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ABSTRACT 

The lateral deformations of webs in roll-to-roll (R2R) process machines can affect 
the quality of the manufacturing process. The lateral registration of the web in successive 
R2R processes can determine whether a product will function as designed. Herein a 
unified theory is presented that explains how imperfections in rollers, their alignment and 
length nonuniformity (camber) in webs can affect the steady state lateral deformation and 
hence registration. Enhanced understanding of steady state lateral deformation of webs 
transiting free spans and rollers will provide insight for advanced control methods that 
account for the effects of web deformation in minimizing registration error. The validated 
results show that the lateral deformations can be predicted with closed form equations. In 
some cases the boundary conditions which are integrated into these equations must be 
determined using dynamic simulation. 

INTRODUCTION 

The ability to predict and control the lateral deformation of webs transiting through 
roll-to-roll process machines is important. Often webs undergo multiple processes where 
discrete coatings must be deposited precisely with respect to previous coatings. Gravure 
coating is used for fine multicolor printing and printed electronics. In these processes 
successive print rollers are overlaying coatings precisely with respect to coatings 
deposited by previous rollers. When the successive coatings are not deposited in the 
lateral location intended a registration error has occurred. This error could produce a 
blurred image unpleasing to the eye or a malfunction in the case of printed electronics. 

The objective of this publication is to provide a unified theory regarding the 
boundary conditions between webs and rollers which dictate the lateral deformations of 
the web for simple and then more complex cases. Webs are often treated as beams 
between rollers. Shelton was first to discover how a web is laterally steered by a 
misaligned roller [1,2]. Shelton’s discovery was triggered by experimental observation. 
In these tests he misaligned a downstream roller in a test span and measured the lateral 
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deformation that resulted after steady state conditions were achieved. Shelton limited the 
misalignment to ensure that moments generated at the upstream roller did not surpass the 
moment that could be reacted by friction between the web and roller [3,4]. This confined 
the lateral deformations to his test span and resulted in a constant lateral deformation in 
downstream spans. From his test results, Shelton inferred the lateral deformations for 
long spans were governed by boundary conditions including (1) the lateral deformation of 
the web entering the test span was zero, (2) the slope of the web entering the span was 
zero for long spans where shear deflections were small, (3) that the slope of the web 
entering the misaligned roller was the misalignment of the roller (the normal entry 
condition) and (4) that the moment was zero in the web at entry to the misaligned roller. 
Yurtcu et. al. [5] successfully performed a similar analysis and tests for a web span with a 
downstream roller whose radius tapered linearly across the roller width and derived the 
four boundary conditions needed to quantify the lateral deformations of the web in the 
test span. These investigations both treated the web span between two rollers as a beam 
whose lateral deformations were dictated by kinematic and kinetic boundary conditions 
imposed at the ends of the beam. Both investigations treated the effects of web tension on 
lateral deformation. 

A more complex case is that of the cambered web. A cambered web is a web with 
one side longer than the other. If a length of such a web is smoothed upon a flat surface, 
the web takes on the appearance of a curved beam. The camber can be quantified by 
measuring the radius of curvature of the elastic axis of the unstressed web (ρo). 
Experimental investigations on cambered webs in belt form [6] and on cambered webs 
transiting through roll-to-roll process machines [7,8] have consistently shown that the 
web steers towards the longer edge. Modelling efforts have been less successful in 
comparison to the experiments [8-16] and will be discussed later. 

This publication will deviate from these previous analyses by considering how the 
mechanics of the web transiting a roller can dictate the lateral behavior of the web in a 
free span. These considerations will be given to the previous cases of a web span with a 
downstream misaligned or tapered roller and then to the more complex case of a 
cambered web. 

DISCUSSION 

The lateral deformation v of a beam of bending stiffness EI subjected to tension T, 
lateral loads, bending moments but the absence of lateral tractions are governed by the 
differential Equation {17}: 

 𝐸𝐸𝐸𝐸 𝑑𝑑
4𝑣𝑣

𝑑𝑑𝑑𝑑4
− 𝑇𝑇 𝑑𝑑2𝑣𝑣

𝑑𝑑𝑑𝑑2
= 0 {1} 

The solution of the differential equation is of the form: 

 𝑣𝑣 = 𝐴𝐴 + 𝐵𝐵 𝑑𝑑
𝐿𝐿

+ 𝐶𝐶 ∗ cosh �𝜆𝜆𝑑𝑑
𝐿𝐿
� + 𝐷𝐷 ∗ sinh �𝜆𝜆𝑑𝑑

𝐿𝐿
� 𝜆𝜆 = �𝑇𝑇𝐿𝐿2

𝐸𝐸𝐸𝐸
 {2} 

where x is coordinate taken on the elastic axis of a beam of length L. The constant 
coefficients A, B, C and D depend on the boundary conditions for the problem under 
attack. Examples of straight webs entering misaligned rollers and tapered rollers will be 
examined for which closed form solutions of the differential equation can be developed. 
The solution of a cambered web transiting aligned rollers will be addressed. 
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A Web Approaching a Misaligned Roller 
A web exits an upstream roller in a web span. It will be assumed that the web entered 

that roller under the condition of normal entry posed by Lorig [18]. The condition of 
normal entry is one in which the elastic axis of the web is orthogonal to the axis of 
rotation of the upstream roller. The web will have zero lateral velocity on the upstream 
roller and the lateral position of the elastic axis of the web will be arbitrarily set at zero. 
Furthermore it will be assumed that the available friction forces between the web and the 
upstream roller are sufficient to prevent any slippage of the web laterally or in rotation on 
the roller surface. With these assumptions the lateral deformation and slope of the web 
exiting the upstream roller can be assumed to be zero: 

 𝑣𝑣𝑖𝑖 = 𝑣𝑣(0) = 0 {3A} 

 𝜃𝜃𝑖𝑖 = 𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑
�
𝑑𝑑=0

= 0 {3B} 

The downstream roller is misaligned at an angle θ orthogonal to the plane of the web 
span. If the misalignment occurred instantaneously the web would begin to translate 
laterally on the downstream roller. Webs respond to dynamic disturbances much as a first 
order dynamic system would react to a step input. Webs typically have very little mass 
which minimize internal inertial loads and allows the approximation of a first order 
system. After about 4 time constants τ, where τ=L/V, L is the span length and V is the 
web velocity, the web would come to a new steady state lateral location on the 
misaligned roller and dynamic motion would cease. The web has now achieved normal 
entry to the misaligned roller. The slope of the web at the entry to the misaligned roller θj 
will have become equal to the misalignment θ: 

 𝜃𝜃𝑗𝑗 = 𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑
�
𝑑𝑑=𝐿𝐿

= 0 {3C} 

Furthermore due to the assumption of no slippage of the web on the misaligned roller, the 
slope of the elastic axis of the web will remain at θ as the elastic axis follows a 
curvilinear path around the misaligned roller. Since the slope is not changing, the 
derivative of the slope must be zero: 

 𝑑𝑑2𝑣𝑣
𝑑𝑑𝑑𝑑2

�
𝑑𝑑=𝐿𝐿

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑑𝑑=𝐿𝐿

= 0 {3D} 

The four boundary conditions presented in Equations {3A-3D} are sufficient to 
determine the four unknown coefficients A-D in Equation {2}. The equation for the 
lateral deformation of the elastic axis of web in the free span between the upstream roller 
and the downstream misaligned roller is: 

 𝑣𝑣 = 𝜆𝜆𝑑𝑑 cosh(𝜆𝜆)+𝐿𝐿�sinh�𝜆𝜆(1−𝑑𝑑 𝐿𝐿⁄ )�−sinh(𝜆𝜆)�
𝜆𝜆(cosh(𝜆𝜆)−1)

𝜃𝜃 {4} 

This equation has been validated by tests [19]. A polyester web 15.24 cm wide and 23.4 
µm in thickness was transported through a web span 45.72 cm in length. Young’s 
modulus of the web was tested and found to be 4.90 GPa. Web tension was set at 13.3 N. 
In Figure 1 the lateral deformations predicted by {4} and the test results are presented. 
Note the agreement between tests and {4} is quite good at low misalignment but that the 
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result from {4} becomes less than the test data at greater misalignments. The length to 
width ratio of the web span is 3 and as such it might be argued that shear deformations 
could be significant. Also the friction forces between the web and the upstream roller 
surface may have been insufficient to restrain the bending moment that is maximum at 
that location and increases proportionately with misalignment. Thus the slope of the web 
exiting the upstream roller may have been greater than zero due to slippage. Either one of 
these sources of error could be sufficient to explain the difference seen between the 
lateral deformations predicted by {4} and the test results. Also note that shearing 
deformation and slippage would both result in test results that would be greater than the 
prediction by Equation {4} since neither effect was taken into account in the derivation. 
Nevertheless the agreement shown in Figure 1 is sufficient to prove that the downstream 
curvature boundary condition {3D} is valid. 

 

Figure 1 – Lateral Deformations of a Web due to a Downstream Misaligned Roller 

Shelton [2] was first to demonstrate the analysis of a web approaching a misaligned 
roller. He implemented boundary conditions {3A-3C} above. His 4th boundary condition 
was determined experimentally in the laboratory. He determined that the moment in the 
web at the entry to the downstream roller was zero. 

 𝑀𝑀𝐿𝐿 = 0 {5} 

Shelton also determined that a lateral force at the downstream roller was required to 
achieve normal entry {3C}: 

 𝑁𝑁𝐿𝐿 = 𝑇𝑇𝑑𝑑
cosh(𝜆𝜆)−1

 {6} 

He derived an equation equivalent to {4} for the lateral deformation. While the difference 
may seem inconsequential the argument presented is that Shelton’s kinetic boundary 
conditions {6} and {5} were needed to sustain the kinematic boundary conditions {3D} 
and {3C}, both of which rely on no slippage in the entry region of the web on the 
misaligned downstream roller. 
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Figure 2 – Dynamic Simulation of a Web Approaching a Misaligned Roller 

A dynamic finite element simulation1 code was used to provide means of visualizing 
the behavior discussed. The horizontal span of web in Figure 2a has identical length, 
width, thickness and modulus to the web described earlier in the tests. The 3rd roller in the 
simulation (R3) was given a misalignment of 1 mrad about the y axis in Figure 2a. A web 
length 4 times the span length between rollers R2 and R3 was allowed to pass over the 
rollers in the simulation. Web tension was maintained 12.3 N, slightly less than the tests 
conducted at 13.3 N. In Figure 2a the web travels in the x direction. Note the MD stresses 
become uniform as the web enters roller R3. This uniformity in stress demonstrates the 
moment about the y axis on the elastic axis of the web is zero, hence Shelton’s condition 
{5} is satisfied. The lateral deformations are shown in Figure 2b. In the vertical entry 
span the lateral deformations are due to uniform Poisson contraction. In the horizontal 
test span the lateral deformations are due to a combination of Poisson contraction and 
lateral steering. Finally in the vertical exit span the deformations are to the steering in the 
horizontal span, Poisson contraction and the slight twist the span is subject to. The 
presence of stick and slip behavior between the web and the entry (R2) and exit (R3) 
rollers is shown in Figure 2c. Note that stick behavior occurs over most of the contact 

                                                 
1 Dassault Systems,  Abaqus Simulia, Rising Sun Mills, 166 Valley St., Providence, RI 
02909-2499 

σMD (MPa) v (mm) 

(a) (b) 

(c) 

R1 

R2 

R3 

R4 

R2 R3 

0.022 
-0.013 
-0.047 
-0.082 
-0.117 
-0.151 
-0.186 
-0.220 
-0.255 
-0.290 
-0.324 
-0.359 
-0.394 

4.729 
4.334 
3.939 
3.544 
3.149 
2.755 
2.360 
1.965 
1.570 
1.175 
0.781 
0.386 
-0.009 
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between the web and roller R3. The MD stress variation shown across the width of the 
web as the web exits roller R2 results in varying degrees of capstan slippage across R2 as 
shown in Figure 2c. The level of slippage will jeopardize the validity of boundary 
condition {3B}. 

The lateral deformations for the elastic axis of the web were harvested from the 
whole field data presented in Figure 2b and presented in Figure 3. The lateral deflection 
of the elastic axis at the entry to R3 is -.327 mm (-.013 in). In Figure1 the average 
absolute test deflection from the two tests is 0.331 mm, thus the simulated value is within 
1.2% of the test value. Both the simulations and the tests allow slippage at the exit of R2 
and relaxation of condition {3B}. Equation {4} produces a deflection of -.305 mm, 7.8% 
in error compared to the test value. For this condition, Equation {6} predicts a lateral 
force of 0.271 N is required to enforce normal entry of the web to roller R3. The results 
of the dynamic simulation showed that a lateral load of 0.260 N was required, very 
comparable to that predicted from Equation {6}. 

The dynamic simulation has none of the boundary conditions {3A-3D} enforced but 
the displacements, slopes and curvatures presented in Figure3 show these boundary 
conditions are reasonable. In Figure 3 the web exits the upstream roller R2 at an MD 
location of 0 cm. The web enters roller R3 at 45.72 cm. The MD Location is a coordinate 
that follows the elastic axis of the web as it wraps around roller R2, proceeds into the 
horizontal span and then wraps roller R3. The web exits R2 with no lateral deformation 
{3A} and little slope {3B}. The web enters R3 at the slope of the misaligned roller {3C} 
with near zero curvature {3D}. 

 

Figure 3 – Deformation, slope and curvature of the elastic axis of the web after steady 
state conditions were achieved in the simulation shown in Figure 2. 

In Figure 4 the rate that the steady state boundary conditions were achieved in the 
simulation are shown. The dynamic time constant is the span length (45.7 cm) divided by 
the web velocity (7.37 cm/s) or 6.2 seconds. It appears that steady state conditions had 
been attained after 20 seconds of simulation or about 3.2 time constants. 

The web wrapping the misaligned roller is a sector of a right circular cylinder whose 
inside surface matches the outside surface of the misaligned roller precisely as shown in 
Figure 5(a). That these shapes match precisely allows the web to cross much of the 
misaligned roller R3 without slip. The lateral force NL was required to achieve normal 
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entry. The zero curvature allows the elastic axis to follow a circular rather than a helical 
path in the entry region of R3. 

 

Figure 4 – Rate at which steady state boundary conditions are attained in the simulation 
shown in Figure 2. 

 

Figure 5 – A Web Entering (a) a Cylindrical Roller and (b) a Tapered Roller Normally 

A Web Approaching a Tapered Roller 
Rollers can take the shape of a truncated cone as an unintentional result of 

manufacturing processes. Manufacturers of rollers will quote the maximum radial taper m 
as an error in the radius of the roller per unit width (in the CMD). A tapered roller will 
steer a web in the CMD towards the larger radius end of the roller. Assume an upstream 
roller is a perfect right circular cylinder. Also assume the next roller downstream is a 
roller with linear radial taper m with respect to the CMD. The nominal radius of this 
roller Ro is defined halfway across the roller width. Furthermore, assume the axes of 
rotation of both rollers are parallel and hence they are aligned. In Figure 5 a straight web 
is shown entering a cylindrical roller (a) and a tapered roller (b) under normal entry 
conditions. Assume temporarily that the web is under no stress but that it is forced to 
have surface contact with the rollers and consider the geometry. The web exiting the 
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cylindrical roller will exit normally to the exit tangent line. The web exiting the tapered 
roller will not exit normally but at an angle θ given by: 

 𝜃𝜃 = 𝜙𝜙𝜙𝜙 = 𝑠𝑠
𝑅𝑅
𝜙𝜙 {7} 

where φ is the wrap angle of the web about the roller and s is a curvilinear coordinate 
following the elastic axis of the web. The earlier assumption of allowing no slippage will 
not allow the web to follow this path. If the web does not slip it will proceed straight over 
the roller as shown in the dashed configuration in Figure 5(b) which makes it appear 
similar to the web in Figure 5(a). Now the web must be deformed in a negative θ 
direction to allow the web to travel directly over the roller and exit normally from the 
tapered roller. To accomplish this, a constant curvature must be enacted on the web so 
that the straight dashed path can be followed without slip: 

 𝑑𝑑2𝑣𝑣
𝑑𝑑𝑠𝑠2
�
𝑑𝑑=𝐿𝐿

= − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠
�
𝑑𝑑=𝐿𝐿

= − 𝑚𝑚
𝑅𝑅𝑜𝑜

 {8} 

The four boundary conditions {3A} and {3B}, {3C} with θ = 0 and {8} were used in 
conjunction with Equation {2} to determine the unknown coefficients A, B, C and D. The 
equation for the lateral deformation of an initially straight web approaching a tapered 
roller is: 

 𝑣𝑣 = 𝑚𝑚𝐸𝐸𝐸𝐸
𝑅𝑅𝑜𝑜𝑇𝑇

�cosh �𝜆𝜆𝑑𝑑
𝐿𝐿
� − 1 + coth �𝜆𝜆

2
� �𝜆𝜆𝑑𝑑

𝐿𝐿
− sinh �𝜆𝜆𝑑𝑑

𝐿𝐿
��� {9} 

From Equation {9}, the moment and shear in the web at the entry to the tapered roller can 
be determined: 

 𝑀𝑀𝐿𝐿 = 𝐸𝐸𝐸𝐸 𝑑𝑑
2𝑣𝑣

𝑑𝑑𝑑𝑑2
�
𝑑𝑑=𝐿𝐿

= 𝑚𝑚𝐸𝐸𝐸𝐸
𝑅𝑅𝑜𝑜

 {10} 

 𝑁𝑁𝐿𝐿 = 𝐸𝐸𝐸𝐸 𝑑𝑑
3𝑣𝑣

𝑑𝑑𝑑𝑑3
�
𝑑𝑑=𝐿𝐿

= 𝑚𝑚√𝑇𝑇𝐸𝐸𝐸𝐸
𝑅𝑅𝑜𝑜

coth �𝜆𝜆
2
� {11} 

This is the lateral load {11} required to enact normal entry {3C} and thus steady state 
lateral deformation. The moment {10} is required to enact the constant curvature {8} that 
will allow the elastic axis of the web to travel directly over the roller with no slip, shown 
in the dashed path in Figure 5(b). Yurtcu et al [5] developed similar equations for {10} 
and {11} assuming a polynomial deformation function in {9} which accounted for the 
effects of tension and shear stiffness. 

Equation {9} has been validated in tests as shown in Figure 6. A polyester web 15.24 
cm wide and 23.4 µm in thickness was transported through a web span 50.8 cm in length. 
Young’s modulus of the web was tested and found to be 4.90 GPa. Web tension was set 
at 44.5 N. Four tapered rollers with tapers m of 0.00028, 0.00054, 0.00064 and 0.00075 
radians with a nominal radius Ro of 3.76 cm were machined for these tests. Reasonable 
agreement between the tests and Equation {9} is demonstrated. Note the test results are 
slightly larger than those predicted by Equation {9}, a behavior similar to that witnessed 
for the web encountering a downstream misaligned roller in Figure 1. 
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Figure 6 – Lateral Deformations of a Web due to a Downstream Tapered Roller 

Dynamic simulations of a web transporting through a span with a downstream 
tapered roller were conducted1. The web width, thickness and span length and the 
material properties were identical to the test conditions. Results for the lateral 
deformation of the elastic axis at the entry to the tapered roller are shown for roller tapers 
m of 0.00066, 0.00075 and 0.0009 m/m in Figure 6. Simulation results are shown in 
Figure 7 for the roller taper of m=0.00066 m/m. 

In Figure 7(a), rollers R1, R2 and R4 are cylindrical with an outer radius of 3.68 cm. 
Roller R3 is the tapered roller whose nominal radius at the center is 3.68 cm and whose 
taper m in this case is 0.00066 rad. The web tension was set to 44.5 N. The web travels 
from left to right in these simulations. For the simulation to achieve steady state MD 
stresses and lateral deformations, shown in Figs. 7(a) and (b), the web had to move over 
200 cm in the MD. Note how the MD stresses remain constant as the web transports over 
the tapered roller R3. This is an indication that the curvature of the elastic axis of the web 
on the roller is constant.  Also note the deformation contour in Figure 7(b) moves directly 
over the roller which indicates the lateral deformation at a given CMD location is 
constant. This is seen in greater clarity in Figure 8 which shows the lateral deformation, 
slope and curvature of the elastic axis of the web in steady state conditions harvested 
from the simulation results shown in Figure 7. The web exits roller R2 at MD location 0 
and enters R3 at 50.8 cm. The results shown in Figure 8 demonstrate clearly that the 
lateral deformation of the elastic axis of the web is constant as the web moves over roller 
R3 and is indicative of stick behavior between the web and roller surface. As the web 
exits R3 slippage will occur and the lateral deformations will vary in the slip region. Note 
the elastic axis enters R3 normally and remains normal through the entry stick region. 
The curvature is linear through the free span before becoming constant on roller R3. As 
the web enters R3 the simulation results show the web curvature is -0.01783 m-1. This 
compares well with the curvature boundary condition for stick conditions {8}: -m/Ro = -
0.00066/0.0368=-0.01794 m-1, only 0.62% different. Thus the curvature boundary 
condition {8} is valid. Also the simulation shows the slope to be zero at R3 entry (hence 
normal entry) and boundary condition {3C} appears reasonable. Note the slope at the exit 
of R2 is small but non-zero (0.0037 rad), which contributed to the simulated deformation 
at the entry to R3 being greater than the test and Equation {9} values in Figure 6. 
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Figure 7 – Dynamic simulation of a web approaching a tapered roller (m=0.00066 m/m). 

 

Figure 8 – Deformation, slope and curvature of the elastic axis of the web after steady 
state conditions were achieved in the simulation shown in Figure 7. 
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The behaviors of the deformation and the slope of the web on the roller in Figure 8 
might appear to be incompatible with the curvature shown. The slope of the elastic axis 
was obtained by using a central finite difference formula on the lateral deformations. 
Note that the web enters R3 with zero slope (normal entry) and that the slope remains 
zero as the web transits the roller without slipping. The curvature of the elastic axis could 
be calculated by taking the derivative of the slope with respect to the MD and in fact this 
would be accurate for the web in the free span. This would yield an erroneous result of 
zero for the curvature of the web in contact with the roller. If the web on the roller had 
zero curvature it would be the unstressed web whose lateral deformation was a function 
of wrap angle shown in Figure 5(b). For the web to track directly over the roller, as 
required by steady state stick behavior and shown by the dashed line in Figure 5(b), the 
constant curvature of -0.01794 m-1 had to exist in the web on the roller. The curvature 
shown in Figure 8 was obtained by first interrogating the section force/moment field 
output provided by Abaqus1 at several points on the elastic axis. These bending moments 
were then divided by the bending stiffness (EI) of the web to produce the curvature 
shown in Figure 8. The web tension and bending moment in the web on the roller 
produces MD stresses that vary linearly in the CMD as shown in Figure 7(a) from 6.08 to 
19.1 MPa (882 to 2770 psi) over the web width. It is this MD stress variation over the 
web width that has allowed the web to conform to the linear taper of roller radius over the 
web width. The web has taken the shape of the conical roller surface which allows it to 
directly pass over the roller with no CMD slippage, as shown in the dashed web path in 
Fig 5(b). 

 

Figure 9 – Rate at which steady state boundary conditions are attained in the simulation 
shown in Figure 7. 

The rate at which boundary conditions {3C} and {8} converge in time is shown in 
Figure 9. It is apparent the convergence is related to the dynamic time constant of the free 
span. The span length of 50.8 cm (20 in) divided by the transport velocity of the 
simulation (1.27 cm/s) produces a time constant of 40 s. Note that convergence of 
boundary conditions {3C} to 0 radians and {8} to -0.0178 m-1 occurred essentially at 3 
time constants (120 s). 
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A Cambered Web Transiting Aligned Cylindrical Rollers 
A cambered web is a web whose length varies in the CMD. If this length variation is 

linear and a length of the web is swept out on a flat surface the web will take the shape of 
a curved beam of constant radius (ρo) in the unstressed state. In Figure 10(a) an 
unstressed cambered web is shown with long and short sides. 

 

Figure 10 – A Cambered Web: (a) in an undeformed state (b) deformed to a straight path 
and (c) deformed to steady state path. 

The camber radius ρo is associated with the undeformed shape of a beam. Curvature 
is defined as the bending moment at some location in a beam divided by the bending 
stiffness (EI): 𝑑𝑑

2𝑣𝑣
𝑑𝑑𝑑𝑑2

= 𝑀𝑀(𝑑𝑑)
𝐸𝐸𝐸𝐸

. There is no bending moment applied to the undeformed web 
and hence there is no curvature. To deform the unstressed web to the straight path would 
require a constant bending moment (M) of magnitude -EI/ρo to be applied to the web (the 
negative sign is consistent with the convention that a negative moment causes 
compression on the lower surface of a beam). Hence, the straight web has curvature of 
magnitude -M/EI or -1/ρo. It is said the cambered web steers toward the long side. Tests 
have shown [6,7,8] the cambered web steers laterally beyond the straight web position to 
a steady state position as shown in Figure 10(c). 

The differences in these deformed states are critical when reviewing the state of the 
literature on cambered web steering. The downstream moment boundary condition 
(ML=0) defined by Shelton [1] in Equation {5} is not applicable to the cambered web 
when steady state lateral deformation has been achieved. It has been assumed that the 
web span is bounded by two well-aligned cylindrical rollers. For steady state conditions 
to exist the web must normally enter the downstream roller and thus from boundary 
condition {3C} θj must equal zero. There will be a non-zero steady state moment at the 
downstream roller associated with deformed state of the cambered web as shown in 
Figure 10(c). That moment or curvature may be unique from the moment/curvature 
required to allow the web to track in a cylindrical path around the downstream roller 
without slipping. Several of the cambered web modeling efforts [9, 10,11, 12] employ 
Shelton’s boundary condition (Equation {5}) and are thus incorrect. Shelton [1] proved 
this boundary condition was applicable to a straight web entering a misaligned roller but 
not for a cambered web. Swanson [2] stated the curvature was zero under high friction 

ρss 

(a) 

(b) 

(c) 

short side 

long side 

ρo 
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conditions and was equal to Mo/EI under low friction conditions based on empirical 
observation. Per the discussion herein the total curvature is zero only when the web is in 
the undeformed case of Figure 10(a) and to enforce curvature that would straighten the 
web (Mo/EI) per Figure 10(b) would require high friction conditions. Swanson did state 
the downstream curvature was bounded in the range [0,1/ρo] which remained valid in his 
later investigation [8] although the friction levels that produced these curvatures were 
found to be opposite of the previous investigation. Other investigations concluded that 
lateral steerage of cambered webs in steady state occurred as a result of higher order 
effects such as shear, web slackness, and trough instability [9, 12, 13, 14, 16]. Brown [15] 
developed a beam model to represent a cambered web span. He accounted for the shear 
strain being non-zero in boundary condition {3B} and for potential misalignment at the 
downstream roller. He developed an equation for the moment in the web entering the 
downstream roller which was found to approach EI/ρo when examined for the cases 
herein where the surface velocities of the upstream and downstream rollers were equal. 

Swanson [8] reported the results of cambered web steering tests. In these tests 
cambered webs were cut from a wider web using slitting blades mounted on a stage 
driven in the CMD by a linear motor. Camber can also be produced as a result of creep of 
webs in wound rolls with web thickness variation in the CMD. The advantage of 
Swanson’s method was that sections of cambered web with radii ρo could be cut for 
controlled tests as shown in Figure 11(a) with cut sections of straight web in between. 
These tests employed long web spans where the effects of shear strain on lateral 
deformations were minimal. 

After the camber was cut, the web passed over a position guide into a test span of 
length L as shown in Figure 11(b). The position guide was used to ensure the lateral 
position of the web entering the test span could be held constant. The null setting for the 
edge sensors was established as straight web with no camber was passing through the test 
section. The chord length of the camber (CL) was established as the camber was cut and 
was set approximately 4 times the span length (L) of the test section. Webs respond to 
dynamic disturbances much as a first order dynamic system would react to a step input. 
Webs typically have very little mass which minimize internal inertial loads and allows 
the approximation of a first order system. After 4 times the test span length L of either 
straight web or cambered web passed through the test section the measured lateral 
deformations (v1-v5) should have been at 98.2% of their steady state values. Thus in these 
tests the steady state deformations of a cambered web were being compared to the steady 
state deformations of a straight web. This is similar but not identical to a comparison of 
the steady state deformation shown in Figure 10(c) compared to the straight web in 
Figure 10(b). As either a section of straight or cambered web would enter the test sections 
each sensor output (vi) would begin an exponential change to a steady state value of the 
form vi(1-e-t/τ) where t is the elapsed time from the beginning of the event and τ is the 
dynamic time constant for the web span. As the straight web entered the test section, the 
measured lateral deformations from the 5 sensors (v1-5) would successively approach 
zero. As the cambered web would enter the test section the 5 sensors would rise and 
saturate at unique values of lateral deformation. These values were the relative 
deformations between the steady state deformations of the cambered and straight webs. 
These tests were conducted for a polyester web 51 µm (0.002 in) thick and 15.24 cm (6 
in) wide. The test span was adjustable but tests began with a span length L of 152.4 cm 
(60 in). Young’s modulus was measured at 4.48 GPa (650 ksi). The web velocity (V) was 
set low 7.62 mpm (25 fpm) to avoid air entrainment between the polyester and the bare 
aluminum roller surfaces. The dynamic time constant was τ=L/V=12 s. The rollers were 
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7.37 cm (2.9 in) in diameter. As the testing begun no steering was witnessed for the 
cambered web. Steering towards the long side was witnessed when the bare aluminum 
rollers were covered with high friction tape (Tesa2 4863 or 3M3 5461). Thus it appeared 
that high friction force capability between the web and rollers is a requirement to induce 
measurable steering. The Tesa tape in contact with a polyester web produces a static 
friction coefficient of  2 and the 3M tape in contact with polyester can produce friction 
coefficients of 4 or greater per ASTM D1894. It should be noted that Shelton [6] covered 
his test rollers with 3M3 Scotch-Tred® in earlier tests on polystyrene cambered web belts 
which produced high friction and steerage. 

 

Figure 11 – Swanson Camber tests: (a) camber slit into web (b) test section where 
steering was measured. 

The cambered web approaching an aligned cylindrical roller has both similarity and 
uniqueness from the problem of a straight web entering a downstream tapered roller. The 
similarity is that in both cases the web is being steered due to a non-zero curvature in the 
web as it enters the downstream roller. The uniqueness is the source of the curvature. The 
straight web approaching a tapered roller had a curvature induced by the downstream 
roller due entirely to the geometry of the tapered roller (m/Ro) that resulted in the steering 
per Equation {9}. The camber in the cambered web is the source of a variable web 
curvature at the downstream roller. This curvature varies with the deformation of the 
web. 

Equation {2} can be used to model the lateral deformation between the steady state 
(Figure 10(c)) and straight (Figure 10(b)) deformed shapes. It will be assumed that the 
elastic axis of the web enters the upstream roller at a constant lateral deformation that can 
arbitrarily be set at zero (vi=0, {3A)) as a result of the upstream position guide. 
Furthermore it is assumed that the elastic axis of the web enters the upstream roller 
normally and due to the high friction condition does not slip appreciably at the exit to the 
roller (θi=0 {3B}). In steady-state normal entry is expected at the downstream roller (θj=0 
{3C}). The final boundary condition is the change in curvature between the straight and 
steady-state deformed shapes of the web shown in Figs. 10(b) and (c), respectively: 

                                                 
2 Tesa Tape Inc., 5825 Carnegie Boulevard, Charlotte, N.C. 28209, USA 
3 3M Company, 2501 Hudson Rd, Maplewood, MN 55144, USA 
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 {12} 

Using boundary conditions {3A} and {3B}, {3C} with θ=0 and {12} the 4 unknowns (A-
D) in Equation {4} can now be determined: 

 𝑣𝑣(𝑥𝑥) = 𝐸𝐸𝐸𝐸
𝜌𝜌Δ𝑇𝑇

�cosh �𝜆𝜆𝑑𝑑
𝐿𝐿
� − 1 + coth �𝜆𝜆

2
� �𝜆𝜆𝑑𝑑

𝐿𝐿
− sinh �𝜆𝜆𝑑𝑑

𝐿𝐿
��� {13} 

From Equation {13}, the slope of the web throughout the free span can be determined: 

 𝜃𝜃(𝑥𝑥) = 𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝐿𝐿
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�sinh �𝜆𝜆𝑑𝑑
𝐿𝐿
� − coth �𝜆𝜆

2
� �cosh �𝜆𝜆𝑑𝑑

𝐿𝐿
� − 1�� {14} 

The curvature can be determined throughout the span as well: 

 𝑣𝑣"(𝑥𝑥) = 𝑑𝑑2𝑣𝑣
𝑑𝑑𝑑𝑑2

= 1
𝜌𝜌Δ

sinh�𝜆𝜆2 𝐿𝐿−2𝑥𝑥𝐿𝐿 �

sinh�𝜆𝜆2�
 {15} 

Equations {13-15} represent relative changes in lateral deformation, slope and curvature 
between the straight and steady state deformed shapes of Figs. 10(b and c). If the 
deformed radius of curvature ρ∆ was known, the lateral deformation {13}, the slope {14} 
and the curvature {15} throughout the web span would be known. The total curvature 
resulting from deforming the web from the undeformed shape Figure 10(a) to the steady 
state Figure 10(c) can be inferred from Equations {12} and {15}: 

 𝑣𝑣"(𝑥𝑥)𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1
ρ𝑜𝑜

+ 1
ρΔ

sinh�𝜆𝜆2 𝐿𝐿−2𝑥𝑥𝐿𝐿 �

sinh�𝜆𝜆2�
 {16}  

The deformed radius of curvature ρ∆ can be deduced from the data of Swanson [8] for the 
cases tested in which rollers were covered with Tesa 4863 high friction tape. The 
deformed radius of curvature ρ∆ was varied in Equation {13} until Swanson’s measured 
deformations at edge sensor v5 in Figure 11(b) were achieved. The steady state radius of 
curvature at the entry of the downstream roller ρss could be determined using Equation 
{12}. Also Equation {13} could be used to extrapolate the test deformations to the 
downstream roller (vj). These results are presented in Table 1. The average lateral 
deformations from Swanson’s tests and that produced by Equation {13} are shown in 
Figure 12. Note that in general the test data and the deformations given by Equation {13} 
agree well and improve at higher web tension. Equation {13} incorporates boundary 
conditions {3A, 3B, 3C (θj=0)} and {12} and produces lateral deformations comparable 
to the test data from the 5 sensors in the test span. This provides confirmation the 
boundary conditions are reasonable. 

It has been shown that the lateral deformations of a cambered web depend on 
knowledge of a boundary condition which is the deformed radius of curvature of the web 
(ρ∆) at the downstream roller {13}.  This deformed radius of curvature is unknown. For 
stick conditions to exist between the web and roller at the entry to R2 the radius of 
curvature of the web must transition to a value equal in magnitude but opposite in sign to 
the radius of curvature that was initially cut into the web (ρo). The curvature in the web 
will remain constant at that value (-1/ρo) throughout the arc of contact of the web that is 
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in stick conditions with the roller. This will allow points in the web to pass directly over 
the downstream roller with no lateral deformation. 

 

Figure 12 – Swanson camber tests (ρo=150 m) with Tesa high friction tape on rollers [8]. 

 
T (N) 17.8 35.6 53.4 

vj (mm) -1.258 -0.889 -0.655 
ρ∆ (m) -305 -427 -574 
ρss (m) -296 -231 -203 

Table 1 – Radii of curvatures and lateral deformations at the downstream roller inferred 
from Swanson’s test deformations [8]. 

Dynamic simulations were first conducted by Fu [20] of the Swanson camber test 
cases. Fu simulated a web position guide (that existed in the tests) to steer the cambered 
web shown in Figure 11(a) to a fixed lateral position prior to entering the test section. 
The web was then allowed to steer laterally in the test section where the lateral 
deformations resulting from web camber could be studied. Fu’s explicit simulation of a 
web position guide was unique in the literature. While the simulations yielded results 
comparable to the test data further accuracy was sought to better define the boundary 
conditions. Improved simulations were conducted using the standard dynamic implicit 
solver in Abaqus1. The simulation begins with the web achieving the constant MD stress 
level and velocity shown in Figure 13. The web thermal MD expansion coefficient (α) 
was set at 1.7*10-5 m/m/oC. The CMD expansion coefficient was set at zero. A linear 
temperature variation across the web width was introduced to induce a web camber. The 
change in temperature required to induce the desired camber of 150 m was 
∆T=W/(α*ρo)= 0.1524/(1.7*10-5*150)=59.8 oC. The temperature variation began half 
way through the wrap of the web about roller R1, continued through the test section and 
then was removed half way through the wrap of the web about roller R2. The “long” edge 
of the cambered web had the highest temperature of 29.9 oC. This temperature variation 
across the web width varied from zero to the variation shown in Figure 13 in the first 
second of the simulation after the web velocity and tension had been achieved. The 
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thermally induced camber in the test section eliminated the need to simulate the web 
guide and provided the accuracy in results desired. 

 

Figure 13 – Dynamic Simulation of Cambered Web Steering. 

Steady state results from the end of the simulation are shown in Figure 14 for the 
case where the web tension was 35.6 N. The MD stresses shown in Figure 14(a) show a 
decreasing bending moment in the web from roller R1 to R2. The lateral deformations in 
Figure 14(b) show the web leaving roller R1 with zero lateral deformation and increasing 
until entry of R2, note that steering towards the longer edge occurred as demonstrated in 
tests. The web is shown to be in nearly full stick behavior on R1 and R2 with small 
regions of slip at the exit of R1 and the entry of R2 in Figure 14(c). 

In Figure 15 the deformation, slope and curvature of the elastic axis of the web at 
steady state are shown for the simulation results of Figure 14. The simulation shows the 
lateral deformation at the exit of roller R1 is zero and thus boundary condition {3A} is 
satisfied. At the entry to roller R2 the simulation shows the lateral deformation of the web 
is -.783 mm whereas the average test results extrapolated to the entry of R2 was -.889 
mm (11.9% error). While the error is considerable, the shape of the lateral deformation is 
consistent with the test data captured by the 5 sensors in the test span shown in Figure 12. 
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The simulation shows the slope of the elastic axis is slightly non-zero (5.76*10-5 rad) as 
the web exits roller R1. Thus boundary condition {3B (θi=0)} may be reasonable but not 
exact in this case. The elastic axis appears to enter roller R2 normally and thus boundary 
condition {3C} is satisfied as would be required for steady state behavior to be obtained. 
Perhaps most interesting is the curvature in Figure 15 where step changes in curvature 
occur at the exit of roller R1 and the entry to roller R2. These abrupt changes in curvature 
are due to MD contact shear forces between the web and roller at the exit of R1 and the 
entry of R2. On the rollers R1 and R2 the curvature is what would be required to deform 
the unstressed cambered web to a deformed straight web that can pass directly over the 
cylindrical rollers without slip (-1/150 m = -6.66*10-3 m-1). At the entry to R2 the 
curvature is -4.61*10-3 m-1, thus the steady state radius of curvature -217 m, which is 
within 6.1% of the steady state radius of curvature inferred from test data in Table 1. The 
deformed curvature needed for Equation {13} would be: 

 1
𝜌𝜌Δ
�
𝑑𝑑=𝐿𝐿

= 1
𝜌𝜌𝑜𝑜
− 1

𝜌𝜌𝑠𝑠𝑠𝑠
�
𝑑𝑑=𝐿𝐿

= −1
150

− −1
218
�
𝑑𝑑=𝐿𝐿

= −2.06 ∗ 10−3𝜙𝜙−1  𝜌𝜌Δ|𝑑𝑑=𝐿𝐿 = −486𝜙𝜙 {17} 

 

Figure 14 – Simulation Results at Steady State (T=35.6 N). 
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Figure 15 – Deformation, slope and curvature of elastic axis at steady state (T=35.6 N). 

If this curvature is input to Equation {13} in conjunction with boundary conditions {3A-
3C} the lateral deformation of the web at the entry to R2 can be predicted as -0.781 mm 
which compares nicely with the -0.783 mm result from the simulation. Thus the results of 
the simulation with those of Equation {13} agree nicely with the caveat that the 
simulation was required to produce the curvature boundary condition as the web entered 
roller R2 {16}. 

The simulations also provide explanation with regard to why the lateral steering 
occurs. In the derivation of the curvature boundary condition {12} for the cambered web, 
the intermediate straight web shape in Figure 10(b) was used. Note the straight web 
enters the downstream roller normally and if the straight deformed state physically 
occurred there would be no lateral deformation toward the long edge due to camber. The 
slope and lateral deformation at several instants in time from the simulation are shown in 
Figure 16. The elastic axis of the web is straight at zero seconds, but the web velocity and 
MD stress shown in Figure 13 had already been achieved at this time. The temperature 
variation was increased linearly from zero to the variation shown in Figure 13 one second 
later. From that time forward the web never deformed into the straight web shown in 
Figure 10(b). Thus the straight deformed web shown in Figure 10(b) is never a physical 
reality in the simulation after the camber is induced. Note the slope and the lateral 
deformation are exponentially reaching their steady state values through time (1-e-t/(L/V)). 

A comparison of the lateral deformations from Swanson’s tests [8], the Abaqus 
simulations and Equation {13} are shown in Figure 17. The deformations from Equation 
{13} required the deformed radii of curvatures (ρ∆) that were determined from the 
Abaqus simulations and are shown in Table 2. The simulations invoke no assumptions of 
boundary conditions whereas Equation {13} employs boundary conditions {3A}, {3B}, 
{3C} θj=0, and ρ∆ {12} from Abaqus in Table 2. Note that Abaqus and Equation {13} 
produce very similar results throughout the web span with the agreement improving at 
higher web tensions. 
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Figure 16 – Deformation and slope of elastic axis through time (T=35.6 N). 

 

Figure 17 – Lateral deformations from Abaqus simulations, Equation {13} and test data. 

 
T (N) 17.8 35.6 53.4 

vj (mm) -1.14 (9.4%) -.783 (11.9%) -0.641 (2.1%) 
ρ∆ (m) -336 (10.2%) -485 (13.6%) -586 (2.1%) 
ρss (m) -271 (8.4%) -217 (6.1%) -202 (0.5%) 

Table 2 – Radii of curvatures and lateral deformations at the downstream roller inferred 
from Abaqus simulation results and Equation {13}. 

The total curvature and slope of the web entering the downstream roller R2 are 
shown in Figure 18. Note the web has obtained normal entry with roller R2 within 36 s 
which is 3 time constants of the free span. The curvature is reaching a steady state value 
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much earlier. It is surmised that the curvature boundary condition of the web at entry to 
R2 involves the time constant of the web transiting the roller which is 0.46 s.  

 

Figure 18 – Rate at which steady state boundary conditions are attained in the simulation 
shown in Figure 12. 

CONCLUSIONS 

It has been demonstrated that Equation {2} can be used to model the steady state 
lateral deformations of a web in a free span for the cases where the downstream roller is 
misaligned {4} or tapered {9}. The boundary conditions for the span entering the 
misaligned roller included {3A}, {3B}, {3C} and a zero curvature boundary condition 
{3D} at the downstream roller required for steady state conditions (i.e. no CMD 
velocity). The free span bounded by aligned rollers where the downstream roller was 
tapered linearly in radius with respect to the CMD had similar boundary conditions {3A}, 
{3B} and {3C (θj=0)}. A constant curvature boundary condition {8} was defined to 
constrain the web to track directly over the downstream roller with no slippage or CMD 
velocity to attain steady state lateral behavior. In these two cases the rollers that bounded 
the web span and the assumption of no slip dictated the boundary conditions that 
produced the steady state lateral deformation of the web. The case of a cambered web has 
similarity to these cases in the first three boundary conditions {3A}, {3B} and {3C 
(θj=0)}. The cambered web also has a curvature boundary at the entry to the downstream 
roller {12} but differs from the other cases in that this curvature is dependent on the 
deformed state of the cambered web. Web tension, web material properties, initial 
camber and friction forces at the web entry to the downstream roller all will affect the 
deformed curvature which allows the web to reach steady state conditions. MD slippage 
is required at the web entry to the downstream roller such that the curvature can 
instantaneously change from the level which brought the lateral deformation to steady 
state (1/ρ∆) to a level that allows the deformed cambered web to track directly over the 
roller with no lateral velocity (1/ρ0). To determine the deformed radius of curvature at the 
downstream roller (ρ∆) requires a method that can establish the equilibrium of the internal 
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forces in the deformed web and the external forces due to slip as the web enters the 
downstream roll and the stick behavior of the web on the roller. Only laboratory tests [8] 
and dynamic simulations (Abaqus) have shown that capability. 
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