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ABSTRACT 

Models that describe the residual stresses due to winding single layer webs at the end 
of roll-to-roll manufacturing machines are mature. These models have been used to 
reduce or avoid defects that are due to winding. Many laminated products exist where 
two or more webs have been joined to form a thicker composite web. The properties of 
each layer provide a unique functionality to the product. No laminate winding models 
exist in the literature. This paper will focus on the development of a laminate winding 
model and lab test verification of the model. 

INTRODUCTION 

Roll-to-Roll (R2R) manufacturing processes constitute a large sector of all 
manufacturing. The materials used in these processes are very long, quite thin, and 
susceptible to damage. R2R manufacturing involves additive processing that is rate 
dependent. One or more base webs must be formed. The web may be coated uniformly or 
selectively with one or more coatings depending on product needs. In some cases the web 
will be laminated to other webs that may have their unique coatings. Finally the web is 
cut to shape and becomes a product or part of a product. The web formation, the 
coating(s), laminating, etc. all occur in unique process machines due to the different rates 
at which these processes can occur. This requires the web to be stored and historically the 
only available means has been to wind the webs into rolls. 

Winding is often detrimental to web and product quality. Roll defects are inevitable 
in the winding process, such as roll telescoping, roll blocking, buckling, bulk loss etc., 
leading to inestimable economic loss. Many web defects are caused by residual stresses 
due to winding and prevention of the defects requires a means or model for determining 
the stresses. A winding model is a prediction of the wound roll residual stresses based on 
knowledge of winding tension, web and core geometric and material properties, and the 
finish radius of the roll to be wound. 
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Laminating and coating are common R2R additive manufacturing processes. Often 
products require multiple layers that are joined by some method. Coating of web 
materials is common, the coating is often considered non-structural since the machine 
direction (MD) stiffness per unit length (the product of modulus and cross sectional area) 
is small compared to that of the web. The coating will likely alter the surface of the web 
and affect the contact mechanics between web layers in the roll. This will also likely 
affect the apparent radial modulus of elasticity of the wound roll and hence the winding 
residual stresses. Even so previously developed winding models have the capacity to 
predict the residual stresses in rolls wound from coated webs. 

Laminates differ from coated webs in that the axial stiffness of the webs to be joined 
are comparable. Practiced use of existing models [1-4] have shown that the winding 
tension has more influence on the development of the winding residual stresses than any 
other input. Laminates require two or more webs to be laminated and are often subjected 
to unique tensions prior to lamination. These unique tensions may be chosen in an effort 
to match the MD strains in all layers prior to lamination. This practice is known as strain 
matching and when done the objective is usually to minimize MD curl.  Laminated webs 
that are not strain matched will curl when cut into discrete products which is typically 
undesirable. In some cases strain matching is not possible as one or more layers may 
suffer transport defects such as wrinkling at the tension that would be required to match 
the MD strains of all layers. Any model that is developed should be robust and allow the 
user to select whether strain matched or non-strain matched conditions at the laminator. 

BACKGROUND 

Several one dimensional (1D) winding models have been developed for the winding 
of single layer webs. The one dimension is in the radial direction and these models would 
predict tangential (σθ) and radial (σr) stresses as a function of radial position within the 
roll. Those models that were most useful [1-4] were developed acknowledging the wound 
web material to be orthotropic with a radial modulus that was state dependent on contact 
pressure. Several models were developed using different methods. Hakiel [1] and Willett 
and Poesch [2] developed winding models based on theory of elasticity approaches. 
Pfeiffer [3] developed a winding model based on an energy method. Mollamahmutoglu 
and Good [4] based their formulation on the finite element method. 

Pfeiffer [5] had noted a logarithmic behavior between pressure (P) and radial strain 
(εr) in a stack of web material in compression: 

 𝑃𝑃 = 𝐾𝐾1(𝑒𝑒𝐾𝐾2𝜀𝜀𝑟𝑟) {1} 

He also noted the radial modulus (Er) was linearly dependent on pressure or radial stress: 

 𝐸𝐸𝑟𝑟 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝜀𝜀𝑟𝑟

= 𝐾𝐾2(𝑃𝑃 + 𝐾𝐾1) = 𝐾𝐾2(𝐾𝐾1 − 𝜎𝜎𝑟𝑟) {2} 

In practice pressure and strain data are collected for a stack of the web material subject to 
normal compression. The factors K1 and K2 are varied until Equation {1} agrees best 
with the collected data. The logarithmic variation noted by Pfeiffer is the result of 
multiple physical behaviors. One such behavior is the surface contact of webs in 
compression.  Webs typically have various surface asperities that may either be inherent 
in the material or the result of the machinery on which the web was made. As the web is 
compressed the highest surface asperities first come into contact with asperities on the 
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opposing web surface. With increased compression, the highest web asperities are further 
compressed and shorter asperities may initiate contact resulting in the logarithmic 
behavior. This is a source of geometric nonlinearity. Furthermore the asperities may 
suffer inelastic deformation due to large strains which results in material nonlinearity. 
Webs are often inhomogeneous and the geometric and material nonlinearity may also be 
occurring within the web due to internal contacts and void closure. All of the geometric 
and material nonlinearity become vested as a material nonlinearity that is characterized 
by the K1 and K2 parameters. The models of Hakiel [1], Willett et al [2] and Pfeiffer [3] 
determine the change in winding residual stresses due to the addition of a most recent 
layer. These changes in stresses are used to update the total stress in each layer. During 
solution the radial modulus is constant but unique to each layer. After the total pressure is 
known, the radial modulus (2) is updated prior to the addition and solution for the next 
layer. As noted earlier, winding tension is important in the development of residual 
stresses. A portion of this tension can be lost within the outer layer as it wound onto the 
roll resulting from radial deformation of the layers beneath, demonstrated by Good et. al. 
[6]. The winding model of Mollamahmutoglu and Good [4] accommodated this lost 
tension phenomena using a pre-stress boundary condition for the outer layer and a finite 
element formulation. They also pointed out that the previous methods of attack [1-3] 
were not rigorous nonlinear solutions. Their work accounted for the effects of large 
deformations and strains and utilized Newton Raphson iteration as each layer was added 
to the roll. This work demonstrated that very few iterations were needed to achieve 
convergence. The earlier models [1-3] were validated with laboratory winding tests 
where pressures within wound rolls were measured and compared with results from 
models. For the materials wound the agreement was good. This was evidence that the 
treatment of nonlinearity was adequate for those materials. Mollamahmutoglu and Good 
demonstrated good agreement between model and test results over a broad range of radial 
modulus associated with paper, tissue and non-woven webs. The 1D winding code 
developed herein will follow the finite element derivation of Mollamahmutoglu and 
Good [4]. That derivation will be expanded to encompass multilayer laminated materials. 

Winding models have progressed to two dimensional (2D) axisymmetric 
developments that allow study of web thickness and length non-uniformity. Models 
progressed from pseudo 2D models composed of 1D sectors [7, 8] to 2D axisymmetric 
formulations [9,10]. Fully 2D axisymmetric formulations allow web length and thickness 
non-uniformities to affect the radius of the outer layer of the winding roll in the CD and 
interact with the allocation of web tension in the CD [11-13]. The development disclosed 
within this paper will be a plain strain 1D axisymmetric model but the findings will be 
applicable to 2D axisymmetric models. 

DEVELOPMENT 

A 1D Plane Strain Orthotropic Finite Element Winding Model 
This development is a fundamental building block in the development of a laminate 

winding mode 
l. The development begins with the selection of 1D shape functions in the natural 

coordinate ξ shown in Figure 1: 

 𝑁𝑁𝑖𝑖 = 1−𝜉𝜉
2

𝑁𝑁𝑗𝑗 = 1+𝜉𝜉
2

 {3} 
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Figure 1 – 1D Axisymmetric Finite Element Model of Wound Roll 

These shape functions will be used in an isoparametric formulation to interpolate the 
radial location (r) and the radial deformation (u) within a 1D axisymmetric finite element: 

 𝑟𝑟 = [𝑁𝑁𝑖𝑖 𝑁𝑁𝑗𝑗] �
𝑟𝑟𝑖𝑖
𝑟𝑟𝑗𝑗� {4} 

 𝑢𝑢 = [𝑁𝑁𝑖𝑖 𝑁𝑁𝑗𝑗] �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� {5} 

Equation {4} can be rearranged to produce a coordinate map equation relating the ξ and r 
coordinates. Note that rj-ri is the undeformed web thickness h: 

 𝜉𝜉 =
2𝑟𝑟−�𝑟𝑟𝑖𝑖+𝑟𝑟𝑗𝑗�

𝑟𝑟𝑗𝑗−𝑟𝑟𝑖𝑖
=

2𝑟𝑟−�𝑟𝑟𝑖𝑖+𝑟𝑟𝑗𝑗�

ℎ
 {6} 

With the deformation (5) known the strains can be determined. In a 1D axisymmetric 
plane strain formulation the strains are: 

 𝜀𝜀𝑟𝑟 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �− 1
ℎ

1
ℎ
� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� {7} 

For purposes of stiffness development the tangential strain will be determined at the 
centroid of the finite element where 𝑟̅𝑟 =

𝑟𝑟𝑖𝑖+𝑟𝑟𝑗𝑗
2

: 

 𝜀𝜀𝜃𝜃 = 𝑢𝑢
𝑟𝑟

= �𝑁𝑁𝑖𝑖
𝑟𝑟

𝑁𝑁𝑗𝑗
𝑟𝑟
� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� = � 1

2𝑟̅𝑟
1
2𝑟̅𝑟
� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� {8} 

 𝜀𝜀𝑧𝑧 = 𝛾𝛾𝑟𝑟𝑟𝑟 = 0 {9} 
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The non-zero strains are thus: 

 �
𝜀𝜀𝑟𝑟
𝜀𝜀𝜃𝜃� = �

− 1
ℎ

1
ℎ

1
2𝑟̅𝑟

1
2𝑟̅𝑟

� �
𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� = [𝐵𝐵�]{𝑢𝑢} {10} 

In cylindrical coordinates the elongating strains (ε) and stresses (σ) are related by the 
following constitutive relations. Note that Maxwell’s relations requiring symmetry in the 
constitutive equations have been enforced: 

 �
𝜀𝜀𝑟𝑟
𝜀𝜀𝜃𝜃
𝜀𝜀𝑧𝑧
� =

⎣
⎢
⎢
⎢
⎡

1
𝐸𝐸𝑟𝑟

− 𝑣𝑣𝜃𝜃𝜃𝜃
𝐸𝐸𝜃𝜃

− 𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

− 𝑣𝑣𝜃𝜃𝜃𝜃
𝐸𝐸𝜃𝜃

1
𝐸𝐸𝜃𝜃

− 𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

− 𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

− 𝑣𝑣𝑧𝑧𝜃𝜃
𝐸𝐸𝑧𝑧

1
𝐸𝐸𝑧𝑧 ⎦

⎥
⎥
⎥
⎤

�
𝜎𝜎𝑟𝑟
𝜎𝜎𝜃𝜃
𝜎𝜎𝑧𝑧
� {11} 

In plane strain εz=0 which allows the relation of the stresses from (11): 

 𝜀𝜀𝑧𝑧 = 0 = −𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧
𝜎𝜎𝑟𝑟 −

𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧
𝜎𝜎𝜃𝜃 + 𝜎𝜎𝑧𝑧

𝐸𝐸𝑧𝑧
 𝑜𝑜𝑜𝑜 𝜎𝜎𝑧𝑧 = 𝑣𝑣𝑧𝑧𝑧𝑧𝜎𝜎𝑟𝑟 + 𝑣𝑣𝑧𝑧𝑧𝑧𝜎𝜎𝜃𝜃 {12} 

For the 1D axisymmetric plane strain model the non-zero strains become: 

 {𝜀𝜀} = �
𝜀𝜀𝑟𝑟
𝜀𝜀𝜃𝜃� = �

1
𝐸𝐸𝑟𝑟
− 𝑣𝑣𝑧𝑧𝑧𝑧2

𝐸𝐸𝑧𝑧
− 𝑣𝑣𝜃𝜃𝜃𝜃

𝐸𝐸𝜃𝜃
− 𝑣𝑣𝑧𝑧𝑧𝑧𝑣𝑣𝑧𝑧𝑧𝑧

𝐸𝐸𝑧𝑧

− 𝑣𝑣𝜃𝜃𝜃𝜃
𝐸𝐸𝜃𝜃

− 𝑣𝑣𝑧𝑧𝑧𝑧𝑣𝑣𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

1
𝐸𝐸𝜃𝜃
− 𝑣𝑣𝑧𝑧𝑧𝑧

2

𝐸𝐸𝑧𝑧

� �
𝜎𝜎𝑟𝑟
𝜎𝜎𝜃𝜃� = [𝐷𝐷]−1{𝜎𝜎} {13} 

The constitutive relations [D] relate stress to strain and are needed in the development: 

 {𝜎𝜎} = [𝐷𝐷]{𝜀𝜀} = [𝐷𝐷][𝐵𝐵]{𝑢𝑢} {14} 

 [𝐷𝐷] =
𝐸𝐸𝜃𝜃�

𝐸𝐸𝑟𝑟�𝐸𝐸𝜃𝜃𝑣𝑣𝑧𝑧𝑧𝑧
2 −𝐸𝐸𝑧𝑧� −𝐸𝐸𝑟𝑟(𝐸𝐸𝜃𝜃𝑣𝑣𝑧𝑧𝑧𝑧𝑣𝑣𝑧𝑧𝑧𝑧+𝐸𝐸𝑧𝑧𝑣𝑣𝜃𝜃𝜃𝜃)

−𝐸𝐸𝑟𝑟(𝐸𝐸𝜃𝜃𝑣𝑣𝑧𝑧𝑧𝑧𝑣𝑣𝑧𝑧𝑧𝑧+𝐸𝐸𝑧𝑧𝑣𝑣𝜃𝜃𝜃𝜃) 𝐸𝐸𝜃𝜃�𝐸𝐸𝑟𝑟𝑣𝑣𝑧𝑧𝑧𝑧2 −𝐸𝐸𝑧𝑧�
�

𝐸𝐸𝑧𝑧�𝐸𝐸𝑟𝑟𝑣𝑣𝜃𝜃𝜃𝜃
2 −𝐸𝐸𝜃𝜃�+𝐸𝐸𝜃𝜃�𝐸𝐸𝜃𝜃𝑣𝑣𝑧𝑧𝑧𝑧

2 +𝐸𝐸𝑟𝑟𝑣𝑣𝑧𝑧𝑧𝑧(𝑣𝑣𝑧𝑧𝑧𝑧+2𝑣𝑣𝑧𝑧𝑧𝑧𝑣𝑣𝜃𝜃𝜃𝜃)�
= �𝐷𝐷11 𝐷𝐷12

𝐷𝐷21 𝐷𝐷22
� {15} 

The concept of pre-stress (σo) and pre-strain (εo) is often used in finite element 
derivations to accommodate thermal stress and strain. This concept will be employed 
here to introduce the MD stress in the web due to web tension in the winder tension zone. 
The strain energy in a finite element (U) is: 

 𝑈𝑈𝑒𝑒 = 1
2 ∫ ∫ {𝜎𝜎}𝑇𝑇{𝜀𝜀}𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝐴𝐴

2𝜋𝜋
0 − ∫ ∫ {𝜎𝜎}𝑇𝑇{𝜀𝜀𝑜𝑜}𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝐴𝐴

2𝜋𝜋
0  {16} 

Substituting the developed representations for stress and stain yields: 

 𝑈𝑈𝑒𝑒 = 2𝜋𝜋
2

{𝑞𝑞}𝑇𝑇 ∫ {𝐵𝐵�}𝑇𝑇[𝐷𝐷]𝐴𝐴 {𝐵𝐵�}𝑟̅𝑟 𝑑𝑑𝑑𝑑{𝑞𝑞} − 2𝜋𝜋{𝑞𝑞}𝑇𝑇 ∫ {𝐵𝐵�}𝑇𝑇[𝐷𝐷]𝐴𝐴 {𝜀𝜀𝑜𝑜}𝑟̅𝑟 𝑑𝑑𝑑𝑑 {17} 

The element stiffness matrix [Ke] is integral to the 1st term in Equation {17}: 

 𝑈𝑈𝑒𝑒 = 1
2

{𝑞𝑞}𝑇𝑇[𝐾𝐾𝑒𝑒]{𝑞𝑞} − {𝑞𝑞}𝑇𝑇{𝑓𝑓𝑒𝑒} {18} 
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 [𝐾𝐾𝑒𝑒] = 2𝜋𝜋 ∫ {𝐵𝐵�}𝑇𝑇[𝐷𝐷]𝐴𝐴 {𝐵𝐵�}𝑟̅𝑟 𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑟̅𝑟𝐴𝐴𝑒𝑒{𝐵𝐵�}𝑇𝑇[𝐷𝐷]{𝐵𝐵�} = 2𝜋𝜋𝑟̅𝑟ℎ𝑊𝑊{𝐵𝐵�}𝑇𝑇[𝐷𝐷]{𝐵𝐵�} {19} 

where W is the web width. Substituting Equations {10} and {15} into {19} yields: 

[𝐾𝐾𝑒𝑒] = �
𝜋𝜋𝜋𝜋
2
�4𝑟̅𝑟
ℎ
𝐷𝐷11 + ℎ

𝑟̅𝑟
𝐷𝐷22 − 4𝐷𝐷12� 𝑟𝑟𝑟𝑟 � ℎ

2𝑟̅𝑟
𝐷𝐷22 −

2𝑟̅𝑟
ℎ
𝐷𝐷11�

𝜋𝜋𝜋𝜋 � ℎ
2𝑟̅𝑟
𝐷𝐷22 −

2𝑟̅𝑟
ℎ
𝐷𝐷11�

𝜋𝜋𝜋𝜋
2
�4𝑟̅𝑟
ℎ
𝐷𝐷11 + ℎ

𝑟̅𝑟
𝐷𝐷22 − 4𝐷𝐷12�

� = �𝑘𝑘11 𝑘𝑘12
𝑘𝑘21 𝑘𝑘22

�{20} 

The force vector {fe} is integral to the 2nd term in Equation {18}: 

 𝑓𝑓𝑒𝑒 = 2𝜋𝜋 ∫ {𝐵𝐵�}𝑇𝑇[𝐷𝐷]𝐴𝐴 {𝜀𝜀𝑜𝑜}𝑟̅𝑟 𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑟̅𝑟ℎ𝑊𝑊{𝐵𝐵�}𝑇𝑇[𝐷𝐷]{𝜀𝜀𝑜𝑜} = 2𝜋𝜋𝑟̅𝑟ℎ𝑊𝑊{𝐵𝐵�}𝑇𝑇{𝜎𝜎𝑜𝑜} {21} 

Substituting Equations {10} and {15} into {21} yields: 

 {𝑓𝑓𝑒𝑒} = 2𝜋𝜋𝑟̅𝑟ℎ𝑊𝑊 �
𝜎𝜎𝜃𝜃
2𝑟̅𝑟
− 𝜎𝜎𝑟𝑟

ℎ
𝜎𝜎𝜃𝜃
2𝑟̅𝑟

+ 𝜎𝜎𝑟𝑟
ℎ

�
0

 {22} 

The only pre-stress in the outer layer is the tangential stress (σθ) which is equivalent to 
the web stress due to web tension (Tw) and there is no radial pre-stress component (σr). 
Also a tensile σθ stress in the outer lap would produce forces in a positive r direction at 
nodes i and j that would result in a negative contact pressure between the outer layer and 
the layer beneath. Thus a negative value of web stress is substituted into Equation {22} 
and the force vector reduces to: 

 {𝑓𝑓𝑒𝑒} = −𝜋𝜋ℎ𝑊𝑊𝑇𝑇𝑤𝑤 �
1
1� {23} 

The winding tension (Tw) in Equation {23} can take any form as a function of wound roll 
radius chosen; herein a constant value of winding tension was selected. With a developed 
stiffness matrix and force vector the development of the finite element formulation is 
near complete. The stiffness matrix {20} can be used recursively to develop element 
stiffness matrices for the core and for the layers of web material added to the core. An 
example is shown in Equation {24} in which the changes in deformation (δui) are being 
sought as a result of accreting the third web layer. Note the core is being crudely modeled 
here with 2 axisymmetric elements, in most cases 5 core layers has been found sufficient 
to model the core accurately. Each web layer is modeled with 1 axisymmetric element, 
which is sufficient. 

11 1 12 1
1

12 1 22 1 11 2 12 2
2

12 2 22 2 11 1 12 1 3

412 1 22 1 11 2 12 2

5
12 2 22 2 11 3 12 3

6
12 3 22 3

0 0 0 0
0

0 0 0 0
0 0 0 0

00 0 0

0 0 0

0 0 0 0

c c

c c c c

c c w w

w w w w

w w
w w w w

w w

k k
u

k k k k u
k k k k u

uk k k k
u h WTk k k k
uk k

δ
δ
δ
δ
δ π
δ π

 
  

+   
  

+      =  +   
   −+   

−   
 

w wh WT

 
 
 
  
 
 
 
 
  

{24} 

The assembly of the stiffness matrices begins with assembling all the core matrices. 
Several elements should be used to model the core which is usually considerably thicker 
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than the web. Since the finite element will allow at best constant values of stress within 
the domain of the element, several elements are needed to properly characterize the 
mechanical behavior of the core. The accretive solution begins with one web layer being 
added sequentially. Note that one web and two web layer solutions had to precede that 
shown in Equation {24} such that the Dij terms in {15} were known for the web layers 
that depend on the state dependent radial modulus that varies with pressure. The changes 
in deformation that result from solving the independent set of equations such as those 
shown in Equation {24} can then be used to determine the increments in stress within 
each element due to the addition of the most recent layer. Such a computation is shown 
here for element W2: 

 
{ } [ ] 4

2 2 2
5

r
W W W

u
D B

uθ

δσ δ
δσ

δσ δ
   

 = =    
     {25} 

Equation {12} can then be used to determine the change in axial stress (δσz) in element 
W2: 

 𝛿𝛿𝜎𝜎𝑧𝑧 = 𝑣𝑣𝑧𝑧𝑧𝑧𝛿𝛿𝜎𝜎𝑟𝑟 + 𝑣𝑣𝑧𝑧𝑧𝑧𝛿𝛿𝜎𝜎𝜃𝜃 {26} 

Changes in stresses would be calculated for each element of the core and for all layers in 
the wound roll. The total stresses in a particular layer are determined by summing all the 
changes in stress in that layer from the point when that layer was added until the most 
recent layer n was accreted on the wound roll. For layer W2:  

 

{ }

2
2

2 2
2

2

2
2

n

ri W
i

rn

wW i W
i

z Wn

zi W
i

T θθ

δσ
σ

σ δσ σ
σ

δσ

=

=

=

 
 
   
   = + =   
   

  
 
 

∑

∑

∑
 {27} 

The total pressure in layer W2 is now known (P=-σr) and can be used to update the radial 
modulus (Er) using Equation {2} for this element. The stiffness matrix for element W2 
can then be updated using Equations {15} and {20}. These calculations in Equation {27} 
are repeated for all n layers in the wound roll. Then a new set of equations similar to 
those shown in {25} is formed to solve for the differential displacements throughout the 
wound roll due to the addition of the n+1 layer. The differential displacements for each 
node can be summed to determine the total deformation of each node due to all the layers 
added outside of a given node. Equations similar to {24} through {27} are assembled 
repeatedly and solved until a defined number of layers are wound onto the core or a 
defined outer roll radius is achieved. 

Validation: 1D winding models have been verified at various levels [1-4]. The 
interlayer pressure can be measured using steel shim on narrow rolls quite accurately. 
The steel shim is often enveloped in brass shim and wound into rolls. The pull force 
required to induce slip between the steel and brass shim is related to the pressure between 
layers in the wound roll. The relationship is best obtained by inserting these pressure 
transducers into a stack of the web material to be wound. A material testing system is 
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used to subject the stack to various pressures and the force required to induce slip is 
measured at each stack test pressure. 

The model developed herein will be verified for a newsprint web with the properties 
shown in Table 1. Note that orthotropic property input is possible for both the web and 
the core. 

 
Web Thickness (mm) 0.071 Core Inner Radius (cm) 3.81 
Finish Radius (cm) 13.35 Core Outer Radius (cm) 4.45 

Web Width (cm) 15.26 
Winding Stress (MPa) 5.17 

Web Properties Core Properties 
Eθ=Ez (MPa) 3370 Er=Eθ=Ez (GPa) 200 

K1 (KPa) 1.175 νθr=νzr=νzθ 0.3 
K2 45.14   

νθr=νzr=νzθ 0.3   

Table 1 – Winding, Web and Core Properties for Winding Newsprint 

The results of the verification tests are shown in Figure 2. The test data points are the 
average pressure measurements from 3 winding tests where pull tab pressure transducers 
were wound into the rolls consistently at the wound roll radial positions shown in the 
charts. The error bars show the standard deviation of the data at each radius. Model 
results are shown for both plane stress and plane strain material behaviors. The plane 
strain model developed herein can produce plane stress behavior if νzr and νzθ are set to 
zero. In general the comparison of model results with tests is very good with the test 
results comparing somewhat better with the plane stress model behavior. The web width 
may have been inadequate to achieve the plane strain behavior. Note the tangential 
stresses (σθ) resulting from the two material behaviors are essentially equal. Substantial 
negative axial stresses can be developed when plane strain behaviors are achieved. In 
plane strain conditions the axial stresses tend to vanish at the outer lap and in this case 
near the core which was axially much stiffer than the web in this example. 
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Figure 2 – Verification of Orthotropic Winding Model on Newsprint 

A 1D Plane Strain Orthotropic Laminate Finite Element Winding Model 
A stiffness matrix and force vector for a plane strain homogenous web was 

developed in Equations {20} and {23}, respectively. Those developments will be 
extended to a two layer laminate web. It will be assumed that the agent used to bond the 
layers together in the laminator does not contribute to the stiffness of the laminate. It will 
also be assumed that the behavior of a stack of laminates in compression will be 
characterized in a compression test similar to that described in the Background. 
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Figure 3 – A 1D Axisymmetric Laminate Finite Element 

A laminate is now accreted to the winding roll and a stiffness matrix and a force vector 
for the laminate is needed. Equations {20} and {23} can be used to determine the 
stiffness and forces the two layers (1 and 2) in the laminate: 

 𝐾𝐾(1) = �
𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾1𝑖𝑖𝑖𝑖
𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾1𝑗𝑗𝑗𝑗

� , 𝑓𝑓(1) = �
𝑓𝑓1𝑖𝑖
𝑓𝑓1𝑗𝑗
�  𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾(2) = �

𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑗𝑗𝑗𝑗
𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑘𝑘𝑘𝑘

� , 𝑓𝑓(2) = �
𝑓𝑓2𝑗𝑗
𝑓𝑓2𝑘𝑘

� {28} 

where i, j and k refer to the nodes in Figure 3. Since the two layers have node j in 
common the direct stiffness assembly method can be used to combine the stiffness 
matrices and force vectors: 

 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾1𝑖𝑖𝑖𝑖 0
𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾1𝑗𝑗𝑗𝑗 + 𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑗𝑗𝑗𝑗

0 𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑘𝑘𝑘𝑘
�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �

𝑓𝑓1𝑖𝑖
𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗
𝑓𝑓2𝑘𝑘

� {29} 

where: 

𝐾𝐾1𝑖𝑖𝑖𝑖 = 𝜋𝜋
2
𝑤𝑤 �4𝑟̅𝑟

ℎ
𝐷𝐷11 + ℎ

𝑟̅𝑟
𝐷𝐷22 − 4𝐷𝐷12��(1)

𝐾𝐾2𝑗𝑗𝑗𝑗 = 𝜋𝜋
2
𝑤𝑤 �4𝑟̅𝑟

ℎ
𝐷𝐷11 + ℎ

𝑟̅𝑟
𝐷𝐷22 − 4𝐷𝐷12��(2)

𝐾𝐾1𝑖𝑖𝑖𝑖 = 𝜋𝜋𝜋𝜋 � ℎ
2𝑟̅𝑟
𝐷𝐷22 −

2𝑟̅𝑟
ℎ
𝐷𝐷11��(1)

𝐾𝐾2𝑗𝑗𝑗𝑗 = 𝜋𝜋𝜋𝜋 � ℎ
2𝑟̅𝑟
𝐷𝐷22 −

2𝑟̅𝑟
ℎ
𝐷𝐷11��(2)

𝐾𝐾1𝑗𝑗𝑗𝑗 = 𝜋𝜋
2
𝑤𝑤 �4𝐷𝐷12 + ℎ

𝑟̅𝑟
𝐷𝐷22 + 4𝑟̅𝑟

ℎ
𝐷𝐷12��(1)

𝐾𝐾2𝑘𝑘𝑘𝑘 = 𝜋𝜋
2
𝑤𝑤 �4𝐷𝐷12 + ℎ

𝑟̅𝑟
𝐷𝐷22 + 4𝑟̅𝑟

ℎ
𝐷𝐷12��(2)

{30} 

and: 

 𝑓𝑓(1) = �
𝑓𝑓1𝑖𝑖
𝑓𝑓1𝑗𝑗
� = −𝜋𝜋ℎ𝑊𝑊𝑇𝑇𝑤𝑤|(1) �

1
1�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(2) = �

𝑓𝑓2𝑗𝑗
𝑓𝑓2𝑘𝑘

� = −𝜋𝜋ℎ𝑊𝑊𝑇𝑇𝑤𝑤|(2) �
1
1� {31} 

The subscripts (1) and (2) in Equations {30} and {31} denote stiffness and force terms 
associated with layers 1 and 2 in the laminate. The stresses in layers 1 and 2 will be 

Laminate layer 1 

r 

z 

ri 
rj 

Laminate layer 2 

rk 

i 
j 
k 

i 

k 
Condensed element 
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unique and will depend on conditions at the laminator which will be discussed later. An 
accretive solution similar to that shown for the single orthotropic layer in Equation {24} 
can now be developed and solved for the changes in radial deformation of the nodes (δui). 
Those nodal changes in deformation can then be used to solve for changes in stress in all 
layers using Equation {25}. 

Numerical Oscillation: When solutions were attempted of the laminate winding 
model described numerical oscillations were witnessed in some cases in the stresses 
output. In other cases the solution of the set of equations was not possible. If identical 
material properties were input for the two layers of the laminate, the oscillations vanished 
and solution of the sets of equations was always possible. The problem stemmed from the 
assumption that both layers of the laminate shared an identical Equation {2} for the radial 
modulus (Er). The problem was solved using a condensation method. 

Condensation: The equilibrium of the two-layer laminate can be stated as: 

 �
𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾1𝑖𝑖𝑖𝑖 0
𝐾𝐾1𝑗𝑗𝑗𝑗 𝐾𝐾1𝑗𝑗𝑗𝑗 + 𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑗𝑗𝑗𝑗

0 𝐾𝐾2𝑗𝑗𝑗𝑗 𝐾𝐾2𝑘𝑘𝑘𝑘
� �

𝛿𝛿𝑢𝑢𝑖𝑖
𝛿𝛿𝑢𝑢𝑗𝑗
𝛿𝛿𝑢𝑢𝑘𝑘

� = �
𝑓𝑓1𝑖𝑖

𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗
𝑓𝑓2𝑘𝑘

� {32} 

The condensation method will be used to remove the internal degree of freedom at node j. 
These equations from Equation {32} can be re-ordered as follows: 

 �
�𝐾𝐾1𝑖𝑖𝑖𝑖 0

0 𝐾𝐾2𝑘𝑘𝑘𝑘
� �

𝐾𝐾1𝑖𝑖𝑖𝑖
𝐾𝐾2𝑗𝑗𝑗𝑗

�

[𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾2𝑗𝑗𝑗𝑗] �𝐾𝐾1𝑗𝑗𝑗𝑗 + 𝐾𝐾2𝑗𝑗𝑗𝑗�
� �
�𝛿𝛿𝑢𝑢𝑖𝑖𝛿𝛿𝑢𝑢𝑘𝑘

�

�𝛿𝛿𝑢𝑢𝑗𝑗�
� = �

�
𝑓𝑓1𝑖𝑖
𝑓𝑓2𝑘𝑘

�

�𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗�
� {33} 

This can be rewritten symbolically as: 

 �
[𝐾𝐾𝑟𝑟𝑟𝑟] [𝐾𝐾𝑟𝑟𝑟𝑟]
[𝐾𝐾𝑐𝑐𝑐𝑐] [𝐾𝐾𝑐𝑐𝑐𝑐]� �

{𝛿𝛿𝛿𝛿𝑟𝑟}
{𝛿𝛿𝛿𝛿𝑐𝑐}� = �

{𝑟𝑟𝑟𝑟}
{𝑟𝑟𝑐𝑐}� {34} 

The condensed stiffness matrix is: 

 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = [𝐾𝐾𝑟𝑟𝑟𝑟] − [𝐾𝐾𝑟𝑟𝑟𝑟][𝐾𝐾𝑐𝑐𝑐𝑐]−1[𝐾𝐾𝑐𝑐𝑐𝑐] =

⎣
⎢
⎢
⎡𝐾𝐾1𝑖𝑖𝑖𝑖 −

𝐾𝐾1𝑖𝑖𝑖𝑖
2

𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗

−𝐾𝐾1𝑖𝑖𝑖𝑖𝐾𝐾2𝑗𝑗𝑗𝑗
𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗

−𝐾𝐾1𝑖𝑖𝑖𝑖𝐾𝐾2𝑗𝑗𝑗𝑗
𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗

𝐾𝐾2𝑘𝑘𝑘𝑘 −
𝐾𝐾2𝑗𝑗𝑗𝑗
2

𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗⎦
⎥
⎥
⎤
 {35} 

and the condensed force vector is: 

 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {𝑟𝑟𝑟𝑟} − [𝐾𝐾𝑟𝑟𝑟𝑟][𝐾𝐾𝑐𝑐𝑐𝑐]−1{𝑟𝑟𝑐𝑐} = �
𝑓𝑓1𝑖𝑖 −

𝐾𝐾1𝑖𝑖𝑖𝑖
𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗

�𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗�

𝑓𝑓2𝑘𝑘 −
𝐾𝐾2𝑗𝑗𝑗𝑗

𝐾𝐾1𝑗𝑗𝑗𝑗+𝐾𝐾2𝑗𝑗𝑗𝑗
�𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗�

� {36} 

The condensed stiffness matrix and force vector can now be used in an accretive solution 
identical to that posed earlier for accreting single layers of web as given in Equation {24}. 
After solving for the changes in deformation due to a new outer laminate the changes in 
stress, the total stresses and the radial modulus in each layer must be updated. To 
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compute the changes in stress requires the recovery of the deformation associated with 
the internal node j in each condensed laminate element. That deformation can be 
recovered using: 

 
{𝛿𝛿𝛿𝛿𝑐𝑐} = [𝐾𝐾𝑐𝑐𝑐𝑐]−1([𝐾𝐾𝑐𝑐𝑐𝑐]{𝛿𝛿𝛿𝛿𝑟𝑟} − {𝑟𝑟𝑐𝑐})                                           

�𝛿𝛿𝛿𝛿𝑗𝑗� = �𝐾𝐾1𝑗𝑗𝑗𝑗 + 𝐾𝐾2𝑗𝑗𝑗𝑗�
−1 �[𝐾𝐾1𝑖𝑖𝑖𝑖 𝐾𝐾2𝑗𝑗𝑗𝑗] �𝛿𝛿𝛿𝛿𝑖𝑖𝛿𝛿𝛿𝛿𝑘𝑘

� − �𝑓𝑓1𝑗𝑗 + 𝑓𝑓2𝑗𝑗��
 {34} 

Now Equation {25} can be used to determine the changes in stress in each layer of all the 
laminate that has been wound onto the roll. The total stresses are obtained using Equation 
{27} but the winding stress in each layer of the laminate will be unique (Tw1 or Tw2). 

Strain Matched versus Non Strain Matched Laminating Conditions 
Laminates are often strain matched at the site of lamination. Laminated webs that are 

not strain matched will curl when cut into discrete products which is often undesirable. It 
is not always possible to set the web tensions in the layers entering the laminator to 
achieve strain matching. Nonetheless the laminate must be wound and the winding 
tension in the laminate layers are important input with regard to the winding residual 
stresses. To achieve strain matching requires the web stress in each layer to be controlled 
prior to lamination according to the MD modulus of that layer: 

 𝜀𝜀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑤𝑤1
𝐸𝐸𝑀𝑀𝑀𝑀1

= 𝑇𝑇𝑤𝑤2
𝐸𝐸𝑀𝑀𝑀𝑀2

 {35} 

The web layer tensions prior to lamination should be in equilibrium with the tension T in 
the laminated web where A1 and A2 are the cross sectional areas of layers 1 and 2, 
respectively: 

 𝑇𝑇 = 𝑇𝑇𝑤𝑤1𝐴𝐴1 + 𝑇𝑇𝑤𝑤2𝐴𝐴2 {36} 

The total tension T in the laminate can vary depending on the tension zone in the web line. 
In the winder tension zone if the total tension is T, Equations {35} and {36} can be used 
to determine the winding stress in each layer of the laminate: 

 𝑇𝑇𝑤𝑤1 = 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀1
𝐸𝐸𝑀𝑀𝑀𝑀1𝐴𝐴1+𝐸𝐸𝑀𝑀𝐷𝐷2𝐴𝐴2

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑤𝑤2 = 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀2
𝐸𝐸𝑀𝑀𝑀𝑀1𝐴𝐴1+𝐸𝐸𝑀𝑀𝑀𝑀2𝐴𝐴2

 {37} 

In non-strain matched conditions the web layer tensions are set independently (Tlayer1 and 
Tlayer2) upstream of the laminator. Although strain matching the layers is desirable when 
considering curl defects it is not always possible to transport webs upstream of the 
laminator at tensions that would be required to strain match the two webs. It is assumed 
the total web tension may differ from the exit of the laminator to the entry of the winder. 
If the laminate web tension at the entry to the winder is T, the winding tension for layers 
1 and 2 will be: 

 𝑇𝑇1 = 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1+𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

∗ 𝑇𝑇  𝑎𝑎𝑎𝑎𝑎𝑎  𝑇𝑇2 = 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2
𝑇𝑇𝑙𝑙𝑙𝑙𝑦𝑦𝑒𝑒𝑒𝑒1+𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

∗ 𝑇𝑇 {38} 

Lab Test Verification  

The Strain Matched Condition at Lamination: A strain matched 2-layer laminate 
was used in winding tests to verify the model. The laminate is composed of a paper layer 
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and an oriented polypropylene polymer layer. The inputs provided to the laminate 
winding code are shown in Table 2, the polypropylene is layer i and paper is layer j. All 
input was measured except for the Poisson ratio terms which were assumed. 

 
Core inner radius 0.0381m (1.5in) 
Core outer radius 0.0445m (1.75in) 
Roll final radius 0.1334m (5.25in) 
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤, 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤 1.96 GPa (285,188 psi) 
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤, 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤 14.41 GPa (2,091,000 psi) 

Web: νθri, νzri, νzθi, νθrj, νzrj, νzθj 0.3 
Ecr, Ecq, Ecz 206.7 GPa (30 Mpsi) 
νθrc, νzrc, νzθc 0.3 
Web width w 0.1524 m (6 in) 

Thickness ℎ𝑖𝑖 and ℎ𝑗𝑗 66.04 µm (0.0026 in), 53.34 µm (0.0021 
in) 

𝐸𝐸𝑟𝑟 (𝐾𝐾1,𝐾𝐾2) 9.03 KPa (1.31 psi),71.1 
T, winding tension 32 N (7.2 lb) 

Table 2 – Input for Laminate Winding Model – Strain Matched Case 

Results for the strain matched case are shown in Figure 4. This is a narrow web which 
has not achieved plane strain conditions. The model result shown in Figure 4 is for the 
plane stress case which was achieved by input of zero for the Poisson ratios νzri, νzθi, νzrj, 
and νzθj. When winding laminates there is a choice of which layer faces the outside of the 
roll. The model shows no effect whether the paper or the polypropylene is chosen for 
layers i or j. The winding tests were conducted with the paper facing outwards three times 
and then with the polypropylene facing outward three times. The test data points in 
Figure 4 are the average of three pressure measurements taken with pull tabs and the 
error bars indicate the standard deviation of the data. Use of the statistical t-test indicated 
that the data taken with the paper facing outward could not be claimed different than the 
data collected when the polypropylene faced outward. The agreement between the model 
for plane stress conditions and the test data is good. The tangential stress results show 
that the paper, whose in-plane modulus was roughly 7 times larger than that of the 
polypropylene, bore significantly larger stress at the outside of the roll. This was 
expected as a result of the strain matched condition. The tangential stresses in the outer 
layer produce a total laminate tension slightly less than the winding tension: 

 �𝜎𝜎𝜃𝜃𝜃𝜃ℎ𝑖𝑖 + 𝜎𝜎𝜃𝜃𝜃𝜃ℎ𝑗𝑗�𝑊𝑊 = (0.43𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 66.04𝜇𝜇𝜇𝜇 + 3.13𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 53.34𝜇𝜇𝜇𝜇)0.1524𝑚𝑚
= 29.8 𝑁𝑁 ≈ 𝑇𝑇                                                

 {39} 

This is expected as a result of the tension loss phenomena where the laminate layers 
beneath the outer layer have deformed inward due to the pressure induced by the outer 
layer. 
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Figure 4 – Strain Matched Case T=2.1 N/cm 

The Non Strain Matched Condition at Lamination 
These tests were conducted on a laminating process web line. Layers i and j are a 

paper and a polypropylene web in these tests, respectively. The winding and material 
parameters are provided in Table 3.  

 
Core inner radius 0.089 m (3.5 in) 
Core outer radius 0.105 m (4.15 in) 
Roll final radius 0.2517 m (9.91 in) 
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤, 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤 6.12 GPa (887,600 psi) 
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤, 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤 2.07 GPa (300,000 psi) 

Web: νθri, νzri, νzθi, νθrj, νzrj, νzθj 0.3 
Ecr, Ecq, Ecz 68.9 GPa (10 Mpsi) 
νθrc, νzrc, νzθc 0.3 
Web width w 0.6858 m (27 in) 

Thickness ℎ𝑖𝑖 and ℎ𝑗𝑗 55.88 µm (0.0022 in), 66.04 µm (0.0026 
in) 

𝐸𝐸𝑟𝑟 (𝐾𝐾1,𝐾𝐾2) 1.01 KPa (0.146 psi),117.1 
 Case A Case B 

Laminating Tension i 302.5 N (68 lb) 355.9 N (80 lb) 
Laminating Tension j 89.0 N (20 lb) 44.5 N (10 lb) 

T, winding tension 95.6 N (21.5 lb) 

Table 3 – Input for Laminate Winding Model: Non-Strain Matched Case 

In this process machine the web tension downstream of the laminator differs from 
the laminate tension in the winder tension zone. Equation {38} was employed to 
determine the tensions in the laminate layers in the winding model. Shim pressure 
transducers were wound into the edge of the winding roll as shown in Figure 5. 
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Figure 5 – Machine Set Up for Laminate Web Winding Tests 

Results are shown in Figure 6 for both plane stress and plane strain material 
behaviors. These tests were conducted 3 times and the test data in Figure 6 represent the 
average of the pressure measurements at each radial location. The height of the error bars 
represents the standard deviation of the data. The test pressures agree best with the plane 
stress case but the plane strain results agree reasonably well too. Tangential and axial 
stresses throughout the roll are shown as well for both material behaviors. 

Results are also shown in Figure 7 for a Case B where the tensions at the laminator 
were set markedly different from Case A but the tension in the laminated web at the 
winder was the same. 

Note the model shows no difference in pressure for Cases A and B. This indicates 
pressure is being affected by total winding tension and not the laminating tensions. The 
tangential stresses are affected by the lamination tensions and although not shown here 
by winding tension too. 
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Figure 6 – Model and Test Results: Non-Strain Matched Case A 
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CONCLUSIONS 

A 1D finite element model that can allow either plane stress or plane strain material 
behaviors was developed and verified against test data acquired for winding newsprint. 
The 1D finite element model was extended to accommodate laminate webs. It was found 
to be necessary to employ a condensation method to allow this model to function 
correctly. The model was validated for cases where the web strains were matched at the 
laminator and for cases where the strains were intentionally not matched. Even though 
the model is capable of modeling plane stress or plane strain behaviors it is incapable of 
predicting which of these behaviors exist in a given wound roll. This could be predicted 
with 2D winding models that are extended to winding laminates. Results presented herein 
show that the negative axial stresses associated with plane strain are substantial and 
should be accounted for when axial buckling defects are witnessed. For laminate webs it 
has been shown that the lamination tensions and the winding tension can affect the 
tangential stresses in the wound roll which will have impact on creep and curl defects. 
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