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ABSTRACT 

This paper will show that the acceleration equation used in multi-span lateral 
dynamic models is a consequence of mass transfer between spans1. Mass transfer effects 
fully account for the equation currently used in Euler-Bernoulli models and provides an 
analytical pathway to an acceleration equation that incorporates shear deformation. It also 
ties together contributions from three other researchers – John Shelton, who pioneered 
the use of beam theory in models of lateral web dynamics, Lisa Sievers, who proposed 
the principle of continuity of bending angle and Richard Benson, who was the first to 
publish an acceleration equation that correctly incorporates shear deformation.  

The acceleration equation is applied in conjunction with the normal entry rule to 
convert information about web shape to a time-based differential equation. Several 
versions of the acceleration equation have been proposed that include one or more terms 
to account for shear. All but Benson’s lead to results that either contradict observed web 
behavior or else fail to provide meaningful solutions.  

Consideration of mass transfer arises from the moment of force that develops in a 
web when it is displaced by an upstream disturbance or by movement of a roller that is 
transporting it. Any moment at the entry to a roller causes the longitudinal tension to vary 
in a linear fashion across the width of the web. Analysis of the effect of this tension 
profile on mass flow leads to: 1) The acceleration equation that is currently used for 
models without shear deformation. 2) A new understanding of why this equation works 
and improved insight into how multi-span systems behave 3) An acceleration equation 
for models that include shear deformation 4) Identification of a new mechanism that can 

                                                           
1 For purposes of this paper, the phrase “mass transfer between spans” does not mean 

movement of mass in a literal sense. It refers to the complementary changes in mass that 
occur in adjacent spans due to a change in longitudinal flow rate at a roller (mass on one 
side of the roller increasing as it decreases by the same amount on the other side). In this 
instance, the flow rate change is caused by cross-web variation in longitudinal tension. 
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cause micro-slip at the point of entry onto a roller. 5) Justification for the zero-moment 
steady state boundary condition at the downstream roller. 

NOMENCLATURE 

A cross sectional area of web 
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
J rotational inertia 
L span length 
m mass per unit length 
n Shear factor for Timoshenko beam 
s Laplace variable 
t time 
T tension in units of force 
Vo   web velocity in machine direction 
x distance along length of web 
y lateral displacement of web 
y0 lateral web displacement at upstream roller, relative to ground 
yL lateral web displacement at downstream roller, relative to ground 
z lateral displacement of roller relative to ground 
θL angle between web plane and plane of roller motion at entry to roller 
θ0 angle between web plane and plane of roller motion at exit of roller 
β boundary defect angle 
γ angle of roller axis 
ρ density 
ϕ rotation of cross section (bending angle) 
ψ shear angle 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 

INTRODUCTION 

The paper is organized as follows. 

1. The equations for the static elastic curve of the web between rollers are 
recapped, following Lisa Sievers treatment. 

2. The velocity and acceleration equations, currently used to convert the web 
shape equation to a function of time, are presented and some of the 
problems with the acceleration equation are discussed. 

3. The effects of mass flow are explained and analyzed. 
4. A new acceleration equation for the Timoshenko model is introduced. 
5. The new acceleration equation is used to create a multi-span differential 

equation. 
6. A method for isolating and testing a single span is described. 
7. An example of the effect of the new acceleration equation is illustrated by 

plotting the frequency response for fixed parallel idlers. 
8. Benson’s acceleration equation is discussed. 
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9. Other work on the acceleration equation is reviewed 
10. Validity tests for the acceleration equation are summarized. 
11. Equations for calculating projections of the roller pivoting angles on 

entering and exiting spans are presented. [This seemingly trivial subject has 
a major impact on multi-span models.] 

12. Transient behavior of the boundary defect creates a possibility of microslip 
at the entry to a roller. A criterion for its onset is developed. 

13. Results are summarized. 

MODELING WEB SHAPE 

The Elastic Curve  
Shelton was the first to use beam theory in models of lateral web dynamics. He 

derived equations for the elastic curve of single spans using both Euler-Bernoulli and 
Timoshenko beam theories [1, 2]. The method presented here is due to Lisa Sievers and 
is particularly suited to multi-span problems [3]. It begins by first observing that the 
bending and shear angles are additive2. The bending is defined as a cross-sectional plane 
that is normal to the beam centerline before the application of external forces, ϕ is the 
rotation angle of the face (bending angle), ψ is the shear angle. 

 dy
dx

φ ψ= +  {1} 

 

Figure 1 – Relationship of Slope, Shear Angle and Bending Angle 

slopedy
dx
=  , shear angleψ = , bending angleφ=  

She then applied Hamilton’s principle [4] to derive the equations of motion. This 
requires defining the kinetic energy K and potential energy V for the beam. The kinetic 
portion includes the effect of rotation of bending angle. 

In this equation, m is the mass per unit of length, Vo is the transport velocity in the 
machine direction, y is the lateral deflection, J is the rotational inertia per unit of length 
and ϕ is the bending angle. The time derivatives are transformed to a Eulerian frame of 
reference. 

                                                           
2 Note: Other names commonly used for the bending angle ϕ are face angle and angle 

of cross section rotation. 
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The potential energy is, 
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 {3} 

where A is the cross-sectional area, G is the shear modulus, n is the Timoshenko shear 
factor (approximately 1.2 for most web applications), E is the elastic modulus, I is the 
area moment of inertia, ϕ is the bending angle and ψ is the shear angle.  

The first term is the energy due to the bending angle. The second one is the energy 
due to shear strain. The last one is the energy due to the interaction of longitudinal 
tension and slope. 

This produces a solution that includes both time and spatial derivatives. The time 
derivatives are useful in determining the potential effect of natural vibrations. She found 
that the separation between the natural frequencies of the web and frequencies of interest 
in typical applications, while not as great as one might expect, are usually adequate to 
safely ignore the time-related terms. Details may be found in several references [3, 5, 6]. 
When the time-related terms are removed, the following two equations are left, 
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These relationships can be manipulated to obtain the same fourth order differential 
equation found by Shelton. 
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 {7} 

The solution to {6}, familiar to all web handling researchers, is 

 ( ) ( )( ) sinh cosh1 2 3 4y x C Kx C Kx C x C= + + +  {8} 

The solution just described applies to a Timoshenko beam model that includes the 
effects of shear deformation. It defaults to the Euler-Bernoulli (E-B) beam model if the 
shear factor n is set to zero.   
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Boundary Conditions 
In this model, as in all other multi-span models to-date, the interaction of the web 

with rollers is greatly simplified. The width of the contact zone in the process direction is 
assumed to be zero.  

Four boundary conditions are required. Lateral position at the upstream and 
downstream rollers provide two of them. 

Sievers observed that the presence of shear deformation in the Timoshenko model 
causes both the slope and the shear angle to be discontinuous at rollers. Bending angle, 
however is continuous, even where a point force is applied. So, she used bending angle 
for the other pair of boundary conditions. Thus, both boundary conditions at the 
downstream end of a span become the boundary conditions for the upstream end of the 
next span. This is a crucial feature of the Timoshenko multi-span model. 

Expressions for shear angle ψ and bending angle ϕ are derived from equations {1}, 
{4} and {5}.  

 
3

3
n d yEIa

AG dx
ψ =−  {9} 

where 

 1 nTa
AG

= +  {10} 

and, 
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3
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φ = +  {11} 

So, the boundary conditions of the Timoshenko beam model will be, 
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 {12} 

Equation {8} and its derivatives are substituted into the four equations of {12} which 
are then solved simultaneously for C1, C2, C3 and C4.  

The Static Equation of Web Shape 
Inserting values {12} into {8} and collecting terms, 

 ( ) ( ) ( ) ( )( ) 0 4 5 0 60y x y y y g x g x g xLL φ φ= + − + +  {13} 

where, 
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Equations {14} are called shape functions. 
Following the example of Young, Shelton and Kardimilas (YSK) [7], yo appears 

twice in expression {13}. This reduces the number of shape functions from four to three.  
Two other equations that will be needed later are the first and second derivatives of 

{13} at x = L. 
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The slope equation {15} reveals an important difference between the E-B and 
Timoshenko models. In the E-B model, nT/AG is zero. This means that a = 1 and that in 
turn causes h1 = h3 = 0 and h2 = 1. This reduces {15} to, 

 ( )dy x
Ldx L
φ=  {19} 

So, in the E-B model, the slope of the web at x = L is equal to ϕL and, unlike the 
Timoshenko model, is not a function of yL, y0 or ϕ0.  
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THE TIME EQUATIONS THAT CONVERT THE STATIC WEB SHAPE TO A 
DYNAMIC EQUATION3 

In “Lateral Dynamics of a Moving Web” [1], John Shelton introduced two 
relationships that are used to convert the equation for the elastic curve of a static web to a 
dynamic equation.  

The Velocity Equation 
The first equation, which is usually called the normal entry equation, is based on a 

principle that has been known since the earliest days of roll-to-roll processing. It defines 
the lateral velocity of the web at the downstream roller. In its simplest form, it states that 
a web entering onto a roller at an angle will “track” laterally on the roller surface until it 
is in perpendicular alignment with the roller axis. It is, 

 dy dy dzL L LVo Ldt dx dt
γ
 
 = − +  
 

 {20} 

The first group of terms on the right side is the lateral velocity due to the interaction of 
surface velocity of the roller and the slope of the web. The last term is the lateral velocity 
of the roller itself. The velocity term on the left is the lateral velocity of the web relative 
to ground. It is important to remember that {20} is true only at x = L and should not, 
therefore, be differentiated with respect to x. 

The Acceleration Equation 
The second equation relates acceleration to web curvature. For a web without shear 

deformation (Euler- Bernoulli beam), it is,  

 
2 2 2

2
2 2 2

d y d y d zL L LVo
dt dx dt

= +  {21} 

These equations are used to create a time-based differential equation by first solving 
equation {15} for ϕL and substituting the result into equation {16}. Then, equations {20} 
and {21} are used to replace the first and second order spatial derivatives with time 
derivatives. 

Issues with the Acceleration Equation 
Shelton notes that the acceleration equation isn’t merely the derivative of {20} 

because this would produce an extra term containing the velocity of the roller swiveling, 
dγ/dt and there can be no dγ/dt term. He says,  

                                                           
3 In a model like this, it is easy to get partial and ordinary derivatives confused. 

There are many places where derivatives of y apply only at x = 0 or x = L. In those cases, 
partial derivatives evaluated at those locations will be written as ordinary derivatives with 
subscripts 0 and L. For example, 

 
dyy Lwill be written as dxx x L

∂
∂ =
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“…no acceleration can occur as an instantaneous result of roller swiveling, 
but only indirectly as the web curvature changes. A suddenly swiveling roller 
instantaneously swivels the downstream end of the web an equal amount, so that 
no instantaneous change in steering rate occurs, in contrast to the first-order 
theory of Chapter III.”4  
He derives it by assuming the web slope at the point of entry onto the roller changes 

because the curvature upstream of the point of entry is transported onto the roller by the 
web’s longitudinal motion. As will be seen, this leads to the correct result for the E-B 
beam, however, his rationale provides little insight into how to incorporate the effect of 
shear. This may be why the equation he proposed for the Timoshenko beam was later 
shown to produce results that contradict observed behavior. Attempts by others will be 
discussed near the end of the paper. 

There is another thing about the acceleration equation that seems odd. The velocity 
equation {20} will produce acceleration under the influence of input parameters, zL and γ. 
So, why is an additional source of acceleration necessary?  

The clue to the answer is the word “source” in the last sentence. Perhaps attention 
should be directed away from acceleration itself and towards some physical phenomenon 
that alters the normal entry condition. A good place to look is the effect of moment. 

Shelton, in his thesis, touched on the role of moment in an intuitive proof of the zero-
moment steady state boundary condition. On page 29 he says, 

“Imagine that an initially straight and uniform web in its steady state 
position has a residual negative moment as it contacts a roller. The web has a 
finite radius of curvature, as shown in Figure 2.1.3, [a diagram showing a 
curved web as it enters onto a roller] which means that the web is longer on one 
side than the other. If the roller were composed of many short, independent 
rollers instead of a single body, the roller at the left side of the web would turn 
fastest, because more length of web is passing over it per unit time. Similarly, 
the roller on the right side would turn slowest. But both ends of the single roller 
must turn at the same speed. Thus, because the left side of the web in Figure 
2.1.3 would be trying to turn the roller faster and the right side slower, the 
roller would exert a positive moment on the web until the negative moment was 
cancelled because of the web movement, if the friction forces were sufficient. 
The initial assumption of a steady-state moment was incorrect, so the steady-
state moment at the downstream end of the free span must be zero.” 

This is a good explanation of how the web arrives at its steady state and contains the 
germ of the idea that is at the core of this paper. 

MASS FLOW EFFECTS IN A BEAM MODEL WITHOUT SHEAR 
DEFORMATION 

Qualitative Description 
Analysis of the elastic curve of the web is usually carried out as though the material 

in the span, in its relaxed state, has a constant shape and is not moving. For steady state 
analysis, this is quite natural because at each instant of time, the web looks the same, 

                                                           
4 He was referring to an E-B model and the reason he was concerned about the dγ/dt 

term, is that including it in {21} leads to results that contradict observed behavior. This 
will be explained later. 
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even though each part of it is moving downstream and being replaced by the portion 
behind it. Until now, this assumption has also been applied to dynamic analysis.  

The explanation that follows will show how a non-uniform tension profile, resulting 
from a moment at a downstream roller, changes the reference shape of a span, making it a 
function of time. It will also show how this change in shape can be interpreted as a 
change in the bending angle boundary condition. 

Figure 2 (a) shows a web moving continuously in a steady state between parallel 
fixed rollers with tension σo.  

Figure 2 (b) the relaxed (reference) stationary web is shown. This is what would be 
seen if the web in (a) were suddenly frozen in place and cut transversely along its line of 
contact with the downstream roller and then unfrozen. At the upstream end, it is assumed 
to be anchored to the line of contact in the x-direction. The downstream end will now fall 
short of its original line of contact with the roller. The reason for showing the reference 
shape at this point is that we are interested in how mass transfer will affect its shape.  

 
 

 
 
 

 
 
 
 
 
 

(a) Running web          (b) Relaxed web              (c) Roller shifted 
       to produce moment 
 

 
 
 
 
 

 
 
 

       (d) Effect of mass                (e) Altered web returned   (f) Complementary 
 transfer on relaxed               to the line of contact.        effect on upstream 
       shape after time dt                                                    end of next span 

Figure 2 – Effect of Mass Flow on Downstream Boundary Condition for E-B Beam 
Model 

Figure 2 (c). The web of (a) is shown after the roller has been shifted to the left to 
create a negative moment. The stress profile will be linear and symmetrical, provided that 
the radius of curvature produced by the moment is much larger than the dimensions of 
the span. In typical web handling applications, this will always be the case. At the left 
edge, the tension will be higher than σo by some value σm. At the right edge, it will be 
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lower by the same amount. The value at the center will be unchanged from (a). Since the 
model for the web is assumed to be an E-B beam, the web centerline will initially be 
perpendicular to the roller axis, as will every particle path that was originally parallel to 
the x-axis in (a). 

If it were not for what is going to be described next, the web would continue to run 
forever in the state shown in (c) with all particles following curved paths that are 
perpendicular to the roller axis at the line of entry onto the roller. 

Figure 2 (d). In (d) the condition described in (c) has been allowed to operate for a 
time increment, dt. Then, once again, we assume that the web is suddenly frozen in place 
and cut transversely along its line of contact with the downstream roller before being 
unfrozen. Also, as before, the upstream end, is assumed to be anchored to the line of 
contact in the x-direction. The downstream boundary of the relaxed web will now no 
longer be perpendicular to the centerline because the stress profile changed the cross-
sectional area and density of the web at each point across its width. This modified the rate 
of mass flow onto the roller, causing higher flow on the side with lower tension and 
lower flow on the side with higher tension. Therefore, the left edge of the relaxed web 
grew longer by an increment dxm while the right edge was shortened by the same amount. 
At intermediate points, mass flow varied in proportion to the distance y from the 
centerline, so that the new relaxed edge will be straight but rotated relative to the web 
centerline. The net effect is to alter the shape of the web being analyzed, making it a 
function of time. This potentially jeopardizes the entire scheme of shape analysis by 
invalidating the variational method behind it. Fortunately, there is a way to make the 
shape change look like a change in one of the boundary conditions. 

Figure 2 (e). In (e), the modified edge of the web is returned to the line of contact of 
the roller (where it had been before it was frozen and cut). It is apparent that original face 
(before the boundary defect developed) is offset from the roller axis by the boundary 
defect angle β. 

Thus, (and this is critical to all that follows) the effect of the shape change can be 
approximated by defining the bending angle boundary condition as the boundary defect 
angle β plus the roller angle applied to the original reference shape. So, 

 L Lφ β γ= +  {22} 

Since the pivoting motion of the roller is not necessarily in the plane of the web span, 
γL is the projection of the roller angle onto the plane of the web. 

The boundary defect angle β can be calculated as follows.  

Analysis of the Effect of Mass Transfer in the E-B model 
At any location across the web, tension σx causes an increment of area of thickness h 

and width dy to be changed to dy(1 + εy)h(1 + εz) where εy and εz are strains in the y and z 
directions respectively (these strains are not part of the E-B model, but will be included to 
remove any doubt about unrecognized effects). The surface velocity of the roller, Vo will 
be the same as it was in (b) because the average tension hasn’t changed. So, the 
increment of mass dq passing through the area in time increment dt at any location along 
the line of entry onto the roller is, 

 ( ) ( )1 1dq dtV dy ho y zρ ε ε= + +  {23} 



 

11 

where ρ is the density of the web when it is under tension, Vo is the surface speed of the 
roller. The density ρ at location y will be affected by tension (for any material whose 
Poisson ratio is not equal to 0.5). It is equal to, 

 
( )( )( )1 1 1

o
x y y

ρρ
ε ε ε

=
+ + +

 {24} 

where ρo is the density of the relaxed web. The increment of mass dq is therefore, 

 1
1

dq V dt dy ho o
x

ρ
ε

=
+

 {25} 

At the center of the web, εx is equal to εo, the strain due to σo. At the left edge, εx = εo + 
εm, where εm is the strain due to the increment of stress σm (assuming small strains). Using 
these values for εx in {25}, the difference in the mass flow rates at the center and left 
edge can now be calculated as 

 
( )( )1 1

dq V dy hm o o m
dt o o m

ρ ε

ε ε ε
=

+ + +
 {26} 

A piece of web at y = W/2 with length dxm and the same cross section as in {26} will 
have a mass of, 

 
1

dx dy hm odqm
o m

ρ

ε ε
=

+ +
 {27} 

Equating the mass increments in {26} to {27} and solving for dx. 

 
1

V dto mdxm
o

ε

ε
= −

+
 {28} 

The denominator of {28} is present because the value of dx has been calculated for the 
web when it is under tension. Since it causes only a 2nd order effect on the calculation of 
the boundary defect, it will be dropped. Furthermore, dx has been calculated for mass that 
has moved out of the current span and into the next. The negative sign indicates a 
reduction in length relative to the center in the next span. Therefore, the sign of dxm must 
be reversed. So, 

 dx V dtm o mε=  {29} 

In Figure 2 (e) the web is shown after tension has been restored and the face has been 
returned to the line of contact. One way to look at the situation is that the original face 
has become misaligned with the roller axis by the defect angle β. 

The rate of change of the boundary defect angle β can now be calculated, using {29}. 

 1 2
/2

dx Vd m m o
dt dt W W

εβ
= =  {30} 
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Next, we look for a way to calculate β in terms of the moment. This can be done by 
finding an expression for curvature in terms of εm. The negative moment M can be 
expressed in terms of the stress profile as, 

 
2 2/2 2
6 6/2

W W h W h Ey m mM y h dyo m WW

σ ε
σ σ

− − = − + = =∫  
 −

 {31} 

The moment is also, by definition, 

 
2 23

2 212
d y d yW hL LM EI E
dx dx

= =  {32} 

Equating {31} to {32} and solving for the curvature, 

 
2

-2 -22
d y m mL

EW Wdx

σ ε
= =  {33} 

Using equations {30} and {33} , 

 
2

2
d yd LVodt dx

β
= −  {34} 

In the case of an E-B beam, where the face and slope are always at right angles, the slope 
will be equal to the angle of the face. So, equation {22} becomes, 

 dyL LL dx
φ β γ= = +  {35} 

Without β in equation {35}, the slope of the web would be equal to the roller angle and 
the web would be locked in a condition of perpetual normal entry, unable to move 
laterally on the roller.  

In the case of the shifted parallel roller described at the beginning of the present 
section, the growth of β will cause the web to begin moving back toward its original 
position and as it moves, the moment that produced β will begin to decrease until both the 
moment and β will be zero when the web arrives at its original position. 

Acceleration Equation for the E-B Model 
Finally, it will be shown that all of this is subsumed in Shelton’s original acceleration 

equation.  
Taking the time derivative of {35} and using {34}. 

 
2

2
dy d y dd L L LVodt dx dtdx

γ 
 =− +  
 

 {36} 

The cross derivative on the left side of {36} can be eliminated by substituting the 
time derivative of the velocity equation {20}. The result is Shelton’s acceleration 
equation {21}. 
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2 2 22

2 2 2
d y d y d zL L LVo
dt dx dt

= +  {37} 

Thus, it’s seen that the acceleration equation is a mathematical consequence of the 
effect of bending moment on mass flow. 

Equation {37} has been derived for shifting the downstream roller in a parallel pair. 
However, it applies equally well for any combination of lateral shift and pivot. The pivot 
angle has already been included in equation {35} and is always small (on the order of a 
degree or less), so the quantities used in equations {23} to {35} will be good 
approximations to corresponding values at a pivoted roller. Furthermore, the procedure 
above doesn’t depend on how the moment is created. It could also be caused by an 
upstream disturbance in lateral position, but this doesn’t change the calculations and will 
lead to equation {37}. 

Finally, in Figure 2(f) both spans are shown (without regard to the angle of wrap) 
and it is apparent that the net effect of the boundary defect is that the bending angles in 
the two spans match one another, so that the web remains continuous. 

The Meaning of β in the E-B Model 
In the E-B model, the angle β is not an elastic deformation. It is entirely due to a 

transient change in mass distribution that arises when a moment causes the rate of mass 
flow from one span to the next to vary linearly across the width (while the average 
remains constant). Because of it, the face of the web at the roller (the cross-sectional 
plane that is perpendicular to the web centerline when the web is relaxed) becomes 
misaligned with the axis of the roller. A complementary effect occurs at the exit of the 
roller so that there is a matching change in the angle of the face of the web (forward on 
the side with lower tension and backward on the other). For the web as a whole, there is 
no net gain or loss of mass and the result is that the boundary between the two spans 
becomes skewed by β. For a roller that is not misaligned, β becomes the effective angle 
of the face at both the entry and exit of the roller. In other words, ϕL1 = ϕ02 = β where the 
subscript L1 refers to the downstream end of a span and subscript 02 refers to upstream 
end of the next span. When the roller is misaligned ϕL1 = β + γL1 and ϕ02 = β + γ02, where 
γL1 and γ02 are projections of the roller angle onto their respective spans5.  

For the E-B model there is a relationship that should not be overlooked. Equation 
{35} can be inserted in the normal entry equation {20} and it is seen that -β is identical to 
the entry angle. 

 ( )dy dzL LVodt dt
β= − +  {38} 

And this means that, 

 1 dydzL L
V dt dto

β
 
 = −  
 

 {39} 

Thus, another feature of β in the E-B model is that it will always decay to zero in the 
steady state. 

                                                           
5 Discussed in detail later in the paper. 
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ANALYSIS OF MASS FLOW IN A BEAM MODEL WITH SHEAR 

Changes in the Mass Flow Analysis Due to Shear Deformation 
The effect of adding shear deformation to the model is illustrated in Figure 3. It 

shows the effect of shear on Figure 2 (e) when the altered web is returned to the line of 
contact. The most important difference from the E-B model is that the angle of the face, 
β, is no longer equal to the slope α. 

The label for the angle of the face that was called β in the E-B model has been 
changed to ϕL to agree with the shape analysis. 

 

Figure 3 – Effect of Mass Flow on Downstream Boundary Condition for Timoshenko 
Beam Model 

The analysis proceeds in the same way as for the E-B beam until equation {32} 
where the equation for moment becomes, 

 
2 23

2 212
d y d yW hL LM aEI aE
dx dx

= =   {40} 

So, 

 
2

2
d yd LaVodt dx

β
=−  {41} 

Taking the time derivative of {22} and using {41}, 

 
2

2
d d y dL L LaVodt dtdx

φ γ
=− +  {42} 

Since equation {42} conveys all the consequences of mass transfer, it could be called the 
mass transfer equation. See the discussion related to Figure 7 for more discussion of its 
interpretation. 

The Acceleration Equation for the Timoshenko Model 
It is at this point where the biggest change from the E-B model occurs, because the 

web face no longer has a simple perpendicular relationship to the web centerline. This 
can be handled by using the slope equation {15}. Taking its time derivative and 
substituting {42}for the time derivative of ϕL. 
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2

1
2 32

h ddy dy d y ddyd ooL L L LaV h hodt dx dt dt L dt dtdx

φγ     
     = − + − + +          
     

 {43} 

The cross derivative is replaced as before by using the time derivative of the normal entry 
equation {20}. Solving for acceleration produces the acceleration equation for the 
Timoshenko beam model. 

 ( )
2 2 2

12 1132 22 2 2
hd y d y d zhdy dd dyL L Lo oL LaV h V h ho o dt L dt dt dt Ldt dx dt

γφ
 
 = + − + − − + 
  

 {44} 

This looks complicated, but it’s reassuring to note: 

1. When a = 1, then h2 = 1, h1 = h3 = 0 and it defaults to the E-B acceleration 
equation, as it should. 

2. It passes all three of the validity tests described at near the end of this paper. 
3. When all of the time related terms are zero, equation {44} becomes the 4th 

boundary condition for the Timoshenko steady state model – zero curvature 
at x = L. 

It should be noted that the boundary defect is responsible only for the curvature term 
on the right side of {44}. The other terms, involving y0, yL, γL and ϕ0 exist because of 
shear deformation in the Timoshenko beam.  

The Meaning of β in the Timoshenko Model 
It can be shown with the use of  {22} and {1} that the velocity equation can be 

written as, 

 ( )dy dzL LVo Ldt dt
β ψ= − − +  {45} 

This reveals that, although β in the Timoshenko model was derived from the same 
considerations of mass flow as the E-B model, it can have non-zero values in the steady 
state whenever there is a side force necessary to bend the web – for example, at an 
inclined roller (non-zero ψ). 

It can also be shown, using {15}, {42} and{1}, that  the time derivative of {45} 
produces the acceleration equation {44}. 

As in the E-B model, ϕL1 = β + γL1 and ϕ02 = β + γ02, where γL1 and γ02 are 
projections of the roller angle onto their respective spans.  

It is notable that equation {41} says that the time rate of change of the boundary 
defect β is equal to VoM/EI. This means that when a moment is present at the downstream 
roller, the slope of the web at the entry to the roller will be changing and that, in turn 
means the web will be in an unsteady state, moving laterally on the roller. That’s kind of 
the whole story in a nutshell. 

Effect on the Next Span 
In Figure 4, the web is drawn without regard to the wrap on the roller.  
In the E-B model of Figure 4 (a), the slope is continuous as the web passes from the 

entry to the exit of the roller, but in the Timoshenko model of (b) there is a discontinuity 
in the slope due to the presence of shear deformation. Correspondingly, in the E-B model, 
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the face of the web will be out of alignment with the roller axis only when the web is not 
in a steady state; but in the Timoshenko model, the face can be out of alignment in both 
steady-state and non-steady-state conditions. 

In both cases, ϕL1 = ϕ02 = β (continuity of bending angle) where the subscript L1 
refers to the downstream end of a span and subscript 02 refers to upstream end of the next 
span. When the roller is misaligned and the effect of wrap is included, ϕL1 = β + γL1 and 
ϕ02 = β + γ02, where γL1 and γ02 are projections of the roller angle onto their respective 
spans. 

Sievers, in her multi-span model proposed that bending angle should be assumed to 
be continuous across a roller – tacitly ignoring the effect of wrap angle. It is now 
apparent that it would be better to say that the boundary defect, β, is continuous across 
rollers and that the bending angle is defined as the boundary defect plus the projection of 
roller wrap angle. 

 

Figure 4 – Net Effect of Boundary Defect on Both Spans 

THE RELATIONSHIP BETWEEN THE ACCELERATION EQUATION AND 
THE TIME DERIVATIVE OF THE VELOCITY EQUATION  

One of reasons, given at the beginning of this paper, for questioning the acceleration 
equation was its redundancy. The velocity equation {20} will generate acceleration under 
the influence of parameters, such as zL and γ. So, why is an additional source of 
acceleration even necessary? This question can now be answered.  

If the time derivative of the velocity equation is equated to the acceleration equation 
of the Timoshenko model, the result is, 

                                                        
2

2
d y dd L LaLdt dtdx

γ
φ =− +  

  {46} 

And this is exactly the result that is obtained in equation {42} of the analysis of mass 
flow. 
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THE MULTI-SPAN DIFFERENTIAL EQUATION 

Solution for Lateral Displacement at the Downstream End of a Span 
A differential equation for lateral displacement at the downstream end of a span may 

be created by first solving equation {15} for ϕL and substituting the result into equation 
{16}. Then, equations {20} and {44} are used to replace the first and second order spatial 
derivatives with time derivatives. 

The resulting Timoshenko model is, 

 
( ) ( ) ( )

( ) ( )

2
1 0 01

32 1 1 2 2 1 02 2

2
210 23 2 2 3 2 2

dy dhd y dy aL Lag h g h g h y y V hoLdt dt dtdt

agd d z dzV Vo oL L La g h g h V h a go Ldt dtdt

φ

τ τ τ

γ
φ γ

τ τ τ

= − − − + − − −

+ − + − + + +

  {47} 

where τ = L/Vo. This becomes the E-B equation when a = 1, h3 = h1 = 0.  

A multi-span model may be created by representing each span with a different 
version of equation {47}, using appropriate physical parameters. The values of ϕ0 and y0 
come from the previous span. The bending angle ϕ0 = β + γ0, where β is from the 
previous span (a value common to the entry and exit sides of the roller) and γ0 is the 
roller angle projected onto the plane of the span of interest. The lateral displacement y0 is 
equal to yL of the previous span. This is true for both the E-B and Timoshenko versions of 
{47}. Although it is possible to get a closed-form solution for {47}, it is convenient to 
solve the system of differential equations numerically, using a variety of commercially 
available software tools. 

For control applications, it is helpful to look at {47} as a sum of transfer functions. 
Applying the Laplace transform, 

 

( )
( )

( ) ( )
( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( ) ( )

( )

1
1 2 2 12

3 3 2 2 3
0 01 12 2

2 1 1 2 2 1 2 1 1 2 2 12 2

21 2 2 2
1 12 2

2 1 1 2 2 1 2 1 1 2 2 12 2

h as g h g h V aoVoh s g h g h
y s y s sL a as a g h s g h g h s a g h s g h g h

V aoV s h ag s g so
s z sL La as ag h s g h g h s ag h s g h g h

τ τ τ φ

τ ττ τ

τ τγ

τ ττ τ

− + − − + −
= +

+ − + − + − + −

− + +
+ +

+ − + − + − + −

 {48} 

There is no transfer function for z0 in {48} because z0 is equal to zL of the previous span, 
where it is included in the normal entry equation {20}. Thus, it’s implicit in y0 and isn’t 
needed. 

Generally, y0 and ϕ0 must be applied in tandem because they both depend on 
corresponding values at the downstream end of the previous span. So, when y0 changes, 
so does ϕ0. There are exceptions (some are noted below), but in any numerical 
implementation of {48} it is best to make this assumption. 

In the case of the E-B model, there is a very useful simplification that can remove the 
connection between y0 and ϕ0. Equation {39} is used to replace β in the relationship ϕ0 = 
β + γ0. So,  
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 ( ) ( )1( )0 0 0s z y s soVo
φ γ= − +  {49} 

Substituting and collecting terms, the E-B model becomes, 

 

( ) ( )
( )

( )

( )

3 1 12
22 3 3

( ) 0 0
2 2 22 1 2 1 2 1

2 2 2

3
2

0
2 22 1 2 1

2 2

g g Vos g s g g s
y s y s s z sL Lg g g g g g

s s s s s s

gVo g s
s zLg g g g

s s s s

τ τ τ τγ

τ τ ττ τ τ

τ τγ

τ ττ τ

− + + +
= + +

+ + + + + +

+ +

+ + + +

 {50} 

The technique used to eliminate ϕ0, along with an early version of {50} were first 
reported by Young, Shelton and Kardimilas [7]. An equation identical to {50} appears in 
later paper by Seshradi and Pagilla [8]. Its virtue is that it depends only on parameters for 
the span under consideration. It isn’t always possible to do this for the Timoshenko 
model of {48} because β must be calculated from equation {45} which depends on 
upstream values of ϕ and y from the previous span and those values will, in turn, depend 
on values from the span before that. Thus, ϕ0 becomes a function of not only the 
parameters of the current span, but also those of every span preceding it. 

Note that unlike {48}, a term for z0 appears in {50}. It is there because of {49} and 
must be used, even though it is duplicated by zL in the previous span. 

Solving for Variables at Other Locations in a Span 
As values of yL, y0, ϕL and ϕ0 are generated by solution of equations {47} or {48}, 

equation {13} and its derivatives can be used to calculate values for y, ϕ, ψ, slope or 
curvature at intermediate locations in the spans being modeled. 

ISOLATING A SPAN FOR TESTING 

In web handling tests, attention is naturally focused on lateral displacements, usually 
at the downstream end of a particular span. It should be evident from this analysis, 
however, that the effect of upstream variations in internal stresses caused by bending can 
have a significant effect. Variations in lateral position will almost always be accompanied 
by variations in bending angle ϕ and this can be propagated over rollers as weave 
regeneration. Figure 5 illustrates a method for varying yo with minimal effect on ϕo. 
Shelton, in his dissertation [1], used an arrangement similar to this to test the response at 
a fixed roller. The input, y0 was created by varying z0 at roller B and the output yL was 
measured at roller C. 

Care must still be taken to ensure that a uniform stress profile is maintained upstream 
of the guide.  

When equation {50} is used to model an isolated span with an arrangement like 
Figure 5, y0 is used as the input and ϕ0 is set to zero. Both z0 and the negative term in the 
numerator of the y0 transfer function are set to zero because they are actually a part of ϕ0 
(which is zero) through equation {49}.  
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Figure 5 – Test Setup for Varying y0 while Keeping ϕ0 = 0 

Ideally, a span with an unwind at the upstream end can be treated as an isolated span 
(provided the unwind axis is aligned with the roller axis and the web is very uniform). In 
practice, wound in tension anomalies probably have significant effects on behavior in the 
first few spans. 

AN EXAMPLE OF THE EFFECT OF SHEAR DEFORMATION. 

In Figure 6, the effect of the new acceleration equation on response at a fixed idler 
for L/W = 1, is compared with other models. 

• The solid curves show amplitude and phase for the y0 transfer function of 
equation {48} with n = 1.2 

• The dashed curves are for the E-B model (y0 transfer function of equation {50} 
with n = 0) 

• The dotted curves are for Sievers’ shear deformation model [6] (which used 
Shelton’s acceleration equation {21} ). 

The span is assumed to be isolated using the technique described in the previous 
section. KL = 0.2, L = 3 inches, T = 46 Lbf, W = 3 inches, h = 0.009 inch, E = 510,000 
psi.  

The biggest change is in the phase response of equation {48} with n = 1.2 for values 
of ωT1 above 2.0. This is due to the -h2s/τ term in the numerator of the y0 transfer 
function. There is a similar term in the y0 transfer function of the E-B model, but it must 
be removed when the isolation scheme of the previous section is used because it is due to 
ϕ0 which is zero in an isolated span.  
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Figure 6 – Effect of the New Acceleration Equation on Response at a Fixed Roller 

VALIDITY TESTS 

There are three mathematical tests that any lateral dynamic beam model should pass. 
Passing them is necessary, but not sufficient for validity, nevertheless, they are useful for 
weeding out many mistakes. 

1. A Timoshenko beam model should default to an E-B model when the shear 
factor n is reduced to zero. 

2. The transfer function for a displacement guide should be unity (no dynamics) for 
a zL input to equation {48} with y0 = 0, ϕ0 = γL and γL = zL/L. This should 
happen regardless of whether the effect of shear deformation is included. A 
change in zL rotates both rollers as a rigid assembly so that the entry span is not 
deformed as it is rotated. Therefore, if only the response of the entry span is 
considered, there is nothing that can cause the web to move laterally relative to 
the roller, so the lateral displacement yL should equal zL. This may sound trivial, 
but many candidates for new acceleration equations will produce transfer 
functions that fail this test. 

3. The steady state gain for the transfer function of a pivoting roller should equal 
the curvature factor Kc derived in a steady state shear deformation model that 
doesn’t rely on an acceleration equation [9]. This is, 

 
( )

cosh( ) sinh( )
cosh( ) 1

KLa KL KLKc KL a KL
−

=
−

 

BENSON’S ACCELERATION EQUATION 

In his paper, “Lateral Dynamics of a Moving Web With Geometrical Imperfection” 
[10], Richard Benson observed that the velocity equation, “is the result of imposing a 
velocity match between the downstream roller and the centerline of the web.” He then 
suggested that “It is further expected that the web will stick to the roller for all points of 
first contact. – not just at the web’s centerline. To achieve that, we must also match the 
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rotational velocities of the roller [axis] and web ‘face.’” This is the basis for his equation 
{22}, 

 
d D d dL L L LVodt Dt dt dx
γ φ φ φ

= = +  {51} 

The symbol D is used to indicate the material derivative6.  
Since, 

 
2

2
d yd La

dx dx

φ
=  {52} 

equation {51} is equivalent to equation {42}. 
Using equation {1} to replace ϕL and using the time derivative of the normal entry 

equation {20} to eliminate the cross derivative, equation {51} becomes, (his equation 
(23)). 

 
2 2 2

2
2 2 2

d y d y d z d dL L L L LV V Vo o odt dxdt dx dt

ψ ψ 
 = + − +  
 

 {53} 

It can be shown (using dψ/dx = (a-1)d2yL/dx2 and equations {15},{42} and {22}) that this 
is equivalent to the acceleration equation for the Timoshenko model of this paper and it is 
obvious that it reduces to Shelton’s acceleration equation for the E-B model, (shear strain 
terms equal to zero). 

Benson used many of the same defining relationships as this paper (for example, 
equations {4} and {5}). Even so, the fact that he could get the correct acceleration 
equation without any consideration of mass flow came as quite a surprise to me. The 
connection can be understood with the help of Figure 7. 

The diagram in Figure 7 (a) shows a web immediately after it is bent by a lateral shift 
like that in Figure 2 (c). The dashed lines are cross-sectional planes that define the 
bending angle ϕ.  Figure 7 (b) shows the web after a short time interval, dt. 

Several things are evident. First, the spacing between the cross-sectional planes 
becomes progressively greater in going from the bottom edge to the top. This causes a 
change in mass per unit length (longitudinal compression in the bottom half and 
stretching in the top half). Second, the curvature causes the angle ϕ to change with x. In 
fact, moment is equal to EI(dϕ /dx). Third, the surface velocity of the roller advances the 
web at a uniform rate all along its face and this causes the angle of the face at the line of 
entry to change with time. Since the face in (b) corresponds to the original face when the 
web was in its relaxed state, the value of β shown here is the same as that calculated in 
the mass flow analysis.  

                                                           
6 Although it is correct, I’m not convinced that equation {51} should be attributed to 

the material derivative. It happens because of β and constant Vo at the line of entry. 
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. 
(a)                                             (b) 

Figure 7 – Benson’s Velocity Matching Criterion 

So, although Benson never mentioned the effects of mass flow, it was implicitly 
included in his analysis. 

OTHER VERSIONS OF THE TIMOSHENKO ACCELERATION EQUATION 

Sievers 
Sievers [3] derived the acceleration equation using the material derivative. This gave 

her equation {21}. However, this technique only worked for fixed parallel rollers. She 
could do this because the only pivoting rollers on her machine were those of a 
displacement guide. She recognized that these rollers and the span between them move 
together as a rigid body. So, she mathematically rotated the coordinate system for the 
span between the guide rollers and treated the web as though it was passing between 
fixed parallel rollers. For her E-B model, this worked. However, the method provided no 
insight into incorporating shear. Furthermore, it was not a good general solution because 
it cannot be applied to a misaligned roller or an ordinary steering guide. 

Sievers used Shelton’s acceleration equation for both the E-B and Timoshenko 
models. None of the validity tests detect the fact that it is incorrect for the Timoshenko 
model. 

Brown 
When Brown tried to apply Sievers’ material derivative method to pivoting rollers, it 

produced an extra term involving the rate of change of roller angle [6]. 

 
2 22 2

2 2 2
d y d d zd y L L LV Vo o dtdt dx dt

γ
= + +  {54} 

This fails test number 2. 
Brown also attempted to develop a Timoshenko model [9] by using equation {11} 

for ϕ0 and ϕL in equation {16}. This produced an equation with 1st, 2nd and 3rd order 
spatial derivatives that were then replaced with time derivatives. The normal entry rule 
{20} and Shelton’s acceleration {21} were used for the 1st and 2nd derivatives. For the 
third derivative, the following relationship was used derived by repeated application of 
the chain rule, 
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3 3

3
3 3

d y yL Lvo
dt x

∂
= −

∂
 {55} 

There is no physical justification for this. Furthermore, it is mathematically incorrect 
because it involved a cross derivative that was removed by using the x-derivative of the 
normal entry equation - an invalid operation because that equation applies only at x = L.  
It is no surprise that this model also failed test number 2. 

Walton 
Walton [11] found fault with equation {21} because the numerical models based on 

it appeared to violate the assumption of no web slippage on rollers. He stated that in 
numerical models based on Sievers’ equations, “a step in lateral position on one roller 
will instantaneously result in a face angle change in the web at all the downstream rollers 
in a multi-roller set of web spans.” He proposed the equation {56} as an alternative. It is 
equation {42} with the roller axis angle, γL = 0 which is appropriate for Sievers 
formulation.  

 
2

2
d yd LV aodt dx

φ
= −  {56} 

It may be that the problem he observed (instantaneous response of face angle to a step) 
was because the rollers were modeled with zero transit time. 

Shelton 
On pages 104 and 105 of his thesis [1], Shelton develops an expression for lateral 

acceleration that includes the effect of shear. He says, “The lateral velocity due to the 
angle of shear deflection may be deduced from the discussion of Section 3.1 and Figure 
3.1.1 [First-Order Dynamics of a Massless Web] to be equal to -VθLS, where θLS is the 
slope due to changing the angle of shear deflection of the web at the downstream roller. 
The lateral acceleration due to a changing angle of shear deflection is found by 
differentiation with respect to time.” From this, he concludes that the acceleration 
equation at the downstream roller is, 
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2 2 2
d y dd y d zL L LV Vo o dtdt dx dt

ψ
= + −  {57} 

This is similar to Benson’s equation, but lacks the term involving the spatial derivative of 
ψL. Based on the earlier discussion of Benson’s work, it’s apparent that this is not 
equivalent to the acceleration equation {44} and it fails test number 3. 
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PROJECTION OF ROLLER ANGLES 

 

Figure 8 – Relationship between Plane of Roller Motion and Angle Experienced by Web 

The roller angle γ must consider both the angle of wrap and whether it applies to the 
downstream or upstream end of a span. 

The angles γL1 and γ02 in Figure 8 above are projections of roller alignment onto the 
plane of the web. If the angular motion of the roller is in a plane that is parallel to the 
cross-machine direction, the following relationships hold. 

 cos( ) and cos( )1 02 0LLγ γ θ γ γ θ= =−  {58} 

The effect of β  on traction 
The moment that creates the boundary defect can also affect traction at the 

downstream roller by causing time-varying changes in the tension profile. If tension 
changes rapidly at the entry, the resulting circumferential gradient on the roller can 
exceed the friction necessary to prevent micro-slipping (slipping due to the strain 
gradient) on the entry side. Whitworth and Harrison described how variations in the 
average line tension could cause such slipping in their 1983 paper, “Tension Variations in 
Pliable Material in Production Machinery” [12]. The maximum gradient that can be 
supported at the entry to a roller without slipping is, 

 d x x
dx R
σ σµ≤  {59} 

The relationship between the time rate of change at the entry to a roller and the spatial 
gradient on the surface is, 

 1x x
x V tox L x L

σ σ∂ ∂
=

∂ ∂
= =

 {60} 

The maximum tension at the web edge, due to a moment, is found from equation{33} 
(with a factor of a to account for shear) 

 
2

22
d yEW Lam
dx

σ =−  {61} 
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So, the cross-web profile of the time rate of change of tension is, 

 
2 2

2 2
2 22

d y d yy EW d y dm L La Eya
t W dt W dtdx dx

σ  ∂  = − =− ∂  
 

 {62} 

And the condition for no slipping is, 

 
2 2

1
2 2

d y d yd L La Ey a Ey oV dt Ro dx dx

µ σ
 
 ≤ − +  
 

 {63} 

Suggested terminology for the right side of {63} is Friction Rate and for the left side, 
Stress Gradient. The implications of this relationship won’t be explored here. 

Even if the tension profile doesn’t produce slipping at the entry, it will pass over the 
roller to the exit where it will contribute to micro-slipping there. 

ROLLERS ARE BEING NEGLECTED 

All multi-span analyses to-date, including this one, assume the distance traveled on 
the roller is so small compared to span lengths that anything happening on the roller, 
including transit time, will have little effect. However, as the ratio of span length to width 
of the web decreases, this assumption becomes less realistic and micro-slip due to 
moments at both the entry and exit of the roller may have a bigger impact on boundary 
conditions. 

SUMMARY 

It has been shown that considerations of mass flow lead to the acceleration equation 
that was experimentally verified for the E-B model in Shelton’s 1968 dissertation [1]. 
The same considerations, when applied to the Timoshenko beam, lead to a model that, 
although not experimentally proven, is consistent with three validity tests. 

A new parameter has been introduced, identified here as the boundary defect angle β. 
It is seen to be due to the mass changes that cause the face of the web (the face that 
existed at the roller entry before mass flow changed it) to become misaligned with the 
axis of the roller. A complementary effect occurs at the exit of the roller so that any mass 
gained by one span is lost by the other and the result is that the boundary between the two 
spans becomes skewed by β. When the roller is misaligned ϕL1 = β + γL1 and ϕ02 = β + 
γ02, where γL1 and γ02 are projections of the roller angle onto their respective spans. In E-B 
models, β is purely transient, decaying to zero in the steady state.  

Use of the mass flow concept removes the need for making an a priori assumption 
about the behavior of bending angle as the web passes over rollers. 

This dynamic analysis provides theoretical justification for steady state boundary 
conditions of zero moment at the downstream roller for both the E-B and Timoshenko 
models.  

It has been shown that the same phenomenon that leads to the boundary defect can 
also produce a spatial strain gradient on the roller surface that causes microslipping at the 
roller entry when it exceeds a threshold set by a relationship between friction coefficient, 
longitudinal tension and roller radius. Even when no microslipping occurs at the entry, 
the tension profile that produces the boundary defect can be transported to the exit where 
it will affect microslip conditions there. 
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It has been discovered that Richard Benson, in his paper on webs with geometrical 
imperfections [10], proposed a method that leads to the correct acceleration equation for a 
Timoshenko beam model without explicitly relying on mass flow analysis. 

Multi-span lateral models for low values of L/W may fall short of expectations 
without better models for behavior of the web when it is on the roller. 
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