
ABSTRACT 

The methods for calculating the catenary droop of a wire or cable hanging from fixed 
supports are well understood. For many common web materials, catenary droop or sag is 
not a consideration but for webs having a significant lineal mass density and low web 
tension, catenary droop may be significant. Applying the well known catenary equations 
to a web handling system with roller supports poses some interesting computational 
challenges and also some unexpected results. A computational method will be presented 
that can reliably solve the catenary equations for an arbitrary web span geometry. 
Catenary sag (from a straight line web path), web tension along the web span and the 
length of web hanging in the span can all be obtained from this solution method. 

NOMENCLATURE 

A, (xA,yA) Starting point of catenary span (i.e. at point A or Roller A) 
B, (xB,yB) Ending point of catenary span (i.e. at point B or Roller B) 
C Lowest point of catenary span 
c, cA, cB Catenary parameter value 
h Catenary sag at C    
O, (xO,yO), (xO_A,yO_A), (xO_B,yO_B)  Catenary origin  
s Length of catenary span section 
T, TA, TB, TC Web tension (at top of catenary, Roller A, Roller B or point C) 
TX_A, TY_A, TX_B, TY_B Vector components of tension TA and TB 

w, W Weight per unit length of web, weight of catenary span section 
(xT_A,yT_A), (xT_B,yT_B) Web tangent points corresponding to θC_A and θC_B 
∆ Catenary fit parameter minimized by iterating θC_A and θC_B 

θC_A, θC_B Catenary angles on Rollers A and B – varied to minimize ∆ 
θL_A, θL_B Minimum angle bounds on θC_A and θC_B 
θU_A, θU_B Maximum angle bounds on θC_A and θC_B 
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BACKGROUND 

Catenary spans are those characterized by a load distributed uniformly along a length 
of cable or web having minimal1 stiffness or resistance to flexure. For many common 
web materials, catenary droop is not a consideration but for webs having a significant 
lineal mass density and low web tension, catenary droop or sag may be significant. 

The solution to the shape of a catenary span hanging from two fixed points is well 
understood as will be described using Figure 1. 

 

Figure 1 – Catenary span hanging between fixed points A and B. 

A web having a load per unit length, w, is shown hanging between two fixed points, 
A and B. Focusing only on the right hand portion of the catenary span in Figure 1, we can 
measure the length of web, s, between points C and B. The total distributed load, W, on 
this portion of the catenary span is given by, 

 𝑊 = 𝑤 ∙ 𝑠 {1} 

while tensile loads on this span segment at C and B are TC and T respectively. It is 
convenient to choose a coordinate origin O located at a distance c below the bottom of 
the catenary span C. This distance, c, often referred to as the parameter of the catenary, 
simplifies the following equations2 which describe the form of the catenary solution. 

For the height of the web hanging in the catenary we have 

 𝑦 = 𝑐 ∙ cosh(𝑥 𝑐⁄ ) {2} 

1 Stiffness is minimal at least in relation to the length of cable or web in the span. 
2 The solution to the catenary problem is presented without derivation and is a staple 

feature of many introductory courses in engineering statics. The presentation and 
nomenclature presented in this paper follows that referenced in [1]. 
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where cosh() is the hyperbolic cosine function. Likewise for the length of web hanging in 
the catenary span we have 

 𝑠 = 𝑐 ∙ sinh(𝑥 𝑐⁄ ) {3} 

where sinh() is the hyperbolic sine function. Using the trigonometric relationships for 
hyperbolic functions, the following equation can be derived. 

 𝑦2 − 𝑠2 = 𝑐2 {4} 

Web tension in a catenary span is proportional to the height of the web above the 
coordinate origin, leading to the following expressions for tension at C or at any other 
arbitrary height y.  

 𝑇𝐶 = 𝑤 ∙ 𝑐     𝑎𝑛𝑑    𝑇 = 𝑤 ∙ 𝑦 {5} 

Catenary droop or sag is defined as the distance between a straight line or non-
catenary span between the supports, A and B, and the actual height of the web given in 
{2}. For the catenary span shown in Figure 1, we can derive an expression for the sag, h, 
at the center of the catenary span, C.  

 ℎ = 𝑦𝐴∙𝑥𝐵−𝑦𝐵∙𝑥𝐴
𝑥𝐵−𝑥𝐴

− 𝑐 {6} 

CATENARY SPANS WITH ROLLERS 

Hanging a web span on rollers presents additional challenges because we no longer 
have fixed locations in space that can be used to define our problem. For example in 
Figure 2, we can see that even with a simple symmetrical web span connecting Roller A 
with Roller B there may be multiple potential solutions to the catenary equation, each 
having unique points of origin, (xT, yT), on each roller’s surface. These points of origin 
represent the tangent points where the web contacts the roller surface. 

       

Figure 2 – Symmetrical web span between rollers A and B showing potential solutions 
1 (dash line) and 2 (solid line) for the catenary equation. 

In the figure above, I have presented solutions 1 and 2 as having a common 
coordinate origin. From the background discussion on catenaries, each catenary solution 
will have a unique coordinate origin, (xO, yO), and parameter value, c. Reconciling 
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machine coordinates with solution coordinates is one of the challenging aspects of 
working with catenaries. As it turns out, the key to solving the general problem of a 
catenary hang between two rollers is to project a proposed solution independently from 
each roller and iterate until both of these solutions share a common origin (xO, yO) and 
catenary parameter, c. A multi-parameter optimizing routine such as Microsoft’s 
Solver™ [2] can be used to find a common solution for both rollers. 

Efficient multi-parameter optimization requires the identification of parameters that 
map directly into the solution space and have carefully defined upper and lower bounds 
that avoid false optimization results. As web line threading is inherently geometric, web 
wrap angle on the rollers turns out to be an ideal optimization parameter for catenary 
solutions as shown in Figure 3. 

 

Figure 3 – Independent catenary solutions (solid lines) are projected from Rollers A and 
B based on web wrap angles, θC_A and θC_B respectively. Viable wrap angles are bounded 

by straight web path (dot-dash line) and vertical tangents (dot lines) to the rollers. 

As can be seen in Figure 3, the natural boundaries for the minimum angle at which a 
catenary span contact the rollers are those given by the straight line web path (no 
catenary sag) connecting the rollers. Furthermore, the catenary will not hang past the 
vertical tangent to the rollers. These two angles, for each roller respectively, provide the 
natural search space for finding a single catenary solution that satisfies the boundary 
condition imposed at each roller. Catenary projection angles, θC_A and θC_B, correspond to 
a tangent points, (xT_A,yT_A) and (xT_B,yT_B) where the web makes contact with Rollers A and 
B respectively. These tangent points are analogous to fixed points A and B in Figure 1. A 
free body diagram of one of the catenary projections from Figure 3 is shown in Figure 4. 
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Figure 4 – Free body diagram of catenary solution projected from Roller A in Figure 3. 
Forces acting on the span are: web tension at Roller A, T_A; web span weight, W; and the 
web tension at the bottom of the catenary span, TC. Web tension vector components, TX_A 

and TY_A, are shown as dashed arrows. 

Following Figure 4, we see that the tension at the bottom of the loop, TC, must equal 
𝑇𝐴 ∙ cos�𝜃𝐶_𝐴�. Using {5} and a load (weight) per unit length of web, w, we can derive 
the catenary parameter cA as a function of the catenary projection angle θC_A and web 
tension, TA. 

 𝑐𝐴 = 𝑇𝐶
𝑤

= 𝑇𝐴∙cos�𝜃𝐶_𝐴�
𝑤

 {7} 

Using {2} and {5}, we can solve for the catenary origin (xO_A, yO_A) as referenced 
from tangent point (xT_A, yT_A) shown in Figure 3,  

 𝑥𝑂_𝐴 = 𝑥𝑇_𝐴 + cosh−1 � 1
cos𝜃𝐶_𝐴

� ∙ 𝑐𝐴 {8} 

 𝑦𝑂_𝐴 = 𝑦𝑇_𝐴 −
𝑇𝐴 𝑤�  {9} 

where cA is obtained from {7}. In deriving {8} we make use of the relationship 
 𝑦𝑇_𝐴
𝑐

= 𝑇𝐴
𝑇𝐶

= 1
cos 𝜃𝐶_𝐴

 from {5}. Because the tangent point is a function θC_A, the catenary 
parameter cA and origin (xO_A, yO_A) are now defined by the geometry of Roller A, web 
tension TA, web load w and our iteration variable θC_A. 

Solutions for the catenary solution projected from Roller B in Figure 3 may be 
obtained in an analogous manner to {7}, {8} and {9} with one additional parameter, 
namely the tension, TB, of the catenary at Roller B. Employing {5} once again, we can 
write 

 𝑇𝐵 = 𝑇𝐴 + �𝑦𝑇_𝐵 − 𝑦𝑇_𝐴� ∙ 𝑤 {10} 

and 

 𝑐𝐵 = 𝑇𝐶
𝑤

= 𝑇𝐵∙cos�𝜃𝐶_𝐵�
𝑤

 {11} 

 𝑥𝑂_𝐵 = 𝑥𝑇_𝐵 + cosh−1 � 1
cos 𝜃𝐶_𝐵

� ∙ 𝑐𝐵 {12} 
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 𝑦𝑂_𝐵 = 𝑦𝑇_𝐵 −
𝑇𝐵 𝑤�  {13} 

resulting in a catenary parameter cB and origin (xO_B, yO_B) defined in terms of the geometry 
of Roller B, web tension TB, web load w and our second iteration variable θC_B. 

An iteration optimizing parameter may now be defined as the least squares 
difference between our two catenary solutions. 

 ∆= �(𝑐𝐴 − 𝑐𝐵)2 + �𝑥𝑂_𝐴 − 𝑥𝑂_𝐵�
2
 {14} 

As yO_A and yO_B do not depend on θC_A. or θC_B, it is not necessary to include them in {14}. 
Finding a common solution to the catenary equation for Roller A and Roller B consists of 
varying iteration parameters θC_A. or θC_B, using {7} through {13} to compute a new 
optimizing parameter ∆ using {14} and continuing this process until ∆ is minimized to a 
value near zero. 

EXCEL IMPLEMENTATION 

The procedure described in the previous section was coded into a Microsoft Excel ™ 
workbook. As it is difficult to visualize purely numerical results from the computation, 
routines were written to scaled drawings of two rollers and catenary solution connecting 
them. Required input to the workbook consisted of: roller geometry (origin, diameter), 
web tension TA at Roller A and the weight per unit length of web w.  With the exception 
of web tension, a common set of parameters was used and are listed in Table 1. The 
iteration procedure was found to be stable and provided good convergence except in 
cases of very low web tension or very high web weight. 

 
Catenary Parameters Used for Computation 

Roller Diameter 76 mm 3 in. 
Roller Spacing 609.6 mm 24 in. 
Web Width 228 mm 9 in. 
Weight per Unit Length 0.0099 kg/cm 0.056 lb/in. 

Table 1 – Catenary parameters used for Excel ™ implementation of catenary solution. 

In some cases, as shown in Figure 5, the catenary iteration procedure was found to 
converge on two different solutions depending on the initial values chosen for θC_A. and 
θC_B. Note that these two solutions are for the exact same input conditions of roller 
geometry, web weight per unit length and web tension. Solution convergence was stable 
provided the same initial angle values were provided to the solver and by careful 
selection of those input angles, the solver could be made to converge reliably to either the 
upper or lower solution. 
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Figure 5 – Graph of catenary web spans for web tension (at Rollers A and B) of 24 N/m 
(0.14 PLI). Solution is bi-modal having an upper solution (solid line) and lower solution 

(dashed line). Straight line non-catenary web path is shown as a dotted line. 

A practical method was required to seed the solver with input values that would lead 
to a desired solution, upper or lower. Using a Visual Basic for Applications™ (VBA) 
macro running in Excel™, a search space covering the entire range of possible catenary 
solution angles for was gridded3. For the problem illustrated in Figure 3, catenary 
solution angles θC_A. and θC_B can range from 0 to 1.57 radians and correspond to θL_A. and 
θU_A (Roller A) and θL_B. and θU_B  (Roller B). The catenary fit parameter {14} was then 
computed as a function of solution angles θC_A. and θC_B, as shown in Figure 6 using 
surface (a) and contour graphs (b). Web tension input was 24 N/m (0.14 PLI). 

Two minima can be observed in the catenary fit parameter ∆, obtained from {14}, 
corresponding to the upper and lower catenary solutions. It is a relatively easy task to 
search this solution space for local minima. Starting values for an upper solution will be a 
local minimum with the smallest values for θC_A. and θC_B, (U on Figure 6b) while a lower 
solution will be a minimum with the largest values for θC_A. and θC_B (L on Figure 6b). 
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Figure 6 – Graph of solution search space showing surface (a) and contour (b) plots for 
catenary fit parameter ∆ as a function of catenary solution angles θC_A. and θC_B. Upper and 

lower catenary solutions are shown on (b) as U and L respectively. 

Surface (a) and contour (b) graphs of the catenary fit parameter ∆ using a somewhat 
higher input web tension of 78 N/m (0.44 PLI) are shown in Figure 7. Even with a single 
minimum in the search space, it was found advantageous to seed the solver with θC_A. and 
θC_B values corresponding to this minimum. 

 

Figure 7– Graph of solution search space showing surface (a) and contour (b) plots for 
catenary fit parameter ∆ as a function of catenary solution angles θC_A. and θC_B. A single 

catenary solution minima marked U is shown on (b). 
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To test the robustness of the catenary solution method, a wide range of web tension 
was applied to the catenary parameters of Table 1. Results are shown in Table 2. 

 

Table 2 – Table of catenary solutions for varying input web tension. Shown are the wrap 
angles found for each solution along with the catenary sag, minimum web tension (at 
bottom of catenary) and total length of web in the catenary. Where bi-modal solutions 

exist, both upper and lower results are shown. 

Not surprisingly, the amount of catenary sag decreases and the length of web 
approaches the straight line web span length of 609.6 mm (24 in.) found in Table 1. 
Model convergence was not reliable below the lowest input tension of 19 N/m (0.11 PLI). 
At the highest tension modeled of 623 N/m (3.56 PLI) convergence was not an issue. It 
should be noted that even at that highest tension, web sag would still be a measurable 3.1 
mm (0.124 in.). Selected catenary solutions are shown graphically in Figure 8 with high 
tension solutions omitted for graphical clarity. 

 

Figure 8 – Graph of selected catenary web span solutions as a function of web tension 
from Table 2. In cases where bi-model solutions exist, only the upper solution is shown. 

A computational method for calculating catenary spans for webs on rollers has been 
presented and implemented in Microsoft Excel™. Catenary shape, droop or sag, length of 
web and web tension may all be obtained from this method. In some cases, bi-modal 

(N/m) (rad) (mm) (N/m) (mm) (mm) (N/m) (mm)
19 0.818 123 14 682 303 6.4 954
24 1.015 86 21 645 451 5.1 1220
39 1.239 50 38 621 824 3.7 1930
78 1.406 25 77 612 NA NA NA
156 1.488 12.5 155 610.3 NA NA NA
311 1.529 6.3 311 609.7 NA NA NA
623 1.550 3.1 622 609.7 NA NA NA
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computational results were discovered and a strategy was presented to choose a particular 
solution. Numerical results for a catenary span have been presented, and the method has 
proven computationally robust for a wide range of input web tension. 
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