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CHAPTER I 

INTRODUCTION 

The purpose of this report is to discuss the methods offered by 

writ ers or textbooks and other individuals or agencies for the success-

.ful introduction of sane basic concepts confronting students moving from 

arithmetic into algebra. It attempts to offer these suggestions along 

with some of the implications for the consideration of the new teacher of 

first year algebra and those teachers of first year algebra who have lack

ed the time or inclination to give lengthy consideration to the hurdles 

facing the student making the transition from arithmetic to algebra. 

In methods of procedure the report is an outgrowth of certain .find-

ings by the writer from a careful scrutiny of a sizable sampling of text

books and other pertinent literature as they relate to the problems ex-

perienced by the student in the transition from Arithmetic to Algebra. 

The paper is not intended as a summary of the majority reflections of 

these writers but a careful study of these reflections in the light of 

eight years of actual teaching experience. Certainly, no claim is made 

that the opinions and conclusions to be set forth belong exclusively to 

the writer but it is felt there is yet a vast amount of gainful e.xploita-

tion possible in connection with these views. Then, this report is con-

ceived and developed to deal with the following assertions: 

1. The field of Mathematics has grown more rapidly than is 
generally known by highschool Mathematics instructors. 
Consequently, !2!!. Mathematics must be leamed f'aster 
by today's student to attain the merest competency than 
perhaps any generation before. Thus, the earliest concepts 

1. 



should be meaningf"ully instilled at all costs. 

2. Very nearly all normal children like Mathematics as 
long as they understand it and this inclination per
sists unto and through adulthood. 

3. Ma.ey would-be Mathematics students are lost at various 
levels of abstractions (concepts that fail to lend 
themselves easily to palpable demonstration). Maey 
concepts treated as abstractions can be meaningfully 
demonstrated othenrise with careful thought and in
genuity on the part of the instnictor. 

4. The Mathematics of a university student should be no 
more difficult for a University student than a first 

grader's mathematics is to a first grader, a student 
with basic concepts properly instilled along the wq 
will find this true under an instnietor as capable of 
demonstration of his material as most first grade 
teachers are of theirs. 

5. It is extremely difficult for the gifted to understand 
or S)"mPathize with the less fortunate. Thus, many text
book writers inadvertantly or intentionally write text
books that preclude the average student's unassisted 
progress. 

2. 

It is not intended to convey the idea that higher mathematics is 

possible for all individuals. This definitely is not the case, nor would 

it be desirable if possible. However, whether one accepts it or not the 

technological world has become and is becoming ever more mathematical. 

This implies that he wbo would be an intelligent citizen in to~'s world 

must of necessity be better informed in the subject than is the average 

citizen of todq. This is possible for coming generations if teachers 

can check the loss of the many students who are discouraged from ma.themat-

ics at an early phase of their pursuit of it by difficulties that may be 

eliminated. 

The report involves general ideas that are fortunately receiving 

consideration from some outstanding mathematicians. In a recent work 

Professor Fehr of Columbia University says: 

11The learning process of going from experience with things, 
to thinking about things to abstraction and concept torma-



tion, and finally to reorganizing the newly learned concept 
into whole structure is, in the field of mathematics, the 
one that hGs the most promise of pennanence of learning to 
the solution of quantitative problems. The building of con
cents is so necessary if we a.re to develop mathematics as 
a wa:y of thinking that will serve us in our various life 
careers 11l 

J. 

No attempt is made in the report to deal with all the concepts the 

student will have to master for a successful first year in algebra. How-

ever, it is felt that the more basic notions are considered. An attempt 

is made to consider the idea that mathematically intelligent citizens are 

gained or lost in this ec>,rly formative stage of pupil development. There-

fore, numerous and appealing experiences should be provided even at the 

expense of failing to cover. an arbitrarily chosen topic somewhere near the 

back of the book. On tlrl. s particular notion Breslich said: 

"Not enough experiences are provided to develop real understand
ing of the concept of Algebra. Literal nwnbers, signed numbers, 
symbols of onoration, exponents, equations follow one another in 
rapid succession, although each alone offers serious difficulty 
to the len.rner. lfost textbooks introduce all these concepts 
within a very few pages, hence no re~l understanding is attain
ed by the nupil. The result is confusion and dislike of the 
subject which is in reality simple i! the fundamentals are thor
oughly mastered. 112 

Textbooks remain in print and in use that fail to escape this crit-

icism. However, there is much satisfaction in finding numerous modern 

writers who either anticipated or heeded Mr. Breslich 1s admonitions in 

their ,1orks. 

lnoward F. Fehr, "Reorinentation in Mathematics Education" 
Teachers College Record, Vol. LIV (May, 1953), p. 435. 

2Earnest R. Breslich, The Administration of Mathematics in 
Secondary Schools (Chicago, 1933), p. 267. ~ ~ 



CHAPThR II 

'l'lIB FOm.IULA 

Many of the textbooks dealing with a first course in algebra begin 

with the formula as an introduction to the study. There seems to be a 

majority opinion that the formula can be made more concrete than the equa-

tion when introducing algebraic concepts. It is seemingly aereed by most 

tha.t formulas might well be studied before directed numbers or equations. 

The general rule of "one difficulty at time" pervades the structures of 

nearly all. It is conceded that most students are unable to focus on the 

meaning of the formula if there is disturbance by another new idea which 

is not understood or is vaguely understood. 

In Modern mathematics one•s level of achievement is greatly deter-

mined by his ability to JnAster symbolic language. The formula, this writer 

has found, is a comparatively easy and meaningul introduction to symbolic 

language. This language of algebra is at least as imnortant for a student 

to master as the skills in manipulation. It is often an extreme test of 

patience for the most understanding teacher to constantly remind himself 

that the pupil is learning a new language and that the pupil's concept of 

symbolism develops gradually. One must not assume that the average pupil 

actually has a full understanding of the common symbols~, . 
-, .-, x. 

Situations must be created whereby the need and use of symbolism are as 

nearly obvious as possible. Thorndike has said: 

"Yet observation of the lenrning of algebra shows that the pupils 
learn by their concrete experiences with letters, coefficients, 
exponents, etc., more than by analytically scrutamizing of their 



definitions. They learn by what they do with the algebraic 
facts, and what the results are, more than what they are told 
about them. 113 

There would seem to be a general opinion that a good a,)proach to 

5. 

the teaching of the formula is to deal with it as a kind of shorthand for 

abbreviating practical rules. 

Most students of today have grown up in an economy of installment 

buying and numerous credit plans and hence it is very likely that many 

will have some understanding of the rule for finding interest. 1t this 

is true there will be little difficulty in employing the rule in the form 

I= prt. However, many htghly regarded authorities on the subject suggest 

that pur.ils be trained to first state the rule in abbreviated word-fonn 

before using symbols. Instead of beginning by expressing the above ment-

ioned rule as I= prt the rule is expressed as Interest= principal x 

rate x time. It is the opinion of the writer that this practice is a pro-

fitable one, for his experiences have taught him that mistakes are often 

committed when this procedure is not followed. Take the simple case of 

the student during marketing for the family: Eggs are sold at a certain 

price per dozen, usually and most students have at one time or another 

participated in the experience of purchasing eggs. An agreement is inune-

diately possible between student and teacher that cost of eggs equals 

number of dozens multiplied by price per dozen. It can be suggested that 

the first letters of those word.s referring to numberic :,Ll quantities be 

used to write a "short hand" rule for this relationship: Thus, C = d x p. 

Even 't1hen steps are taken to as ,,ure cost and price agreement in units 

error is quite often forthcoming. The letter d has a constant value of 

twelve for the student because d-o-z-e~n spells dozen and is defined as 

~ard L. Thorndike, The Psychology of Algebra, (New York, 1924), 
p. 242. 
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12 things. Thus instead of a. generalized rule for finding the cost for 

any number of dozens of eggs the student has a fallacious idea that will 

practically eliminate his chances entirely for getting a covrect solution 

to problems of this nature. Considerable time must be devoted to getting 

the ·student started correctly as it is much easier to teach than unteach 

thoug.h both might be difficult. 

A formula definitely describes a relationship, a case of determinate 

corresponce. If this point of view is perceived by one te.:>.ching it, there 

is an opportunity to give the student the necessary bac!<:ground for the 

function concept. This concept will 12..ter determine the extent of his 

progress in more abstract mathematics, alas it will even d.etermine how far 

he goes ,-J ith the formulas. Even the latest textbooks go along with this 

incidental teaching of a function concept and most suggest the four-fold 

method of expressing the relations~dp: the table, the arithmetic rule, 

the formula, and the graph. 

According to Taylor, "a function is the determinate coITespondence 

between two classes o! objects, 114 Richard E. Johnson in his lecture notes 

at OklahOOJa State University, Fall semester, 1957 says "a function is a 

correspondence that associates with each number of given collection a 

· unique number11 5 or in essence, a refinement of the same thing as Taylor. 

Dr. James. H. Zant, Professor of Mathematics at Oklar10P..:ia state University 

defines a function as follows: 

. ''Given any two sets or collections X and Y, by a function of 
X to Y we mean all r"" '~:dble pairs made up of an element of 
X and an element oi'JI which corresponds to it according to 
some rule or formul~. It is understood that an element of 

4.1\ngus E. Taylor, Advanced Calculus (New York, .,1955) p. 297. 

5Hichard E. Johnson, Lecture Notes of "Calculus for Highschool 
Teachers", Oklahoma. State University, F'all Semester,· 1957. p. III-29. 
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X, like x, appears exactly once as a member of a pair. 11 6 

Consideration of Professor Zant's helpful amendment t o this most per-

vading but somewh?.t elus:i.ve concept facilitate s mearu.ngful consideration 

of two other notions '.everywhere ass ociated with the formula. From the 

beginning lt w1.ll be helpful if the new aleebra student is made conscious 

of the idea of variable:, and domain. The collection of numbers over which 

ci. function is def1ned is called the domain of a function. In the formula 

above, C = np, if the price of a dozen eges :l. s fixed n may take on any one 

of the St:t of the posithre real numbers and zero. With each value given 

n, the :.ndependent v;:; riable, there ifl associated some value for C, the 

de pendent variable, according to the rule of correspondence linking them. 

Some effort should be made to include in the list of f orrnu.b.s a number 

of those th::·,t :ill ustrate clearly the liird.ted domain~ of some functions. 

For inst.wee, the postagt'l fm1ction offers a set of formula s demonstrative 

of this idea: 

Let C = cost in cents of sending a parcel of weight w ounces 
by first class mail, then, 

C = J i.f w has value e res.ter than O and equal or 
less than 1, 

C = 6 for w more tlmn 1, equal or less than 2. 

C • 960 if w is more than 319 and equal to or 
less them 320. 

This function has as .i.ts domain the set of all positive numbers not ex-

ceedjng 320 ounces. 

Certcdnly, one could hardly expect rigor on the part of a student 

at this stage of his progress in aleebra. Howevc,r, this idea of mapping 

or picture relationships can be inculcated by graphing of relat.ions in 

formulas. Using an arithmetic rule to set up a table e.xhi.biting relation-

6Jt:unes H. Zant, Analytic Geometry ~ Calculus, Publication Pending, 
1958, p. 1-6 
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ships will establish a concrete reference point for a student when he later 

encounters cases of abstraction concerning these ideas. A difficulty in 

mathem::iUcs l:i.es in the fact that any succes:., in it depends upon an un

broken eA-tcnsion from the basic starting point. One might conceivably 

be an American citizen ::i.nrl lem-n of British history without any prior 

knowledge of American history. A stu~ of either might facilitate a more 

rapid and broader grasp of th~ other but neither iB a prerequisite for 

the other. So systematic ::.s the structure of mathematics that one seldom 

finds an analagous situation. It would be unusual to find an individual 

capable of succm~sfully dee.ling i,,rj th the calculus prior to a sound course 

in nlgebr&. to say the least. However, to a lesser extent this is the 

situation faced by the student confronted wi.th rigorous a ;-.,plications or 

the function concept and no referrent point in some aspect of his con

sciousness. One might safely say from all this that where the student is 

going in :mathematics depends to a great e>..tent upon where his teacher has 

been. The broader the view of the teacher the less likely will be the 

teaching of concept or topic as an end within itself, neither lending it

self as an enrichI!tent of things past nor a link in the chain of things 

to come. 

A gre "Lt deal of care and time is usually required to teach the student 

to 5olve a simple forn.ula for any specified letter. Perhaps here more than 

any place else the ar,gwr.cnt for introducing the formulas before the equa

tion as a specified letter necessaril:I involves the teaching of an under

standing of the axioms. Iiieaningless transposition and baseless numerical 

operations can hardly occur when the entire problem consists of a re

lationship of letters to letters. 

'l'he work in fornrulas should provide a generous amount of work in sub

stitution. Not only is this p:.'o:.;edure most necessary in the gaining of 



9. 

masterful. employment of the formula but it is highly desirable as a found-

ation upon which one anticipates another most basic idea in mathematics. 

The cor•cept of equ:Lvdlence .celationships is ba::iic in thu study of modern 
.. 

mathematics and that particular system of logic given to the domain of 

mathema.tic:.. When we can apply the same l&bel to every element of 3. class 

or set, each element is substitutable for every other. Such a set of 

trlings is called an e ,1ui va.lencc class. 7 The pupil should o.lsu ui.:1pl._0y whole 

numbers, cOJTunon fr::ict i ons, limited to those used in cornputati ::m that the 

world needs t o do, and deci,nals. Dealing w:ith these nu.abers gives the 

student an assurance of bei ng in f amiliar territory plus th::i f ,wt it pro-

vi.des much needed ·;)ract ice with quantities he should really ha.Ve consummate 

sJdll in using. It is indeed a rarity when a :Jtudent beginning algebra 

needs no furthe r practice in conurion fractions and deciinals. :{oreover, such 

a practice is desirable because it is a way of developing the meaning of 

the formuh.s. 

Finally, Thorndike makes a rather penetrating statement that r eads: 

''The pupil builds up c,r integrates ld.3 h3.bits into rules, as well 
as derives new habits from rules. Le ;,.rning to compute algebra ... 
ically is not only, or chiefly, learning rul '.!3 and ho,, to ::>_,'.,ply 
them; it is also building up a hierachy of habits or connection 
bonds which cl<1.rify, reinf()rce and, in pa.rt, c reate t h1; W1dor
standing . of what the rules mean and when to a pply them. 118 

Though this statement was made some thirty years ago there would probably 

be very few mathem~tics instructors who would not agree with it. 

?Robert L. Swain, Lecture Notes of 11Hodern Hat hematics for High 
School Science and Mathematics Teachers" Spring Semester, Oklahoma 
State University, 1958, pp. 1-28. 

8Edward L. Thorndike, The Psychology 2f. Algebra. (New York, 1924), 
p. 246. 



CHAPTER III 

SIGNED NUMBERS 

The concept of signed numbers is one that lends itself to several 

introductions. Substantiation of this assertion is very easily gained 

by merely consulting several different elementary algebra texts. By 

virtue of the fact that there are various ways of intr oducing this notion 

the writer holds that some of these methods might generally be better 

than others. One might contend that it would be most effective to use 

them all but this would necessitate the spending of undue time on the idea 

and serve to kill the spirit of certain segments of the class. The follow

ing tren.tment of the notion is a result of careful study of these various 

presentations in light of personal teaching experience. 

To meaningfully introduce a new concept or even to extend an old one 

it is necessary to ascertain a good starting place for the students being 

taught. This place, of course, varies from student to student. Therefore, 

considerable time and effort must be devoted to its selection. Perhaps 

there is no best nlace for what is usually tenned the average class. A 

good one, one which lends itself to broad usage in mathematics to come 

later, is the idea or ones position and direction in relation to some fix

ed point or line. In the hills of Tennessee the weather phenomena lends 

itself to colorful illustration of the idea. Fifty miles south of Dog

patch fanners enjoyed abundant rainfall last year and all those in this 

region grew fine tobacco crops. A friend who is a tobacco fanner lives 

fifty miles from Dogpatch. Can one conclude that he grew a good tabacco 

10. 



ll. 

crop last year? This is hardly possible from this informntion. However, 

if one is supplied the infonnation as to whether the farmer lives north or 

south of Dogpatch, whether it is east of south or west of north notwith

standing, the answer is immediately available. 

From the brief suggestions mentioned in textbooks the resourceful 

teacher is able to place the student in various imaginative positions that 

might appeal to him and has direct bearing on the notion of positive and 

negative nwnbers. The following is an example: 

While relaxing in a comfortable American t ype "igloo" in Northern 

Alaska the voice of a glib American reporter comes in over the radio announc

ing the outside temperature as 30°. What coat does a G. I. wear to dinner 

which will be served in Barracks #10, a quarter of a mile away? A top-

coat is worn in weather not severely cold and a specially insulated heavy 

overcoat for the ext.reme).y e6ld. weather. It must be determined whether the 

reading of 30° was above or below the zero point, or-. Again, a corpora

tion executive has an apartment on the 20th floor of a 42-story skyscraper. 

Each morning he rides the express elevator ten stories to his office located 

in the same building. What floor would one go to for an appointment with 

the executive in his office? 

Once the fact is well inculcated that distance from a point is not 

sufficient to pinpoint the whereabouts of an object it is fairly easy to 

illustrate the clumsiness encountered in modifying numbers with such tenns 

as up, down, above, below, clockwise, counterclockwise and such opposite 

notions. Any two onposing systems may be designated as respectively posi

tive and neg~tive. Which shall be called positive and which shall be call

ed negative is simply a matter of choice and convention. 

One of the most widely recoounended visual aids in teaching the idea 

of opposites is the n~ber line diagram. Each student should be allowed to 
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make for himself a portable representation of the number line. It will 

serve well in the teaching of operations with signed numbers. 

6 

Inasmuch as this is a somewhat new idea for the student careful at

tention should be given to using the terms plus, positive, minus, and neg

ative. Many textbooks are careless with these terms, making it quite easy 

for the teacher to be likewise. The transition from arithmetic to algebra 

is perhaps easier here if the student is allowed to retain his idea of plus 

meaning that two or more quantities are to be joined to obtain a sum. There 

is confusion inref erring to the point five units to the right of zero on 

the number line as a plus 5 in one instance and positive 5 in the next. A 

like confusion is encountered when a "minus" 5 and "negative" 5 designate 

the same point on the number line. This might be eliminated by letting 

"positive" and "negative" identify opposing natures of a system. For in

stance, if the direction upward is tenned negative the direction downward 

should be called positive. Thus, one could ever avoid the sound of such 

sentences as 11Take eighty plus a plus ninety," in referring to two like 

distances to be joined. 

The writer has long felt that the symbols designating the nature ot 

the opposing systems should either be different from the conventional addi

tion and subtraction signs or at least placed in different positions. It 

has been rewarding to finally find a highly regarded mathematician, Dr. 

Robert L. Swain, who proposes the idea in one of his books. A pupil ot 

one weeks experience in signed numbers is not necessarily a mental case 

because he writes 5+ t 5 in response to the command "find the sum f'ive plus 

a positive five." Surely, the last 5 of the expression is to be enclosed 
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in parenthesis but why fix the mind on . this use of the grouping symbol and 

invite undue difficulty in teachirv: gr ouping'/ lf the use of + and - must 

be ret .'.l.ined to designat e positive and negative systems why not place them, 

say above and slightly t o the left of the nuir1bcr they quantify? For in-

i': + - +-st ance, 5 + 5 and 5T 5 could indicate the swn of a positive five plus a 

positive five and a negative five plus a positive five. This notation 

should not interfere with the common practice of writing pi as 3.14 and 

similar cases. The writer has seen the e.xpression 5 + + 5 carried to its 

ultimate more than once: 5 + + 5 = 15. 

Consider the problem of oper ating with signed numbers . In most text-

books t here is a nice set of rules for t hese operations in heavy type. An 

instructor may require his students to 11parrot 11 them to him until pupil 

knows them by heart and maybe applies them, or he may lead the pupil in de-

monstrations whereby t he pupil arrives at the rules for himself. Certain-

J.y, when a pupi l derives these l aws of operati ons for himself they have more 

meaning for him and he is most likely to apply them correctly and retain 

them longer . 

It is customary to begin with addition. Each child with his number 

line diagram on cardboar d can visualize the conventions to be t aught here . 

F'irst, numbers to the right of zero are designated as being of a positive 

nature. Secondly, establish the direction of motion to the right from Afil 

point on the number line, irregardless of its relation to zero, as of a 

positi ve nature. Thirdly , get accros3 the idea that an operation begins 

AT the oper ation symbol whether word or symbol. In board drills the in-

structor might best avoid such commands as "Johnny, find the sum of pos-

itive f i ve and a positive six11 for a while as this often leads to confusion. 

A positive five and a positive six have locations on the number line one 

unit apart. However, a number line without numerals will quite often 
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facilitate a correct response to such a command. 

The operation could quite easily be separated from the number nature. 

The idea sh:mld be est ablished that the word "plus" char acterizes action 

taking place, and act of union. The word "positive" is of descriptive 

essence, characterizing a oosition ri1:;ht of zero when it is a q_uantity 

:nointed out or desi gnat ed . Presentl y the same word indic c.tes the direction 

of an operation from anosition. It is the opinion of the writer that clear-

ne:,s of concept could be achieved if the students could find the word used 

in textbooks as an adjective for designating a position and in adverbal 

form for indic:,ting direction . For instnnce , the symbolic command 5t (+J) 

should be written "add positively three to a positive five." If the nota-
-t + 

tion sugP,ested above were adopted the symbolic case would read 5 + J . Then 

a ~ositive sign (above the first number) before a plus sign (the operation 

symbol) refers to position and the positive sign after the oper ation symbol 

refers to the direction the operation indicated is to occure . This would 

hold for a series of sums if position is t aken after each operation. For 

. + ... .. ., + . + 
instance 5 + 3 + 4 + 8 = 20 is easy to follow if one takes position at 5 

and adds positively three units, takes position at +g adds positively +4, 
+ and on through 8. Numbers written without any accompanying sign should be 

understood t o be of a positive natur e. 

The general idea holds equally well in the teachi ng of operations 

of signed number in the case of negatives . Posi tions left of zero would be 

of a negative nat ure and motion direct ed left of any point is negatively 

directed. As an exan,:,le, t a.ke the case of 5 ~-3 : In conformity with principle 

already 11.gr eed upon the st arting position i s 5 units left of zero on the 

number line . Recall that the sign above the number after the operation 

sign t el l s how or in what di r ection you r.iust proceed from the start1ng 

posi tion, that i s, 3 is to be added negat i vely. It says in this case that 
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you are to move to the left. Move 3 units left and give the nwneral of 

your position. It is 8 units left of zero and is called 8. Take the 

- + case of 8 ~ 5: This time the starting position is 8 units left of zero 

and motion is 5 units to the right of this point. Head the numeral of the 

position. It is 3. 
- ... 4+ 1.3 means the starting postion is 4 units left of zero and 1.3 is 

to be added positively. The final position in this case would be 9 units 

right of zero and t his +9. 

+3 + 3 indic ,tes a starting position 3 units right of zero and the 

direction of motion is to be toward the left and 3 units. This would give 

a stopping position (the sum) of O. 

The above cases of addition serve to illustr::..te t he a pplication of 

the idea to aJ.l the cases of addition with signed nwnbers: 

..,.5 .,. + + + 
5 corresponds to a. .,. b; 

5 .,. ·3 corresnonds to ~3. + -b· 
' 

- + +-4 1']3 corresnonds to -a -+ b; and 

-+ -to -
3 + 3 corresponds to a ..,. b. 

Subtraction should be de.fined as a special case of addition: a-b 

means that b added to some number c gives a. In arithmetic, 12-4 means 

that to 4 some number can. be added to get 12. Making this concept clear 

enables a teacher to use the number line and r apidly teach subtraction. 

In the experiences in addition above the last position attained was the 

sum. In subtraction this last position, the sum, is a given quaintity. 

Given a position somewhere to the right or l eft of it you merely note what 

direction and how man.y units moved to reach the sum. Take the EXample 

+ + 12 -4, cited above: The number BEFORE the minus sign is the sum and the 
-t +-

number AFTER this operation sign the starti ng position. Thus, 4 -+c = 12. 

Beginning the count of units a ~4 and moving to the +12 you find you've 



moved in the direction right of T4 and that you have moved 8 units. In 

agreement with the above decisions name this directed motion +8. Then, 
-t ... ... 

clearly 12 - 4 = 8. This example should serve to demonstrate that all 
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the cases of subtract.ion could be taken care of since they simply revert 

to cases of the several combin :- tions of addition already demonstrated. 

Take a look at this scheme and see how it lends itself to multiplica-

tion and division with signed numbers~ You may start with multiplication 

since it is but a means of addition~ To insure an agreement and undel""" 

standing on the part of the student that multiplication is a type of add

ition define and illustrate it: "The multiplication of a first number by 

a second number means to do to the second what was done to unity to obt ain 

the first." 9 Take the problem of +3 x +7: To obtain the first ( the number 

+3) take unity as an addend three times,. + Thus 1 + 1 + 1 = .3. Then, by 

definition the number 7 must be taken as an addend three times: 7 + 7 +7. 

The sum is, of course, 21. 

To include all cases extend the definition of multiplication further 

within the limits of its implications to fit the number line idea. Numbers 

to the right or left of zero may be designated as "zero-differences" of 

unity. Thus a 3 = (0-3) • (0-1) + (0-1) + (0-1) = i + -1 -f -1 = J. Let 

numbers to the right of zero be the sum of addends (1-0) + (1-0) ••• 
_r 
- n. 

To multiply -3 x "s make the following observations: The zero-difference 

of -3 is (0-.3). According to the above notion this means there is some 

number which when added to 3 gives the position O on the number line. Be

ginning at 3 note you move three units left to get O. Therefore, give the 

value -3 to the number added to 3 to get O. Then do to 5 what was done 
+ + + + 

to unity to get 3: (0-5) + (0-5) + (0-5) = 15. Try applying this idea to 

9B. R. Buckingham, Elementary Arithmetic (New York, Boston, Chicago, 
Atlanta, 1947), p. 64. 
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3 x 5: again (0-1) + (0-1) -r (0-1) : ). Then, (0-5) -t (0-5) -t (0-5) 
+ 

= 15. 

Define division of a first number by a second number as the product 

of the first number and the reciprocal of the second. As an example, 

-10 r 2 = ~10 x 1/2 • +5. In short, the definition of di vision eliminates the 

need for a different set of rules in division with signed numbers. 

After sufficient work has been accomplished by the student with these 

sensory techniques he will be ready to derive for himself the conventional 

rules for the basic operations with signed numbers. It is the suggestion 

of most textbook writers that this is the stage the student might memorize 

the following rules: 

1. If the two numbers to be added have the same sign, 
find their absolute sum-(the arithmetical total), 
and prefix the same sign befo1e the result. 

2. If the two numbers to be added have opposite signs, 
find their absolute ~i~fe!"ence (the smaller sub
tracted from the larger as done in arithmetic), and 
prefix the sign of the larger number to the result. 

3. When two numbers with like signs are multiplied, 
their product is positive; if their signs are un
like, the product is negative. 

Having defined subtraction as a case in which the sum is given and 

a suitable addend mu.st be found to make this sum correct, no new rule tor 

subtraction is needed. A similar argument applies in case of multiplica-

tion and division. 



CHAPTER IV 

THE COORDINATE SYSTEM 

One of the most important concepts needed by any student in first 

year algebra is that of the coordinate system. It lends itself topic

tures of the mapping of a function. Hardly any id~a is more fundamental 

or more widely used than that of the function concept. It pervades the 

study of mathematics from its most elementary through its most complex 

structures. So, introducing the coordinate system should C9D]mand the 

teacher 1s fullest attention and roax1mnm resources. 

Most students have studied some elementary geography before they 

reach the point of beginning algebra in their schooling. As a result 

they have some knowledge of longitude and latitude. For those students 

so equipped this is FI good point of reference for beginning the stuc13' ot 

the coordinate system. The two systems incorporate precisely the same 

idea in that distances east and west of a line extending from north pole 

to south pole over an arbitrary point are designated as longitudinal dis-:

tances. Those distance north and south of the equator are designated as 

latitudinal distances or parallels of latitude. Latitudinal and longitu

dinal U,nes are perpendicular to ea.ch other and thus intersect each other 

in specific points. For instance, the intersection of the 36° N paralled 

or latitude and the 97° w, meridian of longitude locates the town of Still

water, Oklahoma. 

In the event sane of the students are unfamiliar with latitude and 

longitude it is possible that the system of the streets o.f his town or 

18. 
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some town he has visited will furnish an analogy. The actual cases are 

not numerous but the well planned town might have streets running in one 

of the cardinal directions and avenues at right angles to them. Suppose 

yourself in such a town where the streets run in the direction east to 

west, the avenues extend north and south. There is some street which runs 

approximately through the center of town dividing it into northern and south-

em halves• There is some avenue running through the center of town di vid-

ing it into an eastern and western half• Wher e this particular avenue in-

tersects the dividing street a point is neither north, west, south, nor 
I 

east in the town, A house located on this point should logically have the 

street and number address 110". The first house in the loth block north 

of this point might have the avenue address 10-1 (usually 1001) north Math 

Avenue. A house located 37 blocks east of the 110" address and second from 

the corner along the street could logically be referred to as 37-2, E. 

(likely 3702 in actual cases) Algebra Street. It is easy to see that if 

one were located at the 110 11 ad.dress he could locate a friend who gave a 

street address including the number and whether it was east or west. Some-

where along t he avenue that ran through the center of t .own the stree is 

sure to cross. However, one could lose valuable time if he went all the 

way to the south city limits without crossing the particular street. As-

sum:ing he is walking, he would have to walk all the way back to "0" and 

proceed North. Surely, somewhere along the way he would find the street 

sought. This difficulty could easily be avoided if the streets north of 

"0" had same special number or name code and those ·south of "0" a different 

scheme. Then you could directly locate an_v particular address by using 

knowledge or two directions simultaneously. You would proc~d north or 

south from "0", whichever the code scheme called for, and upon intersect-

ing the desired street turn off east or west as the number address of the 
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street indicated. A similar idea could be applied to all avenues and it 

would be equally as easy to locate any given house situated on a named 

avenue. Unfortunately few towns are so well planned and one usually has 

to resort to questioning policemen or others for directions, one of the 

better means of getting one's self completely lost. 

Unlike the street systems in most towns the coordinate system is a 

precisely define~ idea with all points given as an address incorporating 

the notion of two distance form 110"• A.point is some distance or no dis

tance right or left or "0" corresponding to an address on a street east 

to west, or on the avenue that runs through the center of town. Further, 

the point~ lie up or down ~rom "0" corresponding to avenue addresses 

north or south of the street running through 110 11 dividing the town into 

northem and southem halves. To help the pupil understand this idea fully 

you may wish to make use of an imaginary town with the idealized street 

system. Better yet let him be apart of the l'lanning Comndssion that sets 

about constructi!lg such a town. After sufficiently careful surveying he 

builds a system of streets rtmning east and west, ea.ch parallel to the 

other. Perpendicular to these streets is laid off a system of avenues 

rurming north and south. The street running through what will be the cen

ter of town is named "0" Street and the avenue dividing the town into east

em and westem halves named "O" Avenue. All the avenues east of 11011 

Avenue are numbered consecutively 1, 2, 3, ••• N. Those avenues west of 

"0" are lettered a, b, c, •• • z, aa, ab, and on through the last avenue. 

Code the streets similarly. Pretend the employment of two giant sized 

Construction Companies to pave the avenues and streets.. Give company A 

a contract for paving the streets and company B will pave the avenues with 

each paving the same number of intersections. Each will receive the same 

basic sum of money for completion of its project but in typical American 
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haste offer a. bonus to the company satisfactorily completing its job first, 

Further, the Commission divides the to~m into four separate zones, NE, NW, 

SW, and SE. Request that both companies begin work in the NE zone for 

this will be the zone of the biggest tax p8i)'ers, the rich. So Company A 

and Company B work furiously in the NE zone and streets and avenues are 

paved in record time. However, because of the competition for the bonus 

anticipated friction develops between the two companies. In order to pre

vent possible conflict the commission agrees to let the companies work in 

separate zones during the remainder of the project. Company A, the street 

paving company, chooses to work in the SE zone and Company B, the company 

paving the avenues chooses the N'w zon.e. 

In the course of time it develops that the Commission decides that 

the main street and main avenue, those respectively running through "0" 

should be paved. It is finally agreed that since engaging one of companies 

already employed would give the other unfair adavantage and to enagage both 

would probably bring them close enough for conflict a third company would 

be engaged for this job and neither company A nor B would be entitled to 

earn pay for paving the routes through 11011 • 

When company A has finished with the SE zone Company B has just fin

ished the NW zone and an unusually long rainy season sets in preventing 

any further work. Before it has ceased a recession occurs and the Com

mission will not be able to enga.ge either company for further development 

but will be able to pay them for work they have already finished. The 

group of Commissioners assigned the task of checking tJie work before p~

ment to the companies makes a diagram of the town and sets about devising 

a system for indicating on it the areas of the town for which the com

panies must be paid·.- . 
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Paved streets and avenues will be colored red and the letter 11P11 will 

be pl aced on them for payment. Unpaved streets and avenues will be color-

ed green and the letter 11N11 placed on them to indicate non-payment. The 

avenue and street running through 11 011 will not be colored at all for neither 

A nor B will receive payment for them. 

When the job is completed on finds streets and avenues are r ed in 

the NE zone and the entire zone is marked 11 P11 • In the SE zone the streets 

are colored red and each marked "P". The avenues in this zone are color-

ed green and marked 11N11 • In the NW zone the avenues are red and marked 11 P11 

and the streets are green and marked 11 N11 • In the SW zone the streets and 

avenues are green and the entire zone is marked 11N11 • With the aid of this 

diagram the Commission quite readily finds it must pay each company for 

one-half the job each was originalzy hired to perform. Both companies are 

paid for the NE zone . Company A is paid for finishing the J.E zone and 

Company B for finishing the NW zone . Neither company receives money for 

the SW zone nor the routes through 110 11 • 
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With this diagram and such a f anciful flight of the imagin,:::.tion, the 

student's knowledge of what a town is like being yuite broader than his 

grasp of imaginary meridians and par allels, the x- and y- axes ar c easily 

introduced. The color schemes and the as sociations of P's and N1 s aid 

him in rememberi ng the quadrants in which x or y is positive or negative. 

The streets and avenues are so numerous in the corrdinate system that 

there is never mor e than a single house in a block, thus each one has a 

corner address. Then, any house in the plan has a street and an avenue 

running to it. The NJ£ corner of town corresponds to quadrant I, the NW 

to quadrant II, the Sw to quadrant III, and the SE to quadrant IV. In 

quadrant I both x and y are positive. X, the distance f rom the y-axis, 

corresponds to streets in the NE zone of town. All those streets paved 

are resignated "P" routes. The x-axis corresponds to the street through 

110 11 and the y-axis the avenue through 110 11 • Recall that neither company 

receives consideration on these routes, or one may :Jay each receives 11 0 11 

consideration. Yet you are readily able to identify where streets or 

avenues cross these main routes. A house whose only address is 5th street 

might be found on the corner of 5th street and 11 011 avenue or (0.5). A 

number of exercises dealing with the location of addresses 8ive the student 

a clear approach to locati ng any designated points in the plane. Insist 

that since the distance is the same whether he leaves 110 11 by way of 11 0 11 

Street to the desired avenue and proceeds up or do~m to the proper number 

or vice versa it is required that he follows .the procedure of street dis

tance first and then avenue distance. 

As an aid to seei ng just how the suggestions above might be institut

ed the following figure is offered: 
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xx• is called the horizontal a.xis; YYi is called the vertical axis; to-

gether they are c,:{lled the axes; the point O is cal led the origin: P:3 , 

perpendicular to the vertical a.xis, is called the abscissa of P; PR per-

pendicular to the horizontal axis, is called the ordinate of the point P; 

PR and PS together are called the coordinates of P. Distances on OX are 

considered positive, on OX' negative, on OY positive, and on OY' nega-

tive. The part of the plane within the angle XOY is called the first 

quadrant; the part within tha angle YOX ' is called the second quadrant; 

the part within the angle X10Y 1 is called the t hird quadrant; the part 

within the angle Y'OX is called the fourth quadrant. The abscissa of P, 

according to the indicated scale, is 3, and t he ordinate is 4 . The point 

P is called the point (3,4). 



GHAI'TER V 

EQUATIONS 

. 11The algebraic equation, based on the principle of balance and 

equality, is one of the most important helps ever developed for solving 

problems," says Smith, Totten, and Douglas in one of t heir algebra series. 

These same authors offer a definition for an equation which sea~s general

ly in agreement with a variety of others: 11 An equati on is a mathematical 

statment that two quantities are equal.1110 

The equation concept lends itself to many varieties of introduction. 

Some textbook authors merely state their definition and off er a group ot 

examples. Others use a definition and beautifully drawn geometrical ill

ustrations. Perhaps one of the most frequent ill ustrations is that of a 

pair of scales. The writer has found this one of the methods offering 

wider appeal to the average student encountering the idea for the first 

time. 

To begin with, no matter what method of introduction is used an effort. 

must be made to assure no language bar rier between student and instructor. 

With this in mind one ma.y discuss the very simple ~quation growing out ot 

the following problem: If three equal bars of metal have a total weight 

of 24 ounces, how much does each bar weigh? Let w equal the weight of one 

bar, then 3 w will represent the weight of three bars , and write the equa

tion Jw = 24. With a pair of scales to illustrate the problem you are 

lOsmith, Tott en, and Douglas. Algebra One 1 (New York), p. 74. 

25. 
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usual l y able to get desired answers to some questions asked about the sit-

uation. How is balance involved? What things are equal in the equation? 

Is it possible to tel l what w equals? This mode of approach will lead to 

a satisfactory condition for t he unwary teacher at t his stage of the game. 

However, aituations will ~,hortly pre sent themselves th :-it leads one to wand-

er just what actually happened t o the student during or since this easy dis-

cussion. Usually, when traced it is a case of what happened during the dis-

cussion. The pro per steps were not t 0.ken to assure no lauguage barrier. 

In the simple instance cited above with a pair of scales before you and 

the equation 3w = 24 have the student learn the following f acts: 

1. An equation is a mathematical statement that t wo quan
tities are equal. Here 3w and 24 are equal quantities. 

2. The symbol= is called the equal sign. Think of it as 
indicating a "balance point" between equal quantities. 

3. In an equation, a letter whose value is not known at 
first and is to be found is called an unknown number 
or an unknow. In the quation Jw = 24, w is the un
known quantity. 

4. An equation has two distinct parts, called members, 
one on each side of the equal sign. In the equation 
Jw = 24, Jw is the left member and 24, is the right 
member. 

5. The two members of an equation may be thought of as 
balancing each other, and as corresponding to the 
opposite sides of a pair of scales. vlhenever a change 
is made in one member of an equation, an equal change 
must be made in the other member to maintain the balance. 

If one assures himself that he and student are thinking the same 

things in this situation the pair of sce.les will facilit ate the introduc-

tion of the axioms needed for the solution of some simple equations. How-

ever, an important term which involves a most functional idea is that of 

"inverse." This idea of onposit e processes is one that persists through 

all mathematics and thus should r ecei ve amnle stress that it may be well 

learned . The b~lance or pair of scales l ends itself readily to demonstra-
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tions of inverse operations. Moreover, the situation brings but the re-

lationship of addition and multiplication, of subtraction and division, and 

other incidental learnings which will not be merely accidentals if taken 

into full account by the instructor. 

One may continue with the same equat ion as an illustration: Jw _ 24. 

What has been done to the ~own? Usually the student is able to see that 

w was multiplied by J. Then, .if one performs the inverse operation upon 

wit is alone or isolated. As the instructor is speaking ot this procedure 

he is demonstrating on the scales and the student actually sees what happens 

to the scales when w is isolated without bothering the other member of the 

scales. Upon an average student this makes a lasting impression and he 

will more often than not remember that you must do the same operation upon 

both sides of an equation to keep it balanced. The four axioms in use more 

often t~an others, addition axiom, subtraction a:xiom, multiplication a:xiom, 

and division axiom are very easily demonstrated with these scales. The 

transition from arithmetic into this particular aspect of algebra is thus 

greatly facilitated bee.a.use there is an arithmetical demonstz-ation of an 

algebraic concept. The arithmetic involves palpable symbols, scales and 

weights, and this is good for a student on his first mile toward complex 

instances of a concrete nature and finally pure abstractions. A seaJ?eh of 

many of the vary l atest textbooks reveals that by far the most widely used 

idea employed in attempt to give the student sensor--.r demonstration of the 
', 

properties of an equation is that of the .soales. Whatever method is used 

to introduce the equation the task has hardly begun. Certain maniplulation 

though raoid and correct do not alwqs serve to insure that the student 

actually understands an equation. The bane of the indifferent algebra 

student and inde,d a high hurdle f or the sincere and average student is 

the formulating of equations. However, one cannot ascertain the degree' ot 



master-J of the concept on the part of the student b:,· any other method. 

For students going from arithmetic to algebra problems involving 

equations and their solutions are usually typed. There are sets of pro-

blems under the labels of "mixture problems," "rate problems," "digit pro-

blems," "age problems," ,.,,_rork problems," and such. A textbook which seems 

highly conscious of the transition to be made by a student going from arith-

metic to algebra is that of Smith and Lankford in their Algebra Cxie-1955. 

Following is a group of problems proposed by these writers for students 

going from arith.~etic to algebra, each exercise preceded by a similar ex-

ercise in arithmetic: 

1. a. If the difference between two numbers is 12 and the 
smaller number is 3, what is the larger? 

b. If the difference between two numbers is 12 and the 
smaller number is N, what is the larger in terms of N? 

2. a. If the difference between two numbers is 12 and the 
larger number is 16, what is the smaller? 

b. If the difference between two numbers is 12 and the 
larger number is N, what is the smaller in term of N? 

3. a. If one part of 36 is 7, what is the other part? 

b. If one part of 35 is N, what is the other part in 
tenns of N? 

4. a. It the length of a rectangle is 8 in. and the width 
is 5 in, what is the perimeter? 

b. I! the length of a rectangle is M inches and the width 
is N inches, what is the perimeter? 

5.. a. How far will an airplane travel if it goes 300 miles and 
hour for 5 hours? 

b. How far will an airplane travel if it goes N miles and 
hour for 5 hours? 2N miles an hour for 6 hours? 

6. a. A girl is 4 years older than her brother. If the boy 
is 12 years old, how old is the girl? 

b. A girl is 4 years older than her brother. If the 
boy is p years old, how old is the girl? 



7. a. Pat, Bill, and Ned received a legacy from their 
grandfather. If Pat received $1000, Bill $100 
less than that, and Ned $500 less than Pat and 
Bill together,, how much did Bill and Ned each 
receive? 

b. Pat, Bill and Ned received a legacy from their 
grandfather. If Pat received n dollars, Bill 
$100 less than that, and Ned $500 less than Pat 
and Bill together, how much did Bill and Ned 
each receive?ll 
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These authors have doubltblessly given considerable thought and study 

to the problem of the average student making the trruisi tion from arith-

metic to algebra. However, it is of absolute certainty that no amount of 

thought and work by those other than the student can assure him of success 

in setting up equations. 

As has been indicated, text.books found in today's schools offer very 

little that is actually new toward the introduction and development of the 

concept of an equation. However, there are persons thinking and writing 

on the problem. In contrast to what has been given, attention is called 

to an article by Robert E. K. Rourke appearing in the 1958 February issue 

of the Mathematics Teacher. Entitled "Some Implications of Twentieth 

Century Mathematics for High Schools," the article has mu.ch to sa:y on the 

transition from arithmetic to algebra of today's new algebra students. 

Mr. Rourke expresses strong feelings on the need of new goals, new 

curricula, new texts, and new methods of teacher training. He emphasizes 

that these should be "new" - bot just a pennuting of chapters in text-

books, not just a reprint of the old stuff in technicolor. Admitting that 

he is not the only one to make such a clamor, Mr. Rourke calls to attention 
. '. 

that many of his shouting colleagues fail to spell out in detail what they 

1'13mith and Lankford, Algebra One, 1955, P• 138. 
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mean and are sorely misunderstood by builders and new curricula. In nvoid-

ing this mistake he seeks to show by exarrrples exactly what he has in mind 

with reference to how sentences in one variable may be treated. The follow-

ing is t aken directly from his article and offered verbatum in most in

stances:12 

\<.re commonly encounter sentences of two kinds in high school math-

ematics: 

1. Sentences involving names of numbers, or numerals. These 
sentences are either true or false. For example: 

1+2=3, 5~3, 6 -r 2 = 17. 

2. Sentence involving a variable. These sentences are neither 
true or f alse; they are "true of" or "false of" certain num
eral replacements for x. For example: 

X + J = 8, X 7 5, 2x + 1 = 4. 

In sentences of the second t ype , the set of possible replace
ments for xis the whole set of numbers under consider ation 
in a given context. This set - the totality of numbers 
under consider ation~is sometimes called the universal set, 
and denoted by U. In a gi ven problem, it i s important to 
keep in mind the universal set. For example, suppose that 
the universal set consists of al l positive integers less 
less than 20. 

u = 6, 2, 2, ••• ' 2~. 

Then, in the sentence 

X -t- 1 > 12, 

t he possible repl acements for x are the 20 integers in u. 
Of these replacements , the set 

{.12, 13, 14, ••• , 2~. 

makes the sentence 

X -f- 1 7 12 

true; and the set 

12B.obert E. K. Rourke, "Some Implications of Twentieth Century Math
ematics for High Schools," The Mathematics Teacher, Vol. LI-Number 2, 
Feb . 1958, p . 75. 
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makes this sentence false. The set of replacements for x 
that make the sentence true is called the solution set of 
the sentence. Hence the sentence, 

X + 1 ~ 12 

divides the universal set, U, into two subsets: One set 
containing all replacements for x that make the sentence 
true ( the solution set); the other St::t containing all r e
placements for x that make the sentence false. 

.31. 

In highschool algebra, the sentences are, for the most part, equa
tions and inequalities. We use the variable as a placeholder for a num
e r al, which is the name of a numb,;r. Now, is not this notion of vari
able clear and simple? Do we need t he additional impedimenta of such 
exoressions as "literal number," "letter-number," "gener al number," "un
known quantity?" No wonder that many of our students ar e confused about 
the meaning of :x!+. I do not suggest that we get into the rarefied at
mosphere of phi losophical discu~sion of t he meaning of "variable": I do 
s ay that here is clarification along with simplification . 

Thus we have sentences with variables, and t hese sentences are 
equations or i nequalities. Usually ou:r uni versal set is the set of real 
numbers. Here is a fruitful point of view for a high school teacher. Let 
us think of our sentences ( equations or inequalities in x) a s sel ectors 
of sets: they select from U just that set of numbers that make the sen
tence . true when us ed r1.s r eplacements for x . This set of numbers is the 
solution set of the sentence. Then, if we assurne the usual one-to-one 
correspondence bet ween the real numbers and the points on a l ine, we can 
graph the solution set of the sentence. This gr aph is also called the 
gr aph of sentence. Let us consider some examples: Example 1. From the 
foregoing point of view, let us examine the sentence. 

Jx -t- 2 = 6. 

What is the solution set? 

The answer depends on U, the unvierse of numbers under consideration. 
If U is the set of positive integers, then t he s ent ence selects nothing: 
the solution set is empty since there is no integer t hat can replace x 
and yield a true sentence . 

We have a conveni ent notation for denoting s ol ution set s , usi ng the 
set-builder: 

The braces 11 {~ " ar e r ead ''s et", the vertical 111 11 i s read "such t hat. 11 

We put the variable on the l eft-hand s ide of the vertical bar, and the 
sentence on the right-hand side. Thi s gi ves : 

{x I Jx + 2 = 6}. 
Read: "the set of all x such that > 
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3x 2 = 6. 11 

I f , in Example 1, U i s the set of r , a.1 numbers, then the sentence selects 
4/3. Using the set-builder notation, we can denote the soluti on set thus: 

5 ¥ 3 i 2, I 0 

' I I C. 
Figure V-1 

- i s ~ 3 l I 0 
• • • • • 4 

Figure V- 2 

s v 3 ~ 
- .,. 
I O I 

I t I I I I 

Fi gure V-J 

.,. -t- + ~ 

:i 3 'I S" 
I I • 

.,. .. .. ~-:L .3 'I t, 
I, .. • I 

The graph of t he sentence is made up of just one point. ( See Figure 1.) 

Ex.ample 2. Suppose that x 2!: 9 is our sentence . What is the solution set: 

A.gain note the importance of U. I.f U is the set of integers , then 

(x I x2.!:. 9} (-.3 , - 2, -1, O, 1, 2, .:0,, 
and t he graph is Figure 2 . 

If U is t he set of r eal numbers , then 

'6-1 x2.f. 9 =(xi - 3~ x~ 3} , 

and the graph becomes an interval, (See Figure 3.) 

Example 3. The sentence 

x2 -4 = (x -t2 ) (x-2) 

selects everything in the universe 51 

{x I x2 - 4 = (x +2) (x-21} = U. 

We call such a sentence an identity. The gr aph is the entire number scale, 
if U is the set of real numbers. 

'Ihe f oregoine approach is ne",v and of such an explicit nature that there 

i s no doubt about just what Mr. Rourke meo.11s when he suggest modifications in 
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the antiquated rr.ethods of most of today's te:>..."tbooks and t eachers. Em-

phasis is placed on the solution sets oi' equations and i nequalities in 

one variable. 

'I'hese solution sets are within the ranges of the new student's guess-

ing , experimenting, or intuition . The approach offere:3 the f ollowing ad-

vant ages : 

1. It enables an approach to equalities and inequalities 
together. 

2. The concept of the graph is broadened by the identificat i on 
of points corresponding to the solution set of t he sent ence . 

3. Insight is gained by the student before he begins mechanical 
manipulations of t he equati ons and inequalities. 

4. Experience is gained in the language of sets. 

These cited advantages render the suggested approach worthy of the 

most sincere con:Jiderat i on of today 's algebra teacher s . 



CHAPTER VI 

JOME NOTIONS ON THE MECHANICS OF ALGEBRA 

Most writers on the subject suggest that algebra be shown as a 

generalization of arith.,,etic. The student passes from arithmetical to 

algebraic reasoning when he replaces numbers by letters, each one of which 

represents any one of a group or set of nwrhers. Thus, algebra is more 

general, or more catagoric~l, than arithmetic; that is, the conclusions 

reached in algebra apply to a much greater number of objects than the re

sults .obtained in arithmetic, which apply to specific number of objects. 

Hm,:ever, instead of merely informing the student of this wonderful truth 

and letting this asnect of the subject be forgotton, continuous effort 

should be exerted to gain understanding and apreciation for it. It might 

be a good idea to give a bit of the history and evolution of most of the 

problems in algebra. For obvious reasons this is not done at great lengths 

in textbooks. However, presenting a notion in the precise and polished 

form striven for by some writers may leave the student perplexed. This 

seems to have been the thinking of Max A. Sobel of New Jersey Public Schools 

when he nerformed an experiment. He chose six schools in Newark, New 

Jersey, one in Paterson, New Jersey. Each school offered the means for 

two first year algebra classes of more or less equal ability, determined 

by I. Q. and other tests. Every attempt was made to insure unifonn teach

ing ability~ One group, designated the control group and consisting of a 

class from each school, was taught from the textbook as written. The other 

group, referred to as the experimental group and made up of one class from 
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each of the seven schools, was taught from a manual of instructions which 

presented a broad, overall view of the problem, discussed the several 

methods of approach to be tested and provided numerious illustrative ex-

arnples. The results of this experiment might be summarized as follows: 

"Students learn and retain certain concepts and skills better 
through an inductive, concrete, unverbalized teaching approach 
as opposed to i deductive, abstract, verbalized method of 
presentation." :3 

Letters For Numbers 

In the transition from arithmetic to algebra there are ideas and 

concepts the student must master in order to accomplish any of the mechanics 

of algebra. Perhaps the first and most feared by prospective students of 

algebra is the idea of using letters for numbers. It has been the observa-

tion of the writer that many students SQlUehow get the idea that the letters 

represent a mystic number system which is most uncooperative in revealing 

its nature. Thus, the teacher's first job is to dispel this fear without 

minimizing the importance of the idea of letters representing nwnbers. 

In the 1l.rithrnetical experience of the student it is usually learned 

that a number multiplied by zero gives a product of zero: 0 x '.l = o, O x 

2 • O, 0 x 3 = O •• • , 0 x n: O. It is also quite easy to get the student 

to follow this line of development. One points out that n is no particular 

nmnber but is a place holder for any real number. If you replace n with 

any one of the real numbers the product is still o. A similar case is 

true if zero is employed properly with the three remaining operations: 
0 

Ofk=k, s-0:x, 3c:O. 

Another easy cnse of extending arithmetic into this idea is that ot 

buying and selling. One says an article costs $2 and the price of 5 such 

13Max A. Sobel, The Mathematics Teacher, Vol. XLIX, Number 6, Oct., 
1956, p. 47-1. 
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articles is $10. And article cost $3 and the price of 5 such articles is 

$15. Finally, the price of 5 articles costing d dollars each is $5d. It 

is possible at this stage to develop the general idea that n articles at 

$d each cost $n x d. Numerous similar ideas may be employed, all within 

the aritmetical experiences of the child. When this notion of letting 

letters represent any number within the domain has been dealt with success

fully the student is on his way to mastery of the fundamentals of algebra. 

Order Of Operations 

The student must be shown that as was true in arithmetic there are 

certain ideas agreed upon by mathematicians without any particular atten

tion to logical structure or intuitive appeal. In arithlnatic its agreed 

that the integer one gre~tter than ten will have the name "eleven" when 

actually "twenty-one" is more logical. In algebra an expression involv

ing addition, subtraction, multiplication, and division all at once is 

evaluated according to the f ollowinc agreement among mathematicians : the 

nrultiplication of the factors comes first, division of resulting adjoined 

factors next, and last the addition and subtraction of terms from left to 

right. If there are parentheses present the part of the expression with

in a parenthesis is evaluated first .u1d the parenthesis is dropped. 

Grouping 

In even the most recent writings one fails to find an abundance of 

suggestion concerning the idea of grouping. Yet this a most necessary 

and troublesome idea to teach to students in beginning algebra. The one

ness of a group of terms enclosed in a symbol of grouping does not lend it

self easily to arithmetical illustration. Expecially is this true 11! con

fronted with groups within groups. Fran reading Henry Thomas: ) lath-
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ematics ~ Easy the notion is gained that some illustrations of the idea 

may be expressed as follows: 

1. Suppose on Monday you earned $20 on a certain job, and on 
Tuesday you worked on two jobs and e~rned $10 and $9 on 
them. Your total earnings for the two days would be $20 
and ($10+$9), or $20-t-($10+$9), or $39. 

2. SUppose on Monday you earned $20, and on Tuesday you 
bought a hat for $4 and a pair of shoes for $6. Your 
balance would be $20 - ( $4 + $6), or $20 - $4 - $6, or i lO. 

J. SUppose on Monday you earned $20, and on Tuesday you gave 
a $10 bill for a pair of shoes and received $4 in change. 
Your bal~ce would be $20 - ($10 - $4), or $20 - $10 t $4, 
or $14. J.4: 

The amounts of money earn~d and spent might be an experience yet to 

be gained by beginning algebra students but~ be modified to fit. This 

could aid in leading him to discover the rules for removing parenthesis 

or the idea of dealing with an expression needing many of the grouping 

symbols to show its related parts. 

Combining Similar Tenns 

When the student has mastered the idea that letters may repr esent 

munbers he is soon involved in the mechanics of adding or subtracting these 

literal nmnber s. He is told that these operation on nu1nbers are pessible 

only if the terms are siJI,ilar. Draw upon the student's experiences in 

arithmetic in this instance once he is taught all the aspects of similar 

terms. He is used to adding fractions with similar names (fractions of 

like denominations), replying that one cannot subtract horses from jets 

and such statements. However, very recent writers insist tha.t students 

not be told such unions are not possible but teach that it might be a bit 

difficult to agree upon a name for these unions. Certa:i.nly, this would 

14Henry Thomas, Mathematics~ Easy, (New York, 1940), p. 84. 
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agree with the notion of a b being an indicated sum and save the student 

the trouble of unlearning a notion if he pursued the study of mathematics 

into Boolean Algebra. 

Factoring 

Some ide:: of factoring anc. primes shouil.d be a nart of the students 

mathematical knowledge long before he is ready for beginning algebra. 

Factoring is a much used p~ocess in the mechanics of algebra. Most writers 

of textbooks are content to make this statement and proceed with the rules 

for factoring expressions of a particular type. Perhaps a fuller apprecia

tion by the student might be had if there were several illustration using 

arithmetic. Refer to any expression to be factored as a product. Recall 

that products are obtained by multiplication of certain numbers. In fact

oring one seeks to find those nwnbers which might have been used in this 

nrultiplicatiou. The expression is prime where there can be found no numbers 

which when multiplied give the original expression other than the number 

itself and one. By the time .factoring i:J introduced the student is famil

iar with such expressions as ,i+ 2ab + b2• The arithmetical number 484 

may be broken down into its actural meaning to get a similar number: 4134: 

400+ 80-t 4 : 400-t 2 x 20 x 2 + 4. The hOO is the square of 20. The 4 is 

the square of 2. The product o! 20 x 2 is hO and 2 x 40 = so. Thus, 484 

may be expressed as (20 +2) (20 +2) for 22 x 22 = l.,E4. Note that (20-t 2) 

is merely the sum of the square roots of the . nrst and last terms. Using 

this same idea in the algebric expression gives (a +b) (a +b) as the fact

ors desired. B,y choosing a number equal to the difference of two squares 

it is equally easy to give an arithuetical example of factoring a2 - b2. 

Knowing that 48 is such a number one writes it as being equal to s2 - 42. 

From this equation, g2 - 42 = 48, show that (8 - 4) (8+4) = 4 x 12 is the 
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same number . A sufficient amount of like examnl es give t he child confidence 

and some intuitive appreciat ion of the f act t hat a2 - b2 = (a b ) (a - b). 

The factoring of the sum or difference of two cubes lends itself to a simi

l ar treatment. By the time these simple proces :,es in factoring are accomp

lished t he student should have acquired enough confidence and f aci lity to 

proceed into those cases of f actori ng t hat l end themselves les s easily to 

arithemtical illustrations. 
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