of alternative antibiotic strategies is necessary for future generations.   

PA is exceptionally difficult to treat being a highly robust gram-negative bacterium with 

low membrane permeability.  PA has innate systems in place to survive in diverse environments 

including notable metabolic diversity and numerous virulence factors.   Adaptive features include 

a significant regulatory network and mutational plasticity.  One more intriguing aspect of PA 

adaptability is its ability to epigenetically control physiological lifestyle.  Lifestyle switching is an 

essential component to the progression of infection, therefore understanding this process could 

lead to viable therapeutic targets.   

Here we explore a novel pathway for epigenetic lifestyle switching and global regulation, 

PAO1 condensins.  Condensins are conventionally known for their maintenance of the 

chromosome.  They help with higher order structuring which is important for proper DNA 
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compaction and segregation.  Therefore, global gene regulation is a newly reported function of 

condensins linking chromosomal organization with gene expression.  In order to better 

understand this coordination, we introduce condensins and review PA lifestyle switching, 

infection phases, and known virulence systems.   

In a separate study, we found that deletion of the mksB condensin gene triggers a large 

inversion in PAO1 [4].  This discovery reflected a poorly understood phenomenon of nucleotide 

bias and their coordination with chromosomal segregation and replication.  This nucleotide skew 

is an inherent code in the DNA providing a global pattern which acts as markers for major location 

points for both replication and segregation.  Here, we introduce concepts related to the 

phenomenon of nucleotide usage bias. 

1.1  Chromosome organization 

The PA chromosome is organized along with chromosomal associated proteins into the 

nucleoid of the cell. The chromosome of PA is roughly 1000 times longer than the cell. In 

addition to significant compaction, the chromosome must also be compatible with essential 

cellular processes including DNA replication, segregation and gene expression.  Therefore, the 

overall process is highly dynamic, involving significant interplay between DNA binding proteins 

and processes occurring in the cell.  The PA chromosome, and all prokaryotic DNA, is organized 

in hierarchical levels in order to achieve maximum compaction and compatibility with cell 

dynamics.  These levels allow a higher order structuring for better control of the compaction 

process. Nucleoid associated protein mediated folding contributes to local organization and 

condensins contribute to global organization (Figure 1-1).   
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Figure 1- 1: Chromosome organization.  Local level organization, by nucleoid associated 

proteins and global level of organization by condensins.   

 

1.1.A  Local organization, nucleoid associated proteins (NAP’s) 

In Escherichia coli (E. coli), there are 12 major identified nucleoid associated proteins 

(NAP’s), NAP’s including HU (Heat Unstable), IHF (Integration Host Factor), FIS (Factor for 

inversion stimulation), H-NS (Histone-like nucleoid-structuring), Lrp (Leucine-responsive 

regulatory protein), CbpA, CbpB, DnaA, Dps, Hfq, IciA and StpA [8, 9].  StpA is an H-NS 

paralogue that can functionally substitute for H-NS.  H-NS paralogues also exist in other species 

of bacteria.  h-ns and stpA are not present in PA Instead, PA uses its functional counterparts of 
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mvaT and mvaU [10].  Divergence is seen in other strains as well indicating that NAP’s have 

evolved independently.   

NAP’s can be highly abundant (up to 55,000 molecules per cell in E. coli for some of 

them [11])  and play a diverse role as chromatin organizers, transcription factors, and as general 

accessory proteins for chromosomal maintenance, including replication[12]. The expression 

level of nucleoid-associated proteins is dependent on growth phase.  Some NAPs are abundant 

during stationary growth but significantly reduced during planktonic growth or vice versa [13].  

This variation in expression levels allows cells to modulate the compaction level of the 

chromosome based on growth conditions.   Variations between different growth phases for the 

major NAP’s are shown in Table 1-1.  

Table 1- 1:  Molecules /cell in both exponential and stationary phases for NAP’s 

Nucleotide 
Associated protein 

Exponential 
phase 
Molecules/cell 

Stationary 
Phase 
Molecules/cell 

Reference 

HU 30,000 – 55,000 < 18,000 [14] [13] 

IHF 12,000 55,000 [13] 

FIS 60,000 500 [13] 

H-NS 20,000 8,000 [13] 

Lrp 1,300 – 3,000 130 [15] [13] 

Dps 6,000 180,000 [13] 

 

Functions for the NAP’s are quite diverse. These proteins occupy wide portions of 

genomic DNA [9,10] and are involved in a series of genome functions, such as transcription (Hu, 

IHF, H-NS, StpA, and Fis) [11–15], translation (Hu, HNS, StpA, and Hfq) [16–19], replication (HU, 

IHF, Fis, and Dps) [20–23], DNA protection (Dps) [24,25], and DNA packing (Hu, H-NS, Fis, and 

Dps) [16-20].   
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NAP’s play an important role in chromosomal compaction.  At the local level of 

organization, NAP’s, induce bends and twists and lead to bridging of neighboring sections of the 

chromosome.  These sections are approximately 10kb in length and form and dissolve based on 

processes occurring on the chromosome.   Twisting and bending of the DNA induces curvature 

and folds, reducing the stiffness of the complex, making the chromosome thicker and shorter, 

helping with overall compaction.   

Overall, NAP’s play important and dynamic roles in governing global gene expression 

and local level organization of the chromosome in bacteria.  This helps with the overall 

structuring of individual chromosomal loops which are organized at the global level.   

1.1.B  Global organization, condensins 

At the global level of organization, the prokaryotic chromosome is organized into large 

loops which radiate from a central scaffold region. Evidence of this higher order structure of the 

prokaryotic chromosome has been seen in electron micrographs.  These loops can range from 

100 to 400 kbp long providing a means of compacting large portions of the chromosome and 

generating significant conformational changes to the DNA. These loops contribute to 

chromosomal organization as well as segregation and subsequently, the sub-cellular layout. 

One of the major contributors to large loop formation in the prokaryotic chromosome are 

condensins. Condensins are chromosome maintenance proteins which have the ability to bind 

DNA and to cooperatively bind with one another.  This provides condensins with the ability to 

form DNA bridges.  Condensins form large stabilized chromosomal loops by acting as 

macromolecular clamps that bridge distant DNA’s together [2].    
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Large chromosomal loops are further organized into higher order structures which cluster 

together in large regions (800 kb-1Mb) called macrodomains. These macrodomains are 

characteristically found within the same intracellular positions and impose specific dynamics 

and segregation patterns on the genes they carry.  Due to their relative proximity, individual 

macrodomains show higher frequencies of recombination. Macrodomains have been identified 

in E. coli, but are speculated to be present in many bacterial chromosomes [21].  

Domains which resemble those of E. coli were found by our group [5] in PA which were 

related by segregation patterns and cellular positioning.  These macrodomains reflected 

segregation patterns, where large macrodomains segregated together in clusters of gene 

regions.  Overall, macrodomains are an important component in chromosomal organization and 

an integral aspect in both segregation and subcellular layout.   

Condensins have an intrinsic ability to aggregate and form clusters along the chromosome 

which allows them to provide a scaffolding element to the prokaryotic chromosome.  

Condensins have been obtained from the protein scaffold of isolated bacterial chromosomes 

indicating their involvement in chromosome structuring [22].  This scaffold structure, generally 

found in the center, gives added stability to the large chromosomal loops which emerge from it. 

[23].  Condensins, therefore, play pivotal structural roles in chromosomal organization.   

One aspect which aids in DNA compaction is supercoiling. Supercoiling reduces the space 

that DNA takes up in the cell by twisting the DNA strands into a more compacted and energized 

form, which as described previously, can be formed into large loops.  Supercoiling is particularly 

important during chromosomal division events in which greater compaction of the 

chromosome is needed.   
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Positive supercoils are induced by the byproduct of strand separation during replication 

and transcription.  During these processes, the region ahead of the polymerase complex is 

unwound.  The resulting stress is compensated with positive supercoils ahead of the complex.  

However, positive supercoiling results in global tension throughout the DNA strand.  In order to 

relieve this stress, topoisomerases rewind DNA, generating negative supercoils behind the 

polymerase complex [24].   

Additional contributors to supercoiling are condensins.  The 13S condensin from frogs was 

reported to generate positive supercoils through DNA reshaping.  Negative supercoils, which 

dominate bacteria the majority of the time,  was also found to be induced by the prokaryotic 

MukBEF condensin [25].   

Overall, condensins dynamically interact with DNA and play critical roles in chromosomal 

organization and duplication functions, including DNA segregation.  This study also shows that 

condensins are global regulators of hundreds of genes, many of which are involved in PA 

virulence.   

1.2  Condensins 

1.2.A  Structure of condensins 

Three condensin complexes have been identified in prokaryotes, SMC-ScpAB, MukBEF, 

and MksBEF (SMC-ScpAB and MksBEF in PA).   The main biochemically active component, the 

SMC subunit, belongs to the SMC family of ATPases which is highly conserved from bacteria to 

humans [26].  These include the SMC, MukB and MksB subunits [27].   
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The smc subunit is a homodimer.   Each SMC monomer includes the following structural 

layout: The N-terminal region contains a Walker A site with the conserved sequence (G-X-S/T-G-

X-G-K-S/T-S/T) [28].  The C terminal domain contains a Walker B site with the conserved 

sequence (h-h-h-h-D), where h represents hydrophobic amino acids. Also present on the C 

terminal domain is the signature C-motif and D-loop [28] [26]. In between these termini regions 

are two coiled coil regions which self fold through anti-parallel coiled coil interactions at a hinge 

domain.  Two of these monomers interact through the hinge domain to form a homodimer and 

the SMC subunit [29] (Figure 1-2 A). 

 

Figure 1- 2: Condensin structure. (A) Each SMC monomer in condensins consists of two 

globular domains at the N and C termini, two coiled α-helixes and a globular hinge domain 

between them. Each monomer self fold onto itself forming a functional ABC-type ATPase head 

domain. Association between two monomers occurs at the hinge domain for form a dimer. 

Non-SMC subunits which modulate activity (kleisin and kite subunits) bind to the head domain. 
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(B) Engagement of the two head domains for each monomer occurs through ATP binding.  Each 

monomer head domain contains a Walker A motif from the N terminus and Walker B motif 

from the C terminus of the first monomer.  The C-terminal domain of the second monomer 

contains the C-motif and D-loop.  Disengagement of the head domains occurs though ATP 

hydrolysis.   

The ATPase head domain in the overall SMC subunit contains two ATPases  [30].  For 

each ATPases, the Walker A site functions in ATP binding.  The Walker B site functions in ATP 

hydrolysis.  The Signature C-motif and D-loop function in stabilizing the binding and hydrolysis 

of ATP [28] (Figure 1-2 B).   

Overall, the main SMC subunit of the condensin complex binds DNA.  The principle DNA 

binding site is located on the proximal hinge region of the SMC subunit head domain where 

there are positive patches of arginine and lysine which interact with negatively charged DNA.  

[31].  The location of this binding site implies that condensins likely embraces DNA within its V 

shaped structure .    

Non-SMC subunits are essential for regulation of the complex and promoting inter-

molecular interactions between condensins.  These proteins positively affect  DNA bridging 

activity [32] and negatively affect DNA binding activity  when complexed with the SMC subunit 

[32-34].  The Kleisin family of non-SMC subunits includes ScpA, MukF, and MksF.  The kleisin 

family of non-SMC subunits includes ScpB, MukE, and MksE [35]. Non-SMC subunits bind to the 

head domain of the main SMC subunit and can oligomerize with other SMC subunits, playing a 

major role in scaffold formation and DNA bridging.   
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ATP modulates the activity of condensins by altering its architecture and interaction 

with DNA [18, 24-26].  When bound to ATP, the complex dimerizes at the head domain and 

hydrolysis of ATP opens the condensin structure.  For most condensins, binding of ATP also 

induces DNA binding while hydrolysis helps release it.  Notably, DNA binding by the MksB 

condensin is negatively regulated by ATP which distinguishes it from other known SMC 

proteins.  The different effect of ATP on DNA binding for MksB highlights the idea that several 

specialized condensins might be involved in organization of bacterial chromosomes.  Overall, 

basic chromosome compaction through intermolecular interactions is enhanced by ATP.   

1.3  Chromosome architecture 

1.3.A  Chromosome segregation 

Precise DNA segregation is essential for proper inheritance of the chromosome.  In 

bacteria, replication and segregation occur simultaneously (Figure 1-3).  The ParABS partitioning 

system, condensins and topoisomerases all help to segregate most bacterial chromosomes, 

including PA.   
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Figure 1- 3: Schematic for Pseudomonas aeruginosa (PA) chromosomal organization during 

replication and segregation.  Fully replicated chromosomes are represented as blue lines and 

partially replicated by black lines.  Replisomes are marked as green diamonds.  Segregation 

starts at parS, proximal to oriC and ends at dif. 

The ParABS system found in most proteo-gamma bacteria, involves three components.  

The first is the parS site which is a sequence located proximal to oriC.  The second is the DNA 

binding protein, ParB, which binds to parS forming a nucleoprotein complex.  The third 

component is the ATPase type protein, ParA, that provides the energy for segregation starting at 

the parS site.   

The ParABS system utilizes these components to effectively segregate the chromosome.  

One proposed model this is accomplished by is through a translocation mechanism.   Chromatin 

immunoprecipitation (ChIP) experiments have shown that ParB can not only bind with high 
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affinity to the parS site, but also to adjacent sites on the chromosome with less affinity, known 

as spreading [36].  In this model, the ParB/DNA complex is translocated by interaction with ParA 

which binds to DNA non-specifically [37].  When the ParB/DNA complex binds to ParA, the atpase 

activity is stimulated, followed by its dissociation from DNA.  This allows the ParB-DNA complex 

to be translocated in waves of interactions [38].   

In addition to the ParABS system, condensin complexes are also essential for faithful 

chromosome segregation [3].   Condensins provide chromosomal structuring and scaffolding 

stability which contribute to proper segregation.  Deletion of condensins display chromosome 

segregation defects, including the formation of anucleate cells [27].  

Condensins play a major role in segregation by their maintenance of the oriC position, 

where they are recruited to the oriC loci by ParB [39].  Deletions of condensins show defects in 

oriC localization.  A complete loss of oriC localization, as seen in E. coli, results in disorganization 

of the entire chromosome and failure to locate proper loci to opposite halves of the cell [40, 

41].  In other strains like PA, segregation of oriC localization was either delayed or accelerated, 

affecting overall segregation patterns [5]. Maintenance of the oriC position is therefore 

essential for proper segregation.  These studies suggest an important link between 

chromosome organization and segregation where condensin localization on the oriC region 

dictates the organization and segregation of the remaining chromosome.   

Topoisomerases also play an essential role in segregation. Topoisomerase II in particular 

is responsible for the decatenation of intertwined DNA molecules through the breaking and 

rejoining of double stranded DNA.  The processes of decatenation performed by Topoisomerase 
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II is essential for the segregation of duplicated DNA.  In many bacteria, Topoisomerases work in 

conjunction with condensins.   

In E. coli, MukBEF recruits Topoisomerase IV to the oriC region by directly binding to the 

C-terminal domain of its ParC catalytic subunit [42, 43].  The formation of this complex was 

found to stimulate Topoisomerase IV activity.  Topoisomerase IV promotes decatenation while 

MukBEF contributes to maintaining oriC positioning.  Both of these actions play an important 

role for proper chromosome segregation [43].   

Inactivation of  MukBEF induces severe growth defects which affect segregation and 

renders cells hypersusceptible to novobiocin [32, 44].  Mutations in Topoisomerase I and DNA 

gyrase allow partial suppression of these MukBEF phenotypes [45]. These mutations increase 

DNA compaction, compensating for the chromosomal disorganization resulting from the 

deletion of mukB. More however, needs to be elucidated to better understand how these 

different mechanisms are coordinated.  

The recruitment of condensins by ParB was found to be part of a larger coordinated 

pathway of segregation in PA.   It was found that condensins are synthetically lethal with ParB 

while deletion of either condensin gene or parB by themselves was not.  This revealed that 

condensins and the ParABS system make up essential and distinct components involved in PA 

segregation [5].   

Deletion of condensins in PA was also coupled with significant alterations in 

macrodomains [5, 46].  Condensin are therefore involved in global organization of the 

chromosome which are directly involved with segregation.  It is likely that their function as a 
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scaffold helps maintain the structure and integrity of varying DNA conformations, including 

maintenance of oriC, which plays a major role in segregation.   

1.3.B  Subcellular layout 

Bacterial chromosomes are organized at the subcellular level.  Fluorescence experiments 

have shown that different loci on the chromosome occupy specific regions inside the cell [46].  

This organization has a distinct pattern which is maintained throughout the cell cycle.  The PA 

chromosome organizes itself longitudinally within the cell  [5, 46].  This configuration places the 

origin, oriC, at one pole (the new cell pole), and the dif, chromosome dimer resolution site, at 

the opposite pole (the new cell pole) (Figure 1-4).  This organization is in contrast to a 

transverse organization in which both the oriC and dif region lie along the mid cell and the left 

and right arms of the chromosome are located at each cell pole (Figure 1-4).   
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Figure 1- 4: Chromosomal orientation in bacteria, longitudinal and transverse. Chromosomes 

are organized between oriC and the Terminus of replication. Different species use different 

orientations.  Growth factors can also alter orientation strategies.  In the Longitudinal 

orientation, oriC and the Terminus are located at opposite cell-poles and the arms run parallel 

to each other along the. In the Transverse orientation, both oriC and the Terminus are located 

mid-cell and each arm are at opposite ends of the cell. 

The starting sites for replication and segregation are proximal to each other on the 

chromosome, at the oriC and parS sites respectively.  After replication is initiated in PA, 

segregation occurs concomitantly [46].  The newly replicated DNA is pulled away from the oriC 

locus starting site and moves to the opposite end of the cell while the un-replicated dif migrates 

to the mid-cell position.  After replication and segregation is complete, the cells can fully divide.  

At this point, the newly replicated oriC occupies the old cell pole position and the newly 
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replicated dif region occupies the new cell pole position, in the longitudinal orientation (Figure 

1-3).  

Condensins were also found to contribute to chromosomal layout by way of their role in 

maintaining chromosome structure and integrity [5].  One of the main functions of condensins 

as mentioned previously, is their role in creating a chromosome scaffold structure which helps 

maintain and stabilize DNA conformations.   Deletion of the PAO1-UW condensin, mksB results 

in an inversion at the ribosomal RNA sites, rrnA and rrnB, located on opposite chromosomal 

arms.  This inversion reverted the asymmetric chromosomal layout, back to a symmetric 

organization [4].   

This discovery helped illuminate a new and pivotal role that condensins have on overall 

chromosome structure.  Further studies were performed here in order to determine the 

implications of these chromosomal changes and their coordination with replication, segregation 

and nucleotide bias, an inherent signaling code in most bacteria.   

1.4  Pseudomonas aeruginosa  

As of 2017, Pseudomonas aeruginosa (PA), a gram-negative multi drug resistant strain, was 

placed on a top three list of critical threats by the World Health Organization, WHO, in addition 

to Acinetobacter baumannii and Enterobacteriaceae [47]. PA is a virtually ubiquitous bacterium 

capable of inhabiting a wide range of habitats, including the human host [48]. This bacterium is 

an opportunistic pathogen commonly forming infections as skin rashes, and ear and urinary tract 

infections in healthy people.  In immunocompromised individuals, PA can infect the airways and 

damaged tissues leading to severe blood infections and pneumonia . PA has also been designated 
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as one of the main perpetuators in chronic lung infections, particularly in patients with cystic 

fibrosis which affects 70,000 people worldwide [49].  PA infects approximately 75% of CF patients 

older than 25 years old making it one of the most prevalent gram-negative species during chronic 

lung infections. Therefore, understanding PA pathogenicity and its modes for adaptation is vital 

for the remediation of PA infections.   

1.4.A.  PA intrinsic fitness 

 PA is a highly robust bacterial strain which can occupy numerous ecological niches. PA is 

commonly found in soil and water. However, it can also occur on the surfaces of plants and 

animals. Currently, there are over 200 (as of 04-30-2019, 228) complete PA strains and clinical 

isolates that have been sequenced on the NCBI database [6].  The PA chromosome has a 

relatively large genome (between about 5-7 Mb). The larger size is due to gene complexity likely 

due to horizontal gene transfer from other bacteria and viruses (125, 126).   

This complexity in the DNA allows PA to overcome varying environmental stressors not 

always tolerated by other organisms. PA encodes a number of different enzymes involved in 

various metabolic pathways.  This gives PA high nutritional versatility where it can utilize 

several different organic compounds for growth, including fossil fuels.   Cellular respiration of 

PA is also highly flexible.  PA can grow in the absence of O2 if an alternative terminal electron 

acceptor is available such as nitrate [50].   

Another aspect which contributes to the overall robust fitness of PA is its decreased 

permeability.  PA is a gram-negative bacterium.  These bacteria have an extra outer membrane 

composed of mainly lipopolysaccharides, making it harder to penetrate.   Adding to the 
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difficulty to permeate the membrane, PA has several different efflux pumps which shuttle 

toxins out of the cell.   

A notable mode for bacterial fitness is the formation of biofilms.  PA has multiple 

pathways which regulate biofilm formation, an essential lifestyle form which garners structure 

and protection to the growing PA community.  These include quorum sensing mechanisms, 

two-component systems GacA/GacS, RetS/LadS, and intracellular messaging by c-di-GMP.   

Lastly, PA has multiple virulence factors which help promote survival.  These include 

various toxins which can break down material in its surrounding environment in order to obtain 

nutrients.  The combination of inherent systems for metabolic versatility, virulence factors, and 

lowered permeability provide ample adaptation features for PA to exploit numerous 

environmental niches.  

1.4.B.  Pseudomonas aeruginosa biofilms 

One aspect which makes PA so difficult to target is its ability to form biofilms.  Biofilms are 

a community of cells that grow together on a surface, surrounded by a protective 

exopolysaccharide matrix that provides both a structure and protection to the community 

against harmful agents [51].  Biofilms can act as both liquid and solid often being described as a 

“slime”.  If they are in an environment where they can collect sediment, or where they can 

accumulate rust or calcium deposits, these biofilms can develop into a hard-solid state.    

Therefore, biofilms are found in a range of environments from the buildup in water pipes to 

chronic infections in human lungs.    

Biofilms contain about 2-5% of microbial cells, 97 % water, and the remaining portion 



 

19 
 

comes from the extra-cellular matrix.  The components of the matrix includes different types of 

extracellular polymeric substances (EPS), including extra-cellular DNA and RNA (<1%), proteins 

including enzymes(<1-2%) and exopolysacharides (1-2%) [52].   Exopolysacharides and DNA 

have been implicated in the stability of the overall biofilm matrix contributing to cell-cell 

adherence. [53, 54].   

Biofilms have proven exceptionally difficult to eradicate.  In the case of infections, 

antibiotics and white blood cells are less effective against established biofilms.  A number of 

reasons contribute to this enhanced resistance.  The first reason includes reduced penetration 

across biofilms.  Exopolysacharides help in reducing diffusion of white blood cells and other 

large molecules.   This is particularly the case for positive aminoglycosides, which are possibly 

bound by the negative charges from exopolysacharides [55].  The second factor is decreased 

growth rate as this is a phenotype associated with many cells growing in biofilms (section 

1.4.C.1).   Many antibiotics target replication machinery so slower growing cells can often avoid 

being targeted, or at least less effectively.  The third reason is the expression of resistance 

genes.  In PA, these include beta lactamase, and β-Galactosidase which becomes an issue when 

in combination with reduced permeability of the biofilm as certain drugs can be better 

targeted. Multi-drug efflux pumps, specific for drugs can also be upregulated contributing to 

overall drug resistance.   Lastly, the presence of persister cells, a cell morphology that is 

dormant (section 1.4.C.2), helps make removal of biofilms extremely difficult.  For the cases of 

antibiotics which can effectively permeate the biofilm matrix such as fluoroquinolones, 

persister cells can provide a means of survival and continuation of growth after removal of the 

drug [56]. 
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1.4.B.1  Biofilm structure: pel, psl, alginate, and DNA 

Biofilm development is a highly dynamic process which is constantly changing according 

to its environment.  Overall, several different structures can be generated in a biofilm.  The 

simple types include patchy monolayers or biomasses.  When more organized, they can form 

mushroom type structures when grown in still liquid and filamentous streamers when grown in 

moving liquid.  Biofilms can move together by rippling or rolling across the surface, or by 

detaching in clumps [57].  Biofilms can also change locations by dispersal, where cells in the 

inner portion of the biofilm modify to planktonic cells and swim out to new locations [58]. 

Advanced biofilms act as a city in which major resources including water, nutrients and 

oxygen, are brought throughout the community of cells via channels [59].   The overall structure 

then provides a scaffold engineered for the distribution of nutrients to all parts of the biofilm 

community, even deeply embedded cells within the biofilm. 

It has been shown that the major constituents for biofilm matrix adhesion are exo-

polysacharides and extra-cellular DNA.   P. aeruginosa produces at least three exo-

polysaccharides, psl, pel, and alginate.  The psl exo-polysacchride has been identified as an 

important factor in the initiation and maintenance of biofilms [60].  The structure of psl was 

identified as repeating units of a neutral, branched pentasaccharide consisting of D-glucose, D-

mannose and L-rhamnose monosaccharides [61] (Figure 1-5).  In addition to its structural role in 

biofilm, Psl has also been linked to roles in pathogenesis and protection against the immune 

system [62], in antibiotic resistance [63] as well as a signaling molecule for diguanylate cyclase, 

SiaD and SadC, which acts on c-di-GMP.  The role as a signaling molecule in essence allows psl 
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to form a positive feedback loop with c-di-GMP [64].  

 

Figure 1- 5:  Structure of the psl component of biofilms.  Psl consists of repeating units of a 

neutral, branched pentasaccharide consisting of D-glucose, D-mannose and L-rhamnose 

monosaccharides The structure of Pel includes partially acetylated 1,4 linked N-

acetylglucosamine and N-acetylgalactosamine, however,  the structure has not been fully 

established [61]. 

The pel polysaccharide is a cationic polymer composed of partially acetylated 1,4 linked N-

acetylglucosamine and N-acetylgalactosamine [65]. Currently, the chemical composition and 

structure of pel polysaccharide have not been fully established [66]. The cationic behavior of pel 

was reported to help facilitate its binding to extracellular DNA in the biofilm stalk. Like psl, it 

plays an important role in the structural maintenance of the biofilm.   

Pel and psl are both important in the initial stages of biofilm growth where it maintains 

the integrity of biofilms by functioning as structural scaffolds [67]. Colvin et al 2012 found that 

psl and pel play redundant roles in the PA01 strain in which the deletion of either 

exopolysaccharide results in compensation by the other[68]. Depending on the strain studied, 

the role of pel and psl in biofilm formation can have variations [68].  The PA01 strain of PA is 

capable of expressing both psl and pel, however, it relies primarily on psl.  PA14 in contrast uses 
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pel exclusively on account of it lacking three necessary genes in the pel operon [67]. 

Overall, both pel and psl have the characteristic of promoting cell-cell and cell-surface 

interactions [69] which explains why when overexpressed, they have also been linked to hyper-

adherence and hyper-aggregation [70].  Together, pel and psl form the primary structure 

scaffold for biofilm development, providing the first line of defense as the biofilm begins to 

develop.   

Alginate, a linear unbranched polymer composed of D-mannuronic acid and L-guluronic 

acid [71] (Figure 1-6).  Alginate contributes to the structural stability and protection of mature 

biofilms by adding to the already established layers of pel and psl components.  They also play 

an important role in water and nutrient retention [72].  Alginate acts as a porous material.   This 

allows the establishment of gradients in the biofilm for nutrients, oxygen and other resources. 

Isolates that overproduce alginate are often found to be mucoidal variants, a marker for the 

last stages of chronic lung infection.  It was found that when pel and psl are deleted, alginate is 

not able to form mature biofilms on its own.     
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Figure 1- 6:  Structure of the alginate component of biofilms. Alginate is a linear unbranched 

polymer composed of D-mannuronic acid and L-guluronic acid [61]. 

 

Extra-cellular DNA (E DNA) plays an important role in the overall adherence and 

formation of biofilms.  E DNA can be produced by cell lysis or through the release of small 

vesicles from the outer membrane [73].  Using flow-chambers to monitor biofilm growth, 

Whitechurch et. al have shown that PA cell growth was diminished in the presence of DNase 1, 

while growing extensive colonies without [53]. They also showed that DNase I can dissolved 

already formed biofilms.  This shows the importance of extracellular-DNA on biofilm growth.  

Therefore, the combination of at least pel or psl with alginate and extracellular-DNA is 

therefore essential in order to form fully mature biofilms in PA 

1.4.C  PA Morphotypes 

1.4.C.1  Planktonic and sessile: major lifestyles 

Basic regulatory mechanisms and mutational plasticity ensures survival against stressors 

in different environments.  On account of these adaptive mechanisms, PA generates 

morphologies with particular phenotypes.  One general morphotype incorporates the 

planktonic lifestyle in which cells grow as single cells and are actively motile using flagella [74].  

Planktonic growth is geared for optimum mobility and acquisition of nutrients from its 

environment be it in soil or in a host organism. Typically, this lifestyle is found in environmental 

strains with enhanced toxin secretion of proteases that allow the breakdown of material 

around it for nutrient uptake.  This particular morphotype acts as a scavenger seeking out new 
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environments while exploiting resources. Typically, this morphotype is more vulnerable to 

antibiotics and host immune system defenses.   

Another major broad morphotype includes cells having a sessile lifestyle which is 

associated with biofilm growth.  The sessile lifestyle slows down in growth rate as one of its 

prime objectives is survival and biofilm formation.  Typically, downregulation is seen for genes 

involved in motility and protease toxins which are secreted in planktonic cells. Sessile cells 

often upregulate genes involved in adhesion, such as exopolysacharides, thereby enhancing 

stickiness during biofilm formation.   Together, planktonic and sessile morphotypes make up 

the two major lifestyles of PA. From these modalities, additional morphotypes can show further 

divergence.  

1.4.C.2  Additional morphotypes  

An important morphotype which can emerge from either planktonic or sessile growth 

styles are persister cells. Two different types of persister cells have been postulated. The first 

type is thought to occur stochastically in a cell population by prior to the antibiotic treatment 

[75].   The second type occurs in response to to environmental stimuli such as a variety of 

antibiotics [76].  Persister cells are characterized by a dormant state, transient, lifestyle in which 

no growth occurs  [77].  Therefore, persister cells have been reported to play an important role 

in surviving antibiotics as they are more difficult to target. 

Another specific type of morphotype is small colony variants (SCVs). This particular cell 

variant has been shown to be derived directly from biofilms and is primarily associated with the 

sessile lifestyle.  SCVs were discovered from isolates of chronic infections.  These variants have 
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been reportedly associated with phenotypes predominate in the sessile lifestyle, including 

slower growth and enhanced biofilm formation.  Prevalent in about 3% of cells in the chronic 

infection state, SCVs have been attributed to a sharp decline in CF patient prognoses.  These 

variants are generated from a number of different ways, but the simplest way is directly from 

biofilms. 

Additional evolutionarily driven morphotypes, include variants having a higher specificity 

of phenotypes derived from divergent evolution.  These morphotypes are weeded out based on 

mutational plasticity, optimized for particular niches.  Often time, these variants are derived 

from isolates during chronic CF infections.  These varied, yet specific, morphotypes have been 

shown to have a large number of varied SNP’s with a specific group of common mutations.  

These mutations were reported to be located in regions of regulation involving stress response, 

QS, and alginate pathways that lock the cell variant into a solid mode of mucoidal growth 

geared for survival in the lung.   

Together, cell morphotypes derived from regulation, mutations, and a combination of 

both mechanisms, achieve maximal diversity in a cell population against stressors.  Changes are 

engineered on the bases of stimuli and progress to an optimized state in highly stressful 

environments.   

1.4.D.  The biofilm lifecycle 

The biofilm lifecycle is a highly dynamic process, in which certain developmental pathways 

can occur under proper environmental parameters (Figure 1-7).  Initially, cells start off as fast 

growing, freely motile, planktonic cells.  These cells explore and establish attachment to a 
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surface while weakening the host immune system through toxin secretion.  Initially, long range 

attachment occurs through positive Van der Waals forces with a surface.  This force counters a 

net negative electrostatic charge possessed by many environmental surfaces.  When closer in 

range, flagella and pili can contact the surface and aid in adhesion [78].  Attachment at this 

stage is reversible and cells can move closer together using pili using twitching motility.  With 

time, the population increases on the surface forming aggregates of microcolonies.   

 

Figure 1- 7: The biofilm lifecycle.  The biofilm lifecycle starts as planktonic growing cells.  Cells 

attach to the surface and grow micro-colonies which develop into three-dimensional biofilm 

structures. Finally, dispersion occurs releasing clumps of planktonic cells.  

 

After attachment, physiological changes can occur which help transition growing cells into 

the biofilm growth stage, where cells become irreversibly attached. It is believed that this 

switch is partially due to quorum sensing induction [79]. Many genes are activated including 

genes responsible for the production of compounds found in the matrix of developing biofilms, 

such as exopolysacharides [78].   This stage is characterized as sessile, slow growing cells, in 
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which biofilms grow from a single layer (from joined microcolonies), and progress to an 

advanced multilayer system.  Biofilms eventually progress into well- developed three-

dimensional communities [80].  After a certain amount of growth of biofilm is reached, a large 

group of cells are changed back into the planktonic growth stage in order to be released during 

dispersion to spread and colonize new areas for the next round of biofilm growth.  

Additional morphotypes, in particular persister cells, play an important role in antibiotic 

resistance in biofilms.  When biofilms are exposed to antibiotics that can penetrate the matrix, 

like fluoroquinolones, most of the population is eradicated.  A small fraction of surviving 

persisters are able to remain however.  When the drug is removed, biofilms can be reformed 

from these persister cells.  This is one of the ways in which PA can survive through antibiotic 

treatment and continue the PA lifecycle [56].  These biofilms will then again disperse as 

planktonic to find new infection sites and the process continues.  Overall, the biofilm cycle itself 

is an important component of the propagation of infection and disease persistence of PA in 

host systems and is an endless cycle if left untreated.   

1.4.E.  Lifestyle switching and regulation 

In response to environmental changes, PA is able to switch from a planktonic (free 

swimming) to a sessile (biofilm forming) lifestyle.  A planktonic lifestyle enables dispersion and 

travel to new environments, while a biofilm lifestyle offers protection as a community of cells in 

stressful environments [81, 82]).  The transition between motile and sessile lifestyles is crucial 

for PA adaptation and requires the ability of PA to respond appropriately to changes in the 

environment [83].  Therefore, understanding the mechanisms that govern this lifestyle switch 
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may provide potential antibiotic targets for combatting infections. The biofilm lifecycle 

highlights the phenomenon of lifestyle switching between the planktonic and sessile growth 

states.  This switching is essential for the propagation of the biofilm lifecycle and is the basis for 

the progression of infection.  However, it is not exactly clear how this switching occurs. 

One intriguing aspect of the lifestyle switching phenomenon, is that the changes in 

regulation affect not only the initial cell where change occurs, but for multiple dividing 

generations after it, often times, even if the signal is removed.  This epigenetic regulation 

provides a powerful manner in which PA can alter the physiology of the entire community for 

multiple generations.  This same phenomenon is also seen in scv generation and bi-stable 

virulence switching of the bexR regulon in which the effects are reversible yet present for 

multiple generations.  

Much of what we know regarding lifestyle switching in Pseudomonas aeruginosa is in the 

form of regulatory pathways (Figure 1-8).  PA possesses a large regulatory network of pathways 

which are highly dynamic and display a great deal of overlap for phenotypes attributable to 

each lifestyle.  This overlap increases the complexity and response systems involved in the 

switching process, emphasizing the importance this process has on PA survival and adaptation.  

Condensins were found to be global regulators involving a number of virulence pathways 

related to biofilm formation and the different lifestyle states.  It is speculated that they are 

involved in regulating a global switch involving several regulatory pathways.  Here, we discuss 

some of the major known pathways involved in lifestyle switching with particular emphasis on 

pathways involved in biofilm formation in order to understand the scope in which condensins 

play in the overall lifestyle switching process. 
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Figure 1- 8: Regulatory pathways in P. aeruginosa which contribute to sessile and planktonic 

traits.   

There are three quorum sensing systems in PA.  Two of these systems incorporate the 

AHL quorum sensing signal, N-Acyl homoserine lactone.  These include the Las and Rhl systems.  

The Las system includes the transcriptional regulator, LasR, and the synthase, LasI, which 

synthesizes the AHL signal, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) [84, 

85].  The Rhl system includes the transcriptional regulator, RhlR, and the synthase, Rhl, which 

synthesizes the AHL signal, N-butyryl-L-homoserine lactone (C4-HSL) [86].  The Las Quorum 

sensing system was found to be essential for the creation of mature biofilms, where LasI 

mutant formed very thin biofilms that lacked the three-dimensional architecture [87].  A link 

has also been reported between Las and the expression of the Pel polysaccharide, a component 

used in the biofilm matrix.   
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The Rhl system, however, has shown mixed results regarding its effect on biofilm 

formation.  In some reports, Rhl is also a major factor by contributing through DNA release or 

directly via the synthesis of exopolysacharides.  [88-90].   In other reports by contrast, no link 

could be found [87, 91].  These conflicting reports indicate that additional parameters play a 

role in the Rhl regulation of biofilm formation.  Therefore, the two quorum sensing systems Las, 

and Rhl, have been found to play a role in the regulation of biofilm formation and toxin 

secretion and can contribute to the switch from a planktonic to sessile/biofilm lifestyle.   

The PQS system (2-heptyl-3,4-dihydroxyquinoline) acts as a connector signal between 

the las and rhl quorum sensing systems [92]. Therefore, the QS systems have a great deal of 

overlap and internal regulation.  The PQS system, like that of Las and Rhl systems have been 

connected to biofilm formation and virulence factors.  Null mutations of the PQS system results 

in reduced biofilm formation and the decreased production of pyocyanin, elastase, PA-IL lectin 

and rhamnolipids and host immune responses [93].  In addition, the PQS system has also been 

found to be involved in iron uptake (pyocyanin and pyoverdine), the regulation of secreted 

toxins including ToxA and the protease PrpL, and the disruption of the host mitochondrial 

function [94, 95].  Overall, the PQS signal helps to maintain biofilms and regulates a number of 

virulence factors in both sessile and planktonic lifestyles.   

The IQS system or Integrated Quorum Sensing system is the newest system discovered 

[96].  The IQS is able to enhance PQS production depending on the P. aeruginosa strain.  The 

IQS system is tightly controlled by las under normal culture conditions but is also activated 

by phosphate limitation.  Together, The QS systems are highly integrated and positively 

regulated by the las cascade [96].   
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RetS and LadS are sensor kinases involved in two-component signaling in PA [97].   Both 

RetS and LadS reciprocally regulate genes involved in the planktonic and sessile lifestyles.  A 

RetS deficient strain showed a marked decrease in virulence from reduced toxin production 

(LipA and ToxA), an important aspect of planktonic growth, and an increased ability to form 

biofilms through the upregulation of psl and pel genes [98].   LadS in contrast, controls the 

expression of genes involved in producing exopolysacharides such as alginate and pel and psl.  

It also was found to negatively regulate swarming motility.  Therefore, both RetS and LadS 

contribute to the control over the lifestyle switch.  

RetS and LadS were found to converge on a master virulence regulator, GacA.  Gac A is a 

response regulator that works with GacS, the sensor, in a conserved two-component system.  

RetS and LadS can influence levels of the small regulatory RNAs RsmZ and RsmY which regulate 

gene expression by binding to RsmA [97].  The GacS/GacA system regulates a broad range of 

virulence and stress response genes [99].  Overall, the GacS/GacA system has been proposed to 

control the reciprocal expression of the planktonic and sessile lifestyles, related to acute and 

chronic infection phenotypes [98].   

The c-di-GMP second messenger is a signaling system that regulates many bacterial behaviors.  

Some of these include flagella rotation, type IV pili retraction, exo-polysacharide production 

(psl/pel), surface adhesion expression, antimicrobial resistance, stress responses, , secondary 

metabolite production, and biofilm dispersion.  [100, 101].  Interestingly, the concentration of 

c-di-GMP was found to be associated with the lifestyle switch between planktonic and sessile 

lifestyles [102]. C-di-GMP has been found to be connected with the Gac/Rsm system, the SagS 

pathway and the Las quorum system which controls regulation of biofilm formation.  The SagS 
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pathway, acts in concert with the two-component system, BfiSR, to enable Pseudomonas 

aeruginosa biofilm formation by altering SadC production levels of c-di-GMP [103]. High 

concentrations of c-di-GMP results in biofilm phenotypes while low concentrations are 

associated with motility and planktonic growth [104] . This association between lifestyle 

switching and c-di-GMP is present in several different species including (Escherichia coli, 

Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium) [105]. cAMP is also 

involved with mediating PA biofilm formation.  Almblad et al. showed that high levels of cAMP 

reduce c-di-GMP levels through the transcriptional regulator, Vfr, which reduces overall biofilm 

formation [106].  Hemagglutinin is a filamentous adhesion protein which also directly 

contributes to biofilm formation [107] [108].  Hemagglutinin mutants In P. fluorescens result in 

significant reductions in biofilm growth, extracellular matrix production, motility and overall 

attachment to host cells.  In addition, mutants displayed marked reductions in infection ability 

implying a role as a virulence factor in pathogenicity [107].   

RpoS (σS), is a major regulator of stress response and predominately expressed during 

stationary growth [109].  in PA, RpoS has also been shown to be upregulated in biofilms under 

stress conditions and is considered to be the master regulator of stress responses [110]. RpoS is 

post-translationally regulated by the HsbR-HsbA partner switching system [111].  HsbA, the 

anti-sigma factor, plays a role in lifestyle switching depending on its phosphorylation state.  

When phosphorylated, it binds to HsbR, the response regulator which binds to RpoS.  When 

unphosphorylated, it binds to FlgM, the anti-sigma factor of HsbA.  This plays a role in the 

release or sequestration of either of the two sigma factors which in turn, play a role in 

regulating growth states 
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The SiaA/D system also plays a role in biofilm formation by regulating the synthesis of c-

di-GMP using the sensor kinase, SiaA, and diguanylate cyclase, siaD,  [101, 112].  Increased c-di-

GMP levels has been implicated in biofilm formation [102].  Other targets for SiaA/D mediated 

regulation include the psl polysaccharide, the CdrAB two-partner secretion system and the 

CupA fimbriae, all of which also activate biofilm formation in the sessile lifestyle [112].  PpkA, a 

serine/threonine kinase has also been reported to play a role in biofilm formation, as well as 

other virulence factors, in the type 6 secretion system  [113]. PpkA, acts on the Fha1, a core 

scaffolding protein, through phosphorylation [114, 115] .  This allows post-translational 

regulation of Hcp-PIS which is required for the assembly of PA T6SS HSI-1 [114, 115].  The type 

6 secretion system (T6SS) is involved in a number of different functions.  These include 

pathogenesis, biofilm formation and stress sensing [116].  PppA, a serine/threonine kinase, was 

found to act as a repressor for Hcp-1 export by acting as an antagonist for ppkA and acting on 

Fha1 [117] therefore, it can act as a repressor for biofilms.  PpyR also affects biofilm formation 

by serving as an additional regulator in psl production through the psl operon.  In addition, it 

has been found to contribute to the regulation of LasB, pyoverdine synthesis and PQS quorum 

sensing production, while reducing swimming motility [11].   

A different type of factor for lifestyle control, was identified as the BexR virulence bi-

stable switch [118].  This is a type of switching mechanism which allows large changes in 

regulation to be turned on and off, controlled by the BexR regulon (PA2432). When activated, a 

set of virulence genes, including the quorum sensing proteases, PA0572 and the aprA toxin 

gene from the type 1 secretion system, as well as lipase A, and the MexXY-OprM efflux pump, 

are upregulated, and when deactivated, they are turned off ensuring diversity in the overall 
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population. Overall, BexR acts as a switching point to control the expression of a diverse set of 

genes [118]. 

Iron also serves as a signal in Pseudomonas aeruginosa biofilm development and is a 

necessary component for PA survival [119].  Iron acquisition in PA occurs through the 

siderophores pyoverdine and pyochelin [120].  These siderophores are acquired though 

recognition at specific cell surface outer membrane receptors, TonB dependent receptors. 

Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs through the FpvA receptor protein 

which utilizes the energy transducing protein TonB1.  This binding sends a signal to the 

membrane-spanning anti-sigma factor FpvR which activates the sigma factors FpvI and PvdS  

[121].  PvdS regulates pyoverdine production and exo-toxin A [122].   FptA is an outer 

membrane receptor precursor of pyochelin which is regulated by the transcriptional regulator 

PchR (PA4227) [123].   

Other heterologous siderophores, xeno-siderophores, ferrisiderophores and 

heme/hemophores can also be incorporated with TonB dependent receptor systems [120, 124].  

Many of these systems are controlled by the central regulator, Fur, which can also regulate 

many sigma factors and other regulators [125].   Pyocyanin, a bluish green pigmented toxin has  

been able to contribute to iron uptake from transferrin [126] as well as its precursor, 

Phenazine-1-carboxylic acid (PCA) [124]. PCA and Pyocyanin can reduce ferric Fe3+ bound to 

host proteins to ferrous Fe2+ allowing uptake through the Feo system [127].    

The precursor to pyocyanin, PCA, is regulated by a number of different factors including 

quorum sensing.  The phz1 operon is regulated by P. aeruginosa quinolones.  Binding of the 
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Pseudomonas quinolone signal (PQS) to the transcriptional regulator, MvfR, is required for WT 

pyocyanine production [128].  The repressor QscR, encoded upstream of phz2, has a negative 

effect on the expression of both phz operons through an unknown mechanism [129]. Lastly, 

sequestering of RsmA by RsmZ and RsmY results in increased expression of pyocyanin along 

with the other previously described phenotypes [98].    

The type I, 2 and 3 secretion systems play a role in the planktonic lifestyle state and are 

implicated during the acute infection state.   These systems and the infection states are 

described in more detail in (section 1.1.F). This is a review of how these systems are regulated. 

In the Type 1 secretion system (T1SS), the HasAp haem uptake protein is regulated by the 

quorum sensing system in PA [130].  The virulence toxin, AprA is regulated by the BexR 

virulence regulator which controls bi-stability in PA [118].   

The type 2 secretion (T2SS) is involved in toxin secretion.  These include LasA, LasB, ToxA, 

and PlcH, PlcN (phospholipases). Inactivation of quorum sensing contributes to the 

downregulation T2SS expression including lipases [85].  The phoB/R genes (PA5360-PA5362) 

regulates PlcH and PlcN [131]. Regulation of Hxc T2SS genes is done by a cell surface signaling 

system, PUMA3 which includes genes in the vreAIR operon [132].     

The type 3 secretion system (T3SS) is regulated by a number of ways.  One major is by 

ExsA (PA1413) which binds upstream of the promoter to control genes in the regulon [133]. 

ExsD (PA1714) and PtrA(PA2808) act as anti-activators for ExsA. ExsC is an anti-anti activator of 

ExsD.  When concentrations of Ca2+ are high, ExsE can bind to the anti-anti activator ExsC , 

freeing up ExsD to bind ExsA, preventing T3SS gene expression.  Under Ca2+ limiting conditions, 
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ExsE is secreted, making ExsC free to bind to ExsD (the anti-activator).  This frees ExsA to be 

able to activate T3SS expression [134].  ExsA is also activated by PsrA (3006) [135].  Although 

this is the primary mode of control, T3SS can also be suppressed by PtrB (rec-A mediated) 

under the stress of DNA damage [136]. 

Interestingly, condensins were discovered to be global regulators between these two 

physiological lifestyles. Regulation incorporated multiple pathways involved in biofilm 

formation and virulence factor expression.  This discovery adds an additional component to our 

understanding of lifestyle switching.  Overall, the causes of the physiological changes associated 

with PA adaptation involving lifestyle switching are undoubtedly multifactorial and still very 

much elusive. The discovery that condensins play a role in global regulation between lifestyles 

shows that chromosomal organization is somehow involved in the differentiation of lifestyle 

states. The duality of these phenotypes into a relative biphasic system also indicates the 

possibility that condensins play a role in epigenetic regulation.  It is speculated that these 

proteins could act as a biphasic switch in response to environmental changes, enabling 

differentiation states in PA. 

1.4.F.  Chronic and acute infection states  

PA is introduced into the human host as an environmental strain and transitions with time 

from an acute infection phase to a chronic infection phase [49].   During the acute infection 

phase, symptoms are exacerbated within the patient on account of the host immune system 

response.  If diagnosed accurately and timely, acute infections are generally treatable with 

antibiotics. If not, PA can cause pneumonia, break down lung defenses, cause tissue necrosis, 



 

37 
 

enter the bloodstream, and even cause death.  In contrast, during the chronic infection phase, 

patient symptoms are considered low-grade and sometimes even undetectable.  One of the 

hallmarks of chronic infections is their extreme resistance to antibiotics and significant capacity 

for evading the host defenses.   

In terms of the physiological attributes of bacteria during these infection phases, the 

acute infection phase is associated with a planktonic state.  Phenotypes include increased 

motility (flagella and pili type IV also used for adherence) and enhanced toxin secretion from 

the type 1, 2 and type 3 secretion systems (Figure 1-9) [137, 138]. Both secretion types increase 

the severity of acute disease and are also less likely to be expressed during chronic infections 

[139].  Aspects of the type 1 secretion system has also been implicated in this infection type.   

The type 1 secretion system (T1SS) utilizes an ABC (ATP-binding cassette) transporter with 

an outer membrane protein in order to export toxins [140].  T1SS encodes has (heme 

acquisition system) consisting of a heme receptor (hasR) and a protein that binds heme, HasAP, 

a haemophore [141].  This protein allows utilization of iron by binding haem from haemoglobin.  

This is an important step during the initial stages of infection.  The other major protein involved 

in this system is AprA, an alkaline protease involved in various types of PA infections [142].   

The type 2 secretion system (T2SS) is a membrane bound protein secretion machinery 

that is used to transport of a group of proteins, many being lipases, proteases, and other toxins, 

across the outer membrane into the extracellular space.  Major toxins from the type 2 secretion 

system include elastases (LasA and LasB) (elastases), Protease IV (PrpL),a quorum sensing 

dependent endo-protease, ToxA (exotoxin A).   In general, these proteins are associated with 
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the destruction of various tissues, which contributes to cell damage and disease.  Exotoxin A is 

one of the most toxic virulence factors of PA.  It is responsible for tissue necrosis by blocking 

protein synthesis [143].  Elastases A and B are also involved with tissue damage.  LasB has been 

reported to degrade mucins and surfactant proteins which help to allow bacterial clearance 

[144].  Protease IV degrades surfactant proteins and inhibits surfactant host defense and 

biophysical functions  [145].  

The type 3 secretion system (T3SS)  is a membrane-spanning structure and needle that 

can inject toxins directly into mammalian cells [146].  Major toxins of the T3SS system include 

ExoS/T/U/ and Y.  ExoU, ExoS and ExoT cause death in animal models of pulmonary infection 

and possible humans [147].  Phospholipase C, a hemolysin, is another toxin which is secreted 

during the acute infection phase.  These toxins are capable of interacting with the membranes 

of eukaryotic cells, causing hydrolysis of phosphatidylcholine and sphingomyelin, resulting in 

cell lysis [148].  Other virulence factors in the acute infection model include hydrogen cyanide 

and lipopolysaccharides [149, 150].   Cyanide can inhibit Cytochrome c oxidase, a terminal 

electron acceptor in the electron transport chain, effectively shutting down cellular respiration 

and causing cell death [151].   

Lastly, in order to bypass direct interaction with the host, PA can use outer membrane 

vesicles as a mechanism for the long-distance delivery of multiple virulence factors to cause 

cytotoxicity. It has been shown that B-lactamase, alkaline phosphatase, hemolytic 

phospholipase C and Cif are delivered by PA into the host cytoplasm through outer membrane 

vesicles [152]. 
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The chronic infection phase in PA is characterized by a distinct set of phenotypes which 

are associated with a biofilm lifestyle and specific virulence factors.  Chronic infection 

phenotypes include enhanced biofilm formation and exopolysaccharide production, increased 

c-di-GMP levels, enhanced type 6 secretion effectors and frequently, increased antibiotic 

resistance and iron scavenging capabilities (Figure 1-9). Often, there are also reduced motilities 

and effector proteins of the type 3 secretion system and reduced virulence 19[153].  These 

common phenotypes are shared amongst Pseudomonas aerugionsa, Staphylococus aureus, and 

Bhurholderia cepacia strains during chronic infections, indicating that the chronic infection 

phase may possibly be an optimized cell lifestyle for sustained survival in the lung.  

The type 6 secretion system (T6SS) involves a needle like complex resembling a phage like 

tail structure, [115] to inject toxins directly into both host cells as well as bacterial to fight off 

competition.  There are three sub-types within this system incorporating different Hcp 

Secretion Island (HSI) genes, HSI-1, HSI-2, and HSI-3.  Toxins produced from the HSI-system 

include Tse1, Tse2, and Tse3 [117].  HSI-1 is also involved in biofilm formation as described 

previously [154].   HSI-2 enhances bacterial internalization into host epithelial cells.  

Information for HSI-3 is limited. 

In order to evade the host immune system, it has been reported that PA can synthesize 

structural homologs of the human α2-macroglobulin as a form of mimicry.  Six gene elements 

are included in the overall complex formation and are found in the magABCDEF operon.  The 

α2-macroglobulin complex is proposed to emulate the process by human α2-macroglobulin by 

trapping and inactivating external proteases aiding in bacterial defense and survival [155].   



 

40 
 

Bacteriophage is a virus capable of infecting and replicating in bacteria.  It has been 

integrated into the chromosome of PA.  Bacteriophage pf1 in particular, contribute to bacterial 

lysis functions which releases extracellular DNA that can contribute to the structure of biofilms 

[156].    It has been reported that bacteriophage pf1 genes are upregulated in biofilm cells 

[157].   

As previously mentioned, studies have demonstrated that high iron concentrations favor 

the formation of biofilms [119, 158, 159]. However, in vivo conditions have low iron 

concentration since the host has iron sequestering mechanisms working to uptake iron such as 

lactoferrins in mucosal secretions and transferrins in serum [160]. In order to overcome this, PA 

has several pathways in place for iron uptake.  Briefly, they including varying siderophores 

(pyoverdine, pyochelin and TonB dependent iron uptake), xeno-siderophores, and heme 

extractors (has and phu systems) [161]  Pyocyanin and its precursor phenazine, can also 

contribute to iron acquisition through the FEO system [127] .   Pyocyanin is a toxin secreted by 

PA which is capable of oxidizing and reducing other molecules [162].  This allows it to kill 

microbes which compete with it as well as mammalian host cells during infection. Pyocyanin is 

often detected in the sputum of cystic fibrosis patients during chronic lung infections [163]. 

In addition, iron-sulfur cluster biogenesis was shown to be upregulated in PA in response 

to iron starvation [164].  This trend was also seen in other strains including. S. epidermidis 

[165], and Thermotoga maritima  [166] for cells growing in biofilms . 
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Figure 1- 9: General summary of acute and chronic infection phase phenotypes expressed in 

bacteria. 

These characterizations of infection phases, however, are not black and white.  During the 

chronic infection state, it has been reported that there is also a mix of cell types, albeit, with a 

higher prevalence for the sessile biofilm stage [167].  Additionally, virulence of the secretion 

systems also showed variation, with a higher prevalence for the chronic type 6 secretion, but 

there was always some degree of diversity in the population [168].   

Populations with variation in lifestyle and virulence is necessary for diversity and is an 

essential component during infection stages. The ability to revert back and forth into these 

different physiologies ensures diversity and progression of infection.   The evolution of PA 

during lung infections is of particular concern on account of its devastating impact on lung 

function for cystic fibrosis patients.   
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We report here that the two condensins in Pseudomonas aeruginosa, SMC-ScpAB and 

MksBEF, are involved in the differentiation of the bacterium and impose opposite physiological 

states. Understanding the switch in lifestyle could provide insight into the major transition 

between acute level and initial chronic infection stages of p.a. into advanced chronic infection 

levels.  This finding could help illuminate ways to better target PA and treat infection, before 

changing into a state that is untreatable. 

1.5  PAO1 and PA14 strains 

PAO1 is a widely used laboratory strain while PA14 is considered a highly virulent clinical 

isolate.  Both strains act as opportunistic human pathogens with intrinsic resistance to 

antibiotics and disinfectants.  Included in their repertoire are a variety of extracellular virulence 

factors including proteases, hemolysins, pyocyanin, pili, lipopolysaccharide, alginate, and the 

type 3 secretion system effector proteins, ExoS, ExoT, ExoU, and ExoY.  Additionally, lifestyle 

switching and the formation of biofilms with type 6 secretion system proteins inherent in both 

strain types. 

Several studies involving different models of infection have reported that PA14 is more 

virulent than PAO1 [169-171] .  The PAO1 and PA14 strains of Pseudomonas aeruginosa have a 

similar core genome where approximately 91.7% of PA14 genome exists in PAO1, and 95.8% 

PAO1 genome exists in PA14 [172].   The PAO1 chromosome (GenBank Assembly: 

GCF_000006765.1) is about 6.3 Mb with 5572 protein genes and 106 RNA genes  while the 

UCBPP-PA14 (GenBank Assembly: GCA_000014625.1) is about 6.5 Mb having  5892 protein 

genes and 72 RNA genes (keg database: PAO1 PMID:17038190, PA14 PMID PMID:10984043 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/014/625/GCA_000014625.1_ASM1462v1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000006765.1
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/014/625/GCA_000014625.1_ASM1462v1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000014625.1
https://www.ncbi.nlm.nih.gov/pubmed/17038190
https://www.ncbi.nlm.nih.gov/pubmed/10984043
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[173].  These differences in genome size account for 58, PA14 gene clusters that are absent in 

PAO1.  Two pathogenicity islands (PAPI-1 and PAPI-2) have been identified in the PA14 genome 

[174].  The PAPI-1 island is about 108 kb while the PAPI-2 island is about 11 kb [174]. 

Different results have been reported for the impact of gene differences found on these 

islands.  Harrison et al 2019 reported that the global contributions to virulence of both PAPI-1/2 

together significantly attenuated virulence of PA14 in acute pneumonia and bacteremia 

models. In contrast, loss of one island did not show a measurable change [175]. 

Analysis of individual genes for several studies have shown link to virulence [174, 176].  

Comparison of extra PA14 genes to other strains, however, did not show a correlation with 

virulence [172].  Lee et. al studied the 58, PA14 gene clusters that are absent in PAO1 to 

determine if any contributed to the enhanced virulence of PA14 in a Caenorhabditis elegans 

pathogenicity model.  Of these extra genes, none were required or predictive of virulence in 

other strains.  They concluded that the higher virulence in PA14 is multifactorial and 

combinatorial in terms of total pathogenicity related genes which interact differently in 

different genetic backgrounds [172].  

Recent developments in RNA seq have illuminated roles for small RNAs in regulation.  

Comparison of PAO1 and PA14 show novel unique and conserved sRNA which were strain 

specific or had strain specific expression indicating a possible role in virulence regulation [177].  

Supporting this, The PAPI-1 pathogenicity island encodes a small RNA PesA which was found to 

influence virulence and modulate pyocin S3 production, a virulence factor in PA14 [178]. 
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Overall, enhanced virulence in could be combinatorial, residing on the overall global 

effects of how these genes are incorporated specifically into a particular strain with possible 

contributions for regulation by factors such as small RNAs.  More progress needs to be made in 

order to better understand virulence and the differences between particular strains. 

1.6  Nucleotide usage bias  

There are four nucleotides which make up genetic code, Adenine (A), Guanine (G), 

Thymine (T) and Cytosine (C). When no selective pressure is present in a system, a random 

distribution of all four nucleotides among a single DNA strand is expected known as Chargaff or 

parity rule 2 [179] [180, 181].  However, in most prokaryotes, this distribution of nucleotides is 

not random.   

Several types of nucleotide bias have been found encoded in bacterial genomes. One 

example in E. coli are the Ter sites, also known as DNA replication terminus binding-site.  Ten 

closely related ter sites are present on the chromosome designated TerA, TerB up to TerJ. Each 

site has 23 base pairs.   Depending on the strain, either the Tus or Tau proteins bind to Ter sites, 

preventing progress of the DNA replication fork from the opposite direction.  Therefore, this 

system of blockage on Ter sites entraps the terminus of replication into a confined region of the 

chromosome [182]. 

Another example of nucleotide bias are KOPS (FtsK orienting polar sequences) sites which 

have the sequence GGGNAGGG, and are asymmetrically found in the two chromosome arms. 

FtsK, a DNA translocase protein, preferentially engages KOPS which guides it towards the 

terminus region at the chromosome dimer resolution, dif, site [183] a 28 bp sequence. Here, XerC 
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and XerD proteins bind at the two dif sites to form a complex followed by strand exchange, 

catalyzed by FtsK, and recombination which separates chromosome dimers [184] (Figure 1-10). 

KOPS sequences are present in most bacteria as well as FtsK and XerC and XerD homologs.  

 

Figure 1- 10: dif and the XerC/D recombinase system.  (A) The consensus dif sequence showing 

XerC and XerD binding sites.  (B) Kops bias seen in leading and lagging strands for plus and 

minus strands in E. coli MG1655.  These sequences align with the dif sequence.  (C) 

Chromosome dimers are resolved by the XerC/XerD recombination system which occurs at the 

dif site.  FtsK is a DNA translocase motor protein which brings together two dif sites guided by 

numerous KOPS (FtsK orienting polar sequences; 5′-GGGNAGGG-3′), which are distributed along 

both arms from oriC to dif.  FtsK induces XerD catalytic activity required for the first DNA strand 

exchange.  The second strand exchange event is modulated by XerC, completing the 

recombination reaction.
 
 Capital letters indicate >50% frequency in representative strains, 

lower-case <50% frequency. 
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In addition to these examples, global nucleotide compositions are typically found to be 

asymmetric with a clear nucleotide bias between the chromosome arms which overlap with the 

leading (G/T abundant) and lagging strands (A/C abundant) [181, 185]. This nucleotide bias 

phenomenon is known as GC skew and AT skew.   

The cause for this phenomenon is still unclear.  The current hypothesis is that it is 

primarily due to the higher incorporation of guanines versus cytosines in the leading strand 

during replication [186, 187]. Supporting this idea, GC-skew switches polarity at the origin of 

replication, oriC.  Interestingly, the opposite GC-skew switch is found at the chromosomal dimer 

resolution site, dif, implying an alternative contribution to its origin [181, 188]. 

Nucleotide bias, therefore, serves as an inherent signaling code, switching polarity and 

thereby marking the location for oriC and dif.  How this nucleotide bias is affected by 

chromosome asymmetry (placement of dif relative to oriC), and its coordination with 

segregation and replication has not been investigated.  This thesis, therefore, looks at the 

coordination between nucleotide bias in conjunction with major processes of segregation and 

replication both in the PAO1 strain (model organism), and across all sequenced bacterial 

chromosomes in the NCBI database [6].  
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Chapter 2:  Methods 

2.1  Genome modification through allelic replacement 

Modifications to the genome was done through bacterial conjugation using the method 

of Simon et. al (1986) [189].  Recipient P. aeruginosa cells and donor E. coli strain SM10 (λpir) 

cells carrying the suicide vectors were grown in LB medium at 37 °C to an OD600 of 0.2.  Cells from 

each strain were then harvested and combined containing 5×107 of the SM10 (λpir) cells and 

2×108 of P. aeruginosa cells in a total volume of 20 μl LB medium and spotted on an LB-agar plate.  

The conjugating cells were incubated 37 °C overnight, then collected, resuspended in 2 ml of 10 

mM magnesium sulfate solution.  Cells were then plated onto Vogel-Bonner minimal medium 

(VBMM: 0.083 M Magnesium sulfate, 0.48 M citric acid monohydrate, 2.87 M Dipotassium 

phosphate anhydrous, 1.28 M Sodium Ammonium Phosphate) agar plates supplemented with 

gentamicin (30 μg/ml). Colonies were re-streaked onto LB-agar plates containing 15% sucrose 

and incubated 37 °C.  Strains generated using FRT cassettes (Flp recognition sequences) flanking 

drug resistance markers had their drug markers removed by electroporation with pFLP2 

harboring the flippase (Flp) recombinase gene in order to recombine the FRT cassettes as done 

previously [190].  Colonies were then cross checked for sensitivity to carbenicillin which is present 

on the pEX18Ap and pFLP2 plasmids by streaking on LB plates supplemented with carbenicillin.  

Confirmation of genome modification was done by PCR and/or DNA sequencing.  
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2.2 Plasmid and strains 

For experiments done with PAO1, PAO1-Lac (ATCC 47085) was used as the wild-type 

(WT).  For experiments done with PA14, UCBPP-PA14 was used as the wild-type (WT). E.coli and 

P. aeruginosa cells were grown in Luria broth (LB medium or M9 medium plus 0.4% glycerol and 

0.4% Casamino Acids (Difco) under aerobic conditions at 37oC unless noted otherwise.  Cell 

growth was measured by the optical density (OD) at 600 nm (OD600) using a UV-1601 UV-visible 

spectrophotometer.  A complete list of plasmids is provided in Table 1, a list of strains in Table 

2, and primers in Table 3 in the Appendix.  

 

2.2.A Construction of plasmids 

Constructs used to generate deletion and knock-in strains utilized the pEX18Ap suicide 

vector [190] as a backbone which incorporated the oriT region and the ColE1 origin of 

replication, the gentamicin resistance gene, GmR, flanked by FRT cassettes, the sacB gene and 

the ampicillin resistance gene, AmpR (Figure 2-1). The sacB gene encodes Levansucrase, an 

enzyme that converts sucrose to levan polysaccharides which accumulates in the periplasm and 

is toxic to cells [191].  Levansucrase activity confers sucrose sensitivity in P. aeruginosa in the 

presence of 10% sucrose, allowing it to be used as a counter selectable marker.  The oriT region 

allows the plasmids to transfer from E. coli to P. aeruginosa. pEX-∆mksB [1], used for condensin 

deletion constructs, was derived from pEX18Ap [190] and incorporates approximately 500 bp up 

and downstream of the mksB gene onto flanking regions of an FRT cassette containing a 

gentamicin resistance marker.  pUCP-mksB [27], derived from the pUCPP22 vector [192], 

encodes MksB-His8 and an araC-ParaBAD inducible promoter system.  This construct was used for 
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the subcloning of an sspB gene to generate an arabinose inducible expression vector used in the 

degron system.  The pYM101 vector [193] was used as a source for the lacIq gene and the T7 

early promoter PT7(A1/04/03) for generating conditional condensin mutants inducible by isopropyl-

B-D-thiogalactopyranoside (IPTG). 

 

 

Figure 2- 1: Plasmid map of suicide vector pEX18Ap::GmR .  
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Figure 2- 2: Plasmid map of suicide vector pEX-∆mksB 

 

The pEX-∆mksB::mksB plasmid was generated to incorporate a mksB gene into a ΔmksB 

strain (at the mksB locus) to test for complementation.  To generate this construct, an FRT 

cassette (section 2.1) flanking a gentamicin resistance gene, FRT GmR, and an approximate 500 

bp fragment of the downstream region of mksB was PCR amplified from the pEX-∆mksB vector 

using primers Sbf1 forward and Opa30.  This fragment was digested with the restriction 

enzymes SbfI and HindIII (New England Biolabs) and ligated with T4 DNA ligase (New England 

Biolabs) into the Sbf1/HindIII sites in the pEX18Ap suicide vector.  Next, a fragment 

incorporating the entire mksB gene and approximately 500 bp upstream was PCR amplified 

from a PAO1 genomic template using primers Opa31 BamHI and Rev mksB1 Blp1, then digested 

and ligated into the BamHI and SbfI sites.   
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To replace endogenous mksB by a DAS4-tagged version, the pEX-mksB-Das4 plasmid was 

constructed.  To this end,  amplification of an approximate 600 bp fragment and the C-terminus 

of mksB, c-mksB , was obtained from genomic DNA just before the stop codon using primers 

degron 7 which incorporated a KpnI site and degron 8  which incorporated a DAS4 linker (For 

more details on primers used, see Table 3 of the Appendix).  Amplification of the resulting 

fragment was done using primers degron 7 and degron 9 which added a Das4 tag, stop codon, 

and a BlpI restriction site.  This was digested and ligated into the Kpn1 and Blp1 sites in the pEX-

∆mksB construct.  

To incorate the sspB protein through inducible expression, the pSspB plasmid was 

generated.  The sspB gene was amplified from a PAO1 genomic template using primers degron 

10 and degron 11 and digested and ligated into the PacI and XbaI sites in a pUCP-mksB cloning 

vector, effectively replacing the mksB gene with sspB.  The pUCP-mksB vector was obtained 

from our lab [27] . 

To generate three different mksB ATPase mutants, the plasmids pEX-mksB-D864A, pEX-

mksB-E865Q, and pEX-mksB-S829R were constructed. To this end, pEX-mksB-D864A was 

generated by PCR amplification of an approximate 600 bp fragment using primers opa180 and 

opa184 from PAO1 genomic DNA.  This fragment is located about 240 bp upstream from the 

stop codon of mksB.  Opa180 contains a restriction site for KpnI.  The opa184 primer 

incorporates a single base pair change, cytosine, from an adenine, at the 2,591 bp position in 

the mksB gene.  This changed the sequence from “GAC” to GCC”.  A second fragment 

approximately 270 bp was generated using primers opa181 and opa183.  Opa184 is the reverse 

complement of opa183.  Both primers incorporate a single base pair change generating an 
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approximate 270 bp fragment.  Opa181 contains the restriction site for BlpI. The two resulting 

fragments were joined using PCR mediated assembly, digested with KpnI and BlpI and inserted 

into pEX-∆mksB obtained from our lab [1].   

The pEX-mksB-E865Q plasmid was generated by PCR amplification of an approximate 600 

bp fragment using primers opa180 and opa186 from PAO1 genomic DNA.  This fragment is 

located about 240 bp upstream from the stop codon of mksB.  Opa180 contains a restriction site 

for KpnI.  The opa184 primer incorporates a single base pair change, cytosine from a guanine, at 

the 2,593 base pair position in the mksB gene.  This changed the sequence from “GAG” to CAG.  

A second fragment approximately 270 bp was generated using primers opa181 and opa185.  

Opa186 is the reverse complement of opa185. Both primers incorporate a single base pair 

change generating an approximate 270 bp fragment.  Opa181 contains the restriction site for 

BlpI. The two resulting fragments were joined using PCR mediated assembly, digested with KpnI 

and BlpI and inserted into pEX-∆mksB  obtained from our lab [1].   

The pEX-mksB-S829R plasmid was generated by PCR amplification of an approximate 550 

bp fragment using primers opa180 and opa188 from PAO1 genomic DNA.  This fragment is 

located about 340 bp upstream from the stop codon of mksB.  Opa180 contains a restriction site 

for KpnI.  The opa188 primer incorporates two base pair changes, a cytosine and a guanine (in 

order), from a thymine and cytosine (in order), at the 2,485 and 2,486 base pair positions in the 

mksB gene.  This changed the sequence from “TCC” to “CGC”.  A second fragment 

approximately 370 bp was generated using primers opa181 and opa187.  Opa188 is the reverse 

complement of opa187.  Both primers incorporate the two base pair changes generating an 

approximate 370 bp fragment.  Opa181 contains the restriction site for BlpI. The two resulting 
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fragments were joined using PCR mediated assembly, digested with KpnI and BlpI and inserted 

into pEX-∆mksB obtained from our lab [1].   

To delete the mksB2 gene in PA14, the pEX-∆mksB2 plasmid was generated.  Construction 

of this plasmid included amplifying an approximate 500 bp fragment from the upstream region 

of mksB2 using primers Apa 1 and Apa 2 and cloned into the pEX-∆mksB vector between KpnI 

and Blp1.  Next, an approximate 500 bp fragment from the downstream region of mksB2 was 

amplified using primers Apa 3 and Apa 4 and cloned into the RsrII and HindIII sites.   

To replace the original promoter upstream of the mksB2 gene in PA14 with a lacIq-PT7 

inducible promoter, the pEX-lac-mksB2 plasmid was generated.  To this end, a modified version 

of pEX18Ap with the EcoRI site removed, pEX18Ap*, was used for cloning.  An approximate 300 

bp fragment directly downstream of the mksBEF2 promoter was PCR amplified with primers 

containing SpeI (primer P3) and PstI (primer P4) sites.  Next, an approximate 300 bp fragment, 

200 bp upstream of the mksBEF2 promoter was amplified, with primers P1, containing the KpnI 

site and P2, containing the and EcoRI site.  These amplified fragments were then combined 

using PCR mediated assembly, digested and ligated into the KpnI and PstI sites of of pEX18Ap*.  

The lacIq gene and the T7 early promoter, PT7, was then amplified from a pYM101 plasmid [193] 

and cloned in between the two fragments at the SpeI and EcoRI sites. 

For deletion of both the mksB2 and mksG genes in PA14, the pEX-∆mksB2-∆mksG plasmid 

was generated.  For construction, amplification was done from PA14 genomic DNA of an 

approximate 500 bp fragment from the downstream region of the mksG gene using primers Apa 

5 and Apa 6.  This was followed by cloning into the pEX-∆mksB2 vector at the RsrII and HindIII 
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sites.   

2.2.B  Construction of PAO1 strains 

PAO1 mksB-E865Q was generated by mating SM10 (λpir) cells harboring the pEX-mksB-

E865Q plasmid with the recipient PAO1 ∆mksB strain through allelic replacement.  These steps 

include plating on VB 30 Gm followed by LB 10% sucrose which allowed counter-selection.  The 

gentamicin resistance gene was removed by transforming cells which encodes Flp recombinase, 

followed by plating on LB 200 µg/ml carbenicillin [190].  Chromosomal insertion was verified 

using DNA sequencing and PCR. 

PAO1 mksB-S829R, and PAO1 mksB-D864A were similarly generated as above, using 

their corresponding plasmids pEX mksB-S829R and pEX mksB-D864A respectively. 

To test for mskB complementation, the PAO1 ∆mksB::mksB (∆B::B) strain was 

generated which incorporated the mksB gene into a PAO1 ∆mksB strain.  This strain was 

similarly generated as above using the plasmid pEX-∆mksB::mksB.  Chromosomal insertion was 

verified using PCR 

2.2.B.1  Degron system strains 

To construct strains for DAS4 mediated degradation, the sspB gene was first deleted 

from PAO1 ∆mksB [1] and wild-type PAO1-Lac using the allelic replacement method with 

pEXG2-ΔsspB. Next, the mksB gene was replaced by its DAS4-tagged version using the allelic 

exchange method with the pEX-mksB-Das4 plasmid.  The gentamicin gene was removed as 

previously described generating PAO1 ∆sspB ∆mksB::mksB-DAS4 (PAO1 Das4), followed by 

transformation with either the pUCP22-SspB or pUCP22 plasmids generating PAO1 ∆sspB 
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∆mksB::mksB-DAS4-PsSpB (PAO1 Das4-PsSpB) and  PAO1 ∆sspB ∆mksB::mksB-DAS4-pUCP22 

(PAO1 Das4-Pucp22 ) respectively.   

2.2.C  Construction of PA14 strains 

2.2.C.1  PA14 deletion strains  

PA14 deletion strains were generated using the allelic exchange method as described in 

section 2.1 and are listed in Table 2 in the Appendix.   Each condensin mutant listed below 

includes both a GmR strain (containing a gentamicin resistance marker flanked by an FRT 

cassette) and a ∆Gm strain (gentamicin marker removed).  For GmR strains, the GmR FRT 

cassette is located on the locus that was last to be replaced. Deletions were confirmed using 

PCR.  The order in which each deletion was generated is indicated: 

PA14 ∆mksB1 was generated using pEX-∆mksB1. 

PA14 ∆smc was generated using pEX-∆smc. 

PA14 ∆mksB2 was generated using pEX-∆smc. 

PA14 ∆mksB1 ∆mksB2 was generated using first, pEX-∆mksB1 then pEX-∆mksB2. 

PA14 ∆mksB1 ∆smc was generated using first, pEX-∆smc then, pEX-∆mksB1. 

PA14 ∆mksB2 ∆smc was generated using first, pEX-∆smc then, pEX-∆mksB2. 

PA14 ∆mksB1 ∆mksB2 ∆smc was generated using first, pEX-∆mksB1 then using pEX-∆mksB2. 

then, pEX-∆smc. 

PA14 ∆mksB2 ∆mksG was generated using pEX-∆mksB2-∆mksG 
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2.2.C.2  PA14 conditional mutant strains 

Another set of PA14 deletions were generated in the same fashion as above, however, a 

lacIq-PT7 replaced the original promoter of the mksB2 gene.  This promoter replacement was 

generated by conjugation of SM10 (λpir) cells harboring the pEX-lacmksB2 plasmid with PA14 

WT cells followed by plating onto LB with 15% sucrose.  Condensin deletions were then 

generated using this as a parent strain.  Each mutant listed below (except for PA14 lacB2) 

includes both a GmR strain and a ∆Gm strain.  For GmR strains, the GmR is located on the locus 

that is last to be replaced. Deletions were confirmed using PCR.  The order in which each 

deletion was generated is indicated: 

PA14 lacB2  

PA14 lacB2 ∆mksB1 generated using pEX-∆mksB1 

PA14 lacB2 ∆smc generated using pEX-∆smc 

PA14 lacB2 ∆mksB1 ∆smc was generated using first, pEX-∆mksB1 then pEX-∆smc. 
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Figure 2- 3: PCR confirmation of PAO1 ∆mksB:mksB (∆B::B).  Rows 2 through 4 include samples 

PCR amplified using primers Opa11 and Opa42.  Expected fragments include; ∆B::B1 GmR: 6007 

bp, WT:  4953 bp and ∆B::∆Gm: 2680 bp.  Rows 6 through 8 include samples PCR amplified 

using primers Opa11 and Opa22.  Expected fragments include; ∆B:B1 GmR: 5939 bp, ∆B::∆Gm: 

2097 bp, and WT:  no band.   
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Figure 2- 4:  PCR confirmation of PA14 condensin deletion strains containing a gentamicin 

resistance marker, Gm.    
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Figure 2- 5:  PCR confirmation of PA14 condensin deletion strains with gentamicin removed.    
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Figure 2- 6:  PCR confirmation of PA14 condensin deletion strains with a lacIq-PT7 inducible 

promoter upstream of mksB2.  Results include the smc, mksB1 and mksB2 loci.  

2.3  The degron system 

The degron system allows controlled degradation of proteins by the ClpXP protease.  The 

system uses a Das4 tag (AANDENYSENYADAS), that binds to the C-terminus of the protein to be 

degraded. This tag is optimized for binding to both ClpXP as well as the adaptor protein, SspB, 

which makes degradation dependent on the presence of SspB.    

For our study, a DAS4 tag was cloned at the 3`end of mksB.  The sspB gene was removed 

from the chromosome through recombination using the deletion plasmid pEX-∆sspB from 
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Castang et. al [194]. Next, the mksB gene was replaced by the DAS4 tagged version using the pEX-

mksB-Das4 construct into the PAO1-∆SspB strain. Finally, the SspB expression plasmid, pSspB was 

incorporated by electroporation into these strains. SspB was induced by adding 0.1 mM L-

arabinose.  Degradation was confirmed by western blot.  

2.4  Biofilm formation 

Biofilm formation was evaluated as previously described [195].  Cells were grown in LB 

or M9 medium supplemented with 0.4% Casamino acids and 0.4% glycerol to stationary phase 

then diluted 1:100 in M9 medium and 0.4% glycerol.  100 ul were placed into each well of a 

polyvinyl chloride (PVC) microplate and incubated at 37oC for the indicted times.  0.1% crystal 

violet was used to stain 20 µl of cells for 10 minutes then the liquid was removed. Each well was 

then rinsed three times with phosphate buffered saline (PBS) and air dried for 15 min.  The 

remaining cells were then resuspended in 100 ul of 95% ethanol.  In order to measure the 

about of biofilm formation, absorbance readings were measured at 600 nm.   

2.5  Fixed cell fluorescence microscopy  

Anucleate cells were analyzed as previously described [196].  Cells were grown either LB 

or M9 medium supplemented with 0.4% Casamino acids and 0.4% glycerol to an OD600 of 0.6.  

300 µl were then fixed in 70% ice cold ethanol and incubated on ice for 20 minutes.  Cells were 

then rinsed with PBS (phosphate buffered saline).  An aliquot of rinsed cells were then put onto 

poly-lysine coated microscope slides, stained with 100 nM DAPI and 1x Sypro-Orange.  After 

staining, cells were observed by fluorescence microscopy.  DAPI stains DNA and Sypro-Orange 
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stains proteins which makes it possible to view anucleate cells.  Cells devoid of DNA do not 

fluoresce so they can be distinguished from normal cells which contain DNA.  

2.6  Competition growth 

To study competitive growth for condensin mutants, we used condensin strains which 

contained gentamicin resistance markers and the WT strain.  Overnight cultures of mutant and 

WT were mixed at 1:1 ratios and approximately 2x104 cells were put into fresh LB (5 ml).  The 

cells were then further incubated at 37oC while shaking.  Every 8 hours, the cell culture was 

reinoculated into fresh medium at an approximate OD600 of 0.2 to 0.5.  Before each dilution, 

aliquots of the mixture were removed and spot plated onto LB agar plates as well as LB with 30 

µg/ml gentamicin plates.  This allowed us to calculate the total cells as well as mutant cells.  The 

strain loss rate was determined by fitting the data to single exponential decay. 

2.7  Minimal inhibitory concentration (MIC) analysis 

To test susceptibility of mutants to antibiotics, overnight cultures of indicated strains 

were reinoculated and grown to an OD600 of approximately 1.0.  Cells at a density of 5x104 cells 

per ml were inoculated into each well place in the presence of antibiotic at 2 fold increasing 

concentrations.  Cells were then grown approximately 20 hours at 37oC.  The minimal inhibitory 

concentration was determined as the lowest concentration which inhibited growth.   

2.8  RNA-Seq experimental methods 

RNA-Seq analysis was performed for PAO1 condensin mutants during two separate 

experiments.  The first experiment includes the first replica analyzing PAO1 WT, Δsmc, and ΔΔ.  

The second experiment included replicas 2 and 3  and analyzed PAO1 WT, Δsmc, ΔmksB and ΔΔ.  
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All together samples PAO1 WT, Δsmc, and ΔΔ had a total of three replicas, one replica from 

experiment 1 and two replicas from Experiment 2.   ΔmksB included only two replicas derived 

from Experiment 2. 

2.8.A  Hot Phenol method 

RNA in all replicas was extracted using the hot phenol method [197]. All samples were 

grown overnight in Luria-Bertani medium at 37 °C.  The samples were reinoculated by diluting 

the sample 100x into fresh Luria-Bertani medium and grown to an OD600 of 0.6 for analysis of 

the exponenetial phase.   

 5 ml of culture was combined with 1:10 v/v of water saturated phenol ethanol (add 0.5 

ml of water saturated phenol ethanol mixture) to the culture at room temperature.  This was 

followed by centrifugation at 4,000 rpm at 4oC for 10 mins to pellet the cells.  The supernatant 

was removed and cells lysed with 800 µl of 0.5 mg/ml of lysozyme dissolved in TE pH 8.0.  80 ul 

of 10% SDS was added, mixed and the sample placed in a 65oC water bath for 2 mins.  88 µl of 1 

M NaOAc pH 5.2 and 1 ml of hot water saturated phenols prewarmed in 65oC, was added and 

inverted 10 times.  The mix was placed in a 65oC water bath for 6 minutes, inverted every 60 

seconds while in the bath.  The tube was chilled on ice then centrifuged for 10 minutes at 4oC 

13,000 rpm.  The top layer was pipetted off and put into a new centrifuge tube with equal 

volume of chloroform added and inverted 10 times then centrifuged again at a 4oC at 13,000 

rpm.  Again, the top layer was pipetted off and put into another microfuge tube.  Ethanol 

precipitation was then performed by adding 1/10 volume of 3 M NaOAc pH 4.2, 1 mM EDTA 

and 2-2.5 volumes of ice-cold ethanol to each sample.  These samples were mixed and 
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incubated at -80oC at least two hours.  The RNA pellet was then pelleted by centrifugation at 

13,000 rpm for 25 min s at a 4oC, washed with ice cold 80% ethanol and centrifuged at 13,000 

rpm for 5 mins at 4oC.  The ethanol was then removed and pellet air dried for 20 mins in a fume 

hood and resuspended in 100 µl DEPC water. 

2.8.B  DNase treatment 

Genomic DNA was removed from the isolated RNA samples of PAO1 WT, Δsmc, ΔmksB 

and ΔΔ from using recombinant DNAse I treatment from Invitrogen, catalog number AM2235 

[198]. The nucleic acid solution for all samples was diluted to 10 μg nucleic acid/50 μL. DNase I 

Buffer was added to 1X concentration in the RNA sample.  1 μL DNase I (2U) was added to 10 μg 

of RNA in a 50 μL reaction and incubated at 37°C for 30 minutes. The RNA sample was then 

extracted with phenol/chloroform to inactivate DNase I then Ethanol precipitated a final time.   

2.8.C  rRNA depletion 

The total RNA that is obtained includes a pool of mRNA’s, rRNA and small RNA’s. rRNA 

generally comprises approximately 80 to 90% of total RNA.  In order to ensure that a strong 

signal is obtained for mRNAs, the RNA population was enriched by the targeted removal of 

ribosomal RNAs using the ribo-Zero rRNA depletion kit (gram-negative bacteria) Magnetic kit 

by  Illumina company catalog # MRZGN126, for replicas 2 and 3 and MICROBExpressTM Kit from 

Invitrogen catalog number : AM1905 from Thermal Fischer  for replica 1.   
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2.8.D  Sequencing  

 Alignment of counts to the PAO1-UW genome was performed by Oklahoma Medical 

Research Foundation, OMRF in Oklahoma City, Oklahoma resulting in a list of PAO1 genes with 

their corresponding number of reads. 

2.9  RNA-Seq data normalization pipeline 

Sequencing of trancript reads were done in the OMRF facility in Oklahoma City, 

Oklahoma using Illuminma.  Counts were alligned to the PAO1 genome in order to obtain the 

number of reads for corresponding PAO1 genes processed at OMRF. These reads were then 

further processed for optimization of the signal to noise ratio.   

2.9.A  rRNA Exclusion 

First, reads for rRNA were excluded in order to ensure that differences in rRNA reads 

across samples would not skew subsequent normalization of the data.  rRNA genes that were 

excluded include the following: 16S rRNA (PA0668.1), PA0668.2, PA0668.3, 23S rRNA (PA0668.4), 

23S rRNA (PA4280.2), PA4280.3, PA4280.4, 16S rRNA (PA4280.5), 23S rRNA (PA4690.2), PA4690.3, 

PA4690.4, 16S rRNA (PA4690.5), 23S rRNA (PA5369.2, PA5369.3, PA5369.4, 23S rRNA (PA5369.5).  

2.9.B  RPKMM calculation 

Second, reads corresponding to PAO1 genes except rRNA genes, were converted to 

RPKMM values (Reads Per Kilobase per Million reads mapped).   The extra M in this name 

denotes the removal of rRNA prior to RPKM calculation.  The formula for the calculation of 

RPKMM is the following: 
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𝑅𝑃𝐾𝑀𝑀 =  
𝑅𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

(𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 (𝐾𝑏)∗ ∑ 𝑎𝑙𝑙 𝑟𝑒𝑎𝑑𝑠∗1𝑥10^6)
      Equation 2- 1 RPKMM calculation 

 2.9.C  Thresholding of noise  

Third, thresholds were then applied to RNA reads as a means of filtering probable noise.  

This was needed due to the different sequencing depths between experiments (lower for 

replica 1).  Genes having zero reads in either replicas 2 or 3 were removed from analysis and 

the resulting RPKMM list was indexed accordingly. In total, 117 genes having zero reads were 

removed.   

2.9.D  RPKMM averaging  

Fourth, RPKMM values were averaged according to a conditional threshold on replica 1.  

Averaging was done on a conditional basis because replica 1 contained a significantly higher 

percentage of rRNA and therefore lower useable counts than replicas 2 or 3.  A conditional 

cutoff was applied as <=1 for replica 1 in which the average RPKMM was calculated as either 

the sum of replicas 2 and 3 (when <=1), or the sum of all replicas (when >1).  

2.9.E  RPKMM ratios for each mutant 

Lastly, ratios were determined as RPKMM of the sample/ RPKMM of WT in order to 

assess fold change values relative to each mutant.   

2.10  RNA-Seq bioinformatic functions 

All code, unless indicated,  was written in house using the MATLAB R2017a platform 

[199]. 
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2.10.A  Hierarchical clustering 

Clustering analysis was performed on the basis of hierarchical clustering.  Hierarchical 

clustering generates clusters in a consecutive fashion from a set of datapoints based on 

proximity in space.  At the beginning of clustering, each datapoint represents its own cluster.  

These clusters are then sequentially merged according to their similarity.  Similarity is based on 

proximity of the objects in space [200].   

The city block method was used in order to calculate the distance between the cluster 

or objects [201]. The City block distance between two points, xs and xt, with n dimensions is 

calculated as: 

dst= ∑ |xsj-xtj|n
j=1                                                              Equation 2- 2 City block distance 

 

Linkages establish how clusters are generated by defining the distance from a point or 

newly formed cluster to other clusters from the dataset.   For our analysis, linkages of distances 

were established using the average linkage method.  This is in contrast to other linkage 

methods such as single linkage (which links the closest distance of points in two adjacent 

clusters), or centroid linkage (which links by the distance of the centers of clusters).  The 

average linkage method produces clusters with low within-cluster variance and similar sizes.  

Linkages are calculated as the average distances between all points within a cluster or object 

and another cluster or object.   

When two objects, or clusters are considered the most similar based on linkages, they 

are merged to form a new cluster.  Successive merging occurs until all points have been merged 



 

68 
 

into one large cluster.  The results of the building of merges between objects is a hierarchical 

tree which can visualized in a dendrogram [202].   

2.10.B  Principle Component Analysis (PCA) with Cluster Analysis  

Principle component analysis, or PCA, is a tool for dimension reduction of multivariate 

data while retaining trends and patterns.   Thousands of dimensions can be reduced to a set of 

two or three, which contain most of the information from the original data set.  This enables 

more intuitive visualization of large data sets.   

PCA analysis linearly maps data using orthogonal transformation [203].  This mapping 

involves the projection of data onto principal components which are each, a single axis in space.  

Principle components are arranged orthogonally to one another eliminating redundancy of 

variables.  Each principle component therefore, is a new variable generated by a linear 

combination of the original data. PCA ranks principle components based on having the greatest 

variance of projected data. This maximizes the information kept while reducing the number of 

dimensions.  The first few principle components incorporates the majority of the original data, 

allowing a large number of variables to be interpreted in two to three dimensions.  

PCA analysis (SVD method) was performed using MATLAB on data which overlaid data 

that was also clustered using the hierarchical clustering method with pdist set as city block and 

average in MATLAB properties as described in 2.3.A.  Therefore, clusters could be visualized on 

the PCA plot relative to each other.   This method of analysis allowed highlighting of statistically 

relevant outliers which correlated with differential gene expression.  
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 Information regarding biological pathways was obtained from Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [204], Virulence factor database (VFDB) [205], Pseudomonas 

Genome Database (Pseudomonas Genome Database (PseudoCAP)[206] [207] as well as other 

noted literature sources [104, 118, 121, 125, 155, 208-216].  A database was compiled of 

relevant pathways and used during the bioinformatic analysis. 

2.10.C  Violin and box plots 

Violin plots with overlapping boxplots was generated using a modified script written by 

Bechtold, B. [217] which was run in MATLAB [199].  Violin plots overlaid with box plots indicate 

relative distributions of condensin mutant gene expression values as a log2 ratio (RPKMM 

sample/RPKMM WT).   Red lines indicate 2 fold upregulation while green dashed lines indicate 

2 fold downregulation.  Box plots indicate the median value of each regulon as a central circle, 

the larger box portion indicates the 25th and 75th percentiles of gene distributions and the 

whiskers indicate QL + 1.5*QL and QL – 1.5*QL for the maximum and minimum respectively.  

2.10.D  Venn diagrams 

Venn diagrams were generated using script written by Heil, J. [218] which was run in 

MATLAB.   

2.10.E  Elbow method (cluster optimization) 

In order to separate the data into meaningful clusters, we estimated the optimal cluster 

number using the elbow method.  The elbow method plots unexplained variance versus the 

postulated number of clusters. The elbow, or intersection point, indicates the point of lowest 
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unexplained variance (most compacted cluster) in which adding cluster numbers no longer has a 

significant effect on variance.  

Script for the elbow method was written in MATLAB.   The sum of square distances was 

calculated for each postulated cluster number up to 500 clusters.  Each iteration calculated the 

square distances between individual datapoints and their designated centroids.  These values 

were summed for each postulated cluster number and divided by the total sum of square 

distances for one cluster (representing the maximum unexplained variance).  The unexplained 

variances for each cluster were then plotted against cluster number.   Two lines were fitted 

against the data simultaneously, using linear regression analysis.  The optimum cluster number 

was estimated as the determined elbow point of the two fitted lines.   
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Chapter 3:  Physiological characterization of PA condensins  

3.1  Introduction 

Condensins are global regulators of gene expression (Chapter 4-1).  Physiological studies 

on condensin deletion strains in PAO1 are in line with transcriptional analysis, showing opposite 

differentiation states where deletion of smc produced sessile biofilm growing cells and deletion 

of mksB produced planktonic growing cells with reduced biofilm formation [1].  Physiological 

studies in sections 3.2.B and 3.2.C in this chapter related to PAO1 have been previously 

published: 

Zhao, H., Clevenger, A., Ritchey, J. W., Zgurskaya, H. I., & Rybenkov, V. V. (2016). Pseudomonas 

aeruginosa condensins support opposite differentiation states. J Bacteriol. 

doi:10.1128/JB.00448-16 

Here, several parallel studies were performed in order to address the issue of 

complementation for mksB which revealed unexpected features regarding context 

dependence.  In addition, we explored the roles that the PA condensins SMC-ScpAB and 

MksBEF have on PA14 cell physiology in order to determine the stability of phenotype across 

strains.   
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3.1.A  Summary of PAO1 strains 
 

Table 3- 1:  Summary of PAO1 condensin mutant strains used in Section 3.2.   lacIq-PT7 is an 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible promoter placed upstream of the mksB 

gene. Further details for strains are provided in Table 2 in the Appendix.    

 

 

 



 

73 
 

3.2  Complementation of mksB reveals context dependence 

3.2.A  Conventional complementation tests reveal irrevocable alterations to the 

chromosome 

Since the ΔmkB strain was found to be related to biofilm growth defects in both a 

physiological study as well as transcriptomic analysis [1] (Chapter 4), biofilm formation was 

used as a reporter for mksB phenotype.  In order to test for complementation, the mksB gene 

was incorporated into a ΔmkB strain using several complementation strains and evaluated for 

its effect on biofilm formation.  The complementation strains used included an IPTG inducible 

promoter upstream of mksB (mks’) (Dr. Hang Zhao) , an IPTG inducible plasmid carrying mksB 

that was transformed into PAO1 ∆B (PAO1 ∆B-P22-mksB) (Dr. Hang Zhao), and a knock-in mksB 

construct that was generated by inserting the mksB gene back onto the ∆mksB locus (PAO1 

∆mksB::mksB) (Figure 3-1).  The mks’ and PAO1 ∆mksB-P22-mksB strains expressed mksB in the 

presence of IPTG.   
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Figure 3- 1: mksBEF operon organization.  The generation of PAO1 ∆mksB::mksB results in a 

FRT scar after removal of the FRT cassette as well as remnants of the mksB down region. (A) Full 

operon of mksBEF with no modifications to the chromosome (B) PAO1 ∆mksB showing an FRT 

scar flanked by the mksB up and down regions.   (C) mksB knock-in construct PAO1 ∆mksB::mksB 

showing an FRT scar and residual mksB down region scar prior to the intergenic region. 

 

 

Significant defects were observed for the ∆B1 strain as well as the PAO1 ∆mksB-P22-

mksB (both with and without IPTG) and the knock-in strain (Figure 3-2), showing a lack of 

complementation of mksB. 

This method can deduce if a link exists between MksB and biofilm formation with the 

condition that cis effects or secondary consequences of gene deletion do not impede 

complementation of mksB.  In sections 3.2.B and 3.2.C, it is shown that mskB was 

complemented using both the degron system and ATPase point mutations.  Therefore, the 

results here for conventional complementation tests show that a full mksB deletion and 

subsequent changes to cis or secondary effects resulted in irrevocable changes that could not 

be remediated with the incorporation of the mksB gene.  

The mks’ strain, both +/- IPTG, shows the same levels of biofilm formation as WT.  This 

shows that there was not complete repression of mksB in mks’ when the system was placed on 

the chromosome.  This could be due to a possible leaky expression in the system which has 

been documented previously [219].   
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Figure 3- 2:  Biofilm assay of PAO1 conventional complementation strains.   Biofilm assay of 

WT, ∆mksB ∆Gm (∆B) (plus and minus IPTG), a lacIq-PT7 inducible promoter upstream of  (mks’) 

(plus and minus IPTG), IPTG inducible plasmids (pUCP22) carrying mksB transformed into PAO1 

∆B (∆B/p22,  ∆B/p22-mksB, (∆B/p22-mksB) and a knock-in mksB construct which inserted the 

mksB gene onto the ∆mksB locus (∆B::B). 

 

3.2.B  A link between MksB and biofilm formation is confirmed using the degron 

system 

On account of possible cis or secondary effects, complementation for mksB was tested 

using the degron system (Figure 3-3).  The degron system incorporates a Das4 tag attached to 

the C-terminus of the protein which is recognized by the ClpXP mediated degradation system.  

The protein is degraded post-translationally, allowing an advantage in that it can bypass genetic 
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constraints.  The control of degradation occurs because the Das-4 tag is optimized for binding to 

ClpXP in the presence of SspB.  Therefore, generation of a system in which SspB presence is 

inducible, allows control of mksB degradation.   

 

Figure 3- 3:  Schematic for steps in the degron system of protein degradation.  The protein of 

interest is tagged with a Das4 tag specific which is specific to the adaptor SspB protein.  The 

adaptor and tagged protein combined with the ClpX/P protease to form a complex which leads 

to degradation of the tagged protein. 

To set up the degron system for mksB, we first removed the gene for the protease 

adapter protein, sspB from PAO1 WT.  The mksB gene was then replaced with a mksB gene 

containing a C-terminal Das4 tag. This tagged protein was affectively targeted for protease 

degradation in the presence of a plasmid that contains pUCP22-SspB (pSspB).  pSspB was 

incorporated into the PAO1 ∆sspB ∆mksB::mksB-DAS4 strain using electroporation.  A control 

strain was generated which incorporated an empty pUCP22 vector into PAO1 ∆sspB 

mksB::mksB-DAS4.  Expression levels show a depletion of mksB in cells that express the plasmid 

pSspB, but not in the WT strain (Figure 3-4 A).    

The biofilm assay shows that when mksB is absent, there are major defects in biofilm 

formation (Figure 3-4 B).  All controls which include MksB including WT, WT-pSspB + Ara, and 
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PAO1 ∆mksB::mksB-Das4-pUCP22 + Ara show the same level of biofilm formation as WT.  When 

the degron system is introduced and turned on, these levels drop significantly back down to 

that of ∆mksB, implicating mksB in biofilm growth.  

Because the cell physiology changes in response to the production of the SspB protein, 

we conclude that the presence of MksB is linked with biofilm formation.  Since MksB is 

associated with biofilm formation, yet the incorporation of mksB into PAO1 ∆mksB was not able 

to complement the phenotype, it can also be deduced that the deletion of mksB changed cis or 

secondary effects which resulted in irrevocable chromosomal changes.   

 

Figure 3- 4: Biofilm formation defects. (A) Depletion of MksB using the degron system. DAS4-

tagged but not wild-type MksB is depleted in cells that express plasmid-encoded SspB (pSspB) 

as determined using immunoblotting. (B) Inducible depletion of MksB impairs biofilm 

formation. Biofilm formation (+/-SD; n=3) was measured for PAO1 WT, ∆mksB (none), or ∆sspB 

mksB::mksB-DAS4 (DAS4) cells that were transformed with the pUCP22 (OFF) or pSspB (ON) 

plasmid.  
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3.2.C  The association of MksB with biofilm formation is dependent on 

conformation, not ATP turnover 

ATP is essential for the function of condensins.  The binding and hydrolysis of ATP is what 

modulates the opening and closing of the overall SMC protein.  In order to gain insight into the 

role that ATPase activity plays on mksB function as well as providing an alternative method for 

complementation, we generated point mutations in the ATPase head domain of mksB.  Point 

mutations result in the expression of MksB which are locked into specific intermediates in the 

ATPase cycle.  This method gives insight into the role that ATPase activity plays on mksB 

function without introducing detrimental effects caused by a full mksB deletion.   

Three types of mksB ATPase mutants were generated (Figure 3-5 A).  The first is a D864A 

mutant in the Walker B region.  This mutation prevents ATP binding and therefore, prevents 

dimerization of the SMC heads [2].  The second mutant included E864Q in the walker B region 

[3].  This mutant prevents ATP hydrolysis, but allows ATP binding which stabilizes the dimeric 

SMC heads.  The third mutant included S829R in the C motif.  This mutant interferes with head 

dimerization but allows ATP binding [185].  All of these mutations interfere with the 

dimerization of the SMC heads.  These mutants were found to be expressed at normal levels 

(Figure 3-5 B).   

Overall, two out of the three ATPase mutants including E864Q and S829R showed similar 

defects in biofilm as that of ∆mksB for biofilm formation (Figure 3-5 C).  One of the mutants, 

D864A, however did not show any effect and had the same level of biofilm formation as that of 

WT.  These results show that specific ATPase intermediates are essential for the function of 

mksB in the case of E864Q and S829R and that the D864A mutant results in an intermediate 
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that can still perform the regulatory function of MksB.  Interestingly, this shows that MksB 

intermediate conformations rather than ATPase activity, are relevant for the regulatory function 

of MksB.   

 

Figure 3- 5: Biofilm formation of MskB ATPase mutants.  (A) Effects of ATPase mutations on 

the conformation of condensins. (B) Immunoblot analysis of expression levels for the tested 

mutants. (G) Biofilm formation by the indicated ATPase or deletion mksB mutants (+/- SD, n=6). 

Note formation of oligomers by MksBEQ, which is consistent with head disengagement defects 

expected for this mutant [1]. 
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3.3 Condensin phenotypes are strain specific  

PA14 has two copies of MksBEF, MksBEF1 and MksBEF2 in addition to SMC-ScpAB.  Not 

much is known about this second copy of MksBEF.  Because there are multiple versions of 

condensins, we hypothesized that the different versions play a specialized role in PA14 which 

possibly contribute to different lifestyle states as seen in PAO1.  In order to analyze the role of 

condensins in PA14, several strains were generated which incorporated condensin deletions 

(Table 3-1).  The lacIq-PT7 promoter was used in strains in order to replace the original promoter 

upstream of the mksB2 gene for its controlled expression using IPTG.  Deletions were generated 

using the allelic replacement method with the pEX-∆mksB1 [1] and pEX-∆smc plasmids [27] and 

the pEX-∆mksB2 and pEX-∆G plasmids.  Strains were confirmed by PCR and/or sequencing 

(Figures 2-5 to 2-7). 
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Table 3- 2:  Summary of PA14 condensin mutant strains used in section 3.3.  Strains are named 

in the order that genes were deleted/modified.  lacIq-PT7, is an Isopropyl β-D-1-

thiogalactopyranoside (IPTG) inducible promoter system placed upstream of mksB2. Each 

condensin mutant listed below includes both a GmR strain (containing a gentamicin resistance 

marker flanked by an FRT cassette) and a ∆Gm strain (gentamicin marker removed). Strains 

which include the GmR FRT cassette are always denoted as GmR.  Further details for strains are 

provided in Table 2 in the Appendix.   

 

3.3.A  PA14 Condensin mutants show minor defects in biofilm formation 

To test if condensins had any effect on biofilm growth, as was seen in PAO1, we grew 

cells in PVC well plates for 72 hours in M9 media supplemented with 0.4% glycerol.  Cells that 
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grew biofilms adhered to the sides of the PVC well.  Therefore, to quantify relative amounts of 

biofilm growth, the cells were stained with 0.1% crystal violet and measured for OD600.  Each 

sample was done in triplicate.  Some slight reductions in biofilm were seen for the PA14 ∆smc, 

PA14 ∆mksB2, PA14 ∆mksB1 ∆smc and the triple knock out PA14 ∆mksB1 ∆smc ∆mksB2, with 

the largest reduction for PA14 ∆mksB2 (Figure 3-6).  All of these reductions, however, were 

within error bars of WT indicating they were not significantly changed.  Therefore, the 

regulation of biofilm formation by MksB is unique to PAO1.   

 

Figure 3- 6: Biofilm formation of PA14 deletion mutants.  Cells were grown at 37oC for 72 

hours.  ∆∆∆ denotes ∆mksB1 ∆mksB2 ∆smc. 

 

3.3.B  PA14 condensin mutants exhibit growth and cellular fitness on par with 

WT  

Condensins play a role in lifestyle states in PAO1 where each condensin contributes to 
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opposite physiological states.   To test the role that condensins have in the PA14 strain, growth 

curves in planktonic media, growth on solid media, biofilm formation and competition growth 

were analyzed.  For growth in planktonic medium, cells were grown in LB media at 37oC and 

checked for OD600 at the indicated time points.   No changes from WT are seen for any of the 

mutants (Figure 3-7 A).  For colony growth, CFU/OD was calculated for each mutant.  These 

results were done in triplicate (Figure 3-7 B).  Overall, no major deviations were seen between 

the mutants (CFU/OD).  This shows that condensin mutants are nearly identical to WT with no 

significant defects.   

 

Figure 3- 7: Growth of PA14 condensin mutants. (A) Growth curve at 37oC in LB medium while 

shaking for the indicated condensin mutants.  (B) Growth on solid LB agar plates for indicated 

mutants over night at 37oC.  Colonies were counted and normalized to OD. 
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3.3.C  Competitive growth of PA14 condensin mutants against WT result in slight 

strain losses 

The competitive growth assay compares the cellular fitness of a particular strain against 

another.  For our purpose, we compared condensin deletions against WT.  Each mutant strain 

contained the gentamicin resistance marker.  Cells were mixed at a 1:1 ratio, then inoculated 

into fresh LB medium and grown at 37oC with dilutions every 8 hours.  Aliquots at each time 

interval were plated onto LB and LB plus gentamicin plates.  Mutant cells were determined by 

the number of colonies on the gentamicin plate and the total number of cells were determined 

on the LB only plate and their CFU/OD calculated. The strain loss rate was calculated by fitting 

the data to its rate for single exponential decay.   

All mutant strains showed some degree of strain loss rate.  The results show a slightly 

higher strain loss rate for lacB2 ∆B1 with 0.5 mM IPTG (Figure 3-8).  These values are 

significantly smaller than the effect seen in PAO1 which showed a strain loss rate for ∆smc at 0.4 

[1], comparing to the highest result in PA14 at 0.025 for lacB2 ∆smc.  Overall, we see a small 

effect from condensin inactivation.  Competition growth done less frequent dilutions including 

12 and 24 hours resulted in no change. Also, when strains were grown individually, no change 

was seen.  This result is apparent only when cells are growing during  exponential phase and in 

the presence of WT.  This indicates that cells are not sick by themselves but are slightly affected 

in growth in the presence of WT. 
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Figure 3- 8: Strain loss rate of competition growth for PA14 condensin mutants versus WT.  

Strain loss rate for competition growth of PA14 condensin mutants versus PA14 WT for the 

indicated strains.  Cells were diluted into fresh LB media every 8 hours for 48 hours.  Slopes for 

strain loss were calculated for each strain. 

3.3.D  A low frequency of anucleate cells is observed in condensin mutants 

To test if condensin inactivation in PA14 affected chromosome compaction, we looked at 

the frequency of anucleate cells.  Improper chromosome compaction yields one cell with 

unseparated DNA and the other cell lacking DNA entirely (anucleate).  In order to analyze the 

frequency of anucleate cells, bacteria were grown in LB or M9 supplemented with 0.4 % 

glycerol as indicated. 

Proteins were stained with Sypro-Orange and DNA with DAPI to allow visualization and 

distinction between DNA and the rest of the cell.  Cells were counted as a total as well as the 

number of anucleate cells for each of the condensin deletion strains having a PA14 lacIq-PT7-
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mksB2 background.  The results show that very few cells were anucleate with a maximum of 

3/909 or 0.3% for the lacB2 ∆B1 ∆smc strain and a single anucleate cell for the other strains 

(Figure 3-9).  PA14 cells faired significantly well despite the inactivation of condensins.   

 

Figure 3- 9:  Frequency of anucleate cells of PA14 condensin mutants.  Cell were grown in LB 

and M9 at 37oC.   

3.3.E  Effect of antibiotics on growth  

3.3.E.1  Antibiotic susceptibility is unchanged in PA14 mutants relative to WT  

 

Minimal inhibitory concentration analysis of several antibiotics was tested on PA14 

condensin deletions strains derived from a PA14 lacB2 parent strain grown at 37oC in LB 

medium overnight (Table 3-3). These antibiotics have a range of targets including the ribosome, 

DNA gyrase, DNA, and the cell wall. The indicated minimum concentrations that inhibited 

growth in µg/ml are indicated for each strain.  Results were done in duplicate.  No changes 
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occurred that were greater than 2 fold relative to WT.  Condensins, therefore, show no impact 

on drug susceptibility. 

Table 3- 3:  Minimal inhibitory concentration results.  Table showing antibiotics and their 

effect on PA14 condensin mutants with a lacB2 background 

Target Drug µg/ml PA14 WT lacB2 lacB2 ∆B1 
lacB2 

∆smc 
lacB2 ∆B1 

∆smc 

Ribosome Streptomycin 8 to 16 8 to 16 8 to 16 16 8 

Ribosome Kanamycin 62.5 62.5 62.5 62.5 62.5 

Ribosome Gentamicin 1 to 2 1 1 1 1 

Ribosome Chloramphenicol 4 4 4 4 4 

Ribosome Spectinomycin 500 500 500 500 500 

DNA 
Ethidium 

Bromide 2000 2000 2000 2000 2000 

DNA Mitomycin-C 2 to 4 2 to 4 2 to 4 4 2 to 4 

DNA gyrase Norfloxacin 0.5 0.5 0.5 0.5 0.5 

cell wall 

formation Carbenicillin 
62.5 to 

125 125 125 125 62.5 

cell wall 

formation Vancomycin 2000 2000 2000 2000 2000 

 

3.3.E.2  Persister cell formation of condensin mutants is similar to WT 

Persister cells are a morphotype in a small subpopulation in bacteria which allow survival 

in hostile environments. These persister cells can form prior to antibiotic or as a response to it.  

Typically, they are associated with slower growth which allows them to evade drug treatment 
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This mode of growth provides opportunities for multidrug tolerance and plays a major role 

during chronic infections.   

In order to test the formation of persister cells and their variation among the generated 

condensin deletions, gentamicin, norfloxacin and streptomycin, were tested at 4x and 64 x 

concentrations greater than MIC concentration for a one hour and spot plated onto LB agar 

plates to determine colony growth at CFU/OD (Figure 3-10).  The 64x concentration for 

gentamicin and streptomycin did not grow colonies.  For gentamicin, additional testing was 

done on 12x and 20x concentrations.  All mutant strains and WT showed decreased colony 

growth after the indicated treatments with antibiotics.  Overall, no major variation was seen 

between WT or any of the condensin mutants indicating no major alterations occurred to 

persister cell formation on account of the inactivation of condensins. 
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Figure 3- 10:  CFU/OD of persister cell formation.  Gentamicin, norfloxacin, and streptomycin 

at the indicated concentrations (either 4x, 12x, 20x, 64x relative to MIC) and were added to the 

indicated PA14 condensin mutants with a lacB2 background for 1 hour at 37oC while shaking.   

 

3.3.F  Pigment production changes in PA14 condensin strains  

During the generation of condensin deletion strains, pigment changes were observed for 

the PA14 ∆B1 ∆B2::∆Gm and PA14 ∆B1 ∆B2 ∆smc::∆Gm strains.  Pigment production in 

Pseudomonas aeruginosa results from pyocyanin, seen as a bluish green color, and pyoverdine, 

seen as a greenish yellow (Figure 3-11).  These pigments have been implicated in virulence and 

quorum sensing systems in PA.  Here, we looked at the relative amount of pyocyanin and 
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pyoverdine production (Figures 3-12 and 3-13).  Overall, the results show a significant decrease 

in pigment production, in particular for pyocyanin for cells that were grown at 37oC while 

shaking.  

 

Figure 3- 11: Condensin mutant strains grown at 37oC while shaking for 16 hours. 

 

 

Figure 3- 12: Quantification of pyocyanin production in PA14.  ∆∆∆ is the triple condensin 

mutant ∆B2 ∆B1 ∆smc.  (A) Cells grown at 37oC while shaking for 6,16 and 32 hours. (B) Cells 

grown at 37oC no shaking for 32 hours. 



 

91 
 

 

Figure 3- 13: Quantification of pyoverdine production in PA14.  ∆∆∆ is the triple condensin 

mutant ∆B2 ∆B1 ∆smc.   (A) Cells grown at 37oC while shaking for 6, and 16 hours. (B) Cells 

grown at 37oC no shaking for 32 hours. 

In construction of the strains, ∆B1 was deleted first, followed by ∆B2 and then ∆smc.  ∆B1 

∆B2::GmR is green showing pyocyanin production while ∆B1 ∆B2::∆Gm is yellow, indicating that 

the phenotypic change occurred during recombination while removing  the gentamicin cassette.  

This indicates possible downstream polar effects after the removal of the GmR promoter. Since 

mksG is part of the mksBEF2 operon and found directly downstream of mksB2, we hypothesized 

that removal of the gentamicin gene, may have blocked mksG expression after removal of the 

GmR promoter, possibly resulting in pigment change.   

In order to assess if this phenotype is linked to mksB2 and mksG, we generated a ∆B2 

∆G::GmR strain to test its effect on pigment change.  The results show that this strain 

maintained a green pigment (pyocyanin production) (Figure 3-14), indicating that mksG in the 

∆mksB2 background cannot alter pigment production.  In line with this, a ∆B2::∆Gm strain also 

resulted in no pigment change. 
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However, other combinations of mutants were able to alter phenotype.  In order to see if 

polar effects from a ∆B1 and ∆B2::∆Gm background were consistent, a second strain, ∆B2 

∆B1::∆Gm was generated from a ∆B2::∆Gm parental strain.   This is in contrast to the ∆mksB1 

∆B2::∆GmR showing green pigment which was generated from a ∆B1::∆Gm parental strain.  The 

∆B2 ∆B1::GmR strain interestingly showed a change from green to yellow pigment (Figure 3-14). 

Therefore, strains having a background of ∆B1 combined with ∆B2::∆Gm resulted in 

pigment changes from green to yellow (reduced pyocyanin) indicating a possible association 

with this combination of mutations. These results show that ∆B1 and ∆B2 in combination with 

possible downstream polar effects resulted in pigment change.  In order to fully elucidate if 

mksG is a contributor to this phenotype further studies will be necessary for deleting mksG in 

combination with both mksB1 and mksB2.   

 

Figure 3- 14:  PA14 generated strains and their resulting pigments.  Cells were grown at 37oC 

with shaking and their resulting pigments. 
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Chapter 4:  Transcriptomic analysis of PAO1 condensin mutants  

4.1  Introduction 

Physiological assays on PAO1 condensins revealed opposite differentiation states and a 

role in PA virulence [1].  Here, the regulatory role of PAO1 condensins was determined by 

transcriptomic analysis of condensin mutants using RNA-Seq which incorporates next-

generation deep sequencing technology.  To this end, we collected cells from our condensin 

mutant samples and PAO1 WT grown in exponential phase for RNA isolation and sequencing. 

RNA-Seq data was optimized to reduce noise using thresholds across samples.  PCA analysis was 

performed based on hierarchical clustering of expression data.  Integration of pathway 

information during clustering analysis highlighted major affected pathways for differentially 

expressed genes.  Expression data for these pathways were further analyzed and compared 

across samples in order to derive transcriptomic profiles for each condensin mutant.  

4.2  Removal of noise using thresholding 

RNA was isolated from condensin mutant samples and PAO1 WT during the exponential 

phase of cell growth, sent for  processing at the OMRF facility in Oklahoma City where it was 

sequenced using Illumina.  The resulting transcript counts were further processed in the OMRF 

facility by allignment with the PAO1 genome resulting in the number of reads corresponding to 

each PAO1 gene. Experiment 1, which included the first replica (WT, Δsmc and ΔΔ) contained an 

average of 82% rRNA.  Therefore, rRNA was first excluded from all replicas before further 

processing.  RPKMM values (reads per thousand million excluding rRNA) were calculated using 
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the formula described in section 2.9.B. Reads were further processed in house for noise as 

described above.  

The final plots after thresholding for noise for WT is shown in Figure 4-1. After 

thresholding, we see that the noise is reasonable (removal of straight lines at -1 (log2 of zero), 

and that most of the genes are equally expressed. Following noise thresholding, pair-wise 

comparisons were made as scatter plots of log2 average RPKMM values (Figure 4-2).   These 

plots indicate that most genes have the same level of expression as evidenced by the fact that 

they lie mostly on the diagonal line over a long range.  The diagonal line is where we expect no 

change between the two samples.  There is a group of genes that are not equally expressed.  

These particular genes are more probable to be differentially expressed genes the further they 

are located away from the diagonal, a line indicating no change in expression.   These are 

particularly likely to be differentially expressed for higher value RPKMM values in which noise 

becomes less likely a factor.   

RPKMM values were then averaged according to the method described in section 2.9.D. 

and calculated for the corresponding ratios determined as RPKMM sample/RPKMM WT (fold 

changes) relative to each mutant.   
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Figure 4- 1: Scatter plots of WT replica 1 vs WT replica 2.  Plot with no threshold (left) and with 

threshold (right). 

 

Figure 4- 2: Scatter plots of WT replica 1 vs mksB replica 1.  Plot with no threshold (left) and 

with threshold (right) 
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4.3  Δsmc, ΔmksB, and Δsmc ΔmksB display distinct patterns of regulation 

Differentially expressed genes for Δsmc, ΔmksB and Δsmc ΔmksB (ΔΔ) were determined 

as ratios of RPKMM values relative to PAO1 WT at a 2 fold threshold.  Of the 5666 genes in PA, 

612 genes were differentially upregulated and 645 were downregulated.  However, a subset of 

differentially expressed genes was found to be unique for each condensin mutant. 

Venn diagrams generated for differentially expressed genes showed that there is little 

overlap between condensin mutants for upregulated genes (Figure 4-3).  157 PAO1 Δsmc genes 

that were upregulated shared 6 genes with PAO1 ΔmksB, 25 with ΔΔ and only 7 with all three 

mutants.  PAO1 ΔmksB showed 73 upregulated genes, sharing 12 of those with ΔΔ.  439 ΔΔ 

upregulated genes were found total. Overall, differentially expressed genes were found to be 

uniquely expressed for the individual mutants rather than overlapped.  It is interesting that the 

ΔΔ mutant is actually different than either single mutant implying little synergystic effect  for 

upregulated genes.   

In contrast, downregulated genes showed much more overlap for differentially 

expressed genes between the PAO1 ΔmksB and PAO1 ΔΔ samples.  Of the 512 PAO1 ΔmksB 

downregulated genes, 137 overlapped with PAO1 ΔΔ 15 with PAO1 Δsmc and 15 with all three 

mutants.  For the PAO1 ΔΔ downregulated genes, only 1 was overlapped with PAO1 Δsmc.  

PAO1 Δsmc showed 126 total downregulated genes.  Overall, downregulated genes resulted in 

significant overlap between the PAO1 ΔΔ and PAO1 ΔmksB mutants, whereas PAO1 Δsmc 

remained differentiated for both up and downregulated genes.   This indicates that ΔΔ is 

responsive to mksB for downregulated genes.  In contrast, PAO1 Δsmc is completely 
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independent from PAO1 ΔΔ and PAO1 ΔmksB for both up and downregulated genes.  This 

indicates that Δsmc has its own regulatory realms, while ΔΔ and ΔmksB share many regulatory 

pathways for downregulation. 

 

Figure 4- 3:  Venn diagram of signficiant genes for condensin strains.  Left: upregulated, right: 

downregulated. 

 

Principle Component analysis, or PCA, was used to analyze fold change values (log2 

RPKMM ratio) for 5484 genes for each PAO1 condensin mutant, a reflection of the total gene 

base.  The results (Figure 4-4) show that PAO1 Δsmc, PAO1  ΔmksB, and PAO1 ΔΔ are opposite 

to one another along the first and second principle components (WT is located at 0,0).  

Therefore, alignment of any one particular sample to another sample was not seen, indicating 

overall distinct differences in their transcriptional profiles. 
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Figure 4- 4:  PCA analysis of Δsmc, ΔmksB and ΔΔ.  Reduced dimensions of genes into a single 

point. 

4.4  Hierarchical clustering highlights statistically relevant gene groups  

Hierarchical clustering was performed as described in section 2.3.A.   This method 

highlights differentially expressed genes based on the statistical separation of datapoints based 

on log2 fold change values using the city block p-dist (Equation 2-2) and average linkage 

methods.  The resulting dendrogram and accompanying heat map are found in Figure 4-5.   

The heatmap presents differentially expressed genes that are upregulated above 1.5 

fold change as red and downregulated as green, black for unchanged. The dendrogram based 

on each sample indicates a separation between Δsmc and the other two mutants ΔmksB and 

ΔΔ.   A corresponding dendrogram based on individual genes shows that the majority of the 
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genes are within one larger group indicated by the fact that most nodes are found after an early 

split at the top.  Outlier clusters can be found prior to this major node split. 

 

Figure 4- 5:  Hierarchical clustering analysis of fold change values for PAO1 condensin strains.  

Expression values are represented in a heat map. Each gene is represented by a single row and 

each sample by a single column. Upregulated genes (>1.5 fold) are in red, downregulated genes 

(>1.5 fold) are in green.  Dendrogram on the left shows genes separated into outlier clusters 

and the central core.  Dendrogram on the top represents all three strains. 
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4.5  Clustering analysis reveals differentially regulated pathways in 9 major 

clusters 

Hierarchical clustering allowed visual representation of the 5485 linkages determined in 

the dendrogram.  In order to more efficiently process this large number of linkages for all three 

condensin mutants, we performed cluster analysis.   

The first step for cluster analysis is determining how many differential clusters there are.  

The elbow method is one of many methods which provides a crude estimate of the optimal 

cluster number in a given dataset.  This method estimates the optimum cluster number by 

approximating a relative elbow, or intersection point on a plot of unexplained variance vs 

postulated number of clusters.  Using the elbow method as described in methods (section 

2.10.E), it was determined that there were roughly 18 optimum clusters which is what we used 

as a starting point to begin analysis with as seen in Figure 4-6.  This number allows splitting of 

the dendrogram into clusters of genes based on statistical relevance.  

PCA analysis was performed based on this cluster determination as described in section 

2.10.B.  The PCA plot with 18 determined clustered is shown in Figure 4-7.  
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Figure 4- 6:  Elbow method for determining optimum cluster number 

 

 

Figure 4- 7  PCA analysis of determined 18 clusters. 

 

Utilizing a pathway database, we obtained information regarding the number of hits for 

each pathway.  This pathways database was compiled as previously described (section 2.10.B).  
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Initial screening of our PCA plot indicated outlier genes which based on proximity and pathway, 

were merged with their associated larger cluster.  This resulted in a total of 9 final clusters.   

Summarization of the percent of biological pathways was performed for each cluster 

(using MATLAB) and is shown along with the merged PCA plot in Figure 4-8.  This is summarized 

in a pie diagram in Figure 4-9 and in a Table 4-1.  

 

Figure 4- 8:  PCA analysis of merged 9 clusters with pathways.  Pathways show percent of 

contribution to each cluster. 
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4.6  Cluster Results show major pathways involved in virulence 

Pathways which show distinct clusters indicate significant differentiation in gene 

expression based on hierarchical clustering.  The following refers to Figure 4-8, Figure 4-9, and 

Table 4-1.  Hypothetical genes with unknown function made up 33% (150/455) of genes in 

outlier clusters and 44% (2393/5485) of all genes.   

The type 3 secretion system (T3SS) as previously discussed, is implicated in the acute 

infection phase.  This pathway forms a single cluster which has no overlap or spread into other 

clusters.  This indicates a concise regulation pattern throughout the regulon. T3SS genes made 

up 85% of cluster 5 and 95% of the entire regulon.  This reveals differentiation of the entire 

T3SS regulon.  

The type 6 secretion system (T6SS) as previously discussed, is implicated in the chronic 

infection phase.  Genes in this path are spread widely across clusters 2 and 3 indicating a fairly 

widespread range for how the T6SS is regulated between mutants.  T6SS made up 47% of 

cluster 2 and 8% of cluster 3.  Further inquiry shows that T6SS HSI-1 was found in both clusters 

2 and 3, however, only T6SS HSI-2 was found in cluster 2 (11 genes) while T6SS HSI-3 was found 

in cluster 3 (6 genes).   This overlap indicates that there is a larger range of regulation for HSI-1, 

but HSI-2 and HSI-3 were clearly separated and regulated distinctly between the three 

condensin mutants. 

Iron acquisition was found spread across two clusters, making up 18% of cluster 1 and 

7% of cluster 3.  (Figure)The iron uptake pathway is large, encompassing several different 

systems.  These include the siderophores, pyochelin and pyoverdine as well and iron reducers 
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like pyocyanine.  Iron (not including pyoverdine, pyocyanin or pyochelin or no p,p,p) also 

includes other TonB dependent siderophore, enterobactin, haemophore, and xenosiderophore 

uptake systems.   The iron group was found to be differentiated for most iron groups.  All 

affected pyochelin genes were distributed in cluster 3.  In contrast, Iron (non p,p,p) which 

includes siderophore homologues and other groups just described was found primarily in 

cluster 1 (Table 4-1).  Pyoverdine genes were distributed evenly between the two clusters at 

proximal regions of both clusters. 

Biofilm (non pel/psl) genes were also distributed in two different clusters making up 

20% in cluster 2 and 10% in cluster 3.  This regulon coexists with the T6SS pathway and was 

therefore expected to be found in clusters 2 and 3.  This pathway was partly separated on the 

basis of exopolysacharides, where all differentially regulated psl exo-polysacharide genes were 

found in cluster 3 (9 genes).  18 non pel/psl genes were found in cluster 2 while 18 were found 

in cluster 3.  The separation of biofilm genes coincides with type 6 secretion where biofilm 

genes related to T6SS HSI-3 are found in cluster 3 and those related to T6SS HSI-1 and T6SS HSI-

2 are distributed in cluster 2.   

The BexR regulon, involved in virulence switching, was found exclusively in cluster 1 

making up 15% of the overall cluster.  Many of the genes were found on the periphery and 

upper portions of the cluster indicating a high differentiation from the central insignificant 

cluster. 

Five out of the 6 total α2-macroglobulin homologue genes (magABCDEF operon), were 

found in cluster 2.  This distribution of nearly the entire gene set indicates clear differentiation 



 

105 
 

of these proteins.  The proteins are proposed to be involved in host evasion through emulation 

of human α2-macroglobulin by trapping and inactivating external proteases aiding in bacterial 

defense and survival (1.4.F).   

Bacteriophage pf1 genes showed some overlap between cluster 7 and cluster 3.  

Bacteriophage Pf1 genes made up the entire cluster 7 including 6 genes, while 5 genes were 

spread into cluster 3.  As these clusters are spread fairly far apart, indicates either pockets 

within the regulon that were differentially regulated or stochastic behavior of the genes. 

Sulfur genes were found exclusively in cluster 1 making 20% of the overall cluster.   

Nitrogen was found in small numbers in significant clustering analysis.  Two genes were 

found in cluster 4 and two genes were found in cluster 6.  These clusters are spaced in different 

directions on the x and y coordinate indicating oppositely regulated genes.   

Denitrification made up 14 percent of cluster 6 for a total of 5 genes.  No overlap was 

seen with any other cluster indicating that these genes differentiated consistently.   

 

Figure 4- 9:  Pie diagram of major pathways identified through clustering analysis.  
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Table 4- 1:  Table for major identified pathways of transcriptomics study.  Results shows 

pathways along with their associated groups (clusters) G1 through G8, number of gene hits, 

number of genes per regulon, and percent of genes within each group.  N represents the total 

number of genes in the group along with the associated number of genes with known 

pathways.   The pathway for Iron Acquisition (non p/p/p) stands for iron acquisition genes not 

including pyoverdine, pyocyanin, or pyochelin genes.  Three pathways from the type 6 secretion 

system incorporating different groups from the Hcp Secretion Island (HSI) are represented as 

T6SS HS1-I, HS-2, and HS-3.  Biofilm formation (non pel/psl) represents biofilm genes not 

including genes from the pel or psl pathways. 
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Overall, major virulence pathways were found to make up the majority of the outlier 

clusters of differentially expressed genes.  These groups included type 3 and type 6 secretion 

systems, iron uptake, sulfur metabolism, the bexR regulon, biofilm formation, Nitrogen 

metabolism, bacteriophage pf1 genes and toxins (included in the secretion systems).    

4.7  Condensin mutants show unique transcriptomic profiles 

Pathways which were identified using hierarchical statistical clustering and cluster 

analysis, were then analyzed for the individual condensin mutant profiles.  The distributions for 

the most affected pathways are visualized as violin plots with overlaying box plots in Figure 4-

10 which are referenced to in the next three sections according to each condensin mutant.  

These include pathways for the T3SS, T6SS, BexR, psl, pel, biofilm, pyoverdine, pyochelin, and 

pyocyanin.  Additional pathways include quorum sensing, two-component systems and cell 

motility pathways. A table incorporating fold change values for genes in affected pathways 

having at least one gene >1.5 fold from each mutant strain, are found in Table 4 in the 

Appendix.   

The percent of differentially expressed genes for affected pathways for either 2 fold, 1.5 

to 2 fold, or no change was plotted in Figure 4-11.  A corresponding table for the number of 

genes having fold changes of a minimum of 2 fold or between 1.5 and 2 fold is found in Table 4-

3.   Average fold changes for each path is found in Table 4-2.  On account of their size and 

diversity, virulence factors effectors and virulence regulators were analyzed by looking at their 

sub-groups in Results 4-9, Figures 4-12 and 4-13.  Metabolism is referred to in Table 4-3. 
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Together, this information is referenced in the next three sections relating to each 

condensin mutant.  Gene descriptions are derived from KEGG, Virulence factor database (VFDB) 

and PseudoCAP.  Additional information is derived from literature sources (see section 1.4.E 

and 2.10.B). Iron (non p,p,p) refers to the enterobactin, siderophore, and haemophore 

mediated iron uptake groups not including pyoverdine, pyocyanin or pyochelin.  Biofilm (not 

pel/psl) includes the biofilm pathway not including the pel and psl groups. Significant fold 

changes are considered as >2 fold and moderate between 1.5 to 2 fold. 
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Figure 4- 10:  Gene expression distributions for major identified pathways.  Box plots and 

violin lots of log2 fold change values for each strain.   
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Table 4- 2:  Table of average fold changes for major regulons. Dark green represents 2 fold and 

greater downregulation, light green represents 1.5 to 2 fold downregulation.  Red represent 2 

fold and greater upregulation, pink represent 1.5 to 2 fold upregulation.  Types 2, 3 and 6 

secretion systems are denoted as T2SS, T3SS, and T6SS respectively.  The biofilm pathway not 

including pel or psl genes are show as biofilm (no pel/psl).  Iron (non p,p,p) represents iron 

uptake genes not including pyoverdine, pyochelin or pyocyanin.  TCS represents the two-

component regulatory system.  

 

Paths ∆smc ∆mksB  ∆∆

T3SS -8.62 1.72 1.13

T6SS HSI-1 1.75 -10.29 -4.29

T6SS HSI-2 0.93 -4.72 -1.63

T2SS -0.35 -0.42 1.03

BexR 3.39 -3.02 -1.74

Psl 1.46 -1.78 -1.17

Pel 1.74 -1.70 -0.11

Biofilm (no pel/psl) 0.33 -3.23 -0.69

C-di-GMP 0.36 -0.62 0.11

Pyochelin -0.93 -4.50 1.90

Pyoverdine 1.43 -1.79 0.04

Pyocyanin 0.01 -0.90 1.05

Iron (non p,p,p) 1.31 -0.94 0.88

Sulfur 3.08 -0.06 0.55

Bacteriophage -3.46 -9.60 -5.80

Denitrification 1.07 -0.50 0.91

Nitrogen -0.22 -0.33 0.60

Quorum sensing 0.09 -0.25 0.85

Viruence Regulators 0.22 -0.74 0.62

Simga factors 0.84 -0.37 0.95

Flagella 0.42 -0.58 1.16

Type IV Pili -0.86 0.00 0.90

Chemotaxis 0.28 -0.18 1.13

Alginate -0.39 -0.43 1.32

Fimbriae 0.75 -1.23 0.83

TCS 0.04 -0.13 0.68
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4.7.A  Δsmc transcriptomic profile  

Several pathways were upregulated in the Δsmc strain.  Significant upregulation was 

seen for the entire BexR regulon (Figure 4-10).  The psl and pel exo-polysaccharide pathways, 

associated with biofilm formation, showed clear distributions of upregulation even at lower fold 

change values (Figure 4-10).  The hemagglutinin gene, also associated with biofilm formation, 

was moderately upregulated by 1.8 fold.  The type 6 secretion system HSI-1 (T6SS HSI-1), 

pyoverdine, sulfur, iron (non p,p,p), denitrification, and biofilm (non pel/psl) formation groups 

showed many significant upregulated genes while the majority showed generalized upregulated 

distributions at lower fold change values (Figure 4-10), Figure 4-11). In addition, all 6 genes for 

α2-macroglobulin homolog operon involved in protease inactivation and host evasion, were 

moderately upregulated (Table 4) (see section 1.4.F for more details on the α2-macroglobulin 

homolog). 

Two pathways were found to be significantly downregulated in Δsmc, the type 3 

secretion system (T3SS) and bacteriophage pf1 genes as seen by their fold change distributions 

(Figure 4-10).   

Several sigma factors showed significantly increased expression for genes which 

regulate iron uptake including pvdS (PA2426) a regulator for pyoverdine, PA1300 for haem 

uptake, fiuI (PA0472) for ferrichrome uptake, hasI (PA3410) haem uptake, and a probable sigma 

factor for pyocin (PA4896) (Table 4).  In addition, several virulence factors were significantly 

affected.  Significantly increased expression of regulators include bexR (PA2432), which 

regulates aprA toxin in T1SS, ppkA (PA0074) and pppA (PA0075) which activate T6SS, and ptrB 
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(PA0612) which represses T3SS.  ppyR (PA2663) was moderately increased which regulates psl 

production.  Significantly decreased expression was seen in regulators exsE (PA1711), exsD 

(PA1714), exsC (PA1710), and exsA (PA1713) which are involved in the regulation of T3SS as 

well as rsmY (PA0527.1) a regulatory RNA gene (Table 4). 

Significant upregulation was seen for the protease PA0277 and the aprA toxin gene 

found in the type 1 secretion system and the BexR regulon.  Moderate upregulation was seen in 

the major hemolysin gene PA2462, as well as the hydrolase, PA0126 (Table 4).  hisJ (PA2923), a 

histidine transport ATP-binding protein was down regulated significantly. 

The c-di-GMP pathway, also associated with biofilm formation, was only slightly 

upregulated in some genes but did not include the wsp genes (Figure 4-11, Table 4).  Slight 

reductions, with mostly no changes were seen in pyochelin and alginate and the two-

component system (TCS) (Figure 4-10, Figure 4-11)). No major effect was seen in quorum 

sensing, HCN toxins, pyocyanin, or the type 2 secretion system (T2SS) (Table 4). 

Overview of downregulated Δsmc genes: 

Type 3 secretion system (T3SS):  The entire distribution of T3SS genes in Δsmc was 

significantly downregulated with an average of -8.6 fold across the regulon (Figure 4-10) (Table 

4-2).  98% of T3SS (40/41) were significantly downregulated >2 fold (Table 4-3, Figure 4-11).  

Included in this are the toxins exoT (-11 fold), exoY (-14 fold), and exoS (-16 fold).  17 psc genes 

ranged from -2.8 to -9.6 fold change.  exsC/E/D, and exoS genes were also downregulated (-5 to 

-8 fold change.  The ptrB gene, coding for a negative regulator of T3SS, was found to be 
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significantly upregulated (2.1 fold) and exsA, a gene coding for a transcriptional activator of 

T3SS, was downregulated -6 fold (Table 4). 

Bacteriophage pf1:  Most bacteriophage pf1 genes were downregulated significantly 

with two genes showing moderate upregulation (between 1.5 and 2 fold), giving an average of -

3.6 fold for the regulon.  73% (11/15) of genes were downregulated >2 fold (Table 4-3) (Figure 

4-11).   

Pyochelin genes showed a slight distribution of downregulation where all genes are 

distributed below 2 fold.  The average for the regulon is -0.9 fold (Figure 4-10).   No genes were 

changed greater than 2 fold.  36% (4/11) genes were downregulated between 1.5 and 2 fold 

(Table 4-3) (Figure 4-11).   

Alginate was only slightly reduced with 14% (4/28) of genes downregulated between 

1.5 and 2 fold. The algF gene was slightly reduced by 1.7 fold (Table 4-3, Figure 4-11).   

hisJ, a gene coding for a histidine transport ATP-binding protein was downregulated 

significantly at -3.5 fold. 

Overview of upregulated Δsmc genes: 

Type 6 secretion system HSI-1 (T6SS-HSI-1):  T6SS HSI-1 genes showed a clear but 

moderate upregulation in its distribution with a pocket of genes > 2 fold and an overall regulon 

average of 1.8 fold (Figure 4-10).   16% (7/43) of genes were upregulated greater than 2 fold.  

The majority of the regulon, 65% (28/43) genes, was expressed between 1.5 and 2 fold  (Figure 

4-11) where 5 of these showed 1.9 fold change (Table 4-3).  ppka, a gene coding for a post-
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translational regulator of Hcp-HSI which acts on Fha1, a core scaffolding protein, was 

moderately upregulated (1.8 fold)  as well as fha1 (moderate 1.8 fold) (Table 4).   

BexR: The majority of the BexR regulon shows a significant distribution for upregulated 

genes in Δsmc with an average of 3.4 fold change for the entire regulon (Figure 4-10, Table 4-2).   

61% (11/18) of genes in the BexR regulon were upregulated greater than 2 fold (Figure 4-11, 

Table 4-3) For Δsmc, the bexR regulator gene itself was significantly upregulated by 9.2 fold.  

The aprA gene, encoding metalloproteinase, was upregulated by 2.3 fold.  Other distinctly 

highly regulated genes included PA1202, a probably hydrolase (9.6 fold), and a number of 

hypothetical genes affected by the BexR regulator, PA1203 (4.6 fold), PA2430 (7.3 fold), 

PA2431(5.4 fold), and PA2598 (4.3 fold) (Table 4).   

Sulfur: The sulfur uptake regulon showed significant upregulation with several genes 

above 10 fold, giving an overall average of 3.1 for the regulon (Table 4-2, Table 4-3).  37% 

(19/51) of genes were upregulated > 2 fold.  3 of these genes are in the cys operon with cysA 

being upregulated 6.0 fold and cysW being upregulated 4.4 fold.  The greatest affected genes 

included PA3442 though PA3446 which are involved in the transport of sulfonate under sulfur 

starvation.  The fold change values include the following:  PA3442 (6.2 fold), PA3443 (46.6 fold), 

PA3444 (26.7 fold), PA3445 (11.5 fold), and PA3446 (3.6 fold). 9.8% (5/53) additional genes 

were upregulated between 1.5 and 2 fold (1.4.F).  

Pyoverdine: Pyoverdine genes were mostly moderately upregulated with a pocket of 

genes showing significant upregulation >2 fold with an overall regulon average of 1.4 fold 

(Figure 4-10).  Overall, 23% (6/26) genes were upregulated  > 2 fold.  Two genes were 



 

115 
 

particularly high, pvdS, encoding a pyoverdine sigma factor, upregulated at 5.5 fold and pvdA 

upregulated at 4.8 fold.  Most genes were upregulated moderately under 2 fold (Figure 4-11).  

27% (7/26) genes were upregulated between 1.5 and 2 fold.  Uptake of ferripyoverdine in P. 

aeruginosa occurs via the FpvA receptor protein and requires the energy-transducing protein 

TonB1.  PvdS is a sigma factor which activates expression of FpvA (see section 1.4.E for details).  

Δsmc showed significant upregulation for pvdS (5.5 fold), tonB1 (2.1 fold), and fpvA (moderate 

1.8).   

Psl: The psl path showed a clear but moderate distribution of upregulation even at 

lower fold change values (Figure 4-10) with an average regulation change of 1.5 fold. 13% 

(2/15) of genes were upregulated greater than 2 fold while 47% (7/15) were upregulated 

between 1.5 and 2 fold. A single gene was downregulated between 1.5 and 2 fold.  Therefore, 

most psl genes were slightly upregulated for Δsmc.   

Pel: Pel, was mostly moderately upregulated in Δsmc with one gene above 2 fold and a 

total average of 1.7 (Figure 4-10).  14% (1/7) of genes was upregulated greater than 2 fold and 

43% (3/7) genes between 1.5 and 2 fold.   

Hemagglutinin (PA0041):  Hemagglutinin, a filamentous adhesion protein associated 

with biofilm formation and pathogenicity was also up regulated moderately by 1.8 fold (see 

section 1.4.E for details). 

Biofilm (non pel/psl):  Although most of the distribution of biofilm (non pel/psl) genes 

showed no change at zero, pockets of genes were found both moderately up and 

downregulated with a group of genes upregulated greater than 2 fold (Figure 4-10).  On 
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account of fluctuation throughout this larger regulon, the average was at 0.3 fold (Figure 4-1).  

6.6% (6/91) genes were upregulated greater than 2 fold.  These genes are the same genes also 

involved in the type 6 HSI-1  secretion system which is related to biofilm formation (Table 4).  

13% (12/91) of genes of Δsmc were upregulated between 1.5 and 2 fold (6 of these from Type 6 

SS HSI-1).  Four genes were moderately down regulated between 1.5 and 2 fold).  Δsmc 

moderately upregulated both siaA (PA0172) 1.8 fold , encoding a threonine kinase regulator,  

and siaD, 1.9 fold,  encoding a diguanylate cyclase that synthesizes c-di-GMP.  An affect was 

also seen on the cdrA/B genes encoding proteins that promote biofilm, with cdrA (PA4625) 

upregulated at 2.3 fold and cdrB (PA4624) upregulated at 2.3 fold.  

Pyocyanin: Most of the distribution for pyocyanin showed minimal change with an 

overall average of 0.01 (Figure 4-1).  A single gene, phzF2 (PA1904) was found out of 17 which 

upregulated at 2.7 fold, and a single gene, phzB2 (PA1900), was upregulated between 1.5 and 2 

fold. 

Iron not including pyoverdine, pyochelin or pyocyanin (iron non p/p/p): The iron 

pathway was distributed widely with the largest density of distribution showing genes at 1.5 

fold and higher indicated most are moderately upregulated.  The overall average of the regulon 

is 1.3 (Table 4-2).  26% (15/58) genes were significantly upregulated above 2 fold.  Most genes 

were moderately upregulated with 20% (12/58) of the genes being upregulated between 1.5 

and 2 fold.  Together, this shows that almost 50% of the genes are upregulated greater than 1.5 

fold change (Figure 4-11).  Of the 13 significant genes, three of are xenosiderophore genes, 3 

heme uptake and degradation genes and one probable iron/ascorbate oxidoreductase.  The 

xeno-siderophore genes included optJ (PA0434) 2.5 fold, fvbA (PA4156) 2.0 fold, and optR 
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(PA3268) 3.5 fold.  The heme uptake and degradation genes included hemO (heme oxygenase) 

(5.1 fold), PA4709 phuS (hemin uptake) (2.9 fold), and phuR (3.1 fold).  The iron oxido-

reducatase (PA4191) was upregulated at 4.6 fold.  Only 1 gene was significantly downregulated, 

fepD (PA4160) at -2.6 fold and 2 genes were down regulated between 1.5 and 2 fold. Iron sigma 

factors were upregulated including PA0472 (2.2 fold), and PA1300 (2.4 fold), pvdS (PA2426) at 

5.5 fold, and a factor for pyocin (PA4896) by 2.6 fold (Table 4). 

Denitrification:  The overall distribution shows upregulation of more than half of the 

genes in the regulon (Figure 4-11) although the average for the regulon was around 1 fold.   

Upregulated genes corresponded to all operons except the nar genes which showed genes with 

moderate and slight downregulation.   27% (7/26) genes were significantly upregulated greater 

than 2 fold and 31% (8/26) were moderately upregulated between 1.5 and 2 fold.  Only 4% 

(1/26) was downregulated between 1.5 and 2 fold (Table 4-3).   

a2-macro globulin homolog operon: All 6 genes for α2-macroglobulin homolog operon 

were moderately upregulated (Table 4). 

C-di-GMP: C-di-GMP genes mostly showed no change with a small number being 

upregulated.  10.5% (2/19) of genes were significantly upregulated greater than 2 fold.  These 

included PA4624 and PA4625.  10.5% (2/19) were moderately upregulated between 1.5 to 2 

fold (Figure 4-11).  These included genes PA0169 and PA0170.  Genes in the wsp operon were 

not affected here (Table 4). 

Additional affected genes included upregulation of the protease PA0277 at 2.4 fold and 

a moderate upregulation of PA0126 (1.8 fold), a key responder gene to oxidative stress. A DNA 
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repair protein PA4172 was found to be upregulated by 2.2 fold.  The hemolysin gene (PA2462) 

was found to increase by 1.7 fold.   

Sigma factors and Virulence regulators: 

Sigma factors:  Several sigma factors were upregulated.  13% (4/31) sigma factor genes 

were significantly upregulated while 19% (6/31) were upregulated moderately between 1.5 and 

2 fold (Figure 4-11).  Significantly upregulated genes included pvdS (PA2426), a pyoverdine 

sigma factor regulator at 5.5 fold and three RNA polymerase sigma factors associated with iron 

uptake; PA1300 (2.4 fold), PA0472 (2.3 fold).  PA3410 was upregulated at 2.0 fold.    A probable 

sigma-70 factor (ECF) for pyocin, PA4896, was upregulated 2.6 fold in Δsmc (Table 4).  

Virulence Regulators:  Several virulence regulators were both up and downregulated.  

3/95 genes were significantly upregulated while 7/95 genes were moderately upregulated. 

ppkA (PA0074) was upregulated 1.8 fold. The significantly upregulated genes include bexR 

(PA2432) at 9.2 fold, and ptrB encoding a protein which represses T3SS, at 2.1 fold.  The ppyR 

gene, encoding a regulator of the psl operon, was moderately upregulated at 1.6 fold as well 

as pppA (PA0075) encoding a protein which phosphorylates FhaI and acts on pyocyanin and 

T6SS, at 1.6 fold.   4/100 genes were significantly downregulated while 1/100 genes were down 

regulated moderately.  Significantly downregulated genes include exsC (PA1710) at -4.7 fold, 

exsE (PA1711) at -5.5 fold, exsA (PA1713) at -5.9 fold, and exsD (PA1714) at -5.3 fold. rsmZ was 

downregulated by -4.6 fold rsmY was unchanged.  rsmA however, was not affected (Table 4-3, 

Table 4).   
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Notable pathways with no major effect: 

As a note, quorum sensing genes and genes in the GacA/RsmA system, and HCN genes 

(Figure 4-10) were not affected in Δsmc (see table sigma factors and regulators).  T2SS:  The 

entire regulon for T2SS was unaffected (Table 4).  In addition, cellular motility including Type IV 

pili, flagella and chemotaxis genes were not affected. 

4.7.B  ΔmksB transcriptomic profile 

ΔmksB showed marked decreases in regulation for a number of different pathways. 

Significant downregulation was seen for the entire T6SS HSI-1 and pyochelin pathways.  The 

majority of gene distribution was down regulated for the BexR, bacteriophage pf1, psl and the 

T6SS HSI-2 pathways (Figure 4-10, Figure 4-11).   

The pyoverdine (iron uptake), pel (exo-polysacharide contributing to biofilms), and 

biofilm (non pel/psl) groups showed significantly downregulated genes while the majority 

showed a generalized down regulated distribution at nearly 2 fold (Figure 4-10, Figure 4-11). 

The hemagglutinin gene, also associated with biofilm formation, was downregulated -5.7 fold.  

Iron (non p/p/p) significantly downregulated many genes while the main distribution showed 

slight downregulation less than 1.5 fold.  T2SS and c-di-GMP showed moderate downregulation 

(Figure 4-11). In addition, all 6 genes for α2-macroglobulin homolog operon involved in host 

evasion, were significantly down regulated (Table 4). 

T3SS was the only group upregulated in ΔmksB.  Many genes were upregulated 

significantly in T3SS with the main distribution showing upregulation just below 2 fold (Figure 4-

10).  
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Several toxins were reduced.  Significant downregulation was seen for the hydrogen 

cyanide genes, hcnA/B/C, the hemolysin gene, PA2462, a phospholipase gene, pldA, and a 

stress responding hydrolase, PA0126.  A protease, PA0277, was downregulated greater than 

100 fold.  

In addition, genes for a heat shock protein, dnaJ and dnaK were significantly down 

regulated. ligD, (PA2138), encoding DNA ligase, was significantly down regulated.  hisJ, a 

histidine transport ATP-binding protein was down regulated moderately. 

Denitrification showed significant up and downregulation.  Upregulated genes were 

expressed in the nos the operon.  Significantly downregulated genes were seen in the nor and 

nap operons. 

Several sigma factors and virulence regulators showed significantly decreased 

expression.  Affected genes include regulators for iron uptake, quorum sensing, T6SS, T3SS and 

virulence.  Significantly downregulated iron uptake regulators include pchR (PA4227), a 

regulator for pyochelin, and PA2384, a probable Fur, Fe2+/Zn2+ uptake regulation protein. 

Moderate downregulation was seen for pvdS (PA2426), a regulator for pyoverdine and femI 

(PA1912) involved in mycobactin/ carboxymycobactin uptake.  Decreased expression was seen 

for ppka, which regulates T6SS as well as pppa, a PpkA antagonist.  A repressor for T3SS (prtB), 

the virulence bi-stable switch regulator (bexR), and a virulence regulator (vreI) were 

significantly decreased.  The quorum sensing regulators PA1196 were significantly decreased as 

well as two quorum sensing repressor genes qteE (PA2593) and qscR (PA1898).  Upregulated 
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regulators affected include exsC (PA1710), a regulator for T3SS, and ppyR (PA2663), a regulator 

of psl (Table 4). 

More significant downregulated genes were seen than upregulated that affected 

metabolism.  About 35 different metabolic groups were affected.   Most of these were slight 

with 1-3 genes affected.   Groups with 4 or more genes down regulated include the biosynthesis 

of amino acids (7/143 genes), aminoacyl-tRNA biosynthesis (5/101 genes), carbon metabolism 

(6/127 genes), glycerophospholipid metabolism (4/28 genes), and arginine biosynthesis (4/29 

genes) (Table 4-3).    

Pyocyanin was significantly downregulated in some genes with most of the pathway 

showing no change. Quorum sensing didn’t show many affected genes.  Those affected 

included significant downregulation of two phenazine genes, phzF1 (PA4215) and phzD2 

(PA1902) as well as lasI (PA1432) encoding an autoinducer synthesis protein, and the previous 

mentioned QS regulators.   

The two-component regulatory system (TCS)  was moderately affected overlapping with 

pathways for chemotaxis and C4-dicarboxylate transport.  Cellular motility in general was 

largely unaffected.  Chemotaxis was largely unaffected but showed inconsistency with some 

significant genes that were both up and downregulated.  Fimbriae (related to biofilm) showed 

mostly no change in the regulon with significant downregulation of the cupB2 gene.  

Overview of downregulated ΔmksB genes: 

Type 6 secretion system (T6SS HSI-1): ΔmksB shows significant downregulation in the 

entire distribution of genes with an average fold change of -10.2 (Figure 4-10).  95% (41/43) 
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genes were significantly downregulated > 2 fold where 30 of these genes were downregulated 

greater than 5 fold. (Table 4-3).   No genes were downregulated in this regulon.  ppka (PA0074), 

encoding a T6SS regulator, was downregulated (-5.9 fold), as well as fha1 (PA0081) encoding 

the scaffolding protein required for T6SS at -2 fold.   

BexR:  The BexR regulon was significantly downregulated with the greatest distribution 

being found below the 2 fold mark (Figure 4-10).  The overall average of the regulon is -3 fold.   

39% (7/18 ) were downregulated greater than 2 fold and 17% (3/17) were downregulated 

between 1.5 and 2 fold.   The bexR regulator gene (PA2432) itself was found to be 

downregulated by -4.6 fold.  aprA, encoding the metalloprotease regulated by BexR, was 

reduced moderately at -1.5 fold.   PA1202, a probable hydrolase was reduced -14.3 fold, 

PA2483 by -11 fold and the hydrolase (PA1203) by -2.5 fold). Other genes in this regulon 

included hypothetical genes (Table 4).   

Pyochelin: ΔmksB revealed significant and consistent downregulation of all pyochelin 

genes giving an average of -4.5 for the regulon (Figure 4-10).  100% (11/11)  genes were 

downregulated below -2 fold with 5 genes being downregulated  below -4 fold in the phc 

operon (average -4.5). The fptA receptor gene for pyochelin was down regulated by -3.2 fold. 

ΔmksB is clearly downregulated for pyochelin (Table 4-3, Table 4).   

Psl:  The majority of the psl regulon was downregulated with more than half distributed 

below the 2 fold mark.  The overall average of the regulon is -1.8 fold (Figure 4-10).    60% 

(9/15) of genes were downregulated greater than 2 fold while 13% (2/15) genes were 
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downregulated between 1.5 and 2 fold.  Interestingly, a single outlier was upregulated, the psl 

regulator gene ppyR (PA2663) at 2.3.  

Pel:  Pel genes shows downregulation of genes with the greatest density just below the 

2 fold region giving an average fold change of the regulon of -1.7 (Figure 4-1).  29% (2/7) genes 

were downregulated significantly while 43% (3/7) of genes were down regulated between 1.5 

and 2 fold.   

Biofilm (non pel/psl): Although the main distributions of genes are nominal, a large 

group of genes are significantly downregulated in ΔmksB with an average of -3.2 fold for the 

entire regulon (Figure 4-1).  33% (30/91) genes were downregulated > 2 fold and 6.6% (6/91) of 

genes between 1.5 and 2 fold.  A single gene was up regulated moderately between 1.5 and 2 

fold. (Table 4-1, Figure 4-2). The significantly affected genes mostly belong to the T6SS HSI-1 

and T6SS HSI-2 secretion systems with fold change ranging from -2 to -50.  3 genes that were 

downregulated between 1.5 and 2 fold are attributed to quorum sensing.  ΔmksB 

downregulated both siaA and siaD genes with siaA (PA0172) at -3.3 fold and siaD (PA0169) at -

3.2 fold.  Downregulation was also seen on the cdrA/B genes with cdrA (PA4625) 

downregulated at -2.3 fold and cdrB (PA4624) downregulated at 2.1 fold (Table 4).     

Pyoverdine:  Pyoverdine was downregulated in ΔmksB with the greatest distribution of 

genes just below 2 fold.  The average of the regulon is -1.8 (Figure 4.10).  31% (8/26) genes 

were significantly downregulated while 27% (7/26) were downregulated moderately (1.5 to 2 

fold) 4% (1/26) were upregulated moderately (Table 4-3, Figure 4-11).  The fpvA gene was 

significantly downregulated at -5 fold.  FpvA is a receptor protein for the uptake of pyoverdine.  
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7 genes were downregulated between 1.5 and 2 fold and 1 was upregulated 1.5 and 2 fold.  

ΔmksB also showed downregulation for pvdS, a gene for the pyoverdine sigma factor regulator, 

(-1.9 fold), and tonB1 (-1.1 fold).   

Pyocyanin: Most of the distribution for pyocyanin showed minimal change with a couple 

of genes which were significantly downregulated giving an average of -.9 out of 17 genes total 

(Figure 4-1 (Figure 4-1).  The two significantly downregulated genes included phzD2 (PA1902) at 

-2.9 fold and phzF1 (PA4215) at --2.7 fold.   

Iron (non p/p/p). The majority of the distribution of iron (non p/p/p) genes were 

moderately downregulated with a smaller group of genes that were significantly down 

regulated around -4 fold.  The overall average for the regulon is -0.9 (Figure 4-3).  About 14% 

(8/58) genes were significantly downregulated  greater than 2 fold and about 7% (4/58) down 

regulated between 1.5 and 2 fold.  The significantly affected genes include those from 

enterobactin and siderophore mediated iron uptake.  These genes include fepG (PA4161) -2.1 

fold, tonB2(PA0197) -4.6 fold), and exbB1 (PA0198) -3.4 fold, fiuR (PA0471 fold) -2.4, and viuB 

(PA2033) -2.6 fold, and femR (PA1911) -3.4 fold. The single upregulated gene included fecA 

(PA3901) 2.0 fold.   Three additional genes were downregulated between 1.5 and 2 fold, 

including femA and two sigma factors, femI (PA1912) and PA3899 (Table 4-3, Table 4).   

Bacteriophage pf1: Bacteriophage pf1 genes were significantly downregulated with the 

greatest part of its distribution downregulated greater than 8 fold.  The average of the regulon 

is -9.6 (Figure 4-2).  73% (11/15) genes were significantly downregulated while a single gene 

was moderately downregulated (1.5 to 2 fold).  The most significantly affected genes are 
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hypothetical and include PA0717 through PA0720 and PA0722 which downregulated in a range 

from -8 to -15 fold.    

Quorum sensing:  A small number of genes were significantly affected in quorum 

sensing (Figure 4-2).  3/99 were significantly downregulated.  Those include, lasI which was 

downregulated at -2.6 fold, phzD2 (PA1902) at -2.9 fold, and phzF1 (PA4215) at -2.7 fold.  In 

addition to these, a regulator of RhlrI, PA1196, was downregulated by -2.4 fold.  Additional 

quorum sensing sigma factor genes that were affected included qscR (-2.9 fold) and qteE (-2.4 

fold), anti-sigma factors.  11/99 genes were moderately downregulated.  1/99 genes were 

significantly upregulated while 7/99 genes were moderately upregulated. The moderately 

affected genes were both up and downregulated.  The upregulated gene is a hypothetical 

protein, PA3320 (Table 4-3, Table 4). 

α2-macroglobulin homolog operon: All 6 genes for α2-macroglobulin homolog operon 

were significantly downregulated (Table 4). 

Type 6 secretion system HSI-2 (T6SS HSI-2): ΔmksB showed significant differentially 

expressed genes for the majority of the T6SS-HS2 system.  ΔmksB showed significant 

downregulation in this pathway with an average fold change of -4.7 (Figure 4-11).  52% (14/27) 

of genes were downregulated greater than 2 fold.  Three genes were moderately 

downregulated (1.5 to 2 fold) and zero were upregulated.  All genes in the order from PA1656 

to PA1670 were significantly affected ranging from -3.8 to -15 fold decrease in expression.     

Hydrogen cyanide genes hcnA/B/C were all significantly downregulated at -2.4, -2.6, 

and -3.5 fold respectively.  
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The hemolysin gene PA2462 was also significantly downregulated at -5.8 fold. 

The hemagglutinin gene PA0041 was significantly downregulated at -5.7 fold. 

Additional affected genes included significant downregulation of the protease PA0277 

at -146 fold and   a key responder gene to oxidative stress PA0126 at -19 fold.   

dnaJ, a gene encoding a heat shock protein involved in bacterial translocation across 

host cells, was found to be downregulated by -2.3 fold.  dnaK, encoding another heat shock 

protein, was downregulated by -2.5 fold.  

hisJ, encoding a histidine transport ATP-binding protein was downregulated moderately 

at -1.9 fold. 

pldA (PA3487), encoding a phospholipase gene, was downregulated -2.5 fold.  Other 

phospholipases were not affected (Table 4). 

ligD (PA2138), a gene for for DNA ligase, was significantly downregulated at -3.5 fold. 

Metabolism: A large number of metabolic genes were affected> 2 fold in mksB (Table 4-

3).  Of these, about three times as many genes were downregulated as compared to 

upregulated.  These ranged across 35 different metabolic groups.  The number of genes 

affected in each metabolic group mostly ranged from 1 to 2 genes for upregulated and 1 to 3 

for downregulated genes.  Groups that showed a slight affect with 4 or more downregulated 

genes include: Biosynthesis of amino acids (7 /143 genes), aminoacyl-tRNA biosynthesis (5/101 

genes), carbon metabolism (6/127 genes), glycerophospholipid metabolism (4/28 genes), and 

arginine biosynthesis (4/29 genes).    
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Type 2 secretion system (T2SS): shows moderate downregulation (with a couple of 

significantly downregulated genes) of about 25% of the gene distribution (Figure 4-2). 

C-di-GMP: c-di-GMP shows only moderate downregulation (no significantly affected 

genes) of about 20% of the regulon.  21% (4/19) of genes were signficantly downregulated 

between >2 fold.  (Figure 4-2).  (Table 4). 

Two-component regulatory system (TCS):  TCS was moderately affected showing 

several significant up and downregulated genes.  Of the 202 genes in this regulon, 2 were 

significantly upregulated and 6 were significantly downregulation.  TCS genes overlapped with 

several other pathways.  For upregulated genes, 2 TCS genes are involved in chemotaxis.  In 

down regulated genes, two overlapped with C4-dicarboxylate transport, two with chemotaxis, 

one with biofilm and one with antibiotic resistance (PA0749).  

Overview of upregulated ΔmksB genes: 

Type 3 secretion system (T3SS): T3SS shows a clear upregulation in its distribution of 

genes with a large pocket of genes greater than 2 fold and an overall regulon average of 1.7 

fold (Figure 4-10).  24% (10/41) genes were upregulated greater than 2 fold and 42% (17/41) 

between 1.5 and 2 fold (Table 4-3).   The ptrB gene was found to be significantly downregulated 

at -2.7 fold which acts in repressing type 3 secretion.   

Notable pathways with no major effect: 

The following pathways showed mostly no change however, many had at least one significantly 

affected gene so they are discussed. 
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Sulfur:  Sulfur genes were mostly unaffected.  Most of the distribution of sulfur genes in 

ΔmksB is insignificantly up and downregulated with a few significantly downregulated genes 

giving an average fold change of -0.06 (Figure 4-1).  8% (4/51) genes were downregulated >2 

fold while 10% (5/51) were downregulated moderately.  13.7% (7/51) were upregulated 

moderately (Table 4-3).   

Chemotaxis: ΔmksB did not show a consistent distribution in the chemotaxis regulon.  

Both up and downregulation of genes were seen with an overall average of -0.2 fold (Figure 4-

11).   6.7% (3/45) of genes were significantly upregulated, 11% (5/45) genes were moderately 

upregulated.  Significantly upregulated genes included the pctA, PA2561, and PA4502 genes.  

Moderately upregulated genes include pctC and pctB.  4% (2/45) were significantly 

downregulated and 11% (5/45) were moderately downregulated.  Downregulated genes 

included those in the chemotaxis methyl-esterase operon.   

Type IV pili was largely unaffected in ΔmksB (Figure 4-11).  Type IV pili showed one 

significantly downregulated gene fimT (PA4549) at -2.5 fold with an overall average of 0.004.  

Two genes were moderately up and 2 genes were moderately downregulated in this regulon.   

Flagella: flagella genes were largely unaffected (Figure 4-11) 

Fimbriae: The overall distribution of cup genes involved in Fimbriae was largely 

unaffected, however cupB2 (PA4085) showed a significant downregulation at -5.5 fold.  Two 

other genes were moderately affected, cupA5 (PA2132) and cupB4 (PA4083) was moderately 

upregulated.   

Pathways with distinct up and downregulation: 
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Denitrification: Denitrification showed significant up and downregulation.  Upregulated 

genes were expressed in the nos operon.  Significantly downregulated genes were seen in the 

nor and nap operons.  19% (5/26) of genes were significantly upregulated while 27% (7/26) of 

genes were significantly downregulated.  

Sigma factors and Virulence regulators: 

Sigma factors:  One sigma factor gene was significantly downregulated and 6 

moderately out of 31 genes.  The significantly downregulated gene included PA0472 (-2.2 fold), 

which is involved in iron uptake. Moderately downregulated genes include algU, mucA and the 

iron uptake sigma factor, and pvdS.  No sigma factor genes were significantly upregulated.  

Two genes were moderately upregulated.   

Virulence Regulators:  most virulence regulators were down significantly 

downregulated.  13/95 genes were significantly downregulated while 11/95 genes were 

moderately downregulated.   A full list of genes affected and their fold change values are in 

Table 4-4.  Significantly downregulated genes that regulate iron uptake include, pchR and 

PA2384.  Some of the significant genes include ppka (5.9 fold) associated with T6SS, and pppA 

(-10 fold) a T6SS post translational antagonist.  Also affected included prtB (-2.4 fold) a 

repressor for T3SS, bexR (-4.6 fold), and vreI , a gene encoding a virulence regulator, at -2.5 

fold.  Quorum sensing sigma factor regulator genes affected include the quorum sensing 

repressor gene, qscR (-2.9 fold), the quorum sensing post translational repressor gene, qteE (-

2.4 fold).  Iron uptake sigma factors affected include pchR (PA4227) pyochelin regulator at -3.1 

fold, and PA2384 (-5.8 fold) regulator for iron uptake a haemolysin regulator PA2463 (-3.1).  In 
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addition, rsmZ was downregulated by -16.6 fold. rsmY was downregulated by -4.1 fold. The 

rsmA gene involved in signaling was downregulated -2.1 fold.  2/95 genes were significantly 

upregulated while 3/95 genes was upregulated moderately.  The significantly upregulated 

genes include exsC, an anti-activator of exsA which regulates T3SS at 2.0 fold and ppyR (a 

regulator of psl) at 2.3 fold. The gacA gene did not show any significant effects on ΔmksB (Table 

4).  

4.7.C  Δsmc ΔmksB transcriptomic profile 

Two pathways were found to be significantly downregulated in the delta double strain 

across the entire regulon, T6SS HSI-1 and bacteriophage pf1 genes (Figure 4-10).  The T6SS HSI-

2 and psl pathways show a large portion of the regulon downregulated with a small pocket of 

moderately upregulated genes (Figure 4-11).  In contrast to T6SS, T3SS showed moderate 

upregulation with the majority of genes being upregulated just below 1.5 fold.   Pyochelin 

showed significant upregulation for the majority of its gene distribution. The hemagglutinin 

gene, associated with biofilm formation, was downregulated -3 fold. 

Biofilm (non pel/psl), TCS and the denitrification pathways show distinct patterns of up 

and downregulation.  For biofilm, downregulated genes overlapped with the T6SS and rsmA 

(PA0905) while upregulated genes overlapped with quorum sensing genes and gacA (PA2586).  

For TCS, downregulated genes overlapped with chemotaxis (5 genes), C4-dicarboxylate 

transport (5 genes), and biofilm (3 genes) while downregulated genes overlapped with 

cytochrome b/c genes (6 genes).  Denitrification showed general upregulation which included 
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the nos, nar and nor operons.  Marginal downregulation of denitrification was seen in the nap 

operon.   

BexR showed moderate downregulation of roughly 30% of its genes > 1.5 fold including 

a small pocket of significantly down regulated genes (Figure 4-10).  T2SS, denitrification and 

iron (non p,p,p) showed moderate upregulation with roughly 30% of its gene distribution 

including small pockets of significant gene expression.  Quorum sensing, T2SS, and iron (non 

p,p,p), significantly upregulated several genes showing an overall moderate upregulation in its 

distribution for 20-30% of the regulons. Many quorum sensing genes were affected for the rhl, 

phenazine and pqs genes, with the majority showing moderate upregulation.  Some of the 

significantly affected genes include rhlB (PA3473) and pqsA (PA0096) and phzF2 (PA1904) 

(Table 4-3) . In addition, 5/6 genes for α2-macroglobulin homolog operon involved in host 

evasion were significantly downregulated (Table 4). 

C-di-GMP was stochastic with affected genes, showing some significantly 

downregulated genes as well as a general moderate (1.5 to 2 fold) upregulation of the regulon 

(60%).  Sulfur, pel, pyocyanin, and Type IV pili showed largely no affect with only minor 

distributions above no fold change. 

Marginal affects were seen in other groups including alginate, chemotaxis, nitrogen 

metabolism and pyoverdine.  These groups showed slight upregulation of roughly 20 percent of 

the regulon including small pockets of significant upregulation and a few down regulated genes.   

Significant downregulation was seen for the protease PA0277 (-76 fold), a responder to 

oxidative stress PA0126 (-29 fold), HCN genes, a hemolysin gene (PA2462), and a histidine 
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transport ATP-binding protein gene, hisJ (PA2923).  Two DNA repair genes including sbcD 

(PA4281) was significantly upregulated while ung (PA0750) was significantly downregulated. A 

probable DNA invertase gene for DNA recombination (PA3867) was also significantly 

upregulated.  Genes for Lipase A (PA2862 lipA) and Lipase B (PA3997 lipB) were both 

upregulated at just under 2 fold (Table 4).  

Several sigma factors and virulence regulators were significantly affected which are 

involved in alginate, iron uptake, quorum sensing, T6SS, T3SS, virulence as well as cell division.  

Affected sigma factors include significant upregulation of algU (PA0762) for alginate regulation, 

as well as fpvI (PA2387) a sigma factor in pyoverdine uptake, PA4896 for siderophore uptake 

and two quorum sensing regulators, mvfR (PA1003) and amiC (PA3364). 

Upregulated virulence regulators include mexR (PA0424), which negatively regulates 

multidrug efflux systems, psrA a positive transcriptional regulator gene of T3SS, mvfR (PA1003), 

a regulator gene in the quorum sensing path, tpbA (PA3885) which negatively regulates biofilm, 

mraZ (PA4421) encoding a transcriptional regulator and cell division protein, gacA (PA2586), a 

response regulator gene,  and wzz (PA3160), an o-antigen chain length regulator (Table 4-4). As 

a note, rsmA (PA0905) and the central iron regulator gene, fur (PA4764), were not changed.  

Downregulated virulence regulator genes include PA2384, an iron uptake regulator, ppkA which 

regulates T6SS, pppA an antagonist of PpkA, ptrB a negative regulator for T3SS, bexR a virulence 

bi-stable switch regulator involving the aprA toxin gene, and both rsmZ and rsmY, small RNA 

regulators (Table 4). 
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More significant upregulated genes were seen than downregulated that affected 

metabolism.  About 35 different metabolic groups were affected.   Most of these were slight 

with 1-3 genes affected (Table 4-3).   Groups with 4 or more genes upregulated include: Valine, 

leucine, isoleucine degradation (7/47 /genes), arginine and proline metabolism (6/47 genes), 

butanoate metabolism (4/41 genes), pentose phosphate pathway (6/26 genes), phenylalanine 

metabolism (6/26 genes),  Glycolysis/glucogenesis 4/35, propanoate metabolism 6/47, 

biosynthesis of amino acids 9/143, pyruvate metabolism 4/59, and carbon metabolism 11/127. 

Overview of downregulated ΔΔ genes: 

Type 6 secretion system HSI-1 (T6SS HSI-1): ΔΔ showed significant downregulation for 

nearly the entire regulon with an average of -4.3 fold (Figure 4-10).  Almost all of the genes 

were significantly downregulated. 81% (35/43) of genes were significantly upregulated greater 

than 2 fold.  9 of these genes were affected over 5 fold.  ppka was downregulated (-3.5 fold), 

however, fha1 showed no change in expression compared to WT (1.3 fold) (Table 4).   

BexR.   The bexR regulon was significantly downregulated with the majority of the 

distribution below 2 fold.  The average of the regulon was -1.7.  (Figure 4-10).  11% (2/18) of 

genes were significantly downregulated greater than 2 fold while 1 gene was downregulated 

significantly.  28% (5/18) of genes were downregulated moderately.  The bexR (PA2432) 

regulator gene was downregulated at -4.6 fold which activates both aprA (-1.0 fold) and 

hydrolase PA1202 (-10.9 fold) and other downstream genes (PA1203 at -1.9 fold).   

Psl:  ΔΔ distinctly showed significant downregulation of the majority of the regulon 

giving an average of    -1.2 fold).  33% (5/15) of genes in the Psl regulon were significantly down 
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regulated, greater than 2 fold (Figure 4-1).   27% (5/15) of genes upregulated between 1.5 and 2 

fold.  The outliers were determined to be PA5452 (wbpW) at 1.9 fold, involved in 

phosphomannose isomerase/GDP-mannose, algA at 1.29 fold, and pslA  at 1.2 fc (Table 4-3).   

Type 6 secretion system HSI-2 (T6SS HSI-2): ΔΔ showed significant differentially 

expressed genes in the T6SS-HIS-2 system with downregulation seen in the majority of the 

regulon.  ΔΔ showed downregulation in this pathway with an average fold change of -1.6 (Table 

4-2).  44% (12/27) of genes were downregulated greater than 2 fold.  Two genes were 

moderately downregulated and four moderately upregulated (1.5 to 2 fold).  All genes in the 

order from PA1657 to PA1669 (except PA1667 qt -1.9 fold) were significantly affected ranging 

from -2  to -5.9 fold decrease in expression (Table 4-3).   These genes are all hypothetical.  

Bacteriophage pf1: ΔΔ was significantly downregulated for bacteriophage pf1 genes 

with average of -5.8 (Figure 4-1).  60% (9/15) of genes for ΔΔ were downregulated greater than 

2 fold.   

Additional affected genes included significant downregulation of the protease PA0277 

at -76 fold and PA0126, a key responder gene to oxidative stress at -29 fold.   

Toxins for hydrogen cyanide genes hcnA/B/C were all significantly downregulated at -14 

fold, -3 fold, and -2 fold respectively. The hemolysin gene PA2462 was also significantly 

downregulated at -5.8 fold.   

sbcD (PA0750), encoding a base excision repair protein was downregulated -2 fold.   

hisJ, encoding a histidine transport ATP-binding protein was downregulated -2.3 fold. 
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The hemolysin gene PA2462 was also significantly downregulated at -3 fold.   

In addition, 5/6 genes for α2-macroglobulin homolog operon were significantly down 

regulated (Table 4). 

Overview of upregulated ΔΔ genes: 

Type 3 secretion system (T3SS):  ΔΔ revealed moderate to low upregulation of T3SS 

with most of the distribution below around 1.5 fold for an average of 1.1 for the entire regulon 

(Figure 4-10). Only one gene was upregulated significantly, exoS (PA3841) at 2.5 fold.  10% 

(4/41) of genes were upregulated moderately between 1.5 and 2 fold.  These genes included 

(pscT, pcrG, pcrH, and exsB).  No genes were downregulated (Table 4-1).  ptrB was found to be 

significantly downregulated (-2.7 fold) which encodes a protein that acts in deactivating type 3 

secretion.  The psrA gene, encoding an activator of T3SS was significantly upregulated at 3.2 

fold.  

Pyochelin: ΔΔ was clearly upregulated for pyochelin genes showing most of the 

distribution of genes upregulated slight under 2 fold with an average of the regulon at 1.9 

(Figure 4-10).  27% (3/11) of genes were significantly upregulated while 55% (6/11) were 

moderately upregulated (1.5 to 2 fold).  Significantly upregulated genes include pchA (PA4231) 

at 2.0 fold and pchB (PA4230) at 3.4 genes and fptA (PA4221) at 2.7 fold (Table 4).  

Iron (non p/p/p). The overall distribution shows a slightly greater density of upregulated 

genes just below 1.5 fold.  The average of the regulon is 0.9.    9% (5/58) of genes were 

significantly upregulated while 29% (17/58) genes were moderately upregulated.  The 

upregulated genes include siderophore mediated iron uptake genes; PA2307 at 2.0 fold, fpvI at 
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2.4 fold, bfrB at 2.3 fold, and PA4156 at 2.1 fold.  Only a single gene was significantly 

downregulated and no genes were moderately down regulated.  The downregulated gene 

includes oprC at -3.2 fold (Table 4-3, Table 4).   

Lipases were upregulated in ΔΔ.  Lipase A and Lipase B were both upregulated at just 

under 2 fold (1.99 FC).  

Quorum sensing: Many quorum sensing genes were significantly upregulated including 

some for rhl, las and pqs genes.   The overall distribution shows moderate upregulation for 

almost 30 percent of genes and slight upregulation for more than 75% of genes.  %10 (10/99) 

genes were significantly upregulated while 17% (17/99) were moderately upregulated.  Some of 

the significantly upregulated genes include plcH (PA0844) at 2.9 fold, braD (PA1073) at -2.2 

fold, phzD2 (PA1902) at 3.8 fold, pqsA (PA0996) at 2.9 fold,  amiC (PA3364) at 2.6 fold, and rhlB 

(PA3473) at 2.5 fold .  rhlI was upregulated at 1.7 fold.  mvfR, a quorum sensing transcriptional 

regulator gene, was upregulated 2.0 fold. lasI and PA1196 were moderately upregulated 

showing a 1.4 fold for both genes.  mexG and mexH were moderately down regulated at -1.6 

fold and -1.9 fold respectively (Table 4). 

Fimbriae:  ΔΔ cup genes encoding fimbriae shows upregulation cupB and cupC genes 

and downregulation or no change for cupA genes.  The overall average of all cup genes was 

0.96.  21% (2/14) genes.  Significantly upregulated genes included cupC2 at 3 fold, cupB3 at 3.1 

fold. Moderately upregulated genes included cupB1,cupB4, and cupB6.  No significant 

downregulation was seen.  The two moderately down regulated genes included cupA1 and 

cupA2 (Table 4-3). 
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Chemotaxis: ΔΔ shows upregulation for some chemotaxis genes with an average of 1.1 

fold.  13% 6/45) of genes were significantly upregulated while 22% (10/45) genes were 

moderately upregulated.   No genes were significantly downregulated, and 4% (2/45 genes) 

were moderately downregulated.   

Alginate:  Alginate was upregulated for some genes showing a slight upregulation for 

the pathway at an average of 1.3 fold.  2/28 genes were upregulated significantly, 6/28 were 

upregulated moderately. Most of the regulon was unchanged.  The two significantly 

upregulated genes include algU and PA4033. No genes were significantly downregulated, and 1 

gene was moderately downregulated. 

Type 2 secretion system (T2SS): T2SS shows moderate upregulation with 9% (4/45) of 

genes were significantly upregulated and 24% (11/45) of genes were moderately upregulated.  

No genes were downregulated.  The remaining 65% are found just below 15 fold.   

Base excision repair proteins/DNA repair:  sbcD (PA4281) encoding a base excision 

repair protein/DNA repair was upregulated 2 fold.  The DNA invertase/DNA recombination gene 

PA3867 was upregulated 3 fold.  

Metabolism: A large number of metabolic genes were affected> 2 fold in ΔΔ (Table 4-3).  

Of these, about five times as many genes were upregulated as compared to downregulated.  

These ranged across 35 different metabolic groups.  Groups that showed an affect of 4 or more 

upregulated genes include: Valine, leucine, isoleucine degradation (7/47 /genes), arginine and 

proline metabolism (6/47 genes), butanoate metabolism (4/41 genes), pentose phosphate 

pathway (6/26 genes), phenylalanine metabolism (6/26 genes),  glycolysis/glucogenesis 4/35  , 
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propanoate metabolism 6/47, biosynthesis of amino acids 9/143, pyruvate metabolism 4/59, 

and carbon metabolism 11/127. 

Pathways with distinct up and downregulation: 

Biofilm (non pel/psl):  Significant genes for biofilm are both upregulated and 

downregulated in ΔΔ.  Overall, a pattern could be found that ΔΔ was downregulated in the 

biofilm pathway related to T6SS and rsmA genes, but upregulated in terms of quorum sensing 

and gacA genes.   

The main distribution of biofilm genes in ΔΔ is seen slightly above zero.  Pockets of 

significantly up and downregulated genes are expressed with a greater distribution of 

significant genes that are downregulated (Figure 4-10).  The average of the regulon is-0.7 fold.  

23% (21/91) of genes were significantly downregulated while 4% (4/91) were moderately 

downregulated.  Of the downregulated genes greater than 2 fold in ΔΔ, 13 genes belong to T6SS 

HSI-1, 4 genes to T6SS HSI-2, and two genes to T6SS HSI-3.   

8% (7/91) of genes were significantly upregulated while 12% (11/91) of genes were 

moderately upregulated.  The six upregulated genes greater than 2 fold include the following, 

gacA involved in the regulation of biofilm, rhlB involved in quorum sensing, mvfR, encoding a 

transcriptional regulator, and two genes that are part of the HptB dependent secretion system.  

Additionally, 10 genes were upregulated for ΔΔ between 1.5 and 2 fold including 3 genes from 

the wsp operon and alg44. Two genes included pqsB and phnB associated with quorum sensing.   

In addition, ΔΔ downregulated both siaA and siaD genes with siaA (PA0172) at -2.2 fold and 
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siaD (PA0169) at -2.8 fold.  Downregulation was also moderately seen on the cdrA/B genes with 

cdrA (PA4625) downregulated at -1.4 fold and cdrB (PA4624) at -1.4 fold (Table 4-3, Table 4).     

Two-component regulatory system (TCS):  of the 202 genes in this regulon, 18 were 

significantly upregulated (32 moderately).  6 genes were significantly downreguled (14 

moderately).  The upregulated TCS genes overlapped with several other pathways.  For 

upregulated genes, five TCS genes are involved in C4-dicarboxylate transport, five in 

chemotaxis, three in biofilm, three as regulators and  one in iron uptake.  The six significantly 

down regulated genes were found to be exclusively apart of Cytochrome c/b genes (Table 4).     

Denitrification: Denitrification showed general upregulation which included the nos, nar 

and nor operons.  Marginal downregulation of denitrification was seen in the nap operon. 

Denitrification shows most of the distribution is upregulated with almost half being greater 

than 1.5 fold.4% One gene was significantly upregulated while 42% (11/26) of genes were 

moderately upregulated. The nos genes were significantly downregulated while three from the 

nap operon were downregulated moderately (Table 4).   

C-di-GMP: C-di-GMP genes were stochastic with affected genes, showing several 

significantly downregulated genes along with a general moderate upregulation  of the regulon.  

10.5% (2/19) of genes were significantly downregulated greater than 2 fold.  26% (5/19) were 

moderately upregulated between 1.5 to 2 fold (Figure 4-1) (Table 4). 

Notable pathways with no major effect:   

Pel:   ΔΔ did not present any significant regulation (average -0.1 fold) (Figure 4-10). 
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Pyoverdine:  Most genes were unchanged with a small pocket of significant genes that 

are upregulated and a single gene that was significantly downregulated.  The average of the 

regulon is 0.04 fold. 12% (3/26) of genes were upregulated significantly while 15% (4/26) were 

upregulated moderately.  Significantly upregulated genes include pvcA, pvcD and tonB1, the 

energy transducer for pyoverdine was upregulated 2.3 fold and fpvI, encoding a sigma factor for 

pyoverdine was upregulated 2.4 fold.  fpvR, encoding the anti-sigma factor was not changed. 

4% (1/26) of genes were downregulated significantly with 12% (3/26) of genes downregulated 

moderately. The significantly down regulated gene included fpvA , the pyoverdine receptor by -

3.9 fold.  pvdS was downregulated by -1.9 fold (Table 4-3) 

Pyocyanin: ΔΔ did not show significant regulation changes in the pyocyanin pathway 

(average of 1.0 fold).  Out of 17 total genes in the regulon, one gene, phzF2, was significantly 

upregulated greater than 2 fold.  One gene was moderately upregulated and one 

downregulated between 1.5 and  fold.   

Sulfur: Overall, the majority of this distribution was insignificant with the majority of its 

gene distribution above and below a fold change of 1 with an overall average of 0.6.  The one 

significant gene that was upregulated was PA2595 at 3.3 fold.  ΔΔ showed downregulation of a 

specific pocket of cys operon genes including cysA at -2.1 fold, and cysI at -3.1 fold.  An 

additional gene in the same operon which was closely regulated was cysW at -1.95 fold (Table 

4-3, Table 4). 

Type IV Pili had little affect with slight upregulation for some genes. 6/34 genes were 

upregulated between 1.5 and 2 fold. 
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Flagella:  Only 2/47 genes were affected in the flagella pathway indicating not much 

change.  2/47 genes were significantly upregulated, motA (PA4854) and PA3526.  Most genes 

had no change, and no genes were downregulated. 

Sigma factors and Virulence regulators: 

Sigma factors were slightly upregulated for some genes in ΔΔ. 3/31 genes were 

significantly upregulated, eight were upregulated moderately.  Only one gene was moderately 

down regulated.  Significantly affected upregulated genes included algU (PA0762) at 2.3 fold, 

fpvI (PA2387) at 2.4 fold, and PA4896 involved in iron uptake for pyocin at 6 fold.    

Virulence Regulators:  Significant genes were both up and downregulated in ΔΔ with 

more genes being upregulated.  8/95 genes were significantly upregulated while 17/95 genes 

were moderately upregulated.   Several genes were significantly upregulated including mexR 

(2.9 fold),  psrA (3 fold), a quorum sensing transcriptional regulator gene, mvfR (2 fold), a 

quorum sensing repressor gene, qscR (1.9 fold), and amiC (PA3364 2.6 fold).  tpbA (2 fold) 

encoding a repressor of biofilms with significantly upregulated.   mraZ (PA4421) encoding a 

transcriptional regulator and cell division protein was upregulated 2 fold and gacA at 2 fold, 

and an o-antigen chain length regulator, wzz (PA3160) at 2 fold.   

9/100 were significantly down regulated while 2/100 were moderately. Some of 

significantly down regulated genes include ppkA (-3.5 fold), ptrB (-2.7 fold), and bexR (-4.5 

fold), pppA (-3.7 fold), PA2384 (-2.2 fold) a response regulator for iron uptake, a haemolysin 

regulator PA2463 (-2.9 fold).  rsmZ was downregulated by -4 fold. rsmY was downregulated by -
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2 fold. rsmA was not changed.  A full list of genes affected and their fold change values are in 

Table 4.  

 

Figure 4- 11: Summary of affected pathways for each PAO1 condensin deletion strain.  

Affected pathways summarized in a plot as the percent of total genes in each path that are 

changed by either 2 fold, 1.5 to 2 fold, or no change (Figure 4-2).   
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4.8  Comparison of relative expression levels in pathways for condensin mutant 

strains shows both an overlap and marked differences  

ΔmksB and Δsmc are oppositely regulated for biofilm (non pel/psl), psl, T3SS, T6SS HSI-I, 

the BexR regulon and α2-macroglobulin homologs.  ΔΔ expression overlaps with ΔmksB in these 

pathways while showing unique upregulation of some biofilm genes.  ΔmksB and ΔΔ expression 

levels in T3SS are overlapped and directly opposite to the expression levels of Δsmc.  Both 

ΔmksB and ΔΔ moderately increase expression levels in T3SS while Δsmc shows a marked 

reduction (Figure 4-1).  The opposite trend is seen for T6SS HSI-1, where both ΔmksB and ΔΔ 

are overlapped showing significant downregulation, while Δsmc is moderately upregulated 

(Figure 4-10). This same pattern of overlap is observed for several pathways including T6SS HSI-

2, BexR and psl (Figure 4-10, Figure 4-11).  It should be noted that the ΔΔ strain shows less 

pronounced expression level changes in these pathways when overlapped as seen in their 

averages for each regulon (Table 4-2) and general expression levels (Table 4).  This observation 

also holds when observing effector expression levels (Figure 4-12).   

Overlap between ΔmksB and ΔΔ is also seen in the biofilm pathways.  In this path, Δsmc 

shows pockets of upregulation while ΔmksB has a larger distribution of genes that are 

downregulated.  ΔΔ shows both up and downregulated genes (Figure 4-11).  The 

downregulated genes overlap with those in ΔmksB but the upregulated genes occur in a 

different set other than those affected in Δsmc.  Therefore, ΔΔ shows overlap with ΔmksB for 

down regulated biofilm genes, while having unique divergence for some upregulated biofilm 

genes.  Several toxins and genes for host evasion genes were downregulated in both ΔmksB and 

ΔΔ, including HCN toxins, hemolysin (PA2462) protease (PA0277), a stress hydrolase (PA1202) 
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and the α2-macroglobulin homolog genes.  Δsmc showed significant upregulation for the 

PA0277 protease and PA1202 hydrolase and a moderate upregulation of hemolysin as well as 

all α2-macroglobulin homolog genes.  

ΔmksB and Δsmc are oppositely regulated for several iron uptake genes and specific 

operons in denitrification. ΔΔ shows overlap for both strains in the pyoverdine path, while 

primarily showing overlap with Δsmc in the iron (non p,p,p) and denitrification groups. In 

addition, ΔΔ uniquely shows moderate upregulation of an additional denitrification operon.  In 

the pyoverdine pathway, ΔΔ shows a combination of overlap for both ΔmksB and Δsmc.  Δsmc 

shows a clear general upregulation while ΔmksB shows significant downregulation.  In the ΔΔ 

strain, the overall result is a stochastic effect in regulation for pyoverdine pathway with no 

major shift in overall distribution (Figure 4-10). Δsmc is significantly upregulated for many genes 

in the iron (non p,p,p) path while ΔmksB shows many significantly down regulated genes.  ΔΔ 

shows overlap with Δsmc for many of the affected upregulated genes (Table 4).  Denitrification 

shows a large set of upregulated genes in Δsmc that is associated with the nor and nos gene 

operons.  ΔmskB shows downregulation of genes in the nap operon and upregulation for genes 

in the nos operon.  ΔΔ expression levels shows overlap between both ΔmksB and Δsmc with 

upregulation in the nor and nos operons and downregulation of the nap operon. In addition to 

this overlap, ΔΔ also uniquely shows moderate upregulation of genes in the nar operon.  As a 

note, ΔΔ expression levels are more moderate compared to either strain (Table 4).    

Similar regulation for all strains:  Bacteriophage pf1 genes showed similar expression 

patterns for all three strains. Genes are overlapped between all three strains showing 
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significant downregulation. HCN toxins were reduced in all strains, although substantially more 

for ΔmksB and ΔΔ compared to Δsmc. 

All three strains show unique regulation in certain pathways.  For the sulfur pathway, 

Δsmc shows upregulation and ΔmksB shows downregulation.  ΔΔ is stochastically regulated 

with no overlap for either ΔmksB or Δsmc and is overall, marginally affected.  The ΔΔ strain 

shows a marked divergence from either single deletion for the majority of the pyochelin 

pathway which is expressed at an average of almost 2 fold while ΔmksB is markedly reduced 

and Δsmc shows no change.  Quorum sensing genes were for the most part unaffected in both 

Δsmc and ΔmksB with exceptions in some outlier genes.  ΔΔ shows a clear but moderate 

upregulation indicating ΔΔ uniquely regulates aspects of quorum sensing.  Flagella, Type IV pili, 

chemotaxis and alginate show no change in Δsmc, and nominal downregulation of some genes 

in ΔmksB.  ΔΔ shows unique upregulation of pockets of genes in these regulons.  Proteases on 

average are moderately increased in Δsmc while decreased in ΔmksB and not affected in ΔΔ 

(Figure 4-5).  Lipases show increased expression for ΔΔ but no change for the other strains 

(Figure 4-5).  Nitrogen metabolism showed clear downregulation in ΔmksB however, Δsmc and 

ΔΔ are both stochastically regulated.  For the nitrogen pathway, there is little overlap between 

the three strains (Table 4).   

Overall, Δsmc and ΔmksB revealed opposite expression trends for growth and virulence 

genes as well as the major secretion systems, T3SS and T6SS.  ΔΔ revealed overlap for ΔmksB 

for growth and secretion systems while showing overlap with Δsmc for iron uptake genes. In 

addition, Large groups of genes were uniquely expressed across all samples indicating 

independent regulatory pathways. 
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Figure 4- 12:  Average fold change of virulence effectors.   

 

4.9  Many affected virulence regulators show both overlap and marked 

differences between strains 

The fold change values for affected virulence regulators and sigma factors are plotted in 

Figure 4-13.  For iron uptake regulators, Δsmc showed significant upregulation while ΔΔ showed 

generally moderate increases (except for PA2384).  ΔmksB was for the most part, 

downregulated for regulators in iron uptake (Figure 4-5).  PA4896, a sigma factor for pyocin, 

was significantly upregulated in both Δsmc and ΔΔ and moderately upregulated in ΔmksB.  

Δsmc significantly upregulated the sigma factor for pyoverdine regulation, pvdS. In contrast 

ΔmksB was significantly decreased and ΔΔ decreased slightly.  The haem uptake regulator hasI 

(PA3410), was significantly upregulated in Δsmc and nearly 2 fold in ΔΔ while ΔmksB was 



 

147 
 

negligible. PA1300, encoding a haem uptake regulator gene (similar to fecI) as well as fiuI 

(PA0472), encoding a regulator for ferrichrome uptake, was significantly upregulated in Δsmc 

and marginally upregulated in ΔΔ. In contrast, ΔmksB showed no effect for PA1300 and was 

significantly decreased in fiuI (PA0472).  fpvI, encoding a sigma factor for pyoverdine, was 

significantly down regulated in ΔΔ and moderately in Δsmc.  PA2050, involved in metal uptake, 

showed a moderate increase in expression for Δsmc and a slight decrease in expression for ΔΔ.  

pchR was significantly downregulated in ΔmksB with no effect seen in Δsmc or ΔΔ (Figure 4-5).  

PA2384, a Probable Fur, Fe2+/Zn2+ uptake regulation protein gene, was significantly 

downregulated in both ΔmksB and ΔΔ.   

Overlap between ΔmksB and ΔΔ is seen for several regulators related to biofilm and the 

T6SS HSI-1 pathways which is opposite to Δsmc expression, with the exception of the ppyR 

regulator.  The siaA and siaD and cdrA and cdrB genes as well as ppkA and pppA regulators 

were downregulated in both ΔmksB and ΔΔ and upregulated in Δsmc coinciding with the 

regulatory pattern in the biofilm pathways. Interestingly, ppyR, a regulator for psl production 

and pyoverdine, was moderately upregulated in Δsmc and significantly up regulated in ΔmksB 

which is in conflict with the expression levels seen from both psl and biofilm (non pel/psl).  The 

alginate regulators, algU, and the alginate/twitching motility regulator, amrZ ,were upregulated 

in ΔΔ. However, tbpA, which encodes a protein that acts as a negative repressor of biofilms, 

was significantly upregulated in ΔΔ with no affect in the other strains (Figure 4-5). 

The bexR regulator gene (PA2432) was downregulated in both Δsmc and ΔΔ while 

upregulated almost 9 fold in Δsmc.  This regulon is a bi-stable switch for virulence factors 
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including genes aprA, protease PA1202.  vreI, another virulence regulator gene, was also down 

regulated in ΔmksB however, no affect was seen in other strains.   

Regulators for T3SS showed overlapped expression levels for ΔmksB and ΔΔ which were 

opposite to Δsmc regulation. Both ΔmksB and ΔΔ showed reduced expression of several T3SS 

regulators while Δsmc showed increased expression. Both ΔmksB and ΔΔ showed significant 

decreased expression of ptrB, a repressor of the T3SS, while Δsmc was upregulated coinciding 

with the T3SS pathway being decreased in Δsmc and increased in ΔmksB and ΔΔ.  In addition, 

Δsmc showed significantly decreased expression of the exs genes involved in regulating ExsA, an 

activator for T3SS.  These genes include exsE/C/D/A.  In contrast, these genes were moderately 

upregulated for both ΔmksB and ΔΔ.   exsC was significantly upregulated in ΔmksB.  In addition, 

the gene for the psrA activator of ExsA was upregulated in ΔΔ, highlighting another manner in 

with T3SS could be switched on.  

rsmZ and rsmY were significantly down regulated for all three strains (zero for rsmY 

Δsmc). The gacA gene was significantly upregulated for ΔΔ but no affect was seen for the other 

strains.  rsmA was significantly down regulated in ΔmksB and significantly upregulated in ΔΔ 

with no change in Δsmc. Downregulation of rsmZ and rsmY does not look attributable to GacA. 

RsmA regulation, however, could be affected from a lack of sequestering by rxmZ and rsmY.   

Several quorum sensing regulators and genes were upregulated in ΔΔ.  ΔmksB showed 

marginal change and ΔΔ was largely unaffected.  In ΔmksB, the qscR and qteE repressor genes 

were significantly downregulated, including a gene for the LasI autoinducer.  ΔΔ showed 

significant upregulation in the quorum sensing regulator genes, mvfR,  amiC and the qscR 
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quorum sensing repressor.  Several genes were affected including the rhlI and lasI autoinducer 

genes (Table 4-4). 

Interestingly, ΔΔ uniquely showed upregulation of the alginate regulator (algU (PA0762) 

and the alginate and twitching motility regulator, amrZ (PA3385)), a multidrug resistance 

operon repressor gene, mexR (PA0424), a gene encoding a regulator and cell division protein, 

mraZ and an O-antigen chain length regulator gene, wzz (PA3160).   

 

Figure 4- 13:  log2 fold change of virulence regulators and sigma factors. 

 

4.10  Condensin Mutant Profiles Summary 

Each condensin mutant exhibits a unique transcriptomic profile  

Analysis of the differentially expressed genes in these pathways revealed unique 

regulation for each condensin mutant (Figure 4-14).   For many of these pathways, opposite 

regulation was seen between Δsmc and ΔmksB condensin mutants .  Intriguingly, Δsmc 

followed patterns of chronic infection (sessile/biofilm growth state with enhanced T6SS) and 
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ΔmksB followed patterns for acute infection (planktonic growth state with enhanced T3SS) 

(Figure 4-6).  Major pathways that were oppositely regulated included T3SS, T6SS HSI-1, BexR, 

iron uptake, biofilm formation (psl, hemagglutinin) and sulfur metabolism.    

ΔΔ showed overlap with ΔmksB that was opposite to Δsmc for many pathways related 

to growth and secretion systems including the T6SS, T3SS, bexR, biofilm formation (psl and 

hemagglutinin).  In contrast, ΔΔ overlapped with Δsmc for several iron regulation genes (iron 

sigma factors/regulators, TonB1 and siderophore mediated iron uptake).  Interestingly, ΔΔ also 

showed unique expression for several pathways and genes.   

Overall, all three strains maintained unique profiles including the ΔΔ strain which 

reflected more than just the sum of the single deletions.  The unique regulatory patterns for 

each strain was partially indicated previously with a Venn diagram depicting 2 fold overlap of 

significant genes (Figure 4-3).  This reveals that condensin regulation is more than additive and 

includes independent regulatory pathways. 
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Figure 4- 14:  Venn diagram showing overlapping pathways and genes for PAO1 condensin 

strains. 

4.11  Regulators correlate with many pathways affected in condensin deletions 

Many regulators show relative expression levels that correlate with down stream 

pathways. Figure 4-6 maps regulators with expected down stream phenotypes as reported in 

literature along with the fold change for each mutant.   

 Both the ptrB repressor and exsA activator show correlation of expression levels with 

T3SS in all three strains as indicated (Figure  4-6).   The pchR regulator for pyochelin correlated 

with expression levels of the pyochelin regulon for ΔmksB.  pchR upregulated slighly at 1.3 fold 

for both the Δsmc and ΔΔ strains however, the expression levels for pyochelin were differed.   

Δsmc was slightly downregulated for pyochelin while ΔΔ was moderately upregulated, including 
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several signficantly affected genes.   Therefore no correlation was seen in Δsmc and only a 

slight correlation is seen for ΔΔ. 

Pyoverdin matched well with the expression levels of pvdS and the pyoverdin regulon 

for both Δsmc as well as ΔmksB.  On account of the stochastic up and downregulation of 

pyoverdin genes in ΔΔ, pvdS only partially correlated with phenotype in ΔΔ.   

Expression of the bexR regulator (PA2432)  correlated very well with nearly all genes  in 

the BexR regulon with the highest correlation with PA1202 for all mutants.  An exception is  

seen for the aprA toxin gene which is strain dependent.  In Δsmc, expression levels of the aprA 

toxin gene  strongly correlated with the bexR, however, at a lower  magnitude (9 fold vs 2 fold).   

In ΔmksB, bexR only moderately correlated with expression of aprA whereas,  no correlation 

was seen in ΔΔ.   

RsmA pathway:  rsmZ and rsmY sequester RsmA, resulting in sessile characteristics 

including T6SS production, biofilm, and pel/psl production.  In addition, sequestering results in 

increased pyocyanin and HCN production.  In contrast, free RsmA produces planktonic 

phenotypes including T2SS, T3SS, cell motility and lipases.  rsmY and rsmZ were signficantly 

downregulated for all strains (rsmY = 0 in Δsmc). In addition rsmA was signficiantly 

downregulated in ΔmksB while unchanged in Δsmc and ΔΔ.  rsmY/Z and rsmA expression levels 

do are not correlate with phenotypes in Δsmc which shows expression patterns related to a 

sessile lifstyle, slight reductions in HCN genes and no change in pyocyanin.  rsmY and rsmZ are 

correlated with phenotypes in ΔmksB which shows reduced biofilm regulation, reduced HCN 

and upregulated T3SS.   
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For the ΔΔ strain, the RsmA pathway is correlated with phenotypes related to the 

planktonic state however, it is only partially correlated with the pycyanine phenotype which is 

stochastic in ΔΔ.  

The T6SS and biofilm formation pathways are highly connected in which they share 

many genes for both pathways.  The siaA/siaD genes directly affect c-di-GMP levels which in 

turn promotes biofilm formation.  Expression levels of siaA and siaD shows a strong correlation 

to biofilm phenotype for all three strains.  This is also true for the cdrA/B genes which also 

promotes biofilm formation by activating psl production. 

ppyR, a regulator for pyoverdine and an activator of psl production (and biofilm) shows 

increased expression in ΔmksB and no change for the other strains. This regulator shows a 

negative correlation with expression levels of psl in ΔmksB strain, and no correlation with the 

other strains. 

T6SS HSI-1 is regulated by the phophorlation of the FHA domain of the Fha1 protein by 

the PpkA regulator.  Its antagonist is the PppA regulator.  For all strains, ppkA shows a strong 

correlation for T6SS expression.  pppA shows no correlation despite its high expression changes 

in all strains. 

For quorum sensing regulators in condensin deletion strains, correlation is only partial 

for phenotypes and is strain dependent.  No correlation was seen for vreI which acts on the 

LasR regulator.  In addition, no correlation was seen for qteE, encoding a repressor of LasR, as 

well as qscR, which encodes a repressor of LasR and RhlR.  Downregulation of PA1196 in ΔmksB 

was correlated with reduced hcn genes and the aprA toxin gene.  However, there was no 
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correlation for the expression of xcpP/R, lasB, toxA or pyocyanin expression levels.  PA1196 

shows no correlation for the other strains. 

MvfR positively regulates a number of downstream genes including T6SS HSI-2 , aprA, 

xcpP, lasB, toxA, hcn genes (through PQS), pyocyanin (through PQS), rhlA/rhlB (through PQS and 

LasRI/RhlRI regulation), lasA, xcpR, rpoS.  In addition, it negatively regulates the T6SS HSI-1 

system.  For all strains, mvfR was only partially correlated with phenotype.  mvfR was 

upregulated by 2 fold in ΔΔ which correlated with upregulation of lasB, toxA, and xcpP and 

significant downregulation of T6SS HSI-1.  mvfR however, did not correlate with other 

downstream phenotypes.   

In Δsmc, mvfR was only moderately correlated with the expression of the aprA toxin 

gene but no other phenotypes.  Similarly, in ΔmksB, mvfR was only correlated with reduced HCN 

gene expression, but no other phenotypes.  
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Figure 4- 15:  Map of pathways and regulators related to their expression levels.  A diagram 

depicting the expression levels of regulators in orange and pathways in blue.  Post translational 

regulators are marked in dark blue.  Green arrows indicate positive regulation, red negative 

regulation.  The three numbers in each box correlate to each condensin mutant.  On the left, 1, 

represents the fold change value for Δsmc, 2 represents the fold change value for ΔmksB and 3 

represents the fold change value for ΔΔ.  * indicates connected pathways. The effect of RsmA is 

conditionally based on if it is sequestered by rsmY and rsmX and is represented with dashed 

lines.   

 

Table 4- 3  Number of significant and moderately affected genes in each pathway.  Table for 

the number of genes having fold changes of a minimum of 2 fold or between 1.5 and 2 fold for 

each strain for the indicated pathways.  Pathways shown include those with at least one 

significantly affected gene (>=2 fold) across samples. 
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Type I Secretion System 1 1 0 0 0 0 2 0 0 1 0 0 5

Type 3 Secretion System 0 0 1 40 10 17 0 0 1 4 0 0 41

Type 6 secretion system HSI-1 7 28 0 0 0 0 1 41 0 0 5 35 43

Type 6 Secretion System HSI-2 0 4 0 0 0 0 3 14 0 4 2 12 27

Type 6 Secretion System HSI-3 2 6 1 0 0 0 2 11 1 3 4 2 26

Type 2 Secretion System 0 0 1 0 0 3 11 2 4 11 0 0 45

BexR Regulon 11 0 0 0 0 0 3 7 0 0 5 2 18

Psl exopolysaccharide 2 7 0 0 1 0 2 9 0 1 4 5 15

Pel exopolysaccharide 1 3 0 0 0 0 3 2 0 1 0 0 7

Biofilm formation (non pel/psl) 6 12 4 0 0 1 6 30 7 11 4 21 91

C-di-GMP signalling pathway 2 2 1 0 0 0 0 4 0 5 0 2 19

Pyochelin 0 0 4 0 0 0 0 11 3 6 0 0 11

Pyoverdine 6 7 0 0 0 1 7 8 3 4 3 1 26

Pyocyanin 1 1 1 0 0 0 1 2 1 1 1 0 17

Iron Acquisition (non p/p/p) 15 12 2 1 1 2 4 8 5 17 0 1 58

Sulfur relay system 1 1 2 1 0 3 1 0 5 7 1 0 19

Sulfur metabolism 19 5 0 0 0 4 7 4 1 5 3 2 51

Bacteriohage pf1 0 2 0 11 0 0 1 11 2 0 2 9 15

Denitrification 7 8 1 0 5 0 2 7 1 11 3 0 26

Nitrogen metabolism (no denitrification) 2 1 1 2 0 1 3 2 5 4 1 1 33

Quorum sensing 1 4 4 0 1 7 11 3 10 17 4 1 99

Virulence Factors 13 20 8 3 0 5 20 47 13 37 10 16 223

Virulence Regulators 3 7 1 4 2 3 9 14 8 17 1 8 95

Sigma Factors 4 6 0 0 0 1 6 1 3 7 1 0 31

Flagellar assembly 0 1 0 0 0 0 3 0 2 7 0 0 47

Type IV pili 0 0 2 0 0 2 2 1 0 6 1 0 34

Bacterial chemotaxis 0 2 1 1 3 5 5 2 6 10 2 0 45

Alginate 0 0 4 0 0 1 5 0 2 6 1 0 28

Fimbriae 1 1 0 0 0 0 0 2 2 3 2 0 14

Two-component system 1 14 7 3 2 17 16 6 18 32 14 6 202

α2-macroglobulin homolog synthesis 0 6 0 0 0 0 0 6 0 0 1 5 6

Lipases 0 1 0 0 0 0 3 1 0 2 0 0 7

HCN toxin 0 0 0 0 0 0 0 3 0 0 0 3 3

Haemolysins 0 1 0 0 0 0 0 1 0 0 0 1 2

Proteases 2 0 0 0 0 0 2 2 2 1 0 1 11

Toxins 1 1 0 3 0 2 2 5 1 1 0 5 13

Phospholipases 0 1 0 0 0 0 2 1 0 1 0 0 5

Phenazine biosynthesis 1 2 2 0 0 0 3 3 2 5 2 0 29

Ribosome 0 0 1 1 0 2 0 1 1 1 5 1 68

RNA degradation 0 0 0 0 0 1 1 2 1 2 1 0 15

Protein export 0 0 0 0 0 1 0 1 0 1 1 1 18

Base excision repair 1 0 0 0 0 0 0 0 1 0 0 1 13

Non-homologous end-joining 0 0 1 0 0 0 0 1 0 0 0 0 2

Adherence: LPS O-antigen 0 0 0 0 0 0 2 1 2 4 0 0 20

Rhamnolipid biosynthesis 0 0 1 0 0 0 1 0 1 0 0 0 3

	Peptidases 1 0 0 0 0 0 2 0 0 2 0 0 6

	Lipopolysaccharide biosynthesis proteins 0 0 0 0 0 0 1 0 1 0 0 0 1

	Polyketide biosynthesis proteins 0 0 1 0 0 0 0 1 0 1 0 0 1

	Transcription factors 0 0 0 0 1 2 11 3 5 20 1 0 81

	Transcription machinery 4 5 0 0 0 2 6 1 4 6 1 0 26

	Transfer RNA biogenesis 0 1 0 0 0 1 0 0 1 0 0 0 7

	Chaperones and folding catalysts 0 0 0 0 0 0 0 3 1 5 0 0 15

	Chromosome and associated proteins 0 0 0 0 0 1 1 0 1 7 0 0 28

	DNA repair and recombination proteins 0 0 0 0 0 1 0 0 1 1 0 0 7

	Exosome 0 0 1 0 0 1 0 1 0 2 0 0 5

	Antimicrobial resistance genes 0 4 1 1 0 0 4 5 7 8 2 1 49

Glycolysis / Gluconeogenesis 1 2 0 0 1 3 2 2 4 9 2 1 35

Citric acid cycle (TCA cycle) 0 3 0 0 1 3 2 1 2 5 4 0 31

Pentose phosphate pathway 1 1 1 0 1 1 2 1 6 1 1 0 26

Biosynthesis of unsaturated fatty acids 0 0 0 0 0 1 1 1 0 2 0 0 13

Biosynthesis of siderophore group nonribosomal peptides 0 0 1 0 0 0 0 6 2 4 0 0 7

Biosynthesis of secondary metabolites 5 9 10 0 5 36 18 18 24 55 19 9 336

Microbial metabolism in diverse environments 5 15 7 3 5 21 30 13 29 49 14 4 280

Biosynthesis of antibiotics 5 10 8 1 3 28 16 13 23 38 20 5 267

Carbon metabolism 0 6 3 0 2 17 7 6 11 17 8 5 127

2-Oxocarboxylic acid metabolism 1 0 1 0 1 2 0 2 3 4 0 0 30
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Pentose and glucuronate interconversions 0 0 0 0 0 1 2 0 1 1 1 0 7

Galactose metabolism 0 1 0 0 0 0 1 0 1 0 1 0 5

Fatty acid biosynthesis 0 2 0 1 1 9 2 2 0 4 0 1 26

Fatty acid degradation 0 2 2 0 0 5 4 2 3 8 0 0 32

Synthesis and degradation of ketone bodies 2 1 1 0 0 2 2 1 0 2 0 0 10

Ubiquinone and other terpenoid-quinone biosynthesis 1 0 0 0 0 1 0 2 1 3 0 0 18

Oxidative phosphorylation 2 2 1 1 2 10 3 1 3 3 7 6 57

Arginine biosynthesis 0 1 1 0 0 1 0 4 2 4 1 0 29

Purine metabolism 0 0 4 0 1 7 3 2 4 9 3 0 84

Pyrimidine metabolism 0 0 4 0 0 8 2 2 1 1 1 0 45

Alanine, aspartate and glutamate metabolism 1 1 3 0 0 7 2 0 2 4 3 0 37

Glycine, serine and threonine metabolism 3 2 1 1 1 6 1 2 2 9 5 4 49

Monobactam biosynthesis 1 0 0 0 0 0 0 1 1 0 1 0 9

Cysteine and methionine metabolism 1 1 0 0 0 2 2 2 0 3 5 1 41

Valine, leucine and isoleucine degradation 3 5 1 0 1 5 9 2 7 8 1 0 47

Geraniol degradation 0 1 1 0 0 1 1 0 3 6 0 0 16

Valine, leucine and isoleucine biosynthesis 0 0 1 0 1 0 0 1 2 4 0 0 20

Lysine biosynthesis 0 0 0 0 0 0 0 2 2 0 0 0 15

Lysine degradation 0 2 1 0 0 4 3 0 0 4 1 0 19

Arginine and proline metabolism 2 1 1 2 2 1 5 3 6 5 9 0 47

Histidine metabolism 0 2 1 0 0 2 2 1 2 7 2 0 24

Tyrosine metabolism 2 1 0 0 0 1 2 3 2 9 1 0 27

Phenylalanine metabolism 1 1 0 0 1 3 1 1 6 8 1 0 26

Tryptophan metabolism 0 2 2 0 1 3 6 0 1 7 2 0 27

Phenylalanine, tyrosine and tryptophan biosynthesis 0 0 0 0 0 2 1 0 1 9 1 0 30

beta-Alanine metabolism 1 1 2 1 1 5 4 2 3 3 3 0 26

Taurine and hypotaurine metabolism 2 2 1 0 0 0 3 1 0 1 0 0 9

Phosphonate and phosphinate metabolism 0 1 1 0 1 0 2 0 1 1 0 0 10

Cyanoamino acid metabolism 0 1 3 0 0 2 1 3 0 1 0 5 11

Glutathione metabolism 0 2 1 0 1 1 2 1 2 5 2 0 26

Starch and sucrose metabolism 1 0 1 0 0 0 2 2 1 5 1 0 16

Amino sugar and nucleotide sugar metabolism 0 2 0 0 0 1 6 0 2 4 3 0 36

Streptomycin biosynthesis 0 0 0 0 0 0 0 0 1 1 0 0 8

Peptidoglycan biosynthesis 0 0 0 1 0 0 0 0 0 2 0 0 20

Glycerolipid metabolism 0 0 0 1 0 0 0 1 0 6 0 0 14

Glycerophospholipid metabolism 0 1 0 0 0 0 1 4 1 4 1 2 28

alpha-Linolenic acid metabolism 0 0 0 0 0 0 0 0 1 0 0 0 3

Sphingolipid metabolism 0 0 0 0 0 0 0 1 0 0 0 0 2

Pyruvate metabolism 1 5 1 0 2 8 7 2 4 13 2 0 59

Xylene degradation 0 0 0 2 0 0 3 0 0 0 1 0 5

Chloroalkane and chloroalkene degradation 0 0 0 0 0 0 0 1 0 1 0 0 8

Naphthalene degradation 0 0 0 0 0 0 0 1 0 0 0 0 2

Aminobenzoate degradation 0 0 1 0 1 1 4 1 1 6 0 0 15

Glyoxylate and dicarboxylate metabolism 0 3 4 1 0 7 4 0 3 11 3 3 56

Nitrotoluene degradation 0 0 0 0 0 1 1 0 1 0 0 0 2

Propanoate metabolism 1 5 1 0 1 9 7 2 6 8 1 0 47

Styrene degradation 1 1 0 0 1 0 2 1 2 5 0 0 12

Butanoate metabolism 2 1 3 0 1 5 4 2 4 8 2 0 41

C5-Branched dibasic acid metabolism 0 0 1 0 1 0 0 2 1 3 0 2 14

One carbon pool by folate 0 0 1 0 0 2 0 0 2 3 0 3 18

Methane metabolism 0 1 1 0 0 5 1 1 1 5 4 2 26

Thiamine metabolism 1 1 0 0 0 2 1 0 1 2 1 0 13

Riboflavin metabolism 2 0 0 0 0 0 0 0 1 2 0 0 11

Vitamin B6 metabolism 0 0 0 0 0 1 0 1 0 0 1 0 9

Pantothenate and CoA biosynthesis 0 0 3 0 1 3 3 1 2 3 1 0 23

Biotin metabolism 0 2 0 0 0 2 1 2 0 2 0 1 21

Folate biosynthesis 0 0 1 3 0 3 4 2 9 6 0 0 29

Porphyrin and chlorophyll metabolism 0 1 2 0 1 4 3 1 2 4 5 0 43

Aminoacyl-tRNA biosynthesis 0 2 1 3 0 0 0 5 1 3 2 4 101

Fatty acid metabolism 0 3 1 1 1 13 5 3 3 8 0 1 48

Degradation of aromatic compounds 0 0 0 2 0 0 6 2 3 3 1 0 26

Biosynthesis of amino acids 3 2 4 0 1 13 3 7 9 21 7 4 143

beta-Lactam resistance 0 1 0 3 0 0 1 3 2 2 1 0 27

Vancomycin resistance 0 1 0 0 0 1 0 1 0 0 1 0 8

Cationic antimicrobial peptide (CAMP) resistance 1 1 1 1 0 1 2 2 1 2 2 0 28

ABC transporters 17 12 6 4 10 8 23 16 20 41 6 5 193
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Chapter 5:  Nucleotide bias, replication and segregation in asymmetric 

chromosomes 

5.1  Introduction 

Sections 5.2, 5.4 and 5.5 of this chapter has been published in the following: Segregation 

but Not Replication of the Pseudomonas aeruginosa Chromosome Terminates at Dif.  Bijit K. 

Bhowmik, April L. Clevenger, Hang Zhao, Valentin V. Rybenkov mBio Oct 2018, 9 (5) e01088-18; 

DOI: 10.1128/mBio.01088-18. 

Deletion of the mksB condensin gene causes a large chromosomal inversion in the PAO1 

genome, significantly altering alignment of oriC, the origin of replication, and dif, the 

chromosomal dimer resolution site [4].  These markers are prominent sites related to a 

nucleotide usage bias known as GC skew. GC skew is an underlying signaling code in bacterial 

DNA where there is an abundance of guanines on the leading strand and cytosines on the 

lagging strand.  GC skew is utilized as a prediction tool for locating oriC and dif based on GC 

skew switch points (switch in abundance between guanines and cytosines).   

Typically, bacteria have symmetrical layouts where their terminus of replication and dif 

site align (Figure 5-1 A).  Segregation and replication are highly coordinated at their start sites 

indicated by the close proximity between oriC and parS, the initiation site in segregation.  This 

coordination allows greater efficiency during growth and decreases the probability of 

developing problems on account of stalled processes.    How dependent these processes are on 

each other is not exactly clear as symmetrical alignment makes it difficult to distinguish 

replication and segregation models 
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PAO1-UW has an asymmetric chromosome where one arm is 56% longer than the other.  

In this strain, the chromosome is longitudinally aligned between oriC and dif, where dif is 

asymmetrically aligned from the opposite of oriC [5] (Figure 5-1 B).  

Here, we used the asymmetrical PAO1-UW as a model strain for studying the 

coordination between segregation, replication and nucleotide bias.  The terminus of replication 

was determined to be directly opposite from oriC [16] (Figure 5-2).   In contrast, the terminus of 

segregation ends asymmetrically at the dif site [5].  This confirmation of markers for 

segregation and replication in an asymmetric strain allowed us to study their coordination with 

nucleotide bias.  In this chapter, we performed GC skew analysis on the asymmetric PAO1-UW 

strain, as well as on a larger scale for all sequenced bacterial chromosomes in the NCBI 

database [6], using bioinformatic analysis.   

 

Figure 5- 1:  Symmetric and asymmetric chromosomal layouts.  (A) symmetric chromosomal 

layout where dif and the terminus of replication align and are opposite from oriC. (B) 
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Asymmetric layout in PAO1 where dif, the chromosomal dimer resolution site, is misaligned 

relative to the opposite of oriC. 

 

Figure 5- 2:  Chromosome map of the asymmetrical PAO1-UW strain.  The map shows the 

terminus of replication directly opposite from oriC and the terminus of segregation at the 

asymmetrical dif [5]. 

5.2  GC-skew switches polarity at dif, not opposite from oriC for PAO1-UW 

GC skew analysis was first performed on the PAO1-UW strain with code generated in 

MATLAB (Figure 5-3).  GC skew was calculated as (G-C)/(G+C) where G represents the number 

of guanines and C, the number of cytosines from the positive DNA strand.   Analysis was done 

using a 1 kb sliding window.  oriC was determined as the first switch in GC skew polarity which 

initiated a positive GC skew.  The terminus of replication was determined directly opposite of 

oriC as verified experimentally using marker frequency analysis [5].  The dif site for Xer C/D 

recombination includes the sequence (GATTCGCATAATGTATATTATGTTAAAT) [220] which is 

located at 2.4 Mbp.  The results show that there is an abundance of guanines between oriC and 

the dif site and an abundance of cytosines on the rest of the chromosome (on the positive 
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strand).  GC skew switches polarity approximately 15 kb from the dif site, 682 kb away from the 

terminus of replication.  Therefore, in the asymmetrical PAO1-UW chromosome, GC switches at 

dif but not the terminus of replication.   

FtsK is a DNA translocase motor protein which brings together two dif sites guided by 

numerous KOPS (FtsK orienting polar sequences; 5′-GGGNAGGG-3′), which are distributed 

asymmetrically along both arms from oriC to dif ) [221]. KOPS sequences were therefore 

plotted for both the plus and minus strand as a comparison to GC skew.  The KOPS skew shows 

correlation and switching at the same point that GC skew switches raising the question as to 

whether GC skew and KOPS skew are related phenomena. 
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Figure 5- 3:  GC, CGC, and KOPS skew of PAO1-UW.   (A) Distribution of dif locations in the 

bacterial genomes GC-skew (black) and CGC-skew (red), with oriC, dif, and the replication 

terminus (top) and locations of KOPS sites (bottom) in the chromosome of PAO1-UW indicated. 

5.3  KOPS sequences are independent from GC skew 

Analysis of the number of KOPS sequences on each strand showed that 153 and 34 

KOPS were on the positive and negative strands of the short chromosome arm.  On the long 

arm, 75 and 57 KOPS were found on the negative and positive strands.  Calculation of the 

contribution of excessive guanines shows that 595 guanines were contributed to the short arm 

and 1,070 to the long arms.  Total guanine excess for the short arm is 45,815 and 81,859 for the 

long arm.  KOPS sequences therefore do not significantly contribute to GC skew. 

To test if these processes are independent, we analyzed how other sequences similar to 

KOPS with varying % G and % C would contribute to the excessive GC skew.   The excess KOPS 

hits and excessive GC-skew for both the short and long chromosomal arms were calculated as 

the following (Equations 5-1, 5-2): 

                                       

Equation 5- 1  Excess KOPS hits  

Excess KOPS hits = KOPS hits (plus strand) – KOPS hits (minus strand)  

    

Equation 5- 2   Excess GC-skew 

Excess GC-skew =  
𝐸𝑥𝑐𝑒𝑠𝑠 𝐾𝑂𝑃𝑆 ℎ𝑖𝑡𝑠 ∗ (𝐾𝑂𝑃𝑆 𝐺′𝑠−𝐾𝑂𝑃𝑆 𝐶′𝑠)

𝑡𝑜𝑡𝑎𝑙 𝐺′𝑠+𝑡𝑜𝑡𝑎𝑙 𝐶′𝑠
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 The KOPS sequence modified with two permutations was tested for a total of 16 queries 

along with one extra query.  The actual KOPS sequence is query 10 - GGGCAGGG.  Five controls 

were used that show the effect of excess guanines in different ways. The results for KOPS 

analysis is found in Figure 5.4. Interestingly, a modified version of KOPS, query 2 - GAGCAGGG, 

contributed the highest frequency of excess KOPS hits and overall highest percentage of 

excessive guanines.  This sequence, however, did not contain the greatest number of guanines.  

KOPS still showed a high frequency of hits and contribution to excessive guanines relative to the 

other sequences including those with a higher number of guanines in their sequence.  Overall, 

the results show that the prevalence of KOPS hits and ultimately contribution to excessive 

guanines is not based on sheer number of guanines within the KOPS sequence.  This indicates 

that KOPS specificity to the chromosome is independent of GC skew.    
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Figure 5- 4:  10x % excess G-C skew contribution for varying KOPS query sequences.  Plot 

shows values for both the short and long arms of the chromosome. 

  

5.4  6% of analyzed chromosomes are asymmetric 

After determining that the PAO1-UW chromosome is asymmetric for dif relative to oriC, 

we next determined the prevalence of asymmetry across all bacterial strains. In order to do 

this, we first performed a blast analysis of 8,530 complete sequenced chromosomes obtained 

from the NCBI database [6] with a consensus dif sequence 

(AATTCGCATAATGTATATTATGTTAAAT).  Approximately half (4,055) of the chromosomes were 

found to have a full dif sequence.  Next, chromosomes were filtered for having two consistent 

GC skew domains, one with abundant guanines and the other with abundant cytosines.  The 
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location for oriC was determined from the first GC skew switch point.  The terminus of 

replication was calculated directly opposite from oriC as experimentally determined in the 

PAO1 model organism [5]. 

Overall, about 6% of all chromosomes are asymmetric for dif relative to the terminus of 

replication (for more details and figures [5]). Asymmetrical chromosomes were defined as 

having a significant (5% or greater) distance between dif and the terminus of replication.  This 

range was outside of 3.3 standard deviations of a Guassian fit (99% confidence interval) (Figure 

5-5).    

 

Figure 5- 5: Prevalence of asymmetric chromosomes. Numbers of chromosomes with the 

indicated genomic separation between dif and the replication terminus.  The data were fit to a 

Gaussian distribution. Chromosomes where dif was located more than 5% away from the 
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predicted terminus of replication were considered asymmetric resulting in 6% asymmetric 

chromosomes.  

5.5  GC skew aligns with dif, not the terminus of replication for both 

symmetrical and asymmetrical chromosomes 

Next we analyzed the overall distributions of distances between the GC skew switch 

points and dif as well as the GC skew switch points and the terminus for both symmetrical and 

asymmetrical chromosomes.  On average, dif was 13 kb away from the switch as opposed to 71 

kb for the terminus of replication[5]).  The overall results show that GC switch aligns with dif 

but not the terminus of replication (Figure 5-6).  This was found to be true in in both symmetric 

and asymmetric chromosomes. In addition, the overall distribution of distances between the 

GC-switch and dif was indistinguishable between the two types of chromosomes (Figure 5-7)  

(for more details and figures on this topic, see the referenced paper [5]). 
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Figure 5- 6:  Comparison of the distribution of distances of the GC-switch to dif and the 

expected terminus of replication for symmetric and asymmetric chromosomes. 

 

 

Figure 5- 7: Distribution of distances between GC-switch and dif for the percent of symmetric 

and asymmetric chromosomes.  
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Discussion 

Pseudomonas aeruginosa is a major opportunistic pathogen capable of causing a variety 

of acute and chronic infections. The progression into different infection states is due in part to 

lifestyle switching.  PA is equipped with a large regulatory network geared for adapting and 

circumventing environmental stressors.  The ability to form biofilms is an intrinsic aspect for its 

survival.   

Two different families of condensins are in P. aeruginosa, MksBEF and SMC-ScpAB. 

Physiological assays revealed opposite lifestyle states for the ΔmksB and ∆smc strains where 

deletion of smc produced sessile biofilm growing cells and deletion of mksB produced 

planktonic growing cells with reduced biofilm formation [1].  Transcriptomic analysis coincided 

with physiological assays while revealing that PAO1 condensins are global regulators of gene 

expression.  These changes affected a number of different virulence and growth pathways. 

Remarkably, ΔmksB reflected expression profiles in the acute infection phase while Δsmc 

reflected those in the chronic infection phase implying a significant role of condensins in 

infection progression. 

Phenotype for the double deletion strain in physiological assays was dominated by 

ΔmksB [1].  This control over the growth state implicates MksB as a dominant factor for growth 

regulation.   Expression patterns for the double deletion strain revealed overlap for growth 

genes with ΔmksB and iron uptake genes with Δsmc.  Together, each condensin profile revealed 

hundreds of uniquely regulated genes including the double deletion strain indicating that many 

regulatory pathways are non-additive and independently regulated.   
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Regulation by MksB was found to be dependent on conformation through an ATPase 

mutation study.  Additional physiological assays revealed that condensin phenotype is both 

context and strain dependent.  Complementation analysis of mksB revealed an underlying 

genetic context resulting in regulatory plasticity.  Investigation of PA14 revealed strain 

dependence of condensin phenotypes implying that regulatory plasticity may contribute to 

diversity in different strains. 

Condensins are global regulators involved in infection progression: 

Transcription analysis revealed broad global regulation patterns between condensin 

deletion strains in PAO1.  For single deletion strains, ∆smc and ∆mksB, regulatory patterns for 

growth and virulence were strikingly opposite and reminiscent of acute and chronic infection 

phases.  ∆smc upregulated genes involved in biofilm formation including a number of adhesion 

genes, the BexR regulon, T6SS, and iron uptake.  Downregulated genes included the T3SS 

pathways.  This profile reflects the sessile lifestyle state and chronic infection phase. ΔmksB 

downregulated T6SS, the BexR regulon, biofilm formation, iron uptake and adhesion genes and 

upregulated T3SS reflecting planktonic growth and the acute infection phase.   

These trends correlate with the expression levels of several virulence regulators; PtrB 

and ExsA/B/C/D/E which regulate T3SS, the SiaA/D and CdrA/B genes which regulate c-di-GMP 

and biofilm, PvdS which regulates pyoverdine, BexR which regulates AprA toxin and other 

virulence factors, and PpkA which regulates T6SS. These findings implicate condensins as global 

regulatory factors for infection progression.   
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Interestingly, the double deletion strain showed overlap with ΔmksB for genes related to 

growth including biofilm and adhesion genes as well as the Types 3 and 6 secretion systems and 

the BexR regulon including associated virulence regulators.  In this regard, the double deletion 

strain reflected planktonic growth and the acute infection phase.  Overlap with ∆smc was also 

seen for several iron uptake genes.  However, a major affected iron uptake pathway in ∆∆, 

pyochelin, did not resemble either single deletion strain. 

Overall, all three condensin mutant strains revealed hundreds of uniquely regulated 

genes.  These results show that the manner of regulation by condensins is not merely additive.  

While growth regulation was dominated by mksB, each deletion strain contributed a unique 

transcriptional profile where the delta double strain reflected more than just the sum of the 

single deletion strains.  This implies that condensins are independently integrated into the 

regulatory network with special programs.   

For all condensin mutant strains, both virulence and growth programs were significantly 

affected implying an inherent link in regulation between these regulatory pathways. A 

connection between growth and virulence pathways can allow easier conversion between 

major infection phases where alterations in growth subsequently results in major changes to 

virulence programs.  This link implicates PAO1 condensins as global regulators of infection 

progression.   

The study on ATPase point mutations illuminated aspects of how condensins control 

gene expression.  Interestingly, MksB phenotype is conformational dependent and does not 

require ATPase activity as much as it does specific MksB intermediate states.  This was also seen 
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for the ∆smc strain [1].  How these specific conformations contribute to regulation remains to 

be determined.  Regulatory effects by condensins could very well be related to their roles as 

chromosome maintainers.  One possibility is that specific conformations are necessary in 

chromosome scaffolding, which may contribute to overall chromosome structure and 

subsequent regulatory effects. 

Context dependence of condensin phenotypes reveals regulatory plasticity; a possible 

mechanism for adaptation and evolution: 

Physiological assays showed that condensin phenotype is both context and strain 

dependent.  Using the degron system and ATPase point mutations, we showed that MksB is 

linked with biofilm formation; however, significant cis effects or even secondary consequences 

of the mksB deletion prevented complementation through the reincorporation of mksB.  Cis 

effects include a number of factors including cis regulatory elements (CRE’s) (i.e. silencers and 

enhancers) and epigenetic factors (such as methyl groups, miRNA, or sRNA) which can regulate 

gene expression. Less direct factors related to chromosome structuring could also play a role in 

gene expression.  This study highlights irrevocable changes to the chromosome resulting from a 

mksB deletion, however, further studies are necessary to confirm the exact nature of how the 

chromosome has been altered.  

One possibility for secondary effects includes a recent discovery by Dr. Bijit Bhowmik, 

which showed that a mksB deletion results in a large chromosomal inversion between two 

rRNA sites 2.2 Mbp away [4].  This finding raises the possibility that chromosomal 

rearrangement occurring in the ΔmksB strain may permanently alter mksb phenotype.  MksB 
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may play a role in holding the chromosome in a particular stable topology which prevents 

inversion.  Its removal or decrease could result in instability in maintaining this particular 

topology, resulting in inversion and irreversible alterations to the chromosome.  Subsequently, 

mksB regulation of gene expression may reside in how it maintains chromosome integrity.   

Overall, context dependence of condensin phenotypes reveals regulatory plasticity.  

mksB phenotype is dependent on more than just the association of genes to functions, it also 

resides on a genetic context.  This genetic context to condensin regulation allows additional 

diversity within the regulatory network. 

Physiological studies on PA14 revealed that condensin phenotypes are strain 

dependent.  PA14 condensin displayed markedly smaller effects on phenotype than PAO1.  

These results implicate differences in how condensins are integrated into their regulatory 

network. This study, however, is limited in that phenotypes are determined by physiological 

assays alone and does not include gene expression profiles. Further transcriptomic analysis on 

PA14 condensin mutations is needed to better illuminate their regulatory effects which may be 

diminished by additional factors.   

Regulatory plasticity could allow greater diversity across strains and species, serving as a 

possible mode for adaptation and species formation.   The PAO1 system may have incorporated 

condensins in a manner that allowed substantial regulatory benefits that contribute to disease 

progression and virulence in addition to their roles in chromosome maintenance.  Regulatory 

plasticity may contribute to overall organism variability, helping drive adaptation and evolution  
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GC skew alignment with dif but not the terminus of replication is possibly due to integration 

during early bacterial evolution: 

An inversion in the chromosome caused by mksB illuminated a major shift of the 

chromosome dimer resolution site, dif relative to the origin of replication, oriC [4].  This 

asymmetry provided a unique opportunity to study aspects of segregation and replication which 

are otherwise indiscernible in symmetric chromosomes.  The chromosome is highly integrated 

into an inherent code known as GC skew. This code has been used as prediction markers for oriC 

and dif.   One of the prominent proposals regarding the origin of GC skew is that it is due to a 

higher incorporation of guanines in the leading strand during replication.  This proposal is 

consistent for its alignment with oriC, however, it does not explain the consistent alignment 

with dif and whether this skew is also aligned with the terminus of replication.  This study 

differentiated segregation and replication processes in an asymmetrical chromosome model to 

study their coordination along with GC skew.   

Using marker frequency analysis, replication was found to terminate opposite from oriC, 

despite asymmetry of the PAO1-UW chromosome [5].  In contrast, segregation terminated at 

the asymmetric dif [5] .  This allowed confirmation of the relative locations for both the 

terminus of replication and the terminus of segregation in asymmetric chromosome types and 

showed that they are not coordinated.   

GC skew analysis of the PAO1 model organism revealed alignment with dif but not the 

terminus of replication.  This finding showed that in the asymmetric chromosome in which 

segregation and replication termini are clearly differentiated, GC skew is aligned with dif, found 
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at the terminus of segregation, rather than the expected terminus of replication.  Extending this 

study to all sequenced bacterial chromosomes also showed that dif, not the terminus of 

replication, exclusively aligns with GC skew in both symmetric and asymmetric chromosomes 

(6% of the chromosomes analyzed).     

In order to reconcile these observations for GC skew alignment on the premise that GC 

skew is generated during replication, we propose that the dif sequence likely integrated itself 

near the GC skew switch early in evolution. The XerC/D recombinase system recombines DNA at 

dif sites, helping to separate chromosome dimers.  It is possible that dif sites, found in ancient 

DNA, may have recombined with each other and were integrated at the GC switch point 

proximal to the terminus of replication early in bacterial evolution. This could explain why most 

bacterial chromosomes having a full dif sequence are symmetrically aligned for dif and the 

terminus of replication along with GC skew.  Subsequent alterations to chromosomes across 

bacterial strains during evolution would affect the orientation between oriC and dif while 

maintaining their locations at GC skew switch points.  This could account for the lack of 

alignment of GC skew observed for the terminus of replication.  Further analysis will be required 

to better understand the ancient origins of dif integration onto the GC skew switch sites. 
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Appendix 

Table 1:  List of plasmids used in studying P. aeruginosa physiology 

Plasmids Description Source or 
reference 

General vectors   

pFLP2 ApR; Site-specific excision vector  
 

[190] 

pUCP22 ApR; shuttle plasmid  
 

 

[192] 

pEXG2 GmR; Scarless deletion plasmid [194] 

pEX18Ap ApR; Deletion plasmid [190] 

pYM101 ApR; Source of lacIq gene and the T7 early 
promoter PT7(A1/04/03)  

 

[193] 

PAO1 study   

pEX-∆mksB::mksB ApR; GmR; mksB knock-in plasmid for 
mksB1 used for complementation 

This study 

pEX-mksB-D864A ApR; GmR; mksB-D864A ATPase point 
mutation plasmid 

This study 

pEX-mksB-E865Q ApR; GmR; mksB-E865Q ATPase point 
mutation plasmid 

This study 

pEX-mksB-S829R ApR; GmR; mksB-S829R ATPase point 
mutation plasmid 

This study 

pEX-mksB-Das4 ApR; GmR; ClpXP mediated degradation of 
MksB protein 

This study 

pEXG2-sspB GmR; sspB deletion plasmid [194] 

pUCP22-SspB (pSspB) ApR; SspB expression vector under araC-
ParaBAD control  

This study 

pUCP-mksB ApR; MksB-His8 expression vector under 
araC-ParaBAD control 

[27] 

PA14 study   

pEX-∆smc ApR; GmR; smc deletion plasmid [27] 

pEX-∆mksB ApR; GmR; mksB deletion plasmid [1] 
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pEX-∆mksB2 ApR; GmR; mksB2 deletion plasmid for 
mksB2 in PA14 

This study 

pEX-lac-mksB2 ApR; GmR; lacIq-PT7 insertion plasmid for 
mksB2 

This study 

pEX-∆mksB2 ∆mksG ApR; GmR; mksB2-mksG deletion plasmid in 
PA14 

This study 
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Table 2:   List of strains used in studying P. aeruginosa physiology.  GmR-FRT designates a 

gentamicin resistance marker flanked by two FRT sequences.  ΔGm-scar designates removal of 

GmR-FRT by flippase (Flp) recombination at the FRT sequences, leaving an FRT sequence at the 

noted locus.  

Strain Relevant genotype or description Source or 

reference 

E. coli strains   

SM10 (λ pir) thi thr leu tonA lacY supE recA::RP4-2-

Tc::Mu KmR λpir 

[190] 

DH5α supE44 DlacU169 hsdR17 recA1 endA1 

gyrA96 thi-1 relA1 

Novagen 

PAO1 strains   

PAO1 WT lacIq+ delta(lacZ)M15+ tetA+ tetR+ ATCC 47085 

PAO1 Δsmc PAO1-Lac Δsmc::∆Gm [1] 

PAO1 ΔmksB PAO1-Lac ΔmksB::∆Gm [1] 

PAO1 Δsmc ΔmksB PAO1-Lac Δsmc ΔmksB::∆Gm [1] 

PAO1 Mks’ PAO1-Lac lacIq-PT7-mksB; used for mksB 

complementation 

[1] 

PAO1 ∆mksB-P22-mksB PAO1-Lac ∆mksB + pUCP22-mksB; used for 

mksB complementation 

[1] 

PAO1 ∆mksB::mksB PAO1-Lac ∆mksB::mksB-scar; knock-in strain 

used for mksB complementation 

This study 

PAO1 mksB-E865Q PA01-Lac mksB-E865Q This study 

PAO1 mksB-S829R PA01-Lac mksB-S829R This study 

PAO1 mksB-D864A PA01-Lac mksB-D864A This study 
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PAO1 ∆sspB PA01-Lac ∆sspB; used in the degron system This study 

PAO1 Das4 PAO1-Lac ∆sspB mksB::mksB-Das4; used in 

the degron system 

This study 

PAO1 Das4-pUCP22 PAO1-Lac-∆sspB mksB::mksB-Das4  + 

pUCP22 empty vector;  used in the degron 

system 

This study 

PAO1 Das4-PsspB PAO1-Lac ∆sspB mksB::mksB-Das4 

+pUCP22-SspB expression vector; used in 

the degron system 

This study 

PA14 strains   

PA14 WT Clinical isolate UCBPP-PA14 [172] 

PA14 lacB2 PA14-lacIq-PT7-mksBEF2 This study 

PA14 lacB2 ∆smc::GmR PA14-lacIq-PT7-mksBEF2 ∆smc::GmR-FRT This study 

PA14 lacB2 ∆smc PA14-lacIq-PT7-mksBEF ∆smc::∆Gm-scar This study 

PA14 lacB2 ∆B1::GmR PA14-lacIq-PT7-mksBEF2 ∆mksB1::GmR-FRT This study 

PA14 lacB2 ∆B1 PA14-lacIq-PT7-mksBEF2 ∆mksB1::∆Gm-scar This study 

PA14 lacB2 ∆smc 

∆mksB1::GmR 

PA14-lacIq-PT7-mksBEF2 ∆smc 

∆mksB1::GmR-FRT 

This study 

PA14 lacB2 mksB1 ∆smc PA14-lacIq-PT7-mksBEF2 ∆mksB1 

∆smc::∆Gm-scar 

This study 

PA14 ∆B2::GmR PA14 ∆mksB2::GmR-FRT This study 

PA14 ∆B2 PA14 ∆mksB2::∆Gm-scar This study 

PA14 ∆B1::GmR PA14 ∆mksB1::GmR-FRT This study 

PA14 ∆B1 PA14 ∆mksB1::∆Gm-scar This study 

PA14 ∆smc::GmR PA14 ∆smc::GmR-FRT This study 

PA14 ∆smc PA14 ∆smc::∆Gm-scar This study 
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PA14 ∆B2 ∆B1::GmR PA14 ∆mksB2 ∆mksB1::GmR-FRT This study 

PA14 ∆B2 ∆B1 PA14 ∆mksB2 ∆mksB1::∆Gm-scar This study 

PA14 ∆B1 ∆B2::GmR PA14 ∆mksB1 ∆mksB2::GmR-FRT This study 

PA14 ∆B1 ∆B2 PA14 ∆mksB1 ∆mksB2::∆Gm-scar This study 

PA14 ∆smc ∆B2::GmR PA14 ∆smc ∆mksB2::GmR-FRT This study 

PA14 ∆smc ∆B2 PA14 ∆smc ∆mksB2::∆Gm-scar This study 

PA14 ∆smc ∆B1::GmR PA14 ∆smc ∆mksB1::GmR-FRT This study 

PA14 ∆smc ∆B1 PA14 ∆smc ∆mksB1::∆Gm-scar This study 

PA14 ∆∆∆::GmR PA14 ∆mksB1 ∆mksB2 ∆smc::GmR-FRT This study 

PA14 ∆∆∆ PA14 ∆mksB1 ∆mksB2 ∆smc::∆Gm-scar This study 

PA14 ∆B2 ∆G::GmR PA14 ∆mksB2 ∆mksG::GmR-FRT This study 
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Table 3:   List of Primers 

 

Primer 

name 

Nucleotide sequence Description 

Apa1 

 

CCGCCGGTACCCTGACGGCGGAGCCCAT

G 

 

For generating pex-ΔmksB2 left 

flank, forward primer + KpnI site, 

384 bp upstream from the mksB2 

start codon (GTA). 

Apa2 

 

CCGCCGCTAAGCCACGCCAGAGTAGTGC

CT 

 

For generating pEX-ΔmksB2 left 

flank, reverse primer + BlpI site, 5bp 

downstream of mksB2 start codon. 

Apa3 

 

CCGCCGGTCCGCCTGCTCAAGGATGCCT
GC 
 

For generating pEX-ΔmksB2 right 

flank, forward primer + RsrII site, 

476 bp upstream from mksB2 stop 

codon.   

Apa4 CCGCCAAGCTTCGACGCGGCACCTTCGA
AG 

For generating pEX-ΔmksB2 right 

flank, reverse primer + HindIII site, 

546 bp downstream from mksB2 

stop codon. 

Apa5 CCGCCAAGGAATACAGTCGTCGAGC For generating pEX-ΔmksB2-ΔmksG 

right flank, forward primer + RsrII 

site, 149 bp upstream from mksG 

stop codon. 

Apa6 CCGCCAACGTTGTTGATCCGGGCTTCCA
G 

For generating pEX-ΔmksB2-ΔmksG 

right flank, reverse primer + HindIII 

site, 412 bp downstream from mksG 

stop codon. 

Apa7 CGATCGAGTTCGTCCGAC PCR check primer for mksB2 deletion 

located 480 bp downstream from 

mksG stop codon 

P1 CCGCCGGTACCCCGAGATTCGTGGGCAG

G 

 

For replacement of mksBEF2 

promoter with LacIq-PT7 promoter, 

forward primer + KpnI site, 783 bp 

upstream of mksR start codon. 
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P2 TTCTTGGGAATTCGACTAGTTTCAACCGT

CTCCTGGAG 

 

For replacement of mksBEF2 

promoter with LacIq-PT7, reverse 

primer + SpeI and EcoRI sites, 

located 500 upstream of mksF start 

codon. 

P3 GGTTGAAACTAGTGGAATTCCCAAGAAG

GGTCTCGGCT 

For replacement of mksBEF2 

promoter with LacIq-PT7, forward 

primer + SpeI and EcoRI sites, 22 bp 

upstream from mksF start codon. 

P4 CCGCC CTGCAG ATTCGCGCCTTTGGAAC For replacement of mksBEF2 

promoter with LacIq-PT7, reverse 

primer + PstI site, 939 bp 

downstream of mksF start codon. 

 

 

 

Rev 

mksB1 

Blp1 

CTTCTTGCTGAGCTCACGCCGGTTCGCCG

GCTT 

 

 

For generating pEX-ΔmksB::mksB 

complementation plasmid left flank, 

reverse primer + BlpI site, located at 

the mksB stop codon, used to 

amplify upstream portion of mksB 

and entire mksB gene. 

Opa31 

BamHI 

CCTGGTGGATCCCGAGCTGGTCTGCGAT
ACCC  
 
 

 

For generating pEX-ΔmksB::mksB 

complementation plasmid left flank, 

forward primer + BamHI site,  520 

bp upstream of the mksB start 

codon (used to amplify upstream 

portion of mksB and entire mksB 

gene). 

Sbf1 

forward 

CTTCTTCCTGCAGGCGAATTAGCTTCAAA

AGCGCTC 

For generating pEX-ΔmksB::mksB 

right flank, forward primer + SbfI 

site, used to amplify FRT-down 

mksB fragment from pEX-ΔmksB. 

Opa30 CCCAAGCTTAGTCCACGGCCCT 
GTCAGGC  

 

For generating pEX-ΔmksB::mksB 

complementation plasmid right 

flank, reverse primer + HindIII site, 

used to amplify FRT-down mksB 

fragment from pEX-ΔmksB. 
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degron 7 GCTGGTACCTCTCGGTGTTCGACCTGAC

C 

 

For generating pEX-mksB-Das4, 

forward primer + KpnI site, 528 bp 

upstream of mksB stop codon. 

degron 8 GTCGTTGGCGGCTGCGGCCGCATATATG

AGCTCACTAGTGAATTCAAGCTTCGCCG

GTTCGCCGGCTTCC 

 

For generating pEX-mksB-Das4, 

reverse primer + Das4 linker, located 

at the mksB stop codon. 

degron 9 CTTCTTGCTTAGCtcaTCGCTGGCGTCGG

CGTAGTTCTCGCTGTAGTTCTCGTCGTTG

GCGGCTGCGGC 

 

For generating pEX-mksB-Das4, 

reverse primer complementary to  

degron 8 + Das4 tag + stop codon + 

BlpI. 

degron 

10 

TCACCCTTAATTAATGAATTCCAGCCGTC
CCTATC 
 

For generating pUCP22-sspB, 

forward primer + PacI site, located 

at the start codon of sspB gene, 

used to amplify sspB gene and clone 

into pUCP22. 

degron 

11 

AACAAGAGATCTTTACTTGACCACCTTCA

GGGATG 

 

 

For generating pUCP22-sspB, 

reverse primer + XbaI site, located 

at the stop codon of sspB gene, 

used to amplify sspB gene and clone 

into pUCP22 

Opa180 CCTGGTACCTGCGCCTGAAGGGCGTCG 

 

For generating mksB ATPase point 

mutation constructs, forward 

primer + KpnI site, 866 bp upstream 

from mksB start codon, cloned into 

pEX18AP. 

 Opa181 

 

CTTCTTGCTTAGCTCACGCCGGTTCGCCG

G 

For generating mksB ATPase point 

mutation constructs, reverse primer 

+ BlpI site, located at the mksB stop 

codon, cloned into pEX18AP. 

 Opa183 

 

CCCTACTACCTGGCCGAGGCGGCGGAC 

 

For generating pEX-mksB-D864A, 

forward primer, 237 bp upstream of 

the mksB stop codon, contains point 

mutations for D864A (GAC to GCC). 
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Opa184 

 

GTCCGCCGCCTCGGCCAGGTAGTAGGG For generating pEX-mksB-D864A, 

reverse primer, 237 bp upstream of 

the mksB stop codon, contains point 

mutations for D864A (GAC to GCC). 

Opa185 CCTACTACCTGGACCAGGCGGCGGACAT

C 

For generating pEX-mksB-E865Q, 

forward primer, 237 upstream of 

the mksB stop codon, contains point 

mutations for E865Q (GAG to CAG). 

Opa186 GATGTCCGCCGCCTGGTCCAGGTAGTAG

G 

For generating pEX-mksB-E865Q, 

reverse primer, 237 upstream of the 

mksB stop codon, contains point 

mutations for E865Q (GAG to CAG). 

Opa187 GACGGCGCCGCCCGCAATGGCACCACC For generating pEX-mksB-S829R, 

forward primer, 345 bp from the 

mksB stop codon, contains point 

mutations for S829R (TCC to CGC) 

Opa188 GGTGGTGCCATTGCGGGCGGCGCCGTC For generating pEX-mksB-S829R, 

reverse primer 345 bp from the 

mksB stop codon, contains point 

mutations for S829R (TCC to CGC). 
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Table 4   Table of fold change values for PAO1 condensin mutants in affected pathways. 

(minimum 1.5 fold for any sample) 

 

T3SS T2SS

Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ

PA0044 exoenzyme T (exoT) -10.9 1.3 1.5 PA0677 putative type II secretion system protein (PA0677) 1.5 -1.4 1.7

PA2191 adenylate cyclase ExoY (exoY) -13.7 1.5 -1.0 PA0679 hypothetical protein (PA0679) -1.1 -1.6 -1.3

PA3841 exoenzyme S (exoS) -15.7 1.5 2.1 PA0681 HxcT pseudopilin (PA0681) -1.5 -1.7 1.1

PA1692 translocation protein in type III secretion (PA1692) -6.1 1.7 1.3 PA0682 putative type II secretion system protein (PA0682) -1.1 -1.7 -1.0

PA1693 type III secretion system protein (pscR) -3.8 1.9 1.4 PA0685 putative type II secretion system protein (PA0685) 1.1 -1.7 -1.2

PA1694 type III secretion system protein (pscQ) -9.6 1.9 1.1 PA0686 putative type II secretion system protein (PA0686) -1.0 -1.8 1.2

PA1695 translocation protein in type III secretion (pscP) -8.6 2.7 1.3 PA0844 hemolytic phospholipase C precursor (plcH) 1.4 -1.6 1.3

PA1696 translocation protein in type III secretion (pscO) -8.1 2.2 1.1 PA1382 type II secretion system protein (PA1382) 1.2 -1.3 2.0

PA1697 type III secretion system ATPase (PA1697) -11.6 1.9 1.1 PA1871 LasA protease precursor (lasA) -1.1 -1.6 1.2

PA1698 Type III secretion outer membrane protein PopN precursor (popN) -19.5 1.6 -1.1 PA1948 membrane protein component of ABC ribose transporter (rbsC) 1.3 -2.4 2.4

PA1699 hypothetical protein (PA1699) -8.0 2.2 1.3 PA2671 hypothetical protein (PA2671) -1.1 1.2 2.0

PA1700 hypothetical protein (PA1700) -8.0 2.6 1.0 PA2672 type II secretion system protein (PA2672) -1.3 -2.3 -1.1

PA1701 hypothetical protein (PA1701) -18.5 2.1 1.1 PA2673 type II secretion system protein (PA2673) -1.2 -1.8 1.6

PA1702 hypothetical protein (PA1702) -5.0 2.0 1.2 PA2674 type II secretion system protein (PA2674) -1.3 1.5 1.2

PA1703 type III secretory apparatus protein PcrD (pcrD) -9.1 1.4 1.1 PA2675 type II secretion system protein (PA2675) 1.1 1.0 1.8

PA1704 transcriptional regulator protein PcrR (pcrR) -4.1 2.1 1.3 PA2676 type II secretion system protein (PA2676) 1.2 -2.0 1.6

PA1705 regulator in type III secretion (pcrG) -11.8 1.8 1.7 PA2862 lactonizing lipase precursor (lipA) -1.3 1.1 1.9

PA1706 type III secretion protein PcrV (pcrV) -13.7 1.6 1.4 PA3096 general secretion pathway protein L (xcpY) -1.2 1.1 1.6

PA1707 regulatory protein PcrH (pcrH) -17.5 1.6 1.7 PA3098 general secretion pathway protein J (xcpW) -1.8 1.1 1.6

PA1708 translocator protein PopB (popB) -15.4 1.5 1.5 PA3100 general secretion pathway outer membrane protein H precursor (xcpU) -1.0 1.7 1.7

PA1709 translocator outer membrane protein PopD precursor (popD) -12.2 1.6 1.5 PA3102 general secretion pathway protein F (xcpS) -1.1 -1.0 1.6

PA1710 ExsC (exsC) -4.7 2.0 1.5 PA3104 secretion protein XcpP (xcpP) -1.1 1.6 2.0

PA1711 ExsE (exsE) -5.5 1.9 1.4 PA3296 alkaline phosphatase (phoA) -1.2 -1.7 1.4

PA1712 exoenzyme S synthesis protein B (exsB) -5.0 1.6 1.7 PA3319 non-hemolytic phospholipase C precursor (plcN) 1.0 1.1 1.6

PA1713 transcriptional regulator ExsA (exsA) -5.9 1.2 1.4 PA3724 elastase LasB (lasB) 1.0 1.4 3.2

PA1714 ExsD (exsD) -5.3 1.4 1.3 PA4813 lipase LipC (lipC) -1.3 -2.0 1.3

PA1715 type III export apparatus protein (pscB) -8.5 1.3 1.2

PA1716 Type III secretion outer membrane protein PscC precursor (pscC) -5.5 1.3 1.4 T6SS HSI-2

PA1717 type III export protein PscD (pscD) -5.1 1.3 1.4 PA1653 transcriptional regulator (PA1653) 1.1 1.2 1.6

PA1718 type III export protein PscE (pscE) -5.9 2.1 1.2 PA1655 putative glutathione S-transferase (PA1655) 1.2 -1.1 1.6

PA1719 type III export protein PscF (pscF) -6.5 1.6 1.3 PA1656 hypothetical protein (PA1656) 1.1 -6.6 -1.5

PA1720 type III export protein PscG (pscG) -11.6 2.0 1.4 PA1657 hypothetical protein (PA1657) 1.4 -10.5 -5.4

PA1721 type III export protein PscH (pscH) -5.6 1.5 1.2 PA1658 hypothetical protein (PA1658) 1.4 -10.3 -4.3

PA1722 type III export protein PscI (pscI) -7.0 1.6 1.5 PA1659 hypothetical protein (PA1659) 1.1 -9.0 -2.6

PA1723 type III export protein PscJ (pscJ) -7.1 1.4 1.4 PA1660 hypothetical protein (PA1660) 1.1 -5.2 -2.0

PA1724 type III export protein PscK (pscK) -5.6 1.4 1.2 PA1661 hypothetical protein (PA1661) 1.1 -6.0 -4.1

PA1725 type III secretion system protein (pscL) -4.8 1.3 -1.1 PA1662 ClpA/B-type protease (PA1662) 1.4 -5.3 -3.0

PA2191 adenylate cyclase ExoY (exoY) -13.7 1.5 -1.0 PA1663 putative transcriptional regulator (PA1663) 1.3 -9.6 -5.9

PA3217 hypothetical protein (cyaB) -1.5 1.0 -1.1 PA1665 hypothetical protein (PA1665) 1.2 -15.0 -5.0

PA3841 exoenzyme S (exoS) -15.7 1.5 2.1 PA1666 hypothetical protein (PA1666) 1.4 -8.8 -3.3

PA3842 chaperone (PA3842) -15.5 2.5 1.4 PA1667 hypothetical protein (PA1667) 1.4 -3.9 -1.9

PA1668 hypothetical protein (PA1668) 1.5 -9.3 -3.4

T6SS HSI-1 PA1669 hypothetical protein (PA1669) 1.3 -5.6 -4.0

PA0070 hypothetical protein (PA0070) 2.0 -10.7 -5.4 PA1670 serine/threonine phosphoprotein phosphatase Stp1 (stp1) 1.7 -6.4 -2.7

PA0071 hypothetical protein (PA0071) 1.6 -2.8 -1.8 PA1671 serine-threonine kinase Stk1 (stk1) 1.6 -2.0 -1.0

PA0072 hypothetical protein (PA0072) 2.0 -6.0 -3.3 PA1672 hypothetical protein (PA1672) 1.7 1.1 1.6

PA0073 ABC transporter ATP-binding protein (PA0073) 1.7 -12.6 -4.5 PA1673 hypothetical protein (PA1673) -1.1 -1.4 -1.6

PA0074 serine/threonine protein kinase PpkA (ppkA) 1.8 -5.9 -3.5 PA1675 hypothetical protein (PA1675) 1.2 -1.5 1.3

PA0075 PppA (pppA) 1.6 -10.3 -3.7 PA1676 hypothetical protein (PA1676) -1.4 -1.8 1.2

PA0076 hypothetical protein (PA0076) 1.7 -7.5 -2.7 PA1677 hypothetical protein (PA1677) 1.1 -1.0 1.7

PA0077 IcmF1 (icmF1) 2.2 -7.9 -3.2

PA0078 hypothetical protein (PA0078) 2.0 -7.6 -3.7 BexR

PA0079 hypothetical protein (PA0079) 1.7 -6.1 -2.7 PA0572 hypothetical protein (PA0572) 2.4 -1.3 1.2

PA0080 hypothetical protein (PA0080) 1.5 -13.6 -2.8 PA1202 putative hydrolase (PA1202) 9.7 -14.3 -10.8

PA0081 Fha1 (fha1) 1.8 -2.0 1.3 PA1203 hypothetical protein (PA1203) 4.9 -2.5 -1.9

PA0082 hypothetical protein (PA0082) 2.2 -12.0 -2.9 PA1204 hypothetical protein (PA1204) 3.7 -1.7 -1.2

PA0083 hypothetical protein (PA0083) 2.3 -25.6 -9.8 PA1205 hypothetical protein (PA1205) 3.5 -2.1 -1.3

PA0084 hypothetical protein (PA0084) 2.3 -27.4 -9.0 PA1249 alkaline metalloproteinase precursor (aprA) 2.3 -1.5 1.1

PA0085 Hcp1 (hcp1) 2.0 -50.3 -18.9 PA2430 hypothetical protein (PA2430) 7.3 -2.5 -1.2

PA0086 hypothetical protein (PA0086) 2.0 -6.9 -4.6 PA2431 hypothetical protein (PA2431) 5.5 -2.5 -1.7

PA0087 hypothetical protein (PA0087) 1.7 -35.1 -4.9 PA2432 bistable expression regulator BexR 9.2 -4.6 -4.6

PA0088 hypothetical protein (PA0088) 2.0 -19.1 -7.3 PA2433 hypothetical protein (PA2433) 4.6 -11.3 -1.1

PA0089 hypothetical protein (PA0089) 1.9 -18.4 -10.1 PA2698 putative hydrolase (PA2698) 4.3 -1.7 -1.9

PA0090 ClpV1 (clpV1) 2.1 -17.4 -8.8 PA4205 hypothetical protein (mexG) 1.2 -1.3 -1.6

PA0091 VgrG1 (vgrG1) 1.8 -12.2 -7.2 PA4206 RND efflux membrane fusion protein precursor (mexH) 1.1 -1.4 -1.9

PA0092 hypothetical protein (PA0092) 1.4 -3.5 -3.4

PA0093 hypothetical protein (PA0093) 1.7 -5.5 -3.6 a2-Macroglobulin Homologue

PA0094 hypothetical protein (PA0094) 1.8 -6.2 -4.5 PA4487 hypothetical protein (PA4487) 1.6 -4.3 -3.7

PA0095 hypothetical protein (PA0095) 1.7 -4.0 -2.4 PA4488 hypothetical protein (PA4488) 1.5 -5.1 -2.9

PA0096 hypothetical protein (PA0096) 1.9 -4.2 -3.0 PA4489 hypothetical protein (PA4489) 1.7 -6.6 -4.5

PA0097 hypothetical protein (PA0097) 1.5 -14.1 -4.3 PA4490 hypothetical protein (PA4490) 1.6 -5.0 -4.0

PA0098 3-oxoacyl-(acyl carrier protein) synthase (PA0098) 1.7 -8.0 -2.8 PA4491 hypothetical protein (PA4491) 1.6 -5.5 -4.4

PA0099 hypothetical protein (PA0099) 1.8 -6.2 -1.6 PA4492 hypothetical protein (PA4492) 1.7 -2.4 -1.7

PA0100 hypothetical protein (PA0100) 1.5 -2.9 -1.8

PA0101 hypothetical protein (PA0101) 1.5 -3.2 -2.2

PA1844 hypothetical protein (PA1844) 1.5 -9.7 -6.0 Pyocyanin

PA1845 hypothetical protein (PA1845) 1.2 -8.0 -4.3 PA1900 phenazine biosynthesis protein (phzB2) 1.7 -1.7 1.4

PA2684 hypothetical protein (PA2684) 1.7 -5.3 -2.7 PA1902 phenazine biosynthesis protein PhzD (phzD2) -1.4 -2.9 -1.9

PA2685 hypothetical protein (PA2685) 1.8 -3.6 -1.5 PA1904 phenazine biosynthesis protein (phzF2) 2.7 1.5 3.8

PA2702 hypothetical protein (PA2702) 1.5 -4.1 -3.2 PA4212 phenazine biosynthesis protein PhzC (phzC1) 1.0 1.2 1.8

PA2774 hypothetical protein (PA2774) 1.6 -4.6 -3.9 PA4215 phenazine biosynthesis protein (phzF1) -1.4 -2.7 1.3

PA2775 hypothetical protein (PA2775) 1.6 -4.8 -2.0 PA4217 hypothetical protein (phzS) -1.5 -1.0 1.3

PA3484 hypothetical protein (PA3484) 1.8 -7.3 -3.4

PA3485 hypothetical protein (PA3485) 1.3 -7.7 -2.9

PA5267 secreted protein Hcp (hcpB) 1.1 -1.8 -1.4



 

204 
 

 

 

 

Psl Bacteriophage pf1

Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ Locus Tag General Description and Gene Name

PA2232 phosphomannose isomerase/GDP-mannose pyrophosphorylase (pslB)1.56 -1.86 -1.38 PA0715 hypothetical protein (PA0715) 1.8 1.4 3.3

PA2233 glycosyl transferase (pslC) 1.56 -1.60 -1.06 PA0716 hypothetical protein (PA0716) 1.9 -1.1 2.7

PA2234 PslD (pslD) 2.09 -2.24 -1.73 PA0717 hypothetical protein (PA0717) -7.1 -29.4 -14.4

PA2235 hypothetical protein (pslE) 2.12 -2.16 -2.22 PA0718 hypothetical protein (PA0718) -6.6 -28.8 -8.3

PA2236 hypothetical protein (pslF) 1.98 -2.57 -1.89 PA0719 hypothetical protein (PA0719) -4.0 -13.0 -8.0

PA2237 putative glycosyl hydrolase (pslG) 1.94 -2.46 -1.85 PA0720 helix destabilizing protein of bacteriophage Pf1 (PA0720) -7.8 -16.6 -13.6

PA2238 hypothetical protein (pslH) 1.88 -2.05 -2.27 PA0722 hypothetical protein (PA0722) -5.7 -10.7 -16.2

PA2239 putative transferase (pslI) 1.44 -2.65 -2.00 PA0723 coat protein B of bacteriophage Pf1) (coaB) -7.1 -14.7 -14.4

PA2240 hypothetical protein (pslJ) 1.57 -2.46 -1.85 PA0724 putative coat protein A of bacteriophage Pf1 (PA0724) -3.4 -5.4 -3.2

PA2241 hypothetical protein (pslK) 1.46 -2.23 -2.47 PA0725 bacteriophage protein (PA0725) -2.1 -3.1 -2.3

PA2242 hypothetical protein (pslL) 1.68 -2.62 -2.20 PA0726 hypothetical protein (PA0726) -2.1 -4.6 -1.8

PA2663 psl and pyoverdine operon regulator, PpyR 1.15 2.26 -1.07 PA0727 hypothetical protein (PA0727) -2.9 -3.4 -2.3

PA5452 phosphomannose isomerase/GDP-mannose WbpW (wbpW) 1.15 -1.29 1.90 PA0728 bacteriophage integrase (PA0728) -2.2 -3.2 -1.6

PA0729 hypothetical protein (PA0729) -1.2 -1.6 -1.2

Pel

PA3058 PelG (pelG) 1.16 -1.06 1.55

PA3059 PelF (pelF) 1.45 -1.74 1.17 Pyoverdine

PA3060 PelE (pelE) 1.75 1.13 1.33 PA2254 pyoverdine biosynthesis protein PvcA (pvcA) -1.2 1.5 1.8

PA3061 PelD (pelD) 1.89 -2.51 -1.47 PA2256 pyoverdine biosynthesis protein PvcC (pvcC) -1.0 -1.6 1.0

PA3062 PelC (pelC) 1.79 -4.30 -1.05 PA2257 pyoverdine biosynthesis protein PvcD (pvcD) 1.5 -1.3 2.2

PA3063 PelB (pelB) 2.62 -1.64 -1.16 PA2385 3-oxo-C12-homoserine lactone acylase PvdQ (pvdQ) 2.1 -3.4 -1.5

PA3064 PelA (pelA) 1.50 -1.78 -1.10 PA2386 L-ornithine N5-oxygenase (pvdA) 4.8 -2.4 -2.0

PA2387 FpvI (fpvI) 1.6 -1.3 2.4

Biofilm (no Pel/Psl) PA2392 PvdP (pvdP) 1.6 -1.9 -1.5

PA0074 serine/threonine protein kinase PpkA (ppkA) 1.84 -5.92 -3.52 PA2393 putative dipeptidase precursor (PA2393) 1.8 -1.4 1.2

PA0075 PppA (pppA) 1.61 -10.27 -3.69 PA2394 PvdN (pvdN) 1.4 -2.0 -1.3

PA0076 hypothetical protein (PA0076) 1.74 -7.54 -2.71 PA2395 PvdO (pvdO) 2.9 -1.6 1.6

PA0077 IcmF1 (icmF1) 2.17 -7.94 -3.20 PA2396 pyoverdine synthetase F (pvdF) 1.6 -1.7 -1.0

PA0079 hypothetical protein (PA0079) 1.68 -6.07 -2.66 PA2397 pyoverdine biosynthesis protein PvdE (pvdE) -1.0 -1.8 1.6

PA0081 Fha1 (fha1) 1.81 -2.03 1.29 PA2398 ferripyoverdine receptor (fpvA) 1.8 -5.1 -3.9

PA0082 hypothetical protein (PA0082) 2.19 -11.99 -2.86 PA2399 pyoverdine synthetase D (pvdD) 1.4 -2.2 -1.1

PA0083 hypothetical protein (PA0083) 2.33 -25.57 -9.76 PA2400 probable non-ribosomal peptide synthetase (pvdJ) 1.2 -2.6 -1.4

PA0084 hypothetical protein (PA0084) 2.30 -27.39 -8.96 PA2402 peptide synthase (PA2402) 1.6 -2.2 -1.1

PA0085 Hcp1 (hcp1) 2.02 -50.33 -18.88 PA2413 diaminobutyrate--2-oxoglutarate aminotransferase (pvdH) 3.3 -2.6 1.1

PA0089 hypothetical protein (PA0089) 1.87 -18.40 -10.05 PA2424 peptide synthase (pvdL) 1.5 -2.2 -1.5

PA0090 ClpV1 (clpV1) 2.10 -17.43 -8.76 PA2426 extracytoplasmic-function sigma-70 factor (pvdS) 5.5 -1.9 -1.9

PA0169 hypothetical protein (PA0169) 1.68 -3.19 -2.79 PA4168 second ferric pyoverdine receptor FpvB (fpvB) -1.1 -1.3 1.8

PA0172 hypothetical protein (PA0172) 1.76 -3.28 -2.24 PA5531 transporter TonB 2.1 -1.1 2.3

PA0263 secreted protein Hcp (hcpC) 1.89 1.45 -1.03

PA0649 anthranilate synthase component II (trpG) 1.10 -1.21 1.59

PA0905 carbon storage regulator (rsmA) 1.26 -2.06 1.22 Pyochelin

PA0996 coenzyme A ligase (pqsA) -1.07 1.30 2.87 PA4221 Fe(III)-pyochelin outer membrane receptor precursor (fptA) -1.12 -3.25 2.67

PA0997 beta-keto-acyl-acyl-carrier protein synthase-like protein (pqsB) -1.48 1.06 1.59 PA4222 ABC transporter ATP-binding protein (PA4222) -1.63 -2.97 1.52

PA1000 quinolone signal response protein (pqsE) -1.56 -1.58 -1.02 PA4223 ABC transporter ATP-binding protein (PA4223) -1.51 -3.04 1.45

PA1001 anthranilate synthase component I (phnA) 1.11 -1.58 -1.62 PA4224 pyochelin biosynthetic protein PchG (pchG) -1.98 -7.80 1.51

PA1002 anthranilate synthase component II (phnB) 1.33 -1.16 1.72 PA4225 pyochelin synthetase (pchF) -1.27 -5.39 1.75

PA1003 Transcriptional regulator MvfR (mvfR) 1.50 -1.45 2.04 PA4226 dihydroaeruginoic acid synthetase (pchE) -1.24 -4.35 1.66

PA1432 autoinducer synthesis protein LasI (lasI) 1.07 -2.64 1.43 PA4227 transcriptional regulator PchR (pchR) 1.32 -3.13 1.32

PA1657 hypothetical protein (PA1657) 1.41 -10.51 -5.38 PA4228 pyochelin biosynthesis protein PchD (pchD) -1.24 -6.73 1.78

PA1658 hypothetical protein (PA1658) 1.43 -10.33 -4.31 PA4229 pyochelin biosynthetic protein PchC (pchC) -1.60 -7.33 1.77

PA1661 hypothetical protein (PA1661) 1.06 -6.04 -4.11 PA4230 isochorismate-pyruvate lyase (pchB) -1.03 -2.66 3.35

PA1662 ClpA/B-type protease (PA1662) 1.40 -5.30 -3.03 PA4231 salicylate biosynthesis isochorismate synthase (pchA) 1.04 -2.85 2.06

PA1667 hypothetical protein (PA1667) 1.40 -3.89 -1.88

PA1669 hypothetical protein (PA1669) 1.34 -5.63 -3.96

PA1670 serine/threonine phosphoprotein phosphatase Stp1 (stp1) 1.71 -6.44 -2.70 Denitrification

PA1976 sensor histidine kinase 1.07 -1.58 -1.03 PA0516 heme d1 biosynthesis protein NirF (nirF) 1.5 1.1 1.3

PA2360 hypothetical protein (PA2360) 1.25 -3.84 -1.14 PA0518 cytochrome c-551 precursor (nirM) 1.6 1.4 1.0

PA2361 hypothetical protein (PA2361) 1.41 -1.81 1.12 PA0520 regulatory protein NirQ (nirQ) 1.8 -1.5 1.5

PA2363 hypothetical protein (PA2363) 1.11 -2.26 -1.18 PA0521 putative cytochrome c oxidase subunit (PA0521) 1.5 -2.1 1.1

PA2365 hypothetical protein (PA2365) 1.71 -2.75 -1.89 PA0522 hypothetical protein (PA0522) 1.7 -2.7 1.5

PA2366 uricase PuuD (PA2366) 1.65 -2.13 -1.64 PA0523 nitric-oxide reductase subunit C (norC) 1.6 -1.4 1.8

PA2367 hypothetical protein (PA2367) 1.20 -3.69 -4.05 PA0524 nitric-oxide reductase subunit B (norB) 1.9 -1.5 1.7

PA2370 hypothetical protein (PA2370) 1.13 -3.43 -2.10 PA0525 putative dinitrification protein NorD (PA0525) 2.2 -1.1 1.6

PA2371 putative ClpA/B-type protease (PA2371) 1.07 -3.07 1.81 PA1172 cytochrome c-type protein NapC (napC) 2.2 -2.5 1.0

PA2569 hypothetical protein (PA2569) -1.10 -1.23 2.03 PA1173 cytochrome c-type protein NapB precursor (napB) 1.6 -2.3 -1.9

PA2586 response regulator GacA (gacA) -1.02 1.30 2.04 PA1174 nitrate reductase catalytic subunit (napA) 1.1 -1.8 -1.0

PA2824 sensor/response regulator hybrid (PA2824) -1.12 1.09 1.64 PA1175 NapD protein of periplasmic nitrate reductase (napD) 1.3 -2.3 -1.1

PA3217 hypothetical protein (cyaB) -1.52 1.04 -1.10 PA1176 ferredoxin protein NapF (napF) -1.2 -2.2 -1.9

PA3345 hypothetical protein (PA3345) -1.36 1.12 1.95 PA1177 periplasmic nitrate reductase protein NapE (napE) 1.1 -2.6 -1.6

PA3346 putative two-component response regulator (PA3346) -1.20 1.06 2.00 PA3392 nitrous-oxide reductase (nosZ) 2.5 3.0 1.8

PA3347 hypothetical protein (PA3347) -1.01 1.73 3.17 PA3393 NosD protein (nosD) 2.5 2.5 2.2

PA3476 autoinducer synthesis protein RhlI (rhlI) 1.25 -1.30 1.71 PA3394 NosF protein (nosF) 2.0 2.4 1.6

PA3478 rhamnosyltransferase chain B (rhlB) -1.13 -1.10 2.48 PA3395 NosY protein (nosY) 2.2 2.2 1.7

PA3479 rhamnosyltransferase chain A (rhlA) -1.68 -1.59 -1.36 PA3396 NosL protein (nosL) 2.4 2.6 1.3

PA3542 alginate biosynthesis protein Alg44 (alg44) 1.13 1.04 1.51 PA3872 respiratory nitrate reductase gamma chain (narI) -1.1 -1.3 1.6

PA3703 chemotaxis-specific methylesterase (wspF) -1.03 1.42 1.88 PA3873 respiratory nitrate reductase delta chain (narJ) -1.2 -1.2 1.8

PA3704 putative chemotaxis sensor/effector fusion protein (wspE) -1.57 1.28 1.32 PA3874 respiratory nitrate reductase beta chain (narH) -1.4 -1.3 1.8

PA3707 hypothetical protein (wspB) -1.17 1.23 1.79 PA3875 respiratory nitrate reductase alpha chain (narG) -1.7 -1.5 2.0

PA3708 putative chemotaxis transducer (wspA) -1.17 1.06 1.82

PA5267 secreted protein Hcp (hcpB) 1.09 -1.78 -1.40
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Sigma Factors Iron (no p,p,p)

Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ

PA0472 RNA polymerase sigma factor (PA0472) 2.3 -2.2 1.6 PA0197 transporter TonB 1.7 -4.6 1.3

PA0762 RNA polymerase sigma factor AlgU (algU) 1.0 -1.7 2.3 PA0198 transport protein ExbB (exbB1) 1.4 -3.4 1.8

PA0763 anti-sigma factor MucA (mucA) -1.0 -1.7 1.3 PA0434 hypothetical protein (PA0434) 2.5 1.2 1.3

PA1300 ECF subfamily RNA polymerase sigma-70 factor (PA1300) 2.4 1.1 1.5 PA0470 Ferrichrome receptor FiuA (fiuA) 1.0 -1.2 1.6

PA1351 ECF subfamily RNA polymerase sigma-70 factor (PA1351) 1.6 -1.2 1.6 PA0471 putative transmembrane sensor (PA0471) 1.9 -2.4 -1.1

PA1363 ECF subfamily RNA polymerase sigma-70 factor (PA1363) 1.6 -1.5 1.3 PA0472 RNA polymerase sigma factor (PA0472) 2.3 -2.2 1.6

PA1912 ECF sigma factor, FemI 1.5 -1.8 -1.0 PA0672 heme oxygenase (hemO) 5.2 -2.5 -1.1

PA2050 RNA polymerase sigma factor (PA2050) 1.5 -1.3 -1.4 PA0929 two-component response regulator (PA0929) 7.1 -1.5 3.0

PA2093 RNA polymerase sigma factor (PA2093) 1.5 -1.7 1.4 PA0931 outer membrane receptor FepA (pirA) 1.7 -1.3 -1.1

PA2387 FpvI (fpvI) 1.6 -1.3 2.4 PA1300 ECF subfamily RNA polymerase sigma-70 factor (PA1300) 2.4 1.1 1.5

PA2426 extracytoplasmic-function sigma-70 factor (pvdS) 5.5 -1.9 -1.9 PA1302 putative heme utilization protein precursor (PA1302) 1.7 -1.0 1.3

PA2467 Anti-sigma factor FoxR (foxR) 1.4 -1.1 1.6 PA1322 putative TonB-dependent receptor (PA1322) 1.1 -1.6 1.1

PA2896 RNA polymerase sigma factor (PA2896) 1.4 -1.0 1.6 PA1363 ECF subfamily RNA polymerase sigma-70 factor (PA1363) 1.6 -1.5 1.3

PA3410 ECF subfamily RNA polymerase sigma-70 factor (PA3410) 2.0 1.1 1.8 PA1910 ferric-mycobactin receptor, FemA -1.0 -1.7 1.2

PA3899 RNA polymerase sigma factor (PA3899) 1.3 -1.8 1.6 PA1912 ECF sigma factor, FemI 1.5 -1.8 -1.0

PA4896 RNA polymerase sigma factor (PA4896) 2.6 1.6 4.0 PA1922 putative TonB-dependent receptor (PA1922) -1.3 -1.3 1.7

PA2033 hypothetical protein (PA2033) -1.3 -2.6 1.1

PA2034 hypothetical protein (PA2034) -1.1 -1.2 1.6

Virulence Regulators PA2050 RNA polymerase sigma factor (PA2050) 1.5 -1.3 -1.4

PA0074 serine/threonine protein kinase PpkA (ppkA) 1.8 -5.9 -3.5 PA2335 TonB-dependent receptor (PA2335) 1.8 1.2 1.5

PA0075 PppA (pppA) 1.6 -10.3 -3.7 PA2384 hypothetical protein (PA2384) 1.3 -5.8 -2.2

PA0169 hypothetical protein (PA0169) 1.7 -3.2 -2.8 PA2466 Ferrioxamine receptor FoxA (foxA) 1.7 -1.4 1.8

PA0172 hypothetical protein (PA0172) 1.8 -3.3 -2.2 PA2467 Anti-sigma factor FoxR (foxR) 1.4 -1.1 1.6

PA0424 multidrug resistance operon repressor MexR (mexR) 1.1 -1.2 2.9 PA2686 two-component response regulator PfeR (pfeR) 1.4 1.6 1.4

PA0527.1 regulatory RNA RsmY 0.0 -4.1 -2.5 PA3268 TonB-dependent receptor (PA3268) 3.5 -1.1 1.6

PA0610 transcriptional regulator PrtN (prtN) 1.4 -1.6 -1.2 PA3269 putative transcriptional regulator (PA3269) -1.0 1.2 1.9

PA0611 transcriptional regulator PrtR (prtR) 1.5 -1.2 -1.0 PA3407 heme acquisition protein HasAp (hasAp) -1.6 -1.3 -1.2

PA0612 repressor, PtrB ' (ptrB) 2.1 -2.4 -2.7 PA3408 heme uptake outer membrane receptor HasR precursor (hasR) -1.1 1.2 1.7

PA0707 transcriptional regulator ToxR (toxR) -1.0 -1.9 1.8 PA3410 ECF subfamily RNA polymerase sigma-70 factor (PA3410) 2.0 1.1 1.8

PA0763 anti-sigma factor MucA (mucA) -1.0 -1.7 1.3 PA3530 hypothetical protein (PA3530) 1.5 -1.0 1.7

PA0764 negative regulator for alginate biosynthesis MucB (mucB) 1.1 -1.9 1.2 PA3531 bacterioferritin (bfrB) -1.3 1.3 2.3

PA0905 carbon storage regulator (rsmA) 1.3 -2.1 1.2 PA3899 RNA polymerase sigma factor (PA3899) 1.3 -1.8 1.6

PA0929 two-component response regulator (PA0929) 7.1 -1.5 3.0 PA3901 Fe(III) dicitrate transport protein FecA (fecA) 1.4 2.0 1.2

PA1003 Transcriptional regulator MvfR (mvfR) 1.5 -1.5 2.0 PA4156 TonB-dependent receptor (PA4156) 2.0 -1.1 2.1

PA1196 putative transcriptional regulator (PA1196) -1.3 -2.4 1.3 PA4160 ferric enterobactin transport protein FepD (fepD) -2.6 -1.3 1.1

PA1431 regulatory protein RsaL (rsaL) 1.4 -1.5 1.3 PA4161 ferric enterobactin transport protein FepG (fepG) -1.1 -2.1 1.0

PA1432 autoinducer synthesis protein LasI (lasI) 1.1 -2.6 1.4 PA4191 iron/ascorbate oxidoreductase (PA4191) 4.4 -1.1 -1.2

PA1710 ExsC (exsC) -4.7 2.0 1.5 PA4514 outer membrane receptor for iron transport (PA4514) 5.5 -1.2 1.7

PA1711 ExsE (exsE) -5.5 1.9 1.4 PA4675 putative TonB-dependent receptor (PA4675) 2.3 -1.3 -1.4

PA1713 transcriptional regulator ExsA (exsA) -5.9 1.2 1.4 PA4708 Heme-transport protein, PhuT ' (phuT) 1.7 -1.4 -1.0

PA1714 ExsD (exsD) -5.3 1.4 1.3 PA4709 putative hemin degrading factor (PA4709) 2.9 -1.4 1.3

PA1799 two-component response regulator, ParR 1.1 -1.2 -1.5 PA4710 heme/hemeoglobin uptake outer membrane receptor PhuR precursor (phuR)3.2 -1.3 1.2

PA1898 putative transcriptional regulator (qscR) 1.5 -2.9 1.9 PA4837 outer membrane protein precursor (PA4837) -1.5 -1.3 1.7

PA2259 transcriptional regulator PtxS (ptxS) 1.4 -1.5 1.9 PA4896 RNA polymerase sigma factor (PA4896) 2.6 1.6 4.0

PA2384 hypothetical protein (PA2384) 1.3 -5.8 -2.2 PA5217 putative binding protein component of ABC iron transporter (PA5217) 2.4 -1.2 1.4

PA2432 bistable expression regulator BexR 9.2 -4.6 -4.6 PA5531 transporter TonB 2.1 -1.1 2.3

PA2463 hypothetical protein (PA2463) 1.6 -3.1 -2.9

PA2467 Anti-sigma factor FoxR (foxR) 1.4 -1.1 1.6

PA2492 transcriptional regulator MexT (mexT) -1.1 1.2 1.8 Sulfur

PA2523 putative two-component response regulator (PA2523) -1.0 -1.1 1.8 PA0184 ABC transporter ATP-binding protein (PA0184) -1.2 -1.8 1.1

PA2586 response regulator GacA (gacA) -1.0 1.3 2.0 PA0186 binding protein component of ABC transporter (PA0186) -1.0 -1.2 1.6

PA2591 transcriptional regulator (PA2591) 1.4 -1.4 1.5 PA0193 hypothetical protein (PA0193) 2.0 1.1 1.3

PA2593 quorum threshold expression protein QteE 1.3 -2.4 1.0 PA0280 sulfate transport protein CysA (cysA) 6.0 1.2 -2.1

PA2663 psl and pyoverdine operon regulator, PpyR 1.2 2.3 -1.1 PA0281 sulfate transport protein CysW (cysW) 4.5 1.1 -2.0

PA2686 two-component response regulator PfeR (pfeR) 1.4 1.6 1.4 PA0282 sulfate transport protein CysT (cysT) 2.9 -1.1 -1.9

PA3006 transcriptional regulator PsrA (psrA) -1.0 -1.8 3.2 PA0283 sulfate-binding protein precursor (sbp) 2.5 1.2 -1.5

PA3269 putative transcriptional regulator (PA3269) -1.0 1.2 1.9 PA0518 cytochrome c-551 precursor (nirM) 1.6 1.4 1.0

PA3364 aliphatic amidase expression-regulating protein (amiC) -1.1 1.1 2.6 PA0589 thiosulfate sulfurtransferase (glpE) 1.1 1.0 1.8

PA3385 alginate and motility regulator Z (amrZ) -1.4 1.9 1.8 PA1393 adenosine 5'-phosphosulfate (APS) kinase (cysC) 1.1 -1.9 1.3

PA3476 autoinducer synthesis protein RhlI (rhlI) 1.2 -1.3 1.7 PA1838 sulfite reductase (cysI) 1.4 1.3 -3.0

PA3542 alginate biosynthesis protein Alg44 (alg44) 1.1 1.0 1.5 PA2104 cysteine synthase (PA2104) 1.3 -2.1 1.1

PA3621.1 regulatory RNA RsmZ -4.6 -16.6 -2.5 PA2105 acetyltransferase (PA2105) 1.2 -1.7 1.3

PA3649 hypothetical protein (PA3649) 1.0 1.2 1.6 PA2310 hypothetical protein (PA2310) 2.2 -1.6 1.3

PA3708 putative chemotaxis transducer (wspA) -1.2 1.1 1.8 PA2357 NADH-dependent FMN reductase MsuE (msuE) 2.3 1.3 -1.3

PA3879 transcriptional regulator NarL (narL) -1.5 -1.0 1.7 PA2595 hypothetical protein (PA2595) 1.6 -1.1 3.3

PA3885 protein tyrosine phosphatase TpbA -1.2 1.0 2.0 PA2596 hypothetical protein (PA2596) 2.4 -1.1 1.3

PA3947 RocR (rocR) 1.0 1.1 1.7 PA2598 hypothetical protein (PA2598) 3.0 -1.3 1.1

PA4080 putative response regulator (PA4080) -1.0 -1.0 1.9 PA2600 hypothetical protein (PA2600) 2.1 1.6 1.4

PA4196 protein BfiR -1.2 -1.5 1.3 PA3107 O-succinylhomoserine sulfhydrylase (metZ) -1.3 1.7 1.1

PA4227 transcriptional regulator PchR (pchR) 1.3 -3.1 1.3 PA3442 aliphatic sulfonates transport ATP-binding subunit (ssuB) 6.2 -1.2 1.4

PA4421 cell division protein MraZ (PA4421) 1.1 1.1 2.0 PA3443 ABC transporter permease (PA3443) 46.6 1.5 1.1

PA5346 hypothetical protein (PA5346) 1.0 1.1 1.8 PA3444 alkanesulfonate monooxygenase (PA3444) 26.7 -2.1 1.2

PA5483 two-component response regulator AlgB (algB) -1.1 -1.7 1.2 PA3445 hypothetical protein (PA3445) 11.5 -2.2 -1.2

PA3446 NAD(P)H-dependent FMN reductase (PA3446) 3.6 1.2 1.3

PA3447 ABC transporter ATP-binding protein (PA3447) -1.1 -1.6 1.6

C-di-GMP PA3448 ABC transporter permease (PA3448) 3.1 1.9 1.8

PA0169 hypothetical protein (PA0169) 1.7 -3.2 -2.8 PA3449 hypothetical protein (PA3449) 2.1 1.1 -1.1

PA0172 hypothetical protein (PA0172) 1.8 -3.3 -2.2 PA3935 taurine dioxygenase (tauD) 3.4 -1.1 1.0

PA2870 hypothetical protein (PA2870) -1.3 -1.1 1.5 PA3936 taurine ABC transporter permease (PA3936) 2.4 -1.8 1.4

PA3343 hypothetical protein (PA3343) -1.3 -1.0 1.5 PA3937 taurine ABC transporter ATP-binding protein (PA3937) 3.9 -2.1 1.3

PA3703 chemotaxis-specific methylesterase (wspF) -1.0 1.4 1.9 PA3938 periplasmic taurine-binding protein precursor (PA3938) 2.0 -1.5 1.2

PA3704 putative chemotaxis sensor/effector fusion protein (wspE) -1.6 1.3 1.3 PA3954 hypothetical protein (PA3954) 1.0 1.4 1.8

PA3707 hypothetical protein (wspB) -1.2 1.2 1.8 PA4442 cysN 1.3 1.5 -1.7

PA3708 putative chemotaxis transducer (wspA) -1.2 1.1 1.8 PA4513 oxidoreductase (PA4513) 1.9 -1.3 1.1

PA4624 hypothetical protein (PA4624) 2.3 -2.1 -1.4

PA4625 hypothetical protein (PA4625) 2.3 -2.3 -1.4
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Nitrogen (no detnitrification) Quorum Sensing

Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ

PA1566 hypothetical protein (PA1566) 1.8 1.4 1.9 PA0222 hypothetical protein (PA0222) -1.1 -1.3 1.6

PA1779 assimilatory nitrate reductase (PA1779) -1.4 -1.5 1.2 PA0295 periplasmic polyamine binding protein (PA0295) -1.3 1.7 -1.3

PA1780 assimilatory nitrite reductase small subunit (nirD) 2.2 1.4 1.4 PA0603 ABC transporter ATP-binding protein (PA0603) 1.9 1.7 1.2

PA1783 nitrate transporter (nasA) 3.8 1.7 4.5 PA0604 putative binding protein component of ABC transporter (PA0604) 2.0 1.9 1.4

PA1786 hypothetical protein (PA1786) 1.5 -1.3 2.1 PA0605 ABC transporter permease (PA0605) 1.8 1.5 1.5

PA2040 glutamine synthetase (PA2040) 1.3 -1.0 -1.6 PA0606 ABC transporter permease (PA0606) 1.5 2.0 1.5

PA2442 glycine cleavage system protein T2 (gcvT2) 1.2 1.3 -2.7 PA0649 anthranilate synthase component II (trpG) 1.1 -1.2 1.6

PA3459 glutamine amidotransferase (PA3459) -1.3 -1.8 1.4 PA0844 hemolytic phospholipase C precursor (plcH) 1.4 -1.6 1.3

PA3876 nitrite extrusion protein 2 (narK2) -3.2 -1.8 1.5 PA0996 coenzyme A ligase (pqsA) -1.1 1.3 2.9

PA3877 nitrite extrusion protein 1 (narK1) -4.5 -2.1 1.2 PA0997 beta-keto-acyl-acyl-carrier protein synthase-like protein (pqsB) -1.5 1.1 1.6

PA4588 glutamate dehydrogenase (gdhA) -1.2 -1.2 1.7 PA1000 quinolone signal response protein (pqsE) -1.6 -1.6 -1.0

PA4920 NAD synthetase (nadE) -1.0 -1.5 2.9 PA1001 anthranilate synthase component I (phnA) 1.1 -1.6 -1.6

PA5035 glutamate synthase subunit beta (gltD) -1.6 1.0 1.7 PA1002 anthranilate synthase component II (phnB) 1.3 -1.2 1.7

PA5036 glutamate synthase subunit alpha (gltB) -1.1 1.1 2.4 PA1003 Transcriptional regulator MvfR (mvfR) 1.5 -1.5 2.0

PA5119 glutamine synthetase (glnA) -1.3 1.5 2.0 PA1071 branched-chain amino acid transport protein BraF 1.4 1.0 1.6

PA5173 carbamate kinase (arcC) -1.4 -4.6 1.1 PA1073 branched-chain amino acid transport protein BraD (braD) 1.3 -1.6 1.4

PA1303 signal peptidase (PA1303) 1.2 1.0 -2.2

PA1431 regulatory protein RsaL (rsaL) 1.4 -1.5 1.3

Alginate PA1432 autoinducer synthesis protein LasI (lasI) 1.1 -2.6 1.4

PA0762 RNA polymerase sigma factor AlgU (algU) 1.0 -1.7 2.3 PA1871 LasA protease precursor (lasA) -1.1 -1.6 1.2

PA0763 anti-sigma factor MucA (mucA) -1.0 -1.7 1.3 PA1874 hypothetical protein (PA1874) 1.1 -1.8 1.2

PA0764 negative regulator for alginate biosynthesis MucB (mucB) 1.1 -1.9 1.2 PA1900 phenazine biosynthesis protein (phzB2) 1.7 -1.7 1.4

PA0766 serine protease MucD precursor (mucD) 1.0 1.0 -1.7 PA1902 phenazine biosynthesis protein PhzD (phzD2) -1.4 -2.9 -1.9

PA3385 alginate and motility regulator Z (amrZ) -1.4 1.9 1.8 PA1904 phenazine biosynthesis protein (phzF2) 2.7 1.5 3.8

PA3541 alginate biosynthesis protein Alg8 (alg8) -1.7 -1.3 1.2 PA2569 hypothetical protein (PA2569) -1.1 -1.2 2.0

PA3542 alginate biosynthesis protein Alg44 (alg44) 1.1 1.0 1.5 PA2843 aldolase (PA2843) -1.1 1.5 1.1

PA3545 alginate-c5-mannuronan-epimerase AlgG (algG) -1.0 -1.1 1.8 PA3250 hypothetical protein (PA3250) -1.1 1.2 1.8

PA3546 alginate biosynthesis protein AlgX (algX) -1.5 -1.3 1.3 PA3252 ABC transporter permease (PA3252) 1.2 -1.2 1.6

PA3547 poly(beta-D-mannuronate) lyase (algL) 1.1 -1.1 1.6 PA3253 ABC transporter permease (PA3253) -2.0 -1.8 1.1

PA3548 alginate o-acetyltransferase AlgI (algI) -1.7 -1.2 1.6 PA3254 ABC transporter ATP-binding protein (PA3254) -1.2 1.4 2.0

PA3549 alginate o-acetyltransferase AlgJ (algJ) 1.2 -1.6 1.4 PA3299 acyl-CoA synthetase (fadD1) -1.3 1.7 1.0

PA3550 alginate o-acetyltransferase AlgF (algF) -1.7 -1.0 1.4 PA3300 acyl-CoA synthetase (fadD2) -1.1 1.2 1.9

PA3649 hypothetical protein (PA3649) 1.0 1.2 1.6 PA3319 non-hemolytic phospholipase C precursor (plcN) 1.0 1.1 1.6

PA4033 hypothetical protein (PA4033) -1.2 1.0 2.2 PA3320 hypothetical protein (PA3320) 1.1 2.3 3.1

PA5483 two-component response regulator AlgB (algB) -1.1 -1.7 1.2 PA3361 fucose-binding lectin PA-IIL (lecB) -1.9 -1.3 1.7

PA3364 aliphatic amidase expression-regulating protein (amiC) -1.1 1.1 2.6

Chemotaxis PA3476 autoinducer synthesis protein RhlI (rhlI) 1.2 -1.3 1.7

PA0173 chemotaxis-specific methylesterase (PA0173) -1.3 -2.2 -1.5 PA3478 rhamnosyltransferase chain B (rhlB) -1.1 -1.1 2.5

PA0175 putative chemotaxis protein methyltransferase (PA0175) 1.2 -1.6 1.1 PA3479 rhamnosyltransferase chain A (rhlA) -1.7 -1.6 -1.4

PA0176 aerotaxis transducer Aer2 (aer2) 1.4 -1.6 1.0 PA3649 hypothetical protein (PA3649) 1.0 1.2 1.6

PA0177 putative purine-binding chemotaxis protein (PA0177) 1.5 -1.9 1.2 PA3724 elastase LasB (lasB) 1.0 1.4 3.2

PA0178 putative two-component sensor (PA0178) 1.8 -2.1 -1.0 PA4205 hypothetical protein (mexG) 1.2 -1.3 -1.6

PA0179 putative two-component response regulator (PA0179) 1.6 -1.2 1.8 PA4206 RND efflux membrane fusion protein precursor (mexH) 1.1 -1.4 -1.9

PA1608 chemotaxis transducer (PA1608) 1.1 1.5 1.6 PA4212 phenazine biosynthesis protein PhzC (phzC1) 1.0 1.2 1.8

PA1646 chemotaxis transducer (PA1646) -1.2 -1.8 1.0 PA4215 phenazine biosynthesis protein (phzF1) -1.4 -2.7 1.3

PA1946 binding protein component precursor of ABC ribose transporter (rbsB)-1.0 -1.9 2.0 PA4276 preprotein translocase subunit SecE (secE) -1.2 1.4 1.6

PA2561 putative chemotaxis transducer (PA2561) -1.8 3.9 2.0 PA4804 amino acid permease (PA4804) 1.1 -1.0 2.0

PA2573 chemotaxis transducer (PA2573) 1.2 -1.2 1.6 PA4909 ABC transporter ATP-binding protein (PA4909) -1.0 -1.8 1.1

PA2652 putative chemotaxis transducer (PA2652) -1.4 1.9 1.5 PA4910 branched chain amino acid ABC transporter ATP binding protein (PA4910) 1.2 1.3 2.2

PA2654 putative chemotaxis transducer (PA2654) -1.3 1.7 1.5 PA4913 putative binding protein component of ABC transporter (PA4913) 1.3 -1.1 2.6

PA2920 putative chemotaxis transducer (PA2920) 1.3 1.4 1.9 PA5499 transcriptional regulator np20 (np20) -1.2 -1.4 1.7

PA3348 putative chemotaxis protein methyltransferase (PA3348) -1.1 1.0 1.5

PA4290 chemotaxis transducer (PA4290) 1.3 -1.1 5.3

PA4307 chemotactic transducer PctC (pctC) -2.1 1.8 -1.7 Fimbriae

PA4309 chemotactic transducer PctA (pctA) -1.2 2.1 2.2 PA0993 chaperone CupC2 (cupC2) 2.4 -2.3 3.0

PA4310 chemotactic transducer PctB (pctB) -1.1 1.8 -1.2 PA2128 fimbrial subunit CupA1 (cupA1) 1.4 -1.2 -1.6

PA4502 binding protein component of ABC transporter (PA4502) 1.2 2.6 1.8 PA2129 chaperone CupA2 (cupA2) 1.3 -1.0 -1.6

PA4520 putative chemotaxis transducer (PA4520) -1.2 -1.1 1.6 PA2132 chaperone CupA5 (cupA5) 1.6 1.3 1.0

PA4633 putative chemotaxis transducer (PA4633) 1.0 1.3 1.8 PA4081 fimbrial protein cupB6 (cupB6) -1.1 -1.2 1.7

PA4915 chemotaxis transducer (PA4915) 1.1 -1.3 2.5 PA4083 chaperone CupB4 (cupB4) 1.1 1.2 1.6

PA4954 flagellar motor protein MotA (motA) 1.0 1.1 2.1 PA4084 usher CupB3 (cupB3) 1.0 -1.1 3.1

PA5072 putative chemotaxis transducer (PA5072) -1.5 1.7 1.1 PA4085 chaperone CupB2 (cupB2) -1.5 -5.6 -1.0

PA4086 fimbrial subunit CupB1 (cupB1) 1.0 -1.3 1.7

Type IV Pili

PA3805 type 4 fimbrial biogenesis protein PilF (pilF) -1.1 1.5 1.2

PA4525 type 4 fimbrial precursor PilA (pilA) -1.4 -1.7 -1.0

PA4526 type 4 fimbrial biogenesis protein PilB (pilB) -1.3 -2.0 1.6

PA4527 pseudo (pilC) -1.0 1.1 2.0

PA4528 type 4 prepilin peptidase PilD (pilD) -1.0 -1.2 2.0

PA4547 two-component response regulator PilR (pilR) 1.0 1.5 -1.1

PA4549 type 4 fimbrial biogenesis protein FimT (fimT) -1.6 -2.5 1.2

PA4550 type 4 fimbrial biogenesis protein FimU (fimU) -1.6 -1.1 -1.5

PA5040 Type 4 fimbrial biogenesis outer membrane protein PilQ precursor (pilQ)-1.0 1.0 1.7

PA5041 type 4 fimbrial biogenesis protein PilP (pilP) -1.1 -1.2 2.0

PA5042 type 4 fimbrial biogenesis protein PilO (pilO) -1.1 -1.3 1.6

Flagella

PA1077 flagellar basal body rod protein FlgB (flgB) 1.2 -1.4 1.9

PA1078 flagellar basal body rod protein FlgC (flgC) 1.2 -1.3 1.7

PA1081 flagellar basal body rod protein FlgF (flgF) 1.2 -1.6 2.0

PA1085 flagellar rod assembly protein/muramidase FlgJ (flgJ) -1.0 -1.2 1.5

PA1095 flagellar protein FliS (fliS) 1.1 1.2 1.5

PA1446 flagellar biosynthesis protein FliP (fliP) -1.1 -1.5 1.4

PA1449 flagellar biosynthesis protein FlhB (flhB) 1.5 1.2 1.2

PA1452 flagellar biosynthesis protein FlhA (flhA) 1.1 -1.5 1.3

PA3350 flagellar basal body P-ring biosynthesis protein FlgA (flgA) -1.1 -1.3 1.7

PA3352 hypothetical protein (PA3352) -1.1 1.5 2.0

PA3526 outer membrane protein precursor (PA3526) -1.1 1.4 2.0

PA4954 flagellar motor protein MotA (motA) 1.0 1.1 2.1
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Two-Component System Two-Component System

Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ Locus Tag General Description and Gene Name Δsmc ΔmksB ΔΔ

PA0119 C4-dicarboxylate transporter DctA (PA0119) -1.2 -1.5 2.3 PA3714 putative two-component response regulator (PA3714) 1.1 -2.0 1.4

PA0173 chemotaxis-specific methylesterase (PA0173) -1.3 -2.2 -1.5 PA3872 respiratory nitrate reductase gamma chain (narI) -1.1 -1.3 1.6

PA0175 putative chemotaxis protein methyltransferase (PA0175) 1.2 -1.6 1.1 PA3873 respiratory nitrate reductase delta chain (narJ) -1.2 -1.2 1.8

PA0176 aerotaxis transducer Aer2 (aer2) 1.4 -1.6 1.0 PA3874 respiratory nitrate reductase beta chain (narH) -1.4 -1.3 1.8

PA0177 putative purine-binding chemotaxis protein (PA0177) 1.5 -1.9 1.2 PA3875 respiratory nitrate reductase alpha chain (narG) -1.7 -1.5 2.0

PA0178 putative two-component sensor (PA0178) 1.8 -2.1 -1.0 PA3879 transcriptional regulator NarL (narL) -1.5 -1.0 1.7

PA0179 putative two-component response regulator (PA0179) 1.6 -1.2 1.8 PA3910 extracelullar DNA degradation protein EddA -1.1 1.3 2.2

PA0518 cytochrome c-551 precursor (nirM) 1.6 1.4 1.0 PA3925 putative acyl-CoA thiolase (PA3925) -1.0 1.5 -1.4

PA0749 hypothetical protein (PA0749) 1.6 -2.2 -1.5 PA3929 cyanide insensitive terminal oxidase (cioB) 1.6 1.4 1.5

PA0766 serine protease MucD precursor (mucD) 1.0 1.0 -1.7 PA3930 cyanide insensitive terminal oxidase (cioA) 1.9 1.5 1.7

PA0885 C4-dicarboxylate transporter (PA0885) -1.5 -2.3 -1.5 PA4080 putative response regulator (PA4080) -1.0 -1.0 1.9

PA0905 carbon storage regulator (rsmA) 1.3 -2.1 1.2 PA4144 outer membrane protein precursor (PA4144) -2.5 -1.2 -1.1

PA0929 two-component response regulator (PA0929) 7.1 -1.5 3.0 PA4290 chemotaxis transducer (PA4290) 1.3 -1.1 5.3

PA0931 outer membrane receptor FepA (pirA) 1.7 -1.3 -1.1 PA4307 chemotactic transducer PctC (pctC) -2.1 1.8 -1.7

PA1157 two-component response regulator (PA1157) -1.3 -1.1 -1.8 PA4309 chemotactic transducer PctA (pctA) -1.2 2.1 2.2

PA1158 two-component sensor (PA1158) 1.1 1.5 -1.0 PA4310 chemotactic transducer PctB (pctB) -1.1 1.8 -1.2

PA1183 C4-dicarboxylate transporter DctA (dctA) -1.1 -2.7 4.8 PA4429 putative cytochrome c1 precursor (PA4429) -1.5 1.8 -2.4

PA1339 amino acid ABC transporter ATP binding protein (PA1339) 1.4 -1.2 -1.5 PA4430 putative cytochrome b (PA4430) -1.4 1.8 -2.8

PA1340 amino acid ABC transporter membrane protein (PA1340) 1.6 -1.4 -1.6 PA4431 iron-sulfur protein (PA4431) -1.4 1.9 -2.3

PA1341 amino acid ABC transporter membrane protein (PA1341) 1.6 -1.5 -1.3 PA4520 putative chemotaxis transducer (PA4520) -1.2 -1.1 1.6

PA1342 putative binding protein component of ABC transporter (PA1342) 1.6 1.0 -1.3 PA4525 type 4 fimbrial precursor PilA (pilA) -1.4 -1.7 -1.0

PA1438 putative two-component sensor (PA1438) 1.2 -1.5 1.0 PA4547 two-component response regulator PilR (pilR) 1.0 1.5 -1.1

PA1552 Cytochrome c oxidase, cbb3-type, CcoP subunit 1.4 1.3 -1.9 PA4633 putative chemotaxis transducer (PA4633) 1.0 1.3 1.8

PA1552.1 Cytochrome c oxidase, cbb3-type, CcoQ subunit 1.2 1.7 -1.8 PA4885 two-component response regulator (irlR) -1.9 -1.5 -1.7

PA1553 Cytochrome c oxidase, cbb3-type, CcoO subunit 1.5 1.6 -1.8 PA4915 chemotaxis transducer (PA4915) 1.1 -1.3 2.5

PA1554 Cytochrome c oxidase, cbb3-type, CcoO subunit 1.4 1.4 -2.3 PA4954 flagellar motor protein MotA (motA) 1.0 1.1 2.1

PA1555 Cytochrome c oxidase, cbb3-type, CcoO subunit -1.2 -1.4 -1.8 PA5072 putative chemotaxis transducer (PA5072) -1.5 1.7 1.1

PA1556 Cytochrome c oxidase, cbb3-type, CcoO subunit -1.3 -1.3 -2.3 PA5082 putative binding protein component of ABC transporter (PA5082) -1.0 1.1 1.5

PA1557 Cytochrome c oxidase, cbb3-type, CcoO subunit -1.3 -1.2 -3.1 PA5119 glutamine synthetase (glnA) -1.3 1.5 2.0

PA1566 hypothetical protein (PA1566) 1.8 1.4 1.9 PA5124 two-component sensor NtrB (ntrB) 1.0 1.2 3.7

PA1608 chemotaxis transducer (PA1608) 1.1 1.5 1.6 PA5125 two-component response regulator NtrC (ntrC) 1.0 -1.1 1.5

PA1634 potassium-transporting ATPase subunit B (kdpB) 1.1 -1.7 1.4 PA5167 c4-dicarboxylate-binding protein (PA5167) 1.3 -1.2 2.1

PA1646 chemotaxis transducer (PA1646) -1.2 -1.8 1.0 PA5168 dicarboxylate transporter (PA5168) 1.5 1.1 2.3

PA1736 acetyl-CoA acetyltransferase (PA1736) 1.2 -1.7 1.1 PA5169 C4-dicarboxylate transporter (PA5169) 1.2 -1.3 2.5

PA1799 two-component response regulator, ParR 1.1 -1.2 -1.5 PA5483 two-component response regulator AlgB (algB) -1.1 -1.7 1.2

PA1856 cytochrome oxidase subunit (PA1856) 1.4 1.5 1.3 PA5484 two-component sensor (PA5484) -1.0 -1.6 1.2

PA1976 sensor histidine kinase 1.1 -1.6 -1.0 PA5512 sensor histidine kinase MifS 1.1 -1.1 1.9

PA1980 response regulator EraR -2.2 -1.9 -1.1

PA2040 glutamine synthetase (PA2040) 1.3 -1.0 -1.6

PA2523 putative two-component response regulator (PA2523) -1.0 -1.1 1.8

PA2548 hypothetical protein (PA2548) 1.9 1.1 1.8

PA2553 putative acyl-CoA thiolase (PA2553) 1.6 1.6 1.7

PA2561 putative chemotaxis transducer (PA2561) -1.8 3.9 2.0

PA2573 chemotaxis transducer (PA2573) 1.2 -1.2 1.6

PA2583 sensor/response regulator hybrid (PA2583) 1.1 -1.0 1.7

PA2586 response regulator GacA (gacA) -1.0 1.3 2.0

PA2652 putative chemotaxis transducer (PA2652) -1.4 1.9 1.5

PA2654 putative chemotaxis transducer (PA2654) -1.3 1.7 1.5

PA2686 two-component response regulator PfeR (pfeR) 1.4 1.6 1.4

PA2687 two-component sensor PfeS (pfeS) 1.8 1.1 1.3

PA2824 sensor/response regulator hybrid (PA2824) -1.1 1.1 1.6

PA2920 putative chemotaxis transducer (PA2920) 1.3 1.4 1.9

PA3045 putative two-component response regulator (PA3045) -1.2 1.0 2.9

PA3296 alkaline phosphatase (phoA) -1.2 -1.7 1.4

PA3345 hypothetical protein (PA3345) -1.4 1.1 1.9

PA3346 putative two-component response regulator (PA3346) -1.2 1.1 2.0

PA3347 hypothetical protein (PA3347) -1.0 1.7 3.2

PA3348 putative chemotaxis protein methyltransferase (PA3348) -1.1 1.0 1.5

PA3476 autoinducer synthesis protein RhlI (rhlI) 1.2 -1.3 1.7

PA3589 acetyl-CoA acetyltransferase (PA3589) -2.0 1.1 -1.0

PA3658 PII uridylyl-transferase (glnD) -1.1 1.1 1.8

PA3703 chemotaxis-specific methylesterase (wspF) -1.0 1.4 1.9

PA3704 putative chemotaxis sensor/effector fusion protein (wspE) -1.6 1.3 1.3

PA3706 putative methyltransferase (wspC) -1.2 1.1 1.8

PA3707 hypothetical protein (wspB) -1.2 1.2 1.8

PA3708 putative chemotaxis transducer (wspA) -1.2 1.1 1.8


